
Politecnico di Torino

Master’s degree in Mechatronic Engineering
A.y. 2023/2024

A Comparative Analysis of Two Model Predictive Control
Architectures for Autonomous Driving Systems

Supervisors: Candidate:
Prof. Alessandro RIZZO Manuel FISCATO
Eng. Francesco D’INTRONO - BrainTechnologies

I

II

Acknowledgements
Mi prendo queste piccolo spazio per ringraziare tutte le persone che mi hanno aiutato e

mi sono state vicine in questi ultimi anni ricchi di successi, sconfitte, momenti importanti

e momenti difficili. Vorrei partire ringraziando la mia famiglia che è stata sempre presente

nel momento del bisogno, sempre disponibile a portarmi e venire a prendere in stazione,

sempre pronta ad accogliermi a casa anche dopo mesi di lontananza con dei fantastici

pranzi e sempre disposta a fare qualcosa per rendermi felice. Grazie anche alla nonna che

mi è stata vicina, con dei messaggi, con delle chiamate e con il cibo che con tanto amore

preparava prima di ogni mia partenza. Non meno importante è la compagnia di casa,

partendo dalla componente più storica ci tengo a ringraziare Simone, Carlo, Jack e Massi

amici da una vita con i quali ho avuto la fortuna di crescere condividendo qualsiasi tipo

di situazione, semplici uscite settimanali, litigi, vacanze, campi scuola o semplici

discussioni, tutte affrontate con uno spiccato senso del rispetto, della coesione e

dell’amicizia. La seconda parte della compagnia anche se più recente è comunque riuscita

a concentrare negli ultimi anni una molteplicità di bei ricordi. Mi riferisco a Giorgia,

Arianna, Aurora e Nicole validissime ascoltatrici e consigliere, disponibili in qualsiasi

momento a parlarle, discutere e snocciolare anche il più piccolo dettaglio presente nelle

nostre vite. Grazie anche ai membri del team RoboTo, Paolo, Franz, Vittorio, Corrado,

Marco e Jhonny che mi hanno accolto fin da subito con un grandissimo entusiasmo

permettendomi di crescere a livello professionale e personale. Sono stati per quasi due

anni i migliori compagni di avventura che potessi immaginare, trasmettendomi la loro

infinita passione, dedizione e caparbietà. In ultima ringrazio l’azienda

BrainTechnologies, il mio relatore Francesco e il professore Alessandro Rizzo per la

disponibilità dimostrata durante tutto il percorso di tesi.

“Se cerchi di essere qualcuno prova con te stesso”

Salmo, Mic Taser

III

Abstract
This thesis presents a comparative analysis of two Nonlinear Model Predictive Control

(NMPC) architectures applied to autonomous driving for the automotive industry. In

response to the growing demand for reliable and efficient autonomous driving systems,

NMPC has emerged as a prominent control strategy, capable of handling both linear and

nonlinear constraints while predicting future states. The objective of this study is to

develop and evaluate two distinct NMPC architectures for lane centering and obstacle

avoidance. The key difference between the two architectures is that in the base

architecture, both path planning and control computation are performed by the same

NMPC, whereas in the double-layer NMPC, the higher layer handles path planning while

the lower layer computes the control inputs. The decision to use Model Predictive Control

for path planning stems from its model-based nature, this ensures that the generated path

is not only feasible but also dynamically consistent with the vehicle’s capabilities.

Detailed vehicle models, including a four wheeled model, a two-wheeled model, and a

point mass model, are developed starting from the vehicle dynamics and then used in

simulations. The two NMPC architectures are assessed for their efficacy in lane centering

and managing both static and dynamic obstacle avoidance. Performance is evaluated in

terms of computational efficiency, driving comfort, and overall control effectiveness. The

results demonstrate that while both architectures effectively manage vehicle control, the

double layer architecture exhibits superior performance, it is faster, produces smoother

trajectories, and performs better at higher velocities compared to the single-layer

architecture.

IV

V

Table of Contents
 List of figures……………………………………………………………………….....Ⅶ

 List of tables………………………………………………………………………….…Ⅹ

 Acronyms……………………………………………………………………………...Ⅺ

 Introduction ... 1

1.1 Motivations ... 1

1.2 Design choices .. 2

1.3 Thesis objectives .. 3

 Vehicle and environment modelling.. 4

2.1 Introduction .. 4

2.2 Nonlinear four-wheel model ... 6

2.3 Nonlinear two-wheel model ... 7

2.4 Point mass model .. 10

2.5 Tire model .. 11

2.6 Vehicle models – Validation .. 16

2.7 Environment models ... 23

 NMPC - Single layer ... 26

3.1 Introduction .. 26

3.2 Single layer NMPC architecture ... 26

3.3 Problem description .. 27

3.3.1 Static obstacle avoidance .. 29

3.3.2 Dynamic obstacle avoidance .. 30

3.3.3 Lane centering .. 32

VI

3.4 Single layer NMPC Controller – Formulation ... 32

 NMPC – Double layer ... 35

4.1 Introduction .. 35

4.2 Double layer NMPC architecture ... 35

4.3 High level MPC – Formulation .. 36

4.4 Low level MPC – Formulation ... 37

 Control schemes simulation .. 39

5.1 Introduction .. 39

5.2 Single layer – Results ... 40

5.2.1 Lane centering and static obstacle avoidance ... 40

5.2.2 Dynamic obstacle avoidance .. 42

5.3 Double layer – Results .. 46

5.3.1 Lane centering and static obstacle avoidance ... 46

5.3.2 Dynamic obstacle avoidance .. 48

 Performance comparison ... 52

6.1 Introduction .. 52

6.2 Execution time .. 53

6.3 Driving comfort .. 57

 Conclusions and future development .. 66

 Bibliography .. 70

VII

List of figures

Figure 2.1: ISO vehicle coordinate system ... 5

Figure 2.2: Four-wheel forces and reference frames .. 6

Figure 2.3: Two-wheel forces and reference frames .. 8

Figure 2.4: Point Mass reference frames .. 10

Figure 2.5: Tire model notation .. 11

Figure 2.6: Front wheels lateral force with different road adhesion coefficient 13

Figure 2.7: Rear wheels lateral force with different road adhesion coefficient 14

Figure 2.8: Graphical representation of slip angle, velocities and reference frames...... 14

Figure 2.9: Slip angle for low longitudinal velocity ... 16

Figure 2.10: Straightforward acceleration four-wheel model .. 17

Figure 2.11: Straightforward acceleration four-wheel model with initial yaw position

equal to 45° ... 17

Figure 2.12: Four-wheel model simulation with constant positive steering angle 18

Figure 2.13: Four-wheel model simulation with constant negative steering angle 18

Figure 2.14: Four-wheel slip angle with a constant positive steering angle 19

Figure 2.15: Four-wheel lateral force with a constant positive steering angle 19

Figure 2.16: Four-wheel slip angle with a constant negative steering angle 20

Figure 2.17: Four-wheel lateral force with a constant negative steering angle 20

Figure 2.18: Straightforward trajectory with constant velocity 21

Figure 2.19: Straightforward trajectory with constant velocity and initial yaw angle equal

to 45° .. 21

Figure 2.20: Curvilinear trajectory with positive lateral acceleration 22

Figure 2.21: Curvilinear trajectory with negative lateral acceleration 22

Figure 2.22: Section of the road boundaries points and fitting curves 23

Figure 2.23: Representation of global and body frames ... 24

Figure 2.24: Static obstacle and safe distance inside a road section 25

VIII

Figure 3.1: Single layer NMPC architecture .. 27

Figure 3.2: Distance computation between vehicle and obstacle 30

Figure 3.3: Representation of distances between body frame and lane boundaries 32

Figure 4.1: Double layer NMPC architecture ... 36

Figure 5.1: Single layer vehicle trajectory in SOA and LC simulation 40

Figure 5.2: Single layer velocity in SOA and LC simulation ... 41

Figure 5.3: Single layer torque in SOA and LC simulation ... 41

Figure 5.4: Single layer steering angle in SOA and LC simulation 42

Figure 5.5: Single layer vehicle trajectory in DOA simulation 43

Figure 5.6: Single layer velocity in DOA simulation ... 44

Figure 5.7: Single layer torque in DOA simulation.. 44

Figure 5.8: Single layer steering angle in DOA simulation ... 45

Figure 5.9: Single layer distance between vehicle and obstacle in DOA simulation 45

Figure 5.10: Double layer vehicle trajectory in SOA and LC simulation 46

Figure 5.11: double layer velocity in SOA and LC simulation 47

Figure 5.12: Double layer torque in SOA and LC simulation .. 47

Figure 5.13: Double layer steering angle in SOA and LC simulation 48

Figure 5.14: Double layer vehicle trajectory in DOA simulation 49

Figure 5.15: Double layer velocity in DOA simulation ... 49

Figure 5.16: Double layer torque in DOA simulation .. 50

Figure 5.17: Double layer steering angle in DOA simulation .. 50

Figure 5.18: Double layer distance between vehicle and obstacle in DOA simulation . 51

Figure 6.1: Execution time of the single layer architecture in SOA and LC simulation 54

Figure 6.2: Execution time of the double layer architecture in SOA and LC simulation

 .. 54

Figure 6.3: Execution time of the double layer architecture in DOA simulation 56

IX

Figure 6.4: Execution time of the double layer architecture in DOA simulation 56

Figure 6.5: Section of the vehicle trajectory generated by the single layer architecture 57

Figure 6.6: Section of the vehicle trajectory generated by the double layer architecture

 .. 58

Figure 6.7: Section of the steering angle generated by the single layer architecture while

approaching the obstacle .. 59

Figure 6.8: Section of the torque generated by the single layer architecture while

approaching the obstacle .. 59

Figure 6.9: Section of the steering angle generated by the double layer architecture while

approaching the obstacle .. 60

Figure 6.10: Section of the torque generated by the double layer architecture while

approaching the obstacle .. 60

Figure 6.11: Single layer lateral jerk in SOA and LC simulation 61

Figure 6.12: Double layer lateral jerk in SOA and LC simulation 62

Figure 6.13: Single layer longitudinal jerk in SOA and LC simulation 62

Figure 6.14: Double layer longitudinal jerk in SOA and LC simulation 63

Figure 6.15: Single layer lateral jerk in DOA simulation... 64

Figure 6.16: Double layer lateral jerk in DOA simulation ... 64

Figure 6.17: Single layer longitudinal jerk in DOA simulation 65

Figure 6.18: Double layer longitudinal jerk in DOA simulation 65

X

List of tables

Table 5.1: Single layer parameters for LC and SOA .. 40

Table 5.2: Single layer parameters for DOA .. 43

Table 5.3: Double layer parameters for LC and SOA .. 46

Table 5.4: Double layer parameters in DOA .. 48

Table 6.1: Summary of execution time values in SOA and LC simulation 55

Table 6.2: Summary of time values in DOA simulation .. 56

Table 6.3:Summary of jerk values in SOA and LC simulation 63

Table 6.4: Summary of jerk values in DOA simulation ... 65

XI

Acronyms

ADAS

 Advanced driver assistant system

MPC

 Model predictive control

NMPC

 Nonlinear model predictive control

ISO

 International organization of standardization

CoG

 Center of gravity

OSM

 Open street map

DSD

 Driving scenario designer

LC

 Lane centering

SOA

 Static obstacle avoidance

DOA

 Dynamic obstacle avoidance

HIL

 Hardware in the loop

LIDAR

 Light detection and ranging

XII

RADAR

 Radio detection and ranging

GPS

 Global positioning system

1

Chapter 1

Introduction

1.1 Motivations
In recent years, the automotive industry has seen a significant advancement in field of

advanced driver assistance systems. These systems aim to improve vehicle safety and

driving comfort by introducing automation features that reduce human error, one of the

leading causes of road accidents. ADAS is categorized into various levels, starting from

level 0, where no automation is present, up to level 5, representing full autonomous

driving capabilities. This classification, outlined by the society of automotive engineers,

helps distinguish the degree of autonomy and control present in a vehicle, with each level

adding more assistance and autonomy to driving task.

In level 1, the vehicle can assist with either steering or acceleration/braking, but not at the

same time. The driver remains fully responsible for all other driving tasks and must

always stay active. While at level 2, the vehicle can manage both steering and

acceleration/braking simultaneously. As vehicles progress to higher levels, automation

becomes increasingly capable of handling complex driving tasks, eventually allowing the

driver to detach completely under specific conditions. Achieving higher levels of

autonomy requires advanced control algorithms that can make safe and efficient decisions

in real-time, especially in scenarios involving potential collisions or obstacles.

The motivation behind the implementation of advanced driver assistance systems is

deeply rooted in improving road safety by mitigating human error, which is the leading

cause of traffic accidents. Distraction, fatigue and misjudgment frequently leads lead to

collisions and ADAS aims to minimize these risks through automation. Technologies like

sensors, cameras, machine learning and control algorithms enable quicker, more precise

responses than a human driver can typically provide. This is supported by a lot of studies

that report the reduction of incidents thanks to the ADAS [1], [2], [3], [4].

The data in [5] highlights the benefits of collision avoidance technologies, with a 50%

reduction in front-to-rear collisions with automatic emergency braking or a 78%

reduction in rear-end collisions thanks to a rear automatic braking system.

1 – Introduction

2

1.2 Design choices
MPC has been chosen because it has emerged as a widely adopted control technique in

the automotive industry thanks to its unique ability to manage multivariable systems,

optimize performance and handle complex constraints in real-time. Its popularity is

supported by numerous studies [6], [7], [8], [9] highlighting its application in various

vehicle subsystems, including spark-ignition engine speed control, vehicle stability

control, transmission and suspension.

One of the main advantages of MPC is its ability to predict the future behavior of a system

using models. By generating an optimal sequence of control actions over a finite horizon,

MPC also ensures the control of multivariable nonlinear systems. This makes it highly

effective in automotive applications, where systems are characterized by nonlinearities

and are often interconnected.

Given its flexibility and effectiveness in managing multivariable systems while respecting

constraints and system dynamics, MPC has become a core component in advanced

automotive control systems. Its application spans from traditional systems, already

mentioned, to more advanced domains, such as autonomous driving, where real-time

decision and optimization are crucial. All these features explain the motivation behind

choosing MPC as the control strategy for tasks like lane centering and obstacle avoidance.

However, despite these benefits, its computational burden remains a key challenge,

especially in real-time applications where adherence to deadline is essential. Solving the

optimization problem at each time step can be computationally intensive, particularly

when dealing with complex vehicle dynamics and tight constraints.

To address this challenge, the implementation of an enhanced architecture offers a

solution by distributing the computational workload across two layers. In this setup, the

higher layer handles the trajectory planning using a simpler model. The lower layer on

the other hand focuses on computing the control inputs with a more detailed model. This

hierarchical structure reduces the computational burden on each layer, allowing the

system to maintain high accuracy without sacrificing real-time feasibility.

A crucial factor in choosing the path planner algorithm[10] stays in the online or offline

generation of the path. Offline path planner generates a complete path before the vehicle

starts moving, typically using global knowledge of the environment. These planners work

well in structured environments, but they lack flexibility in dynamic situations such as

obstacle avoidance. In contrast, online path planners, like those using MPC [11],

1 – Introduction

3

continuously compute the optimal path as the vehicle moves, reacting to dynamic changes

in the environment.

In summary, the use of MPC for path planning was motivated by its ability to operate

online, making continuous adjustments based on data sampled over time. This flexibility,

combined with its capacity to optimize trajectories and respect dynamic constraints, made

MPC the optimal choice for achieving both safe and efficient path planning in

autonomous driving scenarios.

1.3 Thesis objectives
The main aim of this thesis is to develop an NMPC-based control framework capable of

handling key aspects of autonomous driving, specifically lane centering, static and

dynamic obstacle avoidance. In terms of lane centering the focus is on designing a control

system that ensures the vehicle maintains an optimal trajectory, minimizing deviations

from the middle point. For static and dynamic obstacle avoidance, the goal is to develop

an architecture that react quickly to both stationary and moving obstacles, ensuring the

vehicle can navigate safely around them.

By comparing two NMPC architectures, a single layer and more complex double-layer

system, this thesis evaluate the time efficiency and driving comfort provided by each

approach, offering insights into the trade-offs between computational complexity and

control performance.

4

Chapter 2

Vehicle and environment

modelling

2.1 Introduction
In the context of Nonlinear Model Predictive Control, accurate and detailed modeling of

vehicle dynamics is of critical importance. The control algorithm’s ability to predict

future states and compute optimal control inputs is directly tied to the quality of this

models. By providing an accurate representation of the vehicle’s physical behavior, the

models allow the NMPC to anticipate how the vehicle will respond to various inputs and

constraints. However, it is equally important to balance the complexity of the models

used, as MPC is already computationally intensive. Incorporating overly complex models

could worsen performance by increasing computational demands, potentially

compromising real-time control. Thus, the development of suitable vehicle dynamics

models [12] is not only a matter of accuracy but also efficiency, ensuring that the system

can operate effectively within the given computational constraints.

In this thesis, the simulation will account for a case study in which the vehicle is operated

in a real-world environment. Simulating the scenario requires generating both the

environmental data and the sensor data. This means that the road geometry, lane

boundaries and potential obstacles must be artificially created, while simulated sensors

provide continuous feedback on these elements.

It is essential to establish a clear reference frame to describe the vehicle’s motion. This

thesis adopts the ISO vehicle coordinate system (2.1), which is widely recognized for

defining the orientation and the positioning of vehicles in a standardized manner [13].

According to this standard, the X-axis points forward along the vehicle’s longitudinal

axis, the Y-axis extends to the left in lateral direction and the Z-axis points upward. In

2 – Vehicle and environment modelling

5

addition to the orientation of the axes the vehicle’s motion is described using the yaw

angle, denoted as 𝜓, which represents the rotation about the Z-axis.

Figure 2.1: ISO vehicle coordinate system

2 – Vehicle and environment modelling

6

2.2 Nonlinear four-wheel model
The nonlinear four-wheel model plays a crucial role in accurately simulating vehicle

dynamics. This model provides a comprehensive representation of the car’s behavior,

capturing the interactions between all the four wheels and the road, and incorporating the

roll dynamics within the yaw motion. This comprehensive representation ensures that the

simulation reflects real world behavior, allowing for more reliable analysis of the control

performances.

Figure 2.2: Four-wheel forces and reference frames

The dynamics of the system is described in a compact form by the following equation:

𝜉̇(𝑡) = f(𝜉(𝑡), 𝑢(𝑡)) (2.1)

where 𝜉(𝑡) represent the states vector [𝑥̇, 𝑦̇, 𝜓̇, 𝜓, 𝑋, 𝑌]
𝑇
 and 𝑢(𝑡) represent the input

vector [𝑇𝑓𝑙, 𝑇𝑓𝑟, 𝑇𝑟𝑙, 𝑇𝑟𝑟 , 𝛿]
𝑇
. In this context the state vector includes: the longitudinal

velocity and the lateral velocity in the body frame, the yaw rate and the yaw angle, and

the global frame positions. The input vector comprises the torque applied to each wheel

and the steering angle.

The notation of the torque must be clarified, the first subscript indicates whether the wheel

is in front or rear position. The second subscript indicates whether the wheel is in left or

right position. This notation is also applied to the forces.

The system’s dynamics with respect to the vehicle’s center of gravity and the coordinate

transformation from the body frame to the global frame are described by:

2 – Vehicle and environment modelling

7

𝑚𝑥̈ = 𝑚𝑦̇𝜓̇ + 𝐹𝑥𝑓𝑙
+ 𝐹𝑥𝑓𝑟

+ 𝐹𝑥𝑟𝑙
+ 𝐹𝑥𝑟𝑟

 (2.2𝑎)

𝑚𝑦̈ = −𝑚𝑥̇𝜓̇ + 𝐹𝑦𝑓𝑙
+ 𝐹𝑦𝑓𝑟

+ 𝐹𝑦𝑟𝑙
+ 𝐹𝑦𝑟𝑟

(2.2𝑏)

𝐼𝜓̈ = 𝑎 (𝐹𝑦𝑓𝑙
+ 𝐹𝑦𝑓𝑟

) − 𝑏 (𝐹𝑦𝑟𝑙
+ 𝐹𝑦𝑟𝑟

) + 𝑐 (−𝐹𝑥𝑓𝑙
+ 𝐹𝑥𝑓𝑟

− 𝐹𝑥𝑟𝑙
+ 𝐹𝑥𝑟𝑟

) (2.2𝑐)

𝑋̇ = 𝑥̇ cos 𝜓 − 𝑦̇ sin 𝜓 (2.2𝑑)

𝑌̇ = 𝑥̇ sin 𝜓 + 𝑦̇ cos 𝜓 (2.2𝑒)

where 𝑚 is the vehicle’s mass, 𝐼 is the inertia about the 𝑧 axis, 𝑎 is the distance between

the CoG and the front axle, 𝑏 is the distance between the CoG and the rear axle, and 𝑐 is

the distance between Cog and the wheel along 𝑦 axis of the body frame.

The forces 𝐹𝑥 and 𝐹𝑦 are the projection of the longitudinal (𝐹𝑙) and lateral (𝐹𝑐) tire forces

along fixed tire frame, and are computed as follow:

𝐹𝑥𝑓𝑙
= 𝐹𝑙𝑓𝑙

cos 𝛿 − 𝐹𝑐𝑓𝑙
sin 𝛿 (2.3𝑎)

𝐹𝑥𝑓𝑟
= 𝐹𝑙𝑓𝑟

cos 𝛿 − 𝐹𝑐𝑓𝑟
sin 𝛿 (2.3𝑏)

𝐹𝑥𝑟𝑙
= 𝐹𝑙𝑟𝑙

(2.3𝑐)

𝐹𝑥𝑟𝑟
= 𝐹𝑙𝑟𝑟

(2.3𝑑)

𝐹𝑦𝑓𝑙
= 𝐹𝑙𝑓𝑙

sin 𝛿 + 𝐹𝑐𝑓𝑙
cos 𝛿 (2.3𝑒)

𝐹𝑦𝑓𝑟
= 𝐹𝑙𝑓𝑟

sin 𝛿 + 𝐹𝑐𝑓𝑟
cos 𝛿 (2.3𝑓)

𝐹𝑦𝑟𝑙
= 𝐹𝑐𝑟𝑙

(2.3𝑔)

𝐹𝑦𝑟𝑟
= 𝐹𝑐𝑟𝑟

(2.3ℎ)

For the rear wheels the steering angle is assumed to be zero, simplifying the equations.

The longitudinal and lateral forces will be detailed in the chapter (2.5).

2.3 Nonlinear two-wheel model
The two-wheel model is a vital component of the Model Predictive Control algorithm,

designed to simplify the vehicle’s dynamics while rationing essential characteristics

needed for effective control computation. This model abstracts the complexities of the

full four-wheeled system by focusing on the primary dynamics of the vehicle, namely its

2 – Vehicle and environment modelling

8

longitudinal and lateral behaviors, along with its yaw motion. By employing this

simplified representation, the MPC can effectively compute control inputs and manage

vehicle responses without the computational burden of a full four-wheeled model.

Figure 2.3: Two-wheel forces and reference frames

The dynamic of the system is described in a compact form by the following equation:

𝜉̇(𝑡) = f(𝜉(𝑡), 𝑢(𝑡)) (2.4)

where 𝜉(𝑡) represent the states vector [𝑥̇, 𝑦̇, 𝜓̇, 𝜓, 𝑋, 𝑌]
𝑇
 and 𝑢(𝑡) represent the input

vector [𝑇𝑓 , 𝑇𝑟 , 𝛿]
𝑇
. In this context the state vector includes the longitudinal velocity and

the lateral velocity in the body frame, the yaw rate and the yaw angle, and the global

frame positions. The input vector comprises the torque applied to the front and rear wheels

and the steering angle.

As a consequence of the reduction in the number of wheels the system’s equations and

the coordinate transformation from the body frame to the global frame can be summarized

as:

𝑚𝑥̈ = 𝑚𝑦̇𝜓̇ + 2𝐹𝑥𝑓
+ 2𝐹𝑥𝑟

 (2.5𝑎)

𝑚𝑦̈ = −𝑚𝑥̇𝜓̇ + 2𝐹𝑦𝑓
+ 2𝐹𝑦𝑟

(2.5𝑏)

𝐼𝜓̈ = 2𝑎𝐹𝑦𝑓
− 2𝑏𝐹𝑦𝑟

(2.5𝑐)

2 – Vehicle and environment modelling

9

𝑋̇ = 𝑥̇ cos 𝜓 − 𝑦̇ sin 𝜓 (2.5𝑑)

𝑌̇ = 𝑥̇ sin 𝜓 + 𝑦̇ cos 𝜓 (2.5𝑒)

where 𝑚 is the vehicle’s mass, 𝐼 is the inertia about the 𝑧 axis, 𝑎 is the distance between

the CoG and the front axle, 𝑏 is the distance between the CoG and the rear axle and 𝑐 is

the distance, along 𝑦 axis of the body frame, between Cog and the wheel.

The forces 𝐹𝑥 and 𝐹𝑦 are the projection of the longitudinal (𝐹𝑙) and lateral (𝐹𝑐) tire forces

along fixed tire frame, and are computed as follow:

𝐹𝑥𝑓
= 𝐹𝑙𝑓

cos 𝛿 − 𝐹𝑐𝑓
sin 𝛿 (2.6𝑎)

𝐹𝑥𝑟
= 𝐹𝑙𝑟

(2.6𝑏)

𝐹𝑦𝑓
= 𝐹𝑙𝑓

sin 𝛿 + 𝐹𝑐𝑓
cos 𝛿 (2.6𝑐)

𝐹𝑦𝑟
= 𝐹𝑐𝑟

(2.6𝑑)

For the rear wheels the steering angle is assumed to be zero, simplifying the equations.

The longitudinal and lateral forces will be detailed in the chapter (2.5).

2 – Vehicle and environment modelling

10

2.4 Point mass model
The point mass model is employed to further simplify the vehicle dynamics, focusing on

high-level control tasks such as trajectory generation within the two-layer architecture.

Figure 2.4: Point Mass reference frames

The dynamics of the point mass can be summarized as:

𝜉̇(𝑡) = f(𝜉(𝑡), 𝑢(𝑡)) (2.7)

where 𝜉(𝑡) represent the states vector [𝑥̇, 𝑦̇, 𝜓, 𝑋, 𝑌]𝑇 and 𝑢(𝑡) represent the input 𝑎𝑦. In

this context the state vector includes the longitudinal velocity and the lateral velocity in

the body frame, the yaw angle and the global frame positions. The input vector is defined

as a single term and represents the lateral acceleration.

The equations are derived from the other models through the application of appropriate

simplifications. The longitudinal velocity is assumed to be constant, and the lateral

acceleration is defined solely in terms of the control input. The yaw velocity is then

derived as a consequence of the aforementioned choices. The equation (2.7) can be

decomposed into:

𝑥̈ = 0 (2.7𝑎)

𝑦̈ = 𝑎𝑦 (2.7𝑏)

𝜓̇ =
𝑎𝑦

𝑥̇
(2.7𝑐)

2 – Vehicle and environment modelling

11

𝑋̇ = 𝑥̇ cos 𝜓 − 𝑦̇ sin 𝜓 (2.7𝑑)

𝑌̇ = 𝑥̇ sin 𝜓 + 𝑦̇ cos 𝜓 (2.7𝑒)

2.5 Tire model
The tire model represents a crucial element in the simulation of vehicle dynamics as it

captures the interaction between the tires and the road surface. At the point of contact

between the tire and the road, three primary forces act: the vertical force, the longitudinal

force and the lateral force.

Figure 2.5: Tire model notation

The vertical force (𝐹𝑧) is computed by assuming a static and uniform distribution of the

vehicle’s mass. In this context, the force is directly proportional to the mass (𝑚) and the

gravitational force (𝑔) with adjustments based on the positioning of the center of gravity

with respect to the front and rear axles.

For the four-wheel model we can write:

𝐹𝑧𝑓𝑙
= 𝐹𝑧𝑓𝑟

=
𝑏𝑚𝑔

2(𝑎 + 𝑏)
(2.8𝑎)

𝐹𝑧𝑟𝑙
= 𝐹𝑧𝑟𝑟

=
𝑎𝑚𝑔

2(𝑎 + 𝑏)
(2.8𝑏)

2 – Vehicle and environment modelling

12

While for the two-wheel model the forces are:

𝐹𝑧𝑓
=

𝑏𝑚𝑔

𝑎 + 𝑏
(2.9𝑎)

𝐹𝑧𝑟
=

𝑎𝑚𝑔

𝑎 + 𝑏
(2.9𝑏)

The longitudinal force (𝐹𝑙) represents the force generated by the tire in the direction of

the vehicle’s movement, primarily responsible for acceleration and braking. In this thesis,

a zero-slip condition is assumed, meaning that the tire maintains full traction with the

road without any relative motion between the tire and the ground. This assumption

simplifies the calculation of longitudinal forces by focusing on the ideal case of perfect

grip. The force can be obtained by dividing the traction, 𝑇 > 0, or braking torque, 𝑇 < 0,

by the wheel radius 𝑟𝜔:

𝐹𝑙 =
𝑇

𝑟𝜔

(2.10)

The Pacejka formula [14] was initially considered for the lateral force (𝐹𝑐) due to its

proven ability to model tire behavior under a wide range of condition. This model (2.11)

expresses the tire force as a nonlinear function of slip angle using a set of coefficients,

such as stiffness (𝐵𝑦), shape (𝐶𝑦), peak (𝐷𝑦) and curvature factor (𝐸𝑦), that are typically

derived from real-world tire testing. These coefficients are essential for accurately fitting

the model to the specific tires and some studies [15], [16] explore different methodologies

for obtaining them through experimental data. Since these coefficients were unavailable

for this study, the use of the Pacejka formula was not feasible.

𝐹𝑐 = (𝐷𝑦 sin[𝐶𝑦 arctan{𝐵𝑦𝛼𝑦 − 𝐸𝑦(𝐵𝑦𝛼𝑦 − arctan(𝐵𝑦𝛼𝑦))}] + 𝑆𝑉𝑦
)𝐺𝑦𝑘 + 𝑆𝑉𝑦𝑘

 (2.11)

Consequently, the so-called Fiala model [17] was identified as potential alternative, it is

grounded in theoretical principles and does not depend on empirical coefficients, making

it suitable choice for this study.

The following section presents the formula employed in this thesis.

𝐹𝑐 = min (𝜇𝐹𝑧, max (−𝜇𝐹𝑧, − 𝐶 tan(𝛼) +
𝐶2 |tan(𝛼)| tan(𝛼)

3𝜇𝐹𝑧
−

𝐶3 tan(𝛼)3

27𝜇2𝐹𝑧
2

)) (2.12)

where 𝜇 is the road tire friction coefficient, 𝐶 is the cornering stiffness, 𝛼 is the slip angle

and 𝐹𝑧 is the vertical force.

In the linear region, for small values of the slip angle, the lateral force is proportional to

𝛼. This behavior is consistent with a tire’s initial response, where there is still sufficient

2 – Vehicle and environment modelling

13

contact between the tire and the road surface, and the tire behaves elastically. The tire is

capable of generating increasing lateral forces as long as the slip angle remains within

this range. As 𝛼 increases the lateral force reaches a peak and then saturates. This occurs

when the tire’s contact patch starts to slide and the maximum lateral force that can be

generated by the tire is reached. Beyond this point, the force begins to level off reflecting

the tire’s limit of adhesion to the road. It is also interesting to observe how this force

varies when the road adhesion coefficient changes, as different surfaces (dry, wet, icy)

can significantly influence the tire’s behavior. In this work an optimal condition is

considered with 𝜇 = 0.9. A visual representation of this relationship is reported below.

Figure 2.6: Front wheels lateral force with different road adhesion coefficient

The lateral force generated by the tire is directly dependent on the vertical force (𝐹𝑧),

which represents the load on the tire. In general, a higher vertical force allows the tire to

generate a greater lateral force, improving the vehicle’s ability to handle lateral

maneuvers. In this case, since the center of gravity is located near the front axle, the

vertical force acting on the front tires is greater compared to the rear ones. As a result, the

rear tires can produce a lower lateral force, reducing their contribution to the vehicle’s

cornering capability. The following figure illustrates the above relationship.

2 – Vehicle and environment modelling

14

Figure 2.7: Rear wheels lateral force with different road adhesion coefficient

The slip angle 𝛼 is a key parameter in tire dynamics, representing the angle between the

direction in which the wheel is pointing and the actual path the tire follows as it moves

along the road. Mathematically it can be expressed as:

𝛼 = arctan
𝑣𝑐

𝑣𝑙

(2.13)

Figure 2.8: Graphical representation of slip angle, velocities and reference frames

2 – Vehicle and environment modelling

15

The longitudinal and lateral wheel velocities can be computed from:

𝑣𝑐 = 𝑣𝑦 cos 𝛿 − 𝑣𝑥 sin 𝛿 (2.14𝑎)

𝑣𝑙 = 𝑣𝑦 sin 𝛿 + 𝑣𝑥 cos 𝛿 (2.14𝑏)

The slip angle and the velocities can be computed for all four wheels or for the two

wheels, depending on the model used. The following equations allow for the calculation

of the aforementioned values.

For the four-wheel model:

𝑣𝑥𝑓𝑙
= 𝑣𝑥𝑟𝑙

= 𝑥̇ − 𝑐𝜓̇ (2.15𝑎)

𝑣𝑥𝑓𝑟
= 𝑣𝑥𝑟𝑟

= 𝑥̇ + 𝑐𝜓̇ (2.15𝑏)

𝑣𝑦𝑓𝑙
= 𝑣𝑦𝑓𝑟

= 𝑦̇ + 𝑎𝜓̇ (2.15𝑐)

𝑣𝑦𝑟𝑙
= 𝑣𝑦𝑟𝑟

= 𝑦̇ − 𝑏𝜓̇ (2.15𝑑)

While for the two-wheel model:

𝑣𝑥𝑓
= 𝑣𝑥𝑟

= 𝑥̇ (2.16𝑎)

𝑣𝑦𝑓
= 𝑦̇ + 𝑎𝜓̇ (2.16𝑏)

𝑣𝑦𝑟
= 𝑦̇ − 𝑏𝜓̇ (2.16𝑐)

Let’s write the formula for the slip angle of the front left wheel of the four-wheel model

substituting (2.15a) and (2.15c) into (2.14a) (2.14b) and the resulting equations into

(2.13):

𝛼𝑓𝑙 = arctan
(𝑦̇ + 𝑎𝜓̇) cos 𝛿 − (𝑥̇ − 𝑐𝜓̇) sin 𝛿

(𝑦̇ + 𝑎𝜓̇) sin 𝛿 + (𝑥̇ − 𝑐𝜓̇) cos 𝛿
(2.17)

Assuming a zero-steering angle i.e. real-life practical case

𝛼 = arctan
(𝑦̇ + 𝑎𝜓̇)

(𝑥̇ − 𝑐𝜓̇)
(2.18)

Analyzing the formula (2.18), in static condition when the longitudinal velocity is close

to zero, the argument of the arctan goes to infinity and the slip angle increases reaching a

value of 90°. This results in a critical problem resulting in unrealistic dynamics and

numerical instability. To avoid this, the longitudinal velocity is kept above zero in the

2 – Vehicle and environment modelling

16

simulations, ensuring that the slip angle remains within a manageable range, thereby

maintaining the accuracy of the vehicle’s dynamic response.

Figure 2.9: Slip angle for low longitudinal velocity

2.6 Vehicle models – Validation
Model validation is crucial to verify the accuracy and reliability of the vehicle models

developed in this study. This chapter outlines the approach used to validate the three

models through a series of simulations. The time evolution of the model has been

simulated using Euler method with discrete time steps, ensuring computational simplicity

while maintaining acceptable accuracy. The evolution over time of the state variable is

represented thanks to the following formula:

𝜉̇(𝑘) = 𝑓(𝜉(𝑘), 𝑢(𝑘)) (2.19𝑎)

𝜉(𝑘 + 1) = 𝜉(𝑘) + 𝑇𝑠 𝜉̇ (2.19𝑏)

The four-wheel wheel and the two-wheel models are tested across four different

scenarios, starting from an initial position equal to (𝑋, 𝑌) = (1,1) and with an initial

longitudinal velocity of 10m/s.

2 – Vehicle and environment modelling

17

1. Torque applied to the rear wheels, no steering angle and 0° yaw angle: this

simulation assesses the model’s performance on a straightforward acceleration.

Figure 2.10: Straightforward acceleration four-wheel model

2. Torque applied to the rear wheels, no steering angle and 45° yaw angle: this

scenario introduces an initial yaw angle of 45° evaluating the model’s response to

a different yaw angle while maintaining a straight path

Figure 2.11: Straightforward acceleration four-wheel model with initial yaw position equal to 45°

2 – Vehicle and environment modelling

18

3. Torque applied to the rear wheels, 3° steering angle and 0° yaw angle: this test

examines the model’s performance with a small positive steering angle

Figure 2.12: Four-wheel model simulation with constant positive steering angle

4. Torque applied to the rear wheels, -3° steering angle and 0° yaw angle: this

simulation assesses the model’s behavior when steering in the other direction.

Figure 2.13: Four-wheel model simulation with constant negative steering angle

For simplicity only the pictures of the four-wheel model are shown but the two-wheel

model also undergoes the same tests.

In addition to analyzing the vehicle’s path, the validation process also includes examining

the slip angle and the lateral force.

2 – Vehicle and environment modelling

19

For the first two scenarios where the steering angle is zero, the slip angle and the lateral

force are expected to remain close to zero. Since the vehicle is traveling in a straight line

without any steering input, there should be no significant lateral acceleration, resulting in

negligible lateral forces and slip angle.

However, in the third and fourth scenarios, where a small steering angle is introduced,

the slip angle and the lateral force are expected to show a non-zero trend. Specifically:

• In the third scenario, a negative slip angle and corresponding lateral forces are

generated as the vehicle turns slightly to the left.

Figure 2.14: Four-wheel slip angle with a constant positive steering angle

Figure 2.15: Four-wheel lateral force with a constant positive steering angle

2 – Vehicle and environment modelling

20

• In the fourth scenario, the slip angle and lateral forces should mirror those from

the third case but with opposite values, as the vehicle turns to the right

Figure 2.16: Four-wheel slip angle with a constant negative steering angle

Figure 2.17: Four-wheel lateral force with a constant negative steering angle

For the point mass model, the same four test scenarios are conducted, but instead of

manipulating the steering angle and the torque, the lateral acceleration is controlled

directly. This model operates under the assumption of constant longitudinal velocity,

which is set to 10m/s in all cases.

2 – Vehicle and environment modelling

21

The tests are structured as follows:

1. Zero lateral acceleration and 0° yaw angle

Figure 2.18: Straightforward trajectory with constant velocity

2. Zero lateral acceleration and 45° yaw angle

Figure 2.19: Straightforward trajectory with constant velocity and initial yaw angle equal to 45°

2 – Vehicle and environment modelling

22

3. Positive acceleration and 0° yaw angle

Figure 2.20: Curvilinear trajectory with positive lateral acceleration

4. Negative lateral acceleration and 0° yaw angle

Figure 2.21: Curvilinear trajectory with negative lateral acceleration

The theoretical predictions are well supported by the analysis of the graphs. These results

confirm the accuracy, validity and reliability of the models under diverse circumstances.

Having validated all the models, it is possible to proceed with the other stages.

2 – Vehicle and environment modelling

23

2.7 Environment models
The environment model is created using data from OpenStreetMap [18] and MATLAB’s

DrivingScenarioDesigner [19]. OSM allows the selection of specific geographic areas,

providing real-world road data such as lane boundaries and road geometry. After

importing the chosen area into DSD, individual roads of interest can be specifically

selected and refined for use in simulations.

Points representing road boundaries were generated from the selected road using a

MATLAB function ‘roadBoundaries’[20]. To ensure a smooth and continuous road

representation a spline function [21], that returns a piecewise polynomial structure, was

applied to these points. This method enables precise evaluation of the vehicle’s position

relative to the road boundaries at any location, as the spline provides interpolation

between the points which are sampled every 2-3 meters.

The chosen road is a double-lane street. The aforementioned process generates points

only for the road boundaries. The middle lane is calculated as the mean between the two

boundaries.

Figure 2.22: Section of the road boundaries points and fitting curves

All the points concerning the road bounds are generated with reference to a global frame.

In a real-world scenario, such data would be collected by sensors mounted on the vehicle.

To simulate this, a frame transformation is applied to convert the global coordinates into

the body’s frame. The formulas applied are explained below.

2 – Vehicle and environment modelling

24

Figure 2.23: Representation of global and body frames

The transformation between the body frame (ℛ𝑏) and the absolute frame (ℛ𝑎) can be

uniquely characterized by a rotation matrix and a translation vector.

𝑅𝑏
𝑎 = [

cos 𝜓 − sin 𝜓 0
sin 𝜓 cos 𝜓 0

0 0 1

] (2.20𝑎)

𝑡𝑎𝑏
𝑎 = [

𝑋
𝑌
𝑍

] (2.20𝑏)

where 𝜓 is the yaw angle and 𝑋, 𝑌, 𝑍 represent the position of the vehicle in the absolute

frame.

Let’s simplify the computation removing the 𝑧 coordinate, since it is negligible for our

purpose. Now we can write the formula that transforms the coordinate of a point in the

body frame into the global frame:

[
𝑋𝑎

𝑌𝑎] = 𝑡𝑎𝑏
𝑎 + 𝑅𝑏

𝑎 [𝑋𝑏

𝑌𝑏] (2.21)

For what we want to achieve, the reverse of the previous formula is needed.

𝑅𝑎
𝑏 = (𝑅𝑏

𝑎)−1 (2.22𝑎)

𝑡𝑏𝑎
𝑏 = −𝑅𝑎

𝑏𝑡𝑎𝑏
𝑎 (2.22𝑏)

2 – Vehicle and environment modelling

25

Finally:

[𝑋𝑏

𝑌𝑏] = 𝑡𝑏𝑎
𝑏 + 𝑅𝑎

𝑏 [
𝑋𝑎

𝑌𝑎] (2.23)

To conclude the environment modelling, the obstacle representation is discussed. The

obstacles are represented in simplified forms, such as circles, which makes their

integration into the simulation more computationally efficient. This circular

approximation allows for easy calculation of distances between the vehicle and the

obstacles, a critical element in both static and dynamic obstacle avoidance scenarios. The

size, the position and the safe distance are key parameters and their role in the simulation

is to create constraints for the NMPC and ensuring safe navigation around them. For

dynamic obstacles, their velocities are also incorporated.

Figure 2.24: Static obstacle and safe distance inside a road section

26

Chapter 3

NMPC - Single layer

3.1 Introduction
Model Predictive Control operates by predicting the future behavior of the system over a

specified time horizon and calculating control inputs to optimize performance criteria

while respecting system constraints. The core principle is the iterative optimization

process: at each time step, the current state of the plant is used to predict future states, a

cost function is minimized to find the optimal control sequence that respect the constraints

and only the first control input is applied. This process repeats as new data becomes

available.

The idea is to begin with a base NMPC architecture and use it as a benchmark for further

comparison. This approach is helpful because the implementation is more

straightforward, allowing for a clear starting point and a reference for evaluating more

complex architectures. In all the implementations the MATLAB solver ‘fmincon’ [22] is

used to solve the constrained nonlinear multivariable control problem.

3.2 Single layer NMPC architecture
The base nonlinear Model Predictive Control architecture is designed to take specific

inputs. The references are the desired vehicle velocity, the position of potential obstacle

and the road boundaries. These inputs guide the control strategy, ensuring the vehicle

maintains lane centering while avoiding obstacles.

In this setup, the plant is simulated running the nonlinear four-wheel model. The NMPC

controller on the other hand operates based on a simplified two-wheel model.

3 – NMPC – Single layer

27

Figure 3.1: Single layer NMPC architecture

3.3 Problem description
The general formulation of a model predictive control problem can be expressed as an

optimization problem, where the goal is to minimize a cost function over a prediction

horizon, subject to system dynamics and constraints. The MPC problem is typically

formulated as follows:

min 𝐽 = ∑ (𝑓(𝜉𝑘, 𝑢𝑘) + 𝑓𝑓(𝜉𝑁𝑝)

𝑁𝑝−1

𝑖=0

(3.1)

Where:

• J is the total cost
• 𝑓(𝜉𝑘, 𝑢𝑘) is the running cost function that penalizes deviation from the reference

trajectory and control effort at each time step k
• 𝑓𝑓(𝜉𝑁𝑝) is the terminal cost that penalizes the final state 𝜉𝑁𝑝

 at the end of the

prediction horizon

Subject to:

1. System dynamics: the future states of the system are governed by the discrete

vehicle dynamics model
𝜉𝑘+1 = 𝑓(𝜉𝑘, 𝑢𝑘) (3.2)

3 – NMPC – Single layer

28

Where:
• 𝜉𝑘 is the state vector at time step k
• 𝑢𝑘 is the control input vector at time step k
• 𝑓(𝜉𝑘, 𝑢𝑘) represent the system dynamics, in this specific case the two-

wheel dynamics
2. Initial conditions:

𝜉0 = 𝜉𝑘 (3.3)
Where 𝜉𝑘 is the current state of the vehicle at the start of the optimization.

3. Control constraints
𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥 (3.4)

The constraint ensure that the control input remain within allowable bounds.

At each time step, the optimization problem is solved using an appropriate numerical

solver, such as MATLAB fmincon. The basic syntax of the function is:

𝑥 = 𝑓𝑚𝑖𝑛𝑐𝑜𝑛(𝑓𝑢𝑛, 𝑥0, 𝐴, 𝑏, 𝐴𝑒𝑞, 𝑏𝑒𝑞, 𝑙𝑏, 𝑢𝑏, 𝑛𝑜𝑛𝑙𝑐𝑜𝑛, 𝑜𝑝𝑡𝑖𝑜𝑛𝑠) (3.5)

Where 𝑓𝑢𝑛 represents the objective function, the variable 𝑥0 denotes the initial guess for

the optimization process, the parameters A and b define linear inequality constraint in the

form 𝐴𝑥 ≤ 𝑏, similarly 𝐴𝑒𝑞 and 𝑏𝑒𝑞 define linear equality constraints 𝐴𝑒𝑞𝑥 = 𝑏. To

further constrain the solution, 𝑙𝑏 and 𝑢𝑏 define the lower and the upper bounds for the

optimized variables, 𝑛𝑜𝑛𝑙𝑐𝑜𝑛 is used for nonlinear constraints and finally 𝑜𝑝𝑡𝑖𝑜𝑛𝑠

provides solver settings such as tolerance, step size and algorithm type allowing the user

to fine-tune the optimization process to balance computational efficiency with solution

accuracy. In this implementation, the standard options for the MATLAB solver were

adjusted to optimize performance. Specifically, the maximum number of function

evaluations was increased to 5000 to ensure the solver had enough iterations to find

accurate solution within the system’s constraints. Additionally, the step tolerance was

increased from 10-10 to 10-4. The reasoning behind this adjustment was that the default

value led to unnecessarily long computation times without a corresponding improvement

in the solution quality. By setting the tolerance to 10-4, the balance between solution

accuracy and computational efficiency was better aligned with the objectives of the

control system, ensuring faster convergence while maintaining the necessary performance

standards.

Once the solver finds the minimum the optimal values are returned inside the vector 𝑥 ,

in our specific case the values are the control inputs 𝑢1, 𝑢2, ⋯ , 𝑢𝑁𝑝
. Exclusively the first

element 𝑢1 is applied to the system, as the receding horizon logic sudgests [23].

3 – NMPC – Single layer

29

In this implementation, the receding horizon approach is simulated since there is no real

vehicle to sample over time. Instead, the plant model is used to simulate the system. The

process involves passing the initial state and the first optimal control to a function that,

using the four-wheel model, compute the next state vector, which will then be imposed

as the new starting point for the successive optimization. Additionally, the optimal control

vector is updated by shifting it to the left. The first input of the new initial condition for

the optimal control sequence becomes 𝑢2, while the last element is set equal to 𝑢𝑁𝑝
. This

ensures continuity in the control actions over the horizon.

The selected cost function is a quadratic cost function. It minimizes the weighted sum of

the tracking error and the control effort.

 𝐽 = ∑(𝜉𝑟𝑒𝑓 − 𝜉(𝑖|𝑡))𝑇𝑄(

𝑁𝑝

𝑖=0

𝜉𝑟𝑒𝑓 − 𝜉(𝑖|𝑡)) + 𝑢(𝑖|𝑡)𝑇𝑅 𝑢(𝑖|𝑡) (3.6)

Note that the penalization factor of the prediction horizon has not been considered.

The first tests were done using only a single prediction horizon. This allowed for a simpler

setup, as both the prediction of the future states and the computation of the control inputs

were done over the same horizon. However, after running initial tests, it became clear that

using a single horizon increases computational complexity without significant

improvement. The choice of implementing both prediction and control horizon ensures a

balance between performance and computational efficiency. The control horizon

determines how many control inputs are optimized. A shorter control horizon reduces the

computational load without affecting optimal control. This is based on the principle that

the most effective control actions are determined in the initial steps, while subsequent

steps are less impactful. To correctly simulate the dynamics over the entire prediction

horizon a new input vector will be constructed as follow:

𝑢 = [𝑢1, 𝑢2, ⋯ , 𝑢𝑁𝑐
, 𝑢𝑁𝑐+1, ⋯ , 𝑢𝑁𝑝

] (3.7)

where the first 𝑁𝑐 values are those computed by the optimizer while the remaining values

are set equal to 𝑢𝑁𝑐
.

3.3.1 Static obstacle avoidance
The obstacle is simulated with a circle, and to ensure avoidance, the distance vector that

connect the vehicle to the center of the obstacle is continuously computed. Since the

objective is not only to bypass the obstacle but also to maintain a safe distance, the

3 – NMPC – Single layer

30

constraint formulation incorporates this additional safety parameter. This ensures that the

vehicle maintains a predefined buffer zone around the obstacle, rather than simply

avoiding a collision. The obstacle is treated as a hard constraint, so the solver only

considers solution that respect this condition.

Figure 3.2: Distance computation between vehicle and obstacle

(𝑋 − 𝑜𝑏𝑠𝑥𝑐)2 + (𝑌 − 𝑜𝑏𝑠𝑦𝑐)
2

≥ (𝑜𝑏𝑠𝑟 + 𝑠𝑎𝑓𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)2 (3.8)

Within the ‘nonlcon’ function of the ‘fmincon’ solver, the constraint has been developed

in the following way: since 𝑐(𝑥) is the vector of nonlinear inequality constraints evaluated

at 𝑥 and fmincon attempts to satisfy 𝑐(𝑥) ≤ 0 for all entries, the inequality (3.8) must be

rephrased:

𝑐 = [−(𝑋 − 𝑜𝑏𝑠𝑥𝑐).2− (𝑌 − 𝑜𝑏𝑠𝑦𝑐).2+ (𝑜𝑏𝑠𝑟 + 𝑠𝑎𝑓𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)2]
𝑇

(3.9)

where 𝑋 𝜖 ℝ𝑁𝑝 and 𝑌 𝜖 ℝ𝑁𝑝 are the vectors that contain the longitudinal and lateral

coordinates of the vehicle in the global frame, 𝑜𝑏𝑠𝑥𝑐 and 𝑜𝑏𝑠𝑦𝑐 are the coordinates of the

obstacle position, 𝑜𝑏𝑠𝑟 is the obstacle radius and 𝑠𝑎𝑓𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the value that defines

how much distance you want to keep from the obstacle.

3.3.2 Dynamic obstacle avoidance
Dynamic obstacle avoidance requires a more sophisticated approach compared to static

obstacles, as the vehicle must anticipate the obstacle’s future positions in addition to its

current location. In this chapter dynamic obstacles are considered under the assumption

3 – NMPC – Single layer

31

that the speed of the obstacle remains constant throughout the prediction horizon. To

handle this, the future positions of the obstacle are simulated within the ‘nonlcon’

function of the solver, taking into account its motion over time. This allows the controller

to predict potential collisions and adjust the vehicle’s path accordingly. The computation

of distances between the vehicle and the obstacle becomes more complex due to the need

to account both predictions. Unlike static obstacles, where the obstacle is considered as

single and fixed point, here, both 𝑜𝑏𝑠𝑥𝑐 and 𝑜𝑏𝑠𝑦𝑐 are vectors.

Hence, computing:

𝑐 = [−(𝑋 − 𝑜𝑏𝑠𝑥𝑐).2− (𝑌 − 𝑜𝑏𝑠𝑦𝑐).2+ (𝑜𝑏𝑠𝑟 + 𝑠𝑎𝑓𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)2]
𝑇

(3.10)

would not fully capture the interactions between the vehicle and the obstacle since the

result is a vector 𝑐 ∈ ℝ𝑁𝑝 of distances between the i-th prediction of the vehicle and the

i-th prediction of the obstacle. Applying this constraint the vehicle will start the path

replanning only when the vehicle reaches the actual obstacle, losing the ability to act in

advance.

The initial solution involved reversing the vector of predicted obstacle positions and

calculating the difference between the vehicle’s last prediction and the obstacle’s first

position, continuing in this manner for all subsequent predictions. This method provided

a simple yet effective solution for managing the first part of the overtaking maneuver.

However, while this approach performed well at the start, the vehicle’s trajectory

exhibited noticeable oscillations during the overtaking, leading to a less smooth path.

To provide an accurate representation of the relationship between the predicted positions

of the vehicle and the obstacle, a distance matrix 𝑐 ∈ ℝ𝑁𝑝×𝑁𝑝 is computed. This matrix

compares each predicted position of the vehicle with each predicted position of the

obstacle across the entire prediction horizon, ensuring that the optimization process

considers all possible interactions over time to effectively avoid the obstacle.

The resulting inequality constraint, in a matrix form can be expressed as follows:

𝑐𝑚𝑎𝑡𝑟𝑖𝑥 = [−(𝑋 − 𝑜𝑏𝑠𝑥𝑐
𝑇).2− (𝑌 − 𝑜𝑏𝑠𝑦𝑐

𝑇).2+ (𝑜𝑏𝑠𝑟 + 𝑠𝑎𝑓𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)2] (3.11)

Where 𝑋 𝜖 ℝ𝑁𝑝 and 𝑌 𝜖 ℝ𝑁𝑝 are the vectors that contain the longitudinal and lateral

coordinates of the vehicle in the global frame, 𝑜𝑏𝑠𝑥𝑐 𝜖 ℝ𝑁𝑝 and 𝑜𝑏𝑠𝑦𝑐 𝜖 ℝ𝑁𝑝 are the

vectors that contain the coordinates of the obstacle position, 𝑜𝑏𝑠𝑟 is the obstacle radius

and 𝑠𝑎𝑓𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the value that defines how much distance you want to keep from

the obstacle.

3 – NMPC – Single layer

32

3.3.3 Lane centering
Lane centering is formulated as a soft constraint within the Model Predictive Control

framework. Instead of being strictly enforced, it is included in the cost function, allowing

the solver to minimize the deviation from the lane center. This approach provides

flexibility, allowing the vehicle to prioritize other objectives, such as obstacle avoidance,

without always requiring perfect adherence to the lane center.

As already explained in chapter (2.7), the data regarding the right bound and the central

line are provided in the body frame for each vehicle position. Within the cost function,

the difference between the absolute values is applied so that minimizing it the vehicle is

able to maintain the lane center.

min(|𝑦𝑚𝑖𝑑𝑑𝑙𝑒
𝑏 | − |𝑦𝑟𝑖𝑔ℎ𝑡

𝑏 |) (3.12)

Figure 3.3: Representation of distances between body frame and lane boundaries

3.4 Single layer NMPC Controller – Formulation
In the actual MATLAB implementation, the setup begins with defining the 𝑥0 vector,

which is required by the solver and represents the initial guess for the control inputs. This

vector is initially set to zero and serves as the starting point for the optimization process.

𝑥0 = [𝑇0,1, ⋯ , 𝑇0,𝑁𝑐
, 𝛿0,1, ⋯ , 𝛿0,𝑁𝑐

]
𝑇

(3.13)

3 – NMPC – Single layer

33

Additionally, the initial conditions for the simulation are specified, in the form

[𝑥̇, 𝑦̇, 𝜓̇, 𝜓, 𝑋, 𝑌]
𝑇
, representing the system’s starting state. Both vectors are updated

during the simulation by the function responsible for managing the receding horizon

approach, ensuring that the control inputs and states evolve dynamically as the simulation

progresses.

To handle control input constraints, lower and upper bound vectors are created, defining

the permissible physical range for the control actions. These bounds ensure that the

control inputs remain within feasible limits during the optimization. The actual

implementation is reported below.

𝑙𝑏 = [𝑇𝑚𝑖𝑛,1, ⋯ , 𝑇𝑚𝑖𝑛,𝑁𝑐
, 𝛿𝑚𝑖𝑛,1, ⋯ , 𝛿𝑚𝑖𝑛,𝑁𝑐

]
𝑇

 (3.14𝑎)

𝑢𝑏 = [𝑇𝑚𝑎𝑥,1, ⋯ , 𝑇𝑚𝑎𝑥,𝑁𝑐
, 𝛿𝑚𝑎𝑥,1, ⋯ , 𝛿𝑚𝑎𝑥,𝑁𝑐

]
𝑇

(3.14𝑏)

Moreover, the solver requires the implementation of two functions, namely 𝑓𝑢𝑛 and

𝑛𝑜𝑛𝑙𝑐𝑜𝑛. The model is evaluated within these functions using the current value of the 𝑥

vector in order to compute the value of the cost function and the constraint vector. The

specific formulations of the cost function and nonlinear constraints will be provided in

the following sections.

Cost function:

𝑓 = 𝑄1(𝑦𝑏 ∗ 𝑦𝑏
𝑇) + 𝑄2(𝑉 ∗ 𝑉𝑇) + 𝑅1(𝛿 ∗ 𝛿𝑇) + 𝑅2(𝑇𝑟 ∗ 𝑇𝑟

𝑇) (3.15𝑎)

𝑦𝑏 = |𝑦𝑚𝑖𝑑𝑑𝑙𝑒
𝑏 | − |𝑦𝑟𝑖𝑔ℎ𝑡

𝑏 | (3.15𝑏)

𝑉 = 𝑉𝑟𝑒𝑓 − √𝑥̇2 + 𝑦̇2 (3.15𝑐)

Where 𝑄1, 𝑄2, 𝑅1, 𝑅2 are the weights that must be tuned, 𝛿 is the steering angle, 𝑇𝑟 is the

torque applied to the rear wheels, 𝑦𝑚𝑖𝑑𝑑𝑙𝑒
𝑏 and 𝑦𝑟𝑖𝑔ℎ𝑡

𝑏 are explained in picture (3.3), 𝑥̇ is

the longitudinal velocity and 𝑦̇ is the lateral velocity.

Nonlinear constraint:

𝑐 = [−(𝑋 − 𝑜𝑏𝑠𝑥𝑐).2− (𝑌 − 𝑜𝑏𝑠𝑦𝑐).2+ (𝑜𝑏𝑠𝑟 + 𝑠𝑎𝑓𝑒)2, 𝑦𝑓𝑖𝑡𝑙𝑒𝑓𝑡 − 𝑌, −𝑦𝑓𝑖𝑡𝑟𝑖𝑔ℎ𝑡 + 𝑌]
𝑇

(3.16)

The first element of the vector has been already explained in the chapter (3.3.1). The other

two elements are essential for imposing the road boundaries as hard constraint for the

solver. 𝑦𝑓𝑖𝑡𝑙𝑒𝑓𝑡 and 𝑦𝑓𝑖𝑡𝑟𝑖𝑔ℎ𝑡 are two vectors that contain the values of the road

boundaries evaluated for each x-position assumed by the vehicle. 𝑌, as previously stated,

contains the lateral position of the vehicle.

3 – NMPC – Single layer

34

In the dynamic obstacle avoidance, certain modifications were made to both the cost

function and the nonlinear constraints to accommodate the different environment.

The lane centering inside the cost function were simplified, its aim is maintaining a

constant Y-value in the global frame namely 𝑌𝑟𝑒𝑓. The dynamic cost function is presented

below.

𝑓 = 𝑄1(𝑦 ∗ 𝑦𝑇) + 𝑄2(𝑉 ∗ 𝑉𝑇) + 𝑅1(𝛿 ∗ 𝛿𝑇) + 𝑅2(𝑇𝑟 ∗ 𝑇𝑟
𝑇) (3.17𝑎)

𝑦 = 𝑌𝑟𝑒𝑓 − 𝑌 (3.17𝑏)

𝑉 = 𝑉𝑟𝑒𝑓 − √𝑥̇2 + 𝑦̇2 (3.17𝑐)

While inside the nonlinear constraint, instead of the fit values relative to the lane

boundaries there are simplified constraints on the longitudinal position of the vehicle in

the global frame since it is moving on a straight road.

𝑐 = [𝑐𝑚𝑎𝑡𝑟𝑖𝑥(:), 𝑌 − 𝑙𝑒𝑓𝑡𝑏𝑜𝑢𝑛𝑑, 𝑌 − 𝑟𝑖𝑔ℎ𝑡𝑏𝑜𝑢𝑛𝑑] (3.18)

Where the first element is the matrix of distances transformed into a vector, Y contains

the lateral positions of the vehicle and 𝑙𝑒𝑓𝑡𝑏𝑜𝑢𝑛𝑑 and 𝑟𝑖𝑔ℎ𝑡𝑏𝑜𝑢𝑛𝑑 are constant values

representing the road boundaries.

35

Chapter 4

NMPC – Double layer

4.1 Introduction
The double layer architecture is designed to improve both computational efficiency and

control performance in complex driving scenarios. In this structure, the control problem

is split into two distinct layers: a higher-level planner and a lower-level controller. This

division allows for more efficient handling of complex scenarios, ensuring better

scalability and faster computational time.

4.2 Double layer NMPC architecture
The higher layer generates a feasible path based on the vehicle’s state and on the

environment analysis. It uses a simplified point mass model, which assumes a constant

longitudinal velocity and optimize the lateral acceleration required to keep the desired

trajectory. This layer processes inputs such as the position of the obstacles and the road

boundaries. It outputs a reference trajectory that ensures the avoidance of the obstacles

and stay centered within the lane.

The lower layer takes the reference trajectory from the path planner and computes the

necessary control actions using a more detailed two-wheel model. It ensures that the

vehicle follows the reference path while adjusting the velocity as needed to adapt to the

road conditions.

4 – NMPC – Double layer

36

Figure 4.1: Double layer NMPC architecture

4.3 High level MPC – Formulation
In the actual MATLAB implementation of the high-level path planning algorithm, the

initial condition vector 𝑥0is initialize to zero, this time it has a different size since the

input is only the lateral acceleration:

𝑥0,ℎ𝑙 = [𝑎𝑦0,1, ⋯ , 𝑎𝑦0,𝑁𝑐
]

𝑇
(4.1)

The initial state vector is shared between the two layers. However, since the state vector

has different sizes between the point mass model used in the high-level path planner and

the two-wheel model used in the low-level controller, an adaptation was necessary at the

code level. The vector form remains unchanged, but the point mass excludes the

evaluation of 𝜓̇ dynamics.

Lower and upper bound vectors are then defined to ensure that control inputs constraints,

such as acceleration limits, are respected during the optimization.

𝑙𝑏ℎ𝑙 = [𝑎𝑦𝑚𝑖𝑛,1, ⋯ , 𝑎𝑦𝑚𝑖𝑛,𝑁𝑐
] (4.2𝑎)

𝑢𝑏ℎ𝑙 = [𝑎𝑦𝑚𝑎𝑥,1, ⋯ , 𝑎𝑦𝑚𝑎𝑥,𝑁𝑐
] (4.2𝑏)

The values of maximum lateral acceleration are computed as follows:

𝑎𝑦 ≤ |𝑔𝜇| (4.3)

4 – NMPC – Double layer

37

The specific formulations of the high-level cost function and nonlinear constraints will

be provided in the following sections.

Cost function:

𝑓 = 𝑄1(𝑦𝑏 ∗ 𝑦𝑏
𝑇) + 𝑅1(𝑢 ∗ 𝑢𝑇) (4.4𝑎)

𝑦𝑏 = |𝑦𝑚𝑖𝑑𝑑𝑙𝑒
𝑏 | − |𝑦𝑟𝑖𝑔ℎ𝑡

𝑏 | (4.4𝑏)

𝑢 = [𝑎𝑦,1, ⋯ , 𝑎𝑦,𝑁𝑝] (4.4𝑐)

Where 𝑄1, 𝑅1 are the weights that must be tuned, 𝑦𝑚𝑖𝑑𝑑𝑙𝑒
𝑏 and 𝑦𝑟𝑖𝑔ℎ𝑡

𝑏 are explained in

picture (3.3) and 𝑎𝑦is the lateral acceleration.

The nonlinear constraint vectors are exactly the same as the ones implemented in section

(3.4).

The output of this optimization process is the lateral acceleration. However, in order to

generate the trajectory references for the low-level an additional step is required. A

dedicated function, that takes as input the optimized lateral accelerations and computes

the corresponding point-mass trajectory, has been developed. It returns two vectors of

length 𝑁𝑝, representing the lateral position and yaw angle of the point mass over the entire

prediction horizon.

4.4 Low level MPC – Formulation
The steps for the low-level controller are the same of the previous implementations.

The initial conditions vector is in the form:

𝑥0,𝑙𝑙 = [𝑇0,1, ⋯ , 𝑇0,𝑁𝑐
, 𝛿0,1, ⋯ , 𝛿0,𝑁𝑐

] (4.5)

The initial state vector is the same as the high-level, but in this case the angular rate is

taken into account for the two-wheel dynamics.

Control input constraint are the ones written in formula number (4.2a) and (4.2b).

The specific formulations of the low-level cost function will be provided in the following

sections.

𝑓 = 𝑄1(𝑌𝑓 ∗ 𝑌𝑓
𝑇) + 𝑄2(𝜓𝑓 ∗ 𝜓𝑓

𝑇) + 𝑄3(𝑉 ∗ 𝑉𝑇) + 𝑅1(𝛿 ∗ 𝛿𝑇) + 𝑅2(𝑇𝑟 ∗ 𝑇𝑟
𝑇) (4.6𝑎)

4 – NMPC – Double layer

38

𝑌𝑓 = 𝑌𝑟𝑒𝑓 − 𝑌 (4.6𝑏)

𝜓𝑓 = 𝜓𝑟𝑒𝑓 − 𝜓 (4.6𝑐)

𝑉 = 𝑉𝑟𝑒𝑓 − 𝑥̇ (4.6𝑑)

Where 𝑄1, 𝑄2, 𝑄3, 𝑅1, 𝑅2 are the weights, 𝑌𝑟𝑒𝑓 and 𝜓𝑟𝑒𝑓 are the reference vectors

generated by the high-level.

39

Chapter 5

Control schemes simulation

5.1 Introduction
The control scheme comparison was conducted using two distinct simulation

environments to evaluate the performance of both NMPC architecture in different

scenarios.

The first environment was designed to test lane centering and static obstacle avoidance.

For this purpose, a model of an actual road was developed, incorporating realistic road

boundaries and lane markings to reflect common driving conditions. This environment

allowed for a comprehensive assessment of how well each control architecture managed

to maintain the vehicle within its lane while avoiding static obstacles.

The second simulation environment was designed to facilitate the study of dynamic

obstacle avoidance. In this case, a straight road was simulated to simplify the evaluation

of the vehicle’s behavior while avoiding moving objects. The road was dimensioned

using the average width of typical lanes and streets, ensuring a realistic but simplified

testing scenario. This environment allowed for testing of how each control scheme

handled dynamic obstacles.

The simulation setup involves defining key parameters such as the prediction horizon

(𝑁𝑝) and the control horizon (𝑁𝑐), both of which influence the controller’s performance.

The sampling time of the controller dictates how frequently control inputs are updated.

Additionally, the vehicle’s initial state, such as its starting position, velocity and yaw

angle, is specified.

The weights employed in the cost function are of critical importance for the tuning of the

controller’s behavior. These weights serve to balance between the minimization of control

effort, the maintenance of lane centering and the avoidance of obstacles.

5 – Control schemes simulation

40

Along with these parameters, the characteristics of the obstacle, including its dimension,

the required safe distance and its velocity, are configured to simulate realistic driving

scenario.

5.2 Single layer – Results
5.2.1 Lane centering and static obstacle avoidance
To conduct the simulation, the following values were assigned to the key parameters:

Table 5.1: Single layer parameters for LC and SOA

 Value Unit
Prediction horizon 20 -
Control horizon 2 -
Sampling time 0.1 s
Initial state [𝑥̇, 𝑦̇, 𝜓̇, 𝜓, 𝑋, 𝑌] [2. 7̅, 0, 0, −𝜋, −830, 893] [𝑚/𝑠, 𝑚/𝑠, 𝑟𝑎𝑑/𝑠, 𝑟𝑎𝑑, 𝑚, 𝑚]
Upper bound [𝑇, 𝛿] [890,0.61] [𝑁𝑚, 𝑟𝑎𝑑]
Lower bound [𝑇, 𝛿] [−5100, −0.61] [𝑁𝑚, 𝑟𝑎𝑑]
Velocity reference [m/s] 35/3.6 m/s
Obstacle radius [m] 1 m
Safe distance [m] 2 m

The images below display the simulation results.

• Vehicle trajectory

Figure 5.1: Single layer vehicle trajectory in SOA and LC simulation

5 – Control schemes simulation

41

• Velocity

Figure 5.2: Single layer velocity in SOA and LC simulation

• Torque

Figure 5.3: Single layer torque in SOA and LC simulation

5 – Control schemes simulation

42

• Steering angle

Figure 5.4: Single layer steering angle in SOA and LC simulation

5.2.2 Dynamic obstacle avoidance
Representing the trajectories of both the vehicle and the obstacle simultaneously, inside

the same picture represents a significant challenge since both are moving over time. The

most effective way to visualize this is by displaying the complete trajectory of the vehicle,

while showing only two key positions of the obstacle. The first obstacle position starting

from the left represent the moment when the vehicle starts the overtaking maneuver, and

the second represents the obstacle’s location when the vehicle begins to shift back to the

right lane.

Additionally, to further clarify the dynamic behavior, another plot has been included to

depict the distance between the vehicle and the obstacle over time. In this plot, the dashed

line represents the minimum allowed distance, which is the sum of the obstacle’s radius

and the safe distance specified by the user. This visualization ensures a clear

understanding of how the vehicle maintains the necessary safety margin throughout the

maneuver.

5 – Control schemes simulation

43

In order to conduct the simulation, the following values were assigned to the key

parameters:

Table 5.2: Single layer parameters for DOA

 Value Unit
Prediction horizon 20 -
Control horizon 2 -
Sampling time 0.1 s
Initial state [𝑥̇, 𝑦̇, 𝜓̇, 𝜓, 𝑋, 𝑌] [6.94̅, 0, 0, 0, 0, 3] [𝑚/𝑠, 𝑚/𝑠, 𝑟𝑎𝑑/𝑠, 𝑟𝑎𝑑, 𝑚, 𝑚]
Upper bound [𝑇, 𝛿] [890,0.61] [𝑁𝑚, 𝑟𝑎𝑑]
Lower bound [𝑇, 𝛿] [−5100, −0.61] [𝑁𝑚, 𝑟𝑎𝑑]
Velocity reference [m/s] 35/3.6 m/s
Obstacle radius [m] 1 m
Obstacle velocity [m/s] 25/3.6 m/s
Safe distance [m] 2 m

The images below display the simulation results

• Vehicle’s trajectory

Figure 5.5: Single layer vehicle trajectory in DOA simulation

5 – Control schemes simulation

44

• Velocity

Figure 5.6: Single layer velocity in DOA simulation

• Torque

Figure 5.7: Single layer torque in DOA simulation

5 – Control schemes simulation

45

• Steering angle

Figure 5.8: Single layer steering angle in DOA simulation

• Distance between the vehicle and the center of the obstacle

Figure 5.9: Single layer distance between vehicle and obstacle in DOA simulation

5 – Control schemes simulation

46

5.3 Double layer – Results
5.3.1 Lane centering and static obstacle avoidance
In order to conduct the simulation, the following values were assigned to the key

parameters:

Table 5.3: Double layer parameters for LC and SOA

 Value Unit
Prediction horizon 20 -
Control horizon 2 -
Sampling time 0.1 s
Initial state [𝑥̇, 𝑦̇, 𝜓̇, 𝜓, 𝑋, 𝑌] [2. 7̅, 0, 0, −𝜋, −830, 893] [𝑚/𝑠, 𝑚/𝑠, 𝑟𝑎𝑑/𝑠, 𝑟𝑎𝑑, 𝑚, 𝑚]
Upper bound high level [𝑎𝑦] [0.9 ∙ 9.81] [𝑚/𝑠2]
Lower bound high level [𝑎𝑦] [−0.9 ∙ 9.81] [𝑚/𝑠2]
Upper bound low level [𝑇, 𝛿] [890,0.61] [𝑁𝑚, 𝑟𝑎𝑑]
Lower bound low level [𝑇, 𝛿] [−5100, −0.61] [𝑁𝑚, 𝑟𝑎𝑑]
Velocity reference [m/s] 35/3.6 m/s
Obstacle radius [m] 1 m
Safe distance [m] 2 m

The images below display the simulation results

• Vehicle’s trajectory

Figure 5.10: Double layer vehicle trajectory in SOA and LC simulation

5 – Control schemes simulation

47

• Velocity

Figure 5.11: double layer velocity in SOA and LC simulation

• Torque

Figure 5.12: Double layer torque in SOA and LC simulation

5 – Control schemes simulation

48

• Steering angle

Figure 5.13: Double layer steering angle in SOA and LC simulation

5.3.2 Dynamic obstacle avoidance
The same considerations outlined in the paragraph (5.2.2) have been applied to the

subsequent simulations.

In order to conduct the simulation, the following values were assigned to the key

parameters:

Table 5.4: Double layer parameters in DOA

 Value Unit
Prediction horizon 20 -
Control horizon 2 -
Sampling time 0.1 s
Initial state [𝑥̇, 𝑦̇, 𝜓̇, 𝜓, 𝑋, 𝑌] [6.94̅, 0, 0, 0, 0, 3] [𝑚/𝑠, 𝑚/𝑠, 𝑟𝑎𝑑/𝑠, 𝑟𝑎𝑑, 𝑚, 𝑚]
Upper bound high level [𝑎𝑦] [0.9 ∙ 9.81] [𝑚/𝑠2]
Lower bound high level [𝑎𝑦] [−0.9 ∙ 9.81] [𝑚/𝑠2]
Upper bound low level [𝑇, 𝛿] [890,0.61] [𝑁𝑚, 𝑟𝑎𝑑]
Lower bound low level [𝑇, 𝛿] [−5100, −0.61] [𝑁𝑚, 𝑟𝑎𝑑]
Velocity reference [m/s] 35/3.6 m/s
Obstacle radius [m] 1 m
Obstacle velocity [m/s] 25/3.6 m/s
Safe distance [m] 2 m

5 – Control schemes simulation

49

The images below display the simulation results

• Vehicle’s trajectory

Figure 5.14: Double layer vehicle trajectory in DOA simulation

• Velocity

Figure 5.15: Double layer velocity in DOA simulation

5 – Control schemes simulation

50

• Torque

Figure 5.16: Double layer torque in DOA simulation

• Steering angle

Figure 5.17: Double layer steering angle in DOA simulation

5 – Control schemes simulation

51

• Distance between the vehicle and the center of the obstacle

Figure 5.18: Double layer distance between vehicle and obstacle in DOA simulation

52

Chapter 6

Performance comparison

6.1 Introduction
In this chapter, a detailed comparison of the control schemes is provided, focusing on two

main aspects: the execution time and driving comfort. The execution time analysis

includes both the mean and maximum execution times, as these are crucial for evaluating

the computational efficiency and ensuring real-time feasibility of each control

architecture. The mean execution time offers insight into the average computational load,

while the maximum execution time helps identify the worst-case scenarios that could

affect performance. Additionally, the variance in execution times is also considered, as it

highlights the consistency and predictability of the system. A lower variance indicates

more stable computational performance, reducing the likelihood of unexpected delays

during operation. Driving comfort is assessed through the smoothness of the generated

trajectory and more specifically computing the lateral and longitudinal jerk. There are

numerous studies that emphasize the importance of jerk in various fields, such as

entertainment[24],[25], automotive[26] and elevator[27]. In the entertainment industry,

particularly in amusement parks rides, controlling jerk is crucial to balance thrill and

comfort for the passengers. Similarly, in the automotive sector, jerk is a critical parameter

in the design of advanced driver-assistant system and autonomous driving, where

passenger comfort is a key factor. Even in elevator design, jerk is carefully controlled to

provide smoot acceleration and deceleration.

6 – Performance comparison

53

6.2 Execution time
The execution time for each simulation was calculated using a MATLAB timer. The time

measurement starts as soon as the solver begins the optimization procedure and ends when

the optimal control solution is obtained. This time is recorded for each step of the

simulation, providing a precise evaluation of how efficiently the solver computes the

control inputs. The average, the mean and the variance of these values are then used to

conduct the comparison of the computational efficiency.

Static obstacle avoidance

The analysis of execution times for the static obstacle avoidance reveals distinct

differences between the two architectures, both in terms of speed and consistency. The

mean execution time for the base architecture is 0.61s, whereas the double-layer system

reduces this to 0.4s. The reduction offered by the double-layer approach signifies a more

efficient handling of the computational demand.

Looking at the maximum execution times provides further insight into the performance

of each architecture. In the single layer architecture, the maximum execution time reaches

1.77s, significantly higher than the 1.27s observed in the double-layer system. Excluding

the initial optimization step, which tends to be more computationally intensive, the

maximum execution time drops significantly to 0.68s. This difference suggests that, in

critical situations, the double-layer architecture is more reliable, as it minimizes the

potential for the delayed control actions, particularly during complex scenarios like

obstacle avoidance.

The variance in execution time is another crucial factor in assessing performance. The

base architecture exhibits a variance of 0.0526, indicating a larger fluctuation in

computational time. In contrast, the double-layer architecture shows a much smaller

variance of 0.0132. This smaller value reflects the ability of the double-layer system to

maintain consistent performance across multiple iterations, ensuring that even during

complex computations, the control system operates within a predictable time frame.

6 – Performance comparison

54

The following graph illustrate the evolution of the base architecture execution time:

Figure 6.1: Execution time of the single layer architecture in SOA and LC simulation

The following graph illustrate the evolution of the double-layer architecture execution

time:

Figure 6.2: Execution time of the double layer architecture in SOA and LC simulation

6 – Performance comparison

55

Table 6.1: Summary of execution time values in SOA and LC simulation

 Single layer Double layer Unit
Mean execution time 0,61 0,4 s
Max execution time 1,77 1,27-0,68 s
Variance 0,0526 0,0132 -

Dynamic obstacle avoidance

In the dynamic obstacle avoidance scenario, the comparison between the single and

double-layer architectures again reveals significant differences in computational

performance. For the base architecture, the mean execution time is 0,13s, whereas the

double-layer approach achieves a reduced mean time of 0,067s. This improvement in

speed is essential when considering the real-time nature of dynamic obstacle avoidance,

where rapid response is essential to avoid collisions.

The maximum execution time in the base architecture, however, is a major concern,

reaching 2,63s. Such a delay could severely impact the system’s ability to react in a

dynamic environment, particularly when the obstacle’s position changes rapidly. On the

other hand, the double- layer system shows a much lower maximum execution time of

0,81s. It is worth noting that this maximum time is further reduced to 0,18s when the first

optimization step is excluded, highlighting the efficiency of the double-layer system in

handling the majority of optimization cycles after the first step. This drop indicates that

the double-layer architecture is more adept at maintaining responsiveness once the initial

conditions have been optimized.

The variance in execution times also support this observation. The base architecture has

a variance 𝜎 = 0,032, indicating a wider fluctuation in computational time, which could

result in inconsistent performance during critical avoidance maneuvers. By contrast, the

double-layer system exhibits a variance 𝜎 of just 0,0018, demonstrating a much more

consistent and reliable performance throughout the simulation.

6 – Performance comparison

56

The following graph illustrate the evolution of the base architecture execution time:

Figure 6.3: Execution time of the double layer architecture in DOA simulation

The following graph illustrate the evolution of the double-layer architecture execution

time:

Figure 6.4: Execution time of the double layer architecture in DOA simulation

Table 6.2: Summary of time values in DOA simulation

 Single layer Double layer Unit
Mean execution time 0,13 0,067 s
Max execution time 2,63 0,81-0,18 s
Variance 0,032 0,0018 -

6 – Performance comparison

57

6.3 Driving comfort
Driving comfort can initially be assessed by observing the generated vehicle trajectory.

A smooth and stable path generally indicates a comfortable driving experience, whereas

irregular or sudden changes in direction may suggest discomfort for passengers.

The first image, depicting the zoomed trajectory generated by the base architecture,

highlights some noticeable oscillations in the vehicle’s path. These oscillations suggest

that the control system is struggling to maintain a smooth and consistent trajectory, likely

due to the simultaneous handling of path planning and control input optimization. The

result is a trajectory that, while functional, lacks the precision and smoothness desirable

for a comfortable driving experience.

Figure 6.5: Section of the vehicle trajectory generated by the single layer architecture

In contrast, the second image, showcasing the zoomed trajectory generated by the double-

layer architecture, presents a far smoother trajectory. By decoupling the tasks of path

planning and control input computation, the double-layer approach enables better

handling of the vehicle’s dynamics, resulting in a more refined trajectory. This

improvement not only enhances driving comfort but also reflects the efficiency of the

architecture.

6 – Performance comparison

58

Figure 6.6: Section of the vehicle trajectory generated by the double layer architecture

When comparing the two architectures’ behavior in static obstacle avoidance, notable

differences emerge, particularly near the obstacle.

For the base architecture, as the vehicle approaches the obstacle, the steering angle starts

oscillating significantly, with values bouncing between the maximum and minimum

bounds, indicating that the system is struggling to maintain stable control. This instability

is also reflected in the torque, where sudden changes are observed, further emphasizing

the high control effort required by the base architecture to navigate around the obstacle.

Additionally, a small ripple is visible in the image (6.7) of the steering angle which is

likely the cause of the oscillation in the generated trajectory. These fluctuations not only

contribute to an uncomfortable driving experience, but also highlight inefficiencies in

control execution.

6 – Performance comparison

59

Figure 6.7: Section of the steering angle generated by the single layer architecture while approaching the

obstacle

Figure 6.8: Section of the torque generated by the single layer architecture while approaching the

obstacle

In contrast, the double-layer architecture demonstrates far more consistent and refined

control. The steering angle remains within a lower range, suggesting smoother handling.

Similarly, the torque is much more controlled, with fewer sharp variations. The lower

control effort indicates that the double-layer architecture is more effective in managing

the vehicle’s trajectory and dynamics, minimizing sharp corrections and improving

driving comfort.

6 – Performance comparison

60

Figure 6.9: Section of the steering angle generated by the double layer architecture while approaching

the obstacle

Figure 6.10: Section of the torque generated by the double layer architecture while approaching the

obstacle

However, a more precise evaluation of the driving comfort can be conducted by analyzing

the jerk, which represent the rate of change of acceleration over time. Jerk is a critical

measure in assessing the smoothness of a vehicle’s motion, as it captures sudden shifts in

force that are often perceptible to passengers. High jerk values indicate rapid changes in

acceleration, which can cause discomfort while driving, particularly in maneuvers like

lane changes or obstacle avoidance.

6 – Performance comparison

61

By quantifying both lateral and longitudinal jerk, a more detailed understanding of the

vehicle’s dynamics can be obtained. Lateral jerk affects the sideways forces experienced

by passengers, while longitudinal jerk influences the forward and backward forces during

acceleration and braking. A lower jerk is correlated with smoother, more comfortable

driving, as the forces are applied in a more gradual and controlled manner. Through this

detailed analysis, the overall performance of the control scheme can be more

comprehensively evaluated.

Static obstacle avoidance

In comparing the lateral jerk between the two architectures for the static obstacle

avoidance and lane centering, the base architecture shows a maximum value of 176,73

[m/s3] and a variance 𝜎 = 11760, indicating significant fluctuations in the vehicle’s

lateral motion. This higher jerk value reflects the system’s struggle to maintain a smooth

trajectory, as observed in previous analyses. On the other hand, the double-layer

architecture demonstrates a lower maximum lateral jerk of 163,75 [m/s3] and a much

smaller variance 𝜎 = 2011. The reduced jerk and variance in the double-layer system

indicate a smother control response, resulting in more stable and comfortable lateral

movement during maneuvers.

Below the two plots of the lateral jerk.

Figure 6.11: Single layer lateral jerk in SOA and LC simulation

6 – Performance comparison

62

Figure 6.12: Double layer lateral jerk in SOA and LC simulation

Turning to the longitudinal jerk, the base architecture exhibits a maximum value of 49,67

[m/s3] and a variance 𝜎 = 73,19, again highlighting the more aggressive control efforts

in acceleration and braking. The double-layer architecture, however, significantly

outperforms the base system in this area, with a lower maximum longitudinal jerk of

35,14 [m/s3] and a variance 𝜎 of just 32,81. This suggests that the double-layer

architecture not only improves lateral smoothness but also ensures more controlled and

comfortable longitudinal behavior, further contributing to a better overall driving

experience.

Below the two plots of the longitudinal jerk

Figure 6.13: Single layer longitudinal jerk in SOA and LC simulation

6 – Performance comparison

63

Figure 6.14: Double layer longitudinal jerk in SOA and LC simulation

Table 6.3:Summary of jerk values in SOA and LC simulation

 Single layer Double layer Unit
Lateral jerk 176,73 163,75 m/s3

Variance 11760 2011 -
Longitudinal jerk 49,67 35,14 m/s3

Variance 73,19 32,81 -

Dynamic obstacle avoidance

In the dynamic obstacle scenario, comparing the lateral jerk between the two architectures

shows slight differences. The single layer architecture presents an absolute maximum

lateral jerk of 100,23 [m/s3] with a variance 𝜎 = 1641, reflecting noticeable variations in

the vehicle’s lateral movements. The double-layer system, while having a slightly higher

absolute maximum of 102,21 [m/s3], shows a much lower variance 𝜎 = 370,35 . This

suggests that, although both systems reach similar peak of lateral jerk, the double-layer

architecture provides a more consistent and controlled response with reduced oscillations.

6 – Performance comparison

64

Below the two plots of the lateral jerk.

Figure 6.15: Single layer lateral jerk in DOA simulation

Figure 6.16: Double layer lateral jerk in DOA simulation

For the longitudinal jerk, the base architecture records an absolute maximum value of 20

[m/s3] with a variance of 2,12, indicating a relatively controlled longitudinal movement.

The double-layer implementation shows marginally higher maximum jerk at 22,05 [m/s3],

with a variance 𝜎 = 2,92. Although the double-layer system exhibits slightly larger peak

values in the longitudinal jerk, the increase is minimal, and the system still manages to

maintain reasonable control and smoothness in both longitudinal and lateral directions.

6 – Performance comparison

65

Below the two plots of the longitudinal jerk.

Figure 6.17: Single layer longitudinal jerk in DOA simulation

Figure 6.18: Double layer longitudinal jerk in DOA simulation

Table 6.4: Summary of jerk values in DOA simulation

 Single layer Double layer Unit
Lateral jerk 100,23 102,21 m/s3
Variance 1641 370,35 -
Longitudinal jerk 20 22,05 m/s3
Variance 2,12 2,92 -

66

Chapter 7

Conclusions and future

development
This thesis has presented a comprehensive comparison of two nonlinear Model Predictive

Control architecture, a single-layer and a double-layer system, with the aim of improving

lane centering, obstacle avoidance and driving comfort in autonomous driving scenarios.

Throughout the study, the focus was placed on analyzing both computational efficiency

and driving comfort, which are critical aspects of control systems for advanced driver

assistance systems (ADAS).

In early stages of the thesis, the vehicle model was initially developed using Simulink[28],

with the solver implemented separately as a MATLAB script. To run the models, the

‘sim’ function[29] was used to call the Simulink file each time during the simulation

process. However, this method proved to be highly inefficient, as Simulink had to be

executed thousands of times within a single optimization cycle, significantly slowing

down the simulation process. The inefficiency of this setup made it impractical to achieve

the required performance. As a result, the entire simulation was moved into a MATLAB

script, implementing the state evolution using a for loop and employing the Euler method

for numerical integration. This approach bypassed Simulink entirely, optimizing the

process and reducing computational overhead, allowing for faster simulation during the

optimization.

One of primary objectives was to evaluate the computational performance of the two

architectures in various driving scenarios. The results showed that the double-layer

architecture significantly outperformed the base one in terms of mean execution time. For

static obstacle avoidance, the single-layer architecture had a mean execution time of 0,61s

while the enhanced architecture reduced this to 0,4s. Similarly, for dynamic obstacle

avoidance, the mean time of the first architecture was 0,13s compared to just 0,067s for

the second architecture. On average, this represents a mean percentage of improvement

of approximately 37% in the mean execution time.

A crucial difference was also observed in the maximum execution times. In the static

obstacle avoidance case, the base architecture experienced a maximum time of 1,77s,

while the double layer system reached a maximum of 0,68s excluding the first execution.

7 – Conclusions and future development

67

The dynamic obstacle avoidance scenario also showed a drastic reduction in the

maximum time, with the double-layer architecture decreasing from 2,63s to 0,81s, and

even further to 0,18s when ignoring the first step. On average, this represents a mean

percentage of improvement of approximately 77% in the max execution time. These

results indicate that the double-layer architecture provides not only faster but more

consistent performance, avoiding the larger fluctuations seen in the base system.

The variance of execution time is another important factor, as it demonstrates the

consistency of the system over multiple iterations. The variance in terms of static obstacle

avoidance has been enhanced by a significant margin, namely 74%. Furthermore, the

results of the dynamic obstacle avoidance simulation indicate an improvement of 94%.

The lower variance in the double-layer system indicates that it is more precise and stable

under varying conditions.

In summary, the double-layer architecture showed superior computational performance,

reducing both the mean and maximum execution times while maintaining a lower

variance. This makes it a more suitable option for complex driving scenarios, especially

when fast reactions and computational efficiency are needed.

The second key aspect of the comparison focused on driving comfort, which was

evaluated by examining the smoothness of the generated trajectories and the control

efforts generated by the optimization process. Lateral and longitudinal jerk was then used

to deepen the analysis.

In the case of static obstacle avoidance, the base architecture exhibited noticeable

oscillations in the generated trajectory. When analyzing the steering angle and torque near

the obstacle, significant oscillations were observed as the control efforts bounced between

maximum and minimum values. These oscillations not only indicate that the control

system struggled to maintain a smooth trajectory but also resulted in more aggressive and

less comfortable maneuvers for the vehicle. In contrast, the double-layer architecture

produced a much smoother trajectory, with lower efforts and more consistent steering and

torque values, minimizing the oscillations and providing a more stable and comfortable

driving experience.

The analysis was deepened by evaluating the lateral and longitudinal jerk, which

represents the rate of change of acceleration and is a direct indicator of driving comfort.

In the static obstacle avoidance scenario, the base architecture exhibited significant lateral

jerk with notable variance, indicating sharp and rapid changes in lateral forces, which

translate into uncomfortable movements for passengers. The double-layer system, on the

other hand, reduced the maximum lateral jerk and had a significantly lower variance,

showing that it handled the vehicle’s lateral dynamics much more smoothly. Similarly for

7 – Conclusions and future development

68

longitudinal jerk, the base system showed higher values, whereas the double layer system

reduced these, again demonstrating smoother control inputs and a more comfortable ride.

In the dynamic obstacle avoidance scenario, a similar pattern was observed. While the

double-layer system showed a slight increase in maximum lateral jerk, it significantly

reduced the variance by around 77%, indicating a much smoother and more consistent

handling during the maneuver. For longitudinal jerk, although the double-layer

architecture had a marginally higher peak value, the variance remained comparable,

reflecting better control over longitudinal forces without negatively affecting driving

comfort.

The findings of this study clearly demonstrate the superiority of the double-layer NMPC

architecture over the single-layer system, particularly in terms of execution time and

driving comfort. The double-layer system not only reduced computation times but also

delivered smoother and more stable control actions, making it an ideal solution for

advanced autonomous driving systems where efficiency and passenger comfort are

critical.

While the results are promising, there is significant potential for further development and

optimization of the control architecture. Future work could focus on the following areas:

• Model in the loop simulation with enhanced plant dynamics: future studies could

focus on developing a more sophisticated plant model that incorporates additional

vehicle dynamics, such as pitch and suspension effects. This would provide a

more accurate representation of the vehicle’s behavior, especially under dynamic

driving conditions, enhancing the control system’s precision and increasing the

validation value of this step. The model could also account for the nonlinear trend

of the longitudinal force, as well as a realistic distribution of forces across all tires,

ensuring that the control algorithms respond more effectively to varying road and

driving conditions.
• Real-time implementation: It is necessary to modify the control algorithm in order

to facilitate real-time deployment. This would require integrating the system into

a real-time framework, potentially using HIL simulations to ensure that the control

architecture meets strict timing and computational constraints when running on

actual embedded systems.
• Embedded system coding: to make the control system practical for real-world

applications, it must be implemented on an embedded system designed for

automotive use. This would involve optimizing the control code to run efficiently

on low-power, high-performance automotive processors, ensuring the system can

handle real-time constraints while maintaining computational efficiency.

7 – Conclusions and future development

69

• Sensor integration: for real-world autonomous driving applications, the system

must interact with sensors such as LIDAR, RADAR and GPS. Future work could

focus on implementing the sensor fusion algorithms to provide more precise and

reliable states estimation, which would enhance both the control performance and

the system’s ability to respond to dynamic obstacles in real-time.
• Validation with real-world data: while the simulations provide valuable insights,

validation with real-world driving data and physical testing will be essential to

ensure the robustness and reliability of the control system un diverse

environments. Testing in real-world scenarios will provide important information

on how the system handles different road conditions, vehicle loads and traffic

situations.
• Adaptive control strategies: to further enhance the control architecture, future

research could explore adaptive control strategies that dynamically adjust to

changing driving conditions. This could involve adjusting control horizons,

weights, or even switching between control modes depending on the driving

scenarios

70

Bibliography

[1] J. B. Cicchino, “Effectiveness of forward collision warning and autonomous

emergency braking systems in reducing front-to-rear crash rates,” Accid Anal Prev,

vol. 99, pp. 142–152, 2017, doi: https://doi.org/10.1016/j.aap.2016.11.009.

[2] I. Isaksson Hellman and M. Lindman, “Estimating the crash reducing effect of

Advanced Driver Assistance Systems (ADAS) for vulnerable road users,” Traffic

Safety Research, vol. 4, p. 000036, Nov. 2023, doi: 10.55329/blzz2682.

[3] L. Yue, M. A. Abdel-Aty, Y. Wu, and A. Farid, “The Practical Effectiveness of

Advanced Driver Assistance Systems at Different Roadway Facilities: System

Limitation, Adoption, and Usage,” IEEE Transactions on Intelligent

Transportation Systems, vol. 21, no. 9, pp. 3859–3870, 2020, doi:

10.1109/TITS.2019.2935195.

[4] M. Aleksa, A. Schaub, I. Erdelean, S. Wittmann, A. Soteropoulos, and A. Fürdös,

“Impact analysis of Advanced Driver Assistance Systems (ADAS) regarding road

safety – computing reduction potentials,” European Transport Research Review,

vol. 16, no. 1, p. 39, 2024, doi: 10.1186/s12544-024-00654-0.

[5] Insurance Institute for Highway Safety and Highway Loss Data Institute, “Real-

world benefits of crash avoidance technologies,” 2023.

[6] A. Swief, A. El-Zawawi, and M. El-Habrouk, “A Survey of Model Predictive

Control Development in Automotive Industries,” in 2019 International

Conference on Applied Automation and Industrial Diagnostics (ICAAID), 2019,

pp. 1–7. doi: 10.1109/ICAAID.2019.8934974.

[7] I. V Di Cairano Stefano and Kolmanovsky, “Automotive Applications of Model

Predictive Control,” in Handbook of Model Predictive Control, W. S. Raković

Saša V. and Levine, Ed., Cham: Springer International Publishing, 2019, pp. 493–

527. doi: 10.1007/978-3-319-77489-3_21.

[8] D. Hrovat, S. Di Cairano, H. E. Tseng, and I. V Kolmanovsky, “The development

of Model Predictive Control in automotive industry: A survey,” in 2012 IEEE

International Conference on Control Applications, 2012, pp. 295–302. doi:

10.1109/CCA.2012.6402735.

71

[9] J. H. Lee, “Model predictive control: Review of the three decades of development,”

Int J Control Autom Syst, vol. 9, no. 3, pp. 415–424, 2011, doi: 10.1007/s12555-

011-0300-6.

[10] J. R. Sánchez-Ibáñez, C. J. Pérez-del-Pulgar, and A. García-Cerezo, “Path

Planning for Autonomous Mobile Robots: A Review,” Sensors, vol. 21, no. 23,

2021, doi: 10.3390/s21237898.

[11] F. Micheli, M. Bersani, S. Arrigoni, F. Braghin, and F. Cheli, “NMPC trajectory

planner for urban autonomous driving,” CoRR, vol. abs/2105.04034, 2021,

[Online]. Available: https://arxiv.org/abs/2105.04034

[12] Y. Gao, F. Borrelli, J. K. Hedrick, and L. El Ghaoui, “Model Predictive Control

for Autonomous and Semiautonomous Vehicles,” 2014.

[13] T. Gillespie, Fundamentals of Vehicle Dynamics. in Electronic publications. SAE

International, 2021. [Online]. Available:

https://books.google.it/books?id=LeybEAAAQBAJ

[14] A. Mater, S. Sorrentino, F. Zuccari, and F. Gerbino, “PACEJKA MAGIC

FORMULA TIRE MODELING AND VALIDATION ON LOW ADHERENCE

SURFACES,” 2019.

[15] K. V. N. R. A. Vijay Alagappan and R. K. Kumar, “A comparison of various

algorithms to extract Magic Formula tyre model coefficients for vehicle dynamics

simulations,” Vehicle System Dynamics, vol. 53, no. 2, pp. 154–178, 2015, doi:

10.1080/00423114.2014.984727.

[16] J. L. Olazagoitia, J. A. Perez, and F. Badea, “Identification of Tire Model

Parameters with Artificial Neural Networks,” Applied Sciences, vol. 10, no. 24,

2020, doi: 10.3390/app10249110.

[17] M. Canale, L. Fagiano, M. Milanese, and P. Borodani, “Robust vehicle yaw control

using an active differential and IMC techniques,” Control Eng Pract, vol. 15, no.

8, pp. 923–941, Aug. 2007, doi: 10.1016/j.conengprac.2006.11.012.

[18] OpenStreetMap contributors, “OpenStreetMap,” https://www.openstreetmap.org.

[Online]. Available: https://www.openstreetmap.org

[19] Inc. The MathWorks, “MATLAB Driving Scenario Designer,” 2022, The

MathWorks, Inc.: R2022b. Accessed: Oct. 06, 2024. [Online]. Available:

https://www.mathworks.com/products/driving-scenario-designer.html

72

[20] Inc. The MathWorks, “roadBoundaries (MATLAB function).” [Online].

Available:

https://it.mathworks.com/help/driving/ref/drivingscenario.roadboundaries.html

[21] Inc. The MathWorks, “spline (MATLAB function).” [Online]. Available:

https://it.mathworks.com/help/matlab/ref/spline.html

[22] Inc. The MathWorks, “fmincon (MATLAB function).” [Online]. Available:

https://it.mathworks.com/help/optim/ug/fmincon.html

[23] W. H. Kwon and S. H. Han, Receding Horizon Control: Model Predictive Control

for State Models. in Advanced Textbooks in Control and Signal Processing.

Springer London, 2005. [Online]. Available:

https://books.google.it/books?id=ITSKhlKy2u8C

[24] A.-M. Pendrill and D. Eager, “Velocity, acceleration, jerk, snap and vibration:

forces in our bodies during a roller coaster ride,” 2020.

[25] D. Eager, A.-M. Pendrill, and N. Reistad, “Beyond velocity and acceleration: jerk,

snap and higher derivatives,” Eur J Phys, vol. 37, no. 6, p. 65008, Oct. 2016, doi:

10.1088/0143-0807/37/6/065008.

[26] I. Bae, J. Moon, and J. Seo, “Toward a Comfortable Driving Experience for a Self-

Driving Shuttle Bus,” Electronics (Basel), vol. 8, no. 9, 2019, doi:

10.3390/electronics8090943.

[27] N. Attila and M. Gyula, “ENGINEERING ENERGY EFFICIENT FEASIBLE

AUTONOMOUS MULTI-ROTOR UNMANNED AERIAL VEHICLES

TRAJECTORIES,” 2016. [Online]. Available:

https://www.researchgate.net/publication/320057381

[28] Inc. The MathWorks, “Simulink,” 2024, The MathWorks, Inc.: 2022b. [Online].

Available: https://www.mathworks.com/products/simulink.html

[29] Inc. The MathWorks, “sim (MATLAB function).” [Online]. Available:

https://it.mathworks.com/help/simulink/slref/sim.html

