
POLITECNICO DI TORINO
MASTER’s Degree in MECHATRONIC

ENGINEERING

MASTER’s Degree Thesis

Automatic Sorting with Manipulator
using Moveit2 and ROS2

Supervisors

Prof. MARCELLO CHIABERGE

Dr. CLAUDIO CHIEPPA

Candidate

GABRIELLA MARINO GAMMAZZA

October 2024

Abstract
In recent years, robotic sorting technologies have rapidly expanded across various industries,
revolutionizing the way objects are arranged, classified, and organized. This study addresses the
growing need for efficient and adaptable sorting solutions by developing a flexible robotic system
capable of handling different sorting tasks with high accuracy in different environments. The
research utilizes a six-degree-of-freedom robotic arm, the Ufactory850, integrated with ROS2, an
open-source framework for robot software development, along with MoveIt 2, a motion planning
library. The system is further enhanced using computer vision techniques for object recognition,
localization, and feature selection.

Initially, a static Pick and Place task is implemented using the MoveIt Task Constructor
framework, which simplifies planning through a modular, staged approach. In this first phase,
the planning scene is static, incorporating a priori informations such as object positions and
geometric dimensions. In order to dynamically identify and localize objects through a camera,
the ROS "Find Object 2D" package is employed, utilizing a feature matching algorithm based
on data from the camera sensors. Once objects are recognized, Find Object 2D attaches a
frame to their center point, allowing their position and orientation to be determined relative to
the camera. A frame transformation is then computed with respect to the robot’s base link
frame, enabling dynamic localization. Lastly, for object dimension computation, the Point
Cloud Library is used to segment and process cylindrical and box-shaped objects, following a
series of pre-processing operations on the point cloud data. The system is integrated through
ROS services, with a single client managing three dedicated servers: one for object localization,
one for dimension computation, and one for the Pick and Place task. This architecture enables
the dynamic construction of the planning scene, ensuring real-time updates of object names,
positions, orientations, and dimensions.

To validate the system, four sorting policies were implemented and tested, evaluating both
speed and accuracy in parameters detection. The system demonstrates both robustness and
speed, sorting approximately 2–3 objects per minute, while maintaining object localization error
typically below 7%. Cylinder segmentation is highly reliable, though box segmentation performs
less effectively, particularly in complex environments. Handling very low objects occasionally
presents challenges, but the system’s robustness is evident as it automatically resubmits requests
if recognition or localization fails, ensuring continuous operation. Simulation and visualization
are supported using Gazebo, a 3D robotics simulator and Rviz, a 3D visualization tool for ROS,
while Docker ensures a consistent and portable development environment across platforms. To
verify scalability, the system was successfully adapted and tested on another manipulator with
real hardware, demonstrating flexibility across platforms.

Developed with Concept Engineering Reply at "Area42" in Turin, the system provides a
robust and adaptable solution for industrial applications, achieving a sorting success rate of
about 90%.

II

Table of Contents

List of Tables VI

List of Figures VIII

Acronyms XI

1 Introduction 1
1.1 Background of the study . 1
1.2 Problem Statement . 2
1.3 Objectives of the research . 2
1.4 Research questions/hypothesis . 3
1.5 Industrial Contribution . 4
1.6 Scope and Limitation . 4

2 State of the Art 6
2.1 Sorting in different applications . 6
2.2 Computer Vision Overview . 8

2.2.1 Feature Detection, Description and Image Matching 9
2.2.2 Segmentation . 12

2.3 Pick and Place Overview . 14
2.3.1 Motion Planning . 16

3 System Design 19
3.1 ROS2 . 19
3.2 Docker . 21
3.3 MoveIt 2 . 22

3.3.1 Motion Planning in MoveIt 24
3.3.2 Planning Scene Monitor . 26

3.4 Rviz . 27
3.5 Gazebo . 27
3.6 UFactory 850 . 28

IV

3.6.1 Software Integration and Repository 30

4 Implementation 31
4.1 Pick and Place . 31

4.1.1 Moveit Task Constructor . 32
4.1.2 Pick and Place using MTC 35

4.2 Object Recognition and Localization 39
4.2.1 Object Recognition through Find Object 2D 39
4.2.2 Object Localization . 41

4.3 Object Dimensions from Point Cloud 42
4.3.1 Point Cloud Library . 42
4.3.2 How to get the Object Dimensions 43

4.4 Integration . 46

5 Experiments and Results 49
5.1 Planner Choice . 49
5.2 Feature Matching Algorithm Selection 51
5.3 Sorting Evaluation . 54

5.3.1 Sorting Policy based on object’s name 55
5.3.2 Sorting Policy based on Object’s Shape 58
5.3.3 Sorting Policy based on Object’s Type 61
5.3.4 Sorting Policy based on Object’s Height 65

5.4 Hardware Testing and Scalability Assessment 68
5.4.1 Set up and Integration . 68

6 Conclusions and future researches 72

A RANSAC Algorithm 75

Bibliography 78

V

List of Tables

3.1 On the left the Joint name, on the right the working range for the
relative joint . 28

3.2 In this table the physical limits of the robot in terms of speed,
acceleration and jerk . 29

5.1 Comparison between RRT and RRTConnect in terms of avarage
planning time, avarage execution time and failure rate 51

5.2 Performance of the feature matching algorithms in the baseline
condition. 52

5.3 Performance of the feature matching algorithms when the object is
rotated by 180 degrees. 52

5.4 Performance of the feature matching algorithms with a scale variation
of the object. 53

5.5 Performance of the feature matching algorithms with illumination
reduction of 25%. 53

5.6 Performance of the feature matching algorithms with illumination
reduction of 50%. 53

5.7 Real positions and geometric dimensions of the objects from Gazebo
for the name-based policy. 56

5.8 Position measurements and errors for objects using the name-based
policy. 57

5.9 Dimension measurements and errors for objects using the name-based
policy. 57

5.10 Real position and geometric dimensions of the object from Gazebo
using the shape-based policy. 59

5.11 Position measurements and errors for objects using the shape-based
policy. 60

5.12 Dimension measurements and errors for objects using the shape-
based policy. 60

5.13 Real position and geometric dimensions of the object from Gazebo
using the type-based policy. 62

VI

5.14 Position measurements and errors for objects using the type-based
policy. 63

5.15 Dimension measurements and errors for objects using the type-based
policy. 64

5.16 Real position and geometric dimensions of the object from Gazebo
using the height-based policy. 65

5.17 Position measurements and errors for objects using the height-based
policy. 66

5.18 Dimension measurements and errors for objects using the height-
based policy. 66

VII

List of Figures

2.1 Feature Detection and Matching . 9

3.1 Topics Communication mechanism 20
3.2 Services Communication mechanism 21
3.3 Docker architecture . 22
3.4 Moveit pipeline . 23
3.5 Move Group Architecture . 24
3.6 UF850 . 28
3.7 Gripper of UF850 . 29
3.8 RealSense d435i . 29

4.1 Moveit Task Constructor pipeline 32
4.2 Generator Stage . 33
4.3 Propagating Stage . 34
4.4 Connecting Stage . 34
4.5 Stages of the Pick and Place application 38
4.6 Robot during the Stage ApproachObject 38
4.7 Robot during the Stage Lift Object 38
4.8 Robot during the Stage Detach Object 38
4.9 Find Object 2D: Object Recognition 39
4.10 Object Localization . 40
4.11 ROS2 architecture . 46
4.12 Summary Scheme . 47

5.1 Gazebo environment for testing the name-based sorting policy. . . . 55
5.2 Object Recognition using the name-based policy. 56
5.3 Building of the Planning Scene using the name-based policy. 56
5.4 Objects after sorting using the name-based policy. 56
5.5 Gazebo environment for testing the shape-based sorting policy. . . . 59
5.6 Object Recognition using the shape-based policy. 60
5.7 Building of the Planning Scene using the shape-based policy. 60

VIII

5.8 Objects after sorting using the shape-based policy. 60
5.9 Gazebo environment for testing the type-based sorting policy. . . . 62
5.10 Object Recognition using the type-based policy. 63
5.11 Planning Scene using the type-based policy. 63
5.12 Objects after sorting using the type-based policy. 63
5.13 Gazebo environment for testing the height-based sorting policy. . . 65
5.14 Object Recognition using the height-based policy. 66
5.15 Planning Scene using the height-based policy. 66
5.16 Objects after sorting using the height-based policy. 66
5.17 ULite6 manipulator . 68
5.18 Set up of the scene in the real case. 69
5.19 Object Recognition in the real case. 70
5.20 MoveIt Planning Scene for the real case. 70
5.21 ULite6 during the Lift stage of the object. 70

A.1 Application of the RANSAC algorithm on a 2-dimensional set of
data. The outliers are in red, while inliers in blue. The blue line is
the result of the work done by RANSAC. 76

IX

Acronyms

MTC
Moveit Task Constructor

HSV
Hue Saturation Value

OpenCv
Open Computer Vision

ROS
Robot Operating System

PCL
Point Cloud Library

SIFT
Scale-Invariant Feature Transform

FAST
Features from Accelerated Segment Test

SURF
Speeded Up Robust Features

BRIEF
Binary Robust Independent Elementary Feature

ORB
Oriented FAST and Rotated BRIEF

XI

UF850
UFactory 850

API
Application Programming Interface

CLI
Command Line Interface

SRDF
Semantic Robot Description Format

URDF
Unified Robot Description Format

TF
Transform Frame

OMPL
Open Motion Planning Library

CHOMP
Covariant Hamiltonian Optimization for Motion Planning

GUI
Graphical User Interface

SDF
Simulation Description Format

ID
Identifier

RANSAC
RANdom SAmple Consensus

AABB
Axis-Aligned Bounding Box

XII

RRT
Rapidly-exploring Random Tree

IP
Internet Protocol

RGB
Red Green Blu

XIII

Chapter 1

Introduction

Sorting in robotics is the process of arranging, classifying, and organizing objects
based on specific criteria, such as size, shape, colour, or function.
Sorting robots are a type of stationary or mobile robots that enable fast and efficient
sorting of goods/parcels based on end destination, categorisation and more. These
robots use a combination of sensors, cameras, actuators, and other mechanical
components to detect, characterize, and sort objects into the correct bin. Their
sorting process is tailored to meet the specific needs and requirements of each
business and is adapted to the type of objects/parcels being sorted [1].

1.1 Background of the study
Sorting robots have become increasingly important in recent years due to the benefits
they offer over manual and conventional sorting methods, including higher efficiency,
accuracy, and speed. They are used across various industries, including e-commerce,
logistics, manufacturing, agriculture, and recycling [1]. Traditionally, these processes
were manual, requiring extensive labor, time, and resources. Subsequently, they
became reliant on basic mechanical systems, such as conveyor belts with rudimentary
sensors. These early systems could only distinguish between limited parameters like
size or weight, often resulting in inefficiencies and human intervention. Nowadays,
with advancements in robotics, it is possible to perform complex sorting tasks,
reducing human error and enhancing operational efficiency. This study focuses on
exploring the integration of robotic systems into sorting operations, analyzing both
the technological aspects and the potential for improvements in various sectors.
In addition to the robotic component, computer vision algorithms play a critical
role in enhancing the system’s ability to accurately identify and categorize objects
based on various features, such as shape, size, color, and texture. Using advanced
image processing techniques, these algorithms enable the robotic system to perform

1

Introduction

complex sorting tasks with greater precision and adaptability, making it suitable
for a wide range of applications beyond traditional industrial environments. While
there are clear advantages to using these technologies, such as the ability to work
in variable environments and the speed at which objects can be identified, there are
also potential limitations, such as the need for adequate lighting and the dependence
on the quality of the images captured.

1.2 Problem Statement
Manual object sorting in industry faces significant challenges in terms of efficiency
and accuracy. Manual processes are inherently limited by the human ability to
handle large volumes of products consistently and without errors. This limitation
results in higher costs, longer production times, and variable product quality. The
urgent need for effective and accurate automation solutions becomes evident in this
context. Numerous studies and success stories support the idea that automation
has revolutionized entire industries, improving efficiency, reducing costs and raising
product quality [2].
However, there exist a factor that slowing down the process of robotisation, namely
the lack of flexibility of existing robotic solutions [3]. Many automated solutions
are highly specialized, tailored to handle a particular type of object or to function
within a specific environment, such as a manufacturing line or a recycling facility.
This specialization restricts their potential applications, making them unsuitable
for different contexts where a more flexible approach is required. Additionally,
developing new systems for different industries or tasks can be costly and time-
consuming, as each system must be customized to meet the unique demands of the
application.

1.3 Objectives of the research
This research seeks to address the following problem: How can a generic robotic sort-
ing system be designed to provide the flexibility and adaptability needed to operate
effectively across a wide range of applications, both industrial and non-industrial?
A solution that is capable of performing sorting tasks with minimal reconfiguration
has the potential to transform industries beyond manufacturing, such as healthcare,
retail, and even domestic environments. Such a system would not only improve
operational efficiency but also reduce the need for specialized equipment, offering a
cost-effective and scalable solution for diverse sorting challenges.

2

Introduction

1.4 Research questions/hypothesis
To realize this project, several research questions and hypotheses were formulated.
The primary objective was to develop a sorting system that utilizes a six-degree-
of-freedom manipulator, where the central function is the robotic pick-and-place
operation. This functionality is fundamental in any sorting system, as it directly
influences the system’s efficiency and accuracy. Consequently, the research began
with the goal of identifying a robust solution for pick-and-place operations, with a
particular focus on high processing speed and optimal motion planning. The first
question that arose was: What is the most effective approach to achieve efficient
pick-and-place tasks? The solution was found in MoveIt, the robotic manipulation
platform for ROS.
Another critical question emerged regarding motion planning: Which algorithm
is most suitable for generating an efficient path for the robot, from its initial
position to its target location? This led to a hypothesis centered around the
trade-off between speed and optimality. Given that the goal of the system is to
sort objects efficiently, the hypothesis posited that processing speed is more critical
than absolute optimality in motion planning. For this specific application, it was
theorized that a faster algorithm, even if slightly less optimal in terms of path
precision, would be preferable to achieve the desired throughput.
Once the pick-and-place operation was defined, a new question naturally emerged:
How can the system dynamically identify and localize objects using a camera?
At this stage, the importance of computer vision became evident. The task of
recognizing and localizing objects in real-time required advanced vision algorithms.
This challenge was compounded by the fact that the entire system was built using
ROS2 and MoveIt2, both of which are relatively new in the field of robotics,
adding complexity to the integration of computer vision techniques. Moreover,
as previously mentioned, one of the key objectives of this thesis was to develop
a flexible sorting system. In this regard, the computer vision system needed to
support this goal, ensuring that the system could adapt to different tasks and
environments with minimal reconfiguration. To address this, initial research on
ROS tools was conducted, which led to the implementation of a ROS package
(Find Object 2D) for object detection and a ROS library (PCL) for point cloud
segmentation. As a consequence, another question naturally arose: what tools from
these frameworks would best support the goals of the project, ensuring that the
system could effectively handle both geometric segmentation and feature-based
object recognition.
Finally, once the tools were selected, it became clear that a robust communication
mechanism was necessary to integrate and manage the various system components
effectively. For this purpose, the ROS2 client/server architecture was chosen. This
architecture was selected to enhance communication and coordination among the

3

Introduction

components, ensuring modularity and flexibility. By utilizing the ROS2 architecture,
the system benefits from seamless interaction between motion planning, object
recognition, and real-time control, thus improving overall system performance and
adaptability.
In addition to focusing on the pick-and-place operation and computer vision
integration, this project also utilized Gazebo for simulation and RViz for real-time
visualization of the robot’s movements. These tools were essential in testing the
robotic system in a controlled environment before moving to physical deployment,
ensuring accurate motion planning and object recognition.

1.5 Industrial Contribution
This research represents a significant contribution not only to the academic field
but also to industry, particularly through its development within the research
laboratory of Reply, namely "Area42" situated in Turin. In particular, the project
was carried out in collaboration with Concept Engineering Reply, with real-world
applicability in mind, making it practical for immediate integration into different
operational contexts.
Reply is an Italian IT consulting, outsourcing, digital services applications company
specialising in the design, implementation and maintenance of Internet and social
network-based solutions. The company focuses on emerging technologies like AI,
cloud computing, and IoT. In particular, Concept Engineering Reply plays a key
role in IoT solutions, covering the software development process from the Device,
through the Gateway, to the Cloud or Smartphone App. It guides customers
through the design process of their application, specify the ideal Cloud solution
architecture, develop in agile teams. Together with partners for hardware and
telecommunication it provides to the customers an individual software solution
based on IoT requirements. Furthermore, in recent years, it collaborates to the
implementation of research projects oriented to robotics within the "Industrial Iot"
area of Area42.

1.6 Scope and Limitation
The research’s goal was to develop a robotic sorting system adaptable to any task.
The entire system was developed using Docker, ensuring portability across different
platforms and providing a consistent environment for development and testing.
This approach allowed for the seamless integration of various ROS2 and MoveIt2
components, regardless of the underlying hardware or operating system.
The first step in the project was the implementation of the Pick-and-Place function,
utilizing the MoveIt Task Constructor (MTC) framework. MTC’s stage-based

4

Introduction

architecture made easier flexible task planning, enabling the system to manage
modular sorting tasks efficiently. In addition, computer vision techniques were
introduced to enable both geometric and semantic recognition techniques, which
play a crucial role in achieving a comprehensive understanding of the objects to be
sorted. For geometric recognition, PCL was used to segment objects and distinguish
between fundamental shapes like cylinders and boxes. This was complemented by
SIFT-based semantic recognition, which enabled the identification and localization
of objects based on their visual features through the "Find Object 2d" ROS package.
This combination of geometric segmentation and semantic recognition was a key
factor in enhancing the system’s flexibility and precision. As it was already
mentioned in the section 1.4, integrating these various components was facilitated
by the ROS2 client/server architecture, which enabled effective communication and
coordination between motion planning, object recognition, and real-time control.
However, while the integration of geometric and semantic recognition techniques
proved effective, there are limitations. The system’s performance in more complex
or visually cluttered environments is restricted by the current techniques. The
use of deep learning or neural networks could greatly enhance both the geometric
and semantic capabilities, allowing the system to interpret objects in a more
holistic and adaptive manner. Future research should focus on strengthening this
dual recognition approach to further improve sorting accuracy across a variety of
applications.

5

Chapter 2

State of the Art

Sorting technologies have been rapidly advancing in recent years, driven by the
increasing demand for efficiency and precision in various industries. This chapter
provides a comprehensive review of the state of the art in sorting systems, with
a particular focus on the latest developments and methodologies. Furthermore,
it will be given a general overview about Computer Vision and Pick and Place,
focusing only on the aspects covered in this thesis.

2.1 Sorting in different applications
Sorting is an important process in industrial applications, including manufacturing,
agriculture, logistics and recycling. Usually, sorting applications are based on
sensors able to take decisions. In these applications, the materials or the object are
fed in the system by means of a conveyor mechanism, and during the transportation
phase the sensor data acquisition takes place. The sensor data are processed with
the goal of detecting and classifying individual particles in the material stream. The
classification result serves as the basis for the sorting decision, which is executed
by means of actuators [4].
Sorting objects presents specific challenges, such as the variability of shapes, sizes
and materials, as well as the need to handle constantly changing products. Robotics
offers a more effective solution than manual processes by addressing these chal-
lenges with precision and speed. In particular, the ability of robots to perform
repetitive tasks with high precision makes them ideal for object classification in
industrial environments [2]. In addition to sensors, computer vision also plays an
important role in object classification, providing accurate information about the
location, shape and characteristics of products. While these technologies offer clear
advantages, such as the ability to operate in variable environments and to identify
objects quickly, they also have potential limitations, such as the need for proper

6

State of the Art

lighting and the dependence on the quality of the images captured. There are
various state-of-the-art sorting solutions based on different tools, but with the same
goal in mind.
For example [2] proposes a MELFA RV-2SDB robotic manipulator join with two
cameras (the first to identify the pieces by their geometric shape and the second to
detect people within the robot’s work area). The images are processed in real time
to send control commands to the arm. The central point of each pieces is determined
and sent to the robot that will pick it up. The recognition operations are performed
through OpenCV while the manipulation actions by means of Matlab, computing
the direct mathematical model of the robot based on Denavit-Hartenberg method
and the inverse kinematics through the Newton-Raphson iterative method. The two
tools are connected through ID Qt to send the coordinate of the objects computed
by OpenCv to Matlab through a TCP/IP communication protocol.
There exist also sorting solutions based on colour recognition by means of OpenCv,
like the one proposed by Nikita V. Belov and Andrey G. Vovik [3], in which the
segmentation is done in the HSV colour space (colour changes when moving around
a cylinder circle). The connection between OpenCv and OpenShow Var module
(a Java open-source cross-platform communication interface to Kuka robots that
allows for reading and writing variables and data structures of the controlled
manipulators) is realized by means of C3 Bridge Interface Server Software.
Another solution proposed by the International Journal of Computer Science and
Information Technology [5] is based again on the colour classification but the
manipulation actions are performed through Moveit. In this case the robot chosen
is not an anthropomorphic manipulator but an XYZ manipulator because is more
precise and can achieve millimeter level positioning accuracy fastly.

One of the most important sector in which sorting is advancing is the logistics, as
a way to improve efficiency. In the current literature the aim is always to increase
the adaptability and flexibility of industrial robot that sort objects in complex
environments by equipping them with a camera and to perform autonomuous
identification, localization, grasping and other controls [6].
Another important field for sorting applications is the agriculture sector, in which
robotics is advancing more and more as a consequence of the lack of youth interest
in this sector. For instance, this papar [7] presents a machine-controlled fruit
sorting able to effectively distinguish between a good quality and a bad quality
fruit. This solution is implemented again through Matlab, while the dispensing
part is completed on the conveyor belt arrangement with the assistance of Arduino
which takes decisions about the separation of fruit through mechanical separators.
Regarding the recognition of the fruit, three features are extracted: Edge Features
applying different kind of filters like sobel, Color Features through HSV colour
space and Texture Features by means of entropy filter (that highlights edges by

7

State of the Art

brightening pixels which have dissimilar neighbors) and standard deviation filter.
For Classification, the fusion of the three feature map images is used.
In the recent years, deep learning is advancing even more. Although it has taken
over in the field of computer vision, sorting applications still tend to use traditional
vision algorithms. However, it is being considered to adopt it in sorting applications
for agriculture. For example, this innovative paper [8] presents a solution based
on a deep learning model, implemented through an oriented bounding box label
Software called OBBLabel. A multi-label recognition model YOLO-MLD conducts
quality grading and posture perception on individual target with 93.4 % mean
accuracy, so that precise position and quality information for all objects can be
obtained in near real-time for subsequent suction cup-based sorting operations.

2.2 Computer Vision Overview
Computer vision is an interdisciplinary scientific field that focuses on how computers
can acquire a high-level understanding from digital images or videos. It can be
used to transform the tasks of engineering and management in construction by
enabling the acquisition, processing, analysis of digital images, and the extraction
of high-dimensional data from the real world to produce information to improve
decision-making [9]. A vision system, essentially, takes images as input and provide
their description. It is characterized by a hierarchical organization, from perception
to interpretation. In particular [10]:

• Perception is the process that provides a computer image.

• Pre-processing deals with noise reduction and details improvement.

• Segmentation divides the image in objects of interest.

• Description compute characteristics (such as dimensions and shapes), useful
to differentiate one object from another.

• Recognition is the process that identifies such objects.

• Interpretation gives a meaning to the recognized objects.

Computer vision is a wide field, employed in many applications but it is not the
focus of this thesis. For this reason, only the parts applied in the project will
be explained, namely the techniques of feature detection, description and image
matching, and the concept of segmentation.

8

State of the Art

2.2.1 Feature Detection, Description and Image Matching
Within the broader field of computer vision, feature detection, description and
image matching are critical components that facilitate effective object recognition.
In particular, Feature Detection is the process of computing the abstraction of the
image information and making a local decision at every image point to see if there
is an image feature of the given type existing in that point [11]. An ideal feature
detection technique should be robust to image transformations such as rotation,
scale, illumination, noise and affine transformations.
In order to establish correspondences among a collection of images, where feature
correspondences between two or more images are needed, it is necessary to identify a
set of salient points in each image [12]. So, the process begins with detecting interest
regions or key-points that are consistent across different transformations. For each
detected region, an invariant feature vector, or descriptor, is created, capturing
the image data around the key-point. These descriptors can be based on various
methods, including second-order statistics, parametric models, or coefficients from
image transforms.
In the context of classification, feature descriptors of a query image are matched with
all the pre-trained images features, and the image with the highest correspondence is
considered the best match. This matching process often relies on distance measures
such as Euclidean or Mahalanobis to determine similarity.
Regarding the image registration, it is necessary to spatially align two or more
images of a scene captured by different sensors at different times.

Figure 2.1: Feature Detection and Matching

9

State of the Art

Image features can be categorized into global and local features. The first ones (e.g.,
color and texture) describe the overall properties of an image, involving all pixels.
Local features, on the other hand, aim to detect key-points or interest regions in
an image and describe them. In this context, if the local feature algorithm detects
n key-points in the image, there are n vectors describing each one’s shape, color,
orientation, texture and more. The use of global colour and texture features are
proven surprisingly successful for finding similar images in a database, while the
local structure oriented features are considered adequate for object classification or
finding other occurrences of the same object or scene [12].
In literature, there exist different types of feature detectors and descriptors. Some
of them will be described below:

• SIFT (Scale-Invariant Feature Transform): it is one of the most widely used
algorithms for feature detectors and descriptors. It is designed to be invariant to
scale, rotation, illumination, and viewpoint changes, making it highly effective
at locating key points even in noisy, cluttered, and occluded environments.
It identifies interest points in two steps. First, it generates a scale space
by progressively smoothing the original image using Gaussian filters, which
ensures scale invariance. Then, the original image is resized to half size, and
again smoothing is performed using a Gaussian filter. This process is repeated
to form an image pyramid, with the reference image at the bottom (level 1).
The algorithm then computes the Difference of Gaussian (DoG) by subtracting
two consecutive scales in the pyramid. In the second stage, key points are
identified by examining the local extrema in the 3 × 3 × 3 neighborhood
of each pixel in the DoG pyramid. A pixel is considered a key point if its
DoG value is an extremum (maximum or minimum) relative to its neighboring
pixels across scales and space. SIFT also incorporates a descriptor extraction
algorithm. This descriptor is a histogram that captures the orientations of
local image gradients around each key point, encoding both the spatial and
directional properties of the key point for robust matching. [13].

• FAST (Features from Accelerated Segment Test): it is a corner detector that
identifies corners by first selecting a set of training images and then applying
this algorithm. To determine the optimal detection criteria, namely the rules
for deciding whether a pixel qualifies as a corner, machine learning is used. A
decision tree is constructed to accurately classify all corners. This decision
tree is then converted into C code, which is subsequently employed as a
corner detector. While the FAST corner detector is well-suited for real-time
applications due to its speed, it lacks robustness in the presence of significant
noise. [13]

• SURF (Speeded Up Robust Features): it is a fast and robust method for
feature detection and extraction in images. The key advantage of SURF lies

10

State of the Art

in its ability to perform rapid calculations using box filters, making it suitable
for real-time applications. For interest point detection, SURF employs an
approximation of the Hessian matrix, which offers a good balance between
computation time and accuracy. The process of creating a SURF descriptor
involves two main phases: first, determining a repeatable orientation based
on data from a circular region around the key point; then, extracting the
descriptor from a square area aligned with this orientation. [13]

• BRIEF (Binary Robust Independent Elementary Features): it is a descriptor
based on binary strings. First, binary strings are computed from image patches,
then the individual bits are generated by comparing the brightness of pairs of
points along the same lines. It is fast compared with SIFT and SURF. [13]

• ORB (Oriented FAST and Rotated BRIEF): it is both a detector and descriptor
and a good alternative to SIFT and SURF. ORB is a combination of the FAST
detector and the BRIEF descriptor, with several enhancements to improve
the performance. It adds a fast and accurate orientation component to the
FAST algorithm and uses an image pyramid to generate multiscale features.
For the descriptor, ORB adjusts BRIEF based on the orientation of the key
points, making it rotation-invariant. [13]

• KAZE: it utilizes nonlinear diffusion filtering to detect and describe features
in a nonlinear scale space because traditional (Gaussian scale space-based)
methods attenuate both characteristics and noise in the same way, causing the
decrease of accuracy and distinctive features of localization. The nonlinear
scale space is constructed using efficient Additive Operator Splitting (AOS)
methods and variable conductance diffusion. This approach allows blurring to
be locally adapted to the image data, effectively reducing noise and enhancing
localization accuracy and distinctiveness. [13]

• AKAZE: it is a multi-scale feature detection and description method, faster
than KAZE. Previous methods for detecting and describing features in nonlin-
ear scale space were time-consuming due to the high computational cost of
constructing the nonlinear scale space. AKAZE addresses this by using the
Fast Explicit Diffusion (FED) scheme within a pyramidal structure, signifi-
cantly accelerating feature detection in nonlinear scale space. By employing
FED techniques, nonlinear scale space may be created quicker than any
other discretization technique. Additionally, AKAZE employs the Modified-
Local-Difference Binary (M-LDB) descriptor, which is efficient, scale and
rotation-invariant, and memory-efficient. [13]

11

State of the Art

2.2.2 Segmentation
Image segmentation refers to the process of dividing an image into meaningful
and non-overlapping regions, and forms the basis of pattern recognition and image
understanding. Each region is characterized by different features and are going to
be extracted as region of interest (ROI) [14]. There are two difficulties in image
segmentation:

1. How to define “meaningful regions”, as the uncertainty of visual perception
and the diversity of human comprehension lead to a lack of a clear definition
of the objects, it makes image segmentation an ill-posed problem.

2. how to effectively represent the objects in an image. Digital images are made
up of pixels, that can be grouped together to make up larger sets based on
their color, texture, and other information. These are referred to as “pixel
sets” or “superpixels”. These low-level features reflect the local attributes
of the image, but it is difficult to obtain global information (e.g., shape and
position) through these local attributes.

There exist different algorithms in literature, that can be joined in three different
methods:

• Classic Segmentation methods

• Co-Segmentation methods

• Semantic Segmentation Based on Deep Learning

Classic Segmentation methods

The classic segmentation algorithms were proposed for gray-scale images, which
mainly consider gray-level similarity in the same region and gray-level discontinuity
in different regions. In general, edge detection is based on gray-level discontinuity
that is identified through the derivative or differential of the gray level. It is
sensitive to noise, so it can be used only for images with low noise and complexity.
For this reason, it was introduced the Canny operator characterized by strong
denoising ability and also processes the segmentation of lines well with continuity,
fineness, and straightness. However, it is more complex and takes longer to execute.
Another edge detection method is the serial boundary technique, that concatenates
points of edges to form a closed boundary. Usually, this method is based on graph
search algorithm (in which the points are represented by a graph and the path with
minimum cost is searched within the graph), and dynamic programming algorithm
(that use heuristic rules to reduce the search computation).
In general, the region division strategy includes serial region division and parallel

12

State of the Art

region division. Thresholding is a typical parallel region division algorithm. The
threshold is generally defined by the trough value in a gray histogram with some
processing to make the troughs in the histogram deeper or to convert the troughs
into peaks. [14]. The serial region technique involves sequential processes like
region growing, where regions expand from seeds by merging similar pixels, and
region merging, where adjacent regions are combined based on their gray value
similarity.
Another classic method is the one based on graph theory, which maps an image
onto a graph, which represents pixels or regions as vertices of the graph and the
similarity between vertices as weights of edges [14]. There exist different techniques
that optimize segmentation by globally analyzing these graphs.
Finally, K-means clustering is a special thresholding segmentation algorithm that
is proposed based on the Lloyd algorithm. The algorithm operates as follows: (i)
initialize K points as clustering centers; (ii) calculate the distance between each
point K in the image and K cluster centers, and select the minimum distance as
the classification k; (iii) average the points of each category (the centroid) and
move the cluster center to the centroid; and (iv) repeat steps (ii) and (iii) until
algorithm convergence.

Co-Segmentation Methods

The Collaborative Segmentation or Co-Segmentation methods involves extracting
the common foreground regions from multiple images with no human intervention,
to obtain prior knowledge. After this, it is possible to utilize the prior knowledge
to process a set of images containing the same or similar objects. The extended
model can be expressed as follows:

E = Es + Eg (2.1)
where Es represents the energy function of seed image segmentation, that describes
the difference between the foreground and background of the image and the
smoothness of the image, and Eg represents the energy function of co-segmentation,
that describes the similarity between foregrounds in a set of images. To achieve a
good co-segmentation effect, segmentation energy E should be minimized. There
exist two possible methods:

• improving the classic segmentation method to minimize Es

• optimizing the unsupervised learning method to learn good representations in
image sets to minimize Eg

For the classic segmentation model, Es is the energy function derived using the
Markov Random Field (MRF) method, and spitted in:

EMRF
s = EMRF

u + EMRF
p (2.2)

13

State of the Art

where EMRF
u is the unary potential that measures the properties of the pixel itself,

while EMRF
p is the pairwise potential that measures itself in relation with other

pixels [14]. Actually, the unitary potential represents the probability of a pixel
belonging to class xi when a feature of the pixel is yi, while the pairwise potential
represents the probability that two adjacent pixels belong to the same category.
The co-segmentation term Eg penalizes inconsistencies in the foreground color
histograms across multiple images.

Semantic Segmentation Based on Deep Learning

With the continuous development of image acquisition technology, the complexity of
image details and the diversity of objects (e.g., scale, posture) have greatly increased.
Low-level features such as color, brightness, and texture are no longer sufficient for
achieving high-quality segmentation results. Feature extraction methods based on
manual or heuristic rules cannot meet the complex demands of contemporary image
segmentation, which calls for models with higher generalization ability. In the recent
years, deep learning algorithms have been increasingly applied to segmentation
tasks, and the segmentation effect and performance have been significantly improved.
Initially, the approach involved dividing the image into small patches to train a
neural network, which then classified the pixels. This patch classification algorithm
has been adopted because the fully connected layers of the neural network require
fixed-size images. Later, it was proposed fully convolutional networks (FCNs) with
convolution instead of full connection, that made it possible to input any image
size. FCNs demonstrated that neural networks could perform end-to-end training
for semantic segmentation, laying a solid foundation for deep neural networks in
this field. Subsequent models have advanced further based on the FCN architecture
[14].

2.3 Pick and Place Overview
A pick and place robot is an automated robot that has the purpose of picking
up items and placing them in another location (a conveyor or a stationary table)
[15]. The automation of this repetitive task increases the speed of production and
throughput rates. Pick and place robots are usually mounted on a stand that looks
over items and joined with vision systems and sensors. A pick and place robot is
composed by different elements, that are:

• A Robotic Arm: This is the extension of the robot. It is made from cylindrical
or spherical parts and can extend and retract to reach items.

• End Effector: this element performs the action, usually made for gripping.

14

State of the Art

• Actuators: they allow for motion in the robotic arm and end effectors. There
are various types of actuators, such as servo motors or stepper motors.

• Sensors: They are the eyes of the robot, used to identify the items.

• Controllers: they synchronise and control the movement of the actuators of
the robot.

There exist different type of pick and place robot, including: [16]

• Robotic arm: they are the most common type of pick and place robot, usually
are 5-axis for standard pick and place or 6-axis for more complex.

• Cartesian: They work in multiple planes using Cartesian Coordinates. Typi-
cally, they have better position accuracy.

• Delta: They are used in applications where robots pick items in groups and
places them in assembly patterns or containers. They are characterized by
advanced vision technologies and they have usually three arms that operate
on four axes.

• Fast Pick: They are used in medium and high volume applications.

• Collaborative: They augment the work of humans by leading associates to pick
locations and guiding associates through each task. By optimizing routes in
real-time and keeping associates on task, collaborative robots help associates
work more efficiently.

• SCARA: this kind of robots are known for their speed, precision, and compact
design. They operate within a two-dimensional space defined by the X and
Y axes, with an additional rotational movement around the vertical Z axis.
This allows them to perform tasks such as assembly, packaging, and material
handling with a high degree of speed and precision. The ability to perform
both linear and rotational movements allows them to handle objects with
complex shapes and orientations [17]

One of the key concept of pick and place is the motion planning, essential for
enhancing the efficiency and effectiveness of robotic systems. Motion planning
involves determining a feasible path for a robot to move from one position to
another while avoiding obstacles and adhering to constraints. The next section
provides an overview of the main concepts and algorithms involved in motion
planning in pick and place robotics.

15

State of the Art

2.3.1 Motion Planning
Motion planning is a key problem in robotics that is concerned with finding a
path that satisfies a goal specification subject to constraints. In its simplest form,
the solution to this problem consists of finding a path connecting two states, and
the only constraint is to avoid collisions. Given its complexity, most planning
algorithms forego completeness and optimality for slightly weaker notions such
as resolution completeness, probabilistic completeness, and asymptotic optimality.
[18] In the state of the art, there exist different types of planners. For each of them,
the main issue is the trade-off between computational complexity and the quality
of the final path. The more precise the paths and with higher quality, the greater
their computational complexity and consequently the time required to generate
them.
Motion planning can be divided into two categories: offline motion planning and
online motion planning [19]. Offline motion planning operates using a "scan-plan-
execute" approach. It first scans the environment to detect obstacles, often through
CAD models or point clouds converted into octomaps. Then, it generates a collision-
free path based on this static snapshot of the scene. However, if the environment
changes during execution, the path won’t adapt, potentially leading to collisions.
On the other hand, online planners continuously updates the environment while
executing the path, making it more suitable for dynamic settings. However, this
comes with a higher computational cost since the planner must recompute paths
at each step. To balance path update frequency and computation time, the scene
can be updated at multiple intervals.
Another common distinction in the motion planning world is between deterministic
and nondeterministic planners. The former generate the path uniquely, so given
the same initial input conditions (initial state, goal state, and collision objects
in the scene) the planned path will always be the same. The latter generate it
randomly, so the planned paths may differ even with the same input.
Regarding the planner, the main subdivision is among graph search-based, sampling-
based and optimized-based planners. The first two planners generate a collision-free
path without considering kinematic constraints such as path smoothness or velocity,
acceleration and jerk profiles [20]. On the other hand, optimized-based algorithms
plan also the timing law of the final trajectory, optimizing its kinematic parameters.
This causes the trajectory to have the main parameters considered optimal (path
length, execution time, smoothness, kinematics profiles, and so on) with, however,
generally higher computational costs and failure rates [21]. Furthermore, in recent
years much research and efforts have focused on post-processing type algorithms:
these algorithms provide a hybrid solution between sampling-based and optimized-
based algorithms. In this type of planner, there is the generation of an initial
collision-free path by a sampling-based planner and then the path is optimized

16

State of the Art

thanks to an optimized-based planner [22].

Graph search-based algorithms

Graph search-based planning uses graph search algorithms to compute discrete
paths in a robot’s state space [19]. It involves two main challenges: converting
the problem into a graph and finding the best solution within that graph. The
state space is discretized, limiting the number of possible positions. Advanced
algorithms, like Dijkstra’s, assign costs to nodes and arcs to guide the search for
the optimal path. There are two main categories: depth-first (which explores one
node deeply before backtracking) and breadth-first (which explores all nodes at
each level before moving deeper). Breadth-first is more complex but guarantees the
shortest path. The key advantage of graph search-based planners is completeness.
If a solution exists, the planner will find it and provide the optimal path based on
length. However, the discretization reduces accuracy, and building the graph for
the entire state space is computationally heavy, especially in complex environments.
This leads to unnecessary planning time. For this reason these kind of planners are
not longer used in industrial applications, in favour of Sampling-based planners.

Sampling-based algorithms

Sampling-based planners are the most common planners, because they are very
quick and quite effective even in complex environments [23] [20] [19] [24]. These
planners randomly sample the configuration space and check if each sampled point
is collision-free. If it is, the point is added to the graph of possible configurations,
connecting it to others when possible. The algorithm then finds a collision-free
path from the start to the goal. The success rate of these planners depends strongly
on the complexity of the scene and the maximum planning time set.
An important distinction of this type of random-sampling planners is the one
between single-query planners and multiple-query planners. In single-query planners,
the important concept is the speed in computing a single path to be executed. If
another path is then to be planned, it restarts from the beginning and it is necessary
to re-initialize everything, since nothing is stored of the previously planned paths.
In multiple-query planners, on the other hand, it is assumed in principle that there
will be many motion planning problems to be solved in the same environment, so
it is essential to save the information of each path in order to speed up subsequent
computations, having no need to re-initialize the algorithm. The main drawback
of sampling-based planners is their non-optimality. The resulting paths may be
inefficient, with abrupt changes in direction, leading to higher energy consumption
and less smooth, potentially unsafe paths for the robot.

17

State of the Art

Optimized-based algorithms

These kind of algorithms have been developed to overcome the limitations of the
sampling-based algorithms. They compute the final trajectory as the solution
of an optimization problem, considering a cost function with various constraints
(e.g., maximize the distance to obstacles in the environment, consider limits in
the velocity, acceleration and jerk profiles, and so on). The main disadvantage
in optimized-based planners turns out to be the computational complexity. It
grows considerably compared to sampling-based planners, thus resulting in longer
planning times and making them unsuitable for online planning. Another major
disadvantage is the dependence on initial conditions. This leads them to trap into
local minima rather than global minima, thus causing an increase in failure rates
compared to sampling-based planners [21].

18

Chapter 3

System Design

The sorting application requires a planning framework to execute the pick and place
action. In this thesis, the focus is on the MoveIt 2 planning framework which is
ROS2 Humble based, deployed within a Docker container. Furthermore, computer
vision libraries was added for object detection and sorting. The principal actor of
this job is the manipulator UF850. This chapter provides a detailed explanation
of the frameworks and tools used for the simulation and implementation of the
sorting system. It begins with an overview of ROS2, explaining its significance in
robotic applications and the advantages of using Docker for creating a consistent
and portable development environment. It then introduces MoveIt 2, RViz, and
Gazebo. Following this, the chapter will explore the specific characteristics of the
UF850 manipulator and its integration into the ROS2 and MoveIt 2 ecosystem.

3.1 ROS2
The Robot Operating System (ROS) is a set of software libraries and tools for
building robot applications [25]. It is open source and provides a communication
middleware that allows nodes (independent execution units) to exchange messages
through an anonymous publish/subscribe mechanism. The ROS graph is the
heart of ROS2 since it represents the network of nodes and the way in which they
communicate. Thanks to its structure, ROS has a lot of advantages:

• Modularity: Each node is launched and executed independently of the others.
This structure allows for the design, development, and testing of individual
nodes, making them reusable for other purposes since each node has a specific
function.

• Portability: Due to the structure of independent nodes, each performing a
specific function, nodes can be easily carried and used for other applications.

19

System Design

• Effective Communication: The messaging system of ROS2 is simple and
scalable. Nodes can communicate with each other via topics or services,
enabling the transmission of sensor data, status, control information, or any
other type of data.

• Flexibility: This derives from the previous features and the support for various
programming languages, including the most common ones, Python and C++.

• Graphics: ROS2 supports simulation environments such as RViz and Gazebo,
allowing for graphical simulations by loading models like URDFs (Unified
Robot Description Format) that describe the geometry and kinematics of the
robot.

As it was already mentioned, when implementing an application in ROS2, two key
components for node communication are topics and services. Both enable data
exchange between nodes, but they serve different purposes and operate in distinct
ways. In particular:

• Topics should be used for asynchronous and continuous data streams, like
sensor data, robot state, etc. A node can publish information on a topic, while
other nodes can subscribe to that topic to receive data in real-time.

Figure 3.1: Topics Communication mechanism

• Services are designed for synchronous communication. They work like remote
procedure calls, where a node can send a request to another node, which will
perform a computation and return a result. A service consists of two main
parts: a service client, which sends the request, and a service server, which
processes the request and returns the result.

20

System Design

Figure 3.2: Services Communication mechanism

Nodes in ROS2 can be a complex combinations of publishers, subscribers, service
servers, service clients, all at the same time. To manage multiple nodes efficiently,
ROS2 provides a launch system that automates the execution of nodes with a single
command. This allows users to define their system configuration — specifying
which programs to run, their arguments, and how they interact — within a launch
file written in Python, XML, or YAML.

3.2 Docker
Docker is an open platform for developing, shipping and running applications
[26]. It allows to separate the applications from the infrastructure, thanks to an
isolated environment called Container in which it is possible to run and package
the applications. It is possible to run many containers simultaneously and each of
them is lightweight and fast. Another important property is the portability since it
can run on any system regardless of the underlying hardware or operating system.
Docker uses a client-server architecture. The main elements are:

• The Docker client communicates with the Docker daemon, which handles the
essential tasks of building, running, and distributing Docker containers. They
can run on the same system or it is possible to connect a Docker client to a
remote Docker daemon. It is a command-line interface (CLI) that allows users
to interact with the Docker daemon through three main commands: docker
run, docker build and docker pull. It can communicate with more than one
Daemon.

• The docker daemon listens for Docker API requests and menages Docker object
such as images, containers, networks and volumes.

21

System Design

• The Docker registry stores the Docker images, such as Docker Hub that is
public and anyone can use to push their images to a registry or pull existing
images to use in their projects. An image is a read only template with
instructions to create a Container and can be based on another image like
Ubuntu.

Figure 3.3: Docker architecture

Therefore, the container is a runnable instance of an image than can be created,
started, stopped, moved or deleted using the Docker API or CLI.

3.3 MoveIt 2
MoveIt 2 is the robotic manipulation platform for ROS 2, and incorporates the latest
advances in motion planning, manipulation, 3D perception, kinematics, control, and
navigation. [27] It consists of a series of ROS libraries and implements functions
perfectly integrated with the rest of the framework, it uses RViz visualization
software and Gazebo simulation software; it also has modules for the definition of
tasks and a module entirely dedicated to grasping.
MoveIt essentially allows to implement every functionality described above, from
trajectory planning to collision avoidance and sensor functionality (for 3D percep-
tion), it also implements functionality for a further abstraction of the controllers,
passing from the one already provided by ROS (ros control) by virtualizing a control
to high level based not on strength or position but on the trajectory itself.
Nevertheless, it is essential to create a MoveIt package with the all the neces-
sary configuration and launch file essential for controlling the robot, such as the
SRDF(Semantic Robot Description Format) file and other configuration files that

22

System Design

are used in the MoveIt pipeline [28]. Typically, the Setup Assistant simplifies the
generation of this package from the URDF(Unified Robot Description Format),
but for the UF850 custom packages were available on GitHub.
In addition, sensors play a crucial role by providing important data such as the
robot’s joint state, point cloud information, and TF frames, all of which are essential
for MoveIt’s core functionality.

Figure 3.4: Moveit pipeline

The most important node provided by MoveIt is the move_group. The high-level
system architecture for this node is shown in Figure 3.4, while the node structure
is shown in Figure 3.5.

23

System Design

Figure 3.5: Move Group Architecture

This node serves as an integrator: pulling all the individual components together
to provide a set of ROS actions and services for users to use [27]. For the user it
is very easy to access the actions and services provided by move_group, since it
can be configured using the ROS param server. From this server, the move_group
ROS node gets three pieces of information:

• URDF: the robot description parameters.

• SRDF: the robot description semantic parameters.

• Moveit configuration: other data as joint limits, kinematics, motion planning
and perceptions.

The move_group node comunicates with the robot through ROS topics and actions
getting all the current state informations: the joint positions, the point clouds of
the scene, the data coming from the other sensors and from the controllers on the
robot, and so on.

3.3.1 Motion Planning in MoveIt
Motion planning is one of the most important problem in robotics that is related
with finding a path that satisfies a goal specification subject to constraints, as it
was already explained in the section 2.3.1.
MoveIt works with motion planners through a plugin interface, allowing users
to select and utilize different planning algorithms based on their needs. This

24

System Design

interface to the motion planners is through a ROS action or service offered by the
move_group node. This node acts as an interface for sending motion planning
requests and receiving planned trajectories. Key aspects of this interaction include:

• Motion Plan Request: When a motion planning request is made, it is specified
the desired goal (e.g., moving an arm to a new location or changing the
pose of an end-effector) and the planner through the planning_pipeline and
planner_id parameters. Constraints for the motion planner to consider are
also provided.

• Trajectory Generation: The move_group node is responsible for generating
trajectories based on the motion plan request. It translates the path pro-
vided by the Motion Planner (without timing information) into a complete
trajectory. This trajectory takes into account the maximum velocity and
acceleration limits for the robot’s joints, as specified in a configuration file
(e.g., joint_limits.yaml).

• Planning Request Adapters: MoveIt includes several trajectory processing
algorithms and planning request adapters. These components work together
to refine and optimize the generated paths, ensuring that they are time-
parameterized and feasible under the robot’s operational constraints.

MoveIt supports a variety of motion planners through its plugin interface. Below
there is a list of most commonly used planners, in descending order of popularity/-
support within MoveIt:

Open Motion Planning Library (OMPL) : it is an open-source motion plan-
ning library that consists of many state-of-the-art sampling-based motion
planning algorithms [29] [27]. MoveIt integrates directly with OMPL and uses
the motion planners from that library as its primary/default set of planners.
The planners in OMPL are abstract, in fact OMPL has no concept of a robot.

Pliz Industrial Motion Planner : it is a deterministic generator for circular and
linear motions. Additionally, it supports blending multiple motion segments
together using a MoveIt capability.

Stochastic Trajectory Optimization for Motion Planning (STOMP) : it
is an optimization-based motion planner partially supported by Moveit. It
does not require gradients, and can thus optimize arbitrary terms in the cost
function like motor efforts.

Search-Based Planning Library (SBPL) : it is a generic set of motion plan-
ners using search based planning that discretize the space. Integration into
latest version of MoveIt is work in progress.

25

System Design

Covariant Hamiltonian Optimization for Motion Planning (CHOMP) :
it is a novel gradient-based trajectory optimization procedure that makes
many everyday motion planning problems both simple and trainable. This
algorithm utilizes covariant gradient and functional gradient methods in the
optimization phase to create a motion planning algorithm that is entirely
based on trajectory optimization. Given an infeasible trajectory, CHOMP
reacts to the surrounding environment to quickly pull the trajectory out of
collision while simultaneously optimizing dynamical quantities such as joint
velocities and accelerations. It rapidly converges to a smooth collision-free
trajectory that can be executed efficiently on the robot. Integration into latest
version of MoveIt is currently in progress.

Each of these planners has its strengths and is chosen based on the specific
requirements of the motion planning task at hand. In summary, the integration of
MoveIt with various motion planners and its use of trajectory processing algorithms
enable complex and efficient motion planning in robotic systems. By leveraging
these tools, it is possible to achieve precise and optimized robot movements, fulfilling
the desired goals while adhering to system constraints.

3.3.2 Planning Scene Monitor
The planning scene stores the current state of the robot and the world around
it. The internal state of the planning_scene object is typically maintained by a
planning_scene_monitor. Particularly the planning scene monitor listens to:

• State Monitor: it tracks state of robot and attached object.

• Scene Monitor: it listens from an externally defined planning scene.

• World Geometry Monitor: it builds world geometry using information from
the sensors on the robot such as depth cameras and from user input. It uses
the occupancy map monitor described below to build a 3D representation of
the environment around the robot and augments that with information on
the planning_scene topic for adding object information. [27]

The occupancy map monitor handles 3D perception in Moveit using a plugin
architecture. Specifically, MoveIt supports two types of sensor input:

1. Point Clouds

2. Depth Images

26

System Design

3.4 Rviz
RViz is a 3D visualization tool with a graphical user interface (GUI) natively
supported by ROS [30]. It enables detailed viewing and analysis of any robotic
system model or the environment in which the system operates. Additionally, RViz
can acquire and reproduce data from any sensor for which a specific module has
been implemented in ROS.
RViz is highly modular, allowing the integration of additional functionalities through
appropriate plugins. For example, the MoveIt plugin enables operations and
commands directly from the plugin interface, making RViz a tool with capabilities
that extend far beyond simple visualization.

3.5 Gazebo
Gazebo is an open source 3D robotics simulator natively supported by ROS, able
to reproduce accurately the environments that a robot may encounter, from gravity
to wind as regards the environments, from the dynamics of the controllers to the
behavior of the sensors (taking into account the noises) as regards the robots, and
from the distribution of inertias to friction for any model in general [31]. Gazebo is
a comprehensive simulator equipped with all necessary functionalities. For example,
it uses its own format, the SDF (Simulation Description Format), for describing
robot models and environments, with many models freely available. Additionally,
it offers a wide variety of plugins and supports custom-developed plugins.

27

System Design

3.6 UFactory 850

Figure 3.6: UF850

The UFACTORY 850 Robotic Arm is a robotic arm manipulator with six degree of
freedom. [32] It has a 5 kg payload and ±0.02 mm repeatability. It is able to reach
850mm along the horizontal axis and is characterized by a maximum speed equal
to 1 m/s. The joints are limited physically about the maximum reached angles.
In the tables below, the working range of each joint and the range of various motion
parameters of the robotic arm.

Joint 1 ±360◦

Joint 2 −132◦ ∼ 132◦

Joint 3 −242◦ ∼ 3.5◦

Joint 4 ±360◦

Joint 5 −124◦ ∼ 124◦

Joint 6 ±360◦

Table 3.1: On the left the Joint name, on the right the working range for the
relative joint

28

System Design

TCP motion Joint Motion

Speed 0 ∼ 1000 mm/s 0 ∼ 180◦/s

Acceleration 0 ∼ 50000 mm/s2 0 ∼ 1145◦/s2

Jerk 0 ∼ 100000 mm/s3 0 ∼ 28647◦/s3

Table 3.2: In this table the physical limits of the robot in terms of speed,
acceleration and jerk

Regarding the gripper, the value range opening and closing is: -10 to 850. The
larger the value, the greater the stroke of the gripper, meaning the smaller the
value, the smaller the stroke of the gripper. If the clamping is not tight, a negative
value can be set until it is tightened. The speed of the gripper should be in
1000-5000mm/s. If a speed less than 1000 was set, the gripper may not work.

Figure 3.7: Gripper of UF850

The robot is equipped with a RealSense depth camera D435i, which combines
the robust depth sensing capabilities of the D435 with the addition of an inertial
measurement unit (IMU) [33]. The inertial measurement unit (IMU) is used for
the detection of movements and rotations in 6 degrees of freedom (6DoF). An
IMU combines a variety of sensors with gyroscopes to detect both rotation and
movement in 3 axes, as well as pitch, yaw and roll. This allow a better Point
Cloud alignment and high quality depth data, so it is optimal for object detection
applications.

Figure 3.8: RealSense d435i

29

System Design

3.6.1 Software Integration and Repository
To simulate and control the UFactory 850 robotic arm within the ROS2 environment,
the corresponding simulation models and control packages were installed from the
official GitHub repository. This repository provides essential tools to enable motion
planning and control of the UFactory xArm series in simulation environments such
as Gazebo. The repository is structured into several key packages, including:

• xArm Description: This package provides the URDF files and 3D models
necessary for simulating the xArm robots in various environments. These files
define the physical properties of the robot, including its geometry, joints, and
link structure.

• xArm Controller: This package includes tools and configurations to manage
the control of the xArm robots. It contains control scripts that interface
with ROS2 to send commands to the robot, allowing for precise control of its
movements and real-time adjustments during operation.

• xArm Moveit Config: this package provides abilities for controlling xArm/Lite6
(simulated or real arm) by moveit. It includes the SRDF files, motion planning
settings, controllers, and predefined planning groups that allow for seamless
integration with MoveIt. By utilizing this package, advanced motion planning
scenarios were tested, enabling efficient path generation and collision avoidance
during pick-and-place operations.

• xArm Planner: It gives functions for controlling xArm (simulated or real arm)
through Moveit API.

• xArm Gazebo: This package is specifically designed to work with Gazebo,
providing simulation environments and configurations that allow for the virtual
testing of the xArm manipulator. It includes plugins that enable realistic
physics and sensor simulations, making it possible to evaluate the robot’s
performance before deploying it in real-world applications.

• xArm msgs: This package contains all interface definitions for xarm_ros2. In
particular includes all the services and the messages.

• xArm Moveit Servo: it serves as a demo for jogging xArm with devices such
as joystick.

• Third part: it provides the custom Real Sense Gazebo plugin.

30

Chapter 4

Implementation

To implement the sorting application, the project was divided into three main
parts. First, a pick-and-place system was developed on a robotic manipulator
(UF850) using the MoveIt Task Constructor Library. Next, computer vision
techniques were employed to dynamically determine the position and orientation
of the objects. Finally, the Point Cloud Library (PCL) in ROS2 was utilized to
obtain the geometric dimensions of the objects. In the final phase, these three
components were integrated using ROS2, enabling the sorting functionality.

4.1 Pick and Place
The Pick and Place constitutes the first phase of the project. For this aim, the
official tutorial of Moveit2 is followed, adapted to the UF850 manipulator. In
the ROS2 context, the application operates as a node that has to be launched by
means of a launch file because it needs some parameters, which are the URDF,
SRDF and planner parameters (the choice of the planner is explained in the
section 5.1). In addition, to create the environment for the simulation, several
nodes must be launched together, including move_group, ros2_control, static_tf,
robot_state_publisher, and rviz.
Initially, the application was designed to handle a single object in the scene, but
it was later extended to manage multiple objects within the same environment.
The implementation was based on the MoveIt Task Constructor framework, which
provided a flexible and modular approach to task planning and execution. Before
explained how this particular package of MoveIt was used for the thesis work, it is
important to give a general overview of its main functionalities.

31

Implementation

4.1.1 Moveit Task Constructor
The Moveit Task Constructor is a framework of Moveit used to simplify complex
planning tasks with multiple interdependent sub-tasks called stages. A MTC stage
refers to a component or step in the task execution pipeline. Information from
the subtasks are passed through the InterfaceState object. Stages can be arranged
in any arbitrary order and their hierarchy is only limited by the individual stage
types. The order in which stages can be arranged is restricted by the direction in
which results are passed. [27]. There exist three possible kinds of stages:

• Generators

• Propagators

• Connectors

Moreover, there are different hierarchy types allowing to encapsulate subordinate
stages:

• Wrapper

• Serial Containers

• Parallel Containers

Figure 4.1: Moveit Task Constructor pipeline

In the following subsections, a definition of the most important types of stages in
the MTC framework is presented.

32

Implementation

Generator Stage

Generator stage do not take input from the near stages but just compute the results
and pass them in both directions (forward and backward).

Figure 4.2: Generator Stage

The execution of an MTC task begins with the Generator stages. There are three
types of Generator Stage, with the most important CurrentState which gets the
robot’s current state as the starting point for the planning pipeline. Moreover,
there exist the Fixed State that spawns a pre-defined Planning Scene State as
initial point and the FixedCartesianPose which is useful for planning based on
a predefined future state without sampling and allow the simultaneous planning
and execution. Finally, the Monitoring Generators which monitors the solution of
another stage (not adjacent) and use it to generate something else.
Moreover, there are four kinds of Monitoring Generators:

1. The GeneratePose which generate pose based on a solution given by the
monitored stage.

2. The GenerateGraspPose stage derives from GeneratePose, which monitors the
CurrentState stage to find the location of the object to be grasped.

3. The GeneratePlacePose stage derives still from GeneratePose and generate
pose for a place pipeline.

4. The GenerateRandomPose derives from GeneratePose and sets up Random-
NumberDistribution sampler for a PoseDimension to randomize the pose.

Propagating Stage

Propagators receive solutions from one neighbor stage, elaborate those solution
and spread them to the neighbor situated on the opposite side. This kind of stage
can pass solution forward, backward or in both directions.

33

Implementation

Figure 4.3: Propagating Stage

The MTC provides the following propagating stages:

• ModifyPlanningScene

• MoveRelative

• MoveTo

• FixCollisionObject

The ModifyPlanningScene applies modification to the PlanningScene without
moving the robot, therefore the default cost term is equal to 0. The stage contains
different functionality such as enable and disable collision checking between links
or attach and detach objects to robot links.
The MoveRelative stage is useful to carry out a Cartesian motion with a default
planning time equal to 1.0s. The default cost term depends on the length of the
path.
The MoveTo stage is used to move to a joint state or Cartesian goal pose that can
be specified in different formats. Again, the default planning time is equal to 1.0s
and the default cost term is related to the path length.
The last type of Propagating Stages is the FixCollisionObject with a cost term
constant at 0. It detects collision and resolves them if applicable.

Connecting Stage

Connectors do not produce results them-self; instead, try to connect the start and
goal inputs provided by adjacent stages.

Figure 4.4: Connecting Stage

34

Implementation

The MTC provides only one connecting stage called Connect stage, which connect
two stages by finding a motion plan between two states. The default planning time
is equal to 1.0s, while the cost depends on the path length.

Wrapper

Wrappers encapsulate another stage to modify or filter the results. The MTC
provides three different kinds of Wrapper:

1. ComputeIK to compute the inverse kinematics for the poses in Cartesian
space.

2. PredicateFilter used to filter generated solutions.

3. PassThrough, a generic wrapper used to set a custom CostTransform to change
a solution’s cost.

Serial and Parallel Containers

Serial Containers arrange stages sequentially, considering only end-to-end solutions
as results. By default, an MTC Task is stored in a serial container.
Instead, Parallel Containers group multiple stages together, enabling the planning
of alternate solutions. The MTC provides three kinds of stage:

1. Alternatives

2. Fallback

3. Merger

Alternative containers allow adding stage to be executed in parallel. All the
solutions are collected at the end and ordered on the basis of the cost. The Fallback
Container executes all the consequential stages until one of them return success or
all of them return failure, while the Merger Containers combine multiple different
problems and all the solutions are merged in a single one.

4.1.2 Pick and Place using MTC
The Pick and Place application realized for the UF850 is divided in three main
parts:

• Setup of the Planing Scene

• Creation of the task

• Planning and execution of the task

35

Implementation

The Setup of the Planning Scene is crucial because allows to the MoveIt planner to
consider the objects when generating paths. The objects was defined as Collision
Objects of Moveit that the robot avoids by default or can pick if it is specified in
the Creation of the task (this will be clarified later). Each object is declared in the
scene, specifying the type of object (for this work research, only primitive shapes
are considered such as cylinders or box), the geometric dimensions of the object
(for example radius and height for cylinders), a unique identifier (ID), the position
and orientation of the object with respect a specified frame (for this application,
the link base frame of the robot is considered). The objects are added to the
scene through the PlanningSceneInterface that uses ROS interfaces to communicate
changes to the planning scene to MoveGroup.
In order to create the task, three kinds of solvers was been defined with the aim of
defining the type of robot motion:

1. PipelinePlanner uses MoveIt’s planning pipeline, tipically OMPL. For this
planner, it is important to specify the maximum goal joint tolerance.

2. JointInterpolation that interpolates between the start and the goal joint states,
tipically used for simple motions because it is very quick.

3. CartesianPath that allow to move the end effector in a straight line in the
Cartesian Space. Also in this case, some parameters are set, such us the
maximum velocity, the maximum acceleration allowed and the step size.

Furthermore, it is important to set some initial properties, such as the Task name,
load the robot model, define the names of some useful frames, and set those frame
names as properties of the task. In this case, the joint group name of the arm, that
of the gripper and the gripper’s main link are specified. These elements will be
useful in the stages.
Regarding the task, the stages mechanism of the MTC is used. In particular, the
pipeline is composed by the following stages:

Current : a generator stage that starts the robot in its current state.

Open hand : a MoveTo stage (propagator) that uses the joint interpolation
planner with the pose defined in the SRDF of the manipulator.

Move to Pick : a Connect Stage (Connector) to move the arm in a position
where it can pick the object. The UF850 arm is specified as planning group
and the PipelinePlanner as planner.

Pick Object : a serial container that contains all the stages related to the picking
action. It contains the following stages:

36

Implementation

• Approach Object: a MoveRelative stage (propagator) that uses a Cartesian
Planner to find a solution. It is needed to set a forward direction with
respect to the hand frame where the robot should move.

• Grasp Pose IK: it is a wrapper that encapsulates the Generate Grasp
Pose stage to compute the inverse kinematics solutions for the grasping.
Generate Grasp Pose: a monitoring generator stage that monitors the

current state and determines the number of poses to generate. So,
MTC will try to grasp the object from many different orientations
specified by the angle delta.

• Allow Collision: a ModifyPlanningScene (propagator) that allows to
disable a certain collision between a group of joints (in this case, the hand
group joints of the robot) and a certain object that has to be pick.

• Close hand: Similar to the stage Open Hand, moving in the close position
defined in the SRDF.

• Attach Object: a ModifyPlanningScene stage, that is used to attach the
object to the hand of the manipulator.

• Lift Object: a MoveRelative stage, similar to Approach Object, it set the
upward direction.

Move to Place : a Connect stage to connect the pick phase with the place; in
this case, it is set the Pipeline Planner for the arm and the Joint Interpolation
Planner for the hand.

Place Object : a serial container for place action. It contains the following stages:

• Place Pose IK: it is a wrapper that encapsulates the Generate Place Pose
to compute as before the inverse kinematics solutions to reach the place
pose.
Generate Place Pose: a Monitoring Generator Stage that monitors the

Attach Object Stage and set the pose where the object has to be
placed.

• Open Hand: the same as before.
• Forbid Collision: Similar to Allow Collision stage, but in this case it is

enabled the collision property of the object.
• Detach Object: a ModifyPlanningScene stage to detach the object from

the arm.
• Retreat: it is a MoveRelative stage, similar to Lift Object Stage, it applies

the Cartesian Planner and sets the retreat direction of the arm.

37

Implementation

Return Home : it is a MoveTo stage that uses the Joint Interpolation Planner
and passes it the goal pose "home" defined in the UF850 SRDF.

Figure 4.5: Stages of the Pick and Place application

Finally, task is planned, executed and visualized in Rviz. Execution occurs via
an action server interface with the RViz plugin that is the Execute Task Solution
Capability plugin provided by MTC. The plugin extends MoveGroupCapability,
constructing a MotionPlanRequest from the MTC solution and uses MoveIt’s
PlanExecution to actuate the robot.

Figure 4.6: Robot dur-
ing the Stage Approa-
chObject

Figure 4.7: Robot
during the Stage Lift
Object

Figure 4.8: Robot dur-
ing the Stage Detach Ob-
ject

38

Implementation

4.2 Object Recognition and Localization
In the second phase of the project, the concept of recognition is added with the aim
to find dynamically the position and orientation of the objects. To accomplish this
task, Find Object 2D is engaged, an open source object recognition package from
ROS2 that uses feature detection algorithms. Once the objects are recognized, Find
Object 2d is able to attach a frame on their central point and, as a consequence, to
find their position and orientation with respect to the camera frame. After this, a
transformation with respect to the link base was computed to get the position and
orientation needed to build the planning scene. In this section, it is explained how
Find Object 2d works, which algorithm is used and what it was implemented to
localize the objects.

4.2.1 Object Recognition through Find Object 2D
Find Object 2D is a ROS package based on OpenCV library implementation of
SIFT, SURF, FAST, BRIEF and other feature detectors and descriptors. Using a
webcam, objects can be detected and published on a ROS topic (/info) with object
ID, position (pixels in the image), homograph matrix and other information.
Object recognition processing consists of two steps. The first is training and should
be done in a preliminary phase. During this stage, the object of interest is presented
to the vision system, and the algorithm automatically collects a set of features,
storing them sequentially as a pattern. The second stage is recognition, which is
performed continuously while the robot is running. Each frame from the camera is
processed, image features are extracted and compared with the data set in memory.
If enough features match the pattern, the object is recognized [34].

Figure 4.9: Find Object 2D: Object Recognition

For this thesis, the SIFT algorithm (Scale Invariant Feature Transform) is adopted
as detector and descriptor (the reason for which it is chosen will be explained in
the section 5.2). Once the object is recognized, it is localized. As it was already
mentioned, a message called Detection Info is published on a topic called "/info"

39

Implementation

by the node "find object 2d" located in the homonymous package. This node has
to be launched through a launch file, in which it is important to specify the path
in which the objects used in the training phase are located and the topics in which
the data related to the camera sensors acquisition are saved. In particular, three
topics are specified:

• /color/image_raw: it typically publishes raw color images from a camera
sensor. This raw image data is crucial for tasks that require high-quality image
input.

• /aligned_depth_to_color/image_raw: it publishes raw depth images that
have been aligned to the color camera’s frame of reference. This means the
depth data has been adjusted so that it corresponds directly to the color image,
pixel by pixel. Such precise alignment is essential for applications requiring
accurate depth and color data integration, including 3D reconstruction, object
detection, and augmented reality.

• /color/camera_info: it publishes the intrinsic and extrinsic parameters of the
color camera. These parameters include the camera’s resolution, focal length,
principal point, distortion coefficients, and its position and orientation relative
to the robot or world frame. This information is crucial for accurate image
processing tasks, including 3D reconstruction, object detection, and camera
calibration.

In order to localize the object a pnp algorithm is used, that estimate the object
pose given a set of object points. The estimated pose is thus the rotation (rvec)
and the translation (tvec) vectors that allow transforming a 3D point expressed in
the world frame into the camera frame [35].
The computed position of the objects with respect to the camera frame (center of
the object with rotation) are published over another topic called /tf, so a frame is
attached to their central point.

Figure 4.10: Object Localization

40

Implementation

4.2.2 Object Localization
For the sorting purpose, it is necessary to get the position and orientation of the
objects with respect to the base link frame. In order to do this, a subscriber was
created for the topic /info to obtain the information stored in the Detection Info
message, which are:

• Object ID

• Width in pixel

• Height in pixel

• File Path (where the images used for training are stored)

• Inliers

• Outliers

• Homography Matrix

This information is used to create a list of dictionaries, where each dictionary
contains information about a recognized object. Each dictionary stores key-value
pairs representing object attributes such as ID, width, height, file path, inliers,
outliers and homography matrix.
From the file path, a function is implemented that is able to retrieve the name of
the object as the last world in the path string after removing the (.png) extension.
This will be useful in the integration part, as the object name will be used as an
object ID in the construction of the planning scene.
To determine the object’s position and orientation, the tf2 package is used to
perform a transformation of the object’s frame (whose name is always "object_"
plus "ID of the object") with respect to the robot’s base link. In this way, it
is possible to send this information to the MoveIt planning scene in order to
dynamically update the scene each time (further details on how this information is
sent will be covered in section 4.4).

41

Implementation

4.3 Object Dimensions from Point Cloud
In the third phase of the project, the concept of Segmentation was introduced
to get the geometric dimensions of the objects needed to construct the MoveIt
Planning Scene. For this purpose, the Point Cloud Library (PCL) of ROS2 was
used. This section will explain what the PCL is, what kind of modules were used
for the purpose of the thesis and how the dimensions of the objects were obtained.

4.3.1 Point Cloud Library
The Point Cloud Library (PCL) is a collection of state-of-the-art algorithms and
tools to process 3D data. The 3D data are got through camera depth sensors that are
usually cheap. In the ROS2 context, the information about these points is published
in a topic (PointCoud2) through a message called sensor_msgs/PointCloud2.msg.
The PCL core is structured into smaller libraries offering algorithms and tools for
specific areas of 3D processing, which can be combined to efficiently solve common
problems such as object recognition, point clouds registration, segmentation, and
surface reconstruction, without the need of re-implementing all the parts of a
system that are needed to solve these sub-tasks [36]. The aim of the use of this
library is the necessity of extract some primitive objects (cylinders and box) with
a segmentation to get the geometric dimensions. For this purpose, the following
modules of PCL were used [37]:

• Filters refers to the elimination of the noise from a Point Cloud. In particular,
it is based on the computation of the distribution of point to neighbor distances
in the input dataset. For each point, the mean distance from it to all its
neighbors is computed. By assuming that the resulting distribution is Gaussian
with a mean and a standard deviation, all points whose mean distances are
outside an interval defined by the global distances mean and standard deviation
can be considered as outliers and trimmed from the dataset.

• Features contains data structures and mechanisms for 3D feature estimation
from point cloud data. 3D features are representations at certain 3D points,
or positions, in space, which describe geometrical patterns based on the
information available around the point. The data space selected around the
query point is usually referred to as the k-neighborhood.

• Kd-tree (k-dimensional tree) is a space-partitioning data structure that
stores a set of k-dimensional points in a tree structure, allowing for efficient
range searches and nearest neighbor searches. Nearest neighbor searches are a
core operation when working with point cloud data and can be used to find
correspondences between groups of points or feature descriptors, or to define
the local neighborhood around a point or points.

42

Implementation

• Segmentation contains algorithms for segmenting a point cloud into distinct
clusters. These algorithms are best suited for processing a point cloud that is
composed of a number of spatially isolated regions.

• Sample Consensus holds Sample Consensus (SAC) methods like RANSAC
and models like planes and cylinders. These can be combined freely in order
to detect specific models and their parameters in point clouds.

• Common contains the common data structures and methods used by the
majority of PCL libraries. The core data structures include the Point Cloud
class and a multitude of point types that are used to represent points, surface
normal, RGB color values, feature descriptors, etc. It also contains numerous
functions for computing distances/norms, means and covariance, angular
conversions, geometric transformations, and more.

4.3.2 How to get the Object Dimensions
In this phase, the ROS2 node that allows to obtain the object dimensions is just a
subscriber that receives the Point Cloud information from the PointCloud2 topic
(later in the integration part, it will also become a server). Once the Point Cloud
data is obtained, the functions based on PCL are used to achieve the purpose of
this work part. In particular:

PassThroughFilter : this function belongs to the Filters modules and performs
a simple filtering along a specified dimension (z axis in this case) setting an
acceptable interval of values (if the point are outside this interval, they are
cut off).

ComputeNormals : it is part of Feature modul and it consists on estimating the
normal of a plane tangent to the surface passing from a point in the cloud.
This surface needs to be estimated from the surrounding point neighborhood
of the point (also called k-neighborhood). For this specific application 50
neighbors are considered and, in order to find them faster, a Kd-tree is created.

RemovePlanSurface : this is a segmentation function to remove the plan surface
from the point cloud using the RANSAC algorithm. The function applies also
the ExtractIndices filter to isolate the points corresponding to the identified
plane based on the indices provided by the segmentation process. As a
segmentation function, it is necessary to set two key parameters: the distance
threshold, which defines the maximum allowable distance between a point
and the estimated plane for the point to be considered part of the surface,
and the maximum iterations, which limits how many times the RANSAC
algorithm will try to find the optimal model. Once the plane is identified,

43

Implementation

both the planar surface and the remaining points (obtained by applying the
ExtractIndices filter in negative mode) are saved into two separate .pcd files,
enabling verification of the segmentation process.

CreateCluster : it is used to divide an unorganized point cloud model P into
smaller parts (the parts represents the different objects). In this case, an
Euclidian Cluster is adopted, that consists in a 3D grid subdivision of the
space, which involves a volumetric representation of the occupied space. A
Kd-tree structure is employed for efficient nearest neighbor searches, and a
threshold is set for the maximum distance between points that belong to
the same cluster. Furthermore, it is important to set the maximum and the
minimum cluster size, to ensure that only relevant objects are considered,
allowing for more efficient processing and analysis tailored to the specific
application requirements. After extracting the clusters, the function iterates
through the identified clusters to create individual point clouds for each one,
setting their dimensions and density accordingly. Finally, it returns a vector
containing these clustered point clouds, enabling further analysis or processing
of the segmented data.

ExtractCylinder : this is another segmentation function to extract the cylinder
from the point cloud, again using a RANSAC algorithm along with point
normals. It configures a segmentation object to detect cylinders, setting
key parameters such as the distance threshold, which defines the maximum
distance for a point to be considered an inlier, the radius limits, which
constrain the expected cylinder size, and the maximum iteration, which, as
before, determines how many times the RANSAC algorithm will attempt to
find the best-fitting cylinder model. Additionally, the normal distance weight
influences how closely the point normals must align with the cylinder’s axis to
be considered inliers. The function processes the input point cloud and its
normals to identify inliers belonging to the cylinder, capturing the geometric
properties in coefficients_cylinder, including the radius and the direction
vector along the cylinder’s z-axis.

ExtractBox : since in PCL the segmentation function related to the box does
not exist, it is adopted a method based on the segmentation of the planes. In
particular, three orthogonal planes are iteratively searched from the point cloud.
For each iteration, it configures the segmentation parameters such as normal
distance weight, maximum iterations, and distance threshold. If a planar model
is successfully estimated, it extracts the inliers corresponding to the identified
plane and updates the filtered cloud by removing these inliers. Once the
three planes are found, the function uses the pcl::MomentOfInertiaEstimation
class (which belongs to the Features module) to compute the Axis-Aligned

44

Implementation

Bounding Box (AABB) around the entire point cloud. It calculates the
dimensions of the cube — length, width, and height —by determining the
differences between the maximum and minimum points along each axis. It
also calculates the geometric center of the box by taking the average of the
maximum and minimum points on each axis.

The functions previously described are applied sequentially in the Callback function
of the subscriber, starting from the PassThroughFilter to CreateCluster. For each
cluster, normals are recalculated, and an attempt is made to extract cylindrical
shapes first. If successful, the cylinder parameters are logged and stored. If cylinder
extraction fails, the system tries to extract a box. If neither shape is found,
it outputs a corresponding message. This structured approach enables effective
identification and extraction of cylindrical and cubic objects from the point cloud
data.
However, the aim of this implementation part is to get the dimensions of the objects
present in the planning scene. Regarding the cylinders, the two needed parameters
are the radius and the height. The former is obtained from the cylinder coefficients
found through the segmentation, while the computation of the height needs the
use of another function that belongs to the Common module.
This function is called "getMinMax3D" and, as the name suggests, it is able to
compute the minimum and the maximum point of a 3D point cloud. This allows for
determining the center of cylindrical objects by calculating the mean value between
these two extreme points. To accurately compute the height along the principal
axis of the cylinder, the directional vector of the axis is used. Then, the maximum
and the minimum point are projected along this axis through the dot product.
After this, the height is computed as the difference between the projections of the
maximum and minimum points along the axis.
Regarding the box, the geometric dimensions are found in ExtractBox function
through the AABB, as described before.
For both cylinders and boxes, the center coordinates are later utilized in the
integration phase to merge the Segmentation algorithm (based on PCL) with the
Localization algorithm (using Find Object 2D) in the planning scene. In order to
do this, a transformation function is applied from the camera frame to the base
link frame to obtain the coordinates with respect to the base link of the robot, as
in the previous section.

45

Implementation

4.4 Integration
To implement the sorting application, the three parts described above was joined
together through a ROS2 architecture. The communication mechanism is composed
by a unique client and three servers for three different services: the first server
able to localize the objects thanks to Find Object 2D package, the second able to
compute the dimensions of the objects through the PCL library and the third to
execute pick and place tasks basing on MTC.

Figure 4.11: ROS2 architecture

The client is the core of the communication. Firstly, it sends two requests simulta-
neously: one to the localization sever and the other to the dimensions computation
server. The first server responds with the position and orientation of the object
contained in a geometry message, and with the name of the object, while the second
responds with the dimensions of the object, the geometric type (cylinder or box)
and the center position computed from the Point Cloud. The client performs a
comparison between the position computed by the first server and the one computed
by the second server. The aim of this comparison is to find the correspondence
about the two different algorithms, to combine the position and orientation of the
object found by the Find Object 2D with the geometric dimensions found by PCL
of the same object. In this way, it is possible to define the third service with a
Pick and Place request joined the data found before (position, orientation, name,
geometric type and dimension of the object). The server Pick and Place receives
these data from the client and builds the planning scene through this information.
Once the planning scene is completed, the task of Pick and Place is built, planned
and executed using the MTC described in the section 4.1. Therefore, a dynamic
Pick and Place application is built since the needed information is computed each
time the scene is updated because the client sends a new request of object detection

46

Implementation

to the two servers described before.
Below is a summary diagram of the logical flow of information for the complete im-
plementation, from the acquisition of the camera to the pick and place application.

Figure 4.12: Summary Scheme

Finally, in order to obtain the sorting, different policies based on the size of the
objects, the shape, the name and the type were defined in the .txt file. The decision
about the kind of sorting policy to use is taken by the client and sent to the Pick
and Place server in which it is implemented the sorting logic. In particular, on
the basis of the policy kind decided by the client a different .txt file is opened
and read. In each file, it is defined the position of place for each object kind. For
example, supposed that the client requests a sorting policy based on the cylinder
size and that in the file .txt are defined three kinds of objects: the ones with an

47

Implementation

height equal to 10cm, 20cm and 30cm and for each of them are defined all the Pick
and Place parameters, in particular the place position. Now, when the application
will be started, the cylinders will be sort on the basis of their height, so the ones
with 10cm of height will be put in a certain position of place that will be different
with respect to the place position of the cylinder with 20cm of height. The same
concept is applied to the other sorting policy that will be explained in detail in the
following chapter to evaluate the performance of this application.

48

Chapter 5

Experiments and Results

During the development of the sorting system, several experiments were conducted
to make choices aligned with the research objectives. Firstly, various motion
planners available in MoveIt were tested to identify the most suitable one for
the application. This was followed by an evaluation of different feature matching
algorithms within the Find Object 2D package, under various environmental condi-
tions, comparing multiple parameters such as the matching rate and the processing
time. Finally, the entire system was tested to assess its overall performance by
implementing different sorting policies. These experiments were conducted within
the Gazebo simulation environment, with RViz used for real-time visualization of
the robot’s actions.
In the end, to further assess the system’s scalability and real-world applicability,
the Ufactory Lite6 manipulator was also tested using real hardware instead of
simulation.
The experiments were performed using a Lenovo ThinkPad E14 Gen 2, which
features an AMD® Ryzen 7 4700U processor with Radeon graphics, 16 GiB of
RAM, and 512 GB of disk capacity. Since the system was developed in a ROS2
environment, a disk partition was created to install the Ubuntu 22.04.4 LTS (64-bit)
operating system. The entire project was developed within a Docker container
using a ROS Humble-based image, ensuring portability across different systems.

5.1 Planner Choice
Choosing the right motion planner is critical to the performance of robotic systems,
especially in applications such as object sorting where efficiency and throughput
are essential. The planning algorithm must achieve a balance between speed and
accuracy, as the ability to quickly generate feasible paths has a direct impact
on the overall performance of the system. Based on this, a hypothesis has been

49

Experiments and Results

developed: since the primary goal of the sorting system is to process a large number
of objects in a limited amount of time, it was concluded that prioritizing processing
speed would be more beneficial than aiming for absolute path accuracy. For this
reason, optimisation-based planners such as CHOMP were excluded a priori, as
they are designed to produce very smooth and accurate paths, but at the cost of
significantly longer computation times. Instead, planners from the Open Motion
Planning Library (OMPL) were considered, which use sampling-based algorithms
that prioritize speed, making them a more suitable choice for the sorting application.

As it was explained in section 2.3.1, the sampling-based algorithms are distin-
guished into single query and multi query. In single query planners, the focus is
on the speed of computing a single path. Each new path requires a new compu-
tation, as no information about previously planned paths is retained, requiring
re-initialization. In contrast, multi query planners are advantageous when there
are many motion planning problems to solve in the same environment, as they
store information about each path to speed up subsequent computations. This
could potentially benefit the sorting application. However, the planning function
of the MTC framework only processes one task at a time, rather than a vector of
tasks. In addition, testing was limited to a maximum of three objects within the
same scene. As the application is event-based, once the three objects have been
sorted, new objects must be introduced. By this time, any previously stored path
information may have been cleared from memory, reducing the benefit of using
multi query planners in this specific context. Consequently, these planners were
excluded from consideration and the focus was shifted to the evaluation of single
query sampling-based algorithms.

To assess the performance of various planners, ten experiments were conducted for
each algorithm. Among the planners tested, Rapidly-exploring Random Tree (RRT)
and RRT-Connect were selected for a detailed comparison. These two planners
were chosen due to their distinctive approaches to path-finding and their relevance
to the specific needs of the sorting application. RRT is known for its simplicity
and effectiveness in exploring large, high-dimensional spaces. It builds a single tree
from the initial configuration and incrementally expands towards the goal, making
it suitable for scenarios where exploration is more critical than optimality. This
characteristic makes RRT a good candidate for initial testing to understand its
basic performance in this task. RRTConnect, on the other hand, enhances RRT by
employing a bidirectional approach. It constructs two trees — one from the start
configuration and one from the goal configuration —and attempts to connect them.
This method often results in faster path-finding by reducing the search space and
convergence time, which is particularly beneficial for applications requiring quick
planning, such as the sorting task in this case.

50

Experiments and Results

The comparison was based on planning time, execution time, and the reliabil-
ity of each algorithm. The table shows the average planning and execution times
for each object. For each experiment, three objects were placed in front of the robot,
and the planning and execution times were measured for each object. The times
for these three objects were then averaged to obtain a single value per experiment.
Finally, the results from all ten experiments were averaged to produce the values
presented in the table.

Algorithm Avarage Planning time (seconds) Avarage Execution time (seconds) Failure Rate

RRT 3.714 19.387 10%

RRTConnect 2.813 17.766 0%

Table 5.1: Comparison between RRT and RRTConnect in terms of avarage
planning time, avarage execution time and failure rate

As shown in the table 5.1, RRTConnect consistently performed better, with shorter
planning and execution times compared to RRT, and had a 0% failure rate, while
RRT failed 10% of the time. These considerations led to the selection of the
RRTConnect planner for this project.

5.2 Feature Matching Algorithm Selection
As it was already said, the ROS package "Find Object 2D" is based on OpenCv
implementation of various feature detectors and descriptors algorithms.
Among the available algorithms, four were selected for evaluation: SIFT, ORB,
KAZE, and AKAZE. These algorithms were chosen because they provide both
detection and description capabilities. The evaluation of the feature detection and
description algorithms focused on several key parameters. Firstly, the Number of
key points detected by each algorithm was evaluated. This parameter indicates
how many distinct points the algorithm identifies as features in the image. A
higher number of key points typically suggests that the algorithm can detect more
features, which can be crucial for accurate object recognition. Additionally, the
Number of Key points specifically detected on the object itself was considered, as
this reflects the algorithm’s ability to focus on relevant features that belong to
the object rather than the background or irrelevant parts of the scene. Next, the
Number of Matches was examined. This measures how many feature matches were
found between images. The ability to identify and match features across different
views of the same object is essential for ensuring robust recognition, particularly
in varied conditions. The Matching Rate was also considered, which is the ratio
of correctly matched key points to the total number of key points detected. This

51

Experiments and Results

metric helps to evaluate the accuracy of the feature matching process, reflecting
how well the algorithm performs in correlating features between images. Lastly, the
Execution Time for each algorithm was measured. This parameter represents the
time required to complete the feature detection and description process. Efficient
algorithms that have shorter execution times are preferable in real-time applications,
where processing speed is critical.
The evaluation involved testing the four algorithms under various conditions to
assess their robustness. The same object was recognized in different scenarios,
including:

• Baseline Condition: Same position and scale as during training, providing a
reference for optimal performance.

• Rotation: The object was rotated by 180 degrees to assess performance with
significant changes in object orientation.

• Scale Variation: Testing with a resized object to assess handling of scale
changes.

• Illumination Reduction: Assessing performance in environments with reduced
lighting, specifically at 25% and 50% less illumination compared to the baseline.

The different parameters described above are evaluated in these different scenario
to identify the most suitable solution for this kind of application. The results are
shown in the tables below.

total key points object key points n. of matches matching rate execution time (ms)

SIFT 640 80 78 97.5% 300

ORB 500 28 23 82.1% 27

KAZE 750 64 63 98.4% 1000

AKAZE 680 41 41 100% 160

Table 5.2: Performance of the feature matching algorithms in the baseline condi-
tion.

total key points object key points n. of matches matching rate execution time (ms)

SIFT 700 29 26 89.6% 313

ORB 500 too low too low 30

KAZE 854 23 21 91.3% 1090

AKAZE 774 too low too low 180

Table 5.3: Performance of the feature matching algorithms when the object is
rotated by 180 degrees.

52

Experiments and Results

total key points object key points n. of matches matching rate execution time (ms)

SIFT 638 20 17 85% 300

ORB 500 16 8 50% 25

KAZE 750 15 13 86.7% 1000

AKAZE 680 too low too low 150

Table 5.4: Performance of the feature matching algorithms with a scale variation
of the object.

total key points object key points n. of matches matching rate execution time (ms)

SIFT 640 63 60 95.2% 319

ORB 500 43 35 81.4% 28

KAZE 750 49 47 95.9% 1000

AKAZE 680 20 15 75% 173

Table 5.5: Performance of the feature matching algorithms with illumination
reduction of 25%.

total key points object key points n. of matches matching rate execution time (ms)

SIFT 503 42 10 23.8% 336

ORB 500 too low too low 25

KAZE 360 36 13 36.1% 1095

AKAZE 306 too low too low 186

Table 5.6: Performance of the feature matching algorithms with illumination
reduction of 50%.

The results show significant differences in performance between the algorithms. In
general, SIFT demonstrates robust performance under all conditions. It consistently
detects a high number of key points, resulting in reliable matching rates, even
when the object is resized, rotated, or the lighting conditions changes. Despite
slight drops in performance under extreme lighting changes, SIFT maintains a
good balance between accuracy and execution time. In contrast, ORB has faster
execution times but struggles in more challenging conditions. While it performs
well in scenarios without significant variation, its lower accuracy in handling scale
changes and rotations, combined with a tendency to produce fewer matches, limits
its effectiveness in complex environments. KAZE, on the other hand, excels in key
point detection and matching rates, often outperforming other algorithms in terms
of accuracy. However, its relatively long execution times makes it less suitable for
real-time applications where speed is a priority, despite its superior performance
in recognizing objects under different conditions. Finally, AKAZE provides a

53

Experiments and Results

compromise between KAZE’s accuracy and ORB’s speed. While faster than KAZE,
it struggles in certain conditions, particularly in scenarios involving scale variations,
where it failed to find enough matches for reliable object recognition.
In conclusion, SIFT emerges as the most suitable choice for this application, offering
a balance between accuracy and speed. While its performance is slightly lower
than that of KAZE, it significantly outperforms KAZE in terms of execution time.
Its reliable performance across a wide range of conditions makes it well-suited
for real-time object recognition tasks, where both precision and efficiency are
important.

5.3 Sorting Evaluation
In order to evaluate the performance of the implemented system, four different
sorting policies were defined based on criteria such as object size, shape, name and
type. These policies are implemented via configuration files in .txt format, which
specify the sorting logic that will be used by the Pick and Place server. The client
selects the required policy via a terminal interface, which is then sent to the Pick
and Place server. It opens and reads the corresponding .txt file, which is structured
into sections dedicated to different objects or criteria. Each section specifies some
parameters for the handling of each object, including crucial details such as the
object’s placement position. The file format is simple:

key1: param_key1=value1,param_key2=value2,...
key2: param_key1=value1,param_key2=value2,...

In this format:

• key denotes a sorting criterion (e.g., object type or height range).

• param_key and value define parameters such as placement coordinates.

Based on the selected sorting policy, a key is defined that is specific to that policy -
whether it’s based on the object’s name, size, type or other attributes. The server
then checks for a match between the selected key and the keys defined in the file.
While the method of determining the key is different for each policy, the process of
checking the configuration file for a matching section is the same for all of them.
Once the appropriate section is found, the system retrieves the relevant handling
instructions and applies them to complete the sorting task.

All the servers required for the sorting system are initiated simultaneously from a
single launch file, which loads the necessary parameters for the robot simulation and
automatically opens RViz, Gazebo, and the Find Object 2D GUI. Before launching

54

Experiments and Results

the client and starting the application, the robot must be positioned in RViz in
the predefined camera pose specified in the SRDF, with the arm lowered to ensure
visibility of the objects placed in front of it. Once the robot is correctly positioned,
the client is launched in a separate terminal, allowing the selection of the sorting
policy and consequently the execution of the system.

To evaluate the realized application, ten experiments were carried out for each
implemented policy on the UF850 manipulator, focusing on different key metrics:
the accuracy of object localization, the precision of dimension computation, the
reliability of the Pick and Place task, and the total time taken from client request
to the completion of the task. The tests involved sorting three objects per scenario
to assess the overall system performance. The following sections describe each
sorting policy in detail, along with the results and analysis of the corresponding
experiments.

5.3.1 Sorting Policy based on object’s name
The first tested policy is based on the object’s name. In this case, the primary
criterion for sorting is the name of the object, which is extracted by the localization
server from the object’s file path. This name is then used as a key to access the
relevant sorting instructions in a configuration file. The system checks the file for a
matching section dedicated to that object name. Once the correct section is found,
the object is sorted and managed according to the specific parameters outlined in
the configuration, ensuring that each object is handled and positioned efficiently
based on predefined rules.
For this purpose, a Gazebo simulation environment was constructed with three
objects positioned in front of the robot. These objects were specifically selected to
apply the implemented logic, and before the test, a training phase was conducted
for the feature-matching algorithm used. This training process involved capturing
images of the objects to allow the Find Object 2D ROS package to recognize and
localize them based on their visual features, as explained in the previous chapter.

Figure 5.1: Gazebo environment for testing the name-based sorting policy.

55

Experiments and Results

From Gazebo, it is easy to determine the real position of the objects relative to
the robot’s base link. The robot’s position in the world coordinates is known:
x = 0.1, y = −0.15, z = 1.0, with a rotation of 1.571 radians around the y-axis.
Using this information, along with the objects’ known positions relative to the
world, their real positions with respect to the robot can be calculated through a
simple coordinate transformation. In addition, the geometric dimensions of each
object are defined in the Gazebo SDF file. For this first set of experiments, the
selected objects are cylindrical in shape, each with different textures and names.
Specifically, three cans were chosen for these tests: fanta, beer and sprite. These
names are present in the configuration file, each associated with different placement
positions and instructions. The table below presents the known information for
each object, which will be compared with the values derived from the servers.

Object X position(m) Y position (m) Z position(m) radius height

fanta 0.65 0.1 0.15 0.035 0.3

beer 0.65 0.4 0.115 0.03 0.23

sprite 0.65 -0.2 0.115 0.032 0.23

Table 5.7: Real positions and geometric dimensions of the objects from Gazebo
for the name-based policy.

For each test, the steps are always the same: the application is launched, the object
are recognized, localized and segmented, as described in the previous sections.
Based on the received information, the MoveIt Planning Scene is constructed, and
the sorting task is executed.

Figure 5.2: Object Recog-
nition using the name-based
policy.

Figure 5.3: Building of
the Planning Scene using
the name-based policy.

Figure 5.4: Objects
after sorting using the
name-based policy.

These experiments collected data on the object positions computed by both the
Localization server and the Dimension Computation server (based on PCL). In ad-
dition, the geometric dimensions of the objects derived from the PCL segmentation

56

Experiments and Results

were recorded and the total time taken by the sorting application to process and
sort three objects was measured. The tables below summarizes the average results
obtained, including the relative errors compared to the exact values.

Object Type of
measure

Exact
Value
(m)

Localization
Server com-
putation
(m)

Localization
Server (Er-
ror %)

PCL
Compu-
ation
(m)

PCL
(Er-
ror
%)

Fanta Position (x) 0.65 0.615 5.3 0.633 2.55
Position (y) 0.1 0.104 4.17 0.105 5.58
Position (z) 0.15 0.153 2.35 0.166 10.6

Beer Position (x) 0.65 0.626 3.67 0.633 2.58
Position (y) 0.4 0.398 0.49 0.398 0.45
Position (z) 0.115 0.124 7.94 0.130 13.05

Sprite Position (x) 0.65 0.619 4.76 0.640 1.58
Position (y) -0.2 -0.191 4.51 -0.194 2.82
Position (z) 0.115 0.116 0.84 0.131 14.03

Table 5.8: Position measurements and errors for objects using the name-based
policy.

Object Dimension Type Exact Value PCL (Measured) Error %
Fanta Radius 0.035 0.0349 0.33

height 0.3 0.2683 10.56
Beer Radius 0.03 0.0299 0.33

height 0.23 0.199 13.49
Sprite Radius 0.032 0.0319 0.31

height 0.23 0.198 13.96

Table 5.9: Dimension measurements and errors for objects using the name-based
policy.

The position measurements show that both the Localization Server and the Point
Cloud Library (PCL) provide accurate estimates overall. The errors across all axes
remain within a reasonable range, with most deviations being below 5%. However,
there are slightly larger errors in the z-axis, especially for PCL, which occasionally
exceeded 10%. Despite this, both methods generally maintain accuracy, with PCL
offering better performance in some cases, particularly in the x-axis. For geometric
dimensions, the PCL system demonstrates high accuracy in radius calculations,
with errors remaining below 1%. In contrast, the height measurements show larger
errors, exceeding 10%. The reason for the increased errors in height is attributed to
the RemovePlaneSurface function, which removes the plane under the objects before

57

Experiments and Results

applying cylinder segmentation to extract the shapes. This function inadvertently
truncates approximately 3cm from the bottom, affecting both the z-component and
the height measurements. Specifically, the height measurement is approximately 3
cm shorter than the true value, meaning the minimum detected point is elevated
by 3 cm compared to the true minimum, while the z-component has an average
deviation of 1.5cm. However, this truncation is a necessary compromise, since
removing the plane improves the accuracy of the cylinder segmentation by prevent-
ing the algorithm from misidentifying part of the plane as part of the object. A
lower threshold may reduce truncation, but may leave parts of the plane, especially
in noisy or uneven data. In such scenarios, the threshold compensates for noise
and data artefacts, ensuring complete removal of the plane but compromising
object height. In this case, the objects used had an average height of over 20
cm, so the 3 cm truncation introduced by the removePlaneSurface function did
not significantly affect the performance of the application. While the height was
reduced, it remained within an acceptable range for the sorting task, and the
system continued to recognize and manipulate the objects accurately. However,
this parameter can be easily adjusted if higher precision is required for different
applications or smaller objects. The flexibility of the implementation allows for
fine-tuning based on specific needs without significant changes to the system.

During the experiments, the system encountered three cases out of ten where
the matching process failed on the first attempt. Specifically, Find Object 2D was
unable to identify all three objects, typically recognizing only two. In such cases,
the client automatically sent a new request to both algorithms, as the experimental
setup required a 100% match between the algorithms for all three objects. In the
general application, the system is less restrictive, allowing a match of at least two
out of three objects to proceed. However, the client still sends a new request to
the algorithms when the task is complete or if the matching process fails, ensuring
continuous operation.
For each experiment conducted, the total application time was measured. The
average result for this set of tests was 80.93 seconds.

5.3.2 Sorting Policy based on Object’s Shape
The second sorting policy tested is based on the shape of the object, which can
be either a cylinder or a box. This shape information is provided by the PCL
server. Similar to the name-based policy, the shape is used as a key to retrieve the
corresponding sorting instructions from a configuration file. In particular, there
are two possible sorting paths: if the object is identified as a cylinder, it will follow
one set of sorting rules and be placed in a particular location, whereas if the object
is a box, it will follow a different set of rules and be placed to a different location

58

Experiments and Results

accordingly.

Also in this case, a new Gazebo environment was built with three objects positioned
in front of the robot, training the feature-matching algorithm. For simplicity, the
new set of objects was positioned in the same location as in the previous experi-
ments. The selected objects included a box, a Fanta can, and a wine bottle. It was
hypothesized that the wine bottle could be approximated as a cylinder for sorting
purposes. This approximation was validated during the experiments, confirming
that treating the bottle as a cylinder was appropriate for the shape-based sorting
policy.

Figure 5.5: Gazebo environment for testing the shape-based sorting policy.

The table below presents all the known information for each object, which will
be compared with the values derived from the servers. Regarding the bottle, the
radius considered refers to the larger radius at the bottom of the bottle, while the
height corresponds to the total height of the bottle.

Object X position(m) Y position (m) Z position(m) radius height length width

box 0.65 0.1 0.075 0.15 0.07 0.07

bottle 0.65 0.4 0.115 0.034 0.23

Fanta 0.65 -0.2 0.115 0.03 0.23

Table 5.10: Real position and geometric dimensions of the object from Gazebo
using the shape-based policy.

Below, the representation of the most important steps followed by the application,
from object recognition to placement.

59

Experiments and Results

Figure 5.6: Object Recog-
nition using the shape-based
policy.

Figure 5.7: Building of
the Planning Scene using
the shape-based policy.

Figure 5.8: Objects
after sorting using the
shape-based policy.

To test the efficiency of the algorithms, the same parameters of the previous set
are considered. The results are shown in the following tables.

Object Type of
measure

Exact
Value
(m)

Localization
Server com-
putation
(m)

Localization
Server (Er-
ror %)

PCL
Compu-
ation
(m)

PCL
(Er-
ror
%)

Box Position (x) 0.65 0.614 5.5 0.642 1.26
Position (y) 0.1 0.086 14.01 0.106 5.92
Position (z) 0.075 0.088 17.39 0.091 21.8

Bottle Position (x) 0.65 0.616 5.2 0.632 2.72
Position (z) 0.115 0.135 17.68 0.083 28.1

Fanta Position (x) 0.65 0.622 4.37 0.641 1.34
Position (y) -0.2 -0.194 3.06 -0.195 2.31
Position (z) 0.115 0.117 1.50 0.131 14.15

Table 5.11: Position measurements and errors for objects using the shape-based
policy.

Object Dimension Type Exact Value PCL (Measured) Error %
Box length 0.07 0.0705 0.76

width 0.07 0.0701 0.12
height 0.15 0.11797 21.3

Bottle Radius 0.034 0.0339 0.21
height 0.23 0.102 55.57

Fanta Radius 0.03 0.0299 0.23
height 0.23 0.198 14

Table 5.12: Dimension measurements and errors for objects using the shape-based
policy.

60

Experiments and Results

The results show that the system generally performs well in estimating both the po-
sitions and dimensions of objects, although challenges arise with irregularly shaped
objects. PCL-based computations tend to be more accurate, with smaller errors
compared to the Localization Server, particularly for the x and y axis measurements.
However, discrepancies in the z-axis measurements are notable, particularly for the
bottle, due to its irregular shape.

In terms of object dimensions, most measurements were within acceptable er-
ror limits, particularly for simpler shapes such as the box and the Fanta can, where
errors were typically less than 1%. The height of the bottle presented the largest
deviation because the segmentation only captured part of the bottle, resulting in an
estimated height of 0.102 m instead of the actual 0.23 m, with an error of 55.57%.
As before, the height measurement of the other two objects deviates of 3cm for the
same reason explained in the previous section.

The segmentation of boxes sometimes presented problems, particularly in complex
environments. This performance discrepancy primarily arises from the lack of a
dedicated box segmentation function in the Point Cloud Library (PCL), which hin-
ders the detection of three orthogonal planes. Approximately 20% of the time, the
sensitivity of the cylinder segmentation algorithm can lead to the mis-classification
of cubes as cylinders. Even when the algorithm correctly identifies that an object
is not a cylinder, it can still struggle to effectively segment the three planes, which
occurs in a further 20%. This limitation may result in only 2 out of 3 objects being
successfully sorted, as the cube is not segmented properly. These challenges high-
light the need for more robust segmentation methods to ensure accurate detection
and sorting of all object types.

In the 10% of cases, bottles are incorrectly positioned, which, due to their smaller
size, can lead to errors in the pick and place planning. However, the system is
robust and capable of sending a new request to ensure successful task completion,
allowing it to recover from such challenges and maintain reliable sorting.

As the previous set of tests, for each experiment conducted, the total applica-
tion time was measured. The average result was 86.03 seconds.

5.3.3 Sorting Policy based on Object’s Type
The third sorting policy tested is based on the type of object. Specifically, the
system distinguishes between bottles and cans to determine the appropriate sorting
location. If the object is identified as a bottle, it is placed in one location, while a
can is directed to another. In this method, the key for sorting is determined by

61

Experiments and Results

extracting the object type from its name. The system identifies the last underscore
(_) in the object’s name, and everything before that is considered the base type
(e.g., "bottle" or "can"). This extracted name is then used as the sorting key,
allowing the system to apply specific rules based on the object type.

A new Gazebo environment was built with three objects positioned in front of
the robot, training the feature-matching algorithm as before. The chosen objects
include two cans, specifically a beer and a Fanta, and a bottle of Coca-Cola.

Figure 5.9: Gazebo environment for testing the type-based sorting policy.

The table below presents all the known information for each object, which will be
compared with the values derived from the servers.

Object X position(m) Y position (m) Z position(m) radius height

bottle_Cola 0.65 0.1 0.115 0.034 0.23

Can_beer 0.65 0.4 0.115 0.03 0.23

Can_fanta 0.65 -0.2 0.15 0.027 0.3

Table 5.13: Real position and geometric dimensions of the object from Gazebo
using the type-based policy.

The sorting application is initiated following the process outlined earlier. After the
objects are identified and their positions determined, the MoveIt Planning Scene is
set up for execution.

62

Experiments and Results

Figure 5.10: Object Recog-
nition using the type-based
policy.

Figure 5.11: Planning
Scene using the type-
based policy.

Figure 5.12: Objects af-
ter sorting using the type-
based policy.

The results of the set of experiments are shown in the tables below.

Object Type of
measure

Exact
Value
(m)

Localization
Server com-
putation
(m)

Localization
Server (Er-
ror %)

PCL
Compu-
ation
(m)

PCL
(Er-
ror
%)

Bottle: Position (x) 0.65 0.622 4.28 0.633 2.55
cola Position (y) 0.1 0.097 3.16 0.102 2.08

Position (z) 0.115 0.1146 0.32 0.083 28.18
Can: Position (x) 0.65 0.626 3.67 0.633 2.58
beer Position (y) 0.4 0.3975 0.62 0.3972 0.69

Position (z) 0.115 0.124 7.63 0.130 13.51
Can: Position (x) 0.65 0.625 3.89 0.641 1.37
fanta Position (y) -0.2 -0.186 6.76 -0.195 2.65

Position (z) 0.15 0.151 0.53 0.166 10.55

Table 5.14: Position measurements and errors for objects using the type-based
policy.

63

Experiments and Results

Object Dimension Type Exact Value PCL (Measured) Error %
bottle_cola Radius 0.034 0.0339 0.21

height 0.23 0.103 55.42
Can_beer Radius 0.03 0.0299 0.33

height 0.23 0.199 13.54
Can_fanta Radius 0.027 0.0269 0.17

height 0.3 0.268 10.54

Table 5.15: Dimension measurements and errors for objects using the type-based
policy.

The results show that the system performs generally well in estimating both the
positions and dimensions of objects, with most errors being within acceptable
margins. The x- and y-position estimates for all objects display relatively low
errors, typically below 5%. However, there are some discrepancies in the z-axis
measurements, particularly for the Coca Cola bottle, which shows a significant
error of 28.18%. This is likely due to partial segmentation of the object, a known
issue with non uniform shaped objects.

In terms of dimensions, the system accurately measured the radii, with an er-
ror of less than 1%. However, the height estimate for the Coca Cola bottle deviates
considerably (55.42%), again likely due to the object’s irregular shape, while the
other height’s measurements show the same trend of the previous experiments. De-
spite these challenges, the system is robust enough to handle the objects effectively
during the sorting process, even when some measurements are less precise.

In 10 experiments, the system encountered three notable failures. In one case, Find
Object 2D only recognized one out of the three objects, and in another, it matched
only two. These mismatches led to the failure of the initial identification process. In
such instances, the system automatically sent a new request to both the localization
and PCL algorithms, as the experimental setup required all three objects to be
correctly identified for the task to proceed. In addition, an error occurred during
the planning phase when a bottle was positioned too skewed, probably due to its
irregular dimensions. This misalignment caused the pick and place operation to
fail, demonstrating a sensitivity to the positioning of the bottle during the sorting
process.
For each experiment conducted, the total application time was measured. The
average result for this set of tests was 80.02 seconds.

64

Experiments and Results

5.3.4 Sorting Policy based on Object’s Height
The final sorting policy is based on the object’s height. In this approach, the key
for sorting is determined by the height of the object. The system iterates through
a configuration file that contains predefined height ranges. For each object, the
height value is compared against these ranges to find a match. If the object’s height
falls within a particular range, the system assigns the corresponding range as the
sorting key. This key is then used to retrieve the specific sorting instructions from
the configuration file.

In this case, the Gazebo world is composed by three different cans with different
heights, so they will be placed in three different positions.

Figure 5.13: Gazebo environment for testing the height-based sorting policy.

The table below presents all the known information for each object, which will be
compared with the values derived from the servers.

Object X position(m) Y position (m) Z position(m) radius height

beer 0.65 0.1 0.115 0.032 0.23

sprite 0.65 0.4 0.075 0.03 0.15

fanta 0.65 -0.2 0.15 0.035 0.3

Table 5.16: Real position and geometric dimensions of the object from Gazebo
using the height-based policy.

As in previous cases, the sorting application is started by detecting the objects and
determining their positions. Following this, the MoveIt Planning Scene is prepared
for execution.

65

Experiments and Results

Figure 5.14: Object Recog-
nition using the height-based
policy.

Figure 5.15: Planning
Scene using the height-
based policy.

Figure 5.16: Objects
after sorting using the
height-based policy.

The results of the set of experiments are shown in the tables below.

Object Type of
measure

Exact
Value
(m)

Localization
Server com-
putation
(m)

Localization
Server (Er-
ror %)

PCL
Compu-
tation
(m)

PCL
(Er-
ror
%)

Beer Position (x) 0.65 0.627 3.46 0.633 2.53
Position (y) 0.1 0.092 7.63 0.102 1.99
Position (z) 0.115 0.127 10.33 0.134 16.76

Sprite Position (x) 0.65 0.621 4.42 0.633 2.58
Position (y) 0.4 0.399 0.24 0.399 0.31
Position (z) 0.075 0.066 11.49 0.0755 0.72

Fanta Position (x) 0.65 0.616 5.2 0.640 1.49
Position (y) -0.2 -0.195 2.58 -0.194 2.91
Position (z) 0.15 0.151 0.83 0.162 8.28

Table 5.17: Position measurements and errors for objects using the height-based
policy.

Object Dimension Type Exact Value PCL (Measured) Error %
Beer Radius 0.032 0.0319 0.33

height 0.23 0.198 13.68
Sprite Radius 0.03 0.0299 0.33

height 0.15 0.119 20.93
Fanta Radius 0.035 0.0349 0.33

height 0.3 0.2685 10.49

Table 5.18: Dimension measurements and errors for objects using the height-based
policy.

66

Experiments and Results

The results show that the system performs well in estimating both the position
and dimensions of the objects, with relatively low errors across most measurements.
For position estimates, the PCL computation tends to be slightly more accurate
than the Localization Server, particularly in the x- and y-axes. Errors remain
under 5% for the x and y coordinates of all objects, except for the beer can in the
y-direction, which exhibits a 7.63% error in the Localization Server’s output. The
z-axis measurements show slightly larger errors, especially for the beer can, where
the PCL estimate has a 16.76% error and the Localization Server shows a 10.33%
error. This discrepancy is likely due to segmentation challenges in capturing the
exact vertical position of the object. Regarding dimensions, the PCL measurements
for radius are very accurate, with errors below 1% for all objects. Regarding the
height, again there is present the same systematic error of the previous cases.

Similar to the previous experiments, in 10 experiments, the system encountered
three failures. In two instances, Find Object 2D matched only two out of the three
objects, leading to a partial identification failure. However, this is not a problem,
as it was explained in the previous sections. Additionally, another failure occurred
during the planning phase of the smallest object. Despite being a regular cylinder,
its small size caused issues during the pick-and-place operation, leading to a failure.
As for the other policy, the total application time was measured, with average
result equal to 72.88 seconds.

67

Experiments and Results

5.4 Hardware Testing and Scalability Assessment
To further evaluate the scalability and real-world applicability of the system, the
Ufactory Lite6 manipulator, a smaller model from the same Ufactory family as the
one used in the simulation, was selected for integration. Despite its compact size,
the Lite6 was readily available within the company and provided an opportunity
to test the adaptability of the system on real hardware. It is characterized by
six-degree of freedom and 600g of payload, with a maximum speed of 0.5m/s. It is
able to reach 440mm along horizontal axis. Compared to the UF850 model used
in the simulation, which is designed for more demanding tasks, the Lite6 offers
reduced performance. However, it still allowed for a valuable assessment of the
system’s flexibility on physical hardware.

Figure 5.17: ULite6 manipulator

As part of UFactory, all the tools for motion planning and control are available in
the xArm repository, which is also used for the simulation case. This repository
contains the launch files that allow the robot to be controlled by Moveit in Rviz
with the real hardware.

5.4.1 Set up and Integration
In order to integrate with the real hardware, several preliminary steps were required.
First, the robot had to be connected to the PC via a static IP address to establish
communication. Once connected, the system could be started by specifying the
robot’s IP address and activating the gripper and RealSense camera. When the
application was started, it was found that MoveIt was working correctly, but the
RealSense camera was not enabled due to missing plugins for the real hardware. To

68

Experiments and Results

solve this, the ROS Wrapper for Intel RealSense Cameras was downloaded from the
official website. This wrapper integrates the functionality of the RealSense camera
into the ROS2 system, allowing depth data, RGB images and point clouds to be
published. Once the wrapper was installed, the RealSense camera was successfully
enabled and integrated into the system, enabling object detection, segmentation
and localization in the scene as intended.

Regarding the setup of the scene, due to the smaller opening range of the Lite6
gripper compared to the UF850, the selected objects had to be much smaller than
those used in the simulation. Specifically, two chess pieces were selected: the horse
and the queen. These objects are about 5 cm high, while the objects used in the
simulation were between 15 cm and 30 cm high. As a result, several segmentation
parameters had to be adjusted to accommodate the smaller objects. This included
modifying the filter limits in the Pass Through filter and adjusting the radius limit
in the Extract Cylinder function, as well as refining the distance threshold for object
detection. In addition, clustering parameters needed to be modified, specifically
the minimum and maximum cluster size and cluster tolerance settings. All of
these adjustments were necessary because, without them, the system struggled to
segment these smaller objects effectively.

As the simulation experiments, a training phase for the feature-matching algorithm
was necessary. In this case, more than in the simulation, proper lighting was crucial
to ensure accurate object recognition.
The environment created was simple with a white background and a white plane
to avoid recognition and segmentation problems. This because the aim of this set
of experiments was to verify the versatility of the developed sorting application,
demonstrating its scalability to different systems, rather than emphasizing the
limitations of the recognition algorithm, which were already known.

Figure 5.18: Set up of the scene in the real case.

69

Experiments and Results

For the Pick and Place server node, it was necessary to modify the task planning
group and specify the gripper frame to ensure the correct execution of the Pick
and Place operations. Also in this case, the sorting parameters were specified in
a configuration file, taking into account the physical limit of the new robot used
when it was defined the placement position. In particular, the policy based on the
name of the object was updated by adding two new sections for these two new
objects, "horse" and "queen", thus defining the appropriate sorting parameters for
effective operation.
Again, the server nodes were included in the main launch file. When the application
was launched, similar to the simulation case, the objects were recognized and
localized, and the MoveIt planning scene was constructed. Finally, the pick-and-
place task was executed.

Figure 5.19: Object Recognition in the
real case.

Figure 5.20: MoveIt
Planning Scene for the
real case.

Figure 5.21: ULite6 during the Lift stage of the object.

70

Experiments and Results

As can be seen in 5.20, although the two objects do not had regular shapes, the
Compute Dimension server based on PCL approximated them as cylinders and
this information was used by the Pick and Place server to build the planning scene
and execute the task.

The system demonstrated easy integration with the new hardware, requiring
only minor modifications to adapt to the Lite6 manipulator. This seamless transi-
tion highlights the versatility and scalability of the developed sorting application,
affirming its effectiveness in real-world scenarios.

71

Chapter 6

Conclusions and future
researches

The primary objective of this thesis was to develop a flexible and efficient sorting
system based on a robotic manipulator, utilizing computer vision technologies
and motion planning algorithms. The system demonstrated its ability to recog-
nize, segment, and manipulate objects both in simulated environments and on a
real hardware setup. The use of flexible algorithms allowed the system to adapt
to a different hardware configuration with only minor modifications, proving its
scalability and versatility. Additionally, the implementation of Docker containers
enhanced the system’s scalability and made it production-ready by providing a
consistent and portable environment for deployment, facilitating easy integration
and management across various platforms.

The system exhibits both robustness and efficiency, sorting approximately 2–3
objects per minute. In fact, the planning time per object is around 2.8 seconds,
with an execution time of 17.766 seconds, making the Pick and Place task for three
objects approximately 61.775 seconds. Given that the average total application
time is 80.224 seconds, the additional time includes recognition, segmentation, and
communication between various ROS nodes. Considering the hardware used, the
system demonstrates efficient operational speed.

The feature-matching algorithm performs effectively in controlled, well-lit en-
vironments, where conditions are optimized for accurate object recognition and
localization. However, when the lighting is reduced, the algorithm struggles to
recognize objects reliably, highlighting its sensitivity to changes in illumination
and the potential need for more robust techniques to handle varying light conditions.

72

Conclusions and future researches

In a controlled environment, the localization performance of both the feature
matching algorithm and the point cloud based techniques is generally reliable. The
algorithms are able to achieve high accuracy in object localization, with errors
typically staying within a 7% range, which is acceptable for many industrial ap-
plications. However, certain factors, such as variations in object geometry and
surface reflections, occasionally introduce larger errors. These inaccuracies often
result in only a portion of the object being segmented, leading to a perceived height
shorter than the true value. Despite these segmentation challenges, the overall
sorting task remains unaffected, as the system continues to perform effectively in
its pick-and-place operations.

Cylinder segmentation is highly robust, with errors in radius determination below
1%, while box segmentation shows lower performance, particularly in complex
environments. This performance discrepancy is attributed to the lack of a dedi-
cated segmentation function for boxes in the Point Cloud Library (PCL), which
sometimes results in difficulties in detecting three orthogonal planes. Additionally,
the sensitivity of the cylinder segmentation algorithm occasionally leads to mis-
classification of cubes as cylinders.

Handling very low objects occasionally presents challenges, but the system’s robust-
ness is evident as it automatically resubmits requests if recognition, localization or
pick and place planning fails, ensuring continuous operation.
Considering the total number of experiments conducted (40 in simulation, 10 per
policy), the task is successfully executed on the first attempt in 90% of cases. For
the remaining 10%, success is achieved after subsequent requests, demonstrating
the system’s adaptability and reliability in executing sorting tasks.

As mentioned above, the current performance of the system in complex or vi-
sually cluttered environments is limited by existing techniques. Incorporating deep
learning or neural networks can help to overcome these limitations by improving
both the geometric and semantic capabilities of the system. In particular, it can
offers several advantages:

• Improved Object Recognition and Localization: Deep learning can
enhance the system’s ability to identify and classify objects in challenging
environments. By using convolutional neural networks (CNNs) and other
advanced architectures, the system can learn to recognize objects with different
textures, lighting conditions, and partial occlusions. As a consequence, the
improved recognition would also enhance object localization, ensuring more
accurate positioning and handling, even in complex or cluttered environments,
thus improving the overall system’s precision.

73

Conclusions and future researches

• Enhanced Segmentation: while the Point Cloud Library (PCL) offers spe-
cific segmentation functions for objects like spheres that could be integrated,
deep learning techniques would provide more flexibility, enabling the segmen-
tation of complex geometries. Furthermore, cube segmentation in PCL has
proven less robust than cylinder segmentation due to the lack of a dedicated
function, an issue that deep learning could potentially resolve by offering more
accurate and adaptable segmentation method.

Regarding the Pick and Place task, future research can focus on evaluating alterna-
tive motion planning algorithms, improving path planning in complex environments
and allowing for smoother and more effective movements while maintaining the
essential speed required for sorting operations. In addition, future work could
explore how to integrate mesh-type objects into the MoveIt environment, by seam-
lessly receiving data from computer vision algorithms, as is currently done with
primitive shapes. This integration would allow the system to handle more complex
geometries and increase its flexibility in sorting tasks.

74

Appendix A

RANSAC Algorithm

The “RANdom SAmple Consensus” (RANSAC) is an iterative method that is used
to estimate parameters of a mathematical model from a set of data containing
outliers. The RANSAC algorithm assumes that all of the data we are looking
at is comprised of both inliers and outliers. Inliers can be explained by a model
with a particular set of parameter values, while outliers do not fit that model in
any circumstance. Another necessary assumption is that a procedure which can
optimally estimate the parameters of the chosen model from the data is available [38].
As pointed out by Fischler and Bolles (the authors that proposed this algorithm),
unlike conventional sampling techniques that use as much of the data as possible
to obtain an initial solution and then proceed to prune outliers, RANSAC uses the
smallest set possible and proceeds to enlarge this set with consistent data points
[39].

Algorithm 1 RANSAC
1: Select randomly the minimum number of points required to determine the

model parameters.
2: Solve for the parameters of the model.
3: Determine how many points from the set of all points fit with a predefined

tolerance.
4: If the fraction of the number of inliers over the total number points in the set

exceeds a predefined threshold, re-estimate the model parameters using all the
identified inliers and terminate.

5: Otherwise, repeat steps 1 through 4 (maximum of N times).

The number of iterations, N , is chosen high enough to ensure that the probability
p (usually set to 0.99) that at least one of the sets of random samples does not
contain an outlier.

75

RANSAC Algorithm

An advantage of RANSAC is its ability to robustly estimate the model parameters,
while a disadvantage is that there is no upper bound on the time it takes to compute
these parameters. When the number of iterations computed is limited the solution
obtained may not be optimal, and it may not even be one that fits the data in a
good way. In this way RANSAC offers a trade-off; by computing a greater number
of iterations the probability of a reasonable model being produced is increased.

Figure A.1: Application of the RANSAC algorithm on a 2-dimensional set of
data. The outliers are in red, while inliers in blue. The blue line is the result of
the work done by RANSAC.

76

Acknowledgements

Questo elaborato sancisce la fine del mio percorso di laurea magistrale e per questo
mi sembra doveroso fare dei ringraziamenti.
Innanzitutto, ringrazio il mio relatore, il professor Marcello Chiaberge, per la sua
disponibilità e per avermi permesso di entrare in contatto con l’azienda Reply,
presso cui ho svolto il progetto che ha portato alla realizzazione di questa tesi.
Ringrazio anche il mio relatore aziendale, il dottor Claudio Chieppa, per la presenza
e la gentilezza sempre dimostrata. Grazie soprattutto per l’opportunità che mi hai
dato permettendomi di svolgere il mio lavoro di tesi in un ambiente lavorativo così
interessante e dinamico, che mi ha arricchito sia professionalmente che umanamente.
Un grazie particolare va a Simone e Matteo Carlone, per avermi guidato durante
tutto il mio percorso di tesi e per avermi trasmesso la passione per la robotica.
A Sam per i consigli e le risate, e a tutti i colleghi di Concept Engineering per
avermi accolta e messa a mio agio.

Un grazie va alla mia famiglia, per avermi sempre sostenuta.
Ai miei genitori, per essersi sempre fidati di me e per avermi supportato in ogni
mia scelta.
A mia sorella, per esserci sempre stata.
A mio fratello, per aver sempre fatto il tifo per me.
Ai miei nipotini, per la gioia che inconsapevolmente portano nella mia vita.

A Matteo, il mio ragazzo, per aver sopportato tutte le mie paranoie, per i consigli
e la tranquillità che mi hai sempre trasmesso.

Ai miei compagni universitari con cui ho condiviso questo percorso, in modo
particolare a Giulia e Alessia, ormai amiche dalla triennale. Spettegolare insieme a
voi, tra una pausa caffè e l’altra, ha reso tutto più leggero.

Ai miei amici di sempre e a tutti coloro che hanno creduto in me, grazie.

77

Bibliography

[1] Sorting Robots in Express Logistics Industry – A Complete Guide. url: https:
//www.unboxrobotics.com/sorting- robots- in- express- logistics-
industry-a-complete-guide/ (cit. on p. 1).

[2] Maria F. Mogro. «Sorting Line Assisted by A Robotic Manipulator and
Artificial Vision with Active Safety». In: Journal of Robotics and Control
(JRC) (2024) (cit. on pp. 2, 6, 7).

[3] Nikita V. Belov and Andrey G. Vovik. «Adaptive Control System for the
Process of Sorting Objects Using a Robotic Arm». In: International Russian
Smart Industry COnferences (2024) (cit. on pp. 2, 7).

[4] Georg Maier. «A Survey of the State of the Art in Sensor-Based Sorting
Technology and Research». In: IEEE Access (Jan. 2024) (cit. on p. 6).

[5] Guiran Liu and Binrong Zhu. «Design and Implementation of Intelligent Robot
Control System Integrating Computer Vision and Mechanical Engineering».
In: International Journal of Computer Science and Information Technology
(2024) (cit. on p. 7).

[6] Meijing Song. «Research on Intelligent Logistics Sorting Robot Control Based
on Machine Vision». In: ADS: a multidisciplinary journal (June 2024) (cit. on
p. 7).

[7] Usama Shakoor et others Hafiz Muhammad Tayyab Abbas. «Automated
Sorting and Grading of Agricultural Products based on Image Processing».
In: IEEE (Feb. 2020) (cit. on p. 7).

[8] Ming Zhong et others Shuo Zhou. «Framework of rod-like crops sorting based
on multi-object oriented detection and analysis». In: ELSEVIER (Jan. 2024)
(cit. on p. 8).

[9] Haitao Wu et others Botao Zhong. «Mapping computer vision research in
construction: Developments, knowledge gaps and implications for research».
In: Automation in Construction (2019) (cit. on p. 8).

78

https://www.unboxrobotics.com/sorting-robots-in-express-logistics-industry-a-complete-guide/
https://www.unboxrobotics.com/sorting-robots-in-express-logistics-industry-a-complete-guide/
https://www.unboxrobotics.com/sorting-robots-in-express-logistics-industry-a-complete-guide/

BIBLIOGRAPHY

[10] C.S.George Lee King-Sun F ’King-Sun Fu. ROBOTICS: CONTROL, SENS-
ING, VISION AND INTELLIGENCE. 0071004211: MCGRAW-HILL EDU-
CATION (ISE EDI, 1987 (cit. on p. 8).

[11] Siva Prasad Ebrahim Karami and Mohamed Shehata. «Image Matching
Using SIFT, SURF, BRIEF and ORB: Performance Comparison for Distorted
Images». In: arXiv.org (Oct. 2017) (cit. on p. 9).

[12] Aly Amin Abdelmgeid M. Hassaballah and Hammam A. Alshazly. «Image
Features Detection, Description and Matching». In: Springer (Feb. 2016)
(cit. on pp. 9, 10).

[13] Kamal Jain Surendra Kumar Sharma and Anoop Kumar Shukla. «A Com-
parative Analysis of Feature Detectors and Descriptors for Image Stitching».
In: MDPI (May 2023) (cit. on pp. 10, 11).

[14] Chunping Wang et others Ying Yu. «Techniques and Challenges of Image
Segmentation: A Review». In: MDPI (Feb. 2023) (cit. on pp. 12–14).

[15] The Mechanics Behind Pick and Place Robots. url: https://conveyorsyst
emsltd.co.uk/the-mechanics-behind-pick-and-place-robots/ (cit. on
p. 14).

[16] What is a pick and place robot? Apr. 2023. url: https://6river.com/what-
is-a-pick-and-place-robot/ (cit. on p. 15).

[17] Pick and Place Robots: An In-Depth Guide to Their Functionality and Ap-
plications. Mar. 2024. url: https://www.wevolver.com/article/pick-
and-place-robots-an-in-depth-guide-to-their-functionality-and-
applications (cit. on p. 15).

[18] Ioan A. Sucan et others Mark Moll. «Benchmarking Motion Planning Al-
gorithms: An Extensible Infrastructure for Analysis and Visualization». In:
IEEE Robotics and Automation Magazine (Aug. 2015) (cit. on p. 16).

[19] Kevin Lynch et others Howie Choset. Principles of Robot Motion. The MIT
Press, Cambridge, Massachusetts, 2005 (cit. on pp. 16, 17).

[20] M. Elbanhawi. «Sampling-Based Robot Motion Planning: A Review». In:
IEEE Access (Jan. 2014) (cit. on pp. 16, 17).

[21] N. Ratliff and et al. «CHOMP: Gradient Optimization Techniques for Effi-
cient Motion Planning». In: IEEE International Conference on Robotics and
Automation (May 2009) (cit. on pp. 16, 18).

[22] Ioan A. Sucan et others Ryan Luna. «Anytime Solution Optimization for
Sampling-Based Motion Planning». In: IEEE International Conference on
Robotics and Automation (May 2013) (cit. on p. 17).

79

https://conveyorsystemsltd.co.uk/the-mechanics-behind-pick-and-place-robots/
https://conveyorsystemsltd.co.uk/the-mechanics-behind-pick-and-place-robots/
https://6river.com/what-is-a-pick-and-place-robot/
https://6river.com/what-is-a-pick-and-place-robot/
https://www.wevolver.com/article/pick-and-place-robots-an-in-depth-guide-to-their-functionality-and-applications
https://www.wevolver.com/article/pick-and-place-robots-an-in-depth-guide-to-their-functionality-and-applications
https://www.wevolver.com/article/pick-and-place-robots-an-in-depth-guide-to-their-functionality-and-applications

BIBLIOGRAPHY

[23] Howie Choset. Robotic Motion Planning: Sample-Based Motion Planning.
url: https://www.cs.cmu.edu/~motionplanning/lecture/Chap7-Prob-
Planning_howie.pdf (cit. on p. 17).

[24] B. Siciliano and et al. Robotics: Modelling, Planning and Control. Springer,
2009 (cit. on p. 17).

[25] Open Robotics. ROS2 Documentation. 2024. url: https://docs.ros.org/
en/humble/index.html (cit. on p. 19).

[26] Docker community. docker docs. 2024. url: https://docs.docker.com/
guides/docker-overview/ (cit. on p. 21).

[27] PickNik Robotics. MoveIt 2 Documentation. 2024. url: https://moveit.
picknik.ai/main/index.html (cit. on pp. 22, 24–26, 32).

[28] B. Sumukha and C.S. Asha. «Gesture Controlled 6 DoF Manipulator with
Custom Gripper for Pick and Place Operation using ROS2 framework». In:
IEEE (May 2024) (cit. on p. 23).

[29] Planners Available in MoveIt. url: https://moveit.ros.org/documentat
ion/planners/ (cit. on p. 25).

[30] Sung-Ho Lee et others Hyeong Ryeol Kam. «RViz: a toolkit for real domain
data visualization». In: Springer (Apr. 2015) (cit. on p. 27).

[31] Nathan Koenig and Andrew Howard. «Design and Use Paradigms for Gazebo,
An Open-Source Multi-Robot Simulator». In: IEEE International Conference
on Intelligent Robots and Systems (Oct. 2004) (cit. on p. 27).

[32] UFactory 850 user manual. url: https://www.ufactory.cc/wp-content/
uploads/2023/07/UFactory- 850- User- Manual- V2.1.0.pdf (cit. on
p. 28).

[33] Intel RealSense. url: https://www.intelrealsense.com/depth-camera-
d435i/ (cit. on p. 29).

[34] Husarion. Husarion docs. 2024. url: https://husarion.com/tutorials/
ros-tutorials/5-visual-object-recognition/ (cit. on p. 39).

[35] OpenCV Documentation. url: https://docs.opencv.org/4.x/d5/d1f/
calib3d_solvePnP.html (cit. on p. 40).

[36] Zoltan-Csaba Marton Aitor Aldoma et al. «Point Cloud Library Three-
Dimensional Object Recognition and 6 DoF Pose Estimation». In: IEEE
Robotics & Automation Magazine (Sept. 2012) (cit. on p. 42).

[37] PCL Walkthrough. url: https://pcl.readthedocs.io/projects/tutoria
ls/en/latest/walkthrough.html (cit. on p. 42).

80

https://www.cs.cmu.edu/~motionplanning/lecture/Chap7-Prob-Planning_howie.pdf
https://www.cs.cmu.edu/~motionplanning/lecture/Chap7-Prob-Planning_howie.pdf
https://docs.ros.org/en/humble/index.html
https://docs.ros.org/en/humble/index.html
https://docs.docker.com/guides/docker-overview/
https://docs.docker.com/guides/docker-overview/
https://moveit.picknik.ai/main/index.html
https://moveit.picknik.ai/main/index.html
https://moveit.ros.org/documentation/planners/
https://moveit.ros.org/documentation/planners/
https://www.ufactory.cc/wp-content/uploads/2023/07/UFactory-850-User-Manual-V2.1.0.pdf
https://www.ufactory.cc/wp-content/uploads/2023/07/UFactory-850-User-Manual-V2.1.0.pdf
https://www.intelrealsense.com/depth-camera-d435i/
https://www.intelrealsense.com/depth-camera-d435i/
https://husarion.com/tutorials/ros-tutorials/5-visual-object-recognition/
https://husarion.com/tutorials/ros-tutorials/5-visual-object-recognition/
https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html
https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/walkthrough.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/walkthrough.html

BIBLIOGRAPHY

[38] How to use Random Sample Consensus model. url: https://pcl.readthedo
cs.io/projects/tutorials/en/latest/random_sample_consensus.html
(cit. on p. 75).

[39] Konstantinos G. Derpanis. «Overview of the RANSAC Algorithm». In: Image
Rockester NY (May 2010) (cit. on p. 75).

81

https://pcl.readthedocs.io/projects/tutorials/en/latest/random_sample_consensus.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/random_sample_consensus.html

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background of the study
	Problem Statement
	Objectives of the research
	Research questions/hypothesis
	Industrial Contribution
	Scope and Limitation

	State of the Art
	Sorting in different applications
	Computer Vision Overview
	Feature Detection, Description and Image Matching
	Segmentation

	Pick and Place Overview
	Motion Planning

	System Design
	ROS2
	Docker
	MoveIt 2
	Motion Planning in MoveIt
	Planning Scene Monitor

	Rviz
	Gazebo
	UFactory 850
	Software Integration and Repository

	Implementation
	Pick and Place
	Moveit Task Constructor
	Pick and Place using MTC

	Object Recognition and Localization
	Object Recognition through Find Object 2D
	Object Localization

	Object Dimensions from Point Cloud
	Point Cloud Library
	How to get the Object Dimensions

	Integration

	Experiments and Results
	Planner Choice
	Feature Matching Algorithm Selection
	Sorting Evaluation
	Sorting Policy based on object's name
	Sorting Policy based on Object's Shape
	Sorting Policy based on Object's Type
	Sorting Policy based on Object's Height

	Hardware Testing and Scalability Assessment
	Set up and Integration

	Conclusions and future researches
	RANSAC Algorithm
	Bibliography

