POLITECNICO DI TORINO

Master’s Degree in ICT for Smart Societies

Master’s Degree Thesis

Designing and engineering a Q& A LLM
for network packet representation

Supervisors Candidate

Prof. Luca VASSIO Giovanni DETTORI
Prof. Marco MELLIA

Phd. Matteo BOFFA

October 2024

Abstract

As internet traffic continues its ever-growing rapid expansion, the development
of solutions for automatic analysis becomes increasingly important for ensuring
network performance, security, and reliability.

Tools like Wireshark and traffic analyzers enable packet analysis in a human-friendly
way by generating verbose and detailed textual descriptions. However, such detailed
analysis does not scale efficiently with large datasets and faces significant challenges
due to the prevalence of encrypted traffic. This necessitates the development of
more sophisticated tools, helping or even substituting traditional methods, to
extract meaningful information directly from the raw packet, with minimal human
engineering.

Nowadays, advanced machine learning algorithms and deep learning models offer
the ability to learn complex patterns and relationships within the data. This leads
to the following question: can the text analysis capabilities of large language models
(LLM) replace traditional tools allowing larger-scale and automatic internet packet
analysis?

The thesis introduces an artificial intelligence pipeline to obtain a model that
processes textual packet data, i.e., the so-called PCAP raw format, and generates
self-supervised numerical representations that capture the full meaning of the
original packets. This is obtained through two fine-tuning methods applied to the
pre-trained Th model. The first is a simple autoencoder while the latter emulates
what the tool Wireshark already performs by asking an LLM different questions on
the internet packet header and payload. A bottleneck is introduced between the
encoder and the decoder of the T5 model, to obtain the numerical representations
of the packet in input.

With the model evaluation, we demonstrate that our approach is feasible, en-
abling us to tackle networking tasks such as application classification or service
recognition on par with state-of-the-art solutions. Moreover, we show that these
representations can be utilized for unsupervised and scalable analysis of large
datasets.

II

Acknowledgements

“Do not settle for what, but get to know the why and the how.”
Robert Baden-Powel

I would like to express my deepest gratitude to all the remarkable individuals who
have surrounded me throughout my Master’s Degree journey. Their unwavering
support, encouragement, and wisdom have been invaluable in the completion of it.
Surrounding oneself with such dedicated and inspiring people truly makes all the
difference.

Special thanks to my supervisors, Prof. Luca Vassio and Prof. Marco Mellia.
Their unwavering presence and weekly support have been essential in helping me
make the right choices throughout this research. Words cannot express my gratitude
to my tutor and friend, Mattco Boffa, who has always supported me as soon as
I was in trouble regardless of the hour, always spurring me to go in-depth into things.

I would like to express my gratitude to my large family. Their unwavering belief in
me and faith in my abilities has been a constant source of encouragement through
challenges and staying focused on my goals, even during the most difficult periods.

I extend my sincere thanks to all the friends I have met during my academic
and private life. Each of you has played a significant role in shaping who I am
today. Your support, encouragement, and companionship have been invaluable to
me. Whether through shared experiences, heartfelt conversations, or simply being
there during challenging times.

Finally, I am particularly grateful to my primary school mathematics teacher
Anna, who spurred me to pursue a career as an engineer since I was a child.

II1

Table of Contents

List of Tables VII
List of Figures VIII
Acronyms XI
1 Introduction 1
1.1 Problem definition 1
1.2 Thesis purposeso 2
1.3 Thesis contributions oL Lo 2

2 Literature review and background 4
2.1 State-of-art: packet classification 4
2.2 Large language models overview 5)
2.2.1 Working pipelineof a LLM 6

2.2.2 Fundamental component: the transformer 7

2.2.3 Self-attention L o 9

2.3 Denoiser autoencoder 10
2.3.1 Classification head 11

24 Tbhmodel 11
2.4.1 'Training strategies 12

2.5 Computer networking Lo 14
2.5.1 Internet Protocol (IP) 14

2.5.2 Internet Control Message Protocol (ICMP) 15

2.5.3 Transmission Control Protocol (TCP) 16

2.5.4 User Datagram Protocol (UDP) 17

3 Problem definition and proposed framework 18
3.1 Problem definition L 18
3.2 Phase I: encoder training 19
3.2.1 Initial encoder 20

3.2.2 Bottleneck
3.2.3 Decoder
3.3 Phase 0: thedenoiser
3.4 Phase II: classification

Datasets and data processing

4.1 Datasets: phase I
4.1.1 MAWI . . .o
4.1.2 UNSW-NBI15
4.1.3 Passively collected PCAP
4.1.4 PCAP from malware-traffic-analysis blog

4.2 Datasets: phase IIo
421 NetBench

4.3 Data elaboration: from PCAP to model input data (phase I)
4.3.1 Wireshark raw filtering
4.3.2 Scapy fine process

Evaluation and discussion of the results

5.1 Systems for experiments: HPC and BigData

5.2 Experiments
5.2.1 Choice of initial parameters
5.2.2 Effect of bottleneck choice
5.2.3 Best format for input packet string
5.2.4 Assessing the impact of denoiser implementation
5.2.5 Easy, Hybridor Hard
5.2.6 Fine selection of the learning rate
5.2.7 Phase II: evaluation of training time
5.2.8 Phase II: frozen or unfrozen encoder?

5.3 Results.

Conclusion and future work
6.1 Overview
6.2 Limitations and future approach

Bibliography

VI

24
24
24
26
27
27
28
28
30
30
31

35
35
36
36
37
39
40
41
45
46
47
48

52
52
53

54

List of Tables

2.1

4.1
4.2
4.3

5.1

5.2

2.3
0.4

5.5
5.6

5.7

5.8

2.9

5.10

5.11

Models proposed in the T5 paper in order of increasing complexity. 12

Benchmark used to evaluate the performance of the proposed model. 29

Possible questions performed on packets of type TCP over IPv4. . . 33
Description of the datasets Easy, Hard, and Hybrid. 33
The compositions of the training, validation, and test sets for the
classification task, referred to as Task2. 36
Accuracy [%] on validation for bottleneck with different learning
rates (LR) with Hybrid dataset. 37
Accuracy [%] on test for bottleneck with Hybrid dataset. 38
Accuracy [%] for task in testing Hybrid dataset for three different
format input strings. 39
Accuracy [%] on test fordifferent corruption ratio. 41
Accuracy [%] and Fl-score on the test for different learning rates on
the Hybrid dataset., 42
Accuracy [%] and F1 score on test for ifferent datasets Fasy, Hard,
and Hybrid with the parameters identified up tonow. 43
Accuracy [%] and F1 score on test for different learning rates on the
Task2. e 45

Training time for the encoder and classification head in one epoch
considering the Task2 dataset on one GPU of HPC cluster (Section

D). 46
Accuracy [%], Fl-score, and training time on test for the frozen and
unfrozen versions of the model. 48
Comparison of the results on Task?2 in terms of accuracy, Fl-score,
and training-time.o o Lo 49

VII

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
2.3

0.4
2.5

Transformer base architecture - source [18]
Base structure of a classification head.
Base structure of a classification head.
Diagram of T5 text-to-text framework - source [21].
Diagram of T5 text-to-text framework - source [21].
Example of QA task derived from SQuAD dataset.
The theoretical OSI 7 layers stack and the implemented one TCP/IP.
Comparison between the IPv4 and IPv6 headers - source [30].
ICMP header.
TCP header.
UDP header.

Schema of the architecture of the TH model.
Schema of the modified structure of the T5 model for our objectives.
Example of denoiser where « is corrupted to &, then r is obtained
and z is the attempt to reconstruct . The performance is evaluated
through the loss function I(x,z).

Structure of the WIDE infrastructure - source [35].
Analysis of MAWTI traffic in the period 2001/2015 - source [36]. . . .
Testbed for the UNSW-15 dataset - modified from [38].
Pipeline for data processing.
Protocol hierarchy statistics (MAWI - April 2, 2023).
CDF of packet length and byte amount (MAWI - April 2, 2023). . .

Loss curve of the four bottlenecks analyzed.
Accuracy [%] curve of the four bottlenecks analyzed..
Loss curve of the denoiser validation as a function of varying learning

rates, with the corruption rate set to 15%.
Validation loss curve for various denoiser corruption rates.
Validation accuracy curve for various denoiser corruption rates. . . .

VIII

22

25

26
30

30

38
38

40
41
41

2.6
5.7
5.8
2.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

5.19

Accuracy [%)] curve on validation in the Hybrid dataset for learning

rates selection. 42
Fl-score curve on validation in the Hybrid dataset for learning rates
selection. L 42
Accuracy [%] on validation for the dataset selection among Fasy,
Hard, and Hybrid. 43
F1-score on validation for the dataset selection among Fasy, Hard,
and Hybrid. 43

Plot in 2D of the packet representation derived from training with
FEasy question-answering dataset on Task2 classification benchmark. 44
Plot in 2D of the packet representation derived from training with
Hard question-answering dataset on Task?2 classification benchmark. 44

Accuracy [%] curves on validation for fine learning rate selection. . . 45
Fl-score curves on validation for fine learning rate selection. 45
Accuracy [%] on validation with the encoder frozen/unfrozen. 47
Fl-score on validation with the encoder frozen/unfrozen. 47
Test confusion matrix normalized on true values of OUR model on
Task2. 49
Test confusion matrix normalized on true values of ET-BERT model
on Task2. 49
Plot in 2D of the packet representation derived from training with
FEasy question-answering dataset. 50
Plot in 2D of the packet representation derived from training with
Hard question-answering dataset. 50

IX

Acronyms

Al
Artificial Intelligence

BERT

Bidirectional Encoder Representations from Transformers

BPE
Byte Pair Encoding

DAE

Denoising AutoEncoder

DL
Deep Learning

ET-BERT
Encrypted Traffic BERT

ICT

Information and Communications Technology

IDS

Intrusion Detection System

IoT
Internet of Things

LAN
Local-Area-Network

XI

LLM
Large Language Model

ML
Machine Learning

MLM
Masked Language Modeling

MLP
Multi Layer Perceptron

NLP

Natural Language Processing

PCAP
Packet CAPture

QoS
Quality of Service

RNN

Recursive Neural Networks

SOTA
State-Of-The-Art
SVM
Support Vector Machine

TS5

Text-To-Text Transfer Transformer

UMAP

Uniform Manifold Approximation and Projection

XII

Chapter 1
Introduction

In this era of digital innovation, more and more challenges lie ahead for the world
of research and business to analyze and filter internet data quickly. Indeed, in a
single ICT system, computers, [oT devices, storage devices, routers, and many
other components must communicate to maintain good QoS, security, and latency
performance.

1.1 Problem definition

As internet traffic continues its ever-growing rapid expansion [1], the development
of solutions for automatic network analysis becomes increasingly important for
ensuring network performance, security, and reliability. Traditional traffic analysis
methods often rely on static rules and security experts. However they are becoming
less effective for the increasing complexity of network environments, the dynamicity
of protocols, and the growth of encrypted traffic.

Tools like Wireshark, a well-known internet traffic analyzer, enable packet analysis
in a human-friendly way by generating verbose and detailed textual descriptions.
However, such detailed analysis does not scale efficiently with large datasets. This
necessitates the development of more sophisticated tools, helping or even substitut-
ing traditional methods, to extract meaningful features directly from the raw packet,
with minimal human engineering. Then, consistent packet representation finds
application in a large number of fields, from classification and novelty detection to
QoS monitoring and intrusion detection.

Nowadays, to address this problem advanced machine learning algorithms and
deep learning models are leveraged for their ability to learn complex patterns and
relationships within the data [2]. Furthermore, these solutions can be constantly
improved and adapted to the evolving nature of internet traffic.

In the literature, several attempts exist to create a unified structure for representing

1

Introduction

internet packets. This often involves using fingerprinting techniques, which tend
to lack scalability. In contrast, more scalable solutions leverage machine learning
to automate the feature extraction process but rely on fixed structures such as
nPrint [3], or need end-to-end fine-tuning such as in PacRep (Packet Representa-
tion)[4] that focuses on optimizing performance for particular applications. This
can limit their generalization ability and flexibility. As a result, they often fail to
provide a comprehensive and scalable solution for internet packet representation.
Consequently, any minor alteration in the task or amount of data makes the model
obsolete, necessitating a complete retraining process.

1.2 Thesis purposes

The thesis aims to explore a possible application of the LLM in networking trying
to identify a strategy to find a consistent packet representation in the internet
flows that allows a scalable internet traffic analysis. The focus is to propose a
training pipeline that is able to obtain a packet representation, evaluated on a set
of classification tasks. An important analysis is performed on which is the best
way to have a single representation starting from N vectors that come from the
model’s encoder. The solution is to implement a special layer called bottleneck that
executes the compression by performing simple operations, such as mean or max,
up to more complex ones, such as the Luong attention.

A secondary goal is also to provide an exhaustive analysis of the datasets used in
order to give an overview of the most commonly used datasets in the literature,
and the reasoning behind their use in the thesis.

1.3 Thesis contributions

The thesis work is an initial exploration of a field not widely considered, for this
reason, I had to investigate and create from scratch a lot of essential elements
starting from the datasets up to the final training pipeline. Among the entire
contributions of the thesis, I reported the main ones in the following:

1. The proposal of a model training pipeline to obtain a numerical representation
of an internet packet. It starts with two pre-training steps applied to the
pre-trained ThH-model. The first is an autoencoder that takes as input a
packet, retrieves the internal representation through the bottleneck, and finally
attempts to recreate the input packet. The second pre-train is a supervised
question-answering in which the model learns to solve retrieval and reasoning
tasks.

Introduction

2. A possible benchmark to evaluate the quality of the packet representation.
In particular, I tested the model on one task derived from the widely used
dataset ISCXVPN2016 [5].

3. An in-depth description of the most spread datasets in the literature, focusing
on the ones largely exploited in the thesis.

Chapter 2

Literature review and
background

This chapter conducts an extensive review of the literature relevant to the thesis.
The aim is not to exhaustively cover all the topics exploited in the study but
to ensure an understanding of the methodology and the results obtained. After
analyzing the state of the art about the thesis topic, the following sections try
to make a general overview of the world of the large language models going deep
into their base structures and presenting T5. Moving on, we present the basis of
networking to better understand the field in which the thesis is applied.

2.1 State-of-art: packet classification

The first stages of traffic analysis saw the growth of rule-based methods based
on fixed rules designed by security experts. They consisted of recognizing pat-
terns or statistical behaviors of communication protocols and port numbers to
identify possible violations of security policies [6, 7, 8]. However, rule-based
techniques are becoming less and less effective for the increasing complexity of
network environments, the dynamicity of protocols that can cause high false-alarm
rates because the packets are not recognized, and the growth of encrypted traffic [9].

High progress in traffic analysis was achieved with the introduction of machine-
learning techniques (ML), used to analyze the high-dimensional statistical features
of traffic. For instance, with their work, Zamani and Movahedi [10] demonstrated
that employing a machine-learning approach for intrusion detection achieves a
high detection rate and a low false-positive rate while quickly adapting to evolving
intrusive behaviors. In the beginning, the Naive Bayes linear probabilistic classifiers
were particularly successful, exploiting many features computed on internet flows

4

Literature review and background

and packets [11, 12]. Other techniques were based on Support Vector Machines
(SVM) and random forests. An example of the first can be the work proposed by
Panchenko [13] which selects 104 optimal statistical features and feeds them to
an SVM to identify website traffic. Concerning the second, Zhang [14] proposed a
systematic framework that applies the Random Forest algorithm to both misuse and
anomaly detection in IDS. Even if MLL methods combined with statistical features,
can analyze complex traffic patterns they rely heavily on statistical features crafted
by experts who must identify the most suitable features for each scenario. This
makes their application difficult in real-world network settings [15].

With the spread of deep learning (DL) methods, they become the main tool
for automatically extracting traffic representations and achieving a significant per-
formance improvement [2]. In 2018 Miller [16] achieved good results by applying
MLP to categorize encrypted VPN and non-VPN network traffic. Wang [17] pro-
posed CNN structures to solve malware traffic classification in which the packets
are transformed into two-dimensional images.

Slightly after the increase in the use of DL, also large language models (LLM)
started to be massively used in traffic classification and analysis, thanks to the
introduction of the concepts of "attention' and "transformer" [18]. In this context,
the work of Lin et al. [19] and the one of Zhao et al. [20] are particularly interesting.
In the first work, the authors proposed ET-BERT. This model leverages the power
of a pre-trained transformer to create contextualized datagram representations in
order to identify and classify encrypted network traffic accurately. The second one
retraces Wang’s idea [17] by creating multi-level flow representation matrices and
training YaTC (Yet Another Traffic Classifier), a masked autoencoder for internet
traffic classification. Even if the excellent results on different challenging classifi-
cation datasets these solutions do not provide an accurate packet representation.
Thus, in the thesis, we try to exploit the power of the T5 model [21] to obtain an
internet packet representation and only after, use it to achieve sota performance
on different well-known classification datasets.

2.2 Large language models overview

Large language models (LLMs) are advanced computational models designed to
understand and generate human-like text. They are trained on a huge amount
of data, enabling them to perform a wide range of processing tasks such as text
generation, translation, summarization, question answering, information retrieval,
and conversational interactions.

LLMs use deep learning techniques, particularly transformer architecture, to learn

5)

Literature review and background

patterns and relationships in language. This allows them to produce coherent and
contextually relevant responses with human-level performance.

The term large is not only due to the data needed to train such models but also
to the number of parameters that make up them (a few million up to billions and
trillions).

2.2.1 Working pipeline of a LLM

Since the beginning of the spread of LLM, a huge number of different architectures
and types of models have been developed. Notable examples include BERT [22]
from Google, GPT-3 [23] and GPT-4 [24] from OpenAl, and LLaMA [25] from
Meta. Despite their differences, these models share many common elements in
their underlying mechanisms. Let’s explore the key components:

» Tokenizer: the process performed by the tokenizers is essential in the NLP
pipeline since they convert text into data that models can process. Indeed,
models only understand numbers, so tokenizers convert text inputs into
numerical data. The process starts by splitting the input string into small
manageable units, called tokens, following different rules. The rule’s complexity
can change depending on the model we choose. In the following the most
common algorithms are reported:

— Byte-Pair-Encoding: a data compression algorithm that starts by
selecting individual uni-grams (letters of the alphabet) and then merges
them into n-grams by selecting the most frequent. The size of the tokens
increases until the maximum number of possible tokens is reached.

— WordPiece: like BPE, wordpiece uses a bottom-up approach that starts
with the single alphabet characters and then tries to insert groups of them
choosing not only the most frequent but also the one with the highest
likelihood.

— SentencePiece: a widely used method that works over BPE that tries to
solve the multiple sub-word segmentation problem. Indeed, the objective
is to select tokens that appear frequently (to measure the importance of
the word), but differently (to maximize the information captured).

« Vocabulary: the set of the independent tokens we selected best during the
tokenization process. Since the intelligent part of the model can work only
on numbers, the vocabulary contains a mapping for each token with a dense
vector in a continuous vector space. The idea behind the continuous vector is
to capture the semantics of the token in relationship to the other tokens.

o Model: the intelligent part of the LLM, designed to understand and generate
human language. It consists of a machine learning system, trained with many

6

Literature review and background

data to solve different tasks. Nowadays, its main component is the transformer
which is widely explained in subsection 3.2.3.

e Output: the text or data generated by the model in response to a given input
or prompt. The output makes it possible to evaluate the model’s performance.

2.2.2 Fundamental component: the transformer

The Transformer is a new architecture proposed by Google in 2017 to replace the
previous solutions used in most natural language problem applications. Its main
goal is to solve tasks where the input and output are both sequences (sequence-to-
sequence tasks), especially to handle the long-range dependencies among words.
The general structure of the transformer is composed of two big functional parts:
the encoder and the decoder. Depending on the different implementations it is
possible to increase or decrease the complexity of the two elements by developing
new architectures on the original transformer modules.

Let’s explore the fundamental components of transformers to gain a deeper under-
standing of their architecture:

« Embedding Layer: a type of hidden layer that maps high-dimensional input
data into a lower-dimensional space. This transformation helps the network
learn relationships between inputs more effectively, and process the data more
efficiently. Indeed, they convert words or phrases into continuous vectors that
capture semantic meaning.

e Encoder: It analyzes the input text to identify and extract key information,
and convert it into a continuous representation which is then forwarded to the
decoder. Here’s a breakdown of its key functions:

— Self-attention mechanism: The LLMs utilize this mechanism to discern
the intricate dependencies and relationships between input sequences and
the current element. It allows the model to focus on relevant parts of
the input, similar to how humans pay attention to specific details when
comprehending language.

— Feed Forward: This component is a multi-layer perceptron, composed
of at least three layers: the input, hidden, and output layers. This neural
network aims to introduce a non-linear transformation inside the mode,
allowing it to learn more complex patterns and relationships in the data.

— Layer Normalization and Residual Connections: each layer in-
cludes normalization and residual connections to stabilize and improve
the training process.

Literature review and background

Output
Probabilities

~

Add & Norm -'-\1

Feed
Forward

™ I Add & Norm :

- |
(iR Multi-Head
Feed Attention
Forward T 7 N
—
Nix Add & Norm
r'"'l Add & Norm I Masked
Multi-Head Multi-Head
Attention Attention
t _t
o — Jo —)
Positional) & -y Positional
Encading Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Figure 2.1: Transformer base architecture - source [18]

e Decoder: It is the part that generates the output of the model using the
information extracted by the encoder. At each step, the model outputs the
most suitable token. The contextualized representation from the encoder
and the previous outputs are considered to generate the next token in the
sequence. As the encoder, the decoder utilizes several layers, each composed
of different elements some of which are shared with the encoder. Two are the
new elements introduced:

— MultiHead-attention mechanism: instead of implementing a single
attention layer to allow the model to focus on different parts of the
input sequence simultaneously, more attention layers running in parallel

8

Literature review and background

are used. The final output of each attention layer is then concatenated
and the concatenation is linearly transformed to produce the output.
This architectural choice has the dual benefits of a richer representation
without increasing the computational cost. Indeed, by simultaneously
focusing on various segments of the input, the model can identify more
intricate relationships within the data but the overall computational
cost is comparable to that of single-head attention working on the same
dimensionality:.

— Masked MultiHead-attention mechanism: considering that the
attention of the decoder must be unidirectional and the model cannot
look ahead, this layer introduces a mask. This way, the model predicts the
next word exclusively from the preceding context, as in a language flow.

o Linear and softmax layer: transforms the decoder’s output to assign a
probability to each token in the vocabulary. Afterwards, the probability can
be used to choose the best token to output.

2.2.3 Self-attention

Self-attention is a mechanism especially used in Transformers because it allows the
model to weigh the importance of different parts of the input data relative to each
other. After the tokenization of a sentence a fixed number of tokens is passed to the
model. Afterward, the query vector, key vector, and value vector are obtained from
each input vector. These are calculated by multiplying the input with different
weight matrices W,, Wy, and W, which are learned during the training phase.
The idea behind the three vectors is that the query has the property to be the
“information seeker”. It’s like the model formulating questions to determine which
words part of the sentence are most relevant to the given word. The key provides
context to the words by trying to identify a contextual tag or meta-information.
Finally, the value represents the inherent meaning of a word.

To better understand how self-attention works, the following is divided into phases:

1. Evaluate the “score” for each input token by performing the dot product
between its query and the key vector of all the other inputs. In this way, if
the input vector has ten words, every word will have ten score values.

scorei = qi - ki, scorei o = qi - ko, ..., score;, = q -k,

2. Divide each score by 1/dj, where dj, is the dimension of the key vector. This
operation is fundamental in stabilizing the gradient. Indeed, without the
scaling factor, the dot products of the query and key vectors can become very
large, especially when dj, is high.

Literature review and background

3. Apply the SoftMax function to the scores to normalize them, ensuring all
values are positive and their sum equal to 1.

4. Multiply the value vector by the scores obtained in step 3. In this way, only
the most relevant word(s) will assume a high value in the output vector.

5. Sum up the vectors obtained in step 4. The computed vector is the output of
the self-attention that can be used in the following layers of the transformer.

However, in the actual implementation, the calculation is done in matrix form to
speed up the processing. So, the following formula summarises steps 2 to 5:

QK"
Vi

where (), K, and V are respectively the query, key, and value matrices.

SoftMazx (%

2.3 Denoiser autoencoder

A denoising autoencoder (DAE) is a model designed to reconstruct the original input
from its corrupted or noisy version, using an internal low-dimensional representation
of the input data. In practice, the idea is to add noise to the input data, and then
during the training, the model learns how to reconstruct the noise-free version of
the input.

Fundamental is the internal representation that is less sensitive to the noise.
Indeed, there is the hypothesis of “robustness to partial destruction of the input”
[26], meaning that different noise versions of the input should produce nearly
identical representations. This is based on the reasoning that a good representation
should capture stable structures, dependencies, and regularities characteristic of
the underlying distribution of the observed input.

00 90 7f 3e 00 90 7f 3e 00 90 7f 3e
02 d0 00 00 a3d0d100 02 do 00 00
3f184d00 —s 3f184d00 _ 5| gncoder >®—> | Decoder | —> 3f184d00
00010108 00010108 . 00010108
0a 07 d6 16 0a07 a7 16 . 0a 07 d6f6
Internal
A representation .
Input Noisy input P Free-noise output

Figure 2.2: Base structure of a classification head.

10

Literature review and background

2.3.1 Classification head

The classification head is the final component designed to interpret and categorize
the output generated by the model. Essentially, it is a layer or a set of layers
added on top of the base model to transform the high-dimensional representations
produced by the model into a format suitable for specific classification tasks. As
anticipated in subsection 3.2.3, the head typically consists of a fully connected
layer followed by an activation function, such as softmax, which converts the raw
scores into probabilities for each class.

Activation
function

Neurons
e with weights

\
X4 X, X3 X; Input

a=f(@

Figure 2.3: Base structure of a classification head.

Let’s go deep into the two elements:

« Linear layer: a set of neurons (corresponding to a node in the neural network
graphs) all connected with the previous and subsequent layers. As Figure 2.3
shows, each neuron receives an input (z;) that is multiplied by the weight
(w;) associated with the neuron. If there are several inputs, a summation is
performed, then a bias (b;) is added.

o Activation function: a non-linear function that takes the weighted sum of
the output of all neurons and generates the final output. The most common
non-linear activation functions are ReLLU, Sigmoid, or Tanh. The introduction
of non-linearity, allows the network to learn complex patterns within the data.

2.4 T5 model

T5 (Text-to-Text Transfer Transformer) [21], launched by Google Al in 2019, is a
collection of large language models trained on an extensive dataset of text.

The core concept of T5 is to address every text processing challenge as a “text-to-
text” problem, meaning that, taking a text as input, the goal is to generate new
text as output. The great advantage of the text-to-text framework is that enables

11

Literature review and background

consistently applying the same model, objective, training procedure, and decoding
process across all tasks tackled. The derived flexibility allowed the authors to assess
performance across a wide range of English-based NLP tasks, such as question
answering, document summarization, and sentiment classification. This unified
approach allows them to compare the effectiveness of various transfer learning
objectives, unlabeled datasets, and other factors while pushing the boundaries of
transfer learning for NLP by scaling models and datasets beyond previous limits.

[”translate English to German: That is good."

“not acceptable”

"six people hospitalized after]

"cola sentence: The
course is jumping well."

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

"summarize: state authorities

[%ispatched emergency crews tuesday to a storm in attala county."

survey the damage after an onslaught
of severe weather in mississippi..”

Figure 2.4: Diagram of T5 text-to-text framework - source [21].

The different models proposed in the T5 original paper, shown in Table 2.1, are based
on encoder-decoder Transformers architecture. These models are distinguished by
their parameters, which reflect the model’s complexity and potential capacity.

Model | N° of parameters | nyayers | Qiayer | Theads
Small 60M 6 512 8
Base 220M 12 768 12
Large 77T0M 24 1024 16
3B 3B 24 1024 32
11B 11B 24 1024 128

Table 2.1: Models proposed in the T5 paper in order of increasing complexity.

In Table 2.1 the symbol nj4yers stays for the number of layers in both the encoder
and decoder, djqye, is the dimension of the embedding vector, and npeqqs the number
of independent heads in the attention mechanism.

2.4.1 Training strategies

The general approach of training the five models was a single massive pre-training
followed by fine-tuning the model for the specific downstream task before being

12

Literature review and background

evaluated. In the pre-training, the authors used the C4 dataset [27], a Colossal
cleaned version of Common Crawl’s web crawl corpus that contains data deriving
from web pages.

Original text

Thank you ferf inviting me to your party last week.

Inputs

Thank you <X> me to your party <> week.

Targets
<X> for inviting <Y= last <7

Figure 2.5: Diagram of T5 text-to-text framework - source [21].

Figure 2.5 shows the unsupervised task used in the T5 pre-training which is based
on denoising objectives also known as “masked language modeling” introduced by
BERT [22]. The model learns to predict and restore missing or corrupted tokens in
the input in a denoising objective. In particular, the authors of T5 designed an
object that randomly samples and drops out 15% of tokens in the input sentence.
Then the selected elements are replaced by sentinel tokens, special tokens added
to the T5 vocabulary that must be unique in a single sentence (its ID is never
repeated in the sentence). The target consists of all the dropped-out spans of
tokens, separated by the same sentinel tokens used in the input sequence, with an
additional sentinel token marking the end of the target sequence.

For the purposes of this thesis, particularly relevant is the question-answering
fine-tuning that they performed on the SQuAD benchmark [28]. The question-
answering involves training models to understand and respond to questions based
on the given context, representing the “knowledge” of the model. During the
training, the model receives the question along with its context and generates the
answer token-by-token. Figure 2.6 shows an example derived from the SQuAD
benchmark.

Question

{ '
Where is the headquarters of the Congregation of the
Holy Cross?

.\

v
4 ™\ (=" ° =™ Answer
The university is the major seat of the Congregation of | T5 : _—

Holy Cross (albeit not its official headquarters, whichare | == ===
in Rome). Its main seminary, Moreau Seminary, is
located on the campus across [...]

. J/

Context

Figure 2.6: Example of QA task derived from SQuAD dataset.

13

Literature review and background

2.5 Computer networking

The definition of computer networking is widely discussed due to the complexity of
the matter which it represents. A possible definition is the following: “A computer
network is a system of data sources and data receivers that are connected by certain
media, transmission, and switching equipment or other networks” [29].

As we read in the definition, essential is the data transmission between a source and
a destination which happens thanks to a structure of protocols that work at different
levels of abstraction ruled in the ISO-OSI stack that finds its implementation in
the TCP/IP stack.

OSl 7 Layer model TCP/IP Protocol

[Application Layer] DHCP

[Presentation Layer] Appllcatlon

[Session Layer] DNS SNMP

[Transport Layer] UDP Transport = TCP]

[Network Layer] [IEMP Internet]

[S e] Network Interface
Physical Layer]

Figure 2.7: The theoretical OSI 7 layers stack and the implemented one TCP/IP.

In brief, the OSI (Open Systems Interconnection) model is a conceptual frame-
work used to understand and implement network communications among different
systems. The OSI model divides the communication process into seven layers:
Physical, Data Link, Network, Transport, Session, Presentation, and Application.
Particularly relevant for the thesis is the Network layer which structures and
manages multi-node networks, including addressing, routing, and traffic control.

2.5.1 Internet Protocol (IP)

Internet Protocol is the protocol at the base of networking and makes possible the
flow of packets on the internet. It is based on addresses that are unique identifiers
assigned to each device connected to a network and they specify where data should
be sent and received. There are two main types of IP addresses: IPv4 and [Pv6.
IPv4 addresses are 32-bit numbers, typically represented in dotted decimal format
(e.g., 192.168.0.1), and are running out due to the huge number of devices connected
to the internet. To address this problem, IPv6 was introduced, which uses 128-bit

14

Literature review and background

numbers, providing a virtually limitless number of unique addresses.

Figure 2.8 highlights the many differences between the two IP versions. First of all
the header length because for IPv6 it is fixed at 60 bytes, while version 4 normally
is 20 bytes in length up to 60 bytes if the field "options' is used. Relevant is also
the difference in the number of fields. Indeed IPv6 header format is simplified in
comparison with IPv4 thanks to the removal of several fields. Relevant to the thesis
are the changes introduced with IPv6. Figure 2.8 highlights with different colors
the fields” name kept from IPv4 to IPv6 such as the version field, the ficlds with
name and position changed, such as Total Length (IPv4) called Payload Length
(IPv6), and finally the fields not kept or added with the new version.

IPv4 Header IPv6 Header
Tsype_of Total Length
ervice

iy Fragment
Identification M Offset

Traffic
Class

Next -
Payload Length Hop Limit

Flow Label

Time to Live Header Checksum

Options Padding

[Field's Name Kept from IPv4 to IPv6
I Ficids Not Kept In IPv6
- Name and Position Changed in IPv6

T
c
(/]
(o))
)

=l [New Field in IPv6

Figure 2.8: Comparison between the IPv4 and IPv6 headers - source [30].

2.5.2 Internet Control Message Protocol (ICMP)

The Internet Control Message Protocol is a crucial network layer that is not
typically used for exchanging data between systems but for network diagnostics
and troubleshooting. Indeed it is essential to send error messages and operational
information. It helps diagnose network communication issues by indicating whether
data packets have successfully reached their destination or if there were any failures
along the communication link. Considering its architecture, ICMP consists of an
eight-byte header which follows the normal IPv4 header. As Figure 2.9 shows, it
consists of three fields: the type, the code, and the checksum.

15

Literature review and background

Bit 0 Bit 15 Bit 16 Bit 31
Type (8) Code (8) Checksum (16) I Byz’,cres
Content (variable size)]
ICMP Data

Figure 2.9: ICMP header.

2.5.3 Transmission Control Protocol (TCP)

The Transmission Control Protocol is a fundamental transport layer protocol,
designed to provide reliable, ordered, and error-checked delivery of data between
applications running on hosts across the internet. TCP is connection-oriented,
meaning it establishes a connection through a three-way handshake before data
transmission begins. This ensures that data packets are delivered in the correct
order and without errors, making TCP ideal for applications where data integrity
is crucial, such as web browsing, email, and file transfers. TCP also includes
mechanisms for flow control, congestion control, and error recovery, which help
maintain the stability and efficiency of data transmission over the network.

To provide all the services listed before, as Figure 3.3 shows, the number of TCP
header fields is very high making it 20 bytes long. In addition to the networking
fields such as the source and destination ports and the checksum, essential fields
arc also the acknowledge number, the sequence number, and the window size.

Bit 0 Bit15Bit 16 Bit 31
’ Source Port (16) Destination Port (16))
Sequence Number (32)
Acknowledge Number (32) B)Z/t?as
L ay| Reserved (6) | Code Bits 6) Window (16)
Checksum (16) Urgent (16)
Options |
Data

Figure 2.10: TCP header.

16

Literature review and background

2.5.4 User Datagram Protocol (UDP)

The User Datagram Protocol is a fundamental communication protocol belonging
to the transport layer in the OSI stack, designed for efficient and fast data trans-
mission. UDP is connectionless, meaning that it sends data without establishing
a fixed connection or ensuring the delivery of packets. This makes UDP ideal for
applications where speed is crucial and partial data loss is acceptable, such as live
video streaming and online gaming. The protocol provides minimal error checking
via checksums but does not guarantee packet delivery, order, or protection against

duplicates.

Considering the objectives of UDP, the packet header must be simple and it provides
the basic networking fields which are source and destination port, the checksum,

and the urgent field.

Bit 0

Bit 15Bit 16

Bit 31

Source Port (16)

Destination Port (16)

Packet Length (16)

Urgent (16) Bytes

Data

Figure 2.11: UDP header.

17

Chapter 3

Problem definition and
proposed framework

This chapter is about the punctual definition of the problem and the presentation
of the structure of the final model implemented. As the following sections will show,
the project is divided into two main phases: the first exploits the T5 model to
fine-tune its encoder massively. It consists of a denoiser (phase 0) and a question-
answering task (phase I). Then, in the second phase, the encoder and the bottleneck
associated with a classification header are used to solve different final tasks.

3.1 Problem definition

The objective of the research is to obtain a high-quality packet representation to
solve different downstream tasks. The choice of starting from the representation
and not from zero introduces modularity in the model, saving training time. In
particular, the primary step is to learn an encoder to create a representation of
unknown packets starting from the final encoder’s hidden state. Afterwards, thanks
to the representation is possible to train a classification head to solve downstream
tasks, such as application classification, service detection, malware detection, and
intrusion detection.

Going into detail, given a packet set X = {x1, z, ..., ¥, } where x; is the i-th packet
and |X| is equal to the total number of packets. Then each packet x; is represented
as an input sequence x; = {t;1,%;2,...,t;»} where ¢; ; is the j-th token derived from
the split of the tokenizer. The length of the vector @; can vary since the size of
packets is unfixed.

In addition, each packet x; can assume a number n of labels y; depending on the
number of downstream tasks we want to solve. So, for n downstream tasks, we
have y; € R™ for each packet ;. However, for each task, the number of classes is

18

Problem definition and proposed framework

variable. So, y;; = {1, ...,|C;|} where the classification task j has class set C; and
the number of classes in this task is |C;]|.

Moreover, to pass from the packet to its classification, we need the latent vector
(packet representation) r; € R? where d is the hidden dimension of the model. The
latent vector is obtained by combining the columns of the latent matrix H; € R
where L is the number of tokens in each packet and d the dimension of a token
e;. Following the previous notations, the formalization of the objective of packet
representation learning is:

“Given the input set X and the label set Y of multiple classification tasks, the
goal is to: (1) learn a packet representation encoder f : x; — H; i (2) obtain
accurate y; on downstream tasks by a function g : H;,ri — y;”. [4]

3.2 Phase I: encoder training

The core part of the thesis is the pre-training executed in this phase. The base
architecture is the one proposed by Google with T5 [21] already explained in section
2.4. However, as Figure 3.2 shows, I have introduced a layer that transforms the
hidden state H; into the packet representation r;. Essentially, phase I consists of
three main key elements: the initial encoder, the bottleneck, and the decoder.

Output)

Probabilities ' o ?J"tg:'nt
A ; Packet e
: re i
Softmax : presentatlon Softmax
Linear ' ses s
H Linear
A : Hidden state
Decoder | Nx | Encoder Decoder | \y
1\ J N J 1N L o
Positional Q l % % ¢ @ Positional : Positional I S Positional
Encoding y y Encoding : Encoding X Encoding
"’ Input " lnput | : Input
. Embedding | Embedding : Embedding
. *
Outputs _ | Outputs . .
(shifted right) (shifted right)

Figure 3.1: Schema of the architecture Figure 3.2: Schema of the modified
of the T5 model. structure of the TH model for our ob-
jectives.

19

Problem definition and proposed framework

3.2.1 Initial encoder

Before entering the encoder, the encrypted and decrypted packets are represented
by a string of hexadecimal numbers. Since I used a T pre-trained model, a question
is brought forward at the beginning of the string to ask for a specific field of the
packet. Afterwards, thanks to the tokenizer and the input embedding layer, for
each token t; ;, a vector of embeddings e; ; of size d = 768 dimensions, is obtained.
By passing through the laters of the encoder, the embeddings are modified and in
the end, we get:
H; = Encoder(x;)

where H; contains the embeddings vectors e; ; for cach token giving a compact
representation of the input text. For this reason H; € R%%; for each packet, there
are maximum L tokens, each one encoded into d dimensions.

3.2.2 Bottleneck

The bottleneck is one of the key components of the research because it tries to
obtain a single representation for the entire packet from the L representations of
the tokens. The main problem to be solved is keeping as much of the original
information inside each packet as possible. Indeed, the dimensionality reduction
process necessarily discards a part of the information set.

In literature, many possibilities are present starting from the easiest to more
complex solutions. In particular, I have experienced four solutions:

1. First pooling: a dummy solution that takes as packet representation the
embedding of the first token that is always the initial part of the question
needed by T5. The representation vector of packet i becomes:

Ti = €40

2. Mean pooling: performs the average over the hidden vectors e;; of the
hidden matrix. The representation vector of packet ¢ becomes:

L
ijo €i,j

= —=
L
3. Luong attention [31]: performs a weighted average of the embeddings. The
weights, computed for each e; ;, must be positive and the sum is 1. The
representation vector of one packet becomes:

exp (e} q) <
j T=) we;
7=0

YL jexp(el q)

where g is a learnable query vector and w; is the weight associated with the
cmbedding vector e;.

20

Problem definition and proposed framework

4. No bottleneck: this solution doesn’t create a packet representation, but, as
Figure 3.1 shows, H; doesn’t change. This implementation is provided as a
sanity check of the program.

3.2.3 Decoder

As reported in subsection , the decoder takes two elements as input:

1. Contextualized encoder representation: the output of the encoder part
which is equal to Hj if the bottleneck is not present, r; if present. This element
contains all the information on the question and the packet that the decoder
can use to generate the answer.

2. Answer: the target that the decoder should generate. Before entering the
decoder it is processed as the encoder input. The answer is tokenized and
then translated into embedding vectors thanks to the input embedding layer.
In addition, the sequence of embeddings is right-shifted by one to have the
uni-directionality of the decoder that can only see tokens in the past and not
in the future.

The decoder is based on a loss function that computes the difference between the
token index in input and the one generated by the model. I have followed the
formalization provided by the library of python, torch:

l L=l YT = —w, XD (Tnyn) 4 £ 100
('I7y) {17) N} wyn Og ZS’ZI eXp (xn’c) {y # }

where the indices are in the range [0, C), = the input, y the target, w the weight,
C the number of classes, N spans the batch dimension, and then the mean is

performed:
al 1
(z,y) =D

In
= TN wy, - H{yn # ignore index}

The final goal is to minimize the loss function.

3.3 Phase 0: the denoiser

Ahead of phase I, the encoder-decoder model could be pre-trained on a denoising
task already introduced in subsection 2.3. The base architecture exploited is the
same introduced in phase I that Figure 3.2 shows. However, the objective of
the training changes. The model must now reconstruct a clean “repaired” input
from a corrupted, partially destroyed one. This is achievable by firstly corrupting
the initial input @ to get a partially destroyed version & employing a stochastic

21

Problem definition and proposed framework

mapping function & ~ qp(&|x). The corrupting process is based on the corruption
ratio n that defines the number of tokens corrupted inside the input. In particular,
considering the number of tokens of the input string (|«|), the fixed number 7 is
derived as follows:

na = (|2] = [Zquestion|) - 7

where |Zguestion| 15 the number of tokens that correspond to the T5 question.
Then a 1y number of tokens are chosen at random among the ones not corresponding
to the question, and their value randomly changed considering the entire vocabulary
indexes, the others are left untouched. All information about the chosen components
is thus removed from that particular input pattern, and the autoencoder will be
trained to restore them. The corrupted input & is then mapped, as with the basic
autoencoder, to a hidden representation r = f(&) from which z is reconstructed
as z = g(r). The parameters are trained to minimize the loss function already
explained in subsection 3.2.3.

r
;/»|f[ﬁm OO0~
% %\\ N

000 @00t

X 1
cm\ 000 ~0O000F------ I(x,2)

Figure 3.3: Example of denoiser where « is corrupted to &, then r is obtained
and z is the attempt to reconstruct @. The performance is evaluated through the
loss function I(x, 2).

3.4 Phase II: classification

The addition of the classification head serves as a crucial component in the pipeline,
enabling the model to perform specific classification tasks with high accuracy.
As reported in Section 3.1, we train a model to transform the initial packet
representation to another, specifically refined for the downstream task.

g:H;,ry —y;

By leveraging the rich, encoded representations generated by the encoder and
bottleneck r;, the classification head can make informed decisions based on it,
obtaining the refined version y;. This integration not only streamlines the process

22

Problem definition and proposed framework

of feature extraction and classification but also demonstrates the versatility and
adaptability of the fine-tuned model across different tasks.

The complexity of the classification head was intentionally kept low, based on
the idea that the packet representation from the bottleneck requires only slight
refinement. For this reason, we introduced a 2-lincar layer classification head
balancing between model complexity and computational efficiency.

Going into depth on the architecture, the first linear layer takes the encoded repre-
sentations from the bottleneck as input. This layer applies a linear transformation
to the input data, basing the transformation on a set of weights and biases that are
learned during the training process. This layer is followed by an activation function,
typically a ReLU (Rectified Linear Unit), which introduces non-linearity into the
model, allowing it to capturc more complex patterns in the data. The second linear
layer further processes the output from the first layer, refining the feature space
even further. The output of this layer is then passed through a softmax function,
which converts the raw scores into probabilities, providing a clear and interpretable
classification result.

23

Chapter 4

Datasets and data processing

This chapter discusses the data used throughout the research, considering the
various components of the developed model. The first part presents each dataset
used during phases I and II, highlighting their content and the rationale behind
their use. The key is that the data sets used in the two phases must differ. The
following part describes the pipeline implemented to transform the raw data into
the input given to the model.

4.1 Datasets: phase I

As widely explained in section 3, the goal of phase I is to fine-tune the T5 model
to enable it to handle raw packages. In this phase, I used two well-known public
datasets [32] [33], one coming from a blog that archives malware [34], and finally
two generated by passively collecting traffic under the Polytechnic of Turin network
and a domestic LAN. All datasets consist of packet-level information stored in
PCAP, files used specifically to store network traffic data.

4.1.1 MAWI

The MAWI (Measurement and Analysis on the WIDE Internet) [33] dataset is a
comprehensive collection of network traffic data developed inside the WIDE project,
a research consortium in Japan established in 1987. Its goal is to promote traffic
analysis research and the development of tools. In particular, it has been projected
to evaluate the automated anomaly detection methods.

The archive has been operative since 1999 collecting a huge amount of data. In order
to obtain data with good quality they are collected on the Japan backbone network
(Fig. 4.1) that connects WIDE (Widely Integrated Distributed Environment) to
the upstream internet service provider.

24

Datasets and data processing

W|DE WIDE Internet backbone topology 2023

PROJECT Copyright 1985-2023 TWO Working Group, WIDE Project

I Over 100Gbps
100Gbps

s 10GbpS

————— 100M~1Gbps S > € » | _IAIST | S < [~ m@ <« @ =

Figure 4.1: Structure of the WIDE infrastructure - source [35].

The network topology and the location of the sampling point enable realistic traffic,
including academic and commercial traffic, to be collected at a high bit rate.

As Fig. 4.2 shows, the type of traffic is broad and reflects changes in traffic over the
years. For example, Fig. 4.2 reveals some of the most prevalent malware in specific
years, such as Code Red, Blaster, and Sasser, worms that sadly disrupted Internet
traffic worldwide from 2001 to 2006 [36]. And, some choices related to academic
research, such as the surge in Teredo traffic in 2010, caused by IPv6 traffic being
temporarily tunneled by the Tokyo6to4 project.

|—[cz\{p O NS TR SNMP) D (a.g. FIB REYNC, SME) SmSasser ESTCP SYN COP2P Wi o BbSiesm, QQLive) S Teredo COHTTP(S) iOthers -L.'nknnwn]

Packel Ratio

03 004

Figure 4.2: Analysis of MAWTI traffic in the period 2001/2015 - source [36].

Due to the presence of raw data, the MAWT group has outlined a guideline [37] to
protect user privacy, removing sensible information. The guideline consists of two
principal rules:

25

Datasets and data processing

« Payload removal: in TCP and UDP packets the payload is removed if it
contains private information. Also, the header must be removed as a precaution
if it might contain sensitive information.

o IP address scrambling: each user and organization IP is mapped to another
IP address via a hash function. Exceptional, broadcast, multicast, and private
addresses may not be scrambled.

From this huge archive, which contains captures from 1999 to the present, I have
selected an infinitesimal part consisting of the dump on Sunday, April 2, 2023,
lasting 15 minutes (between 14:00:00 and 14:15:00).

4.1.2 UNSW-NB15

The UNSW-NB15 dataset [38], developed by the University of New South Wales in
2015, is a comprehensive resource designed to evaluate network intrusion detection
systems (NIDS). The dataset is widely used in cybersecurity research to develop
and test new methods for detecting and mitigating network intrusions. Indeed, it
labels nine types of attacks: fuzzers, analysis, backdoors, denial of service (DoS),
exploits, generic, reconnaissance, shellcode, and worms.

It was created using the IXIA PerfectStorm tool to generate a mix of real normal
activities and synthetic attack behaviors, capturing 100 GB of raw network traffic.
As Figure 4.3 shows, they used three virtual servers, servers 1 and 3, to spread
normal traffic, while server 2 had malicious activities. The data acquisition is
performed on router 1 through the tcpdump tool, which acquires both traffic
generated by the IXIA tool and normal traffic.

IXIA
Traffic Generator
L L

Server 1 a— o Server 2 i Server 3
‘ ’ (Malware)
Clients T { Clionts
] ‘ !
- d Router 1 ‘ Router 2 -
= | ropaumy | —

Firewall

Figure 4.3: Testbed for the UNSW-15 dataset - modified from [38].

26

Datasets and data processing

The dataset consists of four CSV files, each corresponding to a distinct category
of attacks. Additionally, it includes access to the raw PCAP files, which contain
the original packet-level data captured during the collection process. The packets
are not anonymized and present the full payload, however, due to the acquisition
testbed doesn’t have the ethernet layer. Indeed, the generation of the packet’s
link-layer header is too heavy for tcpdump, so it constructs a synthetic one.

For my objectives, I have selected only a small PCAP file from January 22, 2015,
of size around 50 MB

4.1.3 Passively collected PCAP

To increase the variety of data inside the final dataset, I have introduced two
datasets collected through the packet analyzer Wireshark on a VivoBook ASUS
Laptop X509DA. The created dumps are two:

e« Domestic LAN: it was executed in the afternoon of July 18, 2024, in my
home. During the acquisition, different types of applications and services were
used to have a wider type of traffic. In particular, the highest amount of data
consists of a big file transfer from my PC to the SmartData cluster. Moreover,
I visualized a short video on YouTube, sent some emails with Outlook and
Gmail, and finally opened some content on Google Drive. The amount of
traffic is 100 MB containing mainly TCP and UDP traffic.

o Polytechnic of Turin network: it was performed during the working day
of 24 July 2024 in the SmartData department. During the acquisition, in
parallel to the normal traffic of the department, I opened a YouTube video
and different academic websites in the background, and then, I searched some
paths via Google Maps and scrolled through my main LinkedIn page. The
resulting traffic was around one gigabyte and a half of data, in the majority
of types TCP and UDP (QUIC).

4.1.4 PCAP from malware-traffic-analysis blog

Malware-traffic-analysis [34] is a blog containing many Windows-based malware
samples as a resource for threat researchers and other security professionals. The
dumps are archived by year and in each PCAP file is present the starting date in
which the malware has been collected.

In order to have recent data and malicious traffic, I have selected two PCAPs
from this blog. The first corresponds to a Latrodectus infection that occurred on
2024-06-25, while the second contains a WikiLoader infection that occurred on
2024-01-17. Considering the two files the total amount of data is around 50 MB

27

Datasets and data processing

4.2 Datasets: phase II

Compared to Phase I, the objective and constraints have changed a lot. In phase
IT, T need a set of datasets that are different from the ones used before and that
are labeled. Indeed, the model must classify packets the encoder has not yet seen
to avoid overfitting problems.

After carefully analyzing already implemented solutions in the literature, I found
NetBench [39] in which the authors proposed a well-structured benchmark.

4.2.1 NetBench

Existing studies often use data processing techniques specifically designed for their
own purposes. Furthermore, some research randomly divides packets from the same
flow into training and testing sets for packet-level evaluation, which can result in
data leakage due to the strong correlation between packets from the same flow.
For these reasons, the authors proposed NetBench [39], an extensive and detailed
benchmark for network traffic analysis, encompassing 7 datasets, used to obtain 15
classification tasks along with 5 generation tasks. Here is the list:

« ISCXVPN 2016 [5]: The dataset, created by the Canadian Institute for
Cybersecurity, is a comprehensive collection of network traffic data designed
to represent real-world traffic scenarios. It includes VPN and non-VPN traffic,
captured from various applications, such as Skype, email clients, and Facebook,
and various services, including VolP, P2P, and streaming.

o ISCXTor 2016 [40]: Also this dataset was developed by the Canadian
Institute for Cybersecurity and is a comprehensive collection of network traffic
data including both Tor and non-Tor traffic. The dataset includes labels for
web browsing, email, chat, audio and video streaming, FTP, VoIP, and P2P
services.

« USTC-TFC 2016 [41]: The dataset includes benign and malicious traffic
samples, with benign traffic covering applications like BitTorrent, Skype, and
Gmail, and malicious traffic featuring various malware such as Cridex, Geodo,
and Zeus

e Cross-Platform Android and iOS [42]: The dataset was designed for
mobile application development and security. It includes data collected from
both Android and iOS platforms, covering various aspects such as app usage,
network traffic, and user interactions.

« CIRA-CIC-DoHBrw2020 [43]: The dataset, developed by the Canadian
Institute for Cybersecurity, is designed to analyze and evaluate DNS over

28

Datasets and data processing

HTTPS (DoH) traffic. It includes both benign and malicious DoH traffic, as
well as non-DoH traffic, captured using various browsers and DNS tunneling
tools.

o CIC IoT Dataset 2023 [44]: The dataset, developed by the Canadian
Institute for Cybersecurity was designed to support research in IoT security
by providing a realistic representation of IoT network traffic. It includes data
from 105 IoT devices and covers 33 different types of attacks, categorized into
seven groups: DDoS, DoS, Reconnaissance, Web-based, Brute Force, Spoofing,
and Mirai.

Since the authors’ goal was to obtain standardization of the datasets, they further
processed them. As the first step, they divided each one into training, validation,
and testing sets to avoid high-correlated packets from the same flow being present
in both training and testing data. Then, to protect data privacy, they anonymized
the packets by replacing source/destination IP addresses and port numbers with 0.
The second step consists of obtaining a unified representation of the packet. They
decided to convert the flows into a hexadecimal format, segment data into 4-digit
blocks, and incorporate specific symbols to identify the header and the payload.
To provide a complete benchmark they further provide a flow representation.

Restricted benchmark

Considering that the thesis has an explorative focus, only a subsample of Netbench
was considered. In particular, I selected five tasks by choosing both the easiest and
the most difficult ones to test my model in various scenarios. Table 4.1 reports the
datasets and tasks considered.

Dataset # Packets N° task # Labels Labels
1 Binary VPN, non-VPN
Train: 355033 9 Multiclass (6 Service Detection: P2P,
ISCXVPN2016 | Val: 43957 ©) FileTransfer, VoIP, etc.
Test: 45006 Application Detection: Gmail
. pplication Detection: Gmail,
3 Multiclass (16) Spotify, Vimeo, FTPS, elc.
Train: 1537751 6 Binary Malware, non-Malware
USTCTFC2016 | Val: 193927 Applicati ‘-
. pplication Detection: Htbot,
Test: 190344 7 Multiclass (19) Skype, Tinba, MySQL, etc.

Table 4.1: Benchmark used to evaluate the performance of the proposed model.

Among the five tasks illustrated in Table 4.1, I have selected the number 2 as the
reference to obtain the first results.

29

Datasets and data processing

4.3 Data elaboration: from PCAP to model input
data (phase I)

Starting from the PCAP files it is necessary to process the data to make it readable
by the model. As the pipeline in Figure 4.4 shows, after the download of the PCAP
from the internet, the file is, at first, preprocessed in Wireshark for raw filtering,

and then finely processed through the python library scapy [45]. The final output
is saved on a CSV file.

. TCPIPv4 |

\‘ » Open In + fitoring v TCP IPv6 - R | F;)ackef: . —

(> . . elaboration 2

PCAP Wireshark : csv
o “ ICMP

Figure 4.4: Pipeline for data processing.

4.3.1 Wireshark raw filtering

As a first step, the PCAP files were downloaded on my PC VivoBook ASUS X509DA
and opened with the Wireshark distribution for Windows systems. Thanks to the
power of this application a brief analysis was performed identifying the type of
traffic present and the packet length. Figure 4.5 shows some of the most present
protocols of levels 3 and 4, while 4.6 reports the CDF (cumulative distribution
function) of the number of packets and bytes referred to the packet’s length.

(=]
o

100

w
o

-)
£ S
<) ¢ 60
] @
2 30 o
) c
3 @ 40
o 20 v
& &

20
—— Packets
[] = — Bytes
TCP TCP UDP UDP ICMP Others

IPv4 IPv6 IPv4 IPv6 IPv4 0 2000 4000 6000 8000
Classes Packet's length

=
o

o
o

Figure 4.5: Protocol hierarchy statistics Figure 4.6: CDF of packet length and
(MAWT - April 2, 2023). byte amount (MAWTI - April 2, 2023).

30

Datasets and data processing

Afterward, depending on the statistics previously analyzed, I created different
PCAP files. The possibilities were at the network layer, IPv4 and IPv6, while at
the transport layer, TCP, UDP, and ICMP. The process is easily performed using
the filters provided by Wireshark. For instance, to select the TCP packets on IPv4,
the filter to use is:

ip.version == 4 && tcp

Since the elaboration through scapy is time-consuming, only the first NV packets
are saved to speed up the process, where N is the number of packets necessary for
the dataset.

At the end of this process, different sub-dumps are created from the original PCAP
file, each containing a type of traffic only (TCP-IPv4, TCP-IPv6, UDP-IPv4, etc.).

4.3.2 Scapy fine process

Fundamental in this step is the python library scapy. It is a powerful tool for
packet manipulation that can create or decode packets across various protocols,
send and capture them, match requests with responses, and other useful features.
The library handles common tasks such as scanning, tracerouting, probing, unit
testing, attacks, and network discovery [45].

For my purposes, I used a tiny part of the library’s functionalities, by reading the
PCAP files, packet by packet, and capturing the necessary fields. In particular,
the following pseudo-code was applied:

Algorithm 1 Packet processing algorithm - part 1

Input: PCAP file
Output: table df _packets with processed packets

1: for packet in PCAP_file do

2: Randomly change 1P of packet;

3: Randomly change TTL of packet;

4: Remove the Ethernet header of packet;

)

6

7

Check and compute the checksum of packet; > On IP layer
Compute the last byte and length of packet payload; > On IP layer
Generate a dictionary of packet; > With fields in hexadecimal

8: Generate the hexadecimal string of packet;

9: end for

10: Save all in df packets;

By looking at Algorithm 1, it is possible to see that seven steps are performed on
each packet. Let’s analyze briefly the reasons behind each one considering that

31

Datasets and data processing

the goal (reported in Section 3.2) is to train a model that generates a significant
representation of each packet. Here are the steps’ comments:

Steps 2 and 3: the TTL (time to live), the source, and the destination IP
are randomly changed to reduce the probability of overfitting during training.
Indeed, the PCAP files contain sets of conversational flows that always have
the same IPs. So the model could memorize these IPs without learning where
to find the information. The same applies to the TTL, which usually assumes
around 20 values instead of the permitted 255.

Step 4: the ethernet layer is deleted because it does not give useful information
on the packet. Indeed, the physical layer has meaning only on the LAN.

Steps 5 and 6: the idea is to generate some fields that are not just retrieval,
but imply reasoning for the model. In addition, since the source and destination
IP of the packet are changed, the checksum must be corrected accordingly.

Steps 7 and 8: for each packet two representation are derived. The first is a
dictionary with all the packet’s fields reported in hexadecimal format. The
second is a string with the bytes of the packet separated by a white space.

As reported in Section 2.4, since the T5 model has a question-answering structure,
I needed to transform my dataset to have some questions related to its fields for
each packet. For this reason, the simple Algorithm 2 was applied.

Algorithm 2 Packet processing algorithm - part 2

Input: df _packets, and P45 that is the set of all packet’s fields askable.
Output: QA _dataset

count = 0
for each row in df packets do
Select randomly a number 7gyestions > where ngyestions < N Pficids)
For each question generates a row in QA_dataset
if count > M AX jyestions then
End the loop
end if
count <— count + Nyyestions
end for

Thanks to Algorithms 1 and 2 it is possible to create a wide range of different
datasets that can vary in complexity, by selecting easy or hard questions only, or
in length by changing the parameter M AX g cstions-

To have an idea of the possible questions that can be found in the dataset, Table
4.2 shows them for the case TCP over IPv4. In the other scenarios (UDP and

32

Datasets and data processing

ICMP over IPv4/IPv6) the questions are a sub-sample to consider the difference in
the protocol structure.

IP source 1P id TCP checksum | TCP sequence number
IP destination | IP checksum is correct? | TCP window TCP payload length
1P ttl TCP source TCP ack TCP last byte header

Table 4.2: Possible questions performed on packets of type TCP over IPv4.

Considering the other scenarios (UDP and ICMP over IPv4/IPv6) the questions
are a sub-sample of the fields in Table 4.2. Indeed, it is necessary to consider the
difference in the architecture of the protocols. In the following, I provide examples
of TH prompts:

o What is the TCP checksum?<sep>4500 0028 8145 4000 ... CD19
o What is the destination IP of the packet?<sep>4500 05D4 741D 4000 ... F7C6
o Is the packet’s IP checksum correct?<sep>4500 00AA D973 4000 ... 08D4

Task complexity datasets: Easy, Hard, and Hybrid

Thanks to the data processing explained, I created three datasets to highlight the
model’s performance under different scenarios using the data, of datasets described
in Section 4.1, processed as explained previously. Table 4.3 shows the dataset
composition highlighting its number of samples, the asked fields, and the type of
traffic.

N° questions Question type Traffic type
IPttl, srcIP, dstIP, IPid,
Easy 50000 TCPseq, srcTCP, TCPchk, TCP-1Pv4

TCPack, TCPwnd

IPttl, srcIP, TPid, dstIP,
Hard 50000 last__header3L__byte,
len__payload, checksum__check

IPttl, srclP, dstIP, IPid,
TCPseq, srcTCP, TCPchk,
Hybrid 50000 TCPack, TCPwnd

last__header3L_ byte,
len_ payload, checksum__check

TCP-1Pv4, TCP-IPv6,
UDP-IPv4, ICMP

TCP-IPv4, TCP-IPv6,
UDP-IPv4, ICMP

Table 4.3: Description of the datasets Easy, Hard, and Hybrid.

33

Datasets and data processing

The goal of the Fasy one is to implement a retrieval model that given a specific
question, can understand it and find the answer in the context. On the other hand,
the Hard dataset tries to force the model to perform more complex tasks, such
as the computation of the checksum, or the payload length. The Hybrid is just
the mix of 50% of Easy and 50% of Hard. Thercfore, the Hybrid dataset contains
the same type of traffic as Hard but the presence of more questions related to
TCP-IPv4 makes this protocol prevalent to the others.

34

Chapter 5

Evaluation and discussion of
the results

In this chapter, I show the entire set of experiments, and the corresponding results,
performed during the explorative phase. Indeed, the final pipeline, explained in
the previous chapters, resulted from many experiments and wise choices taken in
order to satisfy the objectives of the thesis.

It is possible to divide this chapter into two parts, the first is the explanation of the
experiments performed in each phase, while the second shows the final results of the
downstream tasks considering the scenario in which I assume the best parameters.

5.1 Systems for experiments: HPC and BigData

To initiate my coding work, I started with the one provided by the LogPrécis
repository [46, 47]. This gave me a robust starting point ensuring a more efficient
and streamlined development process.

The experiments were conducted on two distinct clusters. All training models were
executed on the Polytechnic HPC cluster [48], which comprises 57 nodes and 1824
computing cores. Of these, 6 nodes were primarily utilized, each equipped with 4
Nvidia Tesla V100 SXM2 GPUs, featuring 32 GB of VRAM and 5120 CUDA cores
per GPU, totaling 24 GPUs. The system operates on CentOS 7.6 with SLURM
18.08.8 as the job scheduler.

Additionally, all debugging operations were performed on the BigData@Polito
cluster [49], which consists of over 36 nodes. In this setup, only 2 nodes are
GPU-enabled, each housing 2 Nvidia Tesla V100 GPUs with 16 GB of VRAM,
amounting to 4 GPUs in total.

35

Evaluation and discussion of the results

5.2 Experiments

To obtain a good packet representation it is necessary to perform a series of
experiments designed to optimize the choice of each parameter and understand
how each one affects the final result. The majority of these experiments typically
consist of a grid search focusing on the most likely areas of the solution space.
Indeed, greedy choices are needed due to the impossibility of exploring the entire
solutions space.

Before the illustration of the experiments performed, it is important to underline
that:

1. In Phase 0 and Phase I, the datasets are those detailed in Section 4.3.2. As
previously noted, these datasets are entirely distinct from those employed
during the classification phase.

2. In Phase II, the results are compared on Task2, as already mentioned in
Section 4.2.1, because the task is reasonably challenging.
Task?2 consists of classifying packets into six service classes. the dataset is
extremely unbalanced so Table 5.1 reports the classes and the amount of data

for each.
Chat | Email | FileTransfer | P2P | Streaming | VoIP
Train 22540 | 17712 94970 8171 18556 193084
Validation | 2588 | 2140 11729 1189 1813 24 498
Test 2899 | 2526 11952 916 2331 24 376

Table 5.1: The compositions of the training, validation, and test sets for the
classification task, referred to as Task2.

5.2.1 Choice of initial parameters

During the initial experiments, I made several arbitrary choices, which were sub-
sequently modified or confirmed during the exploration phase. The following list
details these choices and provides the primary reasons behind them.

« Dataset choice: As explained in subsection 4.3.2, I generated three different
datasets in growing order of complexity: Fasy, Hybrid, and Hard. The initial
choice is to use the Hybrid one because it includes the other two datasets.

o« Format choice: 1 formatted the model’s input string, maintaining the
Wireshark style called every2 in the following experiments. It consists of a
string of hexadecimal numbers each separated by a white space.

36

Evaluation and discussion of the results

o Denoiser: in the early stages, the denoiser is not applied. So, in Phase I, the
encoder is directly loaded from the T5 library. The choice was performed not
to overlap the effects of the two pre-training tasks (Phase 0 and Phase I).

With each successive experiment, the optimal parameters identified are incorporated
into subsequent experiments.

5.2.2 Effect of bottleneck choice

The core choice of the thesis was to determine the optimal representation of the
input packet by compressing the information from the encoder’s last hidden state.
As detailed in Section 3.2.2, the alternatives analyzed include first, mean, and
Luong attention mechanisms. The experiment aimed to identify the most suitable
learning rate for each method and subsequently compare their performance on the
same test set. Both the training and test sets were derived from the Hybrid dataset,
as explained in Subsection 5.2.1. Initially, the best learning rate for each bottleneck
was selected, followed by a comparison of the best results for each method.

Table 5.2 shows the results in terms of accuracy.

Luong
attention

LR=1-10"*| 93.01 | 94.94 94.59
LR=5-10"%|96.94 | 97.62 98.12
LR=1-10"31 93.97 | 97.06 35.61

First | Mean

Table 5.2: Accuracy [%] on validation for bottleneck with different learning rates
(LR) with Hybrid dataset.

Examining Table 5.2, it is evident that all three solutions perform optimally with
a learning rate of 5-10~*. The Luong attention bottleneck achieves the highest
accuracy, closely followed by the mean bottleneck. Additionally, when analyzing
the models’ behavior with varying learning rates, I observed that the mean and
first bottlenecks exhibit greater stability, with only about a 3% drop in accuracy.
In contrast, the Luong attention bottleneck’s performance degrades significantly at
higher learning rates, such as 1 - 1072, where its accuracy drops to around 35%.
Following this analysis, I selected a learning rate of 5 - 10~* for all bottlenecks and
evaluated their performance on a common test set using the Hybrid dataset. The
results in Table 5.3 align with the trends observed during validation.

The last evaluation assessed the extent to which the bottleneck degrades the model’s
performance by analyzing both accuracy and convergence speed during training.
In particular, I compared the three bottlenecks with the case none, in which the

37

Evaluation and discussion of the results

Accuracy on test
First 93.69
Mean 93.85
Luong attention 94.36

Table 5.3: Accuracy [%] on test for bottleneck with Hybrid dataset.

model can use the representations of each sentence token and not only a compressed
version. As I expected, Figures 5.1 and 5.2 show the none case is always the best
in terms of accuracy and convergence time. Indeed, the loss immediately starts at
0.1, while the others assume value around 1 or above, and after a few epochs, it
achieves 0.01. Similar considerations can be made regarding the accuracy. Indeed
none achieves the best score (99.4%) and already at the first epochs, its accuracy
is around 95%.

Therefore, after all the previous considerations, I can conclude that introducing a
bottleneck in the model degraded the performance. However, it is essential for the
thesis since I need a single embedding representing the entire packet.

1.6 —— First 100 _ /.__._..—.:-:-:;;::':':'EEE
14 —— Mean T e I

: —— Luong attention 90 / ‘///,/’
1.2 —— None / Vs

1.0

(0]

o 0.8 70
—

0.6)
0.4 \\\ 60

~se First
—— Mean

S
y
/
Accuracy
T

0.2 Tb:\‘;:‘:‘:;:;:;;k__._.__ 20 / —— Luong attention
S R e — —— None
0.0 == "
0 2 4 6 8§ 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Epochs number Epochs number

Figure 5.1: Loss curve of the four bot- Figure 5.2: Accuracy [%] curve of the
tlenecks analyzed. four bottlenecks analyzed.

Returning to the goal of the experiment, I decided to select as the bottleneck for
the next experiments the mean instead of the Luong attention even if the second
has higher accuracy, for the following reasons:

1. As table 5.3 shows the accuracy difference is very tine, around 0.5%.

2. Looking at the curves in Figures 5.1 and 5.2, the behavior in the loss and

38

Evaluation and discussion of the results

accuracy is very similar, so both the models converge at the same speed.

3. The complexity of the model with the mean as the bottleneck is lower than
the model with Luong attention.

5.2.3 Best format for input packet string

The T5 model only accepts strings as input. Therefore, the packet represented by
its bytes must be converted into a string. The simplest solution is concatenating
the bytes and passing the resulting string to the model. However, to help the model
better understand that each pair of numbers represents a byte, it may be useful to
introduce some white spaces between the bytes.

I conducted three experiments named noSpaced, every/, and every2. In noSpaced,
there are no spaces between bytes, aiming to determine if ignoring white spaces
aids the tokenizer. The every4 experiment groups bytes in pairs, following the
notation commonly found in the literature. Lastly, every2 groups bytes individually,
adhering to the Wireshark style.

noSpaced | Every4 | Every2 noSpaced | Every4 | Every2
Total chk3L 96.21 99.89 99.47
accuracy 89.55 93.87 93.69 TCPwnd 99.6 99.9 99.8
srcIP 7217 86.35 | 87.41 sre3LL 95.61 98.82 | 98.66
dstIP 71.81 86.54 86.9 TCPack 92.58 92.68 92.68
IPttl 99.89 100.0 | 100.0 TCPseq 87.8 89.57 | 8T.7
IPid 98.57 99.79 99.31 payload length 95.22 96.47 95.93
[Pchk test 77.38 78.41 77.28 start payload 94.64 99.4 99.89

Table 5.4: Accuracy [%] for task in testing Hybrid dataset for three different
format input strings.

Table 5.4 shows the results on the same test set for the three experiments where the
training parameters are the same in terms of number of epochs, learning rate, seed,
type of bottleneck, and input length. Looking at the results, it is possible to notice
that the difference between the three formats is minimal. The maximum difference
considering the total accuracy is 4% between noSpaced and every4, also for the
subcategories only slight differences can be recognized. The highest performance is
obtained with every4 experiments but the gap with every2 is only 0.2%.
Considering that the difference between the two types of input format is minimal
in terms of performance, I decided to evaluate also the accuracy values on each
subtask. Also in this case, every4 performs slightly better than every2 given that
9 times over 12 is the highest. Therefore, given these results, I selected the best
format every/.

39

Evaluation and discussion of the results

5.2.4 Assessing the impact of denoiser implementation

The rationale for introducing the denoiser is to provide the model with additional
methods to learn how to represent an input packet. This experiment aims to
identify the optimal training parameters to maximize the effectiveness of this pre-
training task. Initially, I determined the best learning rate for the denoising task
by evaluating the configuration that resulted in the greatest decrease in validation
loss.

4.8
~Jl_
4-6 ~\ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
\ \.\'\
4.4 '\ \\\\\\\
g \‘\Q\\ HE
\ .
42 \:\\
n " ——
—— LR:5-1073 \'\\\\'\'\
40 | — IR:1-107 T
. B ——
—— LR:5-10
—_— . - _4
. LR:1-10

0 2 4 6 8 10 12 14
Epochs number

Figure 5.3: Loss curve of the denoiser validation as a function of varying learning
rates, with the corruption rate set to 15%.

Figure 5.3 shows the four learning rates that are in order: 5-1073, 1-1073, 5- 1074,
and 1-10~% Looking at the different curves, it is immediately evident that up to
1-1073 there is an improvement in increasing the learning rate. Then the learning
rate is too high with the consequent reduction of the sensibility of the model in
learning how to denoise the input. Therefore, I selected the best LR = 11073,
In the denoiser, a decisive parameter is the level of corruption applied to the input
string. Indeed, increasing the number of tokens changed with another randomly
selected, makes the task more difficult. I selected as possible corruption ratios: 0%,
15%, and 30%. The first is a simple autoencoder that must be able to reconstruct the
input from its hidden representation, the second is the corruption ratio commonly
adopted in the literature. The last one was introduced to see if a more challenging
task can help the model learning. All configurations are compared against the
baseline case without the denoiser to verify that the inclusion of Phase 0 enhances
model performance.

Figures 5.4 and 5.5 show the denoiser loss and accuracy curves respectively with
the different corruption rates on validation. The best value is obtained with the
corruption rate equal to 15% immediately followed by the 0%. This suggests that

40

Evaluation and discussion of the results

07 | | —— Corruption: 30% 400 ___=,4;,='_-5§"2-i5;—55§353
i —— Corruption: 15% 05 _,g:i.z-?"—ﬁ"" ?
06| | —— Corruption: 0% /7
—— No denoiser 90 /‘;/
5| eu| /)
F = 85 / / f
n 0.4 a //
un
o © 80 7 [
|
\ gn
0z \i\ f —— Corruption: 30%
\',::S'\, 700 —— Corruption: 15%
0.1 o~ : | - ion: 0%
._::\,:::;::::\.b 65 Corruptl?n. 0%
0.0 Bt e — —— No denoiser
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Epochs number Epochs number

Figure 5.4: Validation loss curve for Figure 5.5: Validation accuracy curve
various denoiser corruption rates. for various denoiser corruption rates.

a small amount of noise improves the performance, but if it increases too much the
behavior is reversed, such as with a rate equal to 30%. In addition, looking at the
curve, I can conclude that applying the denoiser improves the learning speed since
the green curve is the worst.

Table 5.5 shows the results of the test set which are slightly different. Indeed, the
best model is the one that uses only the autoencoder, immediately followed by
the corruption rate equal to 15% and the case without the phase 0 pre-training.
This indicates that the model benefits from learning to reconstruct a packet from
its internal representation, while the introduction of noise does not provide any
additional advantage.

Corruption: 30% | Corruption: 15% | Corruption: 0% | No denoiser
Accuracy 93.06 93.77 94.2 93.87

Table 5.5: Accuracy [%] on test fordifferent corruption ratio.

After all the previous considerations, my final choice is to use the denoiser and
train it with a corruption rate of 0%.

5.2.5 Easy, Hybrid or Hard

The type of questions performed in the question-answering phase can deeply change
how the model learns from the task. In particular, useful can be the introduction
of inductive biases inside the representation that may help in identifying it.

To test the relationship among types of questions, type of traffic, and performance

41

Evaluation and discussion of the results

I have trained three models exploiting the datasets explained in section 4.3.2. It is
essential to highlight that the choice cannot be done on the question-answering
task, but is performed end-to-end. This is due to the absence of the possibility of
comparing three different QA tasks in questions and data. Therefore I took all the
decisions at this step looking at the results of Task2.

First, I have explored which is the most suitable learning rate applied to the Hybrid
dataset. In particular, T tested 1-1073, 5-107%, 1-10~* covering a wide range to
have a macro idea of the best area of learning rates. Then, I further explored the
space with smaller intervals, when the best dataset was decided. As Figure 5.6 and
5.7 show the best one is 5-107%. Indeed, a learning rate of 1 - 1073 is too high,
causing instability in the accuracy curve due to excessive updates to the model
weights, which overshoot the optimal solution. On the other hand, a lecarning rate
of 1-107* is too low, leading the model to settle into a suboptimal solution.
Even considering the test set results shown in Table 5.6, the behavior is the same,
making the learning rate equal to 5-10~* the best choice.

0 2 4 6 8 10 12 14 16 18
Epochs number

80 P —
—— LR:1-103 0.80 . %;><//‘ 1
8| — wese0t P I I I >4
—— LR:1-10"* T | ' /S
a g 0.76 ~—
X 76 / b o /
- - — 5 0.74 /7
. / /N . S /
[9) 1 \ / ’\/) s / I S —
3 vt/ ¢ (T ¢ ot
o ' / 0.70 at
) / / 1.10-
- [068 v —— LR:1-10
y \/‘ .~ S / —— LR:5-10
70 | \//-/\/ 0.66 / —— LR:1-107*
2 4 6 8 10 1

0 2 14 16 18

Epochs number

Figure 5.7: Fl-score curve on valida-
tion in the Hybrid datasct for learning
rates selection.

Figure 5.6: Accuracy [%] curve on vali-
dation in the Hybrid dataset for learning
rates selection.

LR=1-10%|LR=5-10"* | LR=1-10"*
Accuracy 71.24 74.66 69.92
F1-score 74.84 75.29 71.14

Table 5.6: Accuracy [%] and Fl-score on the test for different learning rates on
the Hybrid dataset.

42

Evaluation and discussion of the results

The model’s final structure was quite decided at this point of the experiments. One
of the last decisions is to select which type of questions is the best for a good packet
representation for Taks2. Until now, the choice was the Hybrid dataset because
selecting the most complete one was reasonable.

However, how Figure 5.8 and Figure 5.9 show the performance on the Hybrid
dataset are outclassed by the ones with the Fasy one. Indeed, considering the
performance in the validation both for Fl-score and accuracy it is higher than 5%.
Concerning the Hard dataset, the behavior is close to the Hybrid, obtaining the
same value for the Fl-score, while slightly worse in accuracy.

Also looking at the results of the test set, shown in Table 5.10, the findings are
quite the same. The Fasy dataset achieves a sota level of accuracy and F1 score
outclassing the other two. By the way, also the other two question-answering tasks
are quite good. It is significant to point out that the training on Easy exhibits slight
overfitting. The disparity in both accuracy and Fl-score between the validation
and test sets is notably high.

L e e e e e
Jj o — ———
82 /‘/ 0.850 "/_/"’
"""" B /"'_'
Iad /
80) 0.825]
9 - /
=7 / g 0800 —
>nBL /e = o %4 —7
I . — e —
® / =7 - 2 0175 e
3 76 " = / </
& / Ay 0.750 /// /
//,>- T N/ —— Hybrid
74 F / . Ey ri 0.725 ¢ —— Easy
—— Easy ~ 1
. —— Hatd 0.700 | Hard
0O 2 4 6 8 10 12 14 16 18
0 2 4 6 8 10 12 14 16 18 Epochs number
Epochs number
_ Figure 5.9: Fl-score on validation for
Figure 5.8: Accuracy [%] on valida-

tion for the dataset selection among Easy,

Hard, and Hybrid. and Hybrid.
Easy | Hard | Hybrid
Accuracy | 77.83 | 74.03 74.66
Fl-score | 80.54 | 74.40 75.29

the dataset selection among Fasy, Hard,

Table 5.7: Accuracy [%] and F1 score on test for ifferent datasets Easy, Hard,
and Hybrid with the parameters identified up to now.

43

Evaluation and discussion of the results

To have a qualitative visual evaluation, I also investigated the 2D visualization of the
packet representations after the classification head training with the model trained
on the Fasy dataset and the Hard one. To reduce the 768-dimensional representation
to 2 dimensions, I applied the UMAP algorithm. This fast dimensionality-reduction
technique effectively preserves the global structure of the data, particularly when
reducing from high-dimensional spaces. Considering the results I expected to obtain
a better clusterization with the Fasy dataset than the others. However, the groups
will be noisy since the score of accuracy and Fl-score are not so high. As Figures
5.10 and 5.11 show, my second hypothesis is confirmed, while the first cannot be
conclusively addressed through visual inspection alone. In both figures 5.10 and
5.11 the crosses represent the centroid of each cluster class and by comparing its
position with respect to the other points I can make qualitative observations. First
of all, we see that the P2P and streaming traffic obtain a good representation since
both clusters are very concentrated close to the centroid. Although, this is not the
same for the other classes, because the points are more spread.

I can conclude that the 2D visual inspection of the packet representation on the
task does not provide additional information for selecting the best parameters. It
only offers a qualitative assessment of the solution’s effectiveness.

* VolP 15 -
15 ® Streaming
e P2P
10 4 [HIeTransfer 10 4
® Email
~ ® Chat o~ 5
c 5 c
S . W S v
u . n
c 0 c [}
[]] 2
E £ :
0O -5-4 0O -54 ® \olP
® Streaming
e P2P
10 _104
A0 ® FleTransfer
® Email
—-151 —~154 ® Chat
T T T T T T T T T T T T
-5 0 5 10 15 20 -5 0 5 10 15 20
Dimension 1 Dimension 1

Figure 5.10: Plot in 2D of the Figure 5.11: Plot in 2D of the packet
packet representation derived from train- representation derived from training
ing with Fasy question-answering dataset with Hard question-answering dataset on
on Task?2 classification benchmark. Task?2 classification benchmark.

At this point, the final pipeline is outlined and the parameters of the Tusk2
are fixed. Lastly, I must select the best learning rate for each classification task.
Then, in the next experiments, I try to analyze some features of the model to
evaluate its performance under different metrics such as training time.

44

Evaluation and discussion of the results

5.2.6 Fine selection of the learning rate

As a final analysis, for each classification task, it is necessary to evaluate which
is the best learning rate. In Task2, based on the observations in Section 5.2.5, I
evaluated a narrower learning rate interval to determine if a slight improvement
could be achieved.

So, as learning rates I tested 2.5-107%, 5-107%, 7.5-10~* and the results are shown
in Figure 5.12 and 5.13, and in Table 5.8. Looking at the results, I noticed that the
performance of the two highest learning rates is quite equal, while 2.5 - 10~* learns
too slowly and always remains under the others. Comparing the two learning rates
5-107* and 7.5-107* on the test sct is quite difficult because the first performs
better in accuracy, while the latter in the F'1 score. In the end, I decided to maintain
the learning rate equal to 5 - 10~% because the accuracy curve in validation is more
stable with respect to the other. Indeed, with the learning rate equal to 7.5 - 1074,
the curve presents many segmentations, meaning that the learning rate starts to
be too high.

e 0.88 PR e
82 — e
\/ T 0.85 // i B e s
/\/\" 7T | / ol
— / S / 0.83)
S ‘ P / /
> 78 / / 2 0.80 y I
@ 7 / S a4
5 2 - S o8 1
U 76 / [T / /
B / 0.75 // -
[.
74 // —— LR:2.5-107* 073 | ° / —— LR:2.5-107*
! —— LR:5-107" 0.70 / —— LR:5-107%
7 / —— LR:7.5-107° / —— LR:7.5-107*
0 2 4 6 8 10 12 14 16 18 0 2 6 8 10 12 14 16 18

Epochs number

Epochs number

Figure 5.12: Accuracy [%)] curves on Figure 5.13: Fl-score curves on valida-
validation for fine learning rate selection. tion for fine learning rate selection.

LR=25-10*|LR=5-10* |LR=75-10"*
Accuracy 74.6 77.8 70T
F1-score 78.1 80.5 80.7

Table 5.8: Accuracy [%] and F1 score on test for different learning rates on the

Task2.

45

Evaluation and discussion of the results

5.2.7 Phase II: evaluation of training time

This experiment is fundamental to satisfy the objective of the entire thesis. Indeed,
we require a packet representation that can be swiftly applied across a wide range
of experiments, minimizing the time spent on training and the detailed dataset
creation. Therefore, I need to reduce the training time as much as possible.

This experiment tries to evaluate the time needed for each part of the model
to perform its work. Table 5.9 reports the average time and standard deviation
of different training on the same dataset Task2 (sec 4.2.1) and on four different
learning rates (5-107°,2-1074,2.5-107%, 5-107%).

Encoder Classification head
LR =5-107° 1h 13m 10s 6m 00s
LR=2-10"* 1h 10m 00s 5m 20s
LR =25-10"4 1h 17m 20s 5m 40s
LR=5-10"* 1h 10m 40s 6m 00s
Dsi‘;ctlllslgfge avg = 1h 13m 50s std = 2m 50s | avg = 5m 40s std = 20s

Table 5.9: Training time for the encoder and classification head in one epoch
considering the Task2 dataset on one GPU of HPC cluster (Section 5.1).

Upon examining the results, I observed a significant imbalance between the training
times of the encoder and the classification head, as expected. The encoder requires
an average of one hour and thirteen minutes, whereas the classification head takes
approximately five minutes. This discrepancy is due to the substantial difference
in complexity between the two components.

However, if we aim for a fixed representation for each packet, the encoder is
only necessary during the first epoch. For subsequent epochs, I can utilize the
representations computed in the first epoch. This approach results in considerable
time savings, with the savings increasing as the number of epochs grows.

On the other hand, if the encoder is still trained in the epochs after the first, the
packet representation will change each time so it must be re-computed. In addition,
in this scenario we must consider the time of backpropagation that changes the
model weights: so the training time for each epoch is ~ 3h. The respective training
times can be roughly computed as follows:

ttrainFrozen - tenc + tclassHead " Nepochs

ttrainNOfrozcn = (tcnc + tcncBackPropag + tclassHead) * Nepochs

where tene, tencBackPropag, aNd teasstead are respectively the time for encoder, the
time for encoder backpropagation, and the time for classification head training,
while 7epocns 1S the number of epochs.

46

Evaluation and discussion of the results

5.2.8 Phase II: frozen or unfrozen encoder?

Given that the classification head used is extremely simple (Section 3.4), it might
be more effective to fine-tune the encoder rather than complicate the classification
head. It is important to emphasize that this is as training a model completely
end-to-end. It is a more extensive fine-tuning to assist the classification layer by
adapting the packet representation accordingly. The big drawback that derives
from section 5.2.7, is the training time that increases a lot. Indeed, as Section 5.2.7
explains, one single epoch takes around 3 hours.

As expected, Figures 5.14 and 5.15 show that during the entire training phase, the
model with the encoder unfrozen is always better in both accuracy and F1l-score
respect the other. Therefore, I can conclude that without a doubt training the
encoder is very useful in terms of performance. As already mentioned several times
the huge drawback is the time. Indeed, considering this specific experiment where
10 epochs were only used, the encoder unfrozen training time is around 1 day
and eight hours, while the frozen one is a couple of hours. In addition, I need to
consider also that epoch after epoch the packet representation is not fixed, but the
encoder fines the representation for the specific task.

) / T ~——— 0.88 /_//______-_
79 T TT—— 0.85 /
e 78 0.83 /
b g
>
o7 _— S 0.80
© — (]
5 76 — — o
0 |~ L 078 —_—
(&) ot /
< 75 > —
P
- 0.75 /
74 g .
/‘/ —— Un-frozen train 0.73 L~ —— Un-frozen train
73 P —— Frozen train / —— Frozen train
0 2 4 6 8 0 2 . 6 :
Epochs number Epochs number

Figure 5.14: Accuracy [%] on validation Figure 5.15: Fl-score on validation
with the encoder frozen/unfrozen. with the encoder frozen /unfrozen.

Based on the previous discussions, I decided to keep the encoder frozen for the final
results presented in the following paragraphs, while still maintaining a comparison
with the unfrozen version.

47

Evaluation and discussion of the results

Frozen | unfrozen
Accuracy | 77.03 76.57
F1-score 79.34 83.60
Training
time

~ 2h ~ 1d 8h

Table 5.10: Accuracy [%], Fl-score, and training time on test for the frozen and
unfrozen versions of the model.

5.3 Results

Through the comprehensive experiments detailed in Section 5.2, I have identified
the most suitable parameters. Subsequently, I need to compare the performance
with state-of-the-art models and demonstrate how the packet representation encap-
sulates valuable information for internet traffic analysis.

As a comparison model, I selected ET-BERT [19] (Encrypted Traffic BERT'), which
is a sophisticated model designed for network traffic classification, particularly
focusing on encrypted traffic. It exploits BERT’s architecture to capture inter-
datagram and inter-traffic transport relationships from large-scale, unlabeled traffic
data. By pre-training on extensive datasets and fine-tuning on specific labeled
encrypted traffic, ET-BERT can accurately identify various classes of network
traffic in real-world scenarios.

In order to assess the impact of fine-tuning the T5 model, I also evaluated the T5
model in its original form. In this scenario, the T5H encoder is initialized with the
pre-trained weights provided in the original publication.

Table 5.11 presents the results of the three models on Task2 derived from the
ISCXVPN-2016 dataset, where they classify packets into six service labels (P2P,
Email, VolIP, etc.). For each model, both the training configuration with the
encoder frozen or unfrozen are reported. These two approaches differ in the amount
of learning capacity allocated to the classification model.

As Table 5.11 illustrates, our proposed model, with a carefully selected set of param-
eters, demonstrates a substantial improvement in performance for this specific task.
When compared to the T5-base model in its default configuration, the integration
of our fine-tuning process results in a marked enhancement in accuracy and nearly
doubles the F1-score.

Furthermore, our model not only surpasses the T5-base model but also slightly
outperforms the ET-BERT model in both accuracy and F1-score metrics. This
indicates that our model’s architecture and parameter optimization are highly

48

Evaluation and discussion of the results

Model Accuracy | F1 score | Training time
T5-base 66.7 41.7 ~ 3h
our (Frozen) 77.8 80.5 ~ 3h
our (unfrozen) 76.57 83.60 ~ 1d 8h
ET-BERT (Frozen) 74.11 75.07 ~ 2h
ET-BERT (unfrozen) 76.8 79.3 ~ 16h

Table 5.11: Comparison of the results on Task2 in terms of accuracy, Fl-score,
and training-time.

effective in capturing the nuances of the task at hand.

A closer examination of the models with the encoder either frozen or unfrozen
reveals a clear trend: performance metrics, including accuracy and F1-score, show
noticeable improvements when the encoder is unfrozen. This suggests that allowing
the encoder to update its weights during training enables the model to better adapt
to the specific characteristics of the dataset. However, it is important to note that
this performance gain comes at the cost of increased training time, highlighting a
trade-off between model performance and computational efficiency.

Fundamental to a classification task is the visualization of the confusion ma-
trix to explore the performance of the single tasks. Figures 5.16 and 5.17 show the
confusion matrix for the two frozen models ET-BERT and ours.

Predicted labels
Predicted labels

- 0.0 - 0.0

True labels True labels

Figure 5.16: Test confusion matrix nor- Figure 5.17: Test confusion matrix
malized on true values of OUR model on normalized on true values of ET-BERT
Task?2. model on Task2.

49

Evaluation and discussion of the results

Upon comparing the two normalized confusion matrices, it becomes evident that
the classes P2P, Streaming, and VolIP are the most easily recognizable by both
models. This indicates a higher accuracy in identifying these types of traffic. How-
ever, there are notable areas of confusion, particularly with the FileTransfer class,
frequently misclassified as VolP. This misclassification is especially pronounced in
the ET-BERT model.

Additionally, both our model and the ET-BERT model exhibit significant confusion
between the Chat and Email classes. This suggests that these two types of traffic
share similar characteristics that make them difficult to distinguish.

A broader analysis of the confusion matrices reveals that a substantial portion of
the traffic is incorrectly identified as VoIP. Specifically, more than half of the File-
Transfer traffic in our model and approximately two-thirds in the ET-BERT model
are misclassified as VoIP. This pattern can be attributed to the class distribution
detailed in Section 5.2, where VoIP is the most prevalent class. This may cause a
bias in the model, that if in doubt, predicts VolIP.

One of the most relevant contribution of this thesis lies in the numerical rep-
resentation of internet packets, which can be efficiently obtained after fine-tuning
the model. Although powerful models are frequently proposed in the literature,
deriving a meaningful representation from them is not always straightforward.

® UDP-IPv4 ® UDP-IPv4
® TCP-IPVE 121 ¢ TCPIPve
47 ® TCP-IPv4 ® TCP-IPv4
® ICMP e ICMP
10 A
o~ 21 o~
c c g
° g ®
n 0
c o c 8
(] v 6
£ E
[a) (=]
5 4
5
44
T T T T 04 T T T T T T T T
-2 0 2 4 6 -75 -50 -25 0.0 2.5 5.0 7.5 10.0 125

Dimension 1 Dimension 1

Figure 5.18: Plot in 2D of the packet Figure 5.19: Plot in 2D of the packet
representation derived from training with representation derived from training with
FEasy question-answering dataset. Hard question-answering dataset.

Figures 5.18 and 5.19 illustrate how valuable information for downstream tasks can
be embedded within the packet representation without requiring supervised learning.
For instance, by training the model with the challenging question-answering task

50

Evaluation and discussion of the results

(Hard dataset), we expected that the resulting representation would encapsulate
information related to the packet protocol. This expectation is confirmed by the
data shown in Figure 5.19.

On the other hand, this does not suggest that the numerical representations depicted
in Figure 5.18 are devoid of valuable information. Rather, they do not capture the
specific feature related to the packet protocol but may instead encapsulate other
aspects that are more beneficial for the downstream task.

What Figure 5.19 shows is very valuable in internet traffic analysis. Indeed, the
plot demonstrates that the model can distinguish the protocols and also gives an
idea of how much they differ. Indeed, I recognize three macro areas that are one of
TCP, one of UDP, and the last more fragmented ICMP. Further, we can clearly
recognize the two poles that distinguish IPv4 from IPv6 in the TCP area by looking
at the centroids.

51

Chapter 6

Conclusion and future work

6.1 Overview

Throughout the thesis, I have endeavoured to address the research question: can
the text analysis capabilities of large language models (LLM), replace traditional
tools allowing larger-scale and automatic internet packet analysis? To explore this
question, I proposed a comprehensive training pipeline based on the T5-base model,
designed to generate valuable packet representations.

The fine-tuning process applied to the model was twofold. Initially, it involved
an autoencoder architecture, where the objective was to reconstruct an input
packet through a compressed internal representation. Subsequently, the model was
fine-tuned using a question-answering approach, further enhancing its ability to
understand and process packet data.

To evaluate the effectiveness of the generated representations, the model was em-
ployed to solve a classification task using the ISCXVPN-2016 dataset.

The results observed from the experiments indicate that the proposed approach is
successful. The comparative analysis of the experimental findings revealed that
the values for both accuracy and Fl-score are on par with state-of-the-art models.
Moreover, in alignment with the research question aimed at automating network
packet analysis, our tool has shown the ability to produce representations that
inherently embed information related to the original packets, such as protocols,
without requiring explicit supervision.

Overall, the work presented in this thesis highlights the potential of large lan-
guage models (LLMs) to revolutionize the field of network packet analysis by
offering scalable and automated solutions. Although the initial steps have been suc-
cessful, a considerable amount of work remains to be done before we can definitively
answer the research question positively or negatively.

52

Conclusion and future work

6.2 Limitations and future approach

Considering that the thesis is the first exploration of a field not widely considered,
the work to get a global idea of the manner is still long. I followed a possible logical
decision flow, but a more detailed analysis was possible at each step.

Firstly, in the near future, it is essential to expand the validation of the classifi-
cation benchmark to encompass additional tasks. This will allow us to assess the
robustness of the training pipeline across various classification scenarios.

Then there are many possible additional studies and improvements. A complete
analysis of how the datasets used affect the performance can be fundamental. I
already tried with section 4.3.2 to see some differences, but the used data are not
so recent, the dataset size is limited, only a part of the traffic is real, and the
considered protocols are only a small subset of the actual ones. Another crucial
aspect concerning internet packets is evaluating how to input them into the model,
such as determining whether the payload enhances the model’s performance.
Another core point is the bottleneck choice that can be further extended to more
complex and ad-hoc solutions that exploit the attention mechanisms. In this way,
a better packet representation can be obtained. On the same idea, the classifica-
tion head can be improved but maintain a similar training time. In the thesis, I
implemented an elementary one, but many other efficient alternatives can be found
in the literature [50].

Last but not least, the amount of fields in which the packet representation was
applied. In the thesis, I evaluated the performance on a restricted number of classi-
fication tasks. In the future, it is possible to expand the classification benchmark
easily, but also use the representation to solve other tasks, such as novelty and
intrusion detection, or synthetic packet generation.

While this project primarily focuses on saving training time, it also opens up future
possibilities for optimizing storage space for logs. These potentials, along with
numerous other advancements, highlight the scope for further improvements and
future research.

53

Bibliography

[2]

3]

[4]

[5]

[6]

[7]

Ericsson. Ericsson Mobility Report Q2 2024 Update. 2024. URL: https://
Www . ericsson. com/4a4b71/assets/local/reports-papers/mobility-
report/documents/2024/ericsson-mobility-report-q2-2024-update.
pdf (cit. on p. 1).

Mahmoud Abbasi, Amin Shahraki, and Amir Taherkordi. «Deep Learning for
Network Traffic Monitoring and Analysis (NTMA): A Survey». In: Computer
Communications 170 (2021), pp. 19-41 (cit. on pp. 1, 5).

Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. «New
Directions in Automated Traffic Analysis». In: Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. CCS "21.
Virtual Event, Republic of Korea: Association for Computing Machinery,
2021, pp. 3366-3383. URL: https://doi.org/10.1145/3460120.3484758
(cit. on p. 2).

Xuying Meng, Yequan Wang, Runxin Ma, Haitong Luo, Xiang Li, and Yujun
Zhang. «Packet Representation Learning for Traffic Classification». In: The
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
2022, pp. 3546-3554 (cit. on pp. 2, 19).

Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Mamun, and Ali A.
Ghorbani. «Characterization of Encrypted and VPN Traffic Using Time-
Related Features». In: Proceedings of the 2nd International Conference on
Information Systems Security and Privacy (ICISSP 2016). Rome, Italy:
SciTePress, 2016, pp. 407414 (cit. on pp. 3, 28).

Peyman Kabiri and Ali Ghorbani. «Research on Intrusion Detection and
Response: A Surveyy. In: International Journal of Network Security 1 (Jan.
2005), pp. 84-102 (cit. on p. 4).

Tao Wang and Ian Goldberg. «Improved website fingerprinting on Tor».
In: Proceedings of the 12th ACM workshop on Workshop on privacy in the
electronic society. ACM. 2013, pp. 201-212 (cit. on p. 4).

54

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[16]

Vijayanand Thangavelu, Dinil Mon Divakaran, Rishi Sairam, Suman Sankar
Bhunia, and Mohan Gurusamy. «DEFT: A Distributed IoT Fingerprinting
Technique». In: IEEE Internet of Things Journal 6.1 (2018), pp. 940-952
(cit. on p. 4).

Satish Kumar, Sunanda Gupta, and Sakshi Arora. «Research Trends in
Network-Based Intrusion Detection Systems: A Reviewy. In: IEEE Access 9
(2021), pp. 157761157779 (cit. on p. 4).

Mahdi Zamani and Mahnush Movahedi. Machine Learning Techniques for
Intrusion Detection. 2015. arXiv: 1312.2177 [cs.CR]. URL: https://arxiv.
org/abs/1312.2177 (cit. on p. 4).

Andrew W. Moore and Denis Zuev. «Internet traffic classification using
bayesian analysis techniquesy. In: SIGMETRICS Perform. Fval. Rev. 33.1
(June 2005), pp. 50-60. 1sSN: 0163-5999. URL: https://doi.org/10.1145/
1071690.1064220 (cit. on p. 5).

Tom Auld, Andrew W. Moore, and Stephen F. Gull. «Bayesian Neural
Networks for Internet Traffic Classificationy. In: IEEE Transactions on Neural
Networks 18.1 (2007), pp. 223-239 (cit. on p. 5).

Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas
Zinnen, Martin Henze, and Klaus Wehrle. « Website Fingerprinting at Internet
Scale». In: Network and Distributed System Security Symposium. 2016. URL:
https://api.semanticscholar.org/CorpusID: 15302617 (cit. on p. 5).

Jiong Zhang, Mohammad Zulkernine, and Anwar Haque. « Random-Forests-
Based Network Intrusion Detection Systemsy. In: IEEE Transactions on
Systems, Man, and Cybernetics, Part C' (Applications and Reviews) 38.5
(2008), pp. 649-659 (cit. on p. 5).

Raouf Boutaba, Mohammad A. Salahuddin, Noura Limam, Sara Ayoubi,
Nashid Shahriar, Felipe Estrada-Solano, and Oscar M. Caicedo. «A compre-
hensive survey on machine learning for networking: evolution, applications
and research opportunities». In: Journal of Internet Services and Applications
9.1 (2018), p. 16. DOI: 10.1186/s13174-018-0087-2 (cit. on p. 5).

Sonni-Ali Miller, Jason A. White, Rupak Chowdhury, Dominique N. Gales,
Berhanu Tameru, Amit K. Tiwari, and Temesgen Samuel. «Effects of con-
sumption of whole grape powder on basal NF-B signaling and inflammatory
cytokine secretion in a mouse model of inflammation». In: Journal of Nutrition
& Intermediary Metabolism 11 (2018), pp. 1-8. 1SSN: 2352-3859. URL: https:
//www.sciencedirect.com/science/article/pii/S2352385917302542
(cit. on p. 5).

55

BIBLIOGRAPHY

[17]

[18]

[19]

[20]

22]

Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng. «Mal-
ware traffic classification using convolutional neural network for representa-
tion learningy». In: 2017 International Conference on Information Networking

(ICOIN). IEEE. 2017, pp. 712717 (cit. on p. 5).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2023. arXiv: 1706 .03762 [cs.CL]. URL: https://arxiv.org/abs/
1706.03762 (cit. on pp. 5, 8).

Xinjie Lin, Gang Xiong, Gaopeng Gou, Zhen Li, Junzheng Shi, and Jing Yu.
«ET-BERT: A Contextualized Datagram Representation with Pre-training
Transformers for Encrypted Traffic Classification». In: Proceedings of the
ACM Web Conference 2022. WWW ’22. ACM, Apr. 2022 (cit. on pp. 5, 48).

Ruijie Zhao, Mingwei Zhan, Xianwen Deng, Yanhao Wang, Yijun Wang, Guan
Gui, and Zhi Xue. «Yet Another Traffic Classifier: A Masked Autoencoder
Based Traffic Transformer with Multi-Level Flow Representation». In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence 37.4 (June 2023),
pp- 5420-5427. URL: https://ojs.aaai.org/index.php/AAAI/article/
view/25674 (cit. on p. b).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Ezploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. 2023 (cit. on
pp. 5, 11-13, 19).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT"
Pre-training of Deep Bidirectional Transformers for Language Understanding.
2019. arXiv: 1810.04805 [cs.CL]. URL: https://arxiv.org/abs/1810.
04805 (cit. on pp. 6, 13).

Tom B Brown et al. Language Models are Few-Shot Learners. 2020. URL:
https://arxiv.org/abs/2005.14165 (cit. on p. 6).

OpenAl et al. GPT-4 Technical Report. 2024. arXiv: 2303.08774 [cs.CL].
URL: https://arxiv.org/abs/2303.08774 (cit. on p. 6).

Hugo Touvron et al. LLaMA: Open and Efficient Foundation Language Models.
2023. arXiv: 2302.13971 [cs.CL]. URL: https://arxiv.org/abs/2302.
13971 (cit. on p. 6).

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Man-
zagol. «Extracting and composing robust features with denoising autoen-
coders». In: Proceedings of the 25th International Conference on Machine
Learning. ICML ’08. Helsinki, Finland: Association for Computing Machinery,
2008, pp. 1096-1103. 1SBN: 9781605582054. URL: https://doi.org/10.
1145/1390156.1390294 (cit. on p. 10).

56

BIBLIOGRAPHY

[27]

28]

[29]

33]

[34]

[35]

Ivan Habernal, Omnia Zayed, and Iryna Gurevych. «C4Corpus: Multilingual
Web-size Corpus with Free License». In: Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC’16). European
Language Resources Association (ELRA), May 2016, pp. 914-922 (cit. on
p. 13).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD:
100,000+ Questions for Machine Comprehension of Text. 2016. arXiv: 1606.
05250 [cs.CL]. URL: https://arxiv.org/abs/1606.05250 (cit. on p. 13).

U. Fuchs. «A Short Introduction to Computer Networks». In: Molecular
Imaging: Computer Reconstruction and Practice. Ed. by Y. Lemoigne and A.
Caner. NATO Science for Peace and Security Series B: Physics and Biophysics.
Springer, Dordrecht, 2008. DOI: 10.1007/978-1-4020-8752-3_10 (cit. on
p. 14).

Muzhir Al-Ani and Rola A.A.Haddad. «IPv4/IPv6 Transition». In: Interna-
tional Journal of Engineering Science and Technology 4 (Dec. 2012), pp. 4815—
4822 (cit. on p. 15).

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective
Approaches to Attention-based Neural Machine Translation. 2015. arXiv:
1508 . 04025 [cs.CL]. URL: https://arxiv.org/abs/1508. 04025 (cit.
on p. 20).

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar,
Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. «A
Comprehensive Overview of Large Language Models». In: (2024). arXiv:
2307.06435 [cs.CL]. URL: https://arxiv.org/abs/2307.06435 (cit. on
p. 24).

Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda.
«MAWILab: Combining Diverse Anomaly Detectors for Automated Anomaly

Labeling and Performance Benchmarkingy. In: ACM CoNEXT ’10. Philadel-
phia, PA, Dec. 2010 (cit. on p. 24).

Malware Traffic Analysis. About Malware Traffic Analysis. Accessed: 2024-
08-27. 2024. URL: https://malware-traffic-analysis.net/about.html
(cit. on pp. 24, 27).

Internet Initiative Japan Inc. «IIJ Vol.173». In: (2024). Accessed: 2024-08-21.
URL: https://www.iij.ad.jp/news/iijnews/vol_173/detail 08.html
(cit. on p. 25).

57

BIBLIOGRAPHY

[41]

[43]

[44]

Romain Fontugne, Patrice Abry, Kensuke Fukuda, Darryl Veitch, Kenjiro
Cho, Pierre Borgnat, and Herwig Wendt. «Scaling in Internet Traffic: a 14
year and 3 day longitudinal study, with multiscale analyses and random
projections». In: (2017). arXiv: 1703.02005 [cs.NI]. URL: https://arxiv.
org/abs/1703.02005 (cit. on p. 25).

MAWI Working Group. MAWI Working Group Traffic Archive Guidelines.
Accessed: 2024-08-27. 2024. URL: https://mawi.wide.ad. jp/mawi/guidel
ine.txt (cit. on p. 25).

Nour Moustafa and Jill Slay. «UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set)». In:
Nov. 2015. poI: 10.1109/Mi1CIS.2015.7348942 (cit. on p. 26).

G. Memik, W.H. Mangione-Smith, and W. Hu. «NetBench: a benchmarking
suite for network processorsy. In: IEEE/ACM International Conference on
Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers
(Cat. No.01CH37281). 2001, pp. 39-42 (cit. on p. 28).

Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun,
and Ali A. Ghorbani. «Characterization of Tor Traffic Using Time Based
Features». In: Proceedings of the 3rd International Conference on Information
Systems Security and Privacy (ICISSP). Porto, Portugal: SciTePress, 2017,
pp. 253262 (cit. on p. 28).

Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng.
«Malware Traffic Classification Using Convolutional Neural Network for Rep-
resentation Learning». In: Proceedings of the International Conference on
Information Networking (ICOIN). TEEE, 2017, pp. 712-717 (cit. on p. 28).

Thijs van Ede, Riccardo Bortolameotti, Andrea Continella, Jingjing Ren,
Daniel J. Dubois, Martina Lindorfer, David Choffnes, Maarten van Steen, and
Andreas Peter. «FlowPrint: Semi-Supervised Mobile-App Fingerprinting on
Encrypted Network Trafficy. In: Proceedings of the Network and Distributed
System Security Symposium (NDSS). Vol. 27. Internet Society, 2020 (cit. on
p. 28).

Mohammadreza MontazeriShatoori, Logan Davidson, Gurdip Kaur, and Arash
Habibi Lashkari. «Detection of DoH Tunnels Using Time-Series Classification
of Encrypted Trafficy. In: Proceedings of the 2020 International Conference on
Cyber Science and Technology Congress (CyberSciTech). IEEE, 2020, pp. 63—
70 (cit. on p. 28).

Euclides Carlos Pinto Neto, Sajjad Dadkhah, Raphael Ferreira, Alireza Zo-
hourian, Rongxing Lu, and Ali A. Ghorbani. «CICIoT2023: A Real-Time
Dataset and Benchmark for Large-Scale Attacks in IoT Environmenty. In:
Sensors 23.13 (2023), p. 5941 (cit. on p. 29).

58

BIBLIOGRAPHY

[45]

[46]

Philippe Biondi. Scapy. Version 2.4.5. 2024. URL: https://scapy.net (cit. on
pp. 30, 31).

Matteo Boffa, Giulia Milan, Luca Vassio, Idilio Drago, Marco Mellia, and Zied
Ben Houidi. «Towards NLP-based Processing of Honeypot Logs». In: 2022
IEEE European Symposium on Security and Privacy Workshops (EuroSPW).
2022, pp. 314-321. poI: 10.1109/EuroSPW55150.2022.00038 (cit. on p. 35).
Matteo Boffa, Idilio Drago, Marco Mellia, Luca Vassio, Danilo Giordano,
Rodolfo Valentim, and Zied Ben Houidi. «LogPrécis: Unleashing language
models for automated malicious log analysis: Précis: A concise summary of
essential points, statements, or facts». In: Computers Security 141 (2024),

p. 103805. URL: https://www.sciencedirect.com/science/article/pii/
S0167404824001068 (cit. on p. 35).

Legion Cluster - HPC@PoliTO. Accessed: 2024-09-29. URL: https://www.
hpc.polito.it/legion_cluster.php (cit. on p. 35).

Computing Facilities - SmartData@PoliTO. Accessed: 2024-09-29. URL: https:
//smartdata.polito.it/computing-facilities/ (cit. on p. 35).

Zhuoyi Yang, Ming Ding, Yanhui Guo, Qingsong Lv, and Jie Tang. Parameter-
Efficient Tuning Makes a Good Classification Head. 2023. arXiv: 2210.16771
[cs.CL]. URL: https://arxiv.org/abs/2210.16771 (cit. on p. 53).

59

