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Summary

The thesis is centered around the application of a sensor fusion algorithm for
satellite tracking. The specific application considered is the PRISMA mission,
which involves a complex task of autonomous satellite docking. In this mission, a
MAIN satellite is responsible for tracking and eventually docking with a TARGET
satellite. To model and simulate this docking scenario, an orbital simulator was
developed in MATLAB. The choice of the sensor fusion algorithm comes from a
broader understanding of the principal estimation techniques. The search starts
from the classical Kalman Filter (KF). In particular the main motivation behind
this work stems from two key challenges that arise in pose tracking; namely the
need to model nonlinear dynamics that cannot be effectively treated by traditional
filtering methods like the KF and non-Gaussian sensor noise. This noise deviates
from the standard Gaussian assumptions that traditional filters rely on, leading to
suboptimal performance in estimating the satellite’s pose. In an effort to address
these challenges, several filtering algorithms were explored and ultimately, the
Unscented Kalman Filter (UKF) was selected as the foundation for this research
due to its ability to accurately handle nonlinear systems without the need for
linearization. First, the UKF was integrated with a smoother to deal with high-
frequency noise in the system and provide a cleaner trajectory. One of the key
contributions of this thesis is the incorporation of Huber’s function into the filtering
process, which provides robustness against outliers in the sensor measurements. In
many real-world tracking problems, sensor data can contain significant outliers due
to temporary failures or unexpected anomalies in the environment. By introducing
Huber’s function, the filter assigns adaptive weights to the measurements based
on their deviation from the predicted value. Measurements that are close to
the expected value receive higher weights, while those that deviate significantly
(potential outliers) are assigned lower weights. This weighting system is controlled
by a threshold parameter, which helps to balance the trade-off between being
sensitive to actual changes in the state and ignoring spurious outliers. To test
and validate the proposed algorithm, extensive simulations were carried out in
two different scenarios. The first involved a relatively simple case using a double
integrator model, which allowed for an initial evaluation of the filter’s performance.
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Next, the algorithm was applied to the full satellite dynamics, including both
the orbital and attitude models. In these simulations, non-Gaussian noise was
introduced in the measurements using a Gaussian mixture model. This model
consists of two distinct Gaussian distributions with zero mean but very different
variances. Each measurement was drawn from one of the two distributions with
a certain probability, reflecting the variability and unpredictability of the sensor
noise in real-world applications. The simulations confirmed the effectiveness of
the Huber-based UKF (HUKF) in addressing both the nonlinear dynamics of
the satellite and the non-Gaussian noise in the sensor measurements and of the
Huber-based UKS (HUKS) to smooth the trajectory. Overall, the proposed method
offers a robust and efficient solution for satellite pose tracking, particularly in
scenarios involving complex dynamics and unreliable sensor data.
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Chapter 1

Introduction

1.1 Pose estimation in spatial applications
With the advancements in space exploration, the technology boundaries have been
continuously pushed further away. This allows for increasingly complex operations
to be conducted autonomously and efficiently in outer space such us repairing
spacecrafts in orbit, debris removal and supplying orbital platforms and stations.
To accomplish these tasks, complicated maneuvers need to be performed. For
example, the phasing phase in the rendezvous and docking process, i.e., the stage
during which the chaser spacecraft adjusts its orbit to catch up with the target
spacecraft, as shown in Figure 1.1.

Figure 1.1: Visual representation of the phasing stage in the rendezvous process
(credit: [1]).

This phase is critical because it guarantees that the two spacecraft will meet at
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Introduction

a certain location along the same orbit. To do so, the chaser must travel along
a narrower orbit than the target. Thus, the phase angle, which is the angular
separation between the two spacecrafts in their orbits, is gradually reduced. During
phasing, the absolute position coordinates (described in the Earth Centered Inertial
frame) of the chaser must be monitored to ensure it lies on the orbit that allows it to
reach the target [1]. On the other hand, during the final stages of the mating process,
as shown in Figure 1.2, between the two satellites an accurate measurement of the
orientation is needed. Both spacecraft have specific docking ports that must align
with each other to ensure a successful connection and even a slight misalignment in
orientation could prevent the docking mechanisms from engaging correctly. Proper
orientation guarantees that the docking interfaces are positioned correctly for a
secure lock.

Figure 1.2: Chaser spacecraft approaching the target (credit: [2]).

In conclusion, pose estimation of a satellite is not only crucial for tracking its
position and orientation along its orbital path, but also plays a fundamental role
in enabling the successful execution of complex procedures. It ensures that the
satellite can navigate accurately, approach other spacecraft safely, and achieve the
delicate mechanical connections necessary for mission-critical tasks.
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1.2 The role of estimators
Estimators play a crucial role in filtering noisy sensor data and predicting the
state of the satellite over time. Various types of estimators can be used, each
based on different mathematical principles. Least Squares (LS) [3] is one of
the most basic and widely used estimation techniques, particularly for solving
linear regression problems. It finds the parameter values that minimize the sum of
squared differences between observed data and model predictions. The standard
LS approach assumes that the noise or error has a constant variance and normally
distributed. LS is the default method for fitting a straight line (or more complex
linear models) to a set of data points. Mathematically, the goal is to minimize
the residuals between the output y and the predicted output Hx, as described in
equation 1.1

x̂ = arg min
x

∥y −Hx∥2, (1.1)

whereH is the measurement matrix function and x the state variable to estimate. LS
assumes the errors are distributed normally, but if this assumption does not hold (for
instance, if errors have varying variances), LS can provide biased estimates, leading
to the need for more sophisticated techniques like Weighted Least Squares (WLS)
[4]. It extends LS by assigning different weights to each observation, reflecting
the confidence or precision of each measurement. WLS is especially useful when
the errors in the data have different variances. The WLS estimator minimizes the
weighted sum of squared residuals, allowing for more accurate parameter estimation
when the error variances are not constant

x̂ = arg min
x

(y −Hx)TW (y −Hx), (1.2)

where W is a diagonal matrix where each element represents the inverse of the
variance of the corresponding observation. This approach ensures that observations
with lower noise (i.e., higher precision) contribute more to the final estimate.
Maximum Likelihood Estimation (MLE) [5] is a powerful general-purpose
method for estimating parameters of a probabilistic model. MLE maximizes the
likelihood function, which represents the probability of the observed data given
a set of parameters. Unlike LS, MLE is not restricted to linear models and can
handle a wide variety of data distributions, making it more flexible. If x is the
variable to estimate and p(y|x) is the likelihood to observe the data given the
variable, MLE seeks to maximize it

x̂ = arg max
x

p(y | x), (1.3)

while MLE is simple and intuitive, it doesn’t account for prior knowledge or
uncertainty about the parameters, making it less effective in real-time scenarios
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where noise and dynamics affect the measurements. Recursive Bayesian estimation
addresses the shortcomings of LS, WLS, and MLE for dynamic systems. It combines
prior information with new measurements in an optimal and recursive manner,
making it perfect for online applications like satellite pose tracking. In this
framework, the goal is to update the posterior distribution of the satellite’s state
as new sensor data becomes available

p(xt | y1, . . . , yt) = p(yt)p(yt | xt)p(xt | y1, . . . , yt−1)
p(yt)

, (1.4)

where, to find the posterior p(xt | y1, . . . , yt), the likelihood p(yt | xt) of the
new observation given the current state, the probability of the current state
p(xt | y1, . . . , yt−1) and measurement p(yt) to occur are needed. This recursive
approach is foundational to Kalman filters, which are widely used in satellite
systems for tracking the satellite’s pose (position and orientation) over time. The
Kalman Filter builds on the recursive Bayesian framework and is optimal for linear
systems with Gaussian noise. It iteratively predicts the next state and updates it
with incoming measurements. The system model is expressed as

xt+1 = Fxt +But + wt (1.5)

yt = Hxt + vt, (1.6)

where F is the state transition matrix, u the control inputs, w and v are the modeled
process and measurement noise. The Kalman Filter proceeds in two stages. First
it predicts the state at the next time step based on the current state

x̂−
t+1 = Fx̂t +But (1.7)

P−
t+1 = FPtF

T +Q, (1.8)

where Pt is the error covariance matrix, and Q represents process noise covariance.
The next step is to incorporate the new measurements to correct the predicted
state

Kt+1 = P−
t+1H

T (HP−
t+1H

T +R)−1 (1.9)

x̂t+1 = x̂−
t+1 +Kt+1(yt+1 −Hx̂−

t+1), (1.10)

where K is the Kalman gain, and R is the measurement noise covariance. This
recursive approach allows for real-time pose tracking, making Kalman filters ideal
for satellite navigation systems.

4
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1.3 Robust nonlinear filtering
The estimation of a satellite pose has evident obstacles to overcome.

1.3.1 Sensor noise
The space environment introduces factors such as vacuum conditions, extreme
temperature variations, and high levels of radiation that can affect sensor behavior
in ways that are difficult to fully simulate during terrestrial testing. For example,
as the name suggests, magnetometers [6] measure the magnetic field and find
its vector direction and strength. In space, they rely on the calculation of the
Earth’s magnetic field to determine the satellite orientation. In particular they
are most effective in low-Earth orbits (LEO), where the magnetic field is strong
enough for accurate measurements. By comparing the detected magnetic field to
known models, such as the International Geomagnetic Reference Field (IGRF),
magnetometers allow satellites to determine their orientation relative to Earth’s
magnetic field. Thus, they are particularly important for low-altitude satellites, such
as Earth observation satellites, where accurate attitude determination is needed to
orient cameras, sensors, or communication antennas. In addition, they are useful
for scientific missions studying the Earth’s magnetic field, such as geomagnetic
mapping missions or for detecting changes in magnetic activity, which can also
help monitor space weather and the final moments in docking missions where the
ports of both the target and the chaser satellite must be properly aligned. However,
these devices are triggered by any magnetic source, including that generated by
the spacecraft electrical system. Another important device that constitutes the
navigation control system of a satellite is the Sun sensor [7]. They are key
instruments for determining a satellite’s orientation relative to the Sun. Their
main function is to measure the angle of the incoming sunlight, which helps in
attitude determination. One of the most critical applications of sun sensors is in
safe mode operations, where the satellite relies on them to orient itself in the event
of system failure. This ensures that the solar panels are aligned with the Sun,
maintaining the power supply even when other systems malfunction. Additionally,
sun sensors are widely used in solar-powered satellites to keep their solar arrays
optimally aligned for maximum energy generation. They are also used in science
missions where specific instruments need to be oriented toward the Sun, like in
solar observation satellites or those studying solar radiation. Their simple design
and low power consumption make sun sensors reliable for long-duration missions,
particularly in deep space where sunlight is often the only available reference.
This comes at the expenses of tolerance to perturbations. In particular, it is
sensible to light reflection of the Sun from Earth, creating the so-called Albedo
effect. This phenomenon can be modelled, but it depends on the position of the
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satellite and the configuration between the celestial bodies. Lastly, the Global
Positioning System GPS [8] receivers mounted on satellites are used to evaluate
the absolute position. The GPS receiver onboard the satellite uses signals from at
least four GPS satellites to determine its location through triangulation. Each GPS
satellite sends a signal containing its position and the exact time the signal was
transmitted. The receiver calculates its distance from each GPS satellite based on
the time delay of these signals and, using this data, determines its precise position
in an Earth-centered coordinate system, such as Earth-Centered Inertial (ECI) or
Earth-Centered, Earth-Fixed (ECEF). By having onboard positional awareness, the
satellite can autonomously adjust its orbit or perform maneuvers without needing
constant control from ground stations. This is particularly useful in low Earth orbit
missions or in constellations. For missions that involve multiple satellites flying
in close formation, such as scientific observation missions, the GPS receiver helps
maintain precise relative positions between the satellites, enabling coordinated
operations. GPS receivers help satellites relay accurate positional data to ground
stations, facilitating mission control and ensuring that the satellite can fulfill its
mission objectives, such as imaging specific areas or communicating with ground
antennas. The receiver’s calculations are continuous, allowing for real-time position
tracking. However they can experience thermal and radiation noise from their
electronics, leading to small, random errors in the signal measurement. The three
types of sensors are presented in Figure 1.3.

Figure 1.3: From left to right: MAG-3 magnetometer, AQUILA-D02 Sun Sensor,
Explorer GPS Spaceborne Receiver (credit: [9], [10], [11]).

In space, thermal fluctuations and radiation can also affect the sensor performance.
These disturbances can not be modeled to extreme precision causing a behaviour
which is not Gaussian anymore. In fact, a Gaussian distribution is suitable to model
data dispersion as long as all variable relations are known. When this assumption
is not valid anymore, it is necessary to introduce robust algorithms that can handle
outliers.
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1.3.2 Nonlinear functions
Another problem to investigate is related to the system nonlinearity. A function
is a map between two or more variables. In particular, probabilistic variables are
represented by a distribution that spans over a certain range in the feature space.
The input variable distribution is also called prior, while the output one is referred
to as posterior. A nonlinear function (e.g., a trigonometric or exponential function)
causes the relationship between the input and the output to be more complex. As
a result, the output (posterior) may deviate significantly from the original type of
distribution (prior). For example, if the prior distribution is Gaussian, a nonlinear
function might transform it into a non-Gaussian posterior, making it harder to
model using simple linear assumptions.
Traditional linear filters, such as the standard Kalman Filter, are inadequate, as
they rely on linear assumptions that can lead to significant estimation errors [12].
Thus, a filter that can model as precise as possible the changes in the characteristics
of a probability distribution undergoing a nonlinear transformation, is optimal in
the pose estimation problem.

1.4 A panoramic view on nonlinear filters
The last section poses two problems in the use of the classical Kalman filter. Namely,
it can not model a non linear function and it follows the assumption of Gaussian
measurement noise. The first task is tackled by the nonlinear recursive Bayesian
filters. They can be arranged by their method of reconstructing the posterior
distribution as expressed in Figure 1.4. One way of measuring a filter performance
is to analyze how well it estimates the moments of the distribution such as the mean
and the variance. A common approach to compute the moments is to approximate
the nonlinear system and measurement models.
The Extended Kalman Filter (EKF) [13] exploits first-order Taylor expansions
around the prior state mean for model linearization. Another option is to use
polynomial interpolations. This allows not to compute explicit derivatives. Such
filters are for example the Central Difference Filter (CDF) [14] and the Divided
Difference Filter (DDF) [15]. The problem with these approaches is that they
fail to capture the second moment of the distribution, namely the variance [12].
Introducing a second order approximation term improves the performance but
increases the computational complexity. Linear regression Kalman filters are
sample-based approach. This means that the state densities are represented by
a set of samples. The Unscented Kalman Filter (UKF) [16] employs 2n + 1
(where n is the system dimension) samples to capture the prior distributions. Thus,
the number of samples is fixed and it depends linearly on the system dimension
number. A filter that does not rely on Kalman theory is the Particle Filter (PF)
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Figure 1.4: Non-linear filter classification by approaches.

[17]. This is already an advantage because it does not rely on any assumption
on the noise distribution unlike the classical Kalman filter. It constructs the
posterior distribution of the system’s state as a set of weighted particles. Each
particle represents a possible state of the system and is characterized by its state
vector and an associated weight that indicates how likely that particle represents
the true state given the observations. Particle Filters can represent complex,
multimodal distributions and global localization problems (where the starting point
is unknown). This is perfect for mapping a room in an autonomous mobile robot
scenario. However, for satellites, the situation is quite different. The initial position
is typically known (or at least roughly estimated) through GPS coordinates or
similar telemetry systems. While GPS signals may contain noise, they still provide
a reliable reference. A visual representation of the difference between a global
localization problem and a tracking one is presented in Figure 1.5. This transforms
the problem into one of pose tracking, where the goal is to monitor small deviations
from a known pose over time, rather than figuring out the satellite’s position
from scratch. The PF time complexity poses another problem in the choice of it
for spacecraft estimation. In particular, to have decent accuracy, the number of
particles must depend exponentially to the system dimension. This is due to the
phenomenon known as ’curse of dimensionality’. If the variables are independent
with respect to each other, all of their probability distribution must be expressed
by the same amount of particles. Moreover, since the mean and variance of the
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distribution are not directly found through an analytical formula it is not simple
to reproduce its results making these technique less rigorous.

Figure 1.5: On the left a pose tracking problem in the satellite estimation scenario
while on the right a global localization problems (credit: [18] and [19]).

The objective of the thesis is to estimate the states of a nonlinear system subject to
non-Gaussian noise with low computational effort. To do so the UKF is chosen as
a starting point in the creation of an accurate and robust filter. An advancement
in the estimator performances can be given by adopting the Huber Unscented
Kalman Filter (HUKF) and Huber Unscented Kalman Smoother (HUKS). The
HUKF provides robustness against non-Gaussian noise, which can arise from sensor
inaccuracies or disturbances in space. By incorporating Huber loss functions [20],
it effectively handles outliers and ensures reliable pose estimates, maintaining
accurate tracking even in uncertain conditions. On the other hand, the HUKS
offers an optimized approach to trajectory estimation. While the HUKF focuses
on real-time tracking, the smoother analyzes the entire trajectory, providing a
more accurate global estimate over a series of observations. This makes the HUKS
especially useful in docking scenarios, where refining the satellite’s path relative to
the docking target is critical for precise alignment. The smoother [21] ensures the
trajectory is optimized, improving the final approach to the docking target.
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Chapter 2

Satellite Architecture

2.1 Mission concept
The thesis reference is the PRISMA mission, led by the Swedish Space Corporation
(SSC). It is a technology demonstration focused on formation flying and rendezvous
technologies. The satellite system consists of two spacecraft: MAIN (the active,
maneuverable satellite) and TARGET (a passive satellite with limited functionality),
designed to test guidance, navigation, and control (GNC) methods for future in-
orbit servicing missions. The MAIN satellite is highly maneuverable, fully equipped
with six thrusters to provide torque-free translational capability. It features a
3-axis stabilization system with reaction wheels for fine attitude control, alongside
GPS receivers, magnetometers and sun sensors for precision navigation. These
allow MAIN to perform complex orbital maneuvers and close-range proximity
operations. TARGET is a simpler spacecraft with no propulsion system but features
magnetorquers for coarse 3-axis stabilization and GPS receivers for positional
updates. TARGET communicates its position to MAIN via an intersatellite link
(ISL), which is crucial for the rendezvous operations. PRISMA operates in a Sun-
synchronous orbit (SSO), with an altitude of about 720 km x 780 km, inclination
of 98.2o, Local Time of Ascending Node (LTAN) of 6:00 hours (or 18:00 hours).
This ensures consistent lighting conditions for sensor operations [22].

2.2 Actuators
In a satellite, both thrusters and 3-axis stabilization system with reaction wheels
are fundamental for controlling position and orientation in space. Thrusters
provide high maneuverability and are essential for rapid changes in a satellite’s
orbit or for large-scale attitude adjustments. Instead, reaction wheels offer high-
precision control without expending fuel, ideal for maintaining satellite orientation
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for extended periods. By combining these two systems, satellites achieve both
fine-tuned attitude control and the ability to perform orbital maneuvers.

2.2.1 Thrusters
Thrusters are small rocket engines used to adjust the satellite’s position (translation)
and orientation (attitude) in space. They apply a force in specific directions to
change the velocity or orientation of the satellite. They are essential for tasks
such as orbital adjustments, station-keeping (maintaining the satellite’s correct
orbit), and fine-tuning its attitude during proximity operations like docking or
formation flying. The working principle focuses on expelling a propellant at high
speed, generating a reaction force in the opposite direction based on Newton’s
Third Law of Motion. In Figure 2.1 an example of a working thruster is shown.

Figure 2.1: On the left the close-up of a thruster and on the right a working
satellite thruster (credit: [23] and [24]).

Depending on the satellite’s mission, the thrusters can be chemical, electric, or
cold-gas thrusters. Chemical thrusters rely on the combustion of fuel, which provides
high thrust and is often used for rapid orbital maneuvers. The mission in question
uses high-performance green propellant (HPGP) thrusters, an environmentally
friendly alternative to traditional hydrazine-based propulsion systems. Electric
propulsion systems, like ion or Hall thrusters, provide much smaller thrust but
with higher efficiency, making them suitable for long-duration missions requiring
small adjustments over time [25]. Thrusters are often arranged in pairs or groups
to provide balanced forces without introducing unwanted rotational effects. When
used for attitude control, multiple thrusters are fired in specific sequences to rotate
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the satellite without altering its orbital path.

2.2.2 Reaction wheels
Reaction wheels are part of a satellite’s Attitude Determination and Control System
(ADCS). Unlike thrusters, which apply external forces, reaction wheels manage
orientation using internal forces to precisely adjust the satellite’s attitude in three
dimensions (3-axis). Reaction wheels consist of flywheels that spin at high speeds.
When the flywheel’s speed is changed, the satellite experiences an equal and opposite
rotational force (due to conservation of angular momentum). This allows for fine
control of the satellite’s orientation without the need to expel propellant, making
reaction wheels ideal for long-term missions where minimizing fuel consumption
is crucial [26]. Typically, four reaction wheels are used, with three aligned along
the satellite’s principal axes and a fourth as a backup or for additional flexibility.
Reaction wheels are primarily used for slow, precise adjustments of the satellite’s
orientation, which is necessary for tasks like pointing scientific instruments, solar
panels, or antennas at the correct targets. They provide continuous and precise
control over the satellite’s orientation, unlike thrusters, which are used in short
bursts. However, reaction wheels can saturate (reach their maximum speed), at
which point magnetic torque rods or thrusters may be employed to desaturate
them.

2.3 Sensors
Different types of sensors are employed depending on whether the goal is to measure
global or relative position and orientation. For global position determination,
sensors such as GPS receivers are indispensable. As said in the introduction
chapter GPS provides highly accurate information about a satellite’s location by
triangulating signals from multiple satellites orbiting the Earth. This data is
fundamental for navigating and maintaining a satellite’s trajectory within its orbit.
For absolute orientation (also known as attitude determination), magnetometer
are widely used.

2.3.1 GPS
Using GPS for satellite navigation has become standard practice, initially developed
to provide a reliable method for vehicles to determine their position autonomously.
Thus, the state space vector estimated by the GPS includes the three linear
variables r = [x, y, z]. GPS works by leveraging geometric triangulation, using
known satellite positions to calculate a user’s position with high accuracy. To
achieve this, signals from a minimum of four satellites are required, allowing the
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system to determine not only the user’s three-dimensional location but also the time,
which is necessary to adjust for errors in the receiver’s clock. GPS signals consist
of pseudo-random codes (PRCs) unique to each satellite, ensuring the receiver can
distinguish between them. Mathematically it is defined as the Euclidean distance
between the ith satellite and the receiver, i.e.;

ρi =
ñ

(xi − x)2 + (yi − y)2 + (zi − z)2, (2.1)

where rs = [xs, ys, zs] is the position vector in ECI coordinate of the ith satellite.
In the context of the PRISMA mission the GPS receiver use the Coarse Acquisition
(C/A) code. The C/A code is a unique sequence of pseudo-random bits used by
civilian GPS receivers to determine their position. It is modulated onto the L1
carrier frequency, which operates at 1575.42 MHz. It repeats every 1,023 bits and
has a chip rate of 1.023 MHz, meaning it completes one full cycle every millisecond
[8]. Given the position vector r in ECI coordinate, the measured output yr is
modeled as

yr = r + nr, (2.2)

where nr is the observation noise following a zero mean value Gaussian mixture
model.

2.3.2 Magnetometer
Magnetometers play a crucial role in the determination of a satellite’s orientation
(or attitude) by measuring the local geomagnetic field in the satellite’s body frame.
The magnetometer, provides three components of the Earth’s magnetic field along
the satellite’s body axes. In terms of mathematical modeling, this observations are
related to the satellite orientation through the formula (2.3)

yη = Rb
inmin + nη, (2.3)

where min is the known local geomagnetic field from an inertial frame whose values
are obtained using models such as the International Geomagnetic Reference Field
(IGRF). The IGRF models the field with respect to the distance from the centre of
the Earth r, the colatitude φ which is the complementary angle of the latitude and
the east longitude λ which specifies the position of a point on the surface of the
Earth with respect to the Greenwich meridian. The matrix Rb

in rotates the inertial
frame into the body frame. The overall frame rotation is given by the subsequent
rotation about the z-axis of the yaw angle (ψ), about the y-axis of the pitch angle
(θ) and about the x-axis of the roll angle (ϕ).

Rb
in = Rroll(ϕ) ·Rpitch(θ) ·Ryaw(ψ). (2.4)
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The equation (2.4) summarize the rotation about body frame axis through the
composition of the three rotation matrices. The Figure 2.2 shows the local inertial
frame (in this case the North-East-Down or NED frame) with respect to which the
magnetic field is evaluated once the satellite cartesian coordinates are given and
the body frame in which the magnetometer measurements are taken.

Figure 2.2: Orientation of the body frame with respect to the NED frame
reconstructed through magnetometer readings (credit: [6]).

The term nη indicates the sensor noise. It is modeled as a Gaussian mixture noise
with zero mean in order to take into account all the magnetic noises that the model
can not incorporate, namely the disturbances due to the spacecraft electronics and
extraordinary events such as sun storms. In particular for the last one, they can
produce large variance deviations from the assumed one.
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Chapter 3

Sensor fusion Algorithm

3.1 System Description
Let us consider a discrete-time, nonlinear system of the form

xk+1 = f(xk,wk)
yk = h(xk,vk),

(3.1)

xk ∈ Rn is the state vector, wk ∈ Rn is the process noise, vk ∈ Rm is the
measurement noise, yk ∈ Rm is the vector of observed outputs, and f, h are known
functions modelling the nonlinear dynamics. Both process and measurement noises
are modelled at each time step k as Gaussian random variables, i.e.,

wk ∼ N (0, Qk), vk ∼ N (0, Rk), (3.2)

where the covariance matrices Qk ≻ 0, Qk ∈ Rn×n and Rk ≻ 0, Rk ∈ Rm×m contain
the noise standard deviations, that are an indicator of the state or output variable
dispersion from its true value [27].

3.2 The Unscented Kalman Filter
Considering the application requirements and the processor computing capabilities,
the Unscented Kalman Filter (UKF) is a middle ground in terms of accuracy and
complexity. Generally speaking, the UKF filter exploits sampling points, known
as sigma point, and it does not rely on the linearization of the dynamical model.
Moreover, unlike PF, the number of sampling points needed to faithfully reconstruct
the probability density function varies linearly with respect to the dimension of
the system (see Figure 3.1). As for other filtering techniques, the UKF aims at
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deriving at each time step k the best state estimate (called filtered state), given a
probabilistic discrete-time dynamic model and sensor measurements [28], i.e.,

p(xk|y1:k) ∼ N (xk|x̂k|k, P̂k|k), (3.3)

where p(xk|y1:k) is the estimated probability distribution of the state variable
conditioned to the measurements at time k, x̂k|k is the filtered state vector and
defines the expected value of the Normal distribution, and P̂k|k is its covariance
matrix.

Figure 3.1: Visual confrontation between actual state propagation, EKF and
UKF. The EKF, through the state transition linear approximation Ak, fails to
estimate the true mean. The UKF approximate mean and covariance thanks to
sigma points propagation (credit: [29]).

The objective of the UKF is to update the state estimate by propagating the prior
state and measurement probability distribution through the model transition f
and measurement h functions as

p(xk+1|xk) ∼ N (xk+1|x̂k+1|k, P̂k+1|k)
p(yk|xk) ∼ N (yk|ŷk|k, P̂y),

(3.4)

where p(xk+1|xk) represents the estimated probability distribution of the predicted
state variable at the following time step k + 1 conditioned to the state variable
at time k, while p(yk|xk) defines the the estimated probability distribution of the
predicted output measurement variable at the time step k conditioned to the state
vector variable at time k. With respect to EKF and PF, the problem to propagate
the nonlinear dynamics to reconstruct the state posterior distribution is tackled
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thanks to the unscented transform (UT). The UT is a method for computing
the statistics of a random variable which undergoes a nonlinear transformation
[16], exploiting (3.1), to evaluate the predicted estimate of the state x̂k+1|k and
the output measurements ŷk|k as well as the predicted covariance matrices P̂k+1|k

and P̂y of the state and output measurements, respectively. Let us consider the
predicted state x̂k|k−1 and covariance P̂k|k−1 at time k − 1. First, a set of 2n+ 1
sigma points are generated to reconstruct the prior distribution of the true mean
and covariance of the state vector, i.e.,

x̂(0)
k|k−1 = x̂k|k−1 (3.5)

x̂(i)
k|k−1 = x̂k|k−1 + ∆x(i)

p i = 1, ...2n (3.6)

∆x(i)
p =

ñ
c[P̂k|k−1]i, i = 1, ..., n (3.7)

∆x(n+i)
p = −

ñ
c[P̂k|k−1]i, i = 1, ..., n (3.8)

c = α2(l + κ), (3.9)

where the distances ∆x(i)
p and ∆x(n+i)

p of the sigma points from the estimated mean
depend on the tunable parameters α and κ as well as from the ith row [P̂k|k−1]i of
the predicted covariance matrix P̂k|k−1. Therefore, the spread of sampling points is
not constant, but varies so that the distribution profile is approximately captured.
The sigma points are then propagated through the measurement function h, to
obtain 2n+ 1 predicted observations from every prior state as

ŷ(i)
k|k = h(x̂(i)

k|k−1,vk). i = 0, ...,2n (3.10)

The predicted observation expected value ŷk|k is obtained as the weighting sum of
all the propagated estimates ŷ(i)

k|k as

ŷk|k =
2nØ
i=0

W
(i)
M ŷ(i)

k|k. (3.11)

Then, the predicted observation covariance matrix P̂y is evaluated as the weighted
sum of the mean square deviation between each propagated observation vector ŷ(i)

k|k,
the expected value ŷk|k, and the measurement noise covariance matrix Rk, i.e.,

P̂y =
2nØ
i=0

W (i)
c (ŷ(i)

k|k − ŷk|k)(ŷ(i)
k|k − ŷk|k)⊤ +Rk, (3.12)

where the term P̂y approximately quantifies the dispersion of the propagated sigma
points with respect to the true measurement at time k. It is important to highlight
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that its accuracy depends on the number of sampling points as well as on how
accurate the measurement noise is modeled. Moreover, in (3.11) and (3.12), the
parameters W (i)

M and W (i)
c assign a weight to each sigma point when computing the

estimated mean and covariance. Specifically, for each i = 1, . . . ,2n, these weighting
parameters take into account the spread of the distribution through the previously
defined tunable parameters α and κ other than β, as follows

W
(0)
M = 1 − n

α2(n+ κ) , W
(i)
M = n

2α2(l + κ) , (3.13a)

W (0)
c = (2 − α2 + β) − n

α2(n+ κ) , W (i)
c = n

2α2(n+ κ) . (3.13b)

We want to remark that the parameter β is used to incorporate knowledge of the
prior state distribution and, for a Gaussian random variable, the optimal value is
typically selected as β = 2. Once ŷk|k is calculated, x̂k+1|k is found by propagating
sampling points of the filtered expected value of the state x̂k|k through the UT
method. The vector variable x̂k|k, as well as the state vector filtered covariance
matrix P̂k|k, can be computed by comparing the predicted observations to the true
measurements as

x̂k|k = x̂k|k−1 + K(ŷk|k − yk) (3.14)

P̂k|k = P̂k|k−1 + KP̂yK⊤, (3.15)
where the reliability of the nonlinear measurement model with respect to the sensor
sensibility (and vice versa) is quantified by an indicator known as Kalman gain K,
defined as

K = PxyP̂
−1
y , (3.16)

where Pxy is the state-output cross covariance matrix, which, as explained in
[30], contains the covariances between all the possible couples of random variables
formed by one entry of x and y i.e.,

Pxy =
2nØ
i=0

W (i)
c (x̂(i)

k|k−1 − x̂k|k−1)(ŷ(i)
k|k − ŷk|k)⊤. (3.17)

In the context of state estimation, Pxy compares the dispersion of the prior estimated
state distribution and the predicted observation distribution with respect to their
estimated mean. Since the expected value of a distribution that represents a
deterministic variable is less accurate as the standard deviation increases, Pxy is a
good indicator of reliability. Hence, in the Kalman gain equation (3.16), P̂y serves
as a regularization term. Once x̂k|k and P̂k|k are computed, the sigma points are
generated at time k as in (3.5)–(3.8)
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Then, the predicted expected value x̂k+1|k is calculated as the weighted mean of
each posterior distribution state value x̂(i)

k+1|k as

x̂k+1|k =
2nØ
i=0

W
(i)
M x̂(i)

k+1|k =
2nØ
i=0

W
(i)
M f(x̂(i)

k|k,wk), (3.18)

whereas the predicted covariance matrix P̂k+1|k is computed as the weighted mean
square deviations of each sampling point x̂(i)

k+1|k from the predicted expected value
x̂k+1|k, plus the process noise covariance matrix Qk, i.e.,

P̂k+1|k =
2nØ
i=0

W (i)
c (x̂(i)

k+1|k − x̂k+1|k)(x̂(i)
k+1|k − x̂k+1|k)T +Qk. (3.19)

Last, being the UKF a recursive filter, after updating to the time step k + 1, the
algorithm computes the new estimates from the variables predicted at the time
step k, and so on, in an iterative way.

3.3 The Unscented Kalman Smoother
The purpose of a smoother is to improve the accuracy of the estimates relying
on the later observations, working as a backward algorithm. With respect to the
filter, the smoother operates on the state vector probabilistic distribution p(xk|y1:T )
at time step k ∈ [1, T ] conditioned to the current and future measurements and
filtered state estimates from 1 to T, where T is the length of the time interval in
which the algorithm is applied, such that

p(xk|y1:T ) ∼ N (xk|xs
k,Ps

k). (3.20)

The knowledge of future observations, expressed in (3.20) using the Bayesian
statistics notation, allows to define the most plausible state vector xs

k so that in the
following steps those measurements are obtained (if reliable). Thus, it shrinks the
state vector probabilistic dispersion, quantified by the smoothing covariance matrix
Ps

k. The closed form solution to this problem is given by the Rauch-Tung-Striebel
algorithm [28] also called Kalman smoother. Its working principle is visually shown
in Figure 3.2.
The unscented Kalman smoother (UKS) is a Gaussian approximation where the
non-linearity is approximated using the unscented transform described in Section
3.2. First, the length T of the time intervals in which the smoother operates is
defined as

T = Ntot

ncycles

, (3.21)
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Figure 3.2: The graph shows the number of past and future measurements (y1:T )
used to smooth out (xk

s) the filtered estimate inside that interval.

where Ntot is the total number of time steps for which measurement data are
available and ncycles are the number of intervals. It is important to remark that
a lower number of intervals improves the smoothness action, but it increases the
computational weight, while increasing the interval amount means reducing the
smoother impact on the filter. Then, the filtered state vector estimate is compared
with the difference between the predicted x̂k+1|k and the smoothed state vector
xs

k+1 at time step k + 1. To smooth the path, the k + 1 step difference must be the
same of the k step, such that xs

k is the smoothed state vector estimate is given by

xs
k = x̂k|k + G(xs

k+1 − x̂k+1|k). (3.22)

where the gain G accounts for the predicted variables reliability and it is defined
as the ratio between the cross-covariance matrix Pcv (see section 3.2 and reference
[30]) and P̂k+1|k, i.e.

G = PcvP̂
−1
k+1|k. (3.23)

Specifically, Gt is the smoother equivalent of the Kalman gain, and it shows how
much the smoothed state deviates from the real behaviour. When the predicted
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covariance matrix increases, Gt decreases and so it does the error term weight.
It means that the uncertainty introduced by the process noise is too high to be
handled by the smoother. Analogous considerations can be made for the smoothed
covariance matrix Ps

k at time k

Ps
k = P̂k|k + G(Ps

k+1 − P̂k+1|k)G⊤, (3.24)

where Pxy compares the filtered x̂k|k and propagated x̂k+1|k state vector dispersion
with respect to their variable mean (3.17). It quantifies the increase in standard
deviation when propagating the state estimate x̂k|k through the modeled true state
transition function. Thus, it is an indicator of the system dynamics reliability. On
the other hand, the matrix P̂k+1|k regularize the smoother gain G.

3.4 The Huber-based approach
Let’s recall the main principle of the Kalman filter. The Kalman filter is a recursive
dynamic least square algorithm. It is based on the minimization of the sum of
the squared difference between the ith measured datum yi from a set of n data
corrupted by noise and a model ŷi = h(xi)

J(x) =
nØ

i=1
(ei)2 =

nØ
i=1

(yi − h(xi))2, (3.25)

where the difference ei is also called the residual of the ith observation yi and J(x)
represents the cost function to derive in order to obtain the optimal estimator x
that minimizes all the residuals [31]. Assuming data points yi are corrupted by
Gaussian noise the algorithm doesn’t have bias and has minimum variance among
all estimators. However, real-world data often deviates from these ideal conditions
(see Figure 3.3), leading to significant limitations in the classical Kalman filter’s
performance. These assumptions, while reasonable in many scenarios, contribute
to the filter’s sensitivity to contaminated distributions.
The so-called outliers, are data points that deviate significantly from the expected
distribution of the data. They can arise due to various reasons, such as sensor
malfunctions, environmental changes, or data entry errors. Since their residual is
much greater than usual, their behaviour is enhanced by the mean squared metrics.
Thus, they can significantly compromise the state estimates because the filter
gives equal weight to all measurements, including anomalous ones. The objective
of this and the next sections is to derive a robust algorithm against uncertain
measurements. The concept of robustness relates to the level of perturbation
that the estimator can handle before breaking down completely [21], for example
due to contamination of the assumed distribution with another one with different
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Figure 3.3: Behaviour of Least Square algorithm for a linear regression problem
in presence of anomalous measurements. The angular coefficient choice is biased
and deviates from the optimal value for the majority of points. (credit: [20]).

characteristics. An approach to increase robustness is to replace the standard cost
with the one defined by the Huber approach and combine the l2 and l1 norms ([ref])

J(x) =
nØ

i=1
ρ(ei), (3.26)

where the function ρ behaves like this
ρ(ei) = (yi − h(xi))2 if ei ≤ γ

ρ(ei) = |yi − h(xi)| if ei > γ
. (3.27)

The constant γ is a threshold parameter. When ei is lower than γ, the cost function
is a quadratic function. When ei is bigger than γ it behaves linearly. It ensures
that smaller residuals (which are likely to be part of the main distribution) are
treated with greater importance while larger residuals (potential outliers) are down
weighted. The robustness effect depends on the choice of γ:
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• γ → 0: the robustness effect increases as more observations are treated as
probable outliers;

• γ → ∞: the Huber function behaves like a least square minimization algorithm.

If we derive the Huber cost function and we divide by the residual ei, i.e.,ψ(ei) = 1 if ei ≤ γ

ψ(ei) = γ/|ei| if ei > γ
, (3.28)

we obtain the weights ψi which address the uncertainty of the measurement by
modifying its assumed variance σ2

i [32]. As the residual ei grows larger than γ so it
does its variance as it takes into account the probability that the measurement is
an outlier. Vice versa, for a value of ei smaller than γ the observation is expected
to follow the assumed distribution and the variance remains unchanged.

3.5 Huber-based Unscented Kalman Filter
The notion of measurement noise uncertainty due to contamination of a different
Gaussian distribution from the assumed one, can be incorporated in the UKF algo-
rithm by modifying the measurement noise covariance matrix Rk. The procedure
is the following. During the measurement update step, the predicted observation
ŷk|k defined in (3.12) is computed as usual. Then, for each entry of the vector ŷk|k
the corresponding measurement residual ζj is evaluated as

ζj = |yk(j) − ŷk|k(j)|. (3.29)

where yk(j) represents the jth component of the observation vector yk. If the
jth residual is larger than the value of the threshold γ, then the variance of the
respective measurement is modified through the weight

ψj = γ/|ζj|, (3.30)

to guarantee robustness in case the measurement itself represents an outlier. Oth-
erwise, the variance remains the same since the weight ψi is equal to 1. In this case
the algorithm falls back to the classical UKF structure. The diagonal matrix of
the weights Ψ is computed. The structure of matrix Rk is reshaped as

R̃k = Rk
1/2Ψ−1Rk

T/2, (3.31)

where Ψ is a diagonal matrix with dimension equal those of yk and entries ψ1, ..., ψn.
Thus, the measurement covariance matrix P̃y is evaluated as
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P̃y =
2nØ
i=0

W (i)
c (ŷ(i)

k|k − ŷk|k)(ŷ(i)
k|k − ŷk|k)⊤ + R̃k. (3.32)

The new Kalman gain K̃ is defined as the ratio between the state-output cross
covariance matrix Pxy (defined in 3.17) and the measured covariance matrix P̃y

K̃ = PxyP̃−1
y , (3.33)

K̃ is then used to obtain the filtered state x̂k|k

x̂k|k = x̂k|k−1 + K̃(ŷk|k − yk) (3.34)

Equations (3.33) and (3.34) illustrate how the Huber-based filter modifies the
Kalman gain (and consequently the filtered state) to incorporate robustness. Par-
ticularly, Huber’s weight function assigns lower weights to measurements with large
residuals (i.e., potential outliers). Thus, P̃y will increase and K̃ will decrease. This
means that outliers have less influence on the state update, preventing them from
altering the estimate significantly. In contrast, the classic Kalman gain treats all
residuals equally, making it more sensitive to the effects of outliers. Moreover the
introduction of the Huber’s weight function allows for a more flexible response. For
small residuals, where the data likely follows the Gaussian assumption, the filter
behaves similarly to the classic Kalman filter. For large residuals, as previously
said, it shifts towards a more conservative approach, reducing the impact of these
measurements. This adaptiveness ensures a better balance between sensitivity and
robustness.

3.6 Huber-based Unscented Kalman Smoother
The objective of any Huber-based approach is to reduce the contribution of uncertain
measurements in the computation of the estimator. However, this results in the
increment of the estimator variance. A Huber robust smoother improves the
trajectory by considering not only past and present data but also future observations
reducing statistical uncertainty and variance. Using both a Huber robust filter and
a Huber robust smoother ensures consistent robustness throughout the estimation
process without sacrificing estimator certainty. Given each jth entry of xs

k+1, the
corresponding residual ξj is computed as

ξj = |xs
k+1(j) − xk+1|k(j))|. (3.35)

where xk+1|k(j) is the jth component of the model predicted state at time step k+1.
If ξj is higher than the threshold γ, the smoothness action deviates too much from
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the estimate of the future state. The result is an increase in the variance of the
jth smoothed variable. Meanwhile, if ξj is lower than γ the smoother behave as a
classical UKS

Q̃k = Q1/2Ξ−1Q⊤/2, (3.36)

where the matrix Ξ is diagonal of dimension coherent with the state vector and
entries ξ1, ...ξn and the updated covariance matrix is given by

P̂k+1|k =
2nØ
i=0

W (i)
c (x̂(i)

k+1|k − x̂k+1|k)(x̂(i)
k+1|k − x̂k+1|k)T + Q̃k. (3.37)

The new smoother gain G̃ [21] is defined as the ratio between the cross covariance
matrix Pcv and the updated covariance matrix P̃k+1|k

G̃ = PcvP̃−1
k+1|k, (3.38)

and the robust update of the covariance matrix smoother P̃k+1|k allows for a change
in G̃ so that it reduces in the case of an high deviation of the smoothed state xs

k+1
from the predicted state xk+1|k.

x̂s
k = x̂k|k + G̃(xs

k+1 − xk+1|k). (3.39)

This implies that in the case of an high deviation of the smoothed state xs
k+1 from

the predicted state xk+1|k, G̃ and the smoother action decrease.

3.7 Accuracy and uncertainty
Accuracy and uncertainty are the indicators of an estimator’s performance. Accu-
racy measures how close the estimated state is to the true state of the system. The
uncertainty represents the estimator confidence in producing a certain estimate
[31]. It is an indicator of the measurement variability. When the noise affecting
the system is Gaussian, the UKF can produce accurate state estimates with a
well-defined uncertainty. Outliers and non-Gaussian noise can lead to biased state
estimates, as the UKF weights all measurements equally, regardless of their con-
sistency with the predicted state. The Huber Unscented Kalman Filter addresses
the limitations of the UKF by introducing robustness to non-Gaussian noise. As
illustrated in the last two sections, the key innovation in the HUKF lies in the
application of the Huber loss function, which distinguishes between small and large
residuals during the update step. This allows the HUKF to reduce the influence of
outliers by assigning them a lower weight compared to measurements that are closer
to the predicted state. As the variability of the measurements increases so it does
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the estimate of the standard deviation. Let us consider a Gaussian mixture model
composed of two Normal distributions with zero mean and variance respectively
σ1 = 1 and σ2 = 10, where the filter assumed noise variance is σR = 1. The two
graphs presented in Figure 3.4 show the accuracy and uncertainty behaviour of the
estimator as the threshold parameter γ and the distribution probability parameter
p change.

Figure 3.4: position RMSE and standard deviation of Huber-based UKF for
p = [0,0.5,0.9,1] and with respect to γ in the interval [0.1,10].

As gamma increases, the Root Mean Square Error between estimate and true value
(RMSE, a measure of accuracy) decreases and the standard deviation increases.
This is expected because robust estimators are designed to reduce the impact
of outliers, which generally leads to more accurate predictions (as indicated by
a lower RMSE). The goal is to find the optimal threshold gamma to minimize
RMSE without inflating uncertainty excessively. This compromise ensures that the
system remains reliable while not being overly conservative in its estimates. For
probability p=1 the best value for the threshold is γ = 1.345. It is the value of γ
at which approximately both standard deviation and RMSE stabilize. Basically, it
is calculated as the mean value of the two parameters derivatives with respect to γ.
The importance of achieving the perfect balance between accuracy and uncertainty
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can be seen also when confronting distributions with different p. As the probability
approaches 1, the distribution is close to the Normal one with lower variance.
Since it matches the filter assumptions, the accuracy improves. As the distribution
deviates from the assumed noise model (p=0), the accuracy worsens. Thus, if the
uncertainty is not adequately accounted for, the system confidence may be too
high even when the actual noise differs significantly from the predicted behavior.
Managing uncertainty ensures that even in these extreme scenarios, the system
remains secure.
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Chapter 4

Orbital Mechanics

4.1 Introduction
The scope of the thesis is to estimate the pose over time of a satellite in orbit
around the Earth. The position is obtained by solving the Keplerian laws of motion
for a two body problem and the orientation through the Euler equations. Before
modeling the dynamics, the chapter analyzes the reference frames in which the
variables are depicted.

4.2 Reference frames
A reference frame F in three dimension is uniquely defined by a basis of three
orthonormal vectors e1, e2, e3 and an origin O(x, y, z). Any three dimensional
vector x can be described as a linear combination of the orthonormal basis e1, e2, e3.

x =
3Ø

i=1
xiei (4.1)

The same vector can be expressed in another frame F ′ with basis e′
1, e′

2, e′
3

x =
3Ø

i=1
x′

ie′
i (4.2)

Given x expressed in F , the component in F ′ is obtained by taking the dot product
of the basis vector and the vector x.

x′
k = e′

k · x =
3Ø

j=1
(e′

k · ej)xj (4.3)
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If the same is done for all the other components of x, we get the matrix DF’F of
transformation between the two frames F and F ′.

DF’F =

e1 · e′
1 e1 · e′

2 e1 · e′
3

e2 · e′
1 e2 · e′

2 e2 · e′
3

e3 · e′
1 e3 · e′

2 e3 · e′
3

 (4.4)

DF’F as direction cosine matrix (DCM) because their elements are the cosines of
the angles between the basis vectors in the two reference frames. In order to obtain
the opposite frame transformation it is sufficient to transpose matrix DF’F.

DFF’ = DT
F’F (4.5)

4.3 The Perifocal Reference Frame
To accurately describe the trajectory of a satellite traveling around the Earth, it is
essential to first construct the orbital model. This process involves defining a set of
parameters and a suitable coordinate system directly associated with the satellite’s
orbit called perifocal coordinate system.

4.3.1 Key parameters shaping the orbit
The following parameters are the fundamental elements that define the shape, and
size of the orbit. The True Anomaly (ν) is the angle between the direction of
the perigee and the current position of the satellite as it moves along its orbit.
In the perifocal frame, the true anomaly is measured directly from the P-axis,
making it simple to calculate the satellite’s position at any point in its orbit. The
Eccentricity (e) defines the shape of the orbit in terms of how elliptical it is. The
term goes from 0 (circular orbit) to 1. Instead, the Semi-Major Axis (a) defines
the size of the orbit. It is the longest diameter of the elliptical orbit. When it
comes to extreme parameters, the Radius of Perigee (rp) is the distance from
the center of the Earth to the satellite when it is at perigee, the point where the
satellite is closest to Earth. It can be calculated as the sum of the Earth’s mean
radius and the altitude of the satellite at perigee, which is described by our mission
as to be 720 km, i.e.;

rp = REarth + hp = 6371km+ 720km = 7091km. (4.6)

while the Radius of Apogee (rp) is the distance from the center of the Earth
to the satellite when it is at apogee, the point where the satellite is farthest from
Earth [33]. It is similarly calculated as the Earth’s mean radius plus the satellite’s
altitude at apogee, which our mission says is 780 km, i.e.;
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ra = REarth + ha = 6371km+ 780km = 7151km. (4.7)

Given the radius of perigee and apogee, the semi-major axis and the eccentricity
determining respectively the orbital size and shape can be computed. The semi-
major axis, which is the average of the perigee and apogee distances, is calculated
as:

a = rp + ra

2 , (4.8)

where ra and rp are respectively the apogee and perigee radii. The formula for
eccentricity is given by:

e = ra − rp

ra + rp

. (4.9)

The numerator ra − rp represents the difference in distance between the apogee
and perigee. This difference reflects the "stretch" of the orbit or how far apart the
closest and farthest points are from the Earth’s center. The denominator ra + rp

represents the total distance spanned by the orbit along the major axis. By dividing
the distance difference ra − rp by this total distance, the formula normalizes the
stretch of the orbit relative to its size.

4.3.2 Defining the perifocal orthonormal basis
The perifocal coordinate system [33] is specifically aligned with the satellite’s orbital
plane, making it an ideal starting point for orbit construction. Its origin is at the
focus of the elliptical orbit. The right-handed coordinate system is formed by these
three axes. The P-axis points directly towards the periapsis (or perigee), the point
in the orbit where the satellite is closest to the Earth. It lies along the semi-major
axis of the orbit. The Q-axis is perpendicular to the P-axis and still within the
orbital plane, the Q-axis points in the direction of the satellite’s motion at perigee.
Finally, the W-axis is perpendicular to the orbital plane, pointing in the direction
of the orbit’s angular momentum vector (⃗h). This axis is essential for defining the
plane in which the satellite moves. The Figure 4.1 highlights the P and Q axes
that lie within the satellite’s orbital plane. The P-axis, which points towards the
perigee, and the Q-axis, perpendicular to it within the plane, define the satellite’s
position vector (rPQW). Although not visible in the image, the W-axis completes
this right-handed coordinate system by extending perpendicular to the orbital
plane. The true anomaly, denoted as ν, represents the angle between the P-axis
and rPQW (the satellite’s current position vector).
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Figure 4.1: Orbit representation in PQW coordinate system (credit: [34]).

4.3.3 Establishing the Satellite’s position in Perifocal Co-
ordinates

With the semi-major axis and the eccentricity determined, the satellite’s position
at any point in its orbit can be expressed using the true anomaly ν in the perifocal
frame. The position vector in perifocal coordinates can be described as:

rPQW = a(1 − e2)
1 + e cos v

cos v
sin v

0

 . (4.10)

If the satellite’s orbit starts exactly at perigee, the formula simplifies to:

rin
PQW = a(1 − e2)

1 + e cos v

1
0
0

 , (4.11)

where rin
PQW represents the position initial condition. This equation reflects the fact

that, at the first time instant, the angle ν is 0 (cos(ν) = 1 and sin(ν) = 0).

4.4 The Earth Centered Inertial (ECI) frame
The Earth-Centered Inertial (ECI) frame is a fundamental reference frame in orbital
mechanics. It is an inertial frame, meaning it does not rotate with respect to the
distant stars, and is non-accelerating. This frame is a standard for describing the
satellite’s motion.
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4.4.1 ECI orthonormal basis
The ECI frame [8] is centered at the Earth’s center of mass. The orthonormal
basis is formed by the X-axis that points towards the vernal equinox (a fixed
direction in space), the Z-axis is directed along the Earth’s rotation axis towards
the North Pole and the Y-axis completes the right-handed system, lying in the
Earth’s equatorial plane.

4.4.2 Transformation from PQW to ECI frame
Since the P and Q axes of the perifocal coordinate system lie within the orbital plane
of the satellite, the perifocal system is intrinsically linked to the orientation of the
orbit relative to the celestial sphere. This means that the perifocal frame itself does
not provide a global reference for the satellite’s position and trajectory in relation
to the fixed stars as opposed to the ECI coordinate system. To transform from
the perifocal coordinate system to the ECI frame, we use three orbital elements,
known as Keplerian elements [33]. The Inclination (i) is the angle between the
orbital plane and the Earth’s equatorial plane. This angle defines the tilt of the
orbit relative to the Earth’s equator (i = 98.2◦). The Right Ascension of the
Ascending Node (RAAN, Ω) is the angle measured in the equatorial plane from
the vernal equinox to the ascending node, which is the point where the satellite
crosses the equatorial plane from south to north (Ω = 155.85◦). The Argument
of Periapsis (ω) is the angle within the orbital plane from the ascending node to
the periapsis, measured in the direction of the satellite’s motion (ω = 0◦). These
angles describe the orbit orientation with respect to the fixed stars (Figure 4.2).
The transformation from the perifocal coordinate system (PQW) to the ECI frame
is the result of three successive rotations. First, it is required a rotation by Ω about
the Z-axis (from the inertial frame) to align the ascending node with the x-axis,
i.e.;

R1(Ω) =

cos Ω − sin Ω 0
sin Ω cos Ω 0

0 0 1

 , (4.12)

then, a rotation by i about the X-axis (aligned with the line of nodes) to tilt the
orbital plane relative to the equatorial plane, i.e.;

R2(i) =

1 0 0
0 cos i − sin i
0 sin i cos i

 , (4.13)

finally a rotation by ω about the Z-axis (now aligned with the line of nodes) to
position the periapsis in the orbital plane, i.e.;
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Figure 4.2: Frame transformation from PQW to ECI through the Keplerian
elements i,Ω, ω (credit: [35]).

R3(ω) =

cosω − sinω 0
sinω cosω 0

0 0 1

 . (4.14)

The overall transformation matrix is the product of these three individual rotation
matrices:

RPQW
ECI = R1(Ω)R2(i)R3(ω). (4.15)

The position vector in ECI coordinates can thus be derived from the equivalent in
the perifocal frame: (equation)

rECI = RPQW
ECI rPQW. (4.16)

4.5 The two-body problem
The two-body problem [8] is a classical problem in celestial mechanics that describes
the motion of two bodies interacting through gravity. In the context of a satellite
orbiting the Earth, this problem simplifies to modeling the satellite’s orbit around
a central mass. The gravitational force between two masses m (satellite) and
ME = 5.972 × 1024 kg (Earth) is given by:

F = −GMEm

|rECI|3
rECI, (4.17)
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where, G = 6.6743 × 10−11 m3 kg−1 s−2 is the gravitational constant and rECI is
the position vector of the satellite relative to the center of the Earth in the ECI
reference system. Applying Newton’s second law to the satellite, we get:

m
d2rECI

dt2
= −GMm

|rECI|3
rECI, (4.18)

simplifying, the differential equation governing the satellite’s motion is:

d2rECI

dt2
= − GM

|rECI|3
rECI. (4.19)

4.6 Local-Vertical-Local-Horizontal frame
The Local Vertical, Local Horizontal (LVLH) coordinate system is a reference frame
[8] that is commonly used in satellite operations, particularly for tasks that require
precise alignment and coordination between multiple spacecraft, such as refueling,
docking, or maintenance missions.

Figure 4.3: Representation in the perifocal system of the LVLH frame displacement
across three different orbital points.
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The LVLH coordinate system is tied to the orbital motion of the satellite, (meaning
it moves along with the satellite as it travels around the Earth). Figure 4.3 and
4.4 show the LVLH orthonormal basis in three different instants of the satellite
revolution around the Earth, respectively in PQW and ECI reference system.

Figure 4.4: Representation in the ECI system of the LVLH frame displacement
across three different orbital points.

When two satellites are interacting, the body frame of the chaser satellite (the one
performing the operation) must be accurately aligned with the LVLH frame of
the target satellite to accomplish the task. The LVLH coordinate system axes are
oriented as follows. The XL − axis points in the direction of the satellite’s velocity
vector as it moves along its orbit. This means it is tangential to the orbit at the
satellite’s current position and directed forward along the satellite’s path. The
YL − axis is perpendicular to the orbital plane. It points in the direction of the
orbital angular momentum vector. The ZL − axis points along the nadir vector
towards the center of the orbital focus.
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4.7 Body Frame
The body frame of a satellite is a non-inertial coordinate system that is fixed
relative to the satellite itself, moving and rotating as the satellite does. This
system is centered at the satellite’s center of mass, and its axes are aligned with
the principal axes of the satellite’s structure (Figure 4.5). The rotations around the
axes of its body frame are described by the Euler angles [8]. Namely, Yaw (ψ) is
the rotation around the Z-axis of the body frame. This angle changes the direction
the satellite is facing horizontally. The Pitch (θ) is the rotation around the Y-axis
and it adjusts the satellite’s nose up or down, similar to a pitching motion. The
Roll (ϕ) is the rotation around the X-axis which tilts the satellite side-to-side, as
in rolling along the direction of motion.

Figure 4.5: Representation of the body reference system, with its axes and angles,
as it is aligned with the LVLH frame (credit: [36]).

4.7.1 Body angular velocity description through Euler an-
gles

The angular velocity vector of the body reference system relative to the LVLH
frame can be expressed through the derivatives of EUler angles. First, we need
to express through Euler angles the rotation matrix form the body frame to the
LVLH system. We used the 3-2-1 rotation method, known as yaw-pitch-roll

RLV LH
b = Rx′′(ϕ)Ry′(θ)Rz(ψ), (4.20)
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The first step is a rotation by the yaw angle ψ around the Z-axis of the body frame.
This rotation changes the orientation of the satellite about its vertical axis. After
this rotation, the new intermediate X’ and Y’ axes are obtained, i.e.;

Rz(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 . (4.21)

Then, it occurs a rotation by the pitch angle θ around the new Y’-axis (the axis
after the first rotation). This rotation tilts the satellite up or down relative to its
initial horizontal plane. After this rotation, new intermediate axes, X” and Z”, are
established, i.e.;

Ry′(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 . (4.22)

The final step is a rotation by the roll angle ϕ around the new X”-axis (the axis after
the second rotation). This rotation rolls the satellite about its forward direction,
adjusting its tilt left or right. The result of this third rotation is the final alignment
of the satellite’s body frame with the LVLH frame, i.e;

Rx′′(ϕ) =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 (4.23)

At this point we can express the angular velocity of the body frame with respect
to the LVLH. We know that, in general, the angular velocity of a reference frame
can be obtained as

ωb = ṘLV LH
b (RLV LH

b )⊤, (4.24)

where

ṘLV LH
b = Ṙx′′(ϕ)Ry′(θ)Rz(ψ) +Rx′′(ϕ)Ṙy′(θ)Rz(ψ) +Rx′′(ϕ)Ry′(θ)Ṙz(ψ). (4.25)

Thus, we obtain the following formula, that represents the relation between ωb and
the evolution of the Euler angles:

ωb = T (ϕ, θ)η̇ =

ωx

ωy

ωz

 =

1 0 − sin θ
0 cosϕ cos θ sinϕ
0 − sinϕ cos θ cosϕ


ϕ̇θ̇
ψ̇

 . (4.26)
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4.8 Attitude dynamics equations
The rotational dynamics of the satellite are governed by Euler’s equations [37],
which describe the rotational motion of a rigid body:

Ix
dωx

dt
+ (Iz − Iy)ωyωz = Mx

Iy
dωy

dt
+ (Ix − Iz)ωzωx = My

Iz
dωz

dt
+ (Iy − Ix)ωxωy = Mz

(4.27)

where Ix, Iy, Iz are the principal moments of inertia of the satellite, ωx, ωy, ωz

are the time derivatives of the angular velocities and Mx, My, Mz are the external
torques acting on the satellite. These equations are essential for understanding how
the body’s angular momentum and torques interact. However, Euler’s equations
alone do not provide a complete solution for determining the body’s orientation
with respect to the reference frame. While angular velocity describes how fast and
in what direction a body is rotating, it does not tell us how the body is oriented
at a particular moment. This information can be found by computing the Euler
angles. From equation (4.26), we can calculate the derivative of the Euler angles:

η̇ = (T (ϕ, θ))−1ωb (4.28)

Solving the differential equation in (4.28) we obtain the vector of angles η = [ϕ, θ, ψ].
In summary, the system of differential equations that govern the attitude dynamics
is: η̇ = (T (ϕ, θ))−1ωb

ω̇ = I−1(M − ω × (Iω))
(4.29)
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Chapter 5

Numerical Results

5.1 Testing set up

In this section, the validation of the UKF (illustrated in Section 3.2) against the
one provided by the Matlab Control System Toolbox is presented. The filter and
smoother have been applied to a double integrator system

ẋ1(t) = x2(t) + q1(t)

ẋ2(t) = F

m
+ q2(t)

y(t) = x1(t) + r(t),

(5.1)

transformed in a discrete-time system and numerically integrated through Euler
explicit method with a δt = 0.1s sampling time. x1 represents the position and x2
the linear velocity. F=1N is the constant force applied on the mass m=10kg of the
considered system. The initial conditions of the system are x0 = [x0

1, x
0
2]⊤ = [0,0]⊤.

The measurement function linearly associates the position state x1 to the observed
variable y. To reproduce sensor digital sampling, observations are made each time
interval ∆t = 0.1s. Both the state x = [x1, x2]⊤ and the output y are affected by
noise. The true process noise components of the vector q ∼ N (02×1,Σq), with
Σq ∈ R2×2, Σq ≻ 0, enter the equation linearly as additive terms. The variable q1
and q2 represent respectively the position and velocity random noise input with
standard deviations of σq1 = 0.32m and σq2 = 0.32m/s. The true measurement noise
r is a scalar probabilistic variable with 0 mean and σr = 1m standard deviation. It
is added to the output variable y.
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5.2 Filter validation and analysis
The UKF algorithm implementation is validated through the corresponding Matlab
Control Toolbox. The state value starting estimates are x̂0|−1 = [0,0]⊤. The
notation 0| − 1 is used to describe the first predicted variable. The values of
α = 10−3, β = 2 and κ = 0 (see section 3.2) parameters are the optimal ones
in case of a Gaussian distribution. The modeled measurement and process noise
covariance matrices, respectively R and Q, are chosen for simplicity constant and
equal to the true noise dispersion matrices (σr and Σq). The filter reliability is
confronted in Figure 5.1 through the time behaviour of the filter states quadratic
deviation with respect to the Control toolbox estimates.

Figure 5.1: Validation filter against control toolbox algorithm accuracy for
different values of the estimated standard deviation σ̂0|−1 ∈ [0.001,1,3.16] In the
upper figure σ̂0|−1=0.001, in the middle one σ̂0|−1=1 and in the lower one σ̂0|−1=3.16.

The graphs analyze the deviation behaviour for three different initialization values
of σ̂0|−1 (namely 0.001, 1, 3.16 for each state). As it can be seen by the squared
deviation values both for position and velocity, the two algorithms lead to the
same result. The Table 5.1 shows the state root means square error (RMSE)
increase with the growth of the standard deviation initialization value. In Figure
5.2 the filter accuracy is tested with the squared deviation of the estimate states
x̂k|k = [x̂1

k|k, x̂
2
k|k]⊤ with respect to the true vector xk = [x1

k, x
2
k]⊤. For smaller

values of the predicted covariance matrix initialization P̂0|−1, the squared deviation
also reduces. In particular, for σ̂0|−1 = 0.001 the peaks are 0.9 m (position) and
0.25m/s (velocity). The values are the same for σ̂0|−1 = 1. For
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RMSE between filter and Control Toolbox estimates
σ̂0|−1 = 0.001 σ̂0|−1 = 1 σ̂0|−1 = 3.16

RMSEx1 2.2 · 10−9 m 2.3 · 10−9 m 2.7 · 10−9 m
RMSEx2 1.7 · 10−9 m/s 1.8 · 10−9 m/s 2.9 · 10−9 m/s

Table 5.1: Validation of UKF filter through RMSE with respect to Control toolbox
algorithm.

Figure 5.2: Filter accuracy with respect to the true values for different values
of the estimated standard deviation σ̂2

0|−1 ∈ [0.001,1,3.16] In the upper figure
σ̂0|−1=0.001, in the middle one σ̂0|−1=1 and in the lower one σ̂0|−1=3.16.

σ̂0|−1 = 3.16 given the completely wrong initial estimation, the biggest values are
1.78 m for the velocity while still being 0.9m/s for the position. As for Table
5.1, also 5.2 shows the RMSE values increase related to the standard deviation
initialization. The Figure 5.3 for the double integrator system, shows the time
behavior of the filtered state. It is highlighted the filtered standard deviation and
expected value trend. The filtered position is closer to the real state than the
measurements are. The filtered velocity behavior is also similar to the real one.
After a transient of ∆T = 5.8s, the value of the filtered state standard deviations
stabilize to σ1 = 0.4m and σ2 = 0.42m/s, which corresponds to a 60% decrease
with respect to the measurement dispersion.
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RMSE between filter estimation and true values
σ̂0|−1 = 0.001 σ̂0|−1 = 1 σ̂0|−1 = 3.16

RMSEx1 0.3366m 0.3494m 0.3574m
RMSEx2 0.1866m/s 0.2026m/s 0.2508m/s

Table 5.2: Filter RMSE for different predicted standard deviation initialization
(σ̂0|−1).

Figure 5.3: Filtered position behaviour and zoom in t ∈ [0,6].

5.3 Smoother and filter comparison

Similarly to what was done for the filter, the behaviour of the smoother is analyzed
observing the predictions with the associated standard deviations (Figure 5.4). The
state trend is shown for a number of intervals ncycles = 3. The initialization values
of the smoother are for the covariance Ps

0 entries 10−6 and for the mean values
xs

0 = [0,0]⊤. After the same transient for which the filtered standard deviation
is calculated (∆T = 5.8 s), the mean values of σs

1 and σs
2 are respectfully 0.27 m

and 0.32m/s, indicating a 33% and 24% improvement with respect to the filtered
state standard deviations. Figure 5.5 shows how, the smoother standard deviation
strip is contained in the filtered one. It follows that the UKS provides greater
estimate confidence than the UKF. The amount of intervals imply a discontinuity
behaviour of the strip, where it widens as soon as it shrinks. The reason lies on
the initialization of the crossover covariance matrix. Since the matrix is initialized
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Figure 5.4: Smoothed position behaviour and zoom in t ∈ [0,6].

Figure 5.5: Smoother and Filter standard deviation comparison in t ∈ [0,8].

for every interval, it might not be the same to the one corresponding to the last
time step of the previous interval. The RMSE bar graph in Figure 5.6 compares
the accuracy of the filter and smoother as the number of intervals, ncycles, varies.
Notably, as the number of intervals increases, the error also increases, eventually
converging to the same values observed for the filter.
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Figure 5.6: As the size of each interval is equal to one time instant, the filter and
the smoother RMSE are indistinguishable.

The size and thus the number of the time intervals over which the algorithm smooths
out the function is chosen with respect to the specification. As the smoothing
interval grows, more information from future observations becomes available to
refine the state estimates at earlier time steps. Specifically, the UKS adjusts its
estimates by considering how the system evolved and reacted to control inputs
over the entire interval. However, the main trade-off with increasing the smoothing
interval is that it inherently introduces more lag in the estimation process. It
can be understood as the delay between when a state occurs and when a refined
estimate for that state can be generated.

Total time elapsed for different amount of data
N ∆TUKF ∆TUKS

601 0.36 s 0.39 s
6 × 103 2.2 s 2.37 s
6 × 104 18.32 s 19.4 s
6 × 105 181.76 s 192.23 s
6 × 106 1901.36 s 2050.05 s

Table 5.3: Comparison between UKF and UKS time complexity for different
number of data.
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The code is compiled for different amounts of data (Table 5.3). Both filter and
smoother elapsed time grows one order of magnitude as the data size increases
the same way. The smoother elapsed time in each case is 5% greater than the
filter. The wider is the size, the better is the smoothness action, but the greater
is the lag with respect to the current time step. The computational weight of
the new algorithm is then heavier than the previous code. A brief discussion over
the application feasibility is needed. Figure 5.7 graph shows how the smoother
elapsed time decreases as the number of time intervals increase, until it becomes
indistinguishable from the filter.

Figure 5.7: The graph shows how the algorithm elapsed time decreases as the
number of intervals increases.

The reason is that for narrower intervals the amount of data inside the nested loops
reduces.

5.4 Huber-based UKF and UKS testing set up
In the following sections both the Huber-based UKF and UKS are compared to
the classical UKF and UKS algorithms in various scenarios with respect to the
sensor noise r(t) distribution defined in Section 4.1. The confrontation has been
carried out on the same double integrator system illustrated in equation (5.1). In
this case, the sensor noise at each time instant t is sampled from a contaminated
probability distribution composed by two Gaussian distributions. The first one has
the same characteristics of the one used to sample the noise r(t) in (5.1), namely it
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has µ1 = 0 mean and σr1 = 1m standard deviation. The second one has µ2 = 0
mean but an higher standard deviation of σr2 = 10m. The following equation
represents a system where each value of the standard deviation is associated with
the probability that a sensor noise is generated according to that distribution.σr = 1m w.p. p

σr = 10m w.p. 1 − p
. (5.2)

where p and 1 − p represent the probability that the sensor noise at time t follows
respectively the first or the second distribution [32]. The assumed noise standard
deviation is fixed at σR = 1m.

5.5 Influence of γ in the HUKF estimation
This section will investigate the influence of the threshold parameter γ on the
HUKF estimate. Figure 5.8 shows the behaviour of the first variable of the double
integrator system for γ = 0.1 and p = 1. The distribution is Gaussian and it follows
the filter assumed variance (R=1)

Figure 5.8: Confrontation of position behaviour between Huber-based UKF and
classical UKF for γ = 0.1 and p = 1.

As underlined in the final section of chapter 4, γ influences the estimate standard
deviation and robustness against uncertainties. In a Huber-based Unscented
Kalman Filter, it defines the point where the loss function switches from quadratic
to linear, treating the measurement as a possible outlier. Since γ is very low, the
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loss function transitions more quickly to the linear part, treating even small errors
as potential outliers. This results in reduced sensitivity to smaller errors, thereby
increasing the estimator’s variance. Instead, Figure 5.9 captures the estimate in
the case of γ = 1.345.

Figure 5.9: Confrontation of position behaviour between Huber-based UKF and
classical UKF for γ = 1.345 and p = 1.

As the value is close to the assumed variance, most errors fall within the quadratic
region. This makes the filter behave more like a traditional Kalman Filter, which
assumes Gaussian-distributed noise and minimizes the estimator’s variance. The
estimator responds optimally to the noise distribution, effectively correcting errors
and maintaining a low variance. Figure 5.8 and 5.9 show how it is important to
choose the correct value of the threshold γ. When it reduces too much, the variance
increases exponentially. When the value is too high, the accuracy reaches the level
of the classical UKF.

5.6 Influence of p in HUKF
The confrontation is carried out for different values of the probability p defined
in equation (3.28) to evaluate their behaviour as it changes. In particular, three
values of p = [0,0.5,0.9] have been chosen. Table 5.4 and 5.5 contain the values
of the RMSE and standard deviation for both UKF and HUKF. For a value of
p=0.9, the noises are sampled with a probability of p = 0.1 from the Gaussian
distribution with larger variance.
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RMSE and σ mean of HUKF for p = [0,0.5,0.9] and γ = 1.345
RMSEpos RMSEvel σpos σvel

p = 0.9 0.4465m 0.2206m/s 0.4054m 0.4104m/s
p = 0.5 0.7785m 0.3604m/s 0.4636m 0.4244m/s
p = 0 2.2849m 0.8292m/s 0.5812m 0.45m/s

Table 5.4: Comparison of HUKF accuracy and uncertainty for different values of
p.

RMSE and σ of UKF for p = [0,0.5,0.9] and γ = 1.345
RMSEpos RMSEvel σpos σvel

p = 0.9 1.235m 0.6371m/s 0.3894m 0.4065m/s
p = 0.5 2.5681m 1.2416m/s 0.3894m 0.4065m/s
p = 0 3.556m 1.7033m/s 0.3894m 0.4065m/s

Table 5.5: Comparison of UKF accuracy and uncertainty for different values of p.

The Huber-based filter reduces the RMSE by 63.8% for position and by 65.3%
for velocity with respect to the classical filter (from the RMSE values for the
HUKF and UKF with p = 0.9 in Table 5.4 and 5.5). The standard deviation grows
by the 4.1% for the position and by the 1% for the velocity with respect to the
UKF (from the standard deviation values for the HUKF and UKF with p = 0.9
in Table 5.4 and 5.4). A value of p=0.5 indicates that the noises are sampled
with the same probability both from the Gaussian distribution with σr = 10 and
from the one with σr = 1. It represents the case of perfect Gaussian mixture. The
Huber-based algorithm maintains a good accuracy with an RMSE of 0.7785 m and
0.3604m/s while the the classical UKF behaviour worsens (RMSE of 2.5681 m
and 1.2416m/s). This is due to the increase, across different time instants, in the
number of uncertain measurements that skew the expected value of the estimator.
The case for p=0 is the worst scenario of all. The distribution is Gaussian, however
its characteristics follows the p.d.f with the greatest variance. The measurement
noise sample is not produced from the assumed distribution with variance R = 1.
The accuracy degradation of the robust approach is evident. The Huber-based
filter RMSE is 2.2849m for the position and 0.8292m/s for the velocity. Still, it is
a better performance than that of the classical UKF with an RMSE of 3.556m for
the first state and 1.7033m/s for the second one. Figure 5.10 shows a confrontation
between the two algorithm for the three values of p. It can be seen how the UKF
estimate deviates from the true values as the value of p increases. This performance
worsening is much less noticeable in the HUKF
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Figure 5.10: HUKF and UKF confrontation for γ = 1.345 and increasing values
of p = [0, 0.5, 0.9] from top to bottom.

graphs (at least for p = [0.5, 0.9]). In particular, the classical UKF exhibits lower
accuracy compared to the Huber-based filter due to its lack of robustness in the
presence of uncertain measurements. In contrast, the HUKF enhances robustness
by adjusting the weight ψi of each measurement based on the magnitude of its
residual. This adaptive weighting allows the HUKF to mitigate the impact of
outliers and noise, resulting in a more accurate and reliable estimation process with
respect to the UKF. This means that a robust approach not only preserves accuracy
against probable uncertain measurements, but also against a bad modeling of the
measurement noise variance. When it comes to standard deviation,while it remains
constant in the classical UKF, that of the HUKF increase. This increase reflects
the highlighted robustness of the HUKF against outliers. The filter adapts by
inflating the standard deviation to account for the uncertainty, effectively reducing
the influence of outliers on the final estimation. The reason is that the HUKF has
the ability to adapt the Kalman gain K̃ with respect to the residual magnitude
changing the output covariance matrix. The UKF has no mathematical tools to do
so.

5.7 Influence of p in HUKS
When it comes to the Huber-based UKS, the behavior with respect to changes in
the values of p is similar to that of the HUKF. However, the standard deviation in
the Huber-based UKS is smaller compared to the corresponding HUKF, indicating
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a more refined and accurate estimation process.

RMSE and σ of HUKS for p = [0,0.5,0.9,1] and γ = 1.345
RMSEpos RMSEvel σpos σvel

p = 1 0.2946m 0.1842m/s 0.2748m 0.3158m/s
p = 0.9 0.3377m 0.2083m/s 0.2822m 0.3181m/s
p = 0.5 0.6461m 0.3967m/s 0.3252m 0.3324m/s
p = 0 1.9611m 0.9223m/s 0.4103m 0.3599m/s

Table 5.6: Comparison of HUKS accuracy and uncertainty for different values of
p.

RMSE and σ of UKS for p = [0,0.5,0.9,1] and γ = 1.345
RMSEpos RMSEvel σpos σvel

p = 1 0.2992m 0.1842m/s 0.271m 0.3144m/s
p = 0.9 0.9126m 0.6m 0.271m 0.3144m/s
p = 0.5 2.0526m 1.3489m/s 0.271m 0.3144m/s
p = 0 2.8038m 1.5852m/s 0.271m 0.3144m/s

Table 5.7: Comparison of UKS accuracy and uncertainty for different values of p.

The smoother objective is to smooth the trajectory and to reduce the estimator
uncertainty and thus its variance. The last task is of great importance as the robust
approach tends to increase the estimator variance in order to reduce the influence
of possible outliers. As it can be seen by the confrontation between classical UKS
and Huber-based UKS in Figure 5.11 the best smoothing action is provided by
the latter. The reason lies on the inability of the classical UKS to intercept and
penalize uncertain observations. It creates a too noisy behaviour to be smoothed
out. As shown in Table 5.6, the HUKS achieves an RMSE for a p value of 0 of
1.961 m for position and 0.9223m/s for velocity. In contrast, Table 5.7 shows that
the UKS RMSE values are higher, at 2.8038 m for position and 1.5852m/s for
velocity. As for the standard deviation, both the HUKS and the UKS with respect
to HUKF and UKF, experience a reduction of 30% for the first system state and
20% for the second one.
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Figure 5.11: HUKS and UKS confrontation for γ = 1.345 and decreasing values
of p = [0, 0.5, 0.9, 1] from top to bottom.

5.8 Complexity increase due to Huber-based al-
gorithms

In terms of computational complexity the Huber-based UKF adds time to complete
a single iteration. The first is needed to compute the single weight ψi and the
second to evaluate the all the component of the matrix Ψ. Finally the matrix Ψ
has to be inverted to obtain the updated value of the measurement noise covariance
matrix R̃.

Elapsed time for single iteration (s)
∆TUKF ∆THUKF ∆TUKS ∆THUKS

p = 1 0.00262 s 0.00226 s 0.00243 s 0.00255 s
p = 0.9 0.00222 s 0.00231 s 0.00238 s 0.0026 s
p = 0.5 0.00225 s 0.0023 s 0.00241 s 0.00258 s
p = 0 0.00234 s 0.00234 s 0.0025 s 0.00264 s

Table 5.8: Comparison of the algorithms time complexity for different values of p.

The Table 5.8 shows that in percentage the difference between the two elapsed
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times does not surpass the 4% in all four cases. When it comes to the HUKS, the
added complexity lies on the computation of the process noise covariance matrix
Q̃. When comparing the elapsed time per iteration between the HUKF and HUKS
for all the values of p, the difference in execution time does not exceed 9%.
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Chapter 6

Satellite Dynamical Results

6.1 Testing set up
In this section, the results of the filter and smother are presented with respect to
a physical system that incorporates both Newton (4.19 in Chapter 4) and Euler
equations (4.27 also in 4) for the estimation of the orbiting satellite pose. The
system is n-dimensional with n = 12, non-linear and time-invariant. It can be
written as

ẋ =


ṙ
r̈
η̇
ω̇

 =


v + qv

− µ
|r|3 (r + qr) + Fext

T(η + qη)⊤(ω + qω)
I−1 (Mext − (ω + qω) × (I(ω + qω)))

 (6.1)

where r = [x, y, z]⊤ represents the position state vector, η = [ϕ, θ, ψ]⊤ contains
the Euler angles and ω = [ωx, ωy, ωz]⊤ the angular velocity of the body frame with
respect to the LVLH reference frame defined in Chapter 4. I defines the inertia
matrix and its diagonal entries Ix, Iy, Iz are the the principal moments of inertia
about the body’s x-, y-, and z-axes, respectively. The rotation matrix T(η) is a
transformation matrix that relates the rates of change of the Euler angles η̇ to ω.
The vector, of dimension n, q = [qr, qv, qη, qω] define the process noise of position,
velocity, orientation and angular velocity. The mean value is 0nxn and the covariance
matrix Σq elements are

Σq =


25I3 03×3 03×3 03×3
03×3 25I3 03×3 03×3
03×3 03×3 5 × 10−6I3 03×3
03×3 03×3 03×3 5 × 10−6I3

 . (6.2)

The measured output y is expressed instead as
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y =
C
yr + nr

yη + nη

D
, (6.3)

where n = [nr,nη] is a vector of dimension m with mean value of 0mxm and
covariance matrix Σn with elements

Σn =
C
σ2

nr
I3 03×3

03×3 σ2
nη
I3

D
, (6.4)

where σnr and σnη identify the standard deviation of the sensor giving respectively
position and orientation measures. The sensor noise follows a Gaussian mixture
distribution. Thus σnr , similarly to what is shown in (5.2), is expressed as:

σnr = 10m w.p. p

σnr = 100m w.p. 1 − p
(6.5)

while σnη is represented as

σnη = 0.008 rad w.p. p

σnη = 0.025 rad w.p. 1 − p
(6.6)

The initial condition values for the system is shown in Table 6.1. The filter
counterparts are defined in Table 6.2. When it comes to the position, the initial
coordinates is given by transforming the variable from the PQW system (assumed
to be rin

PQW expressed in equation (4.11) in chapter 3) to the ECI coordinate frame
through the Keplerian elements described in chapter 3. The initial ω is assumed
to be [0, −ω0, 0]⊤ where ω0 = 0.0011 is the orbital angular velocity of the satellite.

System initial conditions
Variable Value
rin

ECI [−6.46×106, 2.896×106, 0]⊤m
vin

ECI [0, 0, 0]⊤m/s
ηin [0, 0, 0]⊤rad
ωin [0, −0.0011, 0]⊤rad/s

Table 6.1: Variable states initial conditions.
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Filters Initial conditions
Variable Value
r0|0 yin

pos (in. position measured output)
v0|0 [0, 0, 0]⊤m/s
η0|0 yin

or (in. orientation measured output)
ω0|0 [0, 0, 0]⊤rad/s
σlin

0|0 100m and 100m/s
σang

0|0 10−6rad and 10−6rad/s

Table 6.2: Initial estimated mean values and uncertainties of the filters for both
position and orientation.

6.2 Filter comparison
Let us analyze the UKF and HUKF algorithm in the worst scenario of non Gaussian
noise which is p=0. In this case the sensor noise has standard deviation of
σnr = 100m and σnη = 0.025 rad respectively for position and orientation. The
results presented in Figures 6.1 and 6.2 show a clear improvement in the state
estimation performance of the Huber-UKF compared to the standard UKF.

Figure 6.1: HUKF and UKF confrontation for orientation in time interval
t = [60,70].
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Figure 6.2: HUKF and UKF confrontation for position at different time interval
∆t = 10.

Notably, the Huber-UKF improves estimates accuracy of 34% for the orientation
problem and almost 30% for the orbit position determination as it can be seen from
Table 6.3 and 6.4. The robust nature of the Huber loss function allows the filter to
limit the impact of these erroneous measurements, preventing the estimation drift
observed with the UKF.

UKF RMSE and standard deviation
RMSE σ

x 78.8617 m 8.6601 m
y 78.9068 m 8.6601 m
z 78.9184 m 8.6601 m
ϕ 0.0391 rad 0.0047 rad
θ 0.0388 rad 0.0047 rad
ψ 0.0373 rad 0.0047 rad

Table 6.3: UKF Accuracy and Uncertainty in an environment simulating orbital
dynamics.

At the same time, this is followed by an increase of almost 40% and more than 50%
respectively in the estimate uncertainty. While an increase in standard deviation is
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HUKF RMSE and standard deviation
RMSE σ

x 56.2235 m 18.0843 m
y 56.0142 m 18.1605 m
z 56.3178 m 18.9848 m
ϕ 0.0258 rad 0.0077 rad
θ 0.0247 rad 0.0077 rad
ψ 0.0236 rad 0.0077 rad

Table 6.4: HUKF Accuracy and Uncertainty in an environment simulating orbital
dynamics.

often viewed negatively due to the resulting decrease in confidence in the filter’s
estimates, it also signals the ability of the HUKF to recognize and adapt to
deviations from the assumed probability distribution of sensor measurements. On
the other hand, in the case of the standard UKF we need to manually set a new
value for the assumed noise covariance matrices Q and R to account for the increase
in data variability. In Figure 6.3 the probability density function of the sensor
measuring the angle ϕ is plotted for the two cases of p=0 and p=1 together with
the HUKF and UKF estimate mean standard deviation.

Figure 6.3: From top to bottom the sensor noise p.d.f. respectively in the p=1
and p=0 scenario. From left to right the distributions and their zoom.

As it can be seen, the two algorithms are indistinguishable in the p=1 scenario

57



Satellite Dynamical Results

since the sensor noise distribution follows the assumptions. However, as the data
deviates from the hypothesis, the UKF still considers the assumptions valid while
the HUKF does not due to its robust nature. When the HUKF deals with outliers,
the Kalman gain is adjusted accordingly to reduce the impact of large residuals, but
this adjustment comes with a corresponding increase in the estimated uncertainty,
as the filter cannot confidently rely on the measurements anymore (as discussed in
chapter 4). In case of an unreliable sensor or a space environment too harsh, the
HUKF algorithm is an optimal choice if we need to safeguard the system and have
an indicator on when the sensor misbehaves.

6.3 Smoother comparison
Let us consider the variable ϕ for orientation and x for position in the scenario of
p = 0 and let us compare the HUKS algorithm with both HUKF and UKS. The
Figure 6.4 shows the improvement in accuracy and precision of the HUKS over the
HUKF.

Figure 6.4: From top to bottom the comparison between HUKS and HUKF
algorithm for variable ϕ and x.

This arises from the fact that the HUKS is a non-real-time algorithm. Unlike
the HUKF, which processes data sequentially as it becomes available, the HUKS
leverages the entire set of measurements, including both past and future data
points (see chapter 4). This allows the smoother to refine the state estimates by
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comparing the intermediate results from the HUKF with the expected dynamics of
the system. It results in a better reduction of the high-frequency oscillations due
to faulty measurements. In particular, confronting Table 6.3 with 6.4, the RMSE
decreases of 20% for the variable ϕ and almost 15% for x.

HUKS RMSE and standard deviation
RMSE σ

x 48.267 m 12.7981 m
ϕ 0.0216 rad 0.005 rad

Table 6.5: HUKS Accuracy and Uncertainty in an environment simulating orbital
dynamics.

Given the slow satellite dynamics, the ideal state estimation algorithm should yield
smooth state transitions, accurately reflecting the gradual changes in the satellite’s
position and orientation. A method that introduces sharp fluctuations in the state
estimate, especially in the absence of actual sudden external forces, is unrealistic
for orbital systems.

Figure 6.5: From top to bottom the comparison between HUKS and UKS
algorithm for variable ϕ and x.

However, when using the HUKF in the presence of outliers in sensor data, these
sudden deviations can appear due to the algorithm’s real-time nature and the
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influence of contaminated measurements. Therefore, the HUKS is a valid alternative
in case we are interested in a more accurate representation of the dynamics. In
Figure 6.5 the HUKS algorithm is compared with the UKS. Both act to smooth
out the estimates of the respective real-time filter counterparts. However, the UKS
deviations from the true values are still too high with respect to the HUKS. The
reason is that the UKF can not distinguish from good and faulty measurements as
the HUKF can. This results, for the first case, in an action where the smoothed
estimates are still close to the outliers, while in the second case the mean values are
closer to the true values. In conclusion, the HUKS represents an option in the case
of highly unreliable measurements if we want to obtain estimates that replicate the
real satellite dynamics.

6.4 Comparison of estimates with different mea-
surement noise distributions

Let us consider all the scenarios except the one of p = 0 we have dealt until now.
Figure 6.6 and 6.7 show the HUKF and HUKS behaviour against their respective
classical filters for the Euler angle ϕ.

Figure 6.6: HUKF and UKF confrontation for p = [0.5, 0.9, 1]. From top to
bottom p = 0.5, then p = 0.9 and p = 1.

It can be seen how for p = 0.5 the Huber-based filters still perform better than
the UKF and UKS. However, the accuracy improvement significantly decreases for
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Figure 6.7: HUKS and UKS confrontation for p = [0.5, 0.9, 1]. From top to
bottom p = 0.5, then p = 0.9 and p = 1.

p = 0.9 and for p = 1 they are indistinguishable one from another. Basically, in
scenarios where the sensor noise variance closely aligns with the presumed model,
and there is minimal deviation from the expected Gaussian noise distribution,
the benefits of using HUKF or HUKS diminish. In such cases, the increased
computational complexity introduced by these robust algorithms does not yield
significant performance gains over the standard UKF and UKS. In particular, the
additional computations include the calculations for the Huber loss function, as
well as the modifications to the Kalman gain and covariance update steps that
accommodate outliers. To effectively determine when the added complexity of
HUKF or HUKS is unwarranted, we can propose a method that evaluates the
performance-to-complexity ratio by comparing the Root Mean Square Error (RMSE)
of the state estimates and the execution time of a full cycle of each algorithm. The
goal is to assess how much performance gain, if any, is achieved relative to the
additional computational cost. The RMSE is a standard measure of the accuracy
of state estimation. It captures the difference between the estimated state and the
true state over multiple time steps. The execution time is the total time it takes
for a single cycle of the algorithm (either filtering or smoothing) to complete. The
accuracy-to-complexty (ACR) ratio of the RMSE difference between estimates of
Huber and non-Huber based algorithms and execution time difference between the
same filters quantifies the benefit of HUKF/HUKS compared to UKF/UKS
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ACRHUKF = RMSEUKF − RMSEHUKF

TUKF − THUKF
= ∆RMSE

∆T . (6.7)

ACRHUKS = RMSEUKS − RMSEHUKS

TUKS − THUKS
= ∆RMSE

∆T . (6.8)

Table 6.6 and 6.7 show the ACR values respectively for a HUKF and HUKS
alogorithms in the scenarios of sensor noise distribution where p = [0.5, 0.9, 1].

HUKF RMSE, elapsed time (T) and ACR
p RMSE T ACR
0.5 0.0119 rad 0.0046 s 34.4298 rad/s
0.9 0.0048 rad 0.0035 s 31.514 rad/s
1 0.0042 rad 0.0052 s 0.6393 rad/s

Table 6.6: HUKF Accuracy and complexity comparison through parameter ACR
for different p values.

HUKS RMSE, elapsed time (T) and ACR
p RMSE T ACR
0.5 0.0094 rad 0.0047 s 17.3 rad/s
0.9 0.0038 rad 0.0035 s 16.0792 rad/s
1 0.0033 rad 0.0053 s 0.0207 rad/s

Table 6.7: HUKS Accuracy and complexity comparison through parameter ACR
for different p values.

A low value of ACR would indicate that the added computational cost is not
justified by the small improvement in accuracy, suggesting that HUKF or HUKS
is not necessary for the given scenario. Conversely, a high PCR would justify the
use of the more complex algorithm due to a significant improvement in accuracy.
We have already said, when commenting figure , how the Huber-based algorithms
performance starts decreasing for p = 0.9. This means that its ACR values for
the HUKF and HUKS measures when the Huber-based algorithm is not useful to
implement.
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Conclusions

7.1 The best algorithm for each scenario

In this thesis, we explored various state estimation techniques for the specific
problem of pose tracking of a satellite. The analysis of the numerical results
highlights the advantages of UKF, UKS, HUKF and HUKS, each suited for specific
scenarios depending on the system’s requirements. In particular, the radar charts
in Figure 7.1 summarize the four algorithms performance in terms of accuracy,
robustness and computational complexity, respectively investigating the RMSE,
standard deviation and cycle elapsed time in the p = 0 scenario.

Figure 7.1: Radar graph showing the algorithms performance in terms of accuracy,
robustness and computation time.
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Unlike global localization problems, where the particle filter would have been a
more suitable choice, the focus on pose tracking made Kalman-based methods
more appropriate due to their efficiency and accuracy in handling continuous
tracking of states. The Particle Filter, while powerful for non-linear problems with
non-Gaussian noise, is computationally expensive and unnecessary in our case,
where the satellite’s initial position is relatively well-known, and tracking is the
main challenge. The HUKS demonstrates superior performance when it comes
to accuracy. This is captured by its ability to precisely model orbital dynamics,
particularly in terms of orientation. This is critical in the final approach phase
to ensure alignment between chaser and target satellites. On the other hand,
HUKF shows an adequate balance between accuracy and robustness that proves to
be highly effective when dealing with sensors that exhibit significant deviations
from the assumed standard deviation, indicating unreliability. This makes HUKF
particularly valuable in environments where sensor data may be compromised or
less reliable than initially anticipated. Finally, UKF and UKS are most appropriate
when the computational complexity is a crucial factor. More satellites are equipped
with control units regardless of their size and good performances are demanded
even when the CPU capabilities are not optimal. This filter is ideal when the trade-
off between reduced RMSE and computational cost must be carefully balanced.
Therefore, the choice between these filters depends on the specific requirements for
accuracy, computational resources, and sensor reliability.

7.2 Further work

This thesis opens up several opportunities for further research. One promising
direction for future work is the investigation of adaptive filtering techniques,
where the filter’s parameters, such as the γ threshold in the HUKF, dynamically
adjust in response to changing conditions. In space missions, sensor noise char-
acteristics or operational phases can vary significantly. For example, a satellite
may encounter different levels of interference, sensor degradation, or environmental
changes as it moves between mission phases, such as orbital maneuvers or docking
procedures. An adaptive approach would allow the filter to automatically tune itself,
enhancing its robustness and flexibility in unpredictable environments. Another
crucial step for future work involves developing real-time versions of the UKS
and HUKS optimized for onboard satellite systems. Traditional smoothers require
future observations to refine past state estimates, making them inherently suited
for offline processing. However, real-time smoothing could be achieved through
predictive algorithms that estimate future states based on current and past data.
These algorithms use patterns from past data to make smart guesses about what
the future data will look like. With these predictions, the algorithm can simulate
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having future information and use it to make smoother, more accurate adjustments
to the satellite’s position in real time.
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