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Summary 

 

This study has focus on making a model with high reliability to classify 
thermography videos, for achieving high accuracy through series of steps that 
we did carefully. We started by thoroughly preparing and preprocessing the 
thermography video data. Custom scripts were developed to extract thermal 
frames and convert them into a format optimized for neural networks. In this 
preprocessing we resized the frames, also we normalized the pixel values, and 
used data augmentation methods to make the dataset more diverse and power. 
These steps were crucial to ensure the model could accurately handle different 
thermal patterns and conditions. In this model we combined Convolutional 
Neural Networks (CNNs) with Long Short-Term Memory (LSTM) networks. 
The CNN layers pulled out some spatial features from the thermal frames, while 
the LSTM layers obtained the time-based relationships between frames and then 
making the model especially efficient at processing video data. The model was 
trained using the sparse_categorical_crossentropy loss function and the Adam 
optimizer, both chosen because they’re good at efficiently training deep learning 
models. Training involved multiple epochs, during which the model’s parameters 
were fine-tuned to reduce the loss function. To prevent overfitting and ensure the 
model could generalize well to new data, techniques like early stopping and 
regularization were used. We did some important adjustments which are setting 
the learning rate, batch size, and the model’s structure according to the number 
of layers and neurons that we had. During the process, we kept the model’s 
efficiency which we used a validation dataset that can focus on accuracy to make 
sure which was working efficiently. After finishing the training phase, the model 
reached a final accuracy of about 97%, showing how well the chosen architecture 
and training process worked. 
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Chapter 1 

Introduction 

      

1.1 Purpose 

Arc welding, a fusion process, has been extensively utilized across various 
industrial domains for numerous years. Being sure from the quality control of 
welding progress has a great value in some areas like nuclear engineering and 
aerospace. Typically, offline non-destructive testing methods, including X-rays, 
liquid penetrants, magnetic particle testing, ultrasonics, among others, are 
commonly employed to detect any faults or deficiencies in welded joints [1]. Arc 
welding is a welding technique that employs an electric arc to heat and fuse 
metals together [2]. It's one of the most usual and adaptive welding techniques 
which is used across different industries. It works by making an electric arc 
between an electrode and the pieces that was worked on. The heat generated by 
the arc melts the base metal and, if applicable, a consumable electrode, forming 
a weld pool. As the weld pool gradually cools, it undergoes solidification, 
resulting in a durable and cohesive bond that firmly unites the welded 
components [3]. Thermography in arc welding involves using thermal imaging 
cameras to monitor the temperature distribution and heat patterns generated 
during the welding process. If we review the history of thermography in arc 
welding, it can notice that is a fascinating tour that lasts for many decades and 
involves improvements in technology. Here's an overview: 

Early Developments: The use of thermography in welding traces back to the 
mid-20th century when infrared cameras and thermal imaging technology began 
to emerge. Mostly, the primary requests focused on qualitative analysis, that is 
allowing welders to imagine temperature distributions and detect potential flaws 
during the welding process.  
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Advancements in Thermal Imaging: As thermal imaging technology evolved, 
so did its applications in arc welding. It was possible to take accurate temperature 
measurements and thus better present the quality of welds with recovered 
sensitivity, clearness, and infrared cameras which are portable [92].  

Research and Development: Temperature fluctuation, weld parameters, and the 
quality of welding are interrelated. People who search on Welding, try a lot to 
study and understand the relation on changing of temperature and results which 
are obtained on welding. During the arc welding, thermal data process has been 
detected by researchers and prepared some testable investigations and numerical 
simulation studies, extending predictive models to optimize welding parameters 
and reduce flaws. 

Industrial Applications: In automotive, aerospace, and construction and 
manufacturing, among other industries, thermography has wide applicability. In 
arc welding, industrial application is used for monitoring some application that 
are in process also for controlling the quality and detecting the flaws. It allows 
welders and engineers to assess weld integrity, identify discontinuities such as 
lack of fusion, porosity, or cracks, and make real-time adjustments to welding 
parameters to ensure optimal performance.  

Integration with Automation and Robotics: With the rise of automation and 
robotics in welding operations, thermography has become an integral part of 
advanced welding systems. By working with robotic arms and control systems, 
infrared cameras can be equipped in requests with robotic arc welding to make 
sure the quality of welds and apply control of welding parameters. Then this 
allows to monitor in the time, which is real, so setting can be made to be sure 
that consistency in the welding process is always obtained and done at a high 
standard. The IR cameras measure temperature changes in the welding process 
and detect potential issues; the control systems automatically correct the welding 
parameters to prevent such deviations.  

Future Directions: Thermography in welding is a sector which is inspiring for 
the improvement of technologies and their interacting with new methods and 
orientations. Improved data analytics should have ability to make a prediction 
for maintenance, prepare to monitor the time, which is exact, and make a basis 
for welding processes. 

Here's how thermography is typically applied in arc welding: 
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1. Monitoring Temperature Distribution 
 

Thermal imaging cameras capture infrared radiation emitted by objects, allowing 
for the visualization of temperature distribution. In arc welding, these cameras 
can be used to monitor the temperature of the weld pool, the heat-affected zone, 
and surrounding materials in real-time. 

 
 

2. Detecting Defects 
 
Thermography can help detect defects such as lack of fusion, porosity, or cracks 
by identifying abnormal temperature patterns during welding. Variations in 
temperature can indicate areas of potential defects, allowing welders to take 
corrective actions. 

 
 
3. Optimizing Parameters 
 
By analyzing thermal images, welders and engineers can optimize welding 
parameters such as current, voltage, travel speed, and shielding gas flow rate to 
achieve desired weld quality and minimize defects. 

 

           

 

 

 

Fig 1.1 Weld defects [4]. 

 

Indeed, the main goal is recognizing three different thermography classes by 
classifying thermography videos of arc welding which will be done by labeling 
the videos and then it needs to measure the accuracy that shows how much 
classification is correct. 
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1.2       Work introduction  

The task of classifying thermography videos in arc welding based on a neural 
network presents a significant challenge within the field of welding inspection 
and quality control. As thermography technology, this technology becomes more 
usual in welding also during arc welding there's an increased need for automated 
ways for analyzing and organizing the huge number of thermal data which are 
produced. 
 
One of the primary difficulties in this problem is the complexity and variability 
of thermal patterns observed in welding processes. Arc welding generates 
dynamic and intricate thermal signatures influenced by factors such as welding 
parameters, material properties, and environmental conditions. Analyzing 
thermography videos to identify and classify patterns manually takes a lot of 
time and it can help to have more mistakes. 
 
The development of a neural network-based solution to classify thermography 
videos in arc welding requires addressing several technical challenges. This 
causes making neural networks that can obtain spatial and temporal exact details 
from thermographic data, fine-tuning models to perform well under different 
welding conditions, and making sure they can be scaled and efficient for real-
time use in industrial environments. 
 
 
 
 
 
 
 

 

 

 



5 
 

 

 

 

Chapter2 

Background 

 

2.1        overview 

 
Through this aim, it is necessary to find different meaning and concepts related 
to this issue. Machine learning, specifically deep learning, has been entered to a 
large number of fields which are engineering, economics, healthcare, and beyond 
[5]. Machine learning is part of artificial intelligence that focuses on making 
algorithms and models which allow computers to be able to learn from data and 
generate predictions or decisions without direct programming. It includes 
different ways, such as supervised learning, unsupervised learning, and 
reinforcement learning, each is matched to tasks and data types [6].  
Deep Learning has obtained a lot of attention mainly because it is good at tasks 
like detecting images and understanding speech. Unlike older methods, it doesn't 
need humans to design complicated features; it figures out important things from 
the data all by itself. The main advantage of deep learning is its capability to 
automatically learn and extract elaborate designs and features from large 
quantities of data. This allows deep learning samples to attain cutting-edge 
implementation across different functions, such as image recognition, and 
speech recognition, it doesn’t have any need for explicit trait engineering. 
Furthermore, deep learning samples are flexible and adaptive, and it can make 
adaption to different types of data also make them ideal for a lot of requests. On 
the other hand, is its heavy reliance on extensive datasets for training Deep 
learning instances frequently necessitate vast datasets to generalize well and 
avoid overfitting, which can be challenging and costly to obtain, especially for 
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niche or specialized domains [7]. What is more, deep learning samples can be 
expensive to train if it is computed, it needs significant computational resources 
and time. Furthermore, deep learning instances are often considered "black 
boxes" meaning that they are not easily interpretable, making it difficult to 
comprehend the process behind their decision-making or predictions. When 
there is not a power of interpretability, it can be a problem in requests where 
resolution is important for instance, in areas like finance and healthcare. The last 
thing that we should know about it is that deep learning models are easy to be 
attacked where there are hidden changes which causes the incorrect predictions. 
Now we want to survey various architectures in deep learning, so we explore a 
range of the neural network samples that have been created for different tasks 
and domains [8]. Here are some common architectures to consider: 

Feed-Forward Neural Networks (FNNs): also recognized as Multilayer 
perceptron’s (MLPs), serve as a foundational kind of artificial neural network. 
Within FNNs, data advances linearly from input to output layers, without any 
feedback loops. These networks are adaptive and commonly categorized for 
some tasks such as classification and regression [9][10]. 

Convolutional Neural Networks (CNN): This neural network consists of 
convolutional, pooling, and fully connected layers. The convolutional and 
pooling layers function are acting like filters, which are pulling out significant 
specifications from input patterns. Conceptually, this process resembles 
performing finite-impulse response (FIR) filtering on the input data, with the 
filter designed to extract the most salient parts of the data. In the context of 
modulation classification, it's essential to reconstruct the input data accurately to 
enable classification [11]. 

Recurrent Neural Network (RNN): is one of the neural networks created to 
handle consecutive data by maintaining a memory of previous inputs. Unlike 
traditional neural networks that process each input individually RNNs have 
connections that allow them to retain information over time, making them ideal 
for duties such as time series prediction, natural language processing, and speech 
recognition. They can identify samples and connections orderly and is capable 
to manage input series of various lengths. Variants like LSTM and GRU address 
issues such as the disappearance gradient issue, enabling RNNs to more 
effectively capture long-term attachments in data [12]. These are three 
architectures which can be introduced as Feed-Forward Neural Networks 
(FNNs), Convolutional Neural Networks (CNNs), and Recurrent Neural 
Networks (RNNs), that are important bases in the artificial neural networks, and 
each of these architectures are defined for specific tasks and data types. In 
machine learning, the method of learning from data is built around three main 
principles which are supervised learning, unsupervised learning, and 
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reinforcement learning. Each of these ways show a separate method to pulling 
out the samples and decide based on data that is available. 

 

2.1.1     Supervised Learning 

In supervised learning, a model is trained using labeled data, meaning each input 
is linked to a specific output label. According to the aim of this algorithm, it 
specifies how the feature of input and output label can communicate to each 
other. based on the provided labeled examples in the training dataset. This pattern 
is ideally suited for tasks such as classification, in classification tasks, the model 
predicts distinct class labels, whereas in regression tasks, it forecasts continuous 
numerical values. Supervised learning algorithms focus on reducing the 
difference between predicted outputs and actual labels. Firstly, the process starts 
with raw data, which is labeled to form a training dataset later. The algorithm is 
instructed during training by this dataset and its corresponding labels. Once the 
model is trained, it processes new data to generate predictions, thereby 
completing the supervised learning workflow [10]. 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.1 Supervised learning architecture [13]. 
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2.1.2    Unsupervised Learning 

In unsupervised learning, a model is trained on data that lacks specific output 
labels, meaning the input examples are unlabeled. In this approach, the model 
tries to learn patterns, structures, or relationships within the data without guide 
from out. These duties contain clustering, which classifies similar data points, 
reducing the dimensionality, which obtains important features while it is 
simplifying the data, and the last one which is generative modeling, where the 
model learns to make new data samples like the original data. Unsupervised 
learning algorithms aim is to find hidden patterns and relationships in the data, 
helping with exploration and discovery. These methods which are important to 
machine learning, providing flexible ways to obtain insights and predict in 
different sections and areas [14]. 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.2 Unsupervised learning [15]. 
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2.1.3    Reinforcement learning (RL) 

 A type of machine learning paradigm involves an agent interacting with its 
environment to accomplish a specific objective. This agent figures out to decide 
by adopting some actions and obtaining feedback through rewards or penalties. 
The primary aim of the agent is to optimize the total rewards accumulated over 
time. In reinforcement learning, an agent evaluates the current state of its 
environment and chooses actions according to a policy that links states to 
actions. Upon executing an action, the agent moves to a new state and receives 
a reward from the environment. This feedback is then utilized by the agent to 
adjust its policy, thereby enhancing its decision-making abilities over time [16]. 

 

 

 

 

 

 

 

 

 

Fig 2.3 Reinforcement learning model [17]. 
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2.2      Neural Network Layers 

 
Deep neural networks (DNNs) are a variant of artificial neural networks (ANNs) 
characterized by multiple layers of interconnected neurons. Unlike shallow 
neural networks with just a few hidden layers, deep neural networks (DNNs) 
incorporate many hidden layers. This form let them to obtain and figure out 
complicated samples and depiction within the data [18]. However, training 
DNNs can be challenging due to issues such as overfitting and underfitting: 

Overfitting  

Overfitting occurs when a model tries to how it can memorize the training data 
instead of generalizing from it. This leads to poor performance on unseen data, 
as the model is overly complex and ends up capturing noise or irrelevant patterns 
present in the training data. Techniques like dropout and weight decay can 
mitigate overfitting by discouraging excessively complex models [19]. 

Underfitting  

Underfitting occurs when a model is too simple to recognize the underlying 
patterns in the data. This leads to high bias and poor performance on both the 
training and test sets. To address underfitting, one can increase the model's 
capacity by adding more layers or neurons, or by using more complex 
architectures such as convolutional or recurrent neural networks. We want to 
summarize all the things related to deep neural networks which are powerful and 
can acquire the knowledge of complex samples from data, but they can run to 
different problems such as overfitting and underfitting. Using effective 
regularization ways and carefully choosing models are important for training 
deep neural networks (DNNs) that work well on new, unseen data. In a deep 
neural network (DNN), each layer serves a specific purpose in the transformation 
of input data into meaningful output predictions [6]. This image shows a layer 
within a neural network that we are presenting: 
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Fig 2.4 Main layers in Deep learning model. 

 

Here's an introduction and explanation of each layer commonly found in DNN 
architectures:  

Input Layer 

The neural network's initial layer is the input layer. and serves as the entry point 
for the input data. The input layer's neurons represent the features or attributes 
of the input data. Each neuron is associated with a particular input feature, and 
the values of these neurons reflect the raw input data [20]. 

Hidden Layers 

Hidden layers, situated between the input and output layers, are where the core 
computations and feature extraction occur. Every hidden layer is composed of 
numerous neurons, also referred to as units or nodes. Neurons in a hidden layer 
accept inputs from the previous layer, apply a nonlinear transformation via an 
activation function, and transmit the modified outputs to the next layer. For doing 
this action, hidden layers make the neural network able to detect complex 
samples within the input data [21]. 
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Output Layer 

The final layer of the neural network, known as the output layer, generates the 
network's predictions or outputs. Neurons in the output layer represent the 
desired output of the network, such as class probabilities in classification tasks 
or continuous values in regression tasks. The tasks nature shows the total number 
of neurons in the output layer. (e.g., binary classification, multi-class 
classification, regression). Depending on the task, the output layer usually 
employs a suitable activation function, such as the softmax function for 
classification tasks or linear activation for regression tasks [20]. 

 

2.3        Steps for Training Neural Networks 

 
Training a neural network entail optimizing its parameters, specifically the 
weights and biases, to minimize error. a predefined loss function, typically by 
adjusting them using a method called backpropagation in conjunction with an 
optimization algorithm. Also training a neural network involves instructing it to 
generate accurate predictions or classifications by processing input data [6]. 

 Here's a comprehensive explanation of the steps involved in training a neural 
network: 

 

1. Initialization 

The initial step in training a neural network is to set its parameters, including 
weights and biases. These parameters are usually initialized randomly, though 
certain initialization strategies can be employed to enhance convergence [22]. 

Weights Initialization: 

 𝑤~ே(0, 𝜎ଶ) where 𝑁(0, 𝜎ଶ)  represents the Gaussian distribution with a   mean 

of 0 and a variance of 𝜎ଶ.                                                               

               Biases Initialization:    𝑏 = 0 
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2. Forward Propagation 

During forward propagation, each layer in the neural network computes its 
output based on the inputs received from the previous layer. This computation is 
multiplying the input values by the corresponding weights, adding biases, and 
then it should apply an activation function is for introducing nonlinearity. 
Sigmoid, tanh, and ReLU are among the common activation functions, each 
offering distinct characteristics and advantages [21]. 

Linear Transformation: 

𝑧 =  𝑤⋅௫ೕା



ୀଵ

 

Activation: 

𝑎 = 𝑔(𝑧) where 𝑔(𝑧) is the activation function. 

 

3. Loss Calculation 

The loss function quantifies the accuracy of the neural network's predictions that 
match the true labels in the training data. It measures how the network is well, 
where lower values showing a closer match between predictions and actual 
results. The choice of a loss function is tailored to the task at hand [23]. For 
instance, mean squared error (MSE) is commonly used for regression tasks, 
whereas cross-entropy loss is ideal for classification tasks [24]. 

For regression: Mean Squared Error (MSE): 

MSE =  
ଵ

ே
𝛴ୀଵ

ே (yi - 𝑦ො)
2 

For classification: Cross-Entropy Loss: 

           𝐶𝐸 = −
ଵ

ே
𝛴ୀଵ

ே (yi log(𝑦ො ) +(1- yi) log(1 - 𝑦ො  ) ) 

 



14 
 

4. Backpropagation 

Backpropagation is like adjusting the sails of a boat to steer it in the right 
direction. When a boat moves forward, it uses feedback to make adjustments, 
ensuring it stays on course. Similarly, in backpropagation, a neural network 
adjusts its parameters (weights and biases) based on the difference between its 
predictions and the actual outcomes. It accomplishes this by calculating the 
gradients of the loss function in relation to each parameter, indicating how much 
each parameter should be adjusted to minimize the loss. These gradients are then 
used to improve parameters, also it helps to improve its performance. This 
procedure tries to be repeated  couple of times until the network learns to predict 
correctly and exactly . In the core of this process, backpropagation is the method 
which a neural network learns from its mistakes and revises its performance 
during the time. Backpropagation is an important part of  training a neural 
network. It entails calculating the gradient of the loss function with respect to 
each network parameter by applying the chain rule of calculus. These gradients 
are then used to change the parameters in the opposite way to the gradient, which 
has a goal to decrease the loss function and revise the value for the accuracy of 
the model. Backpropagation enables efficient computation of gradients through 
the network, allowing for the optimization of thousands or even millions of 
parameters [25]. 

Gradient of Loss with respect to Output [26]: 

𝜕 𝑙𝑜𝑠𝑠

     𝜕 𝑦ො     
 

 

Chain Rule:  

 
𝜕 𝑙𝑜𝑠𝑠

     𝜕 𝑧     
  =  

𝜕 𝑙𝑜𝑠𝑠

     𝜕 𝑦ො     
 .

𝜕 𝑦ො  

     𝜕 𝑧   
  

 

Gradient of Loss with respect to Weights and Biases [26] : 

𝜕 𝑙𝑜𝑠𝑠

     𝜕 𝑤      
  𝑎𝑛𝑑 

𝜕 𝑙𝑜𝑠𝑠

     𝜕 𝑏      
 



15 
 

The basic equation for updating a neural network weight (W) during 
backpropagation entails adjusting the weight by subtracting a portion of the loss 
function's gradient concerning that weight, multiplied by the learning rate (α) 
[27]. Mathematically, it appears as: 

 𝑤 = 𝑤 − 𝛼
డ ௦௦

డ௪
 

 

5. Parameter Update 

With the gradients computed, an optimization algorithm like stochastic gradient 
descent (SGD), is used to update the network parameters in the direction that 
minimizes the loss function. The learning rate parameter specifies the 
measurement of the alignment which is created to the parameters of this model 
with each repetition, effectively handling how quickly the network updates its 
weights and biases. It dictates how significantly the parameters are altered in 
response to the calculated gradients, thus influencing the speed and stability of 
the learning process. A well-chosen learning rate strikes a balance between 
making sufficient progress toward minimizing the loss function and ensuring that 
the model converges smoothly without overshooting optimal solutions [28]. 

 

Gradient Descent: 

𝑤  𝑤 - 𝛼
డ ௦௦

     డ ௪ೕ     
 

𝑏   𝑏  −  𝛼 
డ ௦௦

     డ       
      , where 𝛼 is the learning rate. 
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6. Iterative Optimization 

Training a neural network involves iteratively repeating the forward propagation, 
loss calculation, backpropagation, and parameter update steps for a predefined 
number of epochs. The goal is to gradually reduce the value of the loss function, 
indicating that the network is learning to create better predictions on the training 
data [29]. 

 

7. Validation 

Validation is essential for monitoring the network's performance on data that it 
hasn't seen during training. It assists to identify the overfitting and makes ready 
to have ability for producing the network. Hyperparameter tuning, such as 
adjusting the learning rate or the number of hidden units, can be performed based 
on validation performance. 

Measure the effectiveness of the model on a validation dataset by employing 
relevant metrics such as accuracy, precision, recall, or F1-score [31]. 

 

8. Testing 

After the training phase, the final model undergoes evaluation on an independent 
test dataset to determine its real-world performance. This evaluation, uses 
particular criteria to measure how the model can conform with new data in a 
good way and predict accurately. 

In the last step, the process of training of a neural network should adopt some 
measures to provide a precise balance of initializations, forward and backward 
propagation, parameter updates, and validation to optimize the model's 
performance and be sure of its capacity to make popular for new data [18]. 
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2.4      Fundamental tasks in Machine Learning 
 

Regression and classification are two fundamental tasks in machine learning, 
each serving distinct purposes in analyzing and interpreting data: 

 

Regression function 

Regression is a method used in machine learning to predict the relationship 
between input features (like independent variables) and an output (dependent 
variable) by fitting a mathematical model to the data. It is simple to mention that 
regression function plays a good  role to help us for understanding how the value 
of one variable improves the response for another variable's changes. It makes 
prediction for values of continuous numerical  based on input data, which gives 
us an allowance to make an estimation for future results, spot samples, and 
understanding relationships between variables. For example, regression can be 
used to estimate the price of the house based on some elements like square 
footage, the number of bedrooms, and location. It can also be used in finance to 
make a prediction in stock prices or in healthcare areas to predict the result of  
patient based on different elements. Different types of regression models, such 
as linear regression, polynomial regression, ridge regression, and lasso 
regression, are tailored to handle different situations and types of datasets.Each 
regression method is suited to particular characteristics of the data and the 
underlying relationships being modeled. The effectiveness of these regression 
models is commonly assessed through metrics like mean squared error (MSE), 
root mean squared error (RMSE), and the coefficient of determination (R-
squared). These criteria bring insights into how well the model adapts the data, 
with lower mistakes values and higher R-squared values which is indicating 
better efficiency and predictive accuracy. The connection between the 
independent variables (features) and the dependent variable (target) is expressed 
through a linear equation [30][33]. The basic formula for linear regression is 
given as: 

𝑦ො = 𝑏 + 𝑏ଵ𝜘ଵ + 𝑏ଶ𝜘ଶ + ⋯ + 𝑏𝜘 
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Parameters details:  

              𝑦ො is the anticipated value of the dependent variable, 

              𝑏 is the y-intercept (bias term), 

𝑏ଵ , 𝑏ଶ , … , 𝑏 are the coefficients (weights) corresponding to the independent 
variables 

               𝜘ଵ , 𝜘ଶ , … , 𝜘  respectively.   

   

This equation describes a line in a multidimensional space that best aligns with 
the observed data points. Throughout the training process, the model determines 
the optimal coefficients (b0, b1, ..., bn) that reduce the difference between the 
predicted and actual values in the training set. 

These coefficients are usually estimated using the least squares method, which 
minimizes the sum of the squared deviations between the observed and predicted 
values: 

(𝑦 − 𝑦ො)
ଶ

ே

ୀଵ

 

 

We have: 

N is the number of data points, 

yi  represents the true value of the dependent variable for the ith data point, 

𝑦ො  is the value forcasted of the dependent variable for the ith data point. 
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2.4.1     Classification Methods 

Classification functions as a predictive model designed to estimate a mapping 
function from input variables to distinct output categories, such as labels or 
categories. This mapping function, inherent to classification algorithms, is 
responsible for predicting the label or category associated with given input 
variables. Although classification algorithms can handle both discrete and 
continuous variables, they must classify examples into one of two or more 
classes [32]. Various types of classification algorithms include: 

1. Decision tree classification 
 
Decision tree classification involves building a model by creating a decision tree. 
Each node within the decision tree represents a specific test or decision point 
based on an attribute, and each branch extending from that node corresponds to 
one of the possible outcomes or results of that test. This structure makes an 
allowance for the tree to assess various attributes systematically and manage the 
data downward that reflect the different potential outline or classifications, and 
in the last stage it causes the final decision or prediction. [32][33]. 

 
2. Random forest classification 

 
This tree-based algorithm consists of an ensemble of decision trees, each 
generated from a randomly selected subset of the original training data. The 
random forest classification algorithm aggregates the outputs from all individual 
decision trees to produce the final prediction, resulting in greater accuracy than 
any single tree alone [34]. 

 
3. K-nearest neighbor 

 
The K-nearest neighbor algorithm assumes that similar entities are positioned 
close to one another. It uses similarity of features to make prediction for the 
values of new data points, allowing to group similar points based on their 
distance and closeness. The main goal of the algorithm is to determine the 
probability that a data point belongs to a specific group [35]. 
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2.4.2    Regression versus Classification in Machine 
Learning 
 
The key distinction between regression and classification lies in their predictive 
targets: 
regression forecasts continuous quantities, whereas classification predicts 
discrete class labels. Nonetheless, there exist certain intersections between these 
two categories of machine learning algorithms. A regression algorithm can guess 
whole numbers, like counting items, while a classification algorithm can 
estimate the chance of different labels, like the probability of something being a 
certain category [36]. 
 

Activation functions with Neural Networks 
 

Activation functions introduce non-linearity into neural networks, allowing them 
to model complex relationships between input and output variables. Without 
activation functions, neural networks would be confined to linear 
transformations, capable of representing only simple relationships. By 
incorporating non-linear activation functions, neural networks can learn and 
show complicated samples also the way that connect data with each other. 
 
Here are some key reasons why activation functions are used in neural networks: 

 
Introduction of Non-Linearity: Activation functions allow neural networks to 
capture and model non-linear relationships between input and output variables. 
This non-linearity is important for obtaining the complicated samples which are 
available in real data. 
 
Enable Learning of Complex Features: Non-linear activation functions allow 
neural networks to learn and represent intricate features and patterns within the 
data. This is the vital capability which is specified for some tasks such as 
detecting the image, processing the natural language, and different kinds of 
detecting samples. 
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Gradient Propagation: Activation functions help in efficient gradient 
propagation during the backpropagation algorithm, which is used to train neural 
networks. Some activation functions that are certain have eligible attributes that 
help in more permanent and efficient training of neural networks. 

 
Output Transformation: Activation functions transform the raw output of a 
neuron into a form that is suitable for the next layer of the network. They help in 
controlling the range and scale of the neuron outputs, ensuring that the network 
learns effectively [37]. 

Neural networks employ various types of activation functions. Some common 
ones include: 
 
Sigmoid: The sigmoid function compresses a neuron's output into the [0, 1] 
range. It is usually requested in binary classification duties to determine 
probabilities. 

 
Hyperbolic Tangent (tanh): Like the sigmoid function, the tanh function 
constrains a neuron's output to the range [-1, 1]. It is centered around zero and 
can help alleviate the vanishing gradient problem compared to the sigmoid 
function. 

 
Rectified Linear Unit (ReLU): The ReLU function outputs zero for negative 
inputs and the input value itself for positive inputs. The ReLU function is one of 
the activation functions which used a lot according to its simplicity and 
performance in training deep neural networks. 
 
Leaky ReLU: The Leaky ReLU function is like the ReLU function however, it 
allows a small non-zero gradient for negative input values. This change prevents 
neurons from the general disabling, which is done for negative inputs, which is 
allowing some information to still cross the network. By showing this small 
gradient, Leaky ReLU helps to reduce the issue of dead neurons which can 
happen in traditional ReLU when neurons are not active, and they stop learning. 
This setting increases the capability of network to make complicated paradigms 
more as model and keep robustness during training. This feature tries to prevent 
the issue for the ReLU where neurons doesn’t work during training. 
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Exponential Linear Unit (ELU): The ELU function is like ReLU for positive 
inputs but has a non-zero output for negative inputs, allowing smoother gradients 
during training. 

 
Softmax: The softmax function is commonly utilized in the output layer of a 
neural network for multi-class classification tasks. It converts the outputs 
generated by the neurons in the output layer into a probability distribution that 
spans across all the possible classes. This conversion makes sure that the 
network's predictions are introduced as probabilities, which is returning the 
probability that each input belongs to a particular class, thereby simplifying the 
classification process [38]. 
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2.5     Different Neural Network Architectures 

2.5.1   Feed-Forward Neural Networks 
           

A feedforward neural network, also referred to as a fully connected neural 
network, is one of the earliest neural network architectures developed in artificial 
intelligence. This network learns from input data independently to do tasks and 
roles. The primary objective of a feedforward neural network is to predict the 
classification label for a given image. This means giving a score or prediction 
probability to each possible label, which is creating a vector for showing the 
network's output. The label with the highest score is selected as the network's 
predicted category for the image. Typically, a feedforward neural network 
contains one or more hidden layers of neurons between the input and output 
layers. These hidden layers make the network able to analyze and identify the 
features of the input data more by aim of improving the prediction accuracy [40]. 

 

2.5.2    Convolutional Neural Networks 

Convolutional Networks (ConvNets) stand out as the most effective deep 
learning models for image classification tasks. Drawing inspiration from 
biological processes, their multilayered architectures facilitate the hierarchical 
and automatic learning of invariant features. Beginning with the detection of 
basic features, they progress to discerning and amalgamating these features to 
grasp more intricate patterns. The various levels of features originate from 
distinct layers within the network. Each layer comprises a specific number of 
neurons and is represented in three dimensions: height, width, and depth. 
Convolutional Neural Networks (CNNs) are a type of deep neural network 
specifically designed for processing and analyzing visual data, such as images 
and videos. They excel at tasks like image classification, object detection, and 
image segmentation. CNNs are inspired by the organization and functioning of 
the human visual system and are created to automatically and adaptively learn 
hierarchical representations of data. The primary benefit of the activation map 
lies in its ability to capture distinctive features from an image while 
simultaneously reducing the data volume for processing. The convolution 
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operation involves applying a feature detector matrix to the input data, 
essentially comprising a set of values compatible with the machine. By utilizing 
various values of the feature detector, multiple versions of the image are 
generated [6]. Furthermore, the convolutional model undergoes training via 
backpropagation to minimize errors in each layer. Based on the achieved 
minimal error, the depth and padding settings are determined [42]. 

 

 
 
 
 
 
 
 

Fig 2.5 Convolution to generate an Activation Map [41]. 

 

Pooling is an important step in decreasing the size of activation map, which is 
keeping only the most vital features while improving the model’s ability to 
identify the objects, even when they will be presented in different shapes or 
angles. This procedure shrinks the number of parameters which model needs to 
learn, and this action helps to avoid overfitting. Max pooling gives an allowance 
to CNNs to control the different sizes of an image, which causes to have precise 
detection for an object. There are different pooling ways such as max pooling, 
average pooling, stochastic pooling, and spatial pyramid pooling, with max 
pooling being the most common. 

Max pooling selects the highest value from each sub-matrix of the activation 
map, creating a new, distinct matrix. This way decreases the number of learnable 
features effectively while it is keeping the important attributes of the image. 
Generally, max pooling utilizes a 2x2 filter for this operation [43]. 

 

 
 
 



25 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2.6 Max Pooling of a Feature Map [41]. 
 
 

 

The Fully Connected Layer, often known as the Hidden Layer, represents the 
concluding phase of the convolutional neural network. In this stage, a 
combination of an Affine transformation and a Non-Linear activation function is 
utilized to integrate and refine the extracted features. This process allows the 
network to synthesize the information gathered from the previous layers and 
make final predictions or decisions based on the learned representations [43]. 

 

Affine Function :  y = Wx + b 
 

The Fully Connected layer receives input from the Flatten Layer, which 
transforms the data into a one-dimensional format (1D Layer). Subsequently, the 
data from the Flatten Layer undergoes processing by the Affine function 
followed by the Non-Linear function. This combination of one Affine function 
and one Non-Linear function constitutes a single Fully Connected (FC) or 
Hidden Layer. Additional layers of this nature can be incorporated based on the 
desired depth of the classification model, with the determination influenced by 
the characteristics of the training dataset. The output from the final hidden layer 
is subsequently fed into the Softmax or Sigmoid function to generate a 
probability distribution over all the classes [44]. 

In the below picture shown different layers of Convolutional Neural Network 
(CNNs): 
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Fig 2.7 Process of analysing the input in convolutional neural network [93]. 

                                            

  

2.5.3     Recurrent Neural Networks 
 

A recurrent neural network (RNN) is a deep learning model designed to 
transform sequential input data into corresponding sequential output. Sequential 
data, such as words, sentences, or time-series data, relies on complex semantic 
and syntactic relationships. Emulating human sequential data processing, an 
RNN comprises numerous interconnected components performing tasks like 
language translation. However, transformer-based artificial intelligence (AI) and 
large language models (LLMs) are increasingly replacing RNNs due to their 
superior efficiency in managing sequential data. RNNs consist of neurons, which 
are computational units that work together to perform complex operations. These 
neurons are organized into input, output, and hidden layers. The input layer 
gathers data for processing, the output layer delivers the results, and the hidden 
layer is where data processing, analysis, and prediction occur. RNNs are called 
recurrent because they execute the same task for each element in a sequence, 
with each output depending on previous computations. They have a "memory" 
feature that retains information from earlier calculations [45]. 
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Fig 2.8 RNN Architecture [96]. 

 
 
Hidden state calculation [45]: 
 
ℎ௧ = 𝑓൫𝑤௫𝑥௧ + 𝑤௧ିଵ + 𝑏൯ 
 
ℎ௧    : Hidden state at time step 𝑡. 
𝑥௧    : Input at time step 𝑡. 
𝑤௫ : Weight matrix connecting input to hidden state. 
𝑤 : Weight matrix connecting hidden state to itself. 
𝑏    : Bias term for the hidden state. 
𝑓      : Activation function, typically tanh or ReLU. 

 
 
 Output Calculation: 
 
𝑦௧ = 𝑔൫𝑊௬ℎ௧ + 𝑏௬൯ 
 
𝑦௧:    Output at time step 𝑡. 
ℎ௧:    Hidden state at time step 𝑡. 
𝑊௬: Weight matrix connecting hidden state to output. 
𝑏௬ :    Bias term for the output. 

𝑔 :      Activation function, typically softmax for classification or linear for regression. 
 
 

             Loss Calculation:  𝐿 =
ଵ

ே
∑ 𝐿(𝑦௧, 𝑦ො௧)ℕ

௧ୀଵ  

 
𝐿: Total loss over ℕ  time steps. 
𝑦௧: Predicted output at time step 𝑡. 
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𝑦ො௧: True output at time step 𝑡. 

𝐿(𝑦௧, 𝑦ො௧): Loss functions like cross-entropy for classification tasks or mean 
squared error for regression tasks. 

 

2.5.4     Backpropagation Through Time (BPTT) 
 

 
The backpropagation algorithm, adapted for RNNs, computes gradients of the 
loss function with respect to all model parameters across the entire sequence. 
This process involves calculating the gradients at each time step, accumulating 
them over the sequence, and then updating the model parameters using gradient 
descent [46]. RNNs function by sequentially transmitting the data they receive 
to hidden layers, processing one step at a time. They utilize a self-looping or 
recurrent mechanism where the hidden layer retains past inputs to enhance future 
predictions through a short-term memory feature. This involves using both the 
current input and stored memory to predict the next sequence. RNNs are 
typically associated with a one-to-one architecture, where each input sequence 
corresponds to one output. However, they can be adapted to various 
configurations for specific purposes. Below are several common types of RNNs 
[47]: 

 

One-to-many 

In this RNN variant, a single input is directed towards multiple outputs. This 
architecture finds utility in linguistic tasks such as image captioning, where it 
generates a sentence based on a solitary keyword. 

Many-to-many 

The model uses multiple inputs to predict multiple outputs. For example, an 
RNN can be used to create a language translator, where it analyzes a sentence 
and skillfully arranges the words in a different language. 

Many-to-one 

Multiple inputs contribute to a single output, which is useful for tasks like 
sentiment analysis. Here, the model determines whether customer sentiments 
from input testimonials are positive, negative, or neutral [47]. The RNN 
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architecture was the first to introduce language processing capabilities in 
machine learning models, leading to the development of several variants that 
maintain its memory retention principle while improving its original 
functionality. Here are some illustrative examples [12]: 

          

Bidirectional recurrent neural networks 
 

A bidirectional recurrent neural network (BRNN) processes data sequences 
using both forward and backward layers of hidden nodes. The forward layer 
operates like a typical RNN, retaining previous inputs in the hidden state to 
predict the next output. Conversely, the backward layer traverses in the reverse 
direction, leveraging both the present input and forthcoming hidden states to 
refine and update the current hidden state. This bidirectional approach lets the 
network to use information from both past and future, which is increasing its 
ability to obtain complicated dependencies within the sequence. This 
combination allows the BRNN to enhance prediction accuracy by considering 
both past and future contexts. For instance, a BRNN can predict the word "trees" 
in the sentence "Apple trees are tall" [48]. 

 

Long short-term memory 
           

LSTM is an improved version of the regular RNN, aimed at handling long-term 
connections more effectively in sequential data. While a regular RNN's hidden 
state activation mostly relies on nearby activations, acting as "short-term 
memory," and network weights are influenced by computations across entire 
sequences, akin to "long-term memory," LSTM was redesigned with an 
activation state that serves as weights. This allows it to retain information over 
longer distances, hence the name "Long Short-Term Memory." LSTMs are 
specifically crafted to address long-term dependency issues. They naturally excel 
at retaining information over extended periods, making it an inherent feature 
rather than something they need to learn [49]. 
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Temporal order 
 

Temporal order in RNNs and LSTMs refers to the sequential nature of data, 
where the order of elements matters. In the context of RNNs and LSTMs, 
temporal order implies that the input data is presented in a sequence, such as 
words in a sentence, frames in a video, or time steps in a time series. These 
models are built to handle data in a sequential manner, processing one element 
at a time and maintaining an internal state that retains information from previous 
elements. This ability to preserve and use information about the temporal order 
of input data is critical for tasks like language modeling, speech recognition, and 
time series prediction [50]. 
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2.6      Metrics in Machine Learning 

2.6.1   Accuracy 

 

Accuracy is a crucial metric in machine learning that measures a model's overall 
correctness in its predictions across all classes or categories in a classification 
task. It represents the ratio of instances that were accurately classified to the total 
number of instances evaluated, providing a measure of how well the model 
correctly identifies the categories or labels across the entire dataset. In essence, 
accuracy gauges the model's capability to accurately identify positive and 
negative instances within a dataset [51]. 

 

Accuracy = 
்௧ ே௨  ௗ௧௦ ௪  ௦ ௧௨

் ௪ ௨  ௗ௧௦
 

 

    

Accuracy =   
்ା்ே

்ା்ேାி ାிே
 

              

Parameter: True Positives (TP), True Negatives (TN), False Positives (FP), 

False Negatives (FN) 

While accuracy is a widely used metric for evaluating classification models, it 
may not always provide a complete picture, especially in cases of class 
imbalance or when misclassification costs differ across classes. Therefore, it is 
crucial to consider additional metrics such as precision, recall, and F1 score 
along with accuracy. This wide method helps in obtaining a better understanding 
of the model's efficiency and making informed decisions about model selection 
and optimization strategies [51]. 

 



32 
 

 
 
 
 

2.6.2      Precision 
 

Precision quantifies the proportion of true positive outcomes among all instances 
that the model has predicted as positive, highlighting the accuracy of the model's 
positive classifications relative to the total number of positive predictions it 
made. This metric reflects the model's ability to avoid false positives by ensuring 
that many of its positive predictions are indeed correct. It is calculated by taking 
the number of true positive outcomes and dividing it by the total number of 
instances predicted as positive, which includes both true positives and false 
positives. This ratio helps evaluate the model's precision by measuring how well 
it detects true positive cases from those wrongly classified as positive. Precision 
is vital in scenarios where the cost of false positives is high or minimizing false 
positives is a priority. For instance, in medical diagnosis, incorrectly identifying 
a healthy individual as diseased (false positive) can result in unnecessary 
treatments or procedures, potentially causing harm. In such cases, a model with 
high precision ensures that positive predictions are accurate and reliable [51]. 

Precision: 
்

(்ାி)
 

 
 

2.6.3     Recall 
 

Recall quantifies the model's ability to identify all actual positive instances 
within the dataset. It is determined by calculating the proportion of true positive 
predictions relative to the total number of positive cases, including those that the 
model failed to correctly identify. Mathematically, recall is obtained by dividing 
the number of true positives by the sum of true positives and false negatives, 
offering a measure of how effectively the model captures all relevant positive 
cases, even those that may be challenging to detect. Also 

referred to as sensitivity or the true positive rate, recall assesses a model's 
capability to correctly identify every instance of the target class in the data. It 
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can be expressed as a value between 0 and 1 or as a percentage, with higher value 
indicating better performance. A perfect recall score of 1.0 signifies that the 
model can successfully detect all instances of term "sensitivity" is often used to 
describe a diagnostic test's ability to accurately detect prevalent term in machine 
learning contexts. For instance, when discussing the true positive cases. While 
the underlying concept remains consistent, "recall" is the more effectiveness of 
a machine learning model, one would typically refer to its recall score rather than 
its sensitivity [51]. 

Recall: 
்

(்ାிே)
 

 
         

2.6.4       F1 Score 
 
 

The F1 score is the compatible mean of precision and recall, offering a single 
metric that balances both. It is especially useful for evaluating models on 
imbalanced datasets. Commonly employed in binary and multi-class 
classification as well as in evaluating large language models, the F1 score 
integrates precision and recall into a single measure, providing a more complete 
understanding of model performance [52]. 

F1 Score = 2 *(Precision * Recall) / (Precision + Recall) 
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2.6.5         Mean Absolute Error (MAE) 
 

 
Mean Absolute Error (MAE) is a simple yet effective metric for evaluating the 
accuracy of regression models. It calculates the average absolute difference 
between the predicted values and the true target values. Unlike some other 
metrics, MAE does not square the errors, giving equal importance to all errors, 
regardless of direction. This makes MAE particularly useful for understanding 
the magnitude of errors, whether they result in overestimations or 
underestimations. Mean Absolute Error (MAE) serves as a metric for quantifying 
the average prediction error by calculating the mean of the absolute differences 
between the predicted values and the actual values in the dataset. This measure 
provides insight into the average magnitude of errors made by the model, without 
considering their direction, offering a straightforward assessment of how closely 
the predictions align with the true values [53]. 

 

MAE =  
 |௬ି௫|



సభ


 

n is the number of data points. 

yi depicts the actual objective value for data point i. 

xi shows the anticipated value for data point i. 
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2.6.6            Mean Squared Error (MSE) 

 

Mean Squared Error (MSE) gauges the model's performance by calculating the 
average of the squared differences between the predicted values and the actual 
values within a dataset. This metric highlights the magnitude of errors by 
emphasizing larger discrepancies, providing a comprehensive assessment of how 
well the predictions align with the true values, with a particular sensitivity to 
significant errors. It penalizes larger errors more heavily than smaller ones, 
making it a crucial metric for assessing the accuracy of prediction algorithms. 
The MSE of 0 indicates a perfect model with no errors, while higher MSE values 
signify greater model errors. MSE decreases when data points closely align with 
the regression line, indicating reduced model error. A model with a low MSE 
produces more accurate predictions. Conversely, a high MSE suggests that data 
points are widely dispersed from the central moment, indicating poor accuracy. 
When data points cluster tightly around their mean, the MSE is low, signifying 
a normal distribution of data values, minimal skewness, and fewer errors [54]. 

         
 

MSE = 
∑(௬ି௬ො)మ


 

n is the number of samples. 

𝑦 shows the actual target values. 

𝑦ො shows the predicted values. 
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Chapter 3 

Materials and Methods 

 

3.1 Motivation 
 
This study has a main goal to classify thermography videos of arc welding which 
is using convolutional neural networks (CNNs) and recurrent neural networks 
(RNNs). One of the most important benefits of using CNNs is that they can 
automatically learn and obtain essential features from the data, this helps that 
classification to be more precise and efficient than traditional approaches. 
Classification is particularly useful when the goal is to sort data points into 
specific categories or classes, especially when clear interpretation and precise 
decision-making are needed. We use both a CNN and an RNN, but at different 
parts of the program: we have the CNN for feature extraction and the RNN for 
training the network. In this work we have an important aim which is using 
machine learning to group thermographic arc welding procedures in different 
classifications. The high temperatures and dynamic nature of arc welding make 
it difficult to monitor and classify using traditional methods. Thermography lets 
us capture detailed thermal images that give us valuable insights into the welding 
process. In this study, we create a sophisticated data processing pipeline and a 
strong machine learning model to analyze and classify thermographic data from 
arc welding operations. The FlirVideo class pull outs effectively and it processes 
temperature data from thermal videos, and then the different welding states will 
be shown by specifying critical periods of temperature modifies. These features 
which extracted are then combined with a recurrent neural network (RNN) 
specially with GRU layers, which are planned in specific to learn time-based 
samples and precisely classify the states of welding. According to the goal of this 
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work which is increasing the control of quality and keep of arc welding 
processes. The precise classification of welding states can affect to improve weld 
quality, less flaws, and more safety. By joining the thermographic imaging with 
machine learning, then this work follows a goal to make a sophisticated tool for 
real-time monitoring and automated classification of arc welding, pushing 
industrial welding technology forward. Enhanced monitoring and classification 
can achieve the following: 

1. Better Weld Quality: Accurate identification and classification of welding 
states ensure welds meet required standards, reducing the risk of failures and 
rework. 

2. Reduced Defects: Early detection of welding defects enables prompt 
corrective actions, minimizing scrap and rework costs. 

3. Enhanced Safety: Real-time monitoring prevents hazardous conditions by 
providing immediate feedback on welding anomalies, thus protecting 
workers and equipment. 

4. Increased Efficiency: Automating the monitoring and classification process 
streamlines welding operations, reduces downtime, and optimizes resource 
utilization. 
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3.2         Dataset 

3.2.1      Thermal Imaging Dataset 
 

The thermal imaging dataset includes video frames acquired with FLIR 
(Forward-Looking Infrared) cameras. These cameras get infrared radiation, 
which is published by number of objects, and then transmitted into temperature 
data. The dataset which is used in this study is formatted as .ats files, which are 
dedicated to FLIR [55]. To read FLIR video files in Python, the first step is to 
use the python-flirimageextractor library, a Python wrapper for the FLIR 
Systems' ResearchIR SDK. This library enables the extraction of thermal data 
from FLIR video files, allowing us to work with the data in our Python code. 

Firstly, we want to describe data components which are related to the 
Flirvideo.py code. Each video file is composed of numerous frames, each 
representing a single image captured at a distinct moment in time. These frames 
are taken at stable intervals, which is making a continuous stream of thermal data 
during time passed. In each frame, the primary data captured is temperature. The 
temperature at each pixel in the frame corresponds to the thermal radiation 
detected by the camera. This data is placed in an array which is two-dimensional, 
and each component shows a pixel in the image, also the value of each 
component shows the temperature reading at that pixel. Each frame is 
accompanied by a timestamp that specifies the precise moment of its capture. 
These timestamps are an important issue, mainly because they can control how 
the temperature will be improved during the time also it provides necessary 
background for analyzing the changes will be obtained during specific periods. 
Thermal imaging data is commonly saved in .ats files, a proprietary format 
created by FLIR for recording thermal video sequences. In this part we describe 
the data characteristic immediately. The frame resolution, determined by the 
height and width, varies according to the specific FLIR camera model. Higher 
clarities give more details about thermal images, but they also make larger file 
sizes. The frames per second (fps) measure temporal resolution [56]. A higher 
fps gives more detailed information over time, making it easier to catch quick 
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temperature changes. The temperature detection range of a camera varies based 
on its model and calibration. Some cameras come with temperature calibration 
data, which helps make their temperature readings more accurate. 

 
 

3.2.2    Data Analysis 
 

Statistical measures [57] like mean, variance, and standard deviation are used to 
follow and control thermal treatment during the time, which help to adjust 
benchmarks and detect vital changes from normal temperature samples. Let's 
explore each of these statistical methods as implemented in the `flirvideo.py` 
file. The mean (or average) temperature is computed by adding all the values of 
temperature within a frame and then dividing by the total number of values. This 
gives a central value that represents the overall temperature distribution in the 
frame. The mean temperature is important because it provides a general 
indication of the average thermal state of the frame. Comparing the mean 
temperature across different frames or areas within a frame can help identify 
general trends or patterns. In the `get_mean_temperature` function, the mean is 
calculated using NumPy's `np.mean` function. This way collects the information 
about temperature data for the frame which is selected and then indicates the 
average temperature value. Another crucial and statistical method is detecting 
the maximum temperature, which is the greatest temperature value within a 
frame. Understanding the maximum temperature is crucial for two key reasons, 
which will be explained next. 

The first one is it finds out the hottest spot in the frame so it can be acute for 
identifying regions that are interested. Second one is related to safety and 
maintenance. We calculate this issue with NumPy [58] (np. max) in get_ max_ 
temperature function. Another statistical method is minimum temperature which 
is the lowest temperature value that will be in a frame. The reason why it is vital 
is for identifying the coldest spot in the frame. Also, there is another reason 
which can help issues detection. The last one is related to standard deviation 
which measures the value of temperature variation from Mean. A low standard 
deviation signifies that the temperature values are clustered near the mean, 
whereas a high standard deviation suggests a broad range of temperatures. This 
shows how much the temperature changes in the frame, and noticeable changes 
might point to potential issues or parts that need a control. This technique gathers 
the temperature data for the specified frame and then computes the standard 
deviation of the temperatures. 
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3.3 Machine Learning Dataset 
 

The machine learning [24] dataset is extracted from data related to raw thermal 
imaging and is used to train [6] a Recurrent Neural Network (RNN) [12] to 
predict different sequences. This dataset comprises sequences of temperature 
readings extracted from the thermal images, which have been formatted and 
preprocessed to be suitable for training the machine learning model. In this 
section we want to explain about data components related to the untitled0.py, the 
main data structure is a sequence, representing a collection of temperature 
readings recorded over time. Each sequence corresponds to a specific subset of 
frames from the thermal imaging dataset, effectively capturing the temporal 
variations in temperature. The input features consist of temperature readings 
recorded at each point within a sequence. These readings are organized into a 
three-dimensional array with the following dimensions: the number of 
sequences, the length of each sequence, and the feature dimension, which 
corresponds to the temperature readings per frame [24]. The labels are some 
categories that the model aims to predict [59], which is representing various 
states or events detected from the temperature data. These labels are organized 
in a one-dimensional array, with each entry corresponding to a specific sequence. 

 

In this part we go to through characteristics of data, the sequence length is a 
crucial factor that dictates the extent of temporal context accessible to the model. 
However, longer sequences prepare more context but also increase 
computational demands. In this sequence, each frame can contain several 
features, but the main feature being focused on here is the temperature reading. 
The class distribution within the dataset is shown. Maintaining balance ensures 
the model remains unbiased towards any class. When we want to analyze the 
video, we should understand what existing order it has. The order of image is 
spatial [60]. The order of text is temporal, it is important to know what the order 
is. The order of video is spatial temporal [61], we put every image to the same 
CNN then the CNN gives us the feature. Then we have a lot of features and there 
is a temporal order between them. Then we give these features to the RNN 
LSTM, then this RNN LSTM creates the temporal order. The 
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get_sequence_model function defines the LSTM-based RNN model. Then we 
have input layers described as frame_features_input which accepts the input 
sequence data and mask_input which managed variable-length sequences by 
masking padding [62] values. The model has three LSTM layers, each of them 
with 512 units. Setting return_sequences=True for the first two LSTM layers 
ensures that these layers make an output sequence. Each of these LSTM layers 
contains three important components which are represented as Forget Gate [63], 
Input Gate, Output Gate. Forget Gate decides that what kind of information 
should be disposed of cells state. Input Gate [63] determines which input values 
will be used to update the cell state. Output Gate determines what the next hidden 
state should be available. By carefully arranging LSTM layers and incorporating 
dropout, the model gains robustness and the ability to learn intricate patterns in 
sequential data, such as time series or video frame sequences. This design 
leverages LSTM units to sustain and can update memory across long sequences, 
making it especially useful for tasks that require understanding long-term 
dependencies. 

 
 

3.3.1     Data Processing 

 

The dataset is loaded  by using the fnv library [71], which is specifically designed 
for handling FLIR [72] .seq files. The primary class utilized is 
fnv.file.ImagerFile. When loaded, the ImagerFile object allows access to the 
frames, temperature data, and timestamps. For each video frame, the temperature 
data is extracted and organized into a 3D NumPy array called Temp, with the 
array dimensions corresponding to the video's height, width, and frame count. In 
this step we have an allowance to work efficiently and analyze the temperature 
data. Timestamps for each frame are stored in a 1D NumPy array (time), enabling 
temporal analysis of the data. The raw temperature data from thermal images is 
split into sequences. This process causes choosing a sequence length and then 
slicing the continuous temperature studies into overlapping or non-overlapping 
[65] chunks of that length. Temperature readings are scaled [64] to a standard 
range, usually [0, 1] or [-1, 1], to enhance model training efficiency and 
performance by preventing the scale of the data from affecting the learning 
process. In next step we must do Masking, Masking is necessary to exclude 
missing or irrelevant parts of sequences, preventing the model from learning 
from incomplete or noisy data. This is especially important for variable-length 
sequences or when padding is used to standardize sequence lengths. The dataset 
is separated into three parts which are training, validation, and test sets. The 
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training set is for model training, the validation set is for tuning hyperparameters 
[66] and monitoring performance during training, and the test set is for 
evaluating the final model's performance. The prepared sequences are fed into 
the RNN model for training, where it learns to predict labels by analyzing how 
patterns change over time in the input data. The trained model is assessed on the 
test set using metrics like accuracy, precision, recall, and F1-score [67] to 
evaluate its performance on unseen data. After training step, new temperature 
sequences can be labeled by this model which is creating it useful for real-time 
tasks like spotting issues and predicting events. 

 

3.4     Convolutional ImageNet Layers 
 

In this part we are going to explain about some specific details about feature 
extraction. Models such as VGG16, ResNet50, InceptionV3 [74], …, are 
pretrained on the ImageNet dataset [73] which contains millions of images which 
have labeled across thousands of categories. The convolutional layers [6] of 
these models are trained to identify a wide variety of features, which is ranging 
from low level like edges or textures to high level like object parts or entire 
objects. In our study where we have a limited dataset, its common to use these 
pretrained convolutional layers for extracting features which this process is 
known as transfer learning. The idea in this work is that the lower layers of these 
networks can extract useful features that are enough to request to other tasks, 
even if they weren’t specifically trained on our data. A convolutional layer uses 
a set of filters that scan over the input image, creating a feature map [75] for each 
filter. These filters learn to spot different features like edges, corners, and 
textures. Convolutional layers are usually followed by pooling layers, which 
reduce the size of the feature maps. This makes the model run more efficiently 
and helps it to stay accurate even if the image shifts slightly. In our project, the 
convolutional layers of the ImageNet layers are frozen [76], and it means that 
their weights are not updated during the training. This mechanism is useful and 
practical when the dataset is small, and this is exactly true for our dataset which 
is small. Our thermal images which originally have a single channel need to be 
adapted to the RGB format which is expected by the pretrained ImageNet model. 
This process involves resizing the thermal image and copying the temperature 
data into the three-color channels (R, G, B) to create a pseudo-RGB image. By 
doing this, the pre-trained model can handle the thermal data without needing 
any changes to its original design. Now we want to explain about the steps that 
we did in our code which are related to Convolutional ImageNet Layer. First step 
is loading the pretrained model which we use InceptionV3 model and then we 
put the weights=imagenet and it shows that the model should load weights 
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pretrained on the ImageNet dataset. Then we put include_top=False and by this 
line of code, we remove the fully connected (dense) layers at the top of the 
network, because they are especially used for ImageNet’s classification task 
obviously, we don’t need them. In the next step, we need to preprocess it to match 
the input format expected by the pretrained model, because our input is thermal 
data. This includes resizing the image and replicating the single channel across 
the RGB channels. When the input is preprocessed, it is passed through the 
convolutional layers of the pretrained model to extract features. Now we know 
that features will be a multi-dimensional array that shows the output of the 
convolutional layers which is including the extracted features from the input 
image. As we mentioned before, in our model we have a feature extractor that 
all the frames are inside it, as this feature extractor has been trained before so 
now, we don’t need to train it and it was trained on ImageNet before. So 
according to the context all the frames are defined as an input for feature 
extractor and finally the features are obtained. In CNN we have three parts which 
are input, fully connected layer and convolution, we obviously removed the fully 
connected layer because we don’t need the classification part. The convolution 
part which is called feature learning is a place that we extract features. We use 
the type of CNN which is called InceptionV3.This architecture was designed for 
detecting the images and it is part of the inception family of models. This model 
is capable because it can balance high accuracy with effective use of 
computational resources. One of the important features that has is using multiple 
inception modules this action helps to process various scales of features 
concurrently. These modules perform several convolutions of different sizes 
(1x1, 3x3, 5x5) and max pooling [79] simultaneously, then combine the results. 
This mechanism helps the model to find out and tries to learn more complicated 
samples from the input data. To cut down on computational cost, InceptionV3 
uses factorized convolutions. Instead of applying larger filters, it breaks them 
down into smaller, simpler parts. For instance, a 3x3 convolution is split into two 
1D convolutions (a 3x1 followed by a 1x3), which helps to reduce the number 
of parameters and the overall computational load. 
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Fig 3.1 InceptionV3 [68]. 

 

                                                                      

3.4.1       Passing features to LSTM 

We should understand LSTM [78] networks in context of video analysis, for this 
goal we will explain about temporal correlation in video data. A video includes 
essentially a sequence of frames which are played over time. Videos unlike single 
images carry temporal information, this means that the order of frames is an 
important issue. In analysis of the video the finding out of sequence of frames is 
as crucial as analyzing each frame individually. Now the feature maps for each 
frame are stacked together to form a sequence because the video has multiple 
frames. In this part we go through feeding the sequence into LSTM, the LSTM 
network takes this sequence of feature vectors as input. LSTM do the process for 
each feature vector in sequence which is learning to obtain the temporal 
dependencies [6] between them. We describe the structure of LSTM network in 
this section which can be important to understand the mechanism that we follow 
to pass the features to LSTM. By putting input_shape=(sequence_length, 
feature_vector_size) the input is determined to the LSTM where 
sequence_length is the number of frames in the video and feature_vector_size is 
the size of the feature vector for each frame. Then by putting the 
return_sequences=True we can say this means that the LSTM will return the 
output for each time step in the sequence. In LSTM we have memory cells that 
can hold onto important information over long sequences. They also have gates 
(input, forget, and output gates) that decide when to remember or forget certain 
parts of the sequence. This allows the LSTM to model complicated temporal 
relationships, such as building up of motion leading to an action. In this model 
as we explained we used the type of RNN which is GRU [77] and is obviously 
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better than LSTM because it has been improved and its structure and architecture 
are simpler than LSTM. This architecture is created to control the sequence data. 
In GRU we have two important gates which are update gate and reset gate. In 
update gate it specifies that how much of the previous information should be 
passed to the future. In reset gate, it makes decision that how much of previous 
information should be forget. GRU has a hidden state that acts as the network’s 
memory. This memory is updated at each time step, considering both the current 
input and the previous hidden state, with the update and reset gates controlling 
the process. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.2 LSTM and GRU [69][70]. 
 

We assume that a video has 2000 frames and the RNN network with GRU type 
should feed frames with same timesteps. In our model we selected the timestep 
with the value 100 according to this code: SEQ_LENGTH= 100 so our GRU 
gets 100 frames as input. This means 100 frames are taken as input 
simultaneously and then it says what the output will be. In the first layer of our 
network, we have a GRU layer that frame_features_input dimensions should be 
mentioned. Also, it says that what value should be for sequence. We defined in 
another part of our code the mask_input and frame_feature_input values and the 
value 24 show what value should be defined for dimension of output of this layer. 
So, in this step we extracted all the features from CNN with dimension of 
100x100 and is passed to the GRU. The dimension of output would be 24, now 
we can give all the extracted features to the Dense layer [80] or fully connected 
layer. 
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3.4.2     Dense layer output 
 

Let’s talk about the constructure of danse layer which is known as a fully 
connected layer that connects every neuron from the previous layer to every 
neuron in the dense layer. This layer applies a linear transformation to the input 
which is followed by a nonlinear activation function. The dense layer is defined 
by the number of neurons it has which determines the output dimension. The last 
dense layer in the network is typically the output layer. The number of neurons 
in this layer corresponds to the number of classes. For a classification problem, 
a softmax activation function is often used, which converts the output into a 
probability distribution over the classes. In training step of the dense layer, we 
adjust the weights in the dense layer during training for minimizing the 
difference between the predicted outputs and the true labels. This setting will be 
done by using backpropagation [80] and an optimization algorithm. There is a 
mathematics behind the dense layer that each neuron in a dense layer calculates 
a weighted sum of its inputs and then applies an activation function to this sum. 
The formula is shown as: 

𝑦 = 𝑓 ቌ 𝑤𝑥



+ 𝑏ቍ 

yi : This is the output of neuron i 

wij : This is related to the weight connecting input j to neuron i 

xj : This is the input to the neuron 

bj : This is the bias term for neuron i 

f :   This is the activation function 

 

Then we show the softmax function that we used to put the value in the output 
which is output = keras.layers.Dense(3, activation="softmax")(x) 

The number of classes would be 3 and this matches the number of categories or 
labels in our dataset. The activation function is softmax that we told and this 
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function outputs the probabilities that sum to 1 which can make it ideal for multi 
class classification problems. The softmax function converts the raw output 
scores from the dense layer into probabilities: 

                𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) =


ఀೕ
ೕ

 

                𝑧 : This is the raw score for class i 

This exponentiation makes sure that all scores are positive and the division by 
the sum of exponentiated scores ensures the probabilities sum to 1. Finally, the 
output from the softmax layer is a probability distribution over the classes and 
the class with the highest probability is typically selected as the model’s 
prediction. 

 

 

3.5        Model Architecture 

 

The core model is an RNN which is using GRU (Gated Recurrent Unit) layers 
and is very efficient for sequence prediction tasks. This action happens by getting 
dependencies which are temporal in the data and making them ideal for 
analyzing temperature samples. Then Dropout layers are implemented to avoid 
overfitting by randomly deactivating a fraction of input units during training, 
helping the model to generalize better to unseen data. Following the GRU layers, 
dense (fully connected) layers are used to translate the learned temporal features 
into final output classes. The final layer utilizes a softmax activation function to 
produce probability distributions for these output classes. visualization of 
training and validation loss during some epochs helps in evaluating and learning 
the model and recognizing issues like overfitting or underfitting. A confusion 
matrix represents the model works well and this will be done by comparing the 
actual labels with the predicted ones, giving a clear picture of its accuracy across 
different classes. Analyzing feature importance, when applicable, reveals which 
aspects of the temperature data are most influential in predictions. The flowchart 
of the neural network architecture shows the sequential layers and operations 
outlined in our untitled0.py file. Here’s a detailed explanation of what each 
component of the flowchart shows: 
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Input: Frame features, Mask: 
The network starts with two inputs: frame_features_input, which represents the 
features of the frames, and mask_input, which corresponds to the masks applied 
in the training data. 
 
GRU1: 24 units, return_sequences=True: 
The initial layer is a GRU (Gated Recurrent Unit) with 24 units. When 
`return_sequences=True` is set, the layer outputs the entire sequence of data for 
each time step, which is crucial for the next recurrent layer to work with. 
 
Dropout1: 0.6 rate: 
Following the first GRU layer, a Dropout layer [81] with a 0.6 dropout rate is 
applied. This regularization technique prevents overfitting by randomly 
deactivating a portion of input units during each update in the training process. 
 
GRU2: 18 units: 
The subsequent layer is another GRU layer with 18 units, which processes the 
output from the previous GRU layer and reduces the dimensionality of the 
sequence. 
 
Dropout2: 0.5 rate: 
Following the second GRU layer, a Dropout layer with a 0.5 dropout rate is 
applied, further aiding in the prevention of overfitting. 
 
Dense1: 8 units, ReLU: 
After the dropout layer, a Dense (fully connected) layer with 8 units and a ReLU 
(Rectified Linear Unit) activation function is applied. This layer takes the data 
from the GRU layers and reshapes it into a new form, then the model is enabled 
to obtain more complicated samples. 
 
Dropout3: 0.5 rate: 
Following the Dense layer, another Dropout layer with a 0.5 dropout rate is 
applied to further mitigate overfitting. 
 
Output: 3 units, Softmax: 
The last layer is an Output layer featuring 3 units and a Softmax activation 
function. This layer controls the classification by building the probability scores 
that show how the input is falling into each of the three classes. This architecture 
is crafted to handle sequential data, minimize overfitting with dropout layers, 
and perform multi-class classification through the final Softmax layer. 
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The flowchart that we were describing it completely, you can find below: 

 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.3 Flowchart of different layers [95]. 
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3.5.1     Combination of networks CNN and RNN 
LSTM 

Before explaining about this topic, it needs to say some information about CNN 
networks implementation that we used in our codes. The Time Distributed Layer 
encases the convolutional and pooling layers to apply them independently to 
each frame of the video sequence. This guarantees that identical convolutional 
operations are performed on each frame. Then the convolutional layers used to 
obtain spatial features from each of these video frames. Layers which are related 
to the pooling are used to reduce the size of the feature maps, which pulls down 
the number of parameters and cuts down on computational load. In this step, 
flatten layer transforms the 2D feature maps into 1D vectors, preparing them for 
input into the LSTM layers so in the LSTM layers process the sequence of 
flattened feature vectors, capturing temporal dependencies across the frames. In 
the output layer the dense layer with softmax activation delivers the final 
classification output. Then the CNN and LSTM parts will be combined into a 
single model via implementing CNN followed by LSTM layer. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.4 CNN and LSTM [94]. 
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3.6          In-Depth explanation about codes 

 

flirvideo.py 

The flirvideo.py file includes a Python class specifically designed to manage and 
process thermal imaging data from FLIR cameras. This class provides the ability 
to read thermal video files and pull out the temperature data, also identifying 
periods of activity based. Actually, NumPy is for numerical operations and 
scipy.ndimage [82] is for image processing although not directly utilized in the 
code. Finally, fnv library is for controlling FLIR image files. Then we defined 
the class for FlirVideo, this class encompasses the functionality for processing 
thermal video data. In the initialization (__init__ method) the constructor starts 
the class using the thermal video's file name. Then it uses fnv.file.ImagerFile to 
load the thermal video file and it reads each image height, width and number of 
frames. Then it generates a 3D numpy array (self.Temp) to store temperature 
data for each frame and a 1D numpy array (self.time) to log the time information 
for each frame. In the next part it identifies the correct unit for temperature data 
(Celsius or raw counts) based on the calibration data in the file. Finally, it goes 
through each video frame to pull out the temperature data and timestamps, which 
is saving this information in the pre-set arrays. For implementation of this code, 
we used some techniques to extract data and initialize that we want to explain 
about them. Firstly, we used the fnv library to load and read thermal video files. 
Then, the NumPy arrays will be set up for efficient storage and handling of 
temperature data and timestamps. In the temperature Data Handling step, it 
transforms temperature data from each frame into NumPy arrays, enabling 
efficient numerical computations. Then it manages both calibrated temperature 
data and raw counts, providing flexibility in data processing. 
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untitled0.py 

We follow some steps to implement successfully video classification. These 
steps are importing dependencies, defining constants, loading and preprocessing 
the data, splitting datasets, defining and training the model, and finally 
evaluating it. Each step is important to be sure that the model is strong and 
powerful and has a good ability which is precisely based on thermal samples. 
Let us start with the first step which is related to importing all the important 
libraries and dependencies that prepare functions for data manipulation, video 
processing, machine learning also visualization. Then we tried to use 
TensorFlow and Keras [80] to build and train models of deep learning we need. 
Further, we used Imutils library [83] as a helper function for creating basic image 
processing simpler with OpenCV [84]. It simplifies many complex and repetitive 
tasks involved in working with images, enabling you to focus on developing and 
deploying computer vision solutions more efficient than usual its use. What is 
more, we used ThreadPoolExecutor class which can increase the speed of data 
loading and processing for concurrent execution. This is especially useful for 
I/O-bound duties that obtain from simultaneous execution, which is including 
network applications, file I/O, and other operations that could close the main 
thread. Then the Matplotlib is added to our libraries list for creating plot and 
doing visualization. In this step, we added Pandas and NumPy which is used for 
data manipulating and numerical operations. For controlling video and image 
processing duties we used Imageio and OpenCV library. For data splitting in two 
categories training and testing set we used Sklearn. In the second step we defined 
global constants and dataset paths, these constants define the parameters for 
video processing and model training. This is the part of code that we defined 
global constansts: 

 
R = 136 
C = 144 
SEQ_LENGTH = 100 
NUM_FEATURES = 2048 
EPOCHS = 1500 
dataset_folder = "./A-W-Wave/*/*.ats" 
video_paths = sorted(glob.glob(f"{dataset_folder}", recursive=True)) 
 
 
 

 

We will resize the video frames dimensions during the program by defining R 
and C, then we defined SEQ _LENGTH which is defined for showing the 
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number of frames in each sequence of video. The NUM_FEATURES is defined 
as a placeholder for showing the features number. For representing the number 
of epochs, so we defined EPOCHS to train the model. 

 

3.6.1          Loading and preparing video 

 

In the next step we designed load_video function so this function works to take 
a temperature data from a thermal video by normalizing it, resizing it to a 
consistent shape and preparing it for input into a neural network model. Now we 
explain more about details of Normalization [85], Resizing Frames,3-channel 
conversion. In the first definition which is Normalization we obtained the 
minimum and maximum temperatures values in data. Then the temperature data 
is scaled, so the minimum value will be 0 and the maximum value will be 255. 
This Normalization will become sure that the data will be in a consistent range 
which is vital for image processing and training neural network. The second 
definition is related to resizing frames which its purpose for adjusting height is 
to be sure that each frame matches the determined dimensions. In the 
implementation of resizing frames, we check the height of the frame if it is less 
than the desired one it covers the frame with zeros on each side to adjust the 
desired height. If it isn’t less than the desired, it sets the frame to desired height. 
Another item that should be checked is related to adjusting the width. We check 
the width of frame as we did the same for the height. In the last definition which 
is 3-channel conversion, it transforms each of these frames to a 3-channel image 
by filling arrays. In its implementation, we add two additional zeros channels to 
the frame, is transforming the single-channel temperature data into a 3-channel 
format. Then it adds the processed frame to the list of frames and finally 
transforms the list of frames to a NumPy array and returns it. 
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3.6.2      Data splitting 

 

In the further step, we load and preprocess all the videos in the dataset, by 
applying all the defined functions in the previous. Then, we should adopt a 
measure for splitting data. Data splitting [86] involves dividing our dataset into 
some subsets. Usually, this means creating training and testing sets, and 
sometimes a validation set as well. In the provided code, we are dividing the data 
into training and testing sets. Data splitting is a phase that we need it essentially 
in preparation of machine learning model. It entails partitioning the dataset into 
distinct subsets for training, validating, and testing the model. The prepared 
sequences are partitioned into training and testing sets, with a common ratio 
being 80% for training and 20% for testing. This partitioning can be achieved 
using the train_test_split function from scikit-learn or by manually slicing the 
data arrays. This approach ensures that the model is trained on a substantial 
portion of the data while retaining a separate set for evaluating its performance. 
ensures that the data split is consistent. Using the same seed (42 in this case) will 
always produce the same training and testing split. Then we define each 
parameter of code related to the train_test_split function: 
 
from sklearn.model_selection import train_test_split 
 
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, 
random_state=42) 
 
X_train: feature is used for training set 
X_test: feature is used for test set 
y_train: label is used for training set 
y_test: label is used for test set 

 

Keras internally performs this additional split to ensure that the model is 
validated on unseen data during training, allowing performance monitoring and 
helping to prevent overfitting. 
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3.6.3       Training procedure 

 

In the next step we explain more about training the model, training the model is 
a crucial part of the machine learning workflow where the model learns from the 
training data [87]. During this process, the model is fed input data and 
corresponding labels, enabling it to adjust its parameters to reduce the error 
between its predictions and the actual labels. The process of model training is 
started by data preparation, we prepare and split the training and validation data 
[80]. Then we have model compilation step which we compile the model with a 
special loss and optimizer and evaluation metrics. The training data is provided 
to the model in batches across several epochs, with the model adjusting its 
weights according to the loss calculated from the training data. In each epoch, 
the model processes the training data in batches, computes the loss and updates 
the weights to minimize it. In this step, the model's efficiency is evaluated by 
validation data, which is preparing an understanding of how well it can apply the 
new situations. Then, we should monitor the model's performance on the 
validation set which this action helps in identifying overfitting, if the validation 
loss begins to increase while the training loss continues to decrease it represents 
that the model is overfitting: 

from sklearn.model_selection import GridSearchCV 

from keras.wrappers.scikit_learn import KerasClassifier 

def create_model(learning_rate=0.01) 

model = tf.keras.models.Sequential() 

model.add(tf.keras.layers.Dense(128, activation='relu', 
input_shape=(input_shape,))) 

model.add(tf.keras.layers.Dense(num_classes, activation='softmax')) 

optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) 

model.compile(optimizer=optimizer, loss='categorical_crossentropy', 
metrics=['accuracy']) 
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return model 

model = KerasClassifier(build_fn=create_model) 

param_grid = {'batch_size': [16, 32, 64], 'epochs': [50, 100, 150], 
'learning_rate': [0.001, 0.01, 0.1]} 

grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1, 
cv=3) 

grid_result = grid.fit(X_train, y_train) 
 

 
 

 

3.6.4         Validation data details 

 

The get_sequence_model function sets up the RNN model architecture using the 
Keras Sequential API. It uses GRU layers to get time-based samples in the input 
sequences and Dropout layers to help preventing overfitting. Dense layers are 
added for final classification, with a softmax activation function to output class 
probabilities. The model is compiled with the sparse_categorical_crossentropy 
loss function, the Adam optimizer [88], and accuracy as a metric. 

The plot_loss function creates a visual of the training and validation loss over 
many epochs and saves it as a PDF file. From this function it can understand 
how well the model is performing over time. The run_experiment function 
configures a model checkpoint to save the best model weights during training. It 
creates an RNN model instance using get_sequence_model and trains it on the 
training data with a validation split to monitor performance. The training history 
is visualized using plot_loss. The trained model is saved to a file, and the optimal 
model weights are loaded to evaluate the model on the test data. 
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history = seq_model.fit( 

[frame_features_train, frame_masks_train], 

y_train_number, 

validation_split=0.2, 

epochs=EPOCHS, 

callbacks=[checkpoint], 

) 

 

Using validation data includes several goals which are all important in the model 
training process. In the first step we should mention that Validation data prepares 
an accurate evaluation of how well the model is performing on the training data, 
which this action helps us to find out better how perfect the model is learning. 
Validation data also plays a key role in fine-tuning [89] the model by offering 
feedback on how it performs with new also unseen data. The data which in 
validation step helps in setting the model to improve its accuracy and efficiency. 
Another important goal of validation data that we follow is detecting the 
overfitting. We can express if the model is overfitting or not just by comparing 
training and validation measures that we have. This occurs when the model gets 
better on the training data but does worse on the validation data. Validation data 
is also used for early stopping, where training is halted when validation 
performance ceases to improve.  
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This prevents unnecessary time spent on training models that won't generalize 
well to new data. Validation data helps pick the best model by showing how it 
performs on new, unseen data. By this we can be sure that the selected model 
works well not just on the training data, but also on new, unseen data. This makes 
a result with better performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         
 

                   Fig 3.5 Model Training Process [95]. 
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Chapter 4 

Experiment and Results 

 

4.1 Setup 
 

There are some details about implementing our code about using different 
utilities that we used during executing the code. Anaconda [90] is a famous 
platform, so we can use it to control packages and check them also we can 
establish various projects. This is the description for Conda which is a handy tool 
that lets you create separate environments for each project and making it 
especially useful for managing different libraries and dependencies. Then we 
used VS Code (visual studio code) [91] as an integrated development 
environment which is a lightweight, highly customizable for Python 
programming. Also, there is a great interaction between Anaconda and Conda 
environments. Then the version for Python we selected was 3.10 and the version 
for TensorFlow was 2.8 which is compatible with Python. 
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4.2   Training and Validation Accuracy Over 
Epochs 

 

The accuracy plot that we obtained describes the training and validation of the 
model. The X- Axis is related to number of Epochs which is ranging from 1387 
to 1450 and each epoch shows one complete pass through the total training 
dataset. The Y-Axis is related to accuracy, and it ranges from 0 to 1 and the value 
1 shows the 100% accuracy. The training accuracy is shown with yellow line 
which steadily increases with each epoch. It is showing that the model is learning 
from the training data. At first, there are some fluctuations, but it finally stabilizes 
at higher accuracy levels. The validation accuracy is shown with orange line, and 
it remains continuously high, often reaching at 100% accuracy also it is separate 
from training data. 

 

Interpretation 

The model indicates a high training accuracy, which we can find out that it 
matches the training data well. Also, the validation accuracy is continuously at 
100% which indicates that it generalizes in a good way to unseen data. The main 
important thing is related to lack of important divergence between training and 
validation accuracy, and it suggests that the model is not overfitting. In the 
further steps, we should continue to keep both training and validation accuracy 
in extra epochs to be sure that the model can keep its performance. 
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 Fig 4.1 Training and Validation Accuracy [95]. 

                     

 

 

4.2.1    Explanation of each Epoch Performance 

 
We are going to check each epoch to find out better how it works and how it 
should work. So, we go through the different ranges to compare them deeper, 
firstly we consider Epochs 1387 to 1400 which is related to initial performance. 
In this range, training accuracy begins around 88% and then gradually 
increments. The model that we have is successfully learning from the data, with 
sequential improvement which means when it is learning it tries to improve in 
each epoch better and deeper. Then from the very beginning, validation accuracy 
is at 100% which is showing that the model is very well. Then from Epochs 1400 
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to 1420, training accuracy goes up around 92% by epoch 1400. This duration 
represents that the learning continued, and the training loss reduced. In this stage, 
we have the same validation accuracy value with 100% and this behavior shows 
that the model is not overfitting and keeps the abilities that it has and then to 
generalize. Between 1420 to 1440 training accuracy keeps going to increment 
steadily but it begins to plateau around 93-94%. The model is learning from the 
data efficiently, which is showing the sequential improvement. The accuracy for 
the validation stays at 100%, which indicates the power and validity that model 
has. Validation accuracy stays at 100% which is confirming the reliability and 
robustness of the model. From epoch 1440 to 1450, training accuracy arrives 
around 95% which determines that the learning of the training data in the model 
was very well, and validation accuracy still stays at 100% which represents that 
the model has powerful generalization capabilities without any sign of 
overfitting. 

Fig 4.2 Accuracy. 
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Fig 4.3 Accuracy. 
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Fig 4.4 Accuracy. 
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4.2.2    Training and Validation Loss over Epochs 
In this step, we explain about different value for Loss in different epochs. From 
epoch 1387 to 1400, the initial training loss begins around 0.22 and steadily 
declines as epochs advance, indicating effective learning and error reduction on 
the training data. The validation loss starts at a very low level and remains 
consistently low throughout the epochs, suggesting that the model is generalizing 
well to the validation data right from the start. Then we go through epochs 
between 1400 to 1420, the training loss continues to decline, settling around 0.15 
to 0.17 reflecting the model’s ongoing learning and optimization. The validation 
loss remains consistently low and stable, indicating the model’s strong 
generalization ability without signs of overfitting. From epochs 1420 to 1440The 
training loss decreases further, reaching approximately 0.13 to 0.15, as the model 
continues to fine-tune its learning and minimize errors. The validation loss stays 
low and stable, which is showing the model is strong and can control new data 
well. Finally, from 1440 to 1450, The training loss levels off around 0.13, 
indicating that the model has successfully reduced training errors to a very low 
point. The validation loss remains exceptionally low, reflecting the model’s 
strong performance on unseen data. 
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Fig 4.5 Training and Validation Loss [95]. 

 

 

4.3    Representation of errors over multiple epochs 
 

In this plot we can check the errors that happen over some epochs for both 
training and validation data. X-Axis determine the number of epochs for training 
which its range is from 0 to 1450. Each epoch shows one complete transmission 
through the entire training dataset. Y-Axis shows the error/loss value, then the 
error value begins high and decrements as the epochs progress. The curve that 
shows the training loss over some epochs, it begins high and decrements steadily. 
However, it represents important decrease in the early epochs. Then, it continues 
to decrement and make it stable in the later epochs. The curve that represents the 
validation loss over some epochs. It begins similarly high and decrements as 
rapid as well. Further, it will be stabilized at a very low value. Finally, it keeps a 
consistently low level throughout the training process, with very little variation. 
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Fig 4.6 Representation of errors over multiple epochs. 
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Conclusion 

 
We got thermal video data from FLIR cameras and there was a process that we 
could pull out individual frames. Then we normalized the temperature values 
and provided the data for using in a machine learning model. This step which is 
related to preprocessing is essential and can help us to ensure that the data we 
have is clean, stable, and is ready to be analyzed in an accurate way. In the next 
step, we extended and trained a deep learning model which has been designed to 
group the processed thermography video data in some classifications. In this 
model we combined Convolutional Neural Networks (CNNs) with Long Short-
Term Memory (LSTM) networks for gaining spatial details from the frames of 
each video. Then by this work we could find out the temporal relationships 
between frames. This hybrid model was trained on the preprocessed data, with 
its performance meticulously tracked over multiple epochs. During the training 
process, we meticulously monitored several key performance metrics, such as 
Precision, Recall, F1-Score, Mean Squared Error (MSE), and Mean Absolute 
Error (MAE). These measures caused valuable insights into the model’s 
accuracy, also it was a good action to make a balance between precision and 
recall, obviously it decreased the overall prediction error. By analyzing these 
measures, we could evaluate if the thermography video data were classified well 
or not also, we can evaluate the quantity of classification. This step that we have 
done indicates that the model is powerful, and we can trust well. We have 
successfully made an accurate and reliable system for classifying thermography 
videos, and finally we could reach an impressive 97% accuracy rate. This amount 
for accuracy that we obtained was high and combined with strong abilities of the 
model. By obtaining this excellent result we can have a tool for practical uses 
with high value like industrial inspections and medical diagnostics. With these 
results that have been obtained, we can understand that the system is ready to 
use the results in some situations that is important to have precise analysis of 
thermal imagery. 
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