
i

POLITECNICO DI TORINO
Master’s Degree Program

in Computer Engineering

MSc thesis

Using Artificial Intelligence for Thermographic Image
Analysis: Applications to the Arc Welding Process

Supervisors Candidate

Prof. RAFFAELLA SESANA NILOUFAR ZAMINDAR

Co-supervisor

 Prof. FRANCESCA MARIA CURA'

 Dr. VALENTINO RAZZA

 LUCA SANTORO

Academic Year 2023-2024

ii

Summary

This study has focus on making a model with high reliability to classify
thermography videos, for achieving high accuracy through series of steps that
we did carefully. We started by thoroughly preparing and preprocessing the
thermography video data. Custom scripts were developed to extract thermal
frames and convert them into a format optimized for neural networks. In this
preprocessing we resized the frames, also we normalized the pixel values, and
used data augmentation methods to make the dataset more diverse and power.
These steps were crucial to ensure the model could accurately handle different
thermal patterns and conditions. In this model we combined Convolutional
Neural Networks (CNNs) with Long Short-Term Memory (LSTM) networks.
The CNN layers pulled out some spatial features from the thermal frames, while
the LSTM layers obtained the time-based relationships between frames and then
making the model especially efficient at processing video data. The model was
trained using the sparse_categorical_crossentropy loss function and the Adam
optimizer, both chosen because they’re good at efficiently training deep learning
models. Training involved multiple epochs, during which the model’s parameters
were fine-tuned to reduce the loss function. To prevent overfitting and ensure the
model could generalize well to new data, techniques like early stopping and
regularization were used. We did some important adjustments which are setting
the learning rate, batch size, and the model’s structure according to the number
of layers and neurons that we had. During the process, we kept the model’s
efficiency which we used a validation dataset that can focus on accuracy to make
sure which was working efficiently. After finishing the training phase, the model
reached a final accuracy of about 97%, showing how well the chosen architecture
and training process worked.

iii

Acknowledgements

I would like to express my deepest appreciation to everyone who contributed to
making this research project possible. I am especially grateful to all my
supervisors and my company tutors, with a special thanks to Prof. Sesana for
their invaluable advice, unwavering support, and insightful feedback that guided
me throughout this journey.

Lastly, I want to extend my heartfelt thanks to my lovely and wonderful parents
and brothers and loved ones for their unwavering encouragement, patience, and
understanding, which have been pillars of strength throughout this challenging
yet rewarding journey.

iv

Contents

Summary ... ii

List of Figures ... vii

Acronyms ... ix

1 Introduction .. 1

 1.1 Purpose ... 1

 1.2 Work introduction ... 4

2 Background .. 5

 2.1 Overview ... 5

 2.1.1 Supervised Learning .. 7

 2.1.2 Unsupervised Learning .. 8

 2.1.3 Reinforcement Learning .. 9

2.2 Neural Network Layers... 10

2.3 Steps for Training Neural Networks ... 12

2.4 Fundamental tasks in Machine Learning .. 17

 2.4.1 Classification Methods ... 19

 2.4.2 Regression versus Classification in Machine Learning 20

2.5 Different Neural Network Architectures.. 23

 2.5.1 Feed-Forward Neural Networks ... 23

v

 2.5.2 Convolutional Neural Networks ... 23

 2.5.3 Recurrent Neural Networks .. 26

 2.5.4 Backpropagation Through Time (BPTT) .. 28

2.6 Metrics in Machine Learning .. 31

 2.6.1 Accuracy .. 31

 2.6.2 Precision .. 32

 2.6.3 Recall ... 32

 2.6.4 F1 Score ... 33

 2.6.5 Mean Absolute Error (MAE) ... 34

 2.6.6 Mean Squared Error (MSE) ... 35

3 Materials and Methods... 36

 3.1 Motivation .. 36

 3.2 Dataset ... 38

 3.2.1 Thermal Imaging Dataset... 38

 3.2.2 Data Analysis ... 39

 3.3 Machine Learning Dataset ... 40

 3.3.1 Data Processing ... 41

 3.4 Convolutional ImageNet Layers .. 42

 3.4.1 Passing features to LSTM ... 44

 3.4.2 Dense layer output .. 46

3.5 Model Architecture ... 47

vi

 3.5.1 Combination of networks CNN and RNN LSTM 50

 3.6 In-Depth explanation about codes .. 51

 3.6.1 Loading and preparing video ... 53

 3.6.2 Data splitting ... 54

 3.6.3 Training procedure .. 55

 3.6.4 Validation data details ... 56

4 Experiment and Results ... 59

 4.1 Setup ... 59

 4.2 Training and Validation Accuracy Over Epochs 60

 4.2.1 Explanation of each Epoch Performance 61

 4.2.2 Training and Validation Loss over Epochs 65

 4.3 Representation of errors over multiple epochs 66

Conclusion .. 68

References ... 69

vii

List of figures

1.1 Weld defects [4] .. 3

2.1 Supervised learning architecture [13] .. 7

2.2 Unsupervised learning [15] ... 8

2.3 Reinforcement learning model [17] ... 9

2.4 Main layers in Deep learning model ... 11

2.5 Convolution to generate an Activation Map [41] 24

2.6 Max Pooling of a Feature Map [41] ... 25

2.7 Process of analysing the input in convolutional neural

 network [93] .. 26

2.8 RNN Architecture [96] ... 27

3.1 InceptionV3 [68] ... 44

3.2 LSTM and GRU [69][70] ... 45

3.3 Flowchart of different layers [95] ... 49

3.4 CNN and LSTM [94] .. 50

3.5 Model Training Process [95] .. 58

4.1 Training and Validation Accuracy [95] ... 61

4.2 Accuracy .. 62

viii

4.3 Accuracy ... 63

4.4 Accuracy .. 64

4.5 Training and Validation Loss [95] ... 66

4.6 Representation of errors over multiple epochs 67

ix

Acronyms

FNN Feed-Forward Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

RL Reinforcement learning

DNN Deep Neural Network

ANN Artificial Neural Network

MSE Mean Squared Error

CE Cross-Entropy

SGD Stochastic Gradient Descent

RMSE Root Mean Squared Error

ReLU Rectified Linear Unit

ELU Exponential Linear Unit

FC Fully Connected

AI Artificial Intelligence

LLM Large Language Model

BPTT Backpropagation Through Time

BRNN Bidirectional Recurrent Neural Network

MAE Mean Absolute Error

FLIR Forward-Looking Infrared

LSTM Long Short-Term Memory

1

Chapter 1

Introduction

1.1 Purpose

Arc welding, a fusion process, has been extensively utilized across various
industrial domains for numerous years. Being sure from the quality control of
welding progress has a great value in some areas like nuclear engineering and
aerospace. Typically, offline non-destructive testing methods, including X-rays,
liquid penetrants, magnetic particle testing, ultrasonics, among others, are
commonly employed to detect any faults or deficiencies in welded joints [1]. Arc
welding is a welding technique that employs an electric arc to heat and fuse
metals together [2]. It's one of the most usual and adaptive welding techniques
which is used across different industries. It works by making an electric arc
between an electrode and the pieces that was worked on. The heat generated by
the arc melts the base metal and, if applicable, a consumable electrode, forming
a weld pool. As the weld pool gradually cools, it undergoes solidification,
resulting in a durable and cohesive bond that firmly unites the welded
components [3]. Thermography in arc welding involves using thermal imaging
cameras to monitor the temperature distribution and heat patterns generated
during the welding process. If we review the history of thermography in arc
welding, it can notice that is a fascinating tour that lasts for many decades and
involves improvements in technology. Here's an overview:

Early Developments: The use of thermography in welding traces back to the
mid-20th century when infrared cameras and thermal imaging technology began
to emerge. Mostly, the primary requests focused on qualitative analysis, that is
allowing welders to imagine temperature distributions and detect potential flaws
during the welding process.

2

Advancements in Thermal Imaging: As thermal imaging technology evolved,
so did its applications in arc welding. It was possible to take accurate temperature
measurements and thus better present the quality of welds with recovered
sensitivity, clearness, and infrared cameras which are portable [92].

Research and Development: Temperature fluctuation, weld parameters, and the
quality of welding are interrelated. People who search on Welding, try a lot to
study and understand the relation on changing of temperature and results which
are obtained on welding. During the arc welding, thermal data process has been
detected by researchers and prepared some testable investigations and numerical
simulation studies, extending predictive models to optimize welding parameters
and reduce flaws.

Industrial Applications: In automotive, aerospace, and construction and
manufacturing, among other industries, thermography has wide applicability. In
arc welding, industrial application is used for monitoring some application that
are in process also for controlling the quality and detecting the flaws. It allows
welders and engineers to assess weld integrity, identify discontinuities such as
lack of fusion, porosity, or cracks, and make real-time adjustments to welding
parameters to ensure optimal performance.

Integration with Automation and Robotics: With the rise of automation and
robotics in welding operations, thermography has become an integral part of
advanced welding systems. By working with robotic arms and control systems,
infrared cameras can be equipped in requests with robotic arc welding to make
sure the quality of welds and apply control of welding parameters. Then this
allows to monitor in the time, which is real, so setting can be made to be sure
that consistency in the welding process is always obtained and done at a high
standard. The IR cameras measure temperature changes in the welding process
and detect potential issues; the control systems automatically correct the welding
parameters to prevent such deviations.

Future Directions: Thermography in welding is a sector which is inspiring for
the improvement of technologies and their interacting with new methods and
orientations. Improved data analytics should have ability to make a prediction
for maintenance, prepare to monitor the time, which is exact, and make a basis
for welding processes.

Here's how thermography is typically applied in arc welding:

3

1. Monitoring Temperature Distribution

Thermal imaging cameras capture infrared radiation emitted by objects, allowing
for the visualization of temperature distribution. In arc welding, these cameras
can be used to monitor the temperature of the weld pool, the heat-affected zone,
and surrounding materials in real-time.

2. Detecting Defects

Thermography can help detect defects such as lack of fusion, porosity, or cracks
by identifying abnormal temperature patterns during welding. Variations in
temperature can indicate areas of potential defects, allowing welders to take
corrective actions.

3. Optimizing Parameters

By analyzing thermal images, welders and engineers can optimize welding
parameters such as current, voltage, travel speed, and shielding gas flow rate to
achieve desired weld quality and minimize defects.

Fig 1.1 Weld defects [4].

Indeed, the main goal is recognizing three different thermography classes by
classifying thermography videos of arc welding which will be done by labeling
the videos and then it needs to measure the accuracy that shows how much
classification is correct.

4

1.2 Work introduction

The task of classifying thermography videos in arc welding based on a neural
network presents a significant challenge within the field of welding inspection
and quality control. As thermography technology, this technology becomes more
usual in welding also during arc welding there's an increased need for automated
ways for analyzing and organizing the huge number of thermal data which are
produced.

One of the primary difficulties in this problem is the complexity and variability
of thermal patterns observed in welding processes. Arc welding generates
dynamic and intricate thermal signatures influenced by factors such as welding
parameters, material properties, and environmental conditions. Analyzing
thermography videos to identify and classify patterns manually takes a lot of
time and it can help to have more mistakes.

The development of a neural network-based solution to classify thermography
videos in arc welding requires addressing several technical challenges. This
causes making neural networks that can obtain spatial and temporal exact details
from thermographic data, fine-tuning models to perform well under different
welding conditions, and making sure they can be scaled and efficient for real-
time use in industrial environments.

5

Chapter2

Background

2.1 overview

Through this aim, it is necessary to find different meaning and concepts related
to this issue. Machine learning, specifically deep learning, has been entered to a
large number of fields which are engineering, economics, healthcare, and beyond
[5]. Machine learning is part of artificial intelligence that focuses on making
algorithms and models which allow computers to be able to learn from data and
generate predictions or decisions without direct programming. It includes
different ways, such as supervised learning, unsupervised learning, and
reinforcement learning, each is matched to tasks and data types [6].
Deep Learning has obtained a lot of attention mainly because it is good at tasks
like detecting images and understanding speech. Unlike older methods, it doesn't
need humans to design complicated features; it figures out important things from
the data all by itself. The main advantage of deep learning is its capability to
automatically learn and extract elaborate designs and features from large
quantities of data. This allows deep learning samples to attain cutting-edge
implementation across different functions, such as image recognition, and
speech recognition, it doesn’t have any need for explicit trait engineering.
Furthermore, deep learning samples are flexible and adaptive, and it can make
adaption to different types of data also make them ideal for a lot of requests. On
the other hand, is its heavy reliance on extensive datasets for training Deep
learning instances frequently necessitate vast datasets to generalize well and
avoid overfitting, which can be challenging and costly to obtain, especially for

6

niche or specialized domains [7]. What is more, deep learning samples can be
expensive to train if it is computed, it needs significant computational resources
and time. Furthermore, deep learning instances are often considered "black
boxes" meaning that they are not easily interpretable, making it difficult to
comprehend the process behind their decision-making or predictions. When
there is not a power of interpretability, it can be a problem in requests where
resolution is important for instance, in areas like finance and healthcare. The last
thing that we should know about it is that deep learning models are easy to be
attacked where there are hidden changes which causes the incorrect predictions.
Now we want to survey various architectures in deep learning, so we explore a
range of the neural network samples that have been created for different tasks
and domains [8]. Here are some common architectures to consider:

Feed-Forward Neural Networks (FNNs): also recognized as Multilayer
perceptron’s (MLPs), serve as a foundational kind of artificial neural network.
Within FNNs, data advances linearly from input to output layers, without any
feedback loops. These networks are adaptive and commonly categorized for
some tasks such as classification and regression [9][10].

Convolutional Neural Networks (CNN): This neural network consists of
convolutional, pooling, and fully connected layers. The convolutional and
pooling layers function are acting like filters, which are pulling out significant
specifications from input patterns. Conceptually, this process resembles
performing finite-impulse response (FIR) filtering on the input data, with the
filter designed to extract the most salient parts of the data. In the context of
modulation classification, it's essential to reconstruct the input data accurately to
enable classification [11].

Recurrent Neural Network (RNN): is one of the neural networks created to
handle consecutive data by maintaining a memory of previous inputs. Unlike
traditional neural networks that process each input individually RNNs have
connections that allow them to retain information over time, making them ideal
for duties such as time series prediction, natural language processing, and speech
recognition. They can identify samples and connections orderly and is capable
to manage input series of various lengths. Variants like LSTM and GRU address
issues such as the disappearance gradient issue, enabling RNNs to more
effectively capture long-term attachments in data [12]. These are three
architectures which can be introduced as Feed-Forward Neural Networks
(FNNs), Convolutional Neural Networks (CNNs), and Recurrent Neural
Networks (RNNs), that are important bases in the artificial neural networks, and
each of these architectures are defined for specific tasks and data types. In
machine learning, the method of learning from data is built around three main
principles which are supervised learning, unsupervised learning, and

7

reinforcement learning. Each of these ways show a separate method to pulling
out the samples and decide based on data that is available.

2.1.1 Supervised Learning

In supervised learning, a model is trained using labeled data, meaning each input
is linked to a specific output label. According to the aim of this algorithm, it
specifies how the feature of input and output label can communicate to each
other. based on the provided labeled examples in the training dataset. This pattern
is ideally suited for tasks such as classification, in classification tasks, the model
predicts distinct class labels, whereas in regression tasks, it forecasts continuous
numerical values. Supervised learning algorithms focus on reducing the
difference between predicted outputs and actual labels. Firstly, the process starts
with raw data, which is labeled to form a training dataset later. The algorithm is
instructed during training by this dataset and its corresponding labels. Once the
model is trained, it processes new data to generate predictions, thereby
completing the supervised learning workflow [10].

Fig 2.1 Supervised learning architecture [13].

8

2.1.2 Unsupervised Learning

In unsupervised learning, a model is trained on data that lacks specific output
labels, meaning the input examples are unlabeled. In this approach, the model
tries to learn patterns, structures, or relationships within the data without guide
from out. These duties contain clustering, which classifies similar data points,
reducing the dimensionality, which obtains important features while it is
simplifying the data, and the last one which is generative modeling, where the
model learns to make new data samples like the original data. Unsupervised
learning algorithms aim is to find hidden patterns and relationships in the data,
helping with exploration and discovery. These methods which are important to
machine learning, providing flexible ways to obtain insights and predict in
different sections and areas [14].

Fig 2.2 Unsupervised learning [15].

9

2.1.3 Reinforcement learning (RL)

 A type of machine learning paradigm involves an agent interacting with its
environment to accomplish a specific objective. This agent figures out to decide
by adopting some actions and obtaining feedback through rewards or penalties.
The primary aim of the agent is to optimize the total rewards accumulated over
time. In reinforcement learning, an agent evaluates the current state of its
environment and chooses actions according to a policy that links states to
actions. Upon executing an action, the agent moves to a new state and receives
a reward from the environment. This feedback is then utilized by the agent to
adjust its policy, thereby enhancing its decision-making abilities over time [16].

Fig 2.3 Reinforcement learning model [17].

10

2.2 Neural Network Layers

Deep neural networks (DNNs) are a variant of artificial neural networks (ANNs)
characterized by multiple layers of interconnected neurons. Unlike shallow
neural networks with just a few hidden layers, deep neural networks (DNNs)
incorporate many hidden layers. This form let them to obtain and figure out
complicated samples and depiction within the data [18]. However, training
DNNs can be challenging due to issues such as overfitting and underfitting:

Overfitting

Overfitting occurs when a model tries to how it can memorize the training data
instead of generalizing from it. This leads to poor performance on unseen data,
as the model is overly complex and ends up capturing noise or irrelevant patterns
present in the training data. Techniques like dropout and weight decay can
mitigate overfitting by discouraging excessively complex models [19].

Underfitting

Underfitting occurs when a model is too simple to recognize the underlying
patterns in the data. This leads to high bias and poor performance on both the
training and test sets. To address underfitting, one can increase the model's
capacity by adding more layers or neurons, or by using more complex
architectures such as convolutional or recurrent neural networks. We want to
summarize all the things related to deep neural networks which are powerful and
can acquire the knowledge of complex samples from data, but they can run to
different problems such as overfitting and underfitting. Using effective
regularization ways and carefully choosing models are important for training
deep neural networks (DNNs) that work well on new, unseen data. In a deep
neural network (DNN), each layer serves a specific purpose in the transformation
of input data into meaningful output predictions [6]. This image shows a layer
within a neural network that we are presenting:

11

Fig 2.4 Main layers in Deep learning model.

Here's an introduction and explanation of each layer commonly found in DNN
architectures:

Input Layer

The neural network's initial layer is the input layer. and serves as the entry point
for the input data. The input layer's neurons represent the features or attributes
of the input data. Each neuron is associated with a particular input feature, and
the values of these neurons reflect the raw input data [20].

Hidden Layers

Hidden layers, situated between the input and output layers, are where the core
computations and feature extraction occur. Every hidden layer is composed of
numerous neurons, also referred to as units or nodes. Neurons in a hidden layer
accept inputs from the previous layer, apply a nonlinear transformation via an
activation function, and transmit the modified outputs to the next layer. For doing
this action, hidden layers make the neural network able to detect complex
samples within the input data [21].

12

Output Layer

The final layer of the neural network, known as the output layer, generates the
network's predictions or outputs. Neurons in the output layer represent the
desired output of the network, such as class probabilities in classification tasks
or continuous values in regression tasks. The tasks nature shows the total number
of neurons in the output layer. (e.g., binary classification, multi-class
classification, regression). Depending on the task, the output layer usually
employs a suitable activation function, such as the softmax function for
classification tasks or linear activation for regression tasks [20].

2.3 Steps for Training Neural Networks

Training a neural network entail optimizing its parameters, specifically the
weights and biases, to minimize error. a predefined loss function, typically by
adjusting them using a method called backpropagation in conjunction with an
optimization algorithm. Also training a neural network involves instructing it to
generate accurate predictions or classifications by processing input data [6].

 Here's a comprehensive explanation of the steps involved in training a neural
network:

1. Initialization

The initial step in training a neural network is to set its parameters, including
weights and biases. These parameters are usually initialized randomly, though
certain initialization strategies can be employed to enhance convergence [22].

Weights Initialization:

 𝑤~ே(0, 𝜎ଶ) where 𝑁(0, 𝜎ଶ) represents the Gaussian distribution with a mean

of 0 and a variance of 𝜎ଶ.

 Biases Initialization: 𝑏 = 0

13

2. Forward Propagation

During forward propagation, each layer in the neural network computes its
output based on the inputs received from the previous layer. This computation is
multiplying the input values by the corresponding weights, adding biases, and
then it should apply an activation function is for introducing nonlinearity.
Sigmoid, tanh, and ReLU are among the common activation functions, each
offering distinct characteristics and advantages [21].

Linear Transformation:

𝑧 = 𝑤⋅௫ೕା

ୀଵ

Activation:

𝑎 = 𝑔(𝑧) where 𝑔(𝑧) is the activation function.

3. Loss Calculation

The loss function quantifies the accuracy of the neural network's predictions that
match the true labels in the training data. It measures how the network is well,
where lower values showing a closer match between predictions and actual
results. The choice of a loss function is tailored to the task at hand [23]. For
instance, mean squared error (MSE) is commonly used for regression tasks,
whereas cross-entropy loss is ideal for classification tasks [24].

For regression: Mean Squared Error (MSE):

MSE =
ଵ

ே
𝛴ୀଵ

ே (yi - 𝑦ො)
2

For classification: Cross-Entropy Loss:

 𝐶𝐸 = −
ଵ

ே
𝛴ୀଵ

ே (yi log(𝑦ො) +(1- yi) log(1 - 𝑦ො))

14

4. Backpropagation

Backpropagation is like adjusting the sails of a boat to steer it in the right
direction. When a boat moves forward, it uses feedback to make adjustments,
ensuring it stays on course. Similarly, in backpropagation, a neural network
adjusts its parameters (weights and biases) based on the difference between its
predictions and the actual outcomes. It accomplishes this by calculating the
gradients of the loss function in relation to each parameter, indicating how much
each parameter should be adjusted to minimize the loss. These gradients are then
used to improve parameters, also it helps to improve its performance. This
procedure tries to be repeated couple of times until the network learns to predict
correctly and exactly . In the core of this process, backpropagation is the method
which a neural network learns from its mistakes and revises its performance
during the time. Backpropagation is an important part of training a neural
network. It entails calculating the gradient of the loss function with respect to
each network parameter by applying the chain rule of calculus. These gradients
are then used to change the parameters in the opposite way to the gradient, which
has a goal to decrease the loss function and revise the value for the accuracy of
the model. Backpropagation enables efficient computation of gradients through
the network, allowing for the optimization of thousands or even millions of
parameters [25].

Gradient of Loss with respect to Output [26]:

𝜕 𝑙𝑜𝑠𝑠

 𝜕 𝑦ො

Chain Rule:

𝜕 𝑙𝑜𝑠𝑠

 𝜕 𝑧
 =

𝜕 𝑙𝑜𝑠𝑠

 𝜕 𝑦ො
 .

𝜕 𝑦ො

 𝜕 𝑧

Gradient of Loss with respect to Weights and Biases [26] :

𝜕 𝑙𝑜𝑠𝑠

 𝜕 𝑤
 𝑎𝑛𝑑

𝜕 𝑙𝑜𝑠𝑠

 𝜕 𝑏

15

The basic equation for updating a neural network weight (W) during
backpropagation entails adjusting the weight by subtracting a portion of the loss
function's gradient concerning that weight, multiplied by the learning rate (α)
[27]. Mathematically, it appears as:

 𝑤 = 𝑤 − 𝛼
డ ௦௦

డ௪

5. Parameter Update

With the gradients computed, an optimization algorithm like stochastic gradient
descent (SGD), is used to update the network parameters in the direction that
minimizes the loss function. The learning rate parameter specifies the
measurement of the alignment which is created to the parameters of this model
with each repetition, effectively handling how quickly the network updates its
weights and biases. It dictates how significantly the parameters are altered in
response to the calculated gradients, thus influencing the speed and stability of
the learning process. A well-chosen learning rate strikes a balance between
making sufficient progress toward minimizing the loss function and ensuring that
the model converges smoothly without overshooting optimal solutions [28].

Gradient Descent:

𝑤 𝑤 - 𝛼
డ ௦௦

 డ ௪ೕ

𝑏 𝑏 − 𝛼
డ ௦௦

 డ
 , where 𝛼 is the learning rate.

16

6. Iterative Optimization

Training a neural network involves iteratively repeating the forward propagation,
loss calculation, backpropagation, and parameter update steps for a predefined
number of epochs. The goal is to gradually reduce the value of the loss function,
indicating that the network is learning to create better predictions on the training
data [29].

7. Validation

Validation is essential for monitoring the network's performance on data that it
hasn't seen during training. It assists to identify the overfitting and makes ready
to have ability for producing the network. Hyperparameter tuning, such as
adjusting the learning rate or the number of hidden units, can be performed based
on validation performance.

Measure the effectiveness of the model on a validation dataset by employing
relevant metrics such as accuracy, precision, recall, or F1-score [31].

8. Testing

After the training phase, the final model undergoes evaluation on an independent
test dataset to determine its real-world performance. This evaluation, uses
particular criteria to measure how the model can conform with new data in a
good way and predict accurately.

In the last step, the process of training of a neural network should adopt some
measures to provide a precise balance of initializations, forward and backward
propagation, parameter updates, and validation to optimize the model's
performance and be sure of its capacity to make popular for new data [18].

17

2.4 Fundamental tasks in Machine Learning

Regression and classification are two fundamental tasks in machine learning,
each serving distinct purposes in analyzing and interpreting data:

Regression function

Regression is a method used in machine learning to predict the relationship
between input features (like independent variables) and an output (dependent
variable) by fitting a mathematical model to the data. It is simple to mention that
regression function plays a good role to help us for understanding how the value
of one variable improves the response for another variable's changes. It makes
prediction for values of continuous numerical based on input data, which gives
us an allowance to make an estimation for future results, spot samples, and
understanding relationships between variables. For example, regression can be
used to estimate the price of the house based on some elements like square
footage, the number of bedrooms, and location. It can also be used in finance to
make a prediction in stock prices or in healthcare areas to predict the result of
patient based on different elements. Different types of regression models, such
as linear regression, polynomial regression, ridge regression, and lasso
regression, are tailored to handle different situations and types of datasets.Each
regression method is suited to particular characteristics of the data and the
underlying relationships being modeled. The effectiveness of these regression
models is commonly assessed through metrics like mean squared error (MSE),
root mean squared error (RMSE), and the coefficient of determination (R-
squared). These criteria bring insights into how well the model adapts the data,
with lower mistakes values and higher R-squared values which is indicating
better efficiency and predictive accuracy. The connection between the
independent variables (features) and the dependent variable (target) is expressed
through a linear equation [30][33]. The basic formula for linear regression is
given as:

𝑦ො = 𝑏 + 𝑏ଵ𝜘ଵ + 𝑏ଶ𝜘ଶ + ⋯ + 𝑏𝜘

18

Parameters details:

 𝑦ො is the anticipated value of the dependent variable,

 𝑏 is the y-intercept (bias term),

𝑏ଵ , 𝑏ଶ , … , 𝑏 are the coefficients (weights) corresponding to the independent
variables

 𝜘ଵ , 𝜘ଶ , … , 𝜘 respectively.

This equation describes a line in a multidimensional space that best aligns with
the observed data points. Throughout the training process, the model determines
the optimal coefficients (b0, b1, ..., bn) that reduce the difference between the
predicted and actual values in the training set.

These coefficients are usually estimated using the least squares method, which
minimizes the sum of the squared deviations between the observed and predicted
values:

(𝑦 − 𝑦ො)
ଶ

ே

ୀଵ

We have:

N is the number of data points,

yi represents the true value of the dependent variable for the ith data point,

𝑦ො is the value forcasted of the dependent variable for the ith data point.

19

2.4.1 Classification Methods

Classification functions as a predictive model designed to estimate a mapping
function from input variables to distinct output categories, such as labels or
categories. This mapping function, inherent to classification algorithms, is
responsible for predicting the label or category associated with given input
variables. Although classification algorithms can handle both discrete and
continuous variables, they must classify examples into one of two or more
classes [32]. Various types of classification algorithms include:

1. Decision tree classification

Decision tree classification involves building a model by creating a decision tree.
Each node within the decision tree represents a specific test or decision point
based on an attribute, and each branch extending from that node corresponds to
one of the possible outcomes or results of that test. This structure makes an
allowance for the tree to assess various attributes systematically and manage the
data downward that reflect the different potential outline or classifications, and
in the last stage it causes the final decision or prediction. [32][33].

2. Random forest classification

This tree-based algorithm consists of an ensemble of decision trees, each
generated from a randomly selected subset of the original training data. The
random forest classification algorithm aggregates the outputs from all individual
decision trees to produce the final prediction, resulting in greater accuracy than
any single tree alone [34].

3. K-nearest neighbor

The K-nearest neighbor algorithm assumes that similar entities are positioned
close to one another. It uses similarity of features to make prediction for the
values of new data points, allowing to group similar points based on their
distance and closeness. The main goal of the algorithm is to determine the
probability that a data point belongs to a specific group [35].

20

2.4.2 Regression versus Classification in Machine
Learning

The key distinction between regression and classification lies in their predictive
targets:
regression forecasts continuous quantities, whereas classification predicts
discrete class labels. Nonetheless, there exist certain intersections between these
two categories of machine learning algorithms. A regression algorithm can guess
whole numbers, like counting items, while a classification algorithm can
estimate the chance of different labels, like the probability of something being a
certain category [36].

Activation functions with Neural Networks

Activation functions introduce non-linearity into neural networks, allowing them
to model complex relationships between input and output variables. Without
activation functions, neural networks would be confined to linear
transformations, capable of representing only simple relationships. By
incorporating non-linear activation functions, neural networks can learn and
show complicated samples also the way that connect data with each other.

Here are some key reasons why activation functions are used in neural networks:

Introduction of Non-Linearity: Activation functions allow neural networks to
capture and model non-linear relationships between input and output variables.
This non-linearity is important for obtaining the complicated samples which are
available in real data.

Enable Learning of Complex Features: Non-linear activation functions allow
neural networks to learn and represent intricate features and patterns within the
data. This is the vital capability which is specified for some tasks such as
detecting the image, processing the natural language, and different kinds of
detecting samples.

21

Gradient Propagation: Activation functions help in efficient gradient
propagation during the backpropagation algorithm, which is used to train neural
networks. Some activation functions that are certain have eligible attributes that
help in more permanent and efficient training of neural networks.

Output Transformation: Activation functions transform the raw output of a
neuron into a form that is suitable for the next layer of the network. They help in
controlling the range and scale of the neuron outputs, ensuring that the network
learns effectively [37].

Neural networks employ various types of activation functions. Some common
ones include:

Sigmoid: The sigmoid function compresses a neuron's output into the [0, 1]
range. It is usually requested in binary classification duties to determine
probabilities.

Hyperbolic Tangent (tanh): Like the sigmoid function, the tanh function
constrains a neuron's output to the range [-1, 1]. It is centered around zero and
can help alleviate the vanishing gradient problem compared to the sigmoid
function.

Rectified Linear Unit (ReLU): The ReLU function outputs zero for negative
inputs and the input value itself for positive inputs. The ReLU function is one of
the activation functions which used a lot according to its simplicity and
performance in training deep neural networks.

Leaky ReLU: The Leaky ReLU function is like the ReLU function however, it
allows a small non-zero gradient for negative input values. This change prevents
neurons from the general disabling, which is done for negative inputs, which is
allowing some information to still cross the network. By showing this small
gradient, Leaky ReLU helps to reduce the issue of dead neurons which can
happen in traditional ReLU when neurons are not active, and they stop learning.
This setting increases the capability of network to make complicated paradigms
more as model and keep robustness during training. This feature tries to prevent
the issue for the ReLU where neurons doesn’t work during training.

22

Exponential Linear Unit (ELU): The ELU function is like ReLU for positive
inputs but has a non-zero output for negative inputs, allowing smoother gradients
during training.

Softmax: The softmax function is commonly utilized in the output layer of a
neural network for multi-class classification tasks. It converts the outputs
generated by the neurons in the output layer into a probability distribution that
spans across all the possible classes. This conversion makes sure that the
network's predictions are introduced as probabilities, which is returning the
probability that each input belongs to a particular class, thereby simplifying the
classification process [38].

23

2.5 Different Neural Network Architectures

2.5.1 Feed-Forward Neural Networks

A feedforward neural network, also referred to as a fully connected neural
network, is one of the earliest neural network architectures developed in artificial
intelligence. This network learns from input data independently to do tasks and
roles. The primary objective of a feedforward neural network is to predict the
classification label for a given image. This means giving a score or prediction
probability to each possible label, which is creating a vector for showing the
network's output. The label with the highest score is selected as the network's
predicted category for the image. Typically, a feedforward neural network
contains one or more hidden layers of neurons between the input and output
layers. These hidden layers make the network able to analyze and identify the
features of the input data more by aim of improving the prediction accuracy [40].

2.5.2 Convolutional Neural Networks

Convolutional Networks (ConvNets) stand out as the most effective deep
learning models for image classification tasks. Drawing inspiration from
biological processes, their multilayered architectures facilitate the hierarchical
and automatic learning of invariant features. Beginning with the detection of
basic features, they progress to discerning and amalgamating these features to
grasp more intricate patterns. The various levels of features originate from
distinct layers within the network. Each layer comprises a specific number of
neurons and is represented in three dimensions: height, width, and depth.
Convolutional Neural Networks (CNNs) are a type of deep neural network
specifically designed for processing and analyzing visual data, such as images
and videos. They excel at tasks like image classification, object detection, and
image segmentation. CNNs are inspired by the organization and functioning of
the human visual system and are created to automatically and adaptively learn
hierarchical representations of data. The primary benefit of the activation map
lies in its ability to capture distinctive features from an image while
simultaneously reducing the data volume for processing. The convolution

24

operation involves applying a feature detector matrix to the input data,
essentially comprising a set of values compatible with the machine. By utilizing
various values of the feature detector, multiple versions of the image are
generated [6]. Furthermore, the convolutional model undergoes training via
backpropagation to minimize errors in each layer. Based on the achieved
minimal error, the depth and padding settings are determined [42].

Fig 2.5 Convolution to generate an Activation Map [41].

Pooling is an important step in decreasing the size of activation map, which is
keeping only the most vital features while improving the model’s ability to
identify the objects, even when they will be presented in different shapes or
angles. This procedure shrinks the number of parameters which model needs to
learn, and this action helps to avoid overfitting. Max pooling gives an allowance
to CNNs to control the different sizes of an image, which causes to have precise
detection for an object. There are different pooling ways such as max pooling,
average pooling, stochastic pooling, and spatial pyramid pooling, with max
pooling being the most common.

Max pooling selects the highest value from each sub-matrix of the activation
map, creating a new, distinct matrix. This way decreases the number of learnable
features effectively while it is keeping the important attributes of the image.
Generally, max pooling utilizes a 2x2 filter for this operation [43].

25

Fig 2.6 Max Pooling of a Feature Map [41].

The Fully Connected Layer, often known as the Hidden Layer, represents the
concluding phase of the convolutional neural network. In this stage, a
combination of an Affine transformation and a Non-Linear activation function is
utilized to integrate and refine the extracted features. This process allows the
network to synthesize the information gathered from the previous layers and
make final predictions or decisions based on the learned representations [43].

Affine Function : y = Wx + b

The Fully Connected layer receives input from the Flatten Layer, which
transforms the data into a one-dimensional format (1D Layer). Subsequently, the
data from the Flatten Layer undergoes processing by the Affine function
followed by the Non-Linear function. This combination of one Affine function
and one Non-Linear function constitutes a single Fully Connected (FC) or
Hidden Layer. Additional layers of this nature can be incorporated based on the
desired depth of the classification model, with the determination influenced by
the characteristics of the training dataset. The output from the final hidden layer
is subsequently fed into the Softmax or Sigmoid function to generate a
probability distribution over all the classes [44].

In the below picture shown different layers of Convolutional Neural Network
(CNNs):

26

Fig 2.7 Process of analysing the input in convolutional neural network [93].

2.5.3 Recurrent Neural Networks

A recurrent neural network (RNN) is a deep learning model designed to
transform sequential input data into corresponding sequential output. Sequential
data, such as words, sentences, or time-series data, relies on complex semantic
and syntactic relationships. Emulating human sequential data processing, an
RNN comprises numerous interconnected components performing tasks like
language translation. However, transformer-based artificial intelligence (AI) and
large language models (LLMs) are increasingly replacing RNNs due to their
superior efficiency in managing sequential data. RNNs consist of neurons, which
are computational units that work together to perform complex operations. These
neurons are organized into input, output, and hidden layers. The input layer
gathers data for processing, the output layer delivers the results, and the hidden
layer is where data processing, analysis, and prediction occur. RNNs are called
recurrent because they execute the same task for each element in a sequence,
with each output depending on previous computations. They have a "memory"
feature that retains information from earlier calculations [45].

27

Fig 2.8 RNN Architecture [96].

Hidden state calculation [45]:

ℎ௧ = 𝑓൫𝑤௫𝑥௧ + 𝑤௧ିଵ + 𝑏൯

ℎ௧ : Hidden state at time step 𝑡.
𝑥௧ : Input at time step 𝑡.
𝑤௫ : Weight matrix connecting input to hidden state.
𝑤 : Weight matrix connecting hidden state to itself.
𝑏 : Bias term for the hidden state.
𝑓 : Activation function, typically tanh or ReLU.

 Output Calculation:

𝑦௧ = 𝑔൫𝑊௬ℎ௧ + 𝑏௬൯

𝑦௧: Output at time step 𝑡.
ℎ௧: Hidden state at time step 𝑡.
𝑊௬: Weight matrix connecting hidden state to output.
𝑏௬ : Bias term for the output.

𝑔 : Activation function, typically softmax for classification or linear for regression.

 Loss Calculation: 𝐿 =
ଵ

ே
∑ 𝐿(𝑦௧, 𝑦ො௧)ℕ

௧ୀଵ

𝐿: Total loss over ℕ time steps.
𝑦௧: Predicted output at time step 𝑡.

28

𝑦ො௧: True output at time step 𝑡.

𝐿(𝑦௧, 𝑦ො௧): Loss functions like cross-entropy for classification tasks or mean
squared error for regression tasks.

2.5.4 Backpropagation Through Time (BPTT)

The backpropagation algorithm, adapted for RNNs, computes gradients of the
loss function with respect to all model parameters across the entire sequence.
This process involves calculating the gradients at each time step, accumulating
them over the sequence, and then updating the model parameters using gradient
descent [46]. RNNs function by sequentially transmitting the data they receive
to hidden layers, processing one step at a time. They utilize a self-looping or
recurrent mechanism where the hidden layer retains past inputs to enhance future
predictions through a short-term memory feature. This involves using both the
current input and stored memory to predict the next sequence. RNNs are
typically associated with a one-to-one architecture, where each input sequence
corresponds to one output. However, they can be adapted to various
configurations for specific purposes. Below are several common types of RNNs
[47]:

One-to-many

In this RNN variant, a single input is directed towards multiple outputs. This
architecture finds utility in linguistic tasks such as image captioning, where it
generates a sentence based on a solitary keyword.

Many-to-many

The model uses multiple inputs to predict multiple outputs. For example, an
RNN can be used to create a language translator, where it analyzes a sentence
and skillfully arranges the words in a different language.

Many-to-one

Multiple inputs contribute to a single output, which is useful for tasks like
sentiment analysis. Here, the model determines whether customer sentiments
from input testimonials are positive, negative, or neutral [47]. The RNN

29

architecture was the first to introduce language processing capabilities in
machine learning models, leading to the development of several variants that
maintain its memory retention principle while improving its original
functionality. Here are some illustrative examples [12]:

Bidirectional recurrent neural networks

A bidirectional recurrent neural network (BRNN) processes data sequences
using both forward and backward layers of hidden nodes. The forward layer
operates like a typical RNN, retaining previous inputs in the hidden state to
predict the next output. Conversely, the backward layer traverses in the reverse
direction, leveraging both the present input and forthcoming hidden states to
refine and update the current hidden state. This bidirectional approach lets the
network to use information from both past and future, which is increasing its
ability to obtain complicated dependencies within the sequence. This
combination allows the BRNN to enhance prediction accuracy by considering
both past and future contexts. For instance, a BRNN can predict the word "trees"
in the sentence "Apple trees are tall" [48].

Long short-term memory

LSTM is an improved version of the regular RNN, aimed at handling long-term
connections more effectively in sequential data. While a regular RNN's hidden
state activation mostly relies on nearby activations, acting as "short-term
memory," and network weights are influenced by computations across entire
sequences, akin to "long-term memory," LSTM was redesigned with an
activation state that serves as weights. This allows it to retain information over
longer distances, hence the name "Long Short-Term Memory." LSTMs are
specifically crafted to address long-term dependency issues. They naturally excel
at retaining information over extended periods, making it an inherent feature
rather than something they need to learn [49].

30

Temporal order

Temporal order in RNNs and LSTMs refers to the sequential nature of data,
where the order of elements matters. In the context of RNNs and LSTMs,
temporal order implies that the input data is presented in a sequence, such as
words in a sentence, frames in a video, or time steps in a time series. These
models are built to handle data in a sequential manner, processing one element
at a time and maintaining an internal state that retains information from previous
elements. This ability to preserve and use information about the temporal order
of input data is critical for tasks like language modeling, speech recognition, and
time series prediction [50].

31

2.6 Metrics in Machine Learning

2.6.1 Accuracy

Accuracy is a crucial metric in machine learning that measures a model's overall
correctness in its predictions across all classes or categories in a classification
task. It represents the ratio of instances that were accurately classified to the total
number of instances evaluated, providing a measure of how well the model
correctly identifies the categories or labels across the entire dataset. In essence,
accuracy gauges the model's capability to accurately identify positive and
negative instances within a dataset [51].

Accuracy =
்௧ ே௨ ௗ௧௦ ௪ ௦ ௧௨

் ௪ ௨ ௗ௧௦

Accuracy =
்ା்ே

்ା்ேାி ାிே

Parameter: True Positives (TP), True Negatives (TN), False Positives (FP),

False Negatives (FN)

While accuracy is a widely used metric for evaluating classification models, it
may not always provide a complete picture, especially in cases of class
imbalance or when misclassification costs differ across classes. Therefore, it is
crucial to consider additional metrics such as precision, recall, and F1 score
along with accuracy. This wide method helps in obtaining a better understanding
of the model's efficiency and making informed decisions about model selection
and optimization strategies [51].

32

2.6.2 Precision

Precision quantifies the proportion of true positive outcomes among all instances
that the model has predicted as positive, highlighting the accuracy of the model's
positive classifications relative to the total number of positive predictions it
made. This metric reflects the model's ability to avoid false positives by ensuring
that many of its positive predictions are indeed correct. It is calculated by taking
the number of true positive outcomes and dividing it by the total number of
instances predicted as positive, which includes both true positives and false
positives. This ratio helps evaluate the model's precision by measuring how well
it detects true positive cases from those wrongly classified as positive. Precision
is vital in scenarios where the cost of false positives is high or minimizing false
positives is a priority. For instance, in medical diagnosis, incorrectly identifying
a healthy individual as diseased (false positive) can result in unnecessary
treatments or procedures, potentially causing harm. In such cases, a model with
high precision ensures that positive predictions are accurate and reliable [51].

Precision:
்

(்ାி)

2.6.3 Recall

Recall quantifies the model's ability to identify all actual positive instances
within the dataset. It is determined by calculating the proportion of true positive
predictions relative to the total number of positive cases, including those that the
model failed to correctly identify. Mathematically, recall is obtained by dividing
the number of true positives by the sum of true positives and false negatives,
offering a measure of how effectively the model captures all relevant positive
cases, even those that may be challenging to detect. Also

referred to as sensitivity or the true positive rate, recall assesses a model's
capability to correctly identify every instance of the target class in the data. It

33

can be expressed as a value between 0 and 1 or as a percentage, with higher value
indicating better performance. A perfect recall score of 1.0 signifies that the
model can successfully detect all instances of term "sensitivity" is often used to
describe a diagnostic test's ability to accurately detect prevalent term in machine
learning contexts. For instance, when discussing the true positive cases. While
the underlying concept remains consistent, "recall" is the more effectiveness of
a machine learning model, one would typically refer to its recall score rather than
its sensitivity [51].

Recall:
்

(்ାிே)

2.6.4 F1 Score

The F1 score is the compatible mean of precision and recall, offering a single
metric that balances both. It is especially useful for evaluating models on
imbalanced datasets. Commonly employed in binary and multi-class
classification as well as in evaluating large language models, the F1 score
integrates precision and recall into a single measure, providing a more complete
understanding of model performance [52].

F1 Score = 2 *(Precision * Recall) / (Precision + Recall)

34

2.6.5 Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is a simple yet effective metric for evaluating the
accuracy of regression models. It calculates the average absolute difference
between the predicted values and the true target values. Unlike some other
metrics, MAE does not square the errors, giving equal importance to all errors,
regardless of direction. This makes MAE particularly useful for understanding
the magnitude of errors, whether they result in overestimations or
underestimations. Mean Absolute Error (MAE) serves as a metric for quantifying
the average prediction error by calculating the mean of the absolute differences
between the predicted values and the actual values in the dataset. This measure
provides insight into the average magnitude of errors made by the model, without
considering their direction, offering a straightforward assessment of how closely
the predictions align with the true values [53].

MAE =
 |௬ି௫|

సభ

n is the number of data points.

yi depicts the actual objective value for data point i.

xi shows the anticipated value for data point i.

35

2.6.6 Mean Squared Error (MSE)

Mean Squared Error (MSE) gauges the model's performance by calculating the
average of the squared differences between the predicted values and the actual
values within a dataset. This metric highlights the magnitude of errors by
emphasizing larger discrepancies, providing a comprehensive assessment of how
well the predictions align with the true values, with a particular sensitivity to
significant errors. It penalizes larger errors more heavily than smaller ones,
making it a crucial metric for assessing the accuracy of prediction algorithms.
The MSE of 0 indicates a perfect model with no errors, while higher MSE values
signify greater model errors. MSE decreases when data points closely align with
the regression line, indicating reduced model error. A model with a low MSE
produces more accurate predictions. Conversely, a high MSE suggests that data
points are widely dispersed from the central moment, indicating poor accuracy.
When data points cluster tightly around their mean, the MSE is low, signifying
a normal distribution of data values, minimal skewness, and fewer errors [54].

MSE =
∑(௬ି௬ො)మ

n is the number of samples.

𝑦 shows the actual target values.

𝑦ො shows the predicted values.

36

Chapter 3

Materials and Methods

3.1 Motivation

This study has a main goal to classify thermography videos of arc welding which
is using convolutional neural networks (CNNs) and recurrent neural networks
(RNNs). One of the most important benefits of using CNNs is that they can
automatically learn and obtain essential features from the data, this helps that
classification to be more precise and efficient than traditional approaches.
Classification is particularly useful when the goal is to sort data points into
specific categories or classes, especially when clear interpretation and precise
decision-making are needed. We use both a CNN and an RNN, but at different
parts of the program: we have the CNN for feature extraction and the RNN for
training the network. In this work we have an important aim which is using
machine learning to group thermographic arc welding procedures in different
classifications. The high temperatures and dynamic nature of arc welding make
it difficult to monitor and classify using traditional methods. Thermography lets
us capture detailed thermal images that give us valuable insights into the welding
process. In this study, we create a sophisticated data processing pipeline and a
strong machine learning model to analyze and classify thermographic data from
arc welding operations. The FlirVideo class pull outs effectively and it processes
temperature data from thermal videos, and then the different welding states will
be shown by specifying critical periods of temperature modifies. These features
which extracted are then combined with a recurrent neural network (RNN)
specially with GRU layers, which are planned in specific to learn time-based
samples and precisely classify the states of welding. According to the goal of this

37

work which is increasing the control of quality and keep of arc welding
processes. The precise classification of welding states can affect to improve weld
quality, less flaws, and more safety. By joining the thermographic imaging with
machine learning, then this work follows a goal to make a sophisticated tool for
real-time monitoring and automated classification of arc welding, pushing
industrial welding technology forward. Enhanced monitoring and classification
can achieve the following:

1. Better Weld Quality: Accurate identification and classification of welding
states ensure welds meet required standards, reducing the risk of failures and
rework.

2. Reduced Defects: Early detection of welding defects enables prompt
corrective actions, minimizing scrap and rework costs.

3. Enhanced Safety: Real-time monitoring prevents hazardous conditions by
providing immediate feedback on welding anomalies, thus protecting
workers and equipment.

4. Increased Efficiency: Automating the monitoring and classification process
streamlines welding operations, reduces downtime, and optimizes resource
utilization.

38

3.2 Dataset

3.2.1 Thermal Imaging Dataset

The thermal imaging dataset includes video frames acquired with FLIR
(Forward-Looking Infrared) cameras. These cameras get infrared radiation,
which is published by number of objects, and then transmitted into temperature
data. The dataset which is used in this study is formatted as .ats files, which are
dedicated to FLIR [55]. To read FLIR video files in Python, the first step is to
use the python-flirimageextractor library, a Python wrapper for the FLIR
Systems' ResearchIR SDK. This library enables the extraction of thermal data
from FLIR video files, allowing us to work with the data in our Python code.

Firstly, we want to describe data components which are related to the
Flirvideo.py code. Each video file is composed of numerous frames, each
representing a single image captured at a distinct moment in time. These frames
are taken at stable intervals, which is making a continuous stream of thermal data
during time passed. In each frame, the primary data captured is temperature. The
temperature at each pixel in the frame corresponds to the thermal radiation
detected by the camera. This data is placed in an array which is two-dimensional,
and each component shows a pixel in the image, also the value of each
component shows the temperature reading at that pixel. Each frame is
accompanied by a timestamp that specifies the precise moment of its capture.
These timestamps are an important issue, mainly because they can control how
the temperature will be improved during the time also it provides necessary
background for analyzing the changes will be obtained during specific periods.
Thermal imaging data is commonly saved in .ats files, a proprietary format
created by FLIR for recording thermal video sequences. In this part we describe
the data characteristic immediately. The frame resolution, determined by the
height and width, varies according to the specific FLIR camera model. Higher
clarities give more details about thermal images, but they also make larger file
sizes. The frames per second (fps) measure temporal resolution [56]. A higher
fps gives more detailed information over time, making it easier to catch quick

39

temperature changes. The temperature detection range of a camera varies based
on its model and calibration. Some cameras come with temperature calibration
data, which helps make their temperature readings more accurate.

3.2.2 Data Analysis

Statistical measures [57] like mean, variance, and standard deviation are used to
follow and control thermal treatment during the time, which help to adjust
benchmarks and detect vital changes from normal temperature samples. Let's
explore each of these statistical methods as implemented in the `flirvideo.py`
file. The mean (or average) temperature is computed by adding all the values of
temperature within a frame and then dividing by the total number of values. This
gives a central value that represents the overall temperature distribution in the
frame. The mean temperature is important because it provides a general
indication of the average thermal state of the frame. Comparing the mean
temperature across different frames or areas within a frame can help identify
general trends or patterns. In the `get_mean_temperature` function, the mean is
calculated using NumPy's `np.mean` function. This way collects the information
about temperature data for the frame which is selected and then indicates the
average temperature value. Another crucial and statistical method is detecting
the maximum temperature, which is the greatest temperature value within a
frame. Understanding the maximum temperature is crucial for two key reasons,
which will be explained next.

The first one is it finds out the hottest spot in the frame so it can be acute for
identifying regions that are interested. Second one is related to safety and
maintenance. We calculate this issue with NumPy [58] (np. max) in get_ max_
temperature function. Another statistical method is minimum temperature which
is the lowest temperature value that will be in a frame. The reason why it is vital
is for identifying the coldest spot in the frame. Also, there is another reason
which can help issues detection. The last one is related to standard deviation
which measures the value of temperature variation from Mean. A low standard
deviation signifies that the temperature values are clustered near the mean,
whereas a high standard deviation suggests a broad range of temperatures. This
shows how much the temperature changes in the frame, and noticeable changes
might point to potential issues or parts that need a control. This technique gathers
the temperature data for the specified frame and then computes the standard
deviation of the temperatures.

40

3.3 Machine Learning Dataset

The machine learning [24] dataset is extracted from data related to raw thermal
imaging and is used to train [6] a Recurrent Neural Network (RNN) [12] to
predict different sequences. This dataset comprises sequences of temperature
readings extracted from the thermal images, which have been formatted and
preprocessed to be suitable for training the machine learning model. In this
section we want to explain about data components related to the untitled0.py, the
main data structure is a sequence, representing a collection of temperature
readings recorded over time. Each sequence corresponds to a specific subset of
frames from the thermal imaging dataset, effectively capturing the temporal
variations in temperature. The input features consist of temperature readings
recorded at each point within a sequence. These readings are organized into a
three-dimensional array with the following dimensions: the number of
sequences, the length of each sequence, and the feature dimension, which
corresponds to the temperature readings per frame [24]. The labels are some
categories that the model aims to predict [59], which is representing various
states or events detected from the temperature data. These labels are organized
in a one-dimensional array, with each entry corresponding to a specific sequence.

In this part we go to through characteristics of data, the sequence length is a
crucial factor that dictates the extent of temporal context accessible to the model.
However, longer sequences prepare more context but also increase
computational demands. In this sequence, each frame can contain several
features, but the main feature being focused on here is the temperature reading.
The class distribution within the dataset is shown. Maintaining balance ensures
the model remains unbiased towards any class. When we want to analyze the
video, we should understand what existing order it has. The order of image is
spatial [60]. The order of text is temporal, it is important to know what the order
is. The order of video is spatial temporal [61], we put every image to the same
CNN then the CNN gives us the feature. Then we have a lot of features and there
is a temporal order between them. Then we give these features to the RNN
LSTM, then this RNN LSTM creates the temporal order. The

41

get_sequence_model function defines the LSTM-based RNN model. Then we
have input layers described as frame_features_input which accepts the input
sequence data and mask_input which managed variable-length sequences by
masking padding [62] values. The model has three LSTM layers, each of them
with 512 units. Setting return_sequences=True for the first two LSTM layers
ensures that these layers make an output sequence. Each of these LSTM layers
contains three important components which are represented as Forget Gate [63],
Input Gate, Output Gate. Forget Gate decides that what kind of information
should be disposed of cells state. Input Gate [63] determines which input values
will be used to update the cell state. Output Gate determines what the next hidden
state should be available. By carefully arranging LSTM layers and incorporating
dropout, the model gains robustness and the ability to learn intricate patterns in
sequential data, such as time series or video frame sequences. This design
leverages LSTM units to sustain and can update memory across long sequences,
making it especially useful for tasks that require understanding long-term
dependencies.

3.3.1 Data Processing

The dataset is loaded by using the fnv library [71], which is specifically designed
for handling FLIR [72] .seq files. The primary class utilized is
fnv.file.ImagerFile. When loaded, the ImagerFile object allows access to the
frames, temperature data, and timestamps. For each video frame, the temperature
data is extracted and organized into a 3D NumPy array called Temp, with the
array dimensions corresponding to the video's height, width, and frame count. In
this step we have an allowance to work efficiently and analyze the temperature
data. Timestamps for each frame are stored in a 1D NumPy array (time), enabling
temporal analysis of the data. The raw temperature data from thermal images is
split into sequences. This process causes choosing a sequence length and then
slicing the continuous temperature studies into overlapping or non-overlapping
[65] chunks of that length. Temperature readings are scaled [64] to a standard
range, usually [0, 1] or [-1, 1], to enhance model training efficiency and
performance by preventing the scale of the data from affecting the learning
process. In next step we must do Masking, Masking is necessary to exclude
missing or irrelevant parts of sequences, preventing the model from learning
from incomplete or noisy data. This is especially important for variable-length
sequences or when padding is used to standardize sequence lengths. The dataset
is separated into three parts which are training, validation, and test sets. The

42

training set is for model training, the validation set is for tuning hyperparameters
[66] and monitoring performance during training, and the test set is for
evaluating the final model's performance. The prepared sequences are fed into
the RNN model for training, where it learns to predict labels by analyzing how
patterns change over time in the input data. The trained model is assessed on the
test set using metrics like accuracy, precision, recall, and F1-score [67] to
evaluate its performance on unseen data. After training step, new temperature
sequences can be labeled by this model which is creating it useful for real-time
tasks like spotting issues and predicting events.

3.4 Convolutional ImageNet Layers

In this part we are going to explain about some specific details about feature
extraction. Models such as VGG16, ResNet50, InceptionV3 [74], …, are
pretrained on the ImageNet dataset [73] which contains millions of images which
have labeled across thousands of categories. The convolutional layers [6] of
these models are trained to identify a wide variety of features, which is ranging
from low level like edges or textures to high level like object parts or entire
objects. In our study where we have a limited dataset, its common to use these
pretrained convolutional layers for extracting features which this process is
known as transfer learning. The idea in this work is that the lower layers of these
networks can extract useful features that are enough to request to other tasks,
even if they weren’t specifically trained on our data. A convolutional layer uses
a set of filters that scan over the input image, creating a feature map [75] for each
filter. These filters learn to spot different features like edges, corners, and
textures. Convolutional layers are usually followed by pooling layers, which
reduce the size of the feature maps. This makes the model run more efficiently
and helps it to stay accurate even if the image shifts slightly. In our project, the
convolutional layers of the ImageNet layers are frozen [76], and it means that
their weights are not updated during the training. This mechanism is useful and
practical when the dataset is small, and this is exactly true for our dataset which
is small. Our thermal images which originally have a single channel need to be
adapted to the RGB format which is expected by the pretrained ImageNet model.
This process involves resizing the thermal image and copying the temperature
data into the three-color channels (R, G, B) to create a pseudo-RGB image. By
doing this, the pre-trained model can handle the thermal data without needing
any changes to its original design. Now we want to explain about the steps that
we did in our code which are related to Convolutional ImageNet Layer. First step
is loading the pretrained model which we use InceptionV3 model and then we
put the weights=imagenet and it shows that the model should load weights

43

pretrained on the ImageNet dataset. Then we put include_top=False and by this
line of code, we remove the fully connected (dense) layers at the top of the
network, because they are especially used for ImageNet’s classification task
obviously, we don’t need them. In the next step, we need to preprocess it to match
the input format expected by the pretrained model, because our input is thermal
data. This includes resizing the image and replicating the single channel across
the RGB channels. When the input is preprocessed, it is passed through the
convolutional layers of the pretrained model to extract features. Now we know
that features will be a multi-dimensional array that shows the output of the
convolutional layers which is including the extracted features from the input
image. As we mentioned before, in our model we have a feature extractor that
all the frames are inside it, as this feature extractor has been trained before so
now, we don’t need to train it and it was trained on ImageNet before. So
according to the context all the frames are defined as an input for feature
extractor and finally the features are obtained. In CNN we have three parts which
are input, fully connected layer and convolution, we obviously removed the fully
connected layer because we don’t need the classification part. The convolution
part which is called feature learning is a place that we extract features. We use
the type of CNN which is called InceptionV3.This architecture was designed for
detecting the images and it is part of the inception family of models. This model
is capable because it can balance high accuracy with effective use of
computational resources. One of the important features that has is using multiple
inception modules this action helps to process various scales of features
concurrently. These modules perform several convolutions of different sizes
(1x1, 3x3, 5x5) and max pooling [79] simultaneously, then combine the results.
This mechanism helps the model to find out and tries to learn more complicated
samples from the input data. To cut down on computational cost, InceptionV3
uses factorized convolutions. Instead of applying larger filters, it breaks them
down into smaller, simpler parts. For instance, a 3x3 convolution is split into two
1D convolutions (a 3x1 followed by a 1x3), which helps to reduce the number
of parameters and the overall computational load.

44

Fig 3.1 InceptionV3 [68].

3.4.1 Passing features to LSTM

We should understand LSTM [78] networks in context of video analysis, for this
goal we will explain about temporal correlation in video data. A video includes
essentially a sequence of frames which are played over time. Videos unlike single
images carry temporal information, this means that the order of frames is an
important issue. In analysis of the video the finding out of sequence of frames is
as crucial as analyzing each frame individually. Now the feature maps for each
frame are stacked together to form a sequence because the video has multiple
frames. In this part we go through feeding the sequence into LSTM, the LSTM
network takes this sequence of feature vectors as input. LSTM do the process for
each feature vector in sequence which is learning to obtain the temporal
dependencies [6] between them. We describe the structure of LSTM network in
this section which can be important to understand the mechanism that we follow
to pass the features to LSTM. By putting input_shape=(sequence_length,
feature_vector_size) the input is determined to the LSTM where
sequence_length is the number of frames in the video and feature_vector_size is
the size of the feature vector for each frame. Then by putting the
return_sequences=True we can say this means that the LSTM will return the
output for each time step in the sequence. In LSTM we have memory cells that
can hold onto important information over long sequences. They also have gates
(input, forget, and output gates) that decide when to remember or forget certain
parts of the sequence. This allows the LSTM to model complicated temporal
relationships, such as building up of motion leading to an action. In this model
as we explained we used the type of RNN which is GRU [77] and is obviously

45

better than LSTM because it has been improved and its structure and architecture
are simpler than LSTM. This architecture is created to control the sequence data.
In GRU we have two important gates which are update gate and reset gate. In
update gate it specifies that how much of the previous information should be
passed to the future. In reset gate, it makes decision that how much of previous
information should be forget. GRU has a hidden state that acts as the network’s
memory. This memory is updated at each time step, considering both the current
input and the previous hidden state, with the update and reset gates controlling
the process.

Fig 3.2 LSTM and GRU [69][70].

We assume that a video has 2000 frames and the RNN network with GRU type
should feed frames with same timesteps. In our model we selected the timestep
with the value 100 according to this code: SEQ_LENGTH= 100 so our GRU
gets 100 frames as input. This means 100 frames are taken as input
simultaneously and then it says what the output will be. In the first layer of our
network, we have a GRU layer that frame_features_input dimensions should be
mentioned. Also, it says that what value should be for sequence. We defined in
another part of our code the mask_input and frame_feature_input values and the
value 24 show what value should be defined for dimension of output of this layer.
So, in this step we extracted all the features from CNN with dimension of
100x100 and is passed to the GRU. The dimension of output would be 24, now
we can give all the extracted features to the Dense layer [80] or fully connected
layer.

46

3.4.2 Dense layer output

Let’s talk about the constructure of danse layer which is known as a fully
connected layer that connects every neuron from the previous layer to every
neuron in the dense layer. This layer applies a linear transformation to the input
which is followed by a nonlinear activation function. The dense layer is defined
by the number of neurons it has which determines the output dimension. The last
dense layer in the network is typically the output layer. The number of neurons
in this layer corresponds to the number of classes. For a classification problem,
a softmax activation function is often used, which converts the output into a
probability distribution over the classes. In training step of the dense layer, we
adjust the weights in the dense layer during training for minimizing the
difference between the predicted outputs and the true labels. This setting will be
done by using backpropagation [80] and an optimization algorithm. There is a
mathematics behind the dense layer that each neuron in a dense layer calculates
a weighted sum of its inputs and then applies an activation function to this sum.
The formula is shown as:

𝑦 = 𝑓 ቌ 𝑤𝑥

+ 𝑏ቍ

yi : This is the output of neuron i

wij : This is related to the weight connecting input j to neuron i

xj : This is the input to the neuron

bj : This is the bias term for neuron i

f : This is the activation function

Then we show the softmax function that we used to put the value in the output
which is output = keras.layers.Dense(3, activation="softmax")(x)

The number of classes would be 3 and this matches the number of categories or
labels in our dataset. The activation function is softmax that we told and this

47

function outputs the probabilities that sum to 1 which can make it ideal for multi
class classification problems. The softmax function converts the raw output
scores from the dense layer into probabilities:

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) =

ఀೕ
ೕ

 𝑧 : This is the raw score for class i

This exponentiation makes sure that all scores are positive and the division by
the sum of exponentiated scores ensures the probabilities sum to 1. Finally, the
output from the softmax layer is a probability distribution over the classes and
the class with the highest probability is typically selected as the model’s
prediction.

3.5 Model Architecture

The core model is an RNN which is using GRU (Gated Recurrent Unit) layers
and is very efficient for sequence prediction tasks. This action happens by getting
dependencies which are temporal in the data and making them ideal for
analyzing temperature samples. Then Dropout layers are implemented to avoid
overfitting by randomly deactivating a fraction of input units during training,
helping the model to generalize better to unseen data. Following the GRU layers,
dense (fully connected) layers are used to translate the learned temporal features
into final output classes. The final layer utilizes a softmax activation function to
produce probability distributions for these output classes. visualization of
training and validation loss during some epochs helps in evaluating and learning
the model and recognizing issues like overfitting or underfitting. A confusion
matrix represents the model works well and this will be done by comparing the
actual labels with the predicted ones, giving a clear picture of its accuracy across
different classes. Analyzing feature importance, when applicable, reveals which
aspects of the temperature data are most influential in predictions. The flowchart
of the neural network architecture shows the sequential layers and operations
outlined in our untitled0.py file. Here’s a detailed explanation of what each
component of the flowchart shows:

48

Input: Frame features, Mask:
The network starts with two inputs: frame_features_input, which represents the
features of the frames, and mask_input, which corresponds to the masks applied
in the training data.

GRU1: 24 units, return_sequences=True:
The initial layer is a GRU (Gated Recurrent Unit) with 24 units. When
`return_sequences=True` is set, the layer outputs the entire sequence of data for
each time step, which is crucial for the next recurrent layer to work with.

Dropout1: 0.6 rate:
Following the first GRU layer, a Dropout layer [81] with a 0.6 dropout rate is
applied. This regularization technique prevents overfitting by randomly
deactivating a portion of input units during each update in the training process.

GRU2: 18 units:
The subsequent layer is another GRU layer with 18 units, which processes the
output from the previous GRU layer and reduces the dimensionality of the
sequence.

Dropout2: 0.5 rate:
Following the second GRU layer, a Dropout layer with a 0.5 dropout rate is
applied, further aiding in the prevention of overfitting.

Dense1: 8 units, ReLU:
After the dropout layer, a Dense (fully connected) layer with 8 units and a ReLU
(Rectified Linear Unit) activation function is applied. This layer takes the data
from the GRU layers and reshapes it into a new form, then the model is enabled
to obtain more complicated samples.

Dropout3: 0.5 rate:
Following the Dense layer, another Dropout layer with a 0.5 dropout rate is
applied to further mitigate overfitting.

Output: 3 units, Softmax:
The last layer is an Output layer featuring 3 units and a Softmax activation
function. This layer controls the classification by building the probability scores
that show how the input is falling into each of the three classes. This architecture
is crafted to handle sequential data, minimize overfitting with dropout layers,
and perform multi-class classification through the final Softmax layer.

49

The flowchart that we were describing it completely, you can find below:

Fig 3.3 Flowchart of different layers [95].

50

3.5.1 Combination of networks CNN and RNN
LSTM

Before explaining about this topic, it needs to say some information about CNN
networks implementation that we used in our codes. The Time Distributed Layer
encases the convolutional and pooling layers to apply them independently to
each frame of the video sequence. This guarantees that identical convolutional
operations are performed on each frame. Then the convolutional layers used to
obtain spatial features from each of these video frames. Layers which are related
to the pooling are used to reduce the size of the feature maps, which pulls down
the number of parameters and cuts down on computational load. In this step,
flatten layer transforms the 2D feature maps into 1D vectors, preparing them for
input into the LSTM layers so in the LSTM layers process the sequence of
flattened feature vectors, capturing temporal dependencies across the frames. In
the output layer the dense layer with softmax activation delivers the final
classification output. Then the CNN and LSTM parts will be combined into a
single model via implementing CNN followed by LSTM layer.

Fig 3.4 CNN and LSTM [94].

51

3.6 In-Depth explanation about codes

flirvideo.py

The flirvideo.py file includes a Python class specifically designed to manage and
process thermal imaging data from FLIR cameras. This class provides the ability
to read thermal video files and pull out the temperature data, also identifying
periods of activity based. Actually, NumPy is for numerical operations and
scipy.ndimage [82] is for image processing although not directly utilized in the
code. Finally, fnv library is for controlling FLIR image files. Then we defined
the class for FlirVideo, this class encompasses the functionality for processing
thermal video data. In the initialization (__init__ method) the constructor starts
the class using the thermal video's file name. Then it uses fnv.file.ImagerFile to
load the thermal video file and it reads each image height, width and number of
frames. Then it generates a 3D numpy array (self.Temp) to store temperature
data for each frame and a 1D numpy array (self.time) to log the time information
for each frame. In the next part it identifies the correct unit for temperature data
(Celsius or raw counts) based on the calibration data in the file. Finally, it goes
through each video frame to pull out the temperature data and timestamps, which
is saving this information in the pre-set arrays. For implementation of this code,
we used some techniques to extract data and initialize that we want to explain
about them. Firstly, we used the fnv library to load and read thermal video files.
Then, the NumPy arrays will be set up for efficient storage and handling of
temperature data and timestamps. In the temperature Data Handling step, it
transforms temperature data from each frame into NumPy arrays, enabling
efficient numerical computations. Then it manages both calibrated temperature
data and raw counts, providing flexibility in data processing.

52

untitled0.py

We follow some steps to implement successfully video classification. These
steps are importing dependencies, defining constants, loading and preprocessing
the data, splitting datasets, defining and training the model, and finally
evaluating it. Each step is important to be sure that the model is strong and
powerful and has a good ability which is precisely based on thermal samples.
Let us start with the first step which is related to importing all the important
libraries and dependencies that prepare functions for data manipulation, video
processing, machine learning also visualization. Then we tried to use
TensorFlow and Keras [80] to build and train models of deep learning we need.
Further, we used Imutils library [83] as a helper function for creating basic image
processing simpler with OpenCV [84]. It simplifies many complex and repetitive
tasks involved in working with images, enabling you to focus on developing and
deploying computer vision solutions more efficient than usual its use. What is
more, we used ThreadPoolExecutor class which can increase the speed of data
loading and processing for concurrent execution. This is especially useful for
I/O-bound duties that obtain from simultaneous execution, which is including
network applications, file I/O, and other operations that could close the main
thread. Then the Matplotlib is added to our libraries list for creating plot and
doing visualization. In this step, we added Pandas and NumPy which is used for
data manipulating and numerical operations. For controlling video and image
processing duties we used Imageio and OpenCV library. For data splitting in two
categories training and testing set we used Sklearn. In the second step we defined
global constants and dataset paths, these constants define the parameters for
video processing and model training. This is the part of code that we defined
global constansts:

R = 136
C = 144
SEQ_LENGTH = 100
NUM_FEATURES = 2048
EPOCHS = 1500
dataset_folder = "./A-W-Wave/*/*.ats"
video_paths = sorted(glob.glob(f"{dataset_folder}", recursive=True))

We will resize the video frames dimensions during the program by defining R
and C, then we defined SEQ _LENGTH which is defined for showing the

53

number of frames in each sequence of video. The NUM_FEATURES is defined
as a placeholder for showing the features number. For representing the number
of epochs, so we defined EPOCHS to train the model.

3.6.1 Loading and preparing video

In the next step we designed load_video function so this function works to take
a temperature data from a thermal video by normalizing it, resizing it to a
consistent shape and preparing it for input into a neural network model. Now we
explain more about details of Normalization [85], Resizing Frames,3-channel
conversion. In the first definition which is Normalization we obtained the
minimum and maximum temperatures values in data. Then the temperature data
is scaled, so the minimum value will be 0 and the maximum value will be 255.
This Normalization will become sure that the data will be in a consistent range
which is vital for image processing and training neural network. The second
definition is related to resizing frames which its purpose for adjusting height is
to be sure that each frame matches the determined dimensions. In the
implementation of resizing frames, we check the height of the frame if it is less
than the desired one it covers the frame with zeros on each side to adjust the
desired height. If it isn’t less than the desired, it sets the frame to desired height.
Another item that should be checked is related to adjusting the width. We check
the width of frame as we did the same for the height. In the last definition which
is 3-channel conversion, it transforms each of these frames to a 3-channel image
by filling arrays. In its implementation, we add two additional zeros channels to
the frame, is transforming the single-channel temperature data into a 3-channel
format. Then it adds the processed frame to the list of frames and finally
transforms the list of frames to a NumPy array and returns it.

54

3.6.2 Data splitting

In the further step, we load and preprocess all the videos in the dataset, by
applying all the defined functions in the previous. Then, we should adopt a
measure for splitting data. Data splitting [86] involves dividing our dataset into
some subsets. Usually, this means creating training and testing sets, and
sometimes a validation set as well. In the provided code, we are dividing the data
into training and testing sets. Data splitting is a phase that we need it essentially
in preparation of machine learning model. It entails partitioning the dataset into
distinct subsets for training, validating, and testing the model. The prepared
sequences are partitioned into training and testing sets, with a common ratio
being 80% for training and 20% for testing. This partitioning can be achieved
using the train_test_split function from scikit-learn or by manually slicing the
data arrays. This approach ensures that the model is trained on a substantial
portion of the data while retaining a separate set for evaluating its performance.
ensures that the data split is consistent. Using the same seed (42 in this case) will
always produce the same training and testing split. Then we define each
parameter of code related to the train_test_split function:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2,
random_state=42)

X_train: feature is used for training set
X_test: feature is used for test set
y_train: label is used for training set
y_test: label is used for test set

Keras internally performs this additional split to ensure that the model is
validated on unseen data during training, allowing performance monitoring and
helping to prevent overfitting.

55

3.6.3 Training procedure

In the next step we explain more about training the model, training the model is
a crucial part of the machine learning workflow where the model learns from the
training data [87]. During this process, the model is fed input data and
corresponding labels, enabling it to adjust its parameters to reduce the error
between its predictions and the actual labels. The process of model training is
started by data preparation, we prepare and split the training and validation data
[80]. Then we have model compilation step which we compile the model with a
special loss and optimizer and evaluation metrics. The training data is provided
to the model in batches across several epochs, with the model adjusting its
weights according to the loss calculated from the training data. In each epoch,
the model processes the training data in batches, computes the loss and updates
the weights to minimize it. In this step, the model's efficiency is evaluated by
validation data, which is preparing an understanding of how well it can apply the
new situations. Then, we should monitor the model's performance on the
validation set which this action helps in identifying overfitting, if the validation
loss begins to increase while the training loss continues to decrease it represents
that the model is overfitting:

from sklearn.model_selection import GridSearchCV

from keras.wrappers.scikit_learn import KerasClassifier

def create_model(learning_rate=0.01)

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Dense(128, activation='relu',
input_shape=(input_shape,)))

model.add(tf.keras.layers.Dense(num_classes, activation='softmax'))

optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)

model.compile(optimizer=optimizer, loss='categorical_crossentropy',
metrics=['accuracy'])

56

return model

model = KerasClassifier(build_fn=create_model)

param_grid = {'batch_size': [16, 32, 64], 'epochs': [50, 100, 150],
'learning_rate': [0.001, 0.01, 0.1]}

grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1,
cv=3)

grid_result = grid.fit(X_train, y_train)

3.6.4 Validation data details

The get_sequence_model function sets up the RNN model architecture using the
Keras Sequential API. It uses GRU layers to get time-based samples in the input
sequences and Dropout layers to help preventing overfitting. Dense layers are
added for final classification, with a softmax activation function to output class
probabilities. The model is compiled with the sparse_categorical_crossentropy
loss function, the Adam optimizer [88], and accuracy as a metric.

The plot_loss function creates a visual of the training and validation loss over
many epochs and saves it as a PDF file. From this function it can understand
how well the model is performing over time. The run_experiment function
configures a model checkpoint to save the best model weights during training. It
creates an RNN model instance using get_sequence_model and trains it on the
training data with a validation split to monitor performance. The training history
is visualized using plot_loss. The trained model is saved to a file, and the optimal
model weights are loaded to evaluate the model on the test data.

57

history = seq_model.fit(

[frame_features_train, frame_masks_train],

y_train_number,

validation_split=0.2,

epochs=EPOCHS,

callbacks=[checkpoint],

)

Using validation data includes several goals which are all important in the model
training process. In the first step we should mention that Validation data prepares
an accurate evaluation of how well the model is performing on the training data,
which this action helps us to find out better how perfect the model is learning.
Validation data also plays a key role in fine-tuning [89] the model by offering
feedback on how it performs with new also unseen data. The data which in
validation step helps in setting the model to improve its accuracy and efficiency.
Another important goal of validation data that we follow is detecting the
overfitting. We can express if the model is overfitting or not just by comparing
training and validation measures that we have. This occurs when the model gets
better on the training data but does worse on the validation data. Validation data
is also used for early stopping, where training is halted when validation
performance ceases to improve.

58

This prevents unnecessary time spent on training models that won't generalize
well to new data. Validation data helps pick the best model by showing how it
performs on new, unseen data. By this we can be sure that the selected model
works well not just on the training data, but also on new, unseen data. This makes
a result with better performance.

 Fig 3.5 Model Training Process [95].

59

Chapter 4

Experiment and Results

4.1 Setup

There are some details about implementing our code about using different
utilities that we used during executing the code. Anaconda [90] is a famous
platform, so we can use it to control packages and check them also we can
establish various projects. This is the description for Conda which is a handy tool
that lets you create separate environments for each project and making it
especially useful for managing different libraries and dependencies. Then we
used VS Code (visual studio code) [91] as an integrated development
environment which is a lightweight, highly customizable for Python
programming. Also, there is a great interaction between Anaconda and Conda
environments. Then the version for Python we selected was 3.10 and the version
for TensorFlow was 2.8 which is compatible with Python.

60

4.2 Training and Validation Accuracy Over
Epochs

The accuracy plot that we obtained describes the training and validation of the
model. The X- Axis is related to number of Epochs which is ranging from 1387
to 1450 and each epoch shows one complete pass through the total training
dataset. The Y-Axis is related to accuracy, and it ranges from 0 to 1 and the value
1 shows the 100% accuracy. The training accuracy is shown with yellow line
which steadily increases with each epoch. It is showing that the model is learning
from the training data. At first, there are some fluctuations, but it finally stabilizes
at higher accuracy levels. The validation accuracy is shown with orange line, and
it remains continuously high, often reaching at 100% accuracy also it is separate
from training data.

Interpretation

The model indicates a high training accuracy, which we can find out that it
matches the training data well. Also, the validation accuracy is continuously at
100% which indicates that it generalizes in a good way to unseen data. The main
important thing is related to lack of important divergence between training and
validation accuracy, and it suggests that the model is not overfitting. In the
further steps, we should continue to keep both training and validation accuracy
in extra epochs to be sure that the model can keep its performance.

61

 Fig 4.1 Training and Validation Accuracy [95].

4.2.1 Explanation of each Epoch Performance

We are going to check each epoch to find out better how it works and how it
should work. So, we go through the different ranges to compare them deeper,
firstly we consider Epochs 1387 to 1400 which is related to initial performance.
In this range, training accuracy begins around 88% and then gradually
increments. The model that we have is successfully learning from the data, with
sequential improvement which means when it is learning it tries to improve in
each epoch better and deeper. Then from the very beginning, validation accuracy
is at 100% which is showing that the model is very well. Then from Epochs 1400

62

to 1420, training accuracy goes up around 92% by epoch 1400. This duration
represents that the learning continued, and the training loss reduced. In this stage,
we have the same validation accuracy value with 100% and this behavior shows
that the model is not overfitting and keeps the abilities that it has and then to
generalize. Between 1420 to 1440 training accuracy keeps going to increment
steadily but it begins to plateau around 93-94%. The model is learning from the
data efficiently, which is showing the sequential improvement. The accuracy for
the validation stays at 100%, which indicates the power and validity that model
has. Validation accuracy stays at 100% which is confirming the reliability and
robustness of the model. From epoch 1440 to 1450, training accuracy arrives
around 95% which determines that the learning of the training data in the model
was very well, and validation accuracy still stays at 100% which represents that
the model has powerful generalization capabilities without any sign of
overfitting.

Fig 4.2 Accuracy.

63

Fig 4.3 Accuracy.

64

Fig 4.4 Accuracy.

65

4.2.2 Training and Validation Loss over Epochs
In this step, we explain about different value for Loss in different epochs. From
epoch 1387 to 1400, the initial training loss begins around 0.22 and steadily
declines as epochs advance, indicating effective learning and error reduction on
the training data. The validation loss starts at a very low level and remains
consistently low throughout the epochs, suggesting that the model is generalizing
well to the validation data right from the start. Then we go through epochs
between 1400 to 1420, the training loss continues to decline, settling around 0.15
to 0.17 reflecting the model’s ongoing learning and optimization. The validation
loss remains consistently low and stable, indicating the model’s strong
generalization ability without signs of overfitting. From epochs 1420 to 1440The
training loss decreases further, reaching approximately 0.13 to 0.15, as the model
continues to fine-tune its learning and minimize errors. The validation loss stays
low and stable, which is showing the model is strong and can control new data
well. Finally, from 1440 to 1450, The training loss levels off around 0.13,
indicating that the model has successfully reduced training errors to a very low
point. The validation loss remains exceptionally low, reflecting the model’s
strong performance on unseen data.

66

Fig 4.5 Training and Validation Loss [95].

4.3 Representation of errors over multiple epochs

In this plot we can check the errors that happen over some epochs for both
training and validation data. X-Axis determine the number of epochs for training
which its range is from 0 to 1450. Each epoch shows one complete transmission
through the entire training dataset. Y-Axis shows the error/loss value, then the
error value begins high and decrements as the epochs progress. The curve that
shows the training loss over some epochs, it begins high and decrements steadily.
However, it represents important decrease in the early epochs. Then, it continues
to decrement and make it stable in the later epochs. The curve that represents the
validation loss over some epochs. It begins similarly high and decrements as
rapid as well. Further, it will be stabilized at a very low value. Finally, it keeps a
consistently low level throughout the training process, with very little variation.

67

Fig 4.6 Representation of errors over multiple epochs.

68

Conclusion

We got thermal video data from FLIR cameras and there was a process that we
could pull out individual frames. Then we normalized the temperature values
and provided the data for using in a machine learning model. This step which is
related to preprocessing is essential and can help us to ensure that the data we
have is clean, stable, and is ready to be analyzed in an accurate way. In the next
step, we extended and trained a deep learning model which has been designed to
group the processed thermography video data in some classifications. In this
model we combined Convolutional Neural Networks (CNNs) with Long Short-
Term Memory (LSTM) networks for gaining spatial details from the frames of
each video. Then by this work we could find out the temporal relationships
between frames. This hybrid model was trained on the preprocessed data, with
its performance meticulously tracked over multiple epochs. During the training
process, we meticulously monitored several key performance metrics, such as
Precision, Recall, F1-Score, Mean Squared Error (MSE), and Mean Absolute
Error (MAE). These measures caused valuable insights into the model’s
accuracy, also it was a good action to make a balance between precision and
recall, obviously it decreased the overall prediction error. By analyzing these
measures, we could evaluate if the thermography video data were classified well
or not also, we can evaluate the quantity of classification. This step that we have
done indicates that the model is powerful, and we can trust well. We have
successfully made an accurate and reliable system for classifying thermography
videos, and finally we could reach an impressive 97% accuracy rate. This amount
for accuracy that we obtained was high and combined with strong abilities of the
model. By obtaining this excellent result we can have a tool for practical uses
with high value like industrial inspections and medical diagnostics. With these
results that have been obtained, we can understand that the system is ready to
use the results in some situations that is important to have precise analysis of
thermal imagery.

69

References

[1] Cobo, A., Lopez-Higuera, J. M., Conde, O. M., Mirapeix, J., & Miguélez, I. Arc welding
process control based on back-face thermography: Application to the manufacturing of nuclear
steam generators. Proceedings of SPIE - The International Society for Optical Engineering,
2007. Available: https://www.researchgate.net.

[2] Yuan, Y., Hu, Y., Hu, J., Zheng, Y. Review of sensor-based intelligent welding automation.
International Journal of Mechatronics and Manufacturing Systems, 2014. Available:
https://link.springer.com/content/pdf/10.1186/s40712-014-0015-6.pdf.

[3] Kou, S. Welding Metallurgy (2nd ed.). Wiley-Interscience, 2003. Available:
https://books.google.it/books.

[4] Introduction to Laser Welding Simulation & NDT. Sentin AI. Available:
https://sentin.ai/en/introduction-to-laser-welding-simulation-ndt/.

[5] J. Liu, C. Zhang, X. Wu, Z. Xu, and W. Li. "A Comprehensive Review on Recent Advances
in Welding Robot Systems," IEEE Transactions on Industrial Informatics, 2020. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9221167.

[6] Goodfellow, I., Bengio, Y., & Courville, A. Deep Learning. MIT Press, 2016. Available:
https://scholar.google.it/scholar?q=Goodfellow,+I.,+Bengio,+Y.,+%26+Courville,+A.+(2016).
+Deep+Learning.+MIT+Press.&hl=en&as_sdt=0&as_vis=1&oi=scholart.

[7] LeCun, Y., Bengio, Y., & Hinton, G. "Deep learning." Nature, 2015. Available:
https://www.sciencedirect.com/science/article/abs/pii/S0893608014002135.

[8] Yao, X., Li, G., Lin, Y., & Liu, Y. "Recent progress in modeling and simulation of welding
residual stresses." Journal of Manufacturing Processes, 2017. Available:
https://www.sciencedirect.com/science/article/abs/pii/S1566253517305328.

[9] Kornick, S., Xing, E., & others. Understanding the Role of Convolutional Neural Networks
in Image Processing. Carnegie Mellon University, 2018. Available:
https://www.cs.cmu.edu/~epxing/Class/10715/reading/Kornick_et_al.pdf.

[10] Diebold, F. X. No Hesitations: Advanced Topics in Econometrics. University of
Pennsylvania, 2012. Available:
https://www.sas.upenn.edu/~fdiebold/NoHesitations/BookAdvanced.pdf.

[11] O'Shea, K., & Nash, R. An Introduction to Convolutional Neural Networks. 2015. Available:
https://www.researchgate.net/publication/285164623_An_Introduction_to_Convolutional_Neu
ral_Networks.

[12] Lipton, Z. C., Berkowitz, J., & Elkan, C. A Critical Review of Recurrent Neural Networks
for Sequence Learning. 2015. Available:
https://www.researchgate.net/publication/277603865_A_Critical_Review_of_Recurrent_Neura
l_Networks_for_Sequence_Learning.

[13] Bhagirath. Most Famous Supervised Learning Algorithms. Medium, 2019. Available:
https://medium.com/@bhagirath07/most-famous-supervised-learning-algorithms-1aa0f26ffdf0.

[14] Murphy, K. P. Machine Learning: A Probabilistic Perspective. MIT Press, 2012. Available:
https://books.google.it/books?hl=en&lr=&id=RC43AgAAQBAJ&oi=fnd&pg=PR7&dq=Murp

70

hy,+K.+P.+(2012).+Machine+Learning:+A+Probabilistic+Perspective.+MIT+Press.&ots=unhx
gzPv58&sig=N2agAVkAD-qEEt4kgC_f8r_KahY#v=onepage&q&f=false.

[15] Arulkumar, A. Types of Machine Learning. Medium, 2020. Available:
https://medium.com/@arulkumarark1924/types-of-machine-learning-87e39e061414.

[16] Sutton, R. S., & Barto, A. G. Introduction to Reinforcement Learning (2nd ed.). MIT
Press, 2018. Available:
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf.

[17] What is Reinforcement Learning? Spiceworks. Available:
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-reinforcement-
learning/.

[18] LeCun, Y., Bengio, Y., & Hinton, G. Deep Learning. Nature, 2015. Available:
https://scholar.google.it/scholar?q=LeCun,+Y.,+Bengio,+Y.,+%26+Hinton,+G.+(2015).+Deep+
learning.+Nature,+521(7553),+436-444.&hl=en&as_sdt=0&as_vis=1&oi=scholart.

[19] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006. Available:
https://scholar.google.it/scholar?q=Bishop,+C.+M.+(2006).+Pattern+Recognition+and+Machin
e+Learning.+Springer.&hl=en&as_sdt=0&as_vis=1&oi=scholart.

[20] Aggarwal, C. C. Neural Networks and Deep Learning: A Textbook. Springer, 2018.
Available:
https://scholar.google.it/scholar?q=Aggarwal,+C.+C.+(2018).+Neural+Networks+and+Deep+L
earning:+A+Textbook.+Springer.&hl=en&as_sdt=0&as_vis=1&oi=scholart.

[21] Nielsen, M. A. Neural Networks and Deep Learning. Determination Press, 2015. Available:
https://scholar.google.it/scholar?q=Nielsen,+M.+A.+(2015).+Neural+Networks+and+Deep+Le
arning.+Determination+Press.&hl=en&as_sdt=0&as_vis=1&oi=scholart.

[22] Glorot, X., & Bengio, Y. Understanding the Difficulty of Training Deep Feedforward
Neural Networks. Proceedings of the 13th International Conference on Artificial Intelligence
and Statistics (AISTATS), 2010. Available:
https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf.

[23] Vergotten. Loss Functions: Comprehensive Guide to Loss Functions in Various Machine
Learning Domains. Medium, 2021. Available: https://medium.com/@vergotten/loss-functions-
comprehensive-guide-to-loss-functions-in-various-machine-learning-domains-1e76f7a9b584.

[24] Murphy, K. P. Machine Learning: A Probabilistic Perspective. MIT Press, 2012. Available:
https://scholar.google.it/scholar?q=Murphy,+K.+P.+(2012).+Machine+Learning:+A+Probabilis
tic+Perspective.+MIT+Press.&hl=en&as_sdt=0&as_vis=1&oi=scholart.

[25] Baldi, P., & Pineda, F. J. Learning Representations by Forward-Propagating Errors. 2023.
Available:
https://www.researchgate.net/publication/373263432_Learning_representations_by_forward-
propagating_errors.

[26] Summary and the Derivations of Gradients for Linear Regression and Logistic Regression.
DeepLearning.AI Community. Available: https://community.deeplearning.ai/t/summary-and-
the-derivations-of-gradients-for-linear-regression-and-logistic-regression/292863.

71

[27] Ng, A. Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance. 2004.
Available:
https://www.researchgate.net/publication/2952930_Feature_selection_L_1_vs_L_2_regularizat
ion_and_rotational_invariance.

[28] Ruder, S. An Overview of Gradient Descent Optimization Algorithms. 2016. Available:
https://www.ruder.io/optimizing-gradient-descent/.

[29] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. Gradient-Based Learning Applied to
Document Recognition. 1998. Available:
https://cseweb.ucsd.edu/classes/wi08/cse253/Handouts/lecun-98b.pdf.

[30] Jain, V. MAE, MSE, RMSE, Coefficient of Determination, Adjusted R-Squared — Which
Metric is Better? Medium, 2020. Available: https://medium.com/analytics-vidhya/mae-mse-
rmse-coefficient-of-determination-adjusted-r-squared-which-metric-is-better-cd0326a5697e.

[31] He, K., Zhang, X., Ren, S., & Sun, J. Deep Residual Learning for Image Recognition. 2016.
Available:
https://www.semanticscholar.org/reader/06b919f865d0a0c3adbc10b3c34cbfc35fb98d43.

[32] James, G., Witten, D., Hastie, T., & Tibshirani, R. An Introduction to Statistical Learning
(7th Printing). 2017. Available:
https://static1.squarespace.com/static/5ff2adbe3fe4fe33db902812/t/6009dd9fa7bc363aa822d2c
7/1611259312432/ISLR+Seventh+Printing.pdf.

[33] Poli, R., Langdon, W. B., & McPhee, N. F. A Field Guide to Genetic Programming. 2008.
Available: https://informatica.si/index.php/informatica/article/viewFile/148/140.

[34] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. Learning representations by back-
propagating errors. Nature, 1986. Available:
https://link.springer.com/article/10.1007/BF00116251.

[35] Duda, R. O., Hart, P. E., & Stork, D. G. Pattern Classification. Wiley, 2001. Available:
https://link.springer.com/content/pdf/10.1023/a:1010933404324.pdf.

[36] Altman, N. S. An Introduction to Kernel and Nearest-Neighbor Nonparametric
Regression. The American Statistician, 1992. Available:
https://sites.stat.washington.edu/courses/stat527/s13/readings/Altman_AmStat_1992.pdf.

[37] James, G., Witten, D., Hastie, T., & Tibshirani, R. An Introduction to Statistical Learning
(7th Printing). 2017. Available:
https://static1.squarespace.com/static/5ff2adbe3fe4fe33db902812/t/6009dd9fa7bc363aa822d2c
7/1611259312432/ISLR+Seventh+Printing.pdf.

[38] Glorot, X., Bordes, A., & Bengio, Y. Deep Sparse Rectifier Neural Networks. 2011.
Available:
https://www.researchgate.net/publication/215616967_Deep_Sparse_Rectifier_Neural_Network
s#fullTextFileContent.

[39] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., &
Polosukhin, I. Attention is All You Need. 2017. Available:
https://openreview.net/pdf?id=Hkuq2EkPf.

[40] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. Gradient-Based Learning Applied to
Document Recognition. 1998. Available:
http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf.

72

[41] Singh, S., Jain, S., & Mathur, A. Applications of Deep Learning in Digital Image
Processing: A Review. IEEE Xplore, 2020. Available:
https://ieeexplore.ieee.org/document/9077735.

[42] Krizhevsky, A., Sutskever, I., & Hinton, G. E. ImageNet Classification with Deep
Convolutional Neural Networks. 2012. Available:
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c4
5b-Paper.pdf.

[43] Boureau, Y. L., Ponce, J., & LeCun, Y. Evaluation of Pooling Operations in Convolutional
Architectures for Object Recognition. 2010. Available:
https://www.researchgate.net/publication/221080312_Evaluation_of_Pooling_Operations_in_C
onvolutional_Architectures_for_Object_Recognition#fullTextFileContent.

[44] Krizhevsky, A., Sutskever, I., & Hinton, G. E. ImageNet Classification with Deep
Convolutional Neural Networks. 2012. Available:
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c4
5b-Paper.pdf.

[45] Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., & Khudanpur, S. Recurrent Neural
Network Based Language Model. 2010. Available:
https://www.researchgate.net/publication/221489926_Recurrent_neural_network_based_langu
age_model#fullTextFileContent.

[46] Vapnik, V. The Nature of Statistical Learning Theory. 1995. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=58337.

[47] Hochreiter, S., & Schmidhuber, J. Long Short-Term Memory. 1997. Available:
https://www.semanticscholar.org/reader/cea967b59209c6be22829699f05b8b1ac4dc092d.

[48] Cybenko, G. Approximation by Superpositions of a Sigmoidal Function. 1989. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=650093.

[49] Hochreiter, S. The Vanishing Gradient Problem During Learning Recurrent Neural Nets
and Problem Solutions. 1998. Available: https://www.bioinf.jku.at/publications/older/2604.pdf.

[50] Sutskever, I., Vinyals, O., & Le, Q. V. Sequence to Sequence Learning with Neural
Networks. 2014. Available: https://ar5iv.labs.arxiv.org/html/1402.1128.

[51] Sokolova, M., & Lapalme, G. A Systematic Analysis of Performance Measures for
Classification Tasks. 2009. Available:
http://atour.iro.umontreal.ca/rali/sites/default/files/publis/SokolovaLapalme-JIPM09.pdf.

[52] Powers, D. M. W. Evaluation: From Precision, Recall, and F-Factor to ROC,
Informedness, Markedness, & Correlation. 2011. Available:
https://www.researchgate.net/publication/228529307_Evaluation_From_Precision_Recall_and
_F-Factor_to_ROC_Informedness_Markedness_Correlation.

[53] Jolliff, J. K., Kindle, J. C., Shulman, I., Penta, B., Helber, R., & Arnone, R. A. Summary
Diagrams for Coupled Model Performance Evaluation in Three-Dimensional Oceanographic
Simulations. 2014. Available: https://gmd.copernicus.org/articles/7/1247/2014/gmd-7-1247-
2014.pdf.

[54] Botchkarev, A. Performance Metrics (Error Measures) in Machine Learning Regression,
Forecasting and Prognostics: Properties and Typology. 2019. Available:
https://www.ijikm.org/Volume14/IJIKMv14p045-076Botchkarev5064.pdf.

73

[55] Gunawardena, K. Best Practice Thermography Application in Built Environment Studies.
2023. Available:
https://d1wqtxts1xzle7.cloudfront.net/105898903/K._Gunawardena_Best_practice_Thermogra
phy_application_in_built_environment_studies-libre.pdf.

[56] Colombo, L., & Tortora, M. IR Thermography for Non-Destructive Monitoring of
Moisture in Cultural Heritage. 2023. Available:
https://www.researchgate.net/publication/374996977_IR_Thermography_for_Non-
Destructive_Monitoring_of_Moisture_in_Cultural_Heritage#fullTextFileContent.

[57] Wasserman, L. All of Statistics: A Concise Course in Statistical Inference. 2004. Available:
https://egrcc.github.io/docs/math/all-of-statistics.pdf.

[58] Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,
D., ... & Oliphant, T. E. Array Programming with NumPy. 2020. Available:
https://www.researchgate.net/publication/344301569_Array_programming_with_NumPy#fullT
extFileContent.

[59] Hastie, T., Tibshirani, R., & Friedman, J. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction (2nd ed.). 2009. Available: https://hastie.su.domains/Papers/ESLII.pdf.

[60] Szeliski, R. Computer Vision: Algorithms and Applications. 2010. Available:
https://d1wqtxts1xzle7.cloudfront.net/54343495/Algorithms_and_ApplicationsSzeliskiBook_2
0100805_draft.pdf.

[61] Wang, H., & Schmid, C. Action Recognition by Dense Trajectories. 2011. Available:
https://www.researchgate.net/publication/51025101_Action_Recognition_by_Dense_Trajectori
es#fullTextFileContent.

[62] Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. Convolutional Sequence to
Sequence Learning. 2017. Available:
https://www.researchgate.net/publication/316821219_Convolutional_Sequence_to_Sequence_
Learning#fullTextFileContent.

[63] Hochreiter, S., & Schmidhuber, J. Long Short-Term Memory. 1997. Available:
https://www.researchgate.net/publication/13853244_Long_Short-
term_Memory#fullTextFileContent.

[64] James, G., Witten, D., Hastie, T., & Tibshirani, R. An Introduction to Statistical Learning
(1st Printing). 2013. Available:
https://www.stat.berkeley.edu/users/rabbee/s154/ISLR_First_Printing.pdf.

[65] Bishop, C. M. Pattern Recognition and Machine Learning. 2006. Available:
https://github.com/peteflorence/MachineLearning6.867/blob/master/Bishop/Bishop%20-
%20Pattern%20Recognition%20and%20Machine%20Learning.pdf.

[66] Kingma, D. P., & Welling, M. Auto-Encoding Variational Bayes. 2013. Available:
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-
Paper.pdf.

[67] Sokolova, M., & Lapalme, G. A Systematic Analysis of Performance Measures for
Classification Tasks. 2009. Available:
https://www.researchgate.net/publication/222674734_A_systematic_analysis_of_performance_
measures_for_classification_tasks#fullTextFileContent.

74

[68] Xu, H., Du, L., Chen, Y., & Xue, Y. A Deep Convolutional Neural Network for Location
Recognition and Geometry Based Information. 2018. Available:
https://www.researchgate.net/publication/322603720_A_Deep_Convolutional_Neural_Networ
k_for_Location_Recognition_and_Geometry_Based_Information#fullTextFileContent.

[69] Bahdanau, D., Cho, K., & Bengio, Y. Neural Machine Translation by Jointly Learning to
Align and Translate. 2014. Available: https://aclanthology.org/D14-1179.pdf.

[70] Li, W., Zhao, H., & Wang, J. A Comparative Analysis of Generative Neural Attention-
based Service Chatbot. 2022. Available:
https://www.researchgate.net/publication/363277502_A_Comparative_Analysis_of_Generative
_Neural_Attention-based_Service_Chatbot#fullTextFileContent.

[71] fnv-c: A Python Library for FNV Hashing. PyPI, 2023. Available:
https://pypi.org/project/fnv-c/.

[72] FLIR Thermal Imaging Cameras: User Brochure. FLIR Systems, 2019. Available:
http://www.flirmedia.com/MMC/THG/Brochures/T820264/T820264_EN.pdf.

[73] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. ImageNet: A Large-Scale
Hierarchical Image Database. 2009. Available:
https://www.researchgate.net/publication/221361415_ImageNet_a_Large-
Scale_Hierarchical_Image_Database#fullTextFileContent.

[74] He, K., Zhang, X., Ren, S., & Sun, J. Deep Residual Learning for Image Recognition. 2015.
Available: https://arxiv.org/pdf/1512.00567.

[75] Zeiler, M. D., & Fergus, R. Visualizing and Understanding Convolutional Networks. 2014.
Available: https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf.

[76] Ioffe, S., & Szegedy, C. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. 2015. Available:
https://proceedings.neurips.cc/paper_files/paper/2014/file/375c71349b295fbe2dcdca9206f20a0
6-Paper.pdf.

[77] Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. Show and Tell: A Neural Image Caption
Generator. 2014. Available: https://arxiv.org/pdf/1412.3555.

[78] Hochreiter, S., & Schmidhuber, J. Long Short-Term Memory. 1997. Available:
https://deeplearning.cs.cmu.edu/F23/document/readings/LSTM.pdf.

[79] Chollet, F. Deep Learning with Python. Manning Publications, 2018. Available:
https://books.google.it/books?hl=en&lr=&id=mjVKEAAAQBAJ&oi=fnd&pg=PR9&dq=Choll
et,+F.+(2018).+Deep+Learning+with+Python.+Manning+Publications.&ots=Ag9XBH-
H_b&sig=C7C37e8s2xOIh88SFYFa3HQHYHg#v=onepage&q&f=false.

[80] Chollet, F. Deep Learning with Python. Manning Publications, 2018. Available:
https://www.mangoud.com/wp-content/uploads/2020/11/Francois-Chollet-Deep-Learning-
with-Python-2018-Manning.pdf.

[81] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. Dropout: A
Simple Way to Prevent Neural Networks from Overfitting. 2014. Available:
https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.

75

[82] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., ... &
van Mulbregt, P. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. 2020.
Available:
https://www.researchgate.net/publication/339008987_SciPy_10_fundamental_algorithms_for_
scientific_computing_in_Python#fullTextFileContent.

[83] Minh, T. N. Practical Python and OpenCV (3rd Edition). 2018. Available:
https://minhtn1.github.io/Practical%20Python%20and%20OpenCV,%203rd%20Edition.pdf.

[84] Bradski, G., & Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library.
O'Reilly Media, 2008. Available:
https://www.bogotobogo.com/cplusplus/files/OReilly%20Learning%20OpenCV.pdf.

[85] Han, J., Kamber, M., & Pei, J. Data Mining: Concepts and Techniques (3rd Edition). Morgan
Kaufmann, 2011. Available: https://myweb.sabanciuniv.edu/rdehkharghani/files/2016/02/The-
Morgan-Kaufmann-Series-in-Data-Management-Systems-Jiawei-Han-Micheline-Kamber-Jian-
Pei-Data-Mining.-Concepts-and-Techniques-3rd-Edition-Morgan-Kaufmann-2011.pdf.

[86] Kuhn, M., & Johnson, K. Applied Predictive Modeling. Springer, 2013. Available:
https://vuquangnguyen2016.wordpress.com/wp-content/uploads/2018/03/applied-predictive-
modeling-max-kuhn-kjell-johnson_1518.pdf.

[87] Diebold, F. X. No Hesitations: Advanced Topics in Econometrics. University of
Pennsylvania, 2012. Available:
https://www.sas.upenn.edu/~fdiebold/NoHesitations/BookAdvanced.pdf.

[88] Kingma, D. P., & Ba, J. Adam: A Method for Stochastic Optimization. 2014. Available:
https://arxiv.org/pdf/1412.6980.

[89] Howard, J., & Ruder, S. Universal Language Model Fine-tuning for Text Classification.
2018. Available:
https://www.researchgate.net/publication/334116365_Universal_Language_Model_Fine-
tuning_for_Text_Classification#fullTextFileContent.

[90] Anaconda Documentation. Anaconda, Inc., 2023. Available: https://docs.anaconda.com/.

[91] Visual Studio Code Documentation. Microsoft, 2023. Available:
https://code.visualstudio.com/docs.

[92] Ranogajec-Komor, M., Krpan, K., & Knežević, Ž. The Application of Infrared
Thermography in Cultural Heritage. 2013. Available: https://www.imeko.org/publications/tc14-
2013/IMEKO-TC14-2013-59.pdf.

[93] Wei, W. Deep Learning: Convolutional Networks. 2020. Available:
https://wenkangwei.github.io/2020/11/03/DL-ConvolutionNetwork/.

[94] Bao, W., Fang, C., Li, M., Yang, F., & Huang, Z. Automatic Detection of Coronavirus
Disease 2019 Using a Deep Learning Algorithm. Scientific Reports, 2021. Available:
https://www.nature.com/articles/s41598-021-93656-0.

[95] ChatGPT: my Personal AI Assistant. OpenAI, 2023. Available:
https://chatgpt.com/c/a16bcde8-3e0d-4ded-9483-5c4fb6923e06.

[96] Căilean, A., & Dimian, M. Applying Neural Networks for Tire Pressure Monitoring
Systems. 2019. Available:
https://www.researchgate.net/publication/336607800_Applying_Neural_Networks_for_Tire_Pr
essure_Monitoring_Systems/figures?lo=1.

