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Abstract 
This thesis presents a comparative analysis of two Nonlinear Model Predictive Control 

(NMPC) architectures applied to autonomous driving for the automotive industry. In 

response to the growing demand for reliable and efficient autonomous driving systems, 

NMPC has emerged as a prominent control strategy, capable of handling both linear and 

nonlinear constraints while predicting future states. The objective of this study is to 

develop and evaluate two distinct NMPC architectures for lane centering and obstacle 

avoidance. The key difference between the two architectures is that in the base 

architecture, both path planning and control computation are performed by the same 

NMPC, whereas in the double-layer NMPC, the higher layer handles path planning while 

the lower layer computes the control inputs. The decision to use Model Predictive Control 

for path planning stems from its model-based nature, this ensures that the generated path 

is not only feasible but also dynamically consistent with the vehicle’s capabilities. 

Detailed vehicle models, including a four wheeled model, a two-wheeled model, and a 

point mass model, are developed starting from the vehicle dynamics and then used in 

simulations. The two NMPC architectures are assessed for their efficacy in lane centering 

and managing both static and dynamic obstacle avoidance. Performance is evaluated in 

terms of computational efficiency, driving comfort, and overall control effectiveness. The 

results demonstrate that while both architectures effectively manage vehicle control, the 

double layer architecture exhibits superior performance, it is faster, produces smoother 

trajectories, and performs better at higher velocities compared to the single-layer 

architecture. 
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Chapter 1 

Introduction 

1.1 Motivations 
In recent years, the automotive industry has seen a significant advancement in field of 

advanced driver assistance systems. These systems aim to improve vehicle safety and 

driving comfort by introducing automation features that reduce human error, one of the 

leading causes of road accidents. ADAS is categorized into various levels, starting from 

level 0, where no automation is present, up to level 5, representing full autonomous 

driving capabilities. This classification, outlined by the society of automotive engineers, 

helps distinguish the degree of autonomy and control present in a vehicle, with each level 

adding more assistance and autonomy to driving task. 

In level 1, the vehicle can assist with either steering or acceleration/braking, but not at the 

same time. The driver remains fully responsible for all other driving tasks and must 

always stay active. While at level 2, the vehicle can manage both steering and 

acceleration/braking simultaneously. As vehicles progress to higher levels, automation 

becomes increasingly capable of handling complex driving tasks, eventually allowing the 

driver to detach completely under specific conditions. Achieving higher levels of 

autonomy requires advanced control algorithms that can make safe and efficient decisions 

in real-time, especially in scenarios involving potential collisions or obstacles. 

The motivation behind the implementation of advanced driver assistance systems is 

deeply rooted in improving road safety by mitigating human error, which is the leading 

cause of traffic accidents. Distraction, fatigue and misjudgment frequently leads lead to 

collisions and ADAS aims to minimize these risks through automation. Technologies like 

sensors, cameras, machine learning and control algorithms enable quicker, more precise 

responses than a human driver can typically provide. This is supported by a lot of studies 

that report the reduction of incidents thanks to the ADAS [1], [2], [3], [4]. 

The data in [5] highlights the benefits of collision avoidance technologies, with a 50% 

reduction in front-to-rear collisions with automatic emergency braking or a 78% 

reduction in rear-end collisions thanks to a rear automatic braking system. 
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1.2 Design choices 
MPC has been chosen because it has emerged as a widely adopted control technique in 

the automotive industry thanks to its unique ability to manage multivariable systems, 

optimize performance and handle complex constraints in real-time. Its popularity is 

supported by numerous studies [6], [7], [8], [9] highlighting its application in various 

vehicle subsystems, including spark-ignition engine speed control, vehicle stability 

control, transmission and suspension.  

One of the main advantages of MPC is its ability to predict the future behavior of a system 

using models. By generating an optimal sequence of control actions over a finite horizon, 

MPC also ensures the control of multivariable nonlinear systems. This makes it highly 

effective in automotive applications, where systems are characterized by nonlinearities 

and are often interconnected. 

Given its flexibility and effectiveness in managing multivariable systems while respecting 

constraints and system dynamics, MPC has become a core component in advanced 

automotive control systems. Its application spans from traditional systems, already 

mentioned, to more advanced domains, such as autonomous driving, where real-time 

decision and optimization are crucial. All these features explain the motivation behind 

choosing MPC as the control strategy for tasks like lane centering and obstacle avoidance. 

However, despite these benefits, its computational burden remains a key challenge, 

especially in real-time applications where adherence to deadline is essential. Solving the 

optimization problem at each time step can be computationally intensive, particularly 

when dealing with complex vehicle dynamics and tight constraints. 

To address this challenge, the implementation of an enhanced architecture offers a 

solution by distributing the computational workload across two layers. In this setup, the 

higher layer handles the trajectory planning using a simpler model. The lower layer on 

the other hand focuses on computing the control inputs with a more detailed model. This 

hierarchical structure reduces the computational burden on each layer, allowing the 

system to maintain high accuracy without sacrificing real-time feasibility.  

A crucial factor in choosing the path planner algorithm[10] stays in the online or offline 

generation of the path. Offline path planner generates a complete path before the vehicle 

starts moving, typically using global knowledge of the environment. These planners work 

well in structured environments, but they lack flexibility in dynamic situations such as 

obstacle avoidance. In contrast, online path planners, like those using MPC [11], 
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continuously compute the optimal path as the vehicle moves, reacting to dynamic changes 

in the environment. 

In summary, the use of MPC for path planning was motivated by its ability to operate 

online, making continuous adjustments based on data sampled over time. This flexibility, 

combined with its capacity to optimize trajectories and respect dynamic constraints, made 

MPC the optimal choice for achieving both safe and efficient path planning in 

autonomous driving scenarios. 

1.3 Thesis objectives 
The main aim of this thesis is to develop an NMPC-based control framework capable of 

handling key aspects of autonomous driving, specifically lane centering, static and 

dynamic obstacle avoidance. In terms of lane centering the focus is on designing a control 

system that ensures the vehicle maintains an optimal trajectory, minimizing deviations 

from the middle point. For static and dynamic obstacle avoidance, the goal is to develop 

an architecture that react quickly to both stationary and moving obstacles, ensuring the 

vehicle can navigate safely around them.  

By comparing two NMPC architectures, a single layer and more complex double-layer 

system, this thesis evaluate the time efficiency and driving comfort provided by each 

approach, offering insights into the trade-offs between computational complexity and 

control performance. 
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Chapter 2 

Vehicle and environment 

modelling 

2.1 Introduction 
In the context of Nonlinear Model Predictive Control, accurate and detailed modeling of 

vehicle dynamics is of critical importance. The control algorithm’s ability to predict 

future states and compute optimal control inputs is directly tied to the quality of this 

models. By providing an accurate representation of the vehicle’s physical behavior, the 

models allow the NMPC to anticipate how the vehicle will respond to various inputs and 

constraints. However, it is equally important to balance the complexity of the models 

used, as MPC is already computationally intensive. Incorporating overly complex models 

could worsen performance by increasing computational demands, potentially 

compromising real-time control. Thus, the development of suitable vehicle dynamics 

models [12] is not only a matter of accuracy but also efficiency, ensuring that the system 

can operate effectively within the given computational constraints. 

In this thesis, the simulation will account for a case study in which the vehicle is operated 

in a real-world environment. Simulating the scenario requires generating both the 

environmental data and the sensor data. This means that the road geometry, lane 

boundaries and potential obstacles must be artificially created, while simulated sensors 

provide continuous feedback on these elements.  

It is essential to establish a clear reference frame to describe the vehicle’s motion. This 

thesis adopts the ISO vehicle coordinate system (2.1), which is widely recognized for 

defining the orientation and the positioning of vehicles in a standardized manner [13]. 

According to this standard, the X-axis points forward along the vehicle’s longitudinal 

axis, the Y-axis extends to the left in lateral direction and the Z-axis points upward. In 
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addition to the orientation of the axes the vehicle’s motion is described using the yaw 

angle, denoted as 𝜓, which represents the rotation about the Z-axis. 

 
Figure 2.1: ISO vehicle coordinate system 
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2.2 Nonlinear four-wheel model 
The nonlinear four-wheel model plays a crucial role in accurately simulating vehicle 

dynamics. This model provides a comprehensive representation of the car’s behavior, 

capturing the interactions between all the four wheels and the road, and incorporating the 

roll dynamics within the yaw motion. This comprehensive representation ensures that the 

simulation reflects real world behavior, allowing for more reliable analysis of the control 

performances. 

 
Figure 2.2: Four-wheel forces and reference frames 

The dynamics of the system is described in a compact form by the following equation: 

𝜉̇(𝑡) =  f(𝜉(𝑡), 𝑢(𝑡)) (2.1) 

where 𝜉(𝑡) represent the states vector [𝑥̇,  𝑦̇,  𝜓̇,  𝜓,  𝑋,  𝑌]
𝑇
 and  𝑢(𝑡) represent the input 

vector [𝑇𝑓𝑙,  𝑇𝑓𝑟,  𝑇𝑟𝑙,  𝑇𝑟𝑟 ,  𝛿]
𝑇
. In this context the state vector includes: the longitudinal 

velocity and the lateral velocity in the body frame, the yaw rate and the yaw angle, and 

the global frame positions. The input vector comprises the torque applied to each wheel 

and the steering angle.  

The notation of the torque must be clarified, the first subscript indicates whether the wheel 

is in front or rear position. The second subscript indicates whether the wheel is in left or 

right position. This notation is also applied to the forces. 

The system’s dynamics with respect to the vehicle’s center of gravity and the coordinate 

transformation from the body frame to the global frame are described by: 
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𝑚𝑥̈ = 𝑚𝑦̇𝜓̇ + 𝐹𝑥𝑓𝑙
+  𝐹𝑥𝑓𝑟

+ 𝐹𝑥𝑟𝑙
+ 𝐹𝑥𝑟𝑟

  (2.2𝑎) 

𝑚𝑦̈ = −𝑚𝑥̇𝜓̇ + 𝐹𝑦𝑓𝑙
+  𝐹𝑦𝑓𝑟

+ 𝐹𝑦𝑟𝑙
+ 𝐹𝑦𝑟𝑟

(2.2𝑏) 

𝐼𝜓̈ = 𝑎 (𝐹𝑦𝑓𝑙
+  𝐹𝑦𝑓𝑟

) − 𝑏 (𝐹𝑦𝑟𝑙
+  𝐹𝑦𝑟𝑟

) + 𝑐 (−𝐹𝑥𝑓𝑙
+ 𝐹𝑥𝑓𝑟

− 𝐹𝑥𝑟𝑙
+ 𝐹𝑥𝑟𝑟

) (2.2𝑐) 

𝑋̇ =  𝑥̇ cos 𝜓 − 𝑦̇ sin 𝜓 (2.2𝑑) 

𝑌̇ =  𝑥̇ sin 𝜓 + 𝑦̇ cos 𝜓 (2.2𝑒) 

where 𝑚 is the vehicle’s mass, 𝐼 is the inertia about the 𝑧 axis, 𝑎 is the distance between 

the CoG and the front axle, 𝑏 is the distance between the CoG and the rear axle, and 𝑐 is 

the distance between Cog and the wheel along 𝑦 axis of the body frame. 

The forces 𝐹𝑥 and 𝐹𝑦 are the projection of the longitudinal (𝐹𝑙) and lateral (𝐹𝑐) tire forces 

along fixed tire frame, and are computed as follow: 

𝐹𝑥𝑓𝑙
= 𝐹𝑙𝑓𝑙

cos 𝛿 − 𝐹𝑐𝑓𝑙
sin 𝛿 (2.3𝑎) 

𝐹𝑥𝑓𝑟
= 𝐹𝑙𝑓𝑟

cos 𝛿 − 𝐹𝑐𝑓𝑟
sin 𝛿 (2.3𝑏) 

𝐹𝑥𝑟𝑙
= 𝐹𝑙𝑟𝑙

(2.3𝑐) 

𝐹𝑥𝑟𝑟
= 𝐹𝑙𝑟𝑟

(2.3𝑑) 

𝐹𝑦𝑓𝑙
= 𝐹𝑙𝑓𝑙

sin 𝛿 + 𝐹𝑐𝑓𝑙
cos 𝛿 (2.3𝑒) 

𝐹𝑦𝑓𝑟
= 𝐹𝑙𝑓𝑟

sin 𝛿 + 𝐹𝑐𝑓𝑟
cos 𝛿 (2.3𝑓) 

𝐹𝑦𝑟𝑙
= 𝐹𝑐𝑟𝑙

(2.3𝑔) 

𝐹𝑦𝑟𝑟
= 𝐹𝑐𝑟𝑟

(2.3ℎ) 

For the rear wheels the steering angle is assumed to be zero, simplifying the equations. 

The longitudinal and lateral forces will be detailed in the chapter (2.5). 

2.3 Nonlinear two-wheel model 
The two-wheel model is a vital component of the Model Predictive Control algorithm, 

designed to simplify the vehicle’s dynamics while rationing essential characteristics 

needed for effective control computation. This model abstracts the complexities of the 

full four-wheeled system by focusing on the primary dynamics of the vehicle, namely its 
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longitudinal and lateral behaviors, along with its yaw motion. By employing this 

simplified representation, the MPC can effectively compute control inputs and manage 

vehicle responses without the computational burden of a full four-wheeled model. 

 

 
Figure 2.3: Two-wheel forces and reference frames 

The dynamic of the system is described in a compact form by the following equation: 

𝜉̇(𝑡) =  f(𝜉(𝑡), 𝑢(𝑡)) (2.4) 

where 𝜉(𝑡) represent the states vector [𝑥̇, 𝑦̇, 𝜓̇, 𝜓, 𝑋, 𝑌]
𝑇
 and 𝑢(𝑡) represent the input 

vector [𝑇𝑓 , 𝑇𝑟 , 𝛿]
𝑇
. In this context the state vector includes the longitudinal velocity and 

the lateral velocity in the body frame, the yaw rate and the yaw angle, and the global 

frame positions. The input vector comprises the torque applied to the front and rear wheels 

and the steering angle.  

As a consequence of the reduction in the number of wheels the system’s equations and 

the coordinate transformation from the body frame to the global frame can be summarized 

as: 

𝑚𝑥̈ = 𝑚𝑦̇𝜓̇ + 2𝐹𝑥𝑓
+  2𝐹𝑥𝑟

 (2.5𝑎) 

𝑚𝑦̈ = −𝑚𝑥̇𝜓̇ + 2𝐹𝑦𝑓
+  2𝐹𝑦𝑟

(2.5𝑏) 

𝐼𝜓̈ = 2𝑎𝐹𝑦𝑓
− 2𝑏𝐹𝑦𝑟

(2.5𝑐) 
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𝑋̇ =  𝑥̇ cos 𝜓 − 𝑦̇ sin 𝜓 (2.5𝑑) 

𝑌̇ =  𝑥̇ sin 𝜓 + 𝑦̇ cos 𝜓 (2.5𝑒) 

where 𝑚 is the vehicle’s mass, 𝐼 is the inertia about the 𝑧 axis, 𝑎 is the distance between 

the CoG and the front axle, 𝑏 is the distance between the CoG and the rear axle and 𝑐 is 

the distance, along 𝑦 axis of the body frame, between Cog and the wheel. 

The forces 𝐹𝑥 and 𝐹𝑦 are the projection of the longitudinal (𝐹𝑙) and lateral (𝐹𝑐) tire forces 

along fixed tire frame, and are computed as follow: 

𝐹𝑥𝑓
= 𝐹𝑙𝑓

cos 𝛿 − 𝐹𝑐𝑓
sin 𝛿 (2.6𝑎) 

𝐹𝑥𝑟
= 𝐹𝑙𝑟

(2.6𝑏) 

𝐹𝑦𝑓
= 𝐹𝑙𝑓

sin 𝛿 + 𝐹𝑐𝑓
cos 𝛿 (2.6𝑐) 

𝐹𝑦𝑟
= 𝐹𝑐𝑟

(2.6𝑑) 

For the rear wheels the steering angle is assumed to be zero, simplifying the equations. 

The longitudinal and lateral forces will be detailed in the chapter (2.5). 
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2.4 Point mass model 
The point mass model is employed to further simplify the vehicle dynamics, focusing on 

high-level control tasks such as trajectory generation within the two-layer architecture. 

 
Figure 2.4: Point Mass reference frames 

The dynamics of the point mass can be summarized as: 

𝜉̇(𝑡) =  f(𝜉(𝑡), 𝑢(𝑡)) (2.7) 

where 𝜉(𝑡) represent the states vector [𝑥̇, 𝑦̇, 𝜓, 𝑋, 𝑌]𝑇 and  𝑢(𝑡) represent the input 𝑎𝑦. In 

this context the state vector includes the longitudinal velocity and the lateral velocity in 

the body frame, the yaw angle and the global frame positions. The input vector is defined 

as a single term and represents the lateral acceleration. 

The equations are derived from the other models through the application of appropriate 

simplifications. The longitudinal velocity is assumed to be constant, and the lateral 

acceleration is defined solely in terms of the control input. The yaw velocity is then 

derived as a consequence of the aforementioned choices. The equation (2.7) can be 

decomposed into: 

𝑥̈ = 0 (2.7𝑎) 

𝑦̈ = 𝑎𝑦 (2.7𝑏) 

𝜓̇ =
𝑎𝑦

𝑥̇
(2.7𝑐) 
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𝑋̇ = 𝑥̇ cos 𝜓 − 𝑦̇ sin 𝜓 (2.7𝑑) 

𝑌̇ =  𝑥̇ sin 𝜓 + 𝑦̇ cos 𝜓 (2.7𝑒) 

2.5 Tire model 
The tire model represents a crucial element in the simulation of vehicle dynamics as it 

captures the interaction between the tires and the road surface. At the point of contact 

between the tire and the road, three primary forces act: the vertical force, the longitudinal 

force and the lateral force. 

 
Figure 2.5: Tire model notation 

The vertical force (𝐹𝑧) is computed by assuming a static and uniform distribution of the 

vehicle’s mass. In this context, the force is directly proportional to the mass (𝑚) and the 

gravitational force (𝑔) with adjustments based on the positioning of the center of gravity 

with respect to the front and rear axles.  

For the four-wheel model we can write:  

𝐹𝑧𝑓𝑙
= 𝐹𝑧𝑓𝑟

=
𝑏𝑚𝑔

2(𝑎 + 𝑏)
(2.8𝑎) 

𝐹𝑧𝑟𝑙
=  𝐹𝑧𝑟𝑟

=
𝑎𝑚𝑔

2(𝑎 + 𝑏)
(2.8𝑏) 
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While for the two-wheel model the forces are: 

𝐹𝑧𝑓
=

𝑏𝑚𝑔

𝑎 + 𝑏
(2.9𝑎) 

𝐹𝑧𝑟
=

𝑎𝑚𝑔

𝑎 + 𝑏
(2.9𝑏) 

The longitudinal force (𝐹𝑙) represents the force generated by the tire in the direction of 

the vehicle’s movement, primarily responsible for acceleration and braking. In this thesis, 

a zero-slip condition is assumed, meaning that the tire maintains full traction with the 

road without any relative motion between the tire and the ground. This assumption 

simplifies the calculation of longitudinal forces by focusing on the ideal case of perfect 

grip. The force can be obtained by dividing the traction, 𝑇 > 0, or braking torque, 𝑇 < 0, 

by the wheel radius 𝑟𝜔: 

𝐹𝑙 =
𝑇

𝑟𝜔

(2.10) 

The Pacejka formula [14] was initially considered for the lateral force (𝐹𝑐) due to its 

proven ability to model tire behavior under a wide range of condition. This model (2.11) 

expresses the tire force as a nonlinear function of slip angle using a set of coefficients, 

such as stiffness (𝐵𝑦), shape (𝐶𝑦), peak (𝐷𝑦) and curvature factor (𝐸𝑦), that are typically 

derived from real-world tire testing. These coefficients are essential for accurately fitting 

the model to the specific tires and some studies [15], [16] explore different methodologies 

for obtaining them through experimental data. Since these coefficients were unavailable 

for this study, the use of the Pacejka formula was not feasible. 

𝐹𝑐 = (𝐷𝑦 sin[𝐶𝑦 arctan{𝐵𝑦𝛼𝑦 − 𝐸𝑦(𝐵𝑦𝛼𝑦 − arctan(𝐵𝑦𝛼𝑦))}] + 𝑆𝑉𝑦
)𝐺𝑦𝑘 + 𝑆𝑉𝑦𝑘

            (2.11) 

Consequently, the so-called Fiala model [17] was identified as potential alternative, it is 

grounded in theoretical principles and does not depend on empirical coefficients, making 

it suitable choice for this study. 

The following section presents the formula employed in this thesis. 

𝐹𝑐 = min (𝜇𝐹𝑧, max (−𝜇𝐹𝑧,  − 𝐶 tan(𝛼) +
𝐶2 |tan(𝛼)| tan(𝛼)

3𝜇𝐹𝑧
−  

𝐶3 tan(𝛼)3

27𝜇2𝐹𝑧
2

 )) (2.12) 

where 𝜇 is the road tire friction coefficient, 𝐶 is the cornering stiffness, 𝛼 is the slip angle 

and 𝐹𝑧 is the vertical force. 

In the linear region, for small values of the slip angle, the lateral force is proportional to 

𝛼. This behavior is consistent with a tire’s initial response, where there is still sufficient 
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contact between the tire and the road surface, and the tire behaves elastically. The tire is 

capable of generating increasing lateral forces as long as the slip angle remains within 

this range. As 𝛼 increases the lateral force reaches a peak and then saturates. This occurs 

when the tire’s contact patch starts to slide and the maximum lateral force that can be 

generated by the tire is reached. Beyond this point, the force begins to level off reflecting 

the tire’s limit of adhesion to the road. It is also interesting to observe how this force 

varies when the road adhesion coefficient changes, as different surfaces (dry, wet, icy) 

can significantly influence the tire’s behavior. In this work an optimal condition is 

considered with 𝜇 = 0.9. A visual representation of this relationship is reported below. 

 
Figure 2.6: Front wheels lateral force with different road adhesion coefficient 

The lateral force generated by the tire is directly dependent on the vertical force (𝐹𝑧), 

which represents the load on the tire. In general, a higher vertical force allows the tire to 

generate a greater lateral force, improving the vehicle’s ability to handle lateral 

maneuvers. In this case, since the center of gravity is located near the front axle, the 

vertical force acting on the front tires is greater compared to the rear ones. As a result, the 

rear tires can produce a lower lateral force, reducing their contribution to the vehicle’s 

cornering capability. The following figure illustrates the above relationship. 
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Figure 2.7: Rear wheels lateral force with different road adhesion coefficient 

The slip angle 𝛼 is a key parameter in tire dynamics, representing the angle between the 

direction in which the wheel is pointing and the actual path the tire follows as it moves 

along the road. Mathematically it can be expressed as: 

𝛼 = arctan
𝑣𝑐

𝑣𝑙

(2.13) 

 
Figure 2.8: Graphical representation of slip angle, velocities and reference frames 
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The longitudinal and lateral wheel velocities can be computed from: 

𝑣𝑐 = 𝑣𝑦 cos 𝛿 − 𝑣𝑥 sin 𝛿  (2.14𝑎) 

𝑣𝑙 = 𝑣𝑦 sin 𝛿 + 𝑣𝑥 cos 𝛿 (2.14𝑏) 

The slip angle and the velocities can be computed for all four wheels or for the two 

wheels, depending on the model used. The following equations allow for the calculation 

of the aforementioned values. 

For the four-wheel model: 

𝑣𝑥𝑓𝑙
= 𝑣𝑥𝑟𝑙

=  𝑥̇ − 𝑐𝜓̇ (2.15𝑎) 

𝑣𝑥𝑓𝑟
= 𝑣𝑥𝑟𝑟

=  𝑥̇ + 𝑐𝜓̇ (2.15𝑏) 

𝑣𝑦𝑓𝑙
= 𝑣𝑦𝑓𝑟

=  𝑦̇ + 𝑎𝜓̇ (2.15𝑐) 

𝑣𝑦𝑟𝑙
= 𝑣𝑦𝑟𝑟

=  𝑦̇ − 𝑏𝜓̇ (2.15𝑑) 

While for the two-wheel model: 

𝑣𝑥𝑓
= 𝑣𝑥𝑟

=  𝑥̇ (2.16𝑎) 

𝑣𝑦𝑓
=  𝑦̇ + 𝑎𝜓̇ (2.16𝑏) 

𝑣𝑦𝑟
=  𝑦̇ − 𝑏𝜓̇ (2.16𝑐) 

Let’s write the formula for the slip angle of the front left wheel of the four-wheel model 

substituting (2.15a) and (2.15c) into (2.14a) (2.14b) and the resulting equations into 

(2.13): 

𝛼𝑓𝑙 = arctan
(𝑦̇ + 𝑎𝜓̇) cos 𝛿 − (𝑥̇ − 𝑐𝜓̇) sin 𝛿

(𝑦̇ + 𝑎𝜓̇) sin 𝛿 + (𝑥̇ − 𝑐𝜓̇) cos 𝛿
(2.17) 

Assuming a zero-steering angle i.e. real-life practical case 

𝛼 = arctan
(𝑦̇ + 𝑎𝜓̇)

(𝑥̇ − 𝑐𝜓̇)
(2.18) 

Analyzing the formula (2.18), in static condition when the longitudinal velocity is close 

to zero, the argument of the arctan goes to infinity and the slip angle increases reaching a 

value of 90°. This results in a critical problem resulting in unrealistic dynamics and 

numerical instability. To avoid this, the longitudinal velocity is kept above zero in the 
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simulations, ensuring that the slip angle remains within a manageable range, thereby 

maintaining the accuracy of the vehicle’s dynamic response. 

 
Figure 2.9: Slip angle for low longitudinal velocity 

2.6 Vehicle models – Validation 
Model validation is crucial to verify the accuracy and reliability of the vehicle models 

developed in this study. This chapter outlines the approach used to validate the three 

models through a series of simulations. The time evolution of the model has been 

simulated using Euler method with discrete time steps, ensuring computational simplicity 

while maintaining acceptable accuracy. The evolution over time of the state variable is 

represented thanks to the following formula: 

𝜉̇(𝑘) = 𝑓(𝜉(𝑘), 𝑢(𝑘)) (2.19𝑎) 

𝜉(𝑘 + 1) =  𝜉(𝑘) + 𝑇𝑠 𝜉̇ (2.19𝑏) 

The four-wheel wheel and the two-wheel models are tested across four different 

scenarios, starting from an initial position equal to (𝑋, 𝑌) = (1,1) and with an initial 

longitudinal velocity of 10m/s. 
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1. Torque applied to the rear wheels, no steering angle and 0° yaw angle: this 

simulation assesses the model’s performance on a straightforward acceleration. 

 
Figure 2.10: Straightforward acceleration four-wheel model 

2. Torque applied to the rear wheels, no steering angle and 45° yaw angle: this 

scenario introduces an initial yaw angle of 45° evaluating the model’s response to 

a different yaw angle while maintaining a straight path 

 
Figure 2.11: Straightforward acceleration four-wheel model with initial yaw position equal to 45°  
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3. Torque applied to the rear wheels, 3° steering angle and 0° yaw angle: this test 

examines the model’s performance with a small positive steering angle 

 
Figure 2.12: Four-wheel model simulation with constant positive steering angle 

4. Torque applied to the rear wheels, -3° steering angle and 0° yaw angle: this 

simulation assesses the model’s behavior when steering in the other direction. 

 
Figure 2.13: Four-wheel model simulation with constant negative steering angle 

For simplicity only the pictures of the four-wheel model are shown but the two-wheel 

model also undergoes the same tests. 

In addition to analyzing the vehicle’s path, the validation process also includes examining 

the slip angle and the lateral force.  
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For the first two scenarios where the steering angle is zero, the slip angle and the lateral 

force are expected to remain close to zero. Since the vehicle is traveling in a straight line 

without any steering input, there should be no significant lateral acceleration, resulting in 

negligible lateral forces and slip angle. 

However, in the third and fourth scenarios, where a small steering angle is introduced, 

the slip angle and the lateral force are expected to show a non-zero trend. Specifically: 

• In the third scenario, a negative slip angle and corresponding lateral forces are 

generated as the vehicle turns slightly to the left. 

 
Figure 2.14: Four-wheel slip angle with a constant positive steering angle 

 
Figure 2.15: Four-wheel lateral force with a constant positive steering angle  
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• In the fourth scenario, the slip angle and lateral forces should mirror those from 

the third case but with opposite values, as the vehicle turns to the right 

 
Figure 2.16: Four-wheel slip angle with a constant negative steering angle 

 
Figure 2.17: Four-wheel lateral force with a constant negative steering angle  

For the point mass model, the same four test scenarios are conducted, but instead of 

manipulating the steering angle and the torque, the lateral acceleration is controlled 

directly. This model operates under the assumption of constant longitudinal velocity, 

which is set to 10m/s in all cases. 
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The tests are structured as follows: 

1. Zero lateral acceleration and 0° yaw angle 

 
Figure 2.18: Straightforward trajectory with constant velocity 

2. Zero lateral acceleration and 45° yaw angle 

 
Figure 2.19: Straightforward trajectory with constant velocity and initial yaw angle equal to 45° 
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3. Positive acceleration and 0° yaw angle 

 
Figure 2.20: Curvilinear trajectory with positive lateral acceleration 

4. Negative lateral acceleration and 0° yaw angle 

 
Figure 2.21: Curvilinear trajectory with negative lateral acceleration 

The theoretical predictions are well supported by the analysis of the graphs. These results 

confirm the accuracy, validity and reliability of the models under diverse circumstances. 

Having validated all the models, it is possible to proceed with the other stages. 
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2.7 Environment models 
The environment model is created using data from OpenStreetMap [18] and MATLAB’s 

DrivingScenarioDesigner [19]. OSM allows the selection of specific geographic areas, 

providing real-world road data such as lane boundaries and road geometry. After 

importing the chosen area into DSD, individual roads of interest can be specifically 

selected and refined for use in simulations. 

Points representing road boundaries were generated from the selected road using a 

MATLAB function ‘roadBoundaries’[20]. To ensure a smooth and continuous road 

representation a spline function [21], that returns a piecewise polynomial structure, was 

applied to these points. This method enables precise evaluation of the vehicle’s position 

relative to the road boundaries at any location, as the spline provides interpolation 

between the points which are sampled every 2-3 meters. 

The chosen road is a double-lane street. The aforementioned process generates points 

only for the road boundaries. The middle lane is calculated as the mean between the two 

boundaries. 

 
Figure 2.22: Section of the road boundaries points and fitting curves 

All the points concerning the road bounds are generated with reference to a global frame. 

In a real-world scenario, such data would be collected by sensors mounted on the vehicle. 

To simulate this, a frame transformation is applied to convert the global coordinates into 

the body’s frame. The formulas applied are explained below. 



2 – Vehicle and environment modelling 

24 
 

 
Figure 2.23: Representation of global and body frames 

The transformation between the body frame (ℛ𝑏) and the absolute frame (ℛ𝑎) can be 

uniquely characterized by a rotation matrix and a translation vector. 

 

𝑅𝑏
𝑎 =  [

cos 𝜓 − sin 𝜓 0
sin 𝜓 cos 𝜓 0

0 0 1

] (2.20𝑎) 

𝑡𝑎𝑏
𝑎 = [

𝑋
𝑌
𝑍

] (2.20𝑏) 

where 𝜓 is the yaw angle and 𝑋, 𝑌, 𝑍 represent the position of the vehicle in the absolute 

frame. 

Let’s simplify the computation removing the 𝑧 coordinate, since it is negligible for our 

purpose. Now we can write the formula that transforms the coordinate of a point in the 

body frame into the global frame: 

[
𝑋𝑎

𝑌𝑎] = 𝑡𝑎𝑏
𝑎 + 𝑅𝑏

𝑎 [𝑋𝑏

𝑌𝑏] (2.21) 

For what we want to achieve, the reverse of the previous formula is needed. 

𝑅𝑎
𝑏 = (𝑅𝑏

𝑎)−1 (2.22𝑎) 

𝑡𝑏𝑎
𝑏 =  −𝑅𝑎

𝑏𝑡𝑎𝑏
𝑎 (2.22𝑏) 
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Finally: 

[𝑋𝑏

𝑌𝑏] = 𝑡𝑏𝑎
𝑏 + 𝑅𝑎

𝑏 [
𝑋𝑎

𝑌𝑎] (2.23) 

To conclude the environment modelling, the obstacle representation is discussed. The 

obstacles are represented in simplified forms, such as circles, which makes their 

integration into the simulation more computationally efficient. This circular 

approximation allows for easy calculation of distances between the vehicle and the 

obstacles, a critical element in both static and dynamic obstacle avoidance scenarios. The 

size, the position and the safe distance are key parameters and their role in the simulation 

is to create constraints for the NMPC and ensuring safe navigation around them. For 

dynamic obstacles, their velocities are also incorporated. 

 

 
Figure 2.24: Static obstacle and safe distance inside a road section 
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Chapter 3 

NMPC - Single layer 

3.1 Introduction 
Model Predictive Control operates by predicting the future behavior of the system over a 

specified time horizon and calculating control inputs to optimize performance criteria 

while respecting system constraints. The core principle is the iterative optimization 

process: at each time step, the current state of the plant is used to predict future states, a 

cost function is minimized to find the optimal control sequence that respect the constraints 

and only the first control input is applied. This process repeats as new data becomes 

available.  

The idea is to begin with a base NMPC architecture and use it as a benchmark for further 

comparison. This approach is helpful because the implementation is more 

straightforward, allowing for a clear starting point and a reference for evaluating more 

complex architectures. In all the implementations the MATLAB solver ‘fmincon’ [22] is 

used to solve the constrained nonlinear multivariable control problem. 

3.2 Single layer NMPC architecture 
The base nonlinear Model Predictive Control architecture is designed to take specific 

inputs. The references are the desired vehicle velocity, the position of potential obstacle 

and the road boundaries. These inputs guide the control strategy, ensuring the vehicle 

maintains lane centering while avoiding obstacles. 

In this setup, the plant is simulated running the nonlinear four-wheel model. The NMPC 

controller on the other hand operates based on a simplified two-wheel model. 
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Figure 3.1: Single layer NMPC architecture 

3.3 Problem description 
The general formulation of a model predictive control problem can be expressed as an 

optimization problem, where the goal is to minimize a cost function over a prediction 

horizon, subject to system dynamics and constraints. The MPC problem is typically 

formulated as follows: 

min 𝐽  = ∑ (𝑓(𝜉𝑘, 𝑢𝑘) + 𝑓𝑓(𝜉𝑁𝑝)

𝑁𝑝−1

𝑖=0

(3.1) 

Where: 

• J is the total cost 
• 𝑓(𝜉𝑘, 𝑢𝑘) is the running cost function that penalizes deviation from the reference 

trajectory and control effort at each time step k 
• 𝑓𝑓(𝜉𝑁𝑝) is the terminal cost that penalizes the final state 𝜉𝑁𝑝

 at the end of the 

prediction horizon 

Subject to: 

1. System dynamics: the future states of the system are governed by the discrete 

vehicle dynamics model 
𝜉𝑘+1 = 𝑓(𝜉𝑘, 𝑢𝑘) (3.2) 
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Where: 
• 𝜉𝑘 is the state vector at time step k 
• 𝑢𝑘 is the control input vector at time step k 
• 𝑓(𝜉𝑘, 𝑢𝑘) represent the system dynamics, in this specific case the two-

wheel dynamics 
2. Initial conditions: 

𝜉0 =  𝜉𝑘 (3.3) 
Where 𝜉𝑘 is the current state of the vehicle at the start of the optimization. 

3. Control constraints 
𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥 (3.4) 

The constraint ensure that the control input remain within allowable bounds. 

At each time step, the optimization problem is solved using an appropriate numerical 

solver, such as MATLAB fmincon. The basic syntax of the function is: 

𝑥 = 𝑓𝑚𝑖𝑛𝑐𝑜𝑛(𝑓𝑢𝑛, 𝑥0, 𝐴, 𝑏, 𝐴𝑒𝑞, 𝑏𝑒𝑞, 𝑙𝑏, 𝑢𝑏, 𝑛𝑜𝑛𝑙𝑐𝑜𝑛, 𝑜𝑝𝑡𝑖𝑜𝑛𝑠) (3.5) 

Where 𝑓𝑢𝑛 represents the objective function, the variable 𝑥0 denotes the initial guess for 

the optimization process, the parameters A and b define linear inequality constraint in the 

form 𝐴𝑥 ≤ 𝑏, similarly 𝐴𝑒𝑞 and 𝑏𝑒𝑞 define linear equality constraints 𝐴𝑒𝑞𝑥 = 𝑏. To 

further constrain the solution, 𝑙𝑏 and 𝑢𝑏 define the lower and the upper bounds for the 

optimized variables, 𝑛𝑜𝑛𝑙𝑐𝑜𝑛 is used for nonlinear constraints and finally 𝑜𝑝𝑡𝑖𝑜𝑛𝑠 

provides solver settings such as tolerance, step size and algorithm type allowing the user 

to fine-tune the optimization process to balance computational efficiency with solution 

accuracy. In this implementation, the standard options for the MATLAB solver were 

adjusted to optimize performance. Specifically, the maximum number of function 

evaluations was increased to 5000 to ensure the solver had enough iterations to find 

accurate solution within the system’s constraints. Additionally, the step tolerance was 

increased from 10-10 to 10-4. The reasoning behind this adjustment was that the default 

value led to unnecessarily long computation times without a corresponding improvement 

in the solution quality. By setting the tolerance to 10-4, the balance between solution 

accuracy and computational efficiency was better aligned with the objectives of the 

control system, ensuring faster convergence while maintaining the necessary performance 

standards. 

Once the solver finds the minimum the optimal values are returned inside the vector 𝑥 , 

in our specific case the values are the control inputs 𝑢1, 𝑢2, ⋯ , 𝑢𝑁𝑝
. Exclusively the first 

element 𝑢1 is applied to the system, as the receding horizon logic sudgests [23]. 



3 – NMPC – Single layer 

29 
 

In this implementation, the receding horizon approach is simulated since there is no real 

vehicle to sample over time. Instead, the plant model is used to simulate the system. The 

process involves passing the initial state and the first optimal control to a function that, 

using the four-wheel model, compute the next state vector, which will then be imposed 

as the new starting point for the successive optimization. Additionally, the optimal control 

vector is updated by shifting it to the left. The first input of the new initial condition for 

the optimal control sequence becomes 𝑢2, while the last element is set equal to 𝑢𝑁𝑝
. This 

ensures continuity in the control actions over the horizon. 

The selected cost function is a quadratic cost function. It minimizes the weighted sum of 

the tracking error and the control effort. 

                   𝐽 =  ∑(𝜉𝑟𝑒𝑓 − 𝜉(𝑖|𝑡) )𝑇𝑄(

𝑁𝑝

𝑖=0

𝜉𝑟𝑒𝑓 − 𝜉(𝑖|𝑡)) + 𝑢(𝑖|𝑡)𝑇𝑅 𝑢(𝑖|𝑡)                   (3.6) 

 

Note that the penalization factor of the prediction horizon has not been considered. 

The first tests were done using only a single prediction horizon. This allowed for a simpler 

setup, as both the prediction of the future states and the computation of the control inputs 

were done over the same horizon. However, after running initial tests, it became clear that 

using a single horizon increases computational complexity without significant 

improvement. The choice of implementing both prediction and control horizon ensures a 

balance between performance and computational efficiency. The control horizon 

determines how many control inputs are optimized. A shorter control horizon reduces the 

computational load without affecting optimal control. This is based on the principle that 

the most effective control actions are determined in the initial steps, while subsequent 

steps are less impactful. To correctly simulate the dynamics over the entire prediction 

horizon a new input vector will be constructed as follow:  

𝑢 = [𝑢1, 𝑢2, ⋯ , 𝑢𝑁𝑐
, 𝑢𝑁𝑐+1, ⋯ , 𝑢𝑁𝑝

] (3.7) 

where the first 𝑁𝑐 values are those computed by the optimizer while the remaining values 

are set equal to 𝑢𝑁𝑐
. 

3.3.1 Static obstacle avoidance 
The obstacle is simulated with a circle, and to ensure avoidance, the distance vector that 

connect the vehicle to the center of the obstacle is continuously computed. Since the 

objective is not only to bypass the obstacle but also to maintain a safe distance, the 
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constraint formulation incorporates this additional safety parameter. This ensures that the 

vehicle maintains a predefined buffer zone around the obstacle, rather than simply 

avoiding a collision. The obstacle is treated as a hard constraint, so the solver only 

considers solution that respect this condition.  

 
Figure 3.2: Distance computation between vehicle and obstacle 

(𝑋 − 𝑜𝑏𝑠𝑥𝑐)2 + (𝑌 − 𝑜𝑏𝑠𝑦𝑐)
2

≥ (𝑜𝑏𝑠𝑟 + 𝑠𝑎𝑓𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)2 (3.8) 

Within the ‘nonlcon’ function of the ‘fmincon’ solver, the constraint has been developed 

in the following way: since 𝑐(𝑥) is the vector of nonlinear inequality constraints evaluated 

at 𝑥 and fmincon attempts to satisfy 𝑐(𝑥) ≤ 0 for all entries, the inequality (3.8) must be 

rephrased: 

𝑐 = [−(𝑋 − 𝑜𝑏𝑠𝑥𝑐).2− (𝑌 − 𝑜𝑏𝑠𝑦𝑐).2+ (𝑜𝑏𝑠𝑟 + 𝑠𝑎𝑓𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)2]
𝑇

(3.9) 

where 𝑋 𝜖 ℝ𝑁𝑝 and 𝑌 𝜖 ℝ𝑁𝑝 are the vectors that contain the longitudinal and lateral 

coordinates of the vehicle in the global frame, 𝑜𝑏𝑠𝑥𝑐 and 𝑜𝑏𝑠𝑦𝑐 are the coordinates of the 

obstacle position, 𝑜𝑏𝑠𝑟 is the obstacle radius and 𝑠𝑎𝑓𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the value that defines 

how much distance you want to keep from the obstacle. 

3.3.2 Dynamic obstacle avoidance 
Dynamic obstacle avoidance requires a more sophisticated approach compared to static 

obstacles, as the vehicle must anticipate the obstacle’s future positions in addition to its 

current location. In this chapter dynamic obstacles are considered under the assumption 
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that the speed of the obstacle remains constant throughout the prediction horizon. To 

handle this, the future positions of the obstacle are simulated within the ‘nonlcon’ 

function of the solver, taking into account its motion over time. This allows the controller 

to predict potential collisions and adjust the vehicle’s path accordingly. The computation 

of distances between the vehicle and the obstacle becomes more complex due to the need 

to account both predictions. Unlike static obstacles, where the obstacle is considered as 

single and fixed point, here, both 𝑜𝑏𝑠𝑥𝑐 and 𝑜𝑏𝑠𝑦𝑐 are vectors. 

Hence, computing: 

𝑐 = [−(𝑋 − 𝑜𝑏𝑠𝑥𝑐).2− (𝑌 − 𝑜𝑏𝑠𝑦𝑐).2+ (𝑜𝑏𝑠𝑟 + 𝑠𝑎𝑓𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)2]
𝑇

(3.10) 

would not fully capture the interactions between the vehicle and the obstacle since the 

result is a vector 𝑐 ∈  ℝ𝑁𝑝 of distances between the i-th prediction of the vehicle and the 

i-th prediction of the obstacle. Applying this constraint the vehicle will start the path 

replanning only when the vehicle reaches the actual obstacle, losing the ability to act in 

advance. 

The initial solution involved reversing the vector of predicted obstacle positions and 

calculating the difference between the vehicle’s last prediction and the obstacle’s first 

position, continuing in this manner for all subsequent predictions. This method provided 

a simple yet effective solution for managing the first part of the overtaking maneuver. 

However, while this approach performed well at the start, the vehicle’s trajectory 

exhibited noticeable oscillations during the overtaking, leading to a less smooth path. 

To provide an accurate representation of the relationship between the predicted positions 

of the vehicle and the obstacle, a distance matrix 𝑐 ∈  ℝ𝑁𝑝×𝑁𝑝 is computed. This matrix 

compares each predicted position of the vehicle with each predicted position of the 

obstacle across the entire prediction horizon, ensuring that the optimization process 

considers all possible interactions over time to effectively avoid the obstacle. 

The resulting inequality constraint, in a matrix form can be expressed as follows: 

𝑐𝑚𝑎𝑡𝑟𝑖𝑥 = [−(𝑋 − 𝑜𝑏𝑠𝑥𝑐
𝑇 ).2− (𝑌 − 𝑜𝑏𝑠𝑦𝑐

𝑇 ).2+ (𝑜𝑏𝑠𝑟 + 𝑠𝑎𝑓𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)2] (3.11) 

Where 𝑋 𝜖 ℝ𝑁𝑝 and 𝑌 𝜖 ℝ𝑁𝑝 are the vectors that contain the longitudinal and lateral 

coordinates of the vehicle in the global frame, 𝑜𝑏𝑠𝑥𝑐 𝜖 ℝ𝑁𝑝  and 𝑜𝑏𝑠𝑦𝑐 𝜖 ℝ𝑁𝑝 are the 

vectors that contain the coordinates of the obstacle position, 𝑜𝑏𝑠𝑟 is the obstacle radius 

and 𝑠𝑎𝑓𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the value that defines how much distance you want to keep from 

the obstacle. 
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3.3.3 Lane centering 
Lane centering is formulated as a soft constraint within the Model Predictive Control 

framework. Instead of being strictly enforced, it is included in the cost function, allowing 

the solver to minimize the deviation from the lane center. This approach provides 

flexibility, allowing the vehicle to prioritize other objectives, such as obstacle avoidance, 

without always requiring perfect adherence to the lane center. 

As already explained in chapter (2.7), the data regarding the right bound and the central 

line are provided in the body frame for each vehicle position. Within the cost function, 

the difference between the absolute values is applied so that minimizing it the vehicle is 

able to maintain the lane center. 

min(|𝑦𝑚𝑖𝑑𝑑𝑙𝑒
𝑏 | − |𝑦𝑟𝑖𝑔ℎ𝑡

𝑏 |) (3.12) 

 
Figure 3.3: Representation of distances between body frame and lane boundaries 

3.4 Single layer NMPC Controller – Formulation 
In the actual MATLAB implementation, the setup begins with defining the 𝑥0 vector, 

which is required by the solver and represents the initial guess for the control inputs. This 

vector is initially set to zero and serves as the starting point for the optimization process. 

𝑥0 = [𝑇0,1, ⋯ , 𝑇0,𝑁𝑐
, 𝛿0,1, ⋯ , 𝛿0,𝑁𝑐

]
𝑇

(3.13) 
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Additionally, the initial conditions for the simulation are specified, in the form 

[𝑥̇, 𝑦̇, 𝜓̇, 𝜓, 𝑋, 𝑌]
𝑇
, representing the system’s starting state. Both vectors are updated 

during the simulation by the function responsible for managing the receding horizon 

approach, ensuring that the control inputs and states evolve dynamically as the simulation 

progresses. 

To handle control input constraints, lower and upper bound vectors are created, defining 

the permissible physical range for the control actions. These bounds ensure that the 

control inputs remain within feasible limits during the optimization. The actual 

implementation is reported below. 

𝑙𝑏 = [𝑇𝑚𝑖𝑛,1, ⋯ , 𝑇𝑚𝑖𝑛,𝑁𝑐
, 𝛿𝑚𝑖𝑛,1, ⋯ , 𝛿𝑚𝑖𝑛,𝑁𝑐

]
𝑇

 (3.14𝑎) 

𝑢𝑏 = [𝑇𝑚𝑎𝑥,1, ⋯ , 𝑇𝑚𝑎𝑥,𝑁𝑐
, 𝛿𝑚𝑎𝑥,1, ⋯ , 𝛿𝑚𝑎𝑥,𝑁𝑐

]
𝑇

(3.14𝑏) 

Moreover, the solver requires the implementation of two functions, namely 𝑓𝑢𝑛 and 

𝑛𝑜𝑛𝑙𝑐𝑜𝑛. The model is evaluated within these functions using the current value of the 𝑥 

vector in order to compute the value of the cost function and the constraint vector. The 

specific formulations of the cost function and nonlinear constraints will be provided in 

the following sections. 

Cost function: 

𝑓 = 𝑄1(𝑦𝑏 ∗ 𝑦𝑏
𝑇) + 𝑄2(𝑉 ∗ 𝑉𝑇) + 𝑅1(𝛿 ∗ 𝛿𝑇) + 𝑅2(𝑇𝑟 ∗ 𝑇𝑟

𝑇) (3.15𝑎) 

𝑦𝑏 =  |𝑦𝑚𝑖𝑑𝑑𝑙𝑒
𝑏 | − |𝑦𝑟𝑖𝑔ℎ𝑡

𝑏 | (3.15𝑏) 

𝑉 = 𝑉𝑟𝑒𝑓 − √𝑥̇2 + 𝑦̇2 (3.15𝑐) 

Where 𝑄1, 𝑄2,  𝑅1, 𝑅2 are the weights that must be tuned, 𝛿 is the steering angle, 𝑇𝑟 is the 

torque applied to the rear wheels, 𝑦𝑚𝑖𝑑𝑑𝑙𝑒
𝑏  and 𝑦𝑟𝑖𝑔ℎ𝑡

𝑏  are explained in picture (3.3), 𝑥̇ is 

the longitudinal velocity and 𝑦̇ is the lateral velocity. 

Nonlinear constraint: 

𝑐 = [−(𝑋 − 𝑜𝑏𝑠𝑥𝑐).2− (𝑌 − 𝑜𝑏𝑠𝑦𝑐).2+ (𝑜𝑏𝑠𝑟 + 𝑠𝑎𝑓𝑒)2, 𝑦𝑓𝑖𝑡𝑙𝑒𝑓𝑡 − 𝑌, −𝑦𝑓𝑖𝑡𝑟𝑖𝑔ℎ𝑡 + 𝑌  ]
𝑇

(3.16) 

The first element of the vector has been already explained in the chapter (3.3.1). The other 

two elements are essential for imposing the road boundaries as hard constraint for the 

solver. 𝑦𝑓𝑖𝑡𝑙𝑒𝑓𝑡 and 𝑦𝑓𝑖𝑡𝑟𝑖𝑔ℎ𝑡 are two vectors that contain the values of the road 

boundaries evaluated for each x-position assumed by the vehicle. 𝑌, as previously stated, 

contains the lateral position of the vehicle.  
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In the dynamic obstacle avoidance, certain modifications were made to both the cost 

function and the nonlinear constraints to accommodate the different environment. 

The lane centering inside the cost function were simplified, its aim is maintaining a 

constant Y-value in the global frame namely 𝑌𝑟𝑒𝑓. The dynamic cost function is presented 

below. 

𝑓 = 𝑄1(𝑦 ∗ 𝑦𝑇) + 𝑄2(𝑉 ∗ 𝑉𝑇) + 𝑅1(𝛿 ∗ 𝛿𝑇) + 𝑅2(𝑇𝑟 ∗ 𝑇𝑟
𝑇) (3.17𝑎) 

𝑦 = 𝑌𝑟𝑒𝑓 − 𝑌 (3.17𝑏) 

𝑉 = 𝑉𝑟𝑒𝑓 − √𝑥̇2 + 𝑦̇2 (3.17𝑐) 

While inside the nonlinear constraint, instead of the fit values relative to the lane 

boundaries there are simplified constraints on the longitudinal position of the vehicle in 

the global frame since it is moving on a straight road.  

𝑐 = [𝑐𝑚𝑎𝑡𝑟𝑖𝑥(: ), 𝑌 − 𝑙𝑒𝑓𝑡𝑏𝑜𝑢𝑛𝑑, 𝑌 − 𝑟𝑖𝑔ℎ𝑡𝑏𝑜𝑢𝑛𝑑] (3.18) 

Where the first element is the matrix of distances transformed into a vector, Y contains 

the lateral positions of the vehicle and 𝑙𝑒𝑓𝑡𝑏𝑜𝑢𝑛𝑑 and 𝑟𝑖𝑔ℎ𝑡𝑏𝑜𝑢𝑛𝑑 are constant values 

representing the road boundaries. 
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Chapter 4 

NMPC – Double layer 

4.1 Introduction 
The double layer architecture is designed to improve both computational efficiency and 

control performance in complex driving scenarios. In this structure, the control problem 

is split into two distinct layers: a higher-level planner and a lower-level controller. This 

division allows for more efficient handling of complex scenarios, ensuring better 

scalability and faster computational time.  

4.2 Double layer NMPC architecture 
The higher layer generates a feasible path based on the vehicle’s state and on the 

environment analysis. It uses a simplified point mass model, which assumes a constant 

longitudinal velocity and optimize the lateral acceleration required to keep the desired 

trajectory. This layer processes inputs such as the position of the obstacles and the road 

boundaries. It outputs a reference trajectory that ensures the avoidance of the obstacles 

and stay centered within the lane. 

The lower layer takes the reference trajectory from the path planner and computes the 

necessary control actions using a more detailed two-wheel model. It ensures that the 

vehicle follows the reference path while adjusting the velocity as needed to adapt to the 

road conditions. 
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Figure 4.1: Double layer NMPC architecture 

4.3 High level MPC – Formulation 
In the actual MATLAB implementation of the high-level path planning algorithm, the 

initial condition vector 𝑥0is initialize to zero, this time it has a different size since the 

input is only the lateral acceleration: 

𝑥0,ℎ𝑙 = [𝑎𝑦0,1, ⋯ , 𝑎𝑦0,𝑁𝑐
]

𝑇
(4.1) 

The initial state vector is shared between the two layers. However, since the state vector 

has different sizes between the point mass model used in the high-level path planner and 

the two-wheel model used in the low-level controller, an adaptation was necessary at the 

code level. The vector form remains unchanged, but the point mass excludes the 

evaluation of 𝜓̇ dynamics. 

Lower and upper bound vectors are then defined to ensure that control inputs constraints, 

such as acceleration limits, are respected during the optimization.  

𝑙𝑏ℎ𝑙 = [𝑎𝑦𝑚𝑖𝑛,1, ⋯ , 𝑎𝑦𝑚𝑖𝑛,𝑁𝑐
] (4.2𝑎) 

𝑢𝑏ℎ𝑙 = [𝑎𝑦𝑚𝑎𝑥,1, ⋯ , 𝑎𝑦𝑚𝑎𝑥,𝑁𝑐
] (4.2𝑏) 

The values of maximum lateral acceleration are computed as follows: 

𝑎𝑦 ≤ |𝑔𝜇| (4.3) 
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The specific formulations of the high-level cost function and nonlinear constraints will 

be provided in the following sections. 

Cost function: 

𝑓 = 𝑄1(𝑦𝑏 ∗ 𝑦𝑏
𝑇) + 𝑅1(𝑢 ∗ 𝑢𝑇) (4.4𝑎) 

𝑦𝑏 =  |𝑦𝑚𝑖𝑑𝑑𝑙𝑒
𝑏 | − |𝑦𝑟𝑖𝑔ℎ𝑡

𝑏 | (4.4𝑏) 

𝑢 = [𝑎𝑦,1, ⋯ , 𝑎𝑦,𝑁𝑝] (4.4𝑐) 

Where 𝑄1, 𝑅1 are the weights that must be tuned, 𝑦𝑚𝑖𝑑𝑑𝑙𝑒
𝑏  and 𝑦𝑟𝑖𝑔ℎ𝑡

𝑏  are explained in 

picture (3.3) and 𝑎𝑦is the lateral acceleration. 

The nonlinear constraint vectors are exactly the same as the ones implemented in section 

(3.4). 

The output of this optimization process is the lateral acceleration. However, in order to 

generate the trajectory references for the low-level an additional step is required. A 

dedicated function, that takes as input the optimized lateral accelerations and computes 

the corresponding point-mass trajectory, has been developed. It returns two vectors of 

length 𝑁𝑝, representing the lateral position and yaw angle of the point mass over the entire 

prediction horizon.  

4.4 Low level MPC – Formulation 
The steps for the low-level controller are the same of the previous implementations. 

The initial conditions vector is in the form: 

𝑥0,𝑙𝑙 = [𝑇0,1, ⋯ , 𝑇0,𝑁𝑐
, 𝛿0,1, ⋯ , 𝛿0,𝑁𝑐

] (4.5) 

The initial state vector is the same as the high-level, but in this case the angular rate is 

taken into account for the two-wheel dynamics. 

Control input constraint are the ones written in formula number (4.2a) and (4.2b). 

The specific formulations of the low-level cost function will be provided in the following 

sections. 

𝑓 = 𝑄1(𝑌𝑓 ∗ 𝑌𝑓
𝑇) + 𝑄2(𝜓𝑓 ∗ 𝜓𝑓

𝑇) + 𝑄3(𝑉 ∗ 𝑉𝑇) + 𝑅1(𝛿 ∗ 𝛿𝑇) + 𝑅2(𝑇𝑟 ∗ 𝑇𝑟
𝑇) (4.6𝑎) 
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𝑌𝑓 = 𝑌𝑟𝑒𝑓 − 𝑌 (4.6𝑏) 

𝜓𝑓 =  𝜓𝑟𝑒𝑓 − 𝜓 (4.6𝑐) 

𝑉 = 𝑉𝑟𝑒𝑓 −  𝑥̇ (4.6𝑑) 

Where 𝑄1, 𝑄2, 𝑄3, 𝑅1, 𝑅2 are the weights, 𝑌𝑟𝑒𝑓 and 𝜓𝑟𝑒𝑓 are the reference vectors 

generated by the high-level. 

 



39 
 

Chapter 5 

Control schemes simulation 

5.1 Introduction 
The control scheme comparison was conducted using two distinct simulation 

environments to evaluate the performance of both NMPC architecture in different 

scenarios. 

The first environment was designed to test lane centering and static obstacle avoidance. 

For this purpose, a model of an actual road was developed, incorporating realistic road 

boundaries and lane markings to reflect common driving conditions. This environment 

allowed for a comprehensive assessment of how well each control architecture managed 

to maintain the vehicle within its lane while avoiding static obstacles. 

The second simulation environment was designed to facilitate the study of dynamic 

obstacle avoidance. In this case, a straight road was simulated to simplify the evaluation 

of the vehicle’s behavior while avoiding moving objects. The road was dimensioned 

using the average width of typical lanes and streets, ensuring a realistic but simplified 

testing scenario. This environment allowed for testing of how each control scheme 

handled dynamic obstacles. 

The simulation setup involves defining key parameters such as the prediction horizon 

(𝑁𝑝) and the control horizon (𝑁𝑐), both of which influence the controller’s performance. 

The sampling time of the controller dictates how frequently control inputs are updated. 

Additionally, the vehicle’s initial state, such as its starting position, velocity and yaw 

angle, is specified. 

The weights employed in the cost function are of critical importance for the tuning of the 

controller’s behavior. These weights serve to balance between the minimization of control 

effort, the maintenance of lane centering and the avoidance of obstacles. 
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Along with these parameters, the characteristics of the obstacle, including its dimension, 

the required safe distance and its velocity, are configured to simulate realistic driving 

scenario. 

5.2 Single layer – Results 
5.2.1 Lane centering and static obstacle avoidance 
To conduct the simulation, the following values were assigned to the key parameters: 

Table 5.1: Single layer parameters for LC and SOA 

 Value Unit 
Prediction horizon 20 - 
Control horizon 2 - 
Sampling time  0.1 s 
Initial state [𝑥̇, 𝑦̇, 𝜓̇, 𝜓, 𝑋, 𝑌] [2. 7̅, 0, 0, −𝜋, −830, 893] [𝑚/𝑠, 𝑚/𝑠, 𝑟𝑎𝑑/𝑠, 𝑟𝑎𝑑, 𝑚, 𝑚] 
Upper bound [ 𝑇, 𝛿] [890,0.61] [𝑁𝑚, 𝑟𝑎𝑑] 
Lower bound [ 𝑇, 𝛿] [−5100, −0.61] [𝑁𝑚, 𝑟𝑎𝑑] 
Velocity reference [m/s] 35/3.6 m/s 
Obstacle radius [m] 1 m 
Safe distance [m] 2 m 

 

The images below display the simulation results. 

• Vehicle trajectory 

 
Figure 5.1: Single layer vehicle trajectory in SOA and LC simulation 
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• Velocity 

 
Figure 5.2: Single layer velocity in SOA and LC simulation 

• Torque 

 
Figure 5.3: Single layer torque in SOA and LC simulation 
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• Steering angle 

 
Figure 5.4: Single layer steering angle in SOA and LC simulation 

5.2.2 Dynamic obstacle avoidance 
Representing the trajectories of both the vehicle and the obstacle simultaneously, inside 

the same picture represents a significant challenge since both are moving over time. The 

most effective way to visualize this is by displaying the complete trajectory of the vehicle, 

while showing only two key positions of the obstacle. The first obstacle position starting 

from the left represent the moment when the vehicle starts the overtaking maneuver, and 

the second represents the obstacle’s location when the vehicle begins to shift back to the 

right lane.  

Additionally, to further clarify the dynamic behavior, another plot has been included to 

depict the distance between the vehicle and the obstacle over time. In this plot, the dashed 

line represents the minimum allowed distance, which is the sum of the obstacle’s radius 

and the safe distance specified by the user. This visualization ensures a clear 

understanding of how the vehicle maintains the necessary safety margin throughout the 

maneuver. 
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In order to conduct the simulation, the following values were assigned to the key 

parameters: 

Table 5.2: Single layer parameters for DOA  

 Value Unit 
Prediction horizon 20 - 
Control horizon 2 - 
Sampling time  0.1 s 
Initial state [𝑥̇, 𝑦̇, 𝜓̇, 𝜓, 𝑋, 𝑌] [6.94̅, 0, 0, 0, 0, 3 ] [𝑚/𝑠, 𝑚/𝑠, 𝑟𝑎𝑑/𝑠, 𝑟𝑎𝑑, 𝑚, 𝑚] 
Upper bound [ 𝑇, 𝛿] [890,0.61] [𝑁𝑚, 𝑟𝑎𝑑] 
Lower bound [ 𝑇, 𝛿] [−5100, −0.61] [𝑁𝑚, 𝑟𝑎𝑑] 
Velocity reference [m/s] 35/3.6 m/s 
Obstacle radius [m] 1 m 
Obstacle velocity [m/s] 25/3.6 m/s 
Safe distance [m] 2 m 

 

The images below display the simulation results 

• Vehicle’s trajectory 

 
Figure 5.5: Single layer vehicle trajectory in DOA simulation 
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• Velocity 

 
Figure 5.6: Single layer velocity in DOA simulation 

• Torque 

 
Figure 5.7: Single layer torque in DOA simulation 

  



5 – Control schemes simulation 

45 
 

• Steering angle 

 
Figure 5.8: Single layer steering angle in DOA simulation 

• Distance between the vehicle and the center of the obstacle 

 
Figure 5.9: Single layer distance between vehicle and obstacle in DOA simulation 
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5.3 Double layer – Results 
5.3.1 Lane centering and static obstacle avoidance 
In order to conduct the simulation, the following values were assigned to the key 

parameters: 

Table 5.3: Double layer parameters for LC and SOA 

 Value Unit 
Prediction horizon 20 - 
Control horizon 2 - 
Sampling time  0.1 s 
Initial state [𝑥̇, 𝑦̇, 𝜓̇, 𝜓, 𝑋, 𝑌] [2. 7̅, 0, 0, −𝜋, −830, 893] [𝑚/𝑠, 𝑚/𝑠, 𝑟𝑎𝑑/𝑠, 𝑟𝑎𝑑, 𝑚, 𝑚] 
Upper bound high level [𝑎𝑦] [0.9 ∙ 9.81] [𝑚/𝑠2] 
Lower bound high level [ 𝑎𝑦] [−0.9 ∙ 9.81] [𝑚/𝑠2] 
Upper bound low level [ 𝑇, 𝛿] [890,0.61] [𝑁𝑚, 𝑟𝑎𝑑] 
Lower bound low level [ 𝑇, 𝛿] [−5100, −0.61] [𝑁𝑚, 𝑟𝑎𝑑] 
Velocity reference [m/s] 35/3.6 m/s 
Obstacle radius [m] 1 m 
Safe distance [m] 2 m 

 

The images below display the simulation results 

• Vehicle’s trajectory 

 
Figure 5.10: Double layer vehicle trajectory in SOA and LC simulation 
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• Velocity 

 
Figure 5.11: double layer velocity in SOA and LC simulation 

• Torque 

 
Figure 5.12: Double layer torque in SOA and LC simulation  
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• Steering angle 

 
Figure 5.13: Double layer steering angle in SOA and LC simulation 

5.3.2 Dynamic obstacle avoidance 
The same considerations outlined in the paragraph (5.2.2) have been applied to the 

subsequent simulations. 

In order to conduct the simulation, the following values were assigned to the key 

parameters: 

Table 5.4: Double layer parameters in DOA 

 Value Unit 
Prediction horizon 20 - 
Control horizon 2 - 
Sampling time  0.1 s 
Initial state [𝑥̇, 𝑦̇, 𝜓̇, 𝜓, 𝑋, 𝑌] [6.94̅, 0, 0, 0, 0, 3 ] [𝑚/𝑠, 𝑚/𝑠, 𝑟𝑎𝑑/𝑠, 𝑟𝑎𝑑, 𝑚, 𝑚] 
Upper bound high level [𝑎𝑦] [0.9 ∙ 9.81] [𝑚/𝑠2] 
Lower bound high level [ 𝑎𝑦] [−0.9 ∙ 9.81] [𝑚/𝑠2] 
Upper bound low level [ 𝑇, 𝛿] [890,0.61] [𝑁𝑚, 𝑟𝑎𝑑] 
Lower bound low level [ 𝑇, 𝛿] [−5100, −0.61] [𝑁𝑚, 𝑟𝑎𝑑] 
Velocity reference [m/s] 35/3.6 m/s 
Obstacle radius [m] 1 m 
Obstacle velocity [m/s] 25/3.6 m/s 
Safe distance [m] 2 m 
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The images below display the simulation results 

• Vehicle’s trajectory 

 
Figure 5.14: Double layer vehicle trajectory in DOA simulation 

• Velocity 

 
Figure 5.15: Double layer velocity in DOA simulation 
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• Torque 

 
Figure 5.16: Double layer torque in DOA simulation 

• Steering angle 

 
Figure 5.17: Double layer steering angle in DOA simulation 
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• Distance between the vehicle and the center of the obstacle 

 
Figure 5.18: Double layer distance between vehicle and obstacle in DOA simulation 
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Chapter 6 

Performance comparison 

6.1 Introduction  
In this chapter, a detailed comparison of the control schemes is provided, focusing on two 

main aspects: the execution time and driving comfort. The execution time analysis 

includes both the mean and maximum execution times, as these are crucial for evaluating 

the computational efficiency and ensuring real-time feasibility of each control 

architecture. The mean execution time offers insight into the average computational load, 

while the maximum execution time helps identify the worst-case scenarios that could 

affect performance. Additionally, the variance in execution times is also considered, as it 

highlights the consistency and predictability of the system. A lower variance indicates 

more stable computational performance, reducing the likelihood of unexpected delays 

during operation. Driving comfort is assessed through the smoothness of the generated 

trajectory and more specifically computing the lateral and longitudinal jerk. There are 

numerous studies that emphasize the importance of jerk in various fields, such as 

entertainment[24],[25], automotive[26] and elevator[27]. In the entertainment industry, 

particularly in amusement parks rides, controlling jerk is crucial to balance thrill and 

comfort for the passengers. Similarly, in the automotive sector, jerk is a critical parameter 

in the design of advanced driver-assistant system and autonomous driving, where 

passenger comfort is a key factor. Even in elevator design, jerk is carefully controlled to 

provide smoot acceleration and deceleration. 
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6.2 Execution time 
The execution time for each simulation was calculated using a MATLAB timer. The time 

measurement starts as soon as the solver begins the optimization procedure and ends when 

the optimal control solution is obtained. This time is recorded for each step of the 

simulation, providing a precise evaluation of how efficiently the solver computes the 

control inputs. The average, the mean and the variance of these values are then used to 

conduct the comparison of the computational efficiency. 

Static obstacle avoidance  

The analysis of execution times for the static obstacle avoidance reveals distinct 

differences between the two architectures, both in terms of speed and consistency. The 

mean execution time for the base architecture is 0.61s, whereas the double-layer system 

reduces this to 0.4s. The reduction offered by the double-layer approach signifies a more 

efficient handling of the computational demand. 

Looking at the maximum execution times provides further insight into the performance 

of each architecture. In the single layer architecture, the maximum execution time reaches 

1.77s, significantly higher than the 1.27s observed in the double-layer system. Excluding 

the initial optimization step, which tends to be more computationally intensive, the 

maximum execution time drops significantly to 0.68s. This difference suggests that, in 

critical situations, the double-layer architecture is more reliable, as it minimizes the 

potential for the delayed control actions, particularly during complex scenarios like 

obstacle avoidance. 

The variance in execution time is another crucial factor in assessing performance. The 

base architecture exhibits a variance of 0.0526, indicating a larger fluctuation in 

computational time. In contrast, the double-layer architecture shows a much smaller 

variance of 0.0132. This smaller value reflects the ability of the double-layer system to 

maintain consistent performance across multiple iterations, ensuring that even during 

complex computations, the control system operates within a predictable time frame. 
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The following graph illustrate the evolution of the base architecture execution time: 

 
Figure 6.1: Execution time of the single layer architecture in SOA and LC simulation 

The following graph illustrate the evolution of the double-layer architecture execution 

time: 

 
Figure 6.2: Execution time of the double layer architecture in SOA and LC simulation 

  



6 – Performance comparison 

55 
 

Table 6.1: Summary of execution time values in SOA and LC simulation 

 Single layer Double layer Unit 
Mean execution time 0,61 0,4 s 
Max execution time 1,77 1,27-0,68 s 
Variance 0,0526 0,0132 - 

 

Dynamic obstacle avoidance 

In the dynamic obstacle avoidance scenario, the comparison between the single and 

double-layer architectures again reveals significant differences in computational 

performance. For the base architecture, the mean execution time is 0,13s, whereas the 

double-layer approach achieves a reduced mean time of 0,067s. This improvement in 

speed is essential when considering the real-time nature of dynamic obstacle avoidance, 

where rapid response is essential to avoid collisions. 

The maximum execution time in the base architecture, however, is a major concern, 

reaching 2,63s. Such a delay could severely impact the system’s ability to react in a 

dynamic environment, particularly when the obstacle’s position changes rapidly. On the 

other hand, the double- layer system shows a much lower maximum execution time of 

0,81s. It is worth noting that this maximum time is further reduced to 0,18s when the first 

optimization step is excluded, highlighting the efficiency of the double-layer system in 

handling the majority of optimization cycles after the first step. This drop indicates that 

the double-layer architecture is more adept at maintaining responsiveness once the initial 

conditions have been optimized. 

The variance in execution times also support this observation. The base architecture has 

a variance 𝜎 = 0,032, indicating a wider fluctuation in computational time, which could 

result in inconsistent performance during critical avoidance maneuvers. By contrast, the 

double-layer system exhibits a variance 𝜎 of just 0,0018, demonstrating a much more 

consistent and reliable performance throughout the simulation. 
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The following graph illustrate the evolution of the base architecture execution time: 

 
Figure 6.3: Execution time of the double layer architecture in DOA simulation 

The following graph illustrate the evolution of the double-layer architecture execution 

time: 

 
Figure 6.4: Execution time of the double layer architecture in DOA simulation 

Table 6.2: Summary of time values in DOA simulation 

 Single layer Double layer Unit  
Mean execution time 0,13 0,067 s 
Max execution time 2,63 0,81-0,18 s 
Variance 0,032 0,0018 - 
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6.3 Driving comfort 
Driving comfort can initially be assessed by observing the generated vehicle trajectory. 

A smooth and stable path generally indicates a comfortable driving experience, whereas 

irregular or sudden changes in direction may suggest discomfort for passengers. 

The first image, depicting the zoomed trajectory generated by the base architecture, 

highlights some noticeable oscillations in the vehicle’s path. These oscillations suggest 

that the control system is struggling to maintain a smooth and consistent trajectory, likely 

due to the simultaneous handling of path planning and control input optimization. The 

result is a trajectory that, while functional, lacks the precision and smoothness desirable 

for a comfortable driving experience. 

 
Figure 6.5: Section of the vehicle trajectory generated by the single layer architecture 

In contrast, the second image, showcasing the zoomed trajectory generated by the double-

layer architecture, presents a far smoother trajectory. By decoupling the tasks of path 

planning and control input computation, the double-layer approach enables better 

handling of the vehicle’s dynamics, resulting in a more refined trajectory. This 

improvement not only enhances driving comfort but also reflects the efficiency of the 

architecture. 
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Figure 6.6: Section of the vehicle trajectory generated by the double layer architecture 

When comparing the two architectures’ behavior in static obstacle avoidance, notable 

differences emerge, particularly near the obstacle. 

For the base architecture, as the vehicle approaches the obstacle, the steering angle starts 

oscillating significantly, with values bouncing between the maximum and minimum 

bounds, indicating that the system is struggling to maintain stable control. This instability 

is also reflected in the torque, where sudden changes are observed, further emphasizing 

the high control effort required by the base architecture to navigate around the obstacle. 

Additionally, a small ripple is visible in the image (6.7) of the steering angle which is 

likely the cause of the oscillation in the generated trajectory. These fluctuations not only 

contribute to an uncomfortable driving experience, but also highlight inefficiencies in 

control execution. 
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Figure 6.7: Section of the steering angle generated by the single layer architecture while approaching the 

obstacle 

 
Figure 6.8: Section of the torque generated by the single layer architecture while approaching the 

obstacle 

In contrast, the double-layer architecture demonstrates far more consistent and refined 

control. The steering angle remains within a lower range, suggesting smoother handling. 

Similarly, the torque is much more controlled, with fewer sharp variations. The lower 

control effort indicates that the double-layer architecture is more effective in managing 

the vehicle’s trajectory and dynamics, minimizing sharp corrections and improving 

driving comfort. 
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Figure 6.9: Section of the steering angle generated by the double layer architecture while approaching 

the obstacle 

 
Figure 6.10: Section of the torque generated by the double layer architecture while approaching the 

obstacle 

However, a more precise evaluation of the driving comfort can be conducted by analyzing 

the jerk, which represent the rate of change of acceleration over time. Jerk is a critical 

measure in assessing the smoothness of a vehicle’s motion, as it captures sudden shifts in 

force that are often perceptible to passengers. High jerk values indicate rapid changes in 

acceleration, which can cause discomfort while driving, particularly in maneuvers like 

lane changes or obstacle avoidance.  
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By quantifying both lateral and longitudinal jerk, a more detailed understanding of the 

vehicle’s dynamics can be obtained. Lateral jerk affects the sideways forces experienced 

by passengers, while longitudinal jerk influences the forward and backward forces during 

acceleration and braking. A lower jerk is correlated with smoother, more comfortable 

driving, as the forces are applied in a more gradual and controlled manner. Through this 

detailed analysis, the overall performance of the control scheme can be more 

comprehensively evaluated. 

Static obstacle avoidance 

In comparing the lateral jerk between the two architectures for the static obstacle 

avoidance and lane centering, the base architecture shows a maximum value of 176,73 

[m/s3] and a variance 𝜎 = 11760, indicating significant fluctuations in the vehicle’s 

lateral motion. This higher jerk value reflects the system’s struggle to maintain a smooth 

trajectory, as observed in previous analyses. On the other hand, the double-layer 

architecture demonstrates a lower maximum lateral jerk of 163,75 [m/s3] and a much 

smaller variance 𝜎 = 2011. The reduced jerk and variance in the double-layer system 

indicate a smother control response, resulting in more stable and comfortable lateral 

movement during maneuvers. 

Below the two plots of the lateral jerk. 

 
Figure 6.11: Single layer lateral jerk in SOA and LC simulation 
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Figure 6.12: Double layer lateral jerk in SOA and LC simulation 

Turning to the longitudinal jerk, the base architecture exhibits a maximum value of 49,67 

[m/s3] and a variance 𝜎 = 73,19, again highlighting the more aggressive control efforts 

in acceleration and braking. The double-layer architecture, however, significantly 

outperforms the base system in this area, with a lower maximum longitudinal jerk of 

35,14 [m/s3] and a variance 𝜎 of just 32,81. This suggests that the double-layer 

architecture not only improves lateral smoothness but also ensures more controlled and 

comfortable longitudinal behavior, further contributing to a better overall driving 

experience. 

Below the two plots of the longitudinal jerk 

 
Figure 6.13: Single layer longitudinal jerk in SOA and LC simulation 
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Figure 6.14: Double layer longitudinal jerk in SOA and LC simulation 

Table 6.3:Summary of jerk values in SOA and LC simulation 

 Single layer Double layer Unit  
Lateral jerk 176,73 163,75 m/s3 

Variance 11760 2011 - 
Longitudinal jerk 49,67 35,14 m/s3 

Variance 73,19 32,81 - 
 

Dynamic obstacle avoidance 

In the dynamic obstacle scenario, comparing the lateral jerk between the two architectures 

shows slight differences. The single layer architecture presents an absolute maximum 

lateral jerk of 100,23 [m/s3] with a variance 𝜎 = 1641, reflecting noticeable variations in 

the vehicle’s lateral movements. The double-layer system, while having a slightly higher 

absolute maximum of 102,21 [m/s3], shows a much lower variance 𝜎 = 370,35 . This 

suggests that, although both systems reach similar peak of lateral jerk, the double-layer 

architecture provides a more consistent and controlled response with reduced oscillations. 
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Below the two plots of the lateral jerk. 

 

 
Figure 6.15: Single layer lateral jerk in DOA simulation 

 
Figure 6.16: Double layer lateral jerk in DOA simulation 

For the longitudinal jerk, the base architecture records an absolute maximum value of 20 

[m/s3] with a variance of 2,12, indicating a relatively controlled longitudinal movement. 

The double-layer implementation shows marginally higher maximum jerk at 22,05 [m/s3], 

with a variance 𝜎 = 2,92. Although the double-layer system exhibits slightly larger peak 

values in the longitudinal jerk, the increase is minimal, and the system still manages to 

maintain reasonable control and smoothness in both longitudinal and lateral directions. 



6 – Performance comparison 

65 
 

Below the two plots of the longitudinal jerk. 

 
Figure 6.17: Single layer longitudinal jerk in DOA simulation 

 
Figure 6.18: Double layer longitudinal jerk in DOA simulation 

Table 6.4: Summary of jerk values in DOA simulation 

 Single layer Double layer Unit  
Lateral jerk 100,23 102,21 m/s3 
Variance 1641 370,35 - 
Longitudinal jerk 20 22,05 m/s3 
Variance 2,12 2,92 - 
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Chapter 7 

Conclusions and future 

development 
This thesis has presented a comprehensive comparison of two nonlinear Model Predictive 

Control architecture, a single-layer and a double-layer system, with the aim of improving 

lane centering, obstacle avoidance and driving comfort in autonomous driving scenarios. 

Throughout the study, the focus was placed on analyzing both computational efficiency 

and driving comfort, which are critical aspects of control systems for advanced driver 

assistance systems (ADAS). 

In early stages of the thesis, the vehicle model was initially developed using Simulink[28], 

with the solver implemented separately as a MATLAB script. To run the models, the 

‘sim’ function[29] was used to call the Simulink file each time during the simulation 

process. However, this method proved to be highly inefficient, as Simulink had to be 

executed thousands of times within a single optimization cycle, significantly slowing 

down the simulation process. The inefficiency of this setup made it impractical to achieve 

the required performance. As a result, the entire simulation was moved into a MATLAB 

script, implementing the state evolution using a for loop and employing the Euler method 

for numerical integration. This approach bypassed Simulink entirely, optimizing the 

process and reducing computational overhead, allowing for faster simulation during the 

optimization. 

One of primary objectives was to evaluate the computational performance of the two 

architectures in various driving scenarios. The results showed that the double-layer 

architecture significantly outperformed the base one in terms of mean execution time. For 

static obstacle avoidance, the single-layer architecture had a mean execution time of 0,61s 

while the enhanced architecture reduced this to 0,4s. Similarly, for dynamic obstacle 

avoidance, the mean time of the first architecture was 0,13s compared to just 0,067s for 

the second architecture. On average, this represents a mean percentage of improvement 

of approximately 37% in the mean execution time. 

A crucial difference was also observed in the maximum execution times. In the static 

obstacle avoidance case, the base architecture experienced a maximum time of 1,77s, 

while the double layer system reached a maximum of 0,68s excluding the first execution. 
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The dynamic obstacle avoidance scenario also showed a drastic reduction in the 

maximum time, with the double-layer architecture decreasing from 2,63s to 0,81s, and 

even further to 0,18s when ignoring the first step. On average, this represents a mean 

percentage of improvement of approximately 77% in the max execution time. These 

results indicate that the double-layer architecture provides not only faster but more 

consistent performance, avoiding the larger fluctuations seen in the base system. 

The variance of execution time is another important factor, as it demonstrates the 

consistency of the system over multiple iterations. The variance in terms of static obstacle 

avoidance has been enhanced by a significant margin, namely 74%. Furthermore, the 

results of the dynamic obstacle avoidance simulation indicate an improvement of 94%. 

The lower variance in the double-layer system indicates that it is more precise and stable 

under varying conditions. 

In summary, the double-layer architecture showed superior computational performance, 

reducing both the mean and maximum execution times while maintaining a lower 

variance. This makes it a more suitable option for complex driving scenarios, especially 

when fast reactions and computational efficiency are needed. 

The second key aspect of the comparison focused on driving comfort, which was 

evaluated by examining the smoothness of the generated trajectories and the control 

efforts generated by the optimization process. Lateral and longitudinal jerk was then used 

to deepen the analysis. 

In the case of static obstacle avoidance, the base architecture exhibited noticeable 

oscillations in the generated trajectory. When analyzing the steering angle and torque near 

the obstacle, significant oscillations were observed as the control efforts bounced between 

maximum and minimum values. These oscillations not only indicate that the control 

system struggled to maintain a smooth trajectory but also resulted in more aggressive and 

less comfortable maneuvers for the vehicle. In contrast, the double-layer architecture 

produced a much smoother trajectory, with lower efforts and more consistent steering and 

torque values, minimizing the oscillations and providing a more stable and comfortable 

driving experience.  

The analysis was deepened by evaluating the lateral and longitudinal jerk, which 

represents the rate of change of acceleration and is a direct indicator of driving comfort. 

In the static obstacle avoidance scenario, the base architecture exhibited significant lateral 

jerk with notable variance, indicating sharp and rapid changes in lateral forces, which 

translate into uncomfortable movements for passengers. The double-layer system, on the 

other hand, reduced the maximum lateral jerk and had a significantly lower variance, 

showing that it handled the vehicle’s lateral dynamics much more smoothly. Similarly for 
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longitudinal jerk, the base system showed higher values, whereas the double layer system 

reduced these, again demonstrating smoother control inputs and a more comfortable ride. 

In the dynamic obstacle avoidance scenario, a similar pattern was observed. While the 

double-layer system showed a slight increase in maximum lateral jerk, it significantly 

reduced the variance by around 77%, indicating a much smoother and more consistent 

handling during the maneuver. For longitudinal jerk, although the double-layer 

architecture had a marginally higher peak value, the variance remained comparable, 

reflecting better control over longitudinal forces without negatively affecting driving 

comfort. 

The findings of this study clearly demonstrate the superiority of the double-layer NMPC 

architecture over the single-layer system, particularly in terms of execution time and 

driving comfort. The double-layer system not only reduced computation times but also 

delivered smoother and more stable control actions, making it an ideal solution for 

advanced autonomous driving systems where efficiency and passenger comfort are 

critical. 

While the results are promising, there is significant potential for further development and 

optimization of the control architecture. Future work could focus on the following areas: 

• Model in the loop simulation with enhanced plant dynamics: future studies could 

focus on developing a more sophisticated plant model that incorporates additional 

vehicle dynamics, such as pitch and suspension effects. This would provide a 

more accurate representation of the vehicle’s behavior, especially under dynamic 

driving conditions, enhancing the control system’s precision and increasing the 

validation value of this step. The model could also account for the nonlinear trend 

of the longitudinal force, as well as a realistic distribution of forces across all tires, 

ensuring that the control algorithms respond more effectively to varying road and 

driving conditions. 
• Real-time implementation: It is necessary to modify the control algorithm in order 

to facilitate real-time deployment. This would require integrating the system into 

a real-time framework, potentially using HIL simulations to ensure that the control 

architecture meets strict timing and computational constraints when running on 

actual embedded systems. 
• Embedded system coding: to make the control system practical for real-world 

applications, it must be implemented on an embedded system designed for 

automotive use. This would involve optimizing the control code to run efficiently 

on low-power, high-performance automotive processors, ensuring the system can 

handle real-time constraints while maintaining computational efficiency. 
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• Sensor integration: for real-world autonomous driving applications, the system 

must interact with sensors such as LIDAR, RADAR and GPS. Future work could 

focus on implementing the sensor fusion algorithms to provide more precise and 

reliable states estimation, which would enhance both the control performance and 

the system’s ability to respond to dynamic obstacles in real-time. 
• Validation with real-world data: while the simulations provide valuable insights, 

validation with real-world driving data and physical testing will be essential to 

ensure the robustness and reliability of the control system un diverse 

environments. Testing in real-world scenarios will provide important information 

on how the system handles different road conditions, vehicle loads and traffic 

situations. 
• Adaptive control strategies: to further enhance the control architecture, future 

research could explore adaptive control strategies that dynamically adjust to 

changing driving conditions. This could involve adjusting control horizons, 

weights, or even switching between control modes depending on the driving 

scenarios 
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