
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering
Cybersecurity Focus

Security automation for web-based attacks

Supervisors Candidate
Prof. Fulvio Valenza Francesco Grande
Prof. Riccardo Sisto
Dr. Daniele Bringhenti

Accademic Year 2023/2024

This work is subject to the Creative Commons Licence

Summary

One of the most emerging innovations of the last years is the security automation
of networks. Various technologies have been developed to streamline all security
processes within different network environments. Two significant advancements
in this field are SDN (Software-Defined Network) and NFV (Network Function
Virtualization), which have elevated automation to a central role in cybersecu-
rity. These technologies enable the construction of networks where certain nodes
are not tied to specific hardware but are instead virtualized, allowing them to
deploy network functions through software. Within this context, the VEREFOO
(VErified REfinement and Optimized Orchestration) framework has been devel-
oped; it is capable of obtaining an automated and optimal allocation of some NSFs
(Network Security Functions), necessary to fulfil a set of NSRs (Network Security
Requirements) provided as input, starting from a logical description of the network
topology. VEREFOO ensures optimality and formal correctness of its solutions
through the formulation of a MaxSMT problem solved efficiently by z3, a theorem
prover developed by Microsoft Research. This thesis goal is to enhance VEREFOO
by designing and implementing a solution capable of automatically configuring and
deploying Web Application Firewalls within a network. Web Application Firewalls
are firewalls which, in addition to regular filtering rules, specialize in web traffic
and web applications. This thesis specifically focuses on the defense against web-
based attacks, which are becoming increasingly frequent and sophisticated. By
utilizing a Web Application Firewall as virtual network function, and exploiting
the ModSecurity Core Rule Set, the proposed solution aims to protect web appli-
cations from a wide range of threats such as SQL injection and XSS.

ii

Acknowledgements

First and foremost, I would like to thank my supervisors, Professor Fulvio Valenza
and Professor Riccardo Sisto, who gave me the opportunity to work on this thesis
project and were always available to help me solve any problems that arose. I also
extend my gratitude to Dr. Daniele Bringhenti, whose advice enabled me to carry
out my work in the best possible way.

A huge thanks goes to my parents, who have supported me from the very begin-
ning in my decision to study in another city, despite the emotional toll they would
experience and the financial burden it entailed. I still remember my mother’s
tears on the day I moved to Turin. I hope I have made you proud by reaching this
milestone.

A heartfelt thanks also goes to the rest of my family: my grandmother, my
uncles and aunts, my brother, and my sisters, who have always supported me
despite the distance. Every time I came back home for holidays, they made me
feel as though I had never left.

A special thanks to my uncles and cousins in Turin, who welcomed me as an
additional family member during the abundant Sunday lunches and were always
available for any need. In particular, I would like to thank my aunt Paola, who
treated me like a son, never hesitating to offer her help with laundry, drying, and
ironing, despite her busy work schedule.

I would also like to thank my friends, with whom I shared wonderful moments
of leisure during these university years away from home. First of all, my university
colleagues (now former colleagues), with whom I bonded immediately and had wild
times from the very first day during the memorable "cyber-secure" beer, thanks to
Luca, Peppe, Lorenzo, and Ben. Thanks to you, I also got to see all of Italy, since
you come from such different places. A special thanks also to the recent additions,
Flavia and Lorenza, who brought some liveliness and a feminine touch to the group,
particularly to Flavia, who quickly became my most loyal confidante. I must also
thank my friends from the residence, who were like real brothers during our time
together, making even the days spent at home enjoyable, sometimes even making

iii

me stay up very late. Special thanks to Denis, Riccio, Zak, Fil, Momo, Candy,
and The Judge. A heartfelt thanks also goes to my friends back home, with whom
I never lost touch, a sign of a strong friendship. They made my time in Aversa
equally memorable, and all of them tried their best to come to my graduation in
Turin, despite their busy schedules and the long journey from across Italy. Among
them, a special thanks goes to Luca, who has been like a brother to me since my
first year of undergraduate studies, as well as a mentor in the field of computer
science. We have grown together and matured in so many ways over the years. A
big thanks also to everyone else I haven’t mentioned but who has been part of this
journey.

Finally, but no less important, I would like to express my deepest gratitude to
my girlfriend, Samantha. Over this past year, she has shown me what it truly
means to have someone by your side who supports you in every aspect of your
life. She has been a wise advisor, a companion on countless trips and dinners,
and a person who is kind, respectful, sincere, and beautiful. Despite the distance
between us, she has always been ready to jump on the first train or flight to see
me, even if she had been in the hospital that morning for her internship or had
an upcoming exam. She has always put me first, showing me the depth of her
feelings. Thank you for loving me so genuinely.

Contents

List of Figures vii

List of Tables viii

Listings ix

Acronyms x

1 Introduction 1
1.1 Objectives . 1
1.2 Outline . 2

2 Web Application Firewalls: ModSecurity and OWASP Core Rule
Set 4
2.1 Web Application Firewall . 4

2.1.1 WAF structure . 5
2.1.2 WAF categorization . 6

2.2 Open Web Application Security Project 11
2.2.1 OWASP Top 10 . 11
2.2.2 OWASP Core Rule Set . 13

2.3 ModSecurity . 17
2.3.1 Configuration Directives . 18
2.3.2 Processing Phases . 21
2.3.3 Making the rules . 22

3 VEREFOO 31
3.1 Software Defined Network . 32
3.2 Network Function Virtualization . 33
3.3 VEREFOO Framework . 35

3.3.1 VEREFOO architecture . 37
3.4 Satisfiability . 39

v

3.4.1 Boolean Satisfiability Problem 39
3.4.2 Satisfiability Modulo Theories 40
3.4.3 Maximum Satisfiability Modulo Theories 41

3.5 Z3 Theorem Prover . 42
3.5.1 Z3 Architecture . 42

4 Thesis approach 46

5 Modeling of Network Security Requirements 48
5.1 The model . 49
5.2 XML representation . 51

5.2.1 Input schemas . 51
5.2.2 Output schemas . 54

5.3 MaxSMT Problem Modeling . 55
5.3.1 MaxSMT problem objectives 55
5.3.2 Match function . 56
5.3.3 OWASP NSRs model . 56
5.3.4 Maximal Flows . 61
5.3.5 WAF allocation . 63

6 Implementation and Validation 64
6.1 Manual configuration . 64
6.2 Automatic configuration . 67
6.3 Performance and scalability . 71

7 Conclusions 74

vi

List of Figures

2.1 Web Application Firewall vs Network Firewall 5
2.2 Internal workings of a WAF . 6
2.3 Signature-based processing . 8
2.4 Anomaly-based processing . 9
2.5 2021 OWASP Top 10 . 12
2.6 Anomaly Scoring Example . 14
2.7 Paranoia Levels . 16

3.1 SDN architecture . 33
3.2 NFV technology applied to SDN architecture 34
3.3 Example of Allocation Graph derived from a Service Graph 36
3.4 VEREFOO architecture . 38
3.5 Z3 architecture . 43

5.1 Basic network topology example . 57
5.2 Algorithm for computation of maximal flows 62

6.1 Example of network topology for manual configuration 64
6.2 WAFs manual configuration . 66
6.3 WAFs manual configuration output 67
6.4 Example network topology AG for automatic configuration 67
6.5 Example network topology SG for automatic configuration 69
6.6 Example of WAF automatic configuration output 70
6.7 Results of scalability tests for APs 71
6.8 Results of scalability tests for NSRs 72
6.9 Results of scalability tests for APs and NSRs proportionally increased 73

vii

List of Tables

6.1 Newtork nodes for manual configuration example. 65
6.2 NSRs for manual configuration example. 65
6.3 Newtork nodes for automatic configuration example. 68
6.4 NSRs for automatic configuration example. 69

viii

Listings

3.1 Example of a SMT problem expressed in z3 language. 44
3.2 Example of a SAT solution expressed in z3 language. 45
5.1 Property Definition XML schema. 51
5.2 OWASP list XML schema. 52
5.3 Property XML schema. 53
5.4 WAF XML schema. 54
5.5 OWASP rules output XML schema. 54
5.6 OWASP aggregation first example input. 58
5.7 OWASP aggregation first example output. 58
5.8 OWASP aggregation second example input. 58
5.9 OWASP aggregation second example output. 59

ix

Acronyms

ADP Allocation, Distribution, and Placement
AP Allocation Place
API Application Programming Interface

CRS Core Rule Set
CWE Common Weakness Enumeration

GUI Graphical User Interface

HLP High-Level Policies
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure

ID Identification
IIS Microsoft Internet Information Services
IP Internet Protocol

JSON JavaScript Object Notation

LCP Longest Common Prefix

MaxSMT MAX-Satisfiability modulo theories
MLP Medium-Level Policies

NAT Network Address Translation

x

NFV Network Function Virtualization
NP Nondeterministic Polynomial-Time
NSF Network Security Function
NSR Network Security Requirement

OSI Open Systems Interconnection
OWASP Open Web Application Security Project

P Polynomial Time
PL Paranoia Level

RAM Random Access Memory

SAT Boolean Satisfiability Problem
SDN Software-Defined Network
SMT Satisfiability Modulo Theories
SNMP Simple Network Management Protocol
SQL Structured Query Language

TCP Transmission Control Protocol

UDP User Datagram Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
UTF Unicode Transformation Format

VEREFOO VErified REfinement and Optimized Orchestration
VNE Virtual Network Embedding
VPN Virtual Private Network

XML Extensible Markup Language
XSD XML Schema Definition
XSS Cross-Site Scripting

WAF Web Application Firewall

xi

Chapter 1

Introduction

1.1 Objectives

In recent years new network technologies have emerged and among these the
NFV (Network Function Virtualization) and SDN (Software-Defined Network)
paradigms stand out for innovation. NFV is a network architecture concept that
leverages virtualization technology to manage and deploy NSFs (Network Security
Functions), such as firewalls, load balancers or VPNs (Virtual Private Networks).
Traditionally, NSFs have been implemented on dedicated hardware devices, while
now NFV transforms these network functions into software-based components that
can run on standard, off-the-shelf hardware, such as servers or virtual machines.
This leads to costs reduction by eliminating the need to purchase a dedicated
physical device for each required network function, as well as a better flexibility
because NSFs can be deployed, managed, and scaled more easily since they are
software-based.

SDN, that comes across NFV, is a network architecture approach that separates
the control plane from the data plane in network devices; the control plane is cen-
tralized and managed by a software-based controller, while the data plane remains
on the network devices. SDN introduces the possibility to create a forwarding path
by means of a software process.

Starting from these innovative technologies, the thesis objective was to extend
and enhance the implementation of VEREFOO (VErified REfinement and Op-
timized Orchestration), a framework primarily designed to obtain an automated
and optimal allocation of the NSFs necessary for satisfy NSRs (Network Security
Requirements) within an indicated topology. The framework, in fact, receives as
input a logical description of the network and a set of security policies.

1

1.2. OUTLINE

To achieve these results, VEREFOO solves a MaxSMT (MAX-Satisfiability
modulo theories) problem using z3, a theorem prover developed by Microsoft Re-
search, and Verigraph, a framework developed by the Polytechnic of Turin, spe-
cialized in the verification of requirements for VNE (Virtual Network Embedding)
scenarios.

This thesis aimed to allow VEREFOO to support a WAF (Web Application
Firewall), that is a firewall which, in addition to regular filtering rules, specializes in
web traffic and web applications. In particular, it has been implemented the WAF
functionality capable of activating the OWASP (Open Web Application Security
Project) rules from NSRs, exploiting the ModSecurity CRS (Core Rule Set), and
it has been performed the integration with the already existing firewall module.

1.2 Outline

After a brief introduction and description of the thesis presented in Chapter [1],
the remainder of the paper is structured as follows:

• Chapter [2]: This chapter, therefore, delves into the functionality of WAFs
and their role in mitigating various attack vectors. It specifically highlights
ModSecurity, an open-source WAF, and the OWASP CRS, a collection of
pre-defined rules developed by OWASP for configuring ModSecurity and
many other WAFs to defend against prevalent threats.

• Chapter [3]:This chapter first introduces the technologies that form the
foundation of VEREFOO, namely SDN and NFV. Then the chapter focuses
on VEREFOO itself, describing its core mechanisms, including the ADP
module and the z3 theorem prover which are the main objectives of this
thesis work.

• Chapter [4]: This is a transition chapter that outlines the main objectives
of this thesis work, defining the correspondent approach adopted and the
choices maded.

• Chapter [5]: This chapter addresses the analysis and modeling of Network
Security Requirements concerning OWASP rules. In the first part, the model
of the requirements is illustrated along with its corresponding XML schemas.
In the second part, the MaxSMT problem is formulated by adapting the
firewall constraints to the WAF model and defining additional constraints.

• Chapter [6]: This chapter is dedicated to the description of the implemen-
tation and validation of the adopted model. The first part presents the actual
implementation in the context of both manual and automatic configuration,

2

1.2. OUTLINE

ensuring that the outputs produced by the framework are correct. The sec-
ond part is focused on the validation of the model through performance
and scalability tests, highlighting the distinctive features of the solution in
network topologies of varying sizes and with a variable number of NSRs.

• Chapter [7]: This chapter is dedicated to the conclusions and a reflection
on future work that could stem from the results obtained in this thesis.

3

Chapter 2

Web Application Firewalls:
ModSecurity and OWASP Core
Rule Set

The aim of this chapter is to provide a comprehensive explanation of what a Web
Application Firewall is and the mechanisms by which it operates. Additionally,
this chapter seeks to explore the Open Web Application Security Project in detail
and critically examine the potential application of a commercially available WAF,
specifically ModSecurity. Through this analysis, we will delve into the technical
aspects of WAF functionality, investigate the contributions of OWASP to web
security, and assess the practical implementation and effectiveness of ModSecurity
in safeguarding web applications.

2.1 Web Application Firewall

A WAF represents a critical layer of security within modern cybersecurity ar-
chitectures, specifically designed to safeguard web applications from a spectrum
of threats that traditional network firewalls may not adequately address. Unlike
conventional firewalls, which focus on controlling traffic at the network perime-
ter, a WAF is strategically positioned to monitor, filter, and potentially block
HTTP/HTTPS traffic that interacts with web applications, thereby defending
against a variety of sophisticated attack vectors.

As illustrated in figure 2.1, in fact, a Network Firewall filters network traffic
analyzing it up to the transport layer (TCP, UDP), while a WAF is able to analyze
the traffic up to application level (HTTP/HTTPS), consequently more rules can

4

2.1. WEB APPLICATION FIREWALL

be applied. Furthermore the WAF also has visibility into the transport layer fields,
so it also can filter the network traffic like the commmon firewall.

Figure 2.1: Web Application Firewall vs Network Firewall

The WAF is strategically positioned between the clients and the server, func-
tioning as a reverse proxy for the back-end infrastructure. In technical terms, this
configuration ensures that all HTTP requests from clients are routed through the
WAF before reaching the web server. The WAF meticulously analyzes each re-
quest against a predefined set of rules to determine its legitimacy. If a request is
identified as malicious, it is promptly blocked; otherwise, it is seamlessly forwarded
to the web server for processing.

2.1.1 WAF structure
Let’s now examine in greater detail the processes within a WAF, starting from
figure 2.2.

A WAF typically involves three stages[1]:
1. Pre-processor. The pre-processor stage involves standardizing incoming

data to a uniform format and discerning its nature. WAFs handle a variety
of traffic types, including HTTP and HTTPS requests, which can encompass
methods such as GET and POST, and data formats ranging from JSON to
simple parameters. The pre-processor’s role is to analyze these requests to
identify and isolate user-submitted data for subsequent validation. Addition-
ally, the pre-processor identifies and discards anomalies such as malformed
URLs before they proceed to the input validation phase. This preliminary
filtering is crucial, as input validation is a resource-intensive procedure that
requires significant time and computational power. By ensuring that only rel-
evant and correctly formatted requests undergo validation, the pre-processor

5

2.1. WEB APPLICATION FIREWALL

Figure 2.2: Internal workings of a WAF

optimizes the efficiency and effectiveness of the overall security process;
2. Normalization. Normalization aims to decode UTF or encoded values into

their standard text representations. Research has demonstrated that attack-
ers can circumvent input validation by encoding their attack vectors, such
as using base64 encoding. In response, WAF developers have incorporated
normalization stages to mitigate these tactics;

3. Input Validation. Input validation is the phase where the actual detection
of malicious input occurs. This process is heavily influenced by the specific
WAF employed, but generally involves assessing incoming requests against
the WAF’s established policies and rules. The goal is to determine whether a
request is safe to forward to the server or if it should be flagged as malicious.
For instance, if a policy prohibits the inclusion of the keyword ‘code’ any
request containing this term will be automatically blocked.

However not all implementations include the same set of stages. Some WAFs,
which are old and obsolete, lack a normalization stage, for example, making them
susceptible to basic encoding techniques such as base64 or HEX of the payload.
Others may even not include the pre-processor stage if they are a bit less advanced.

2.1.2 WAF categorization
WAFs can be classified based on several criteria, depending on the aspects you’re
focusing on:

• Stateful or Stateless based on how they process the traffic;
• Allowlist or Blacklist based on how the rules for attack detection are

enforced;

6

2.1. WEB APPLICATION FIREWALL

• Signature-Based or Anomaly-Based, based on their detection method-
ology;

• Inline or Out-of-Band based on their processing location;
• Network-Based, Host-Based or Cloud-Based, based on their deploy-

ment model.

Stateful or Stateless

A Stateless WAF does not maintain any context or memory of previous interac-
tions. It analyzes each request independently, without considering the state of
any ongoing session. Since it does not require tracking session states it is easier
to implement and manage, in addition to the fact that can handle high volumes
of traffic more efficiently. So Stateless WAFs are suitable for high-traffic environ-
ments where simplicity, speed, and scalability are prioritized, and where threats
are primarily based on known attack patterns.

A stateful WAF maintains context about ongoing sessions and interactions be-
tween clients and servers. It tracks and remembers the state of each session,
allowing it to apply security rules based on the context of the entire interaction.
It improves the accuracy of blocking and it can offer more sophisticated analysis
and detection of threats by understanding the flow and the state of the interac-
tions. Unfortunately managing session state can introduce latency, particularly if
the WAF is handling many simultaneous sessions, but overall the stateful WAF is
the best solution for security.

Allowlist or Blocklist

In the context of a WAF, the concepts of allowlist and blocklist refer to opposite
approaches to traffic filtering[2]. A blocklist approach is based on a negative secu-
rity model in which all the traffic is allowed, except for the one that matches with
at least one of the blocklist rules, while an allowlist approach is based on a positive
security model in which all the traffic is blocked except for the one that matches
with at least one of the allowlist rules. The allowlist approach is considered more
secure because it minimizes the risk of unknown or unexpected threats, since only
explicitly allowed traffic is permitted. The drawback is that creating and main-
taining an up-to-date allowlist can be complex and time-consuming, especially as
applications evolve. The blocklist approach, instead, is generally easier to config-
ure and manage as it focuses on blocking known threats rather than defining all
possible good traffic, thus it requires continuous updating of the blocklist to ac-
count for new threats and vulnerabilities. Given the advantages and disadvantages

7

2.1. WEB APPLICATION FIREWALL

of these two WAF approaches, it’s not surprising that many WAFs now operate
from a hybrid “allowlist-blocklist” security model.

Signature-Based or Anomaly-Based

Detection methodology in the context of WAFs refers to the techniques and the
strategies employed to identify and mitigate malicious activities and attacks tar-
geting web applications. The effectiveness of a WAF depends significantly on
its detection methodology, which can be identified into two main approaches:
Signature-Based or Anomaly-Based.[3]

Signature-based WAF rules work by scanning incoming traffic for patterns that
match a predefined set of known attack signatures. These signatures typically
consist of regular expressions or text strings that correspond to malicious code.
When the WAF detects a match, it blocks the associated request. Signature-based
rules are central to the negative model, where the WAF actively blocks traffic
that matches known patterns. Ultimately, while these rules are highly efficient
in preventing known attacks, as well as being relatively simple to manage and
mantain, they often fall short when it comes to detecting new or unknown threats.

Figure 2.3: Signature-based processing

Anomaly detection WAF rules identify irregularities in traffic behavior, such
as unexpected surges in activity, inputs containing abnormal characters or re-
quests originating from unusual geographic regions. When an anomaly is flagged,
the WAF may either block the request or record it for further analysis. Un-
like signature-based rules, which are confined to recognizing established threats,
anomaly detection can more efficiently identify new and emerging attacks. How-
ever, this approach carries a higher risk of false positives, potentially mistaking
legitimate traffic for malicious activity.

8

2.1. WEB APPLICATION FIREWALL

Figure 2.4: Anomaly-based processing

A highly effective strategy for safeguarding a web application or website is to
combine signature-based rules with anomaly detection rules in the WAF. Signature-
based rules are ideal for preventing recognized threats, while anomaly detection
enhances security by identifying previously unknown attacks. This dual-layered
approach ensures comprehensive protection, addressing both recognized and novel
vulnerabilities.

Inline or Out-of-Band

The processing location of a WAF refers to where and how it inspects and filters
incoming web traffic relative to the flow of data between the client and the web
server. An Inline WAF is positioned directly in the path of network traffic be-
tween the client and the web server. This means that all incoming and outgoing
traffic must pass through the WAF before it reaches the server or the client. The
advantage is that as the traffic flows through the WAF, it is inspected in real-
time according to the configured rules and policies and if it detects any malicious
activity, it can immediately block the request, log the event, or perform other ac-
tions as configured. Instead, the disadvantage is the added latency in the traffic
flow because all the traffic passes through the WAF, especially under heavy traffic
loads or if complex rules are applied; furthermore the WAF become a single point
of failure.

An Out-of-Band WAF, also known as an asynchronous or monitoring WAF, does
not sit directly in the traffic path. Instead, it monitors the traffic by receiving a
mirrored copy of the data flow, typically through a network tap or a span port,
and analyzes it in parallel with the actual traffic. Given this decoupling there is no
more added latency from the WAF since it does not interfere with the actual traffic
flow, moreover it is no longer a single point of failure. However since it does not

9

2.1. WEB APPLICATION FIREWALL

operate in the main traffic path, it cannot block malicious requests in real-time,
potentially allowing attacks to reach the server. That is why Out-of-Band WAFs
are are primarily used for monitoring and logging.

Network-Based, Host-Based or Cloud-Based

In the context of an inline WAF, it can be placed in different spots within the
network based on the type of protection desired[4].

Network-based WAFs are installed at the network boundary to protect all web
applications within the network. They inspect incoming traffic and reject any that
fails to comply with established security policies. Network-based WAFs are de-
ployed either as hardware appliances or as software running on a dedicated server.
The strength of this solution is that can protect multiple web applications across
different web servers in the network and at the same time it is easier to manage
as all traffic passes through the WAF, provided to introduce some latency and
generate a single point of failure. This solution is suitable for organizations with
extensive web infrastructures where centralized management and robust protection
are needed.

Host-based WAFs are installed directly on individual web servers, providing
protection specifically for the web applications hosted on them. They examine
incoming traffic to the web application and block any that fails to adhere to the
defined security policies. Host-based WAFs are deployed as software solutions
that run on the web server they are installed on, which may necessitate multiple
deployments for large environments, making the management complex and time-
consuming. Yet they provide deep integration with the application, allowing for
finely tuned security rules specific to the application’s needs. This solution is
suitable for organizations with a limited number of web applications where deep
integration and cost-effectiveness are the key.

Cloud-based WAFs are offered as a service by a cloud provider. They sit outside
the organization’s infrastructure, and web traffic is routed through the provider’s
infrastructure for inspection and filtering before reaching the web server. Cloud-
hosted WAFs are usually offered as a service, with the provider handling all the
hardware and software infrastructure necessary to run the WAFs themselves. This
brings a gain regarding the quickness of deployment as this model requires minimal
changes to existing infrastructure and a gain regarding the scalability of traffic
demands without the need for additional hardware or significant reconfiguration.
Though there are limited customization options, as the service provider controls
the WAF. This solution is suitable for organizations that need to scale protection
quickly as their traffic and business grow.

10

2.2. OPEN WEB APPLICATION SECURITY PROJECT

2.2 Open Web Application Security Project

The OWASP is an open-source project, started in 2001, that aims to formulate
guidelines, tools and methodologies to improve the security of web applications.
Every component of a web application presents a potential vulnerability and to
effectively defend against attacks, it is crucial to understand how various vulner-
abilities can emerge and how malicious actors might exploit them.

2.2.1 OWASP Top 10

The OWASP Top 10 is a list of the most critical web application vulnerabilities,
compiled by OWASP with input from security experts worldwide. This freely
accessible document provides detailed descriptions and suggested remediation for
each vulnerability on the list. The risks are prioritized based on factors such as
their severity, the potential impact on an application, and the frequency with which
these vulnerabilities are encountered. Since 2003, OWASP has maintained the Top
10, updating it every three to four years to reflect the evolving landscape of appli-
cation security. This project is highly influential, serving as a de facto standard
in web application development for many leading companies globally. Auditors
may consider an organization to be behind in compliance if it fails to address the
Top 10 vulnerabilities. Conversely, integrating this resource into the development
lifecycle demonstrates a commitment to best practices in cybersecurity.

Categorization Approach

The identification of the top ten security risks for web applications is accomplished
by following a number of distinct stages:

• Information Gathering. Information on vulnerabilities found in web ap-
plications are collected from a variety of organizations and sources;

• CWE Mapping. Each identified vulnerability is associated with a specific
CWE (Common Weakness Enumeration). CWEs offer a standardized way to
describe weaknesses in systems, which are conditions that could potentially
lead to vulnerabilities;

• Risk Category Grouping. CWEs with related characteristics are orga-
nized into broader risk categories;

• Ranking. These risk categories are ranked according to the frequency of
the vulnerabilities they contain.

11

2.2. OPEN WEB APPLICATION SECURITY PROJECT

The 2021 OWASP Top 10

The most recent update to the Top 10 was released in 2021, with some changes
compared to the older update released in 2017, as shown in figure 2.5.

Figure 2.5: 2021 OWASP Top 10

The 2021 OWASP Top 10 categories are:
• Broken Access Control. Access control, also known as authorization,

manages user permissions to ensure they only access resources they are al-
lowed to. When these controls are flawed, it can lead to unauthorized users
gaining access to, modifying, or deleting sensitive information. For example,
an attacker might exploit such a flaw to view other users’ data or gain entry
to administrative sections of the application.

• Cryptographic Failures. Cryptography is essential for safeguarding sen-
sitive information from unauthorized access, both when data is being trans-
mitted and when it is stored. Vulnerabilities in cryptographic methods or
their implementation can allow attackers to access confidential data, such as
user passwords.

• Injection. Injection vulnerabilities arise when an application does not prop-
erly validate or sanitize user inputs. This oversight can allow attackers to
insert malicious commands, like SQL queries (SQL injection), system com-
mands (command injection), or code fragments (code injection), potentially
compromising the system.

• Insecure Design. This category refers to inherent security weaknesses in
the design phase of an application. Such flaws are particularly problematic
because they cannot be easily remedied later in the development process.
These issues often occur when the security requirements are underestimated
during the design stage.

• Security Misconfiguration. Security misconfiguration happens when an

12

2.2. OPEN WEB APPLICATION SECURITY PROJECT

application is not securely configured, such as by keeping unnecessary fea-
tures enabled or failing to change default passwords. When these configura-
tions are exploited, they can become significant vulnerabilities.

• Vulnerable and Outdated Components. During development, appli-
cations often incorporate third-party components and frameworks. If these
external components have security vulnerabilities, they can expose the entire
application to risk, making it easier for attackers to exploit.

• Identification and Authentication Failures. Authentication mecha-
nisms verify a user’s identity. When these mechanisms are weak, attackers
may be able to impersonate other users. Such vulnerabilities typically occur
when there are insufficient protections against brute force attacks or when
the authentication process is poorly designed or implemented.

• Software and Data Integrity Failures. Data integrity is vital for ensur-
ing that information is not tampered with. When integrity is compromised,
attackers can alter user data or modify the application’s source code, leading
to unauthorized actions or corrupted data.

• Security Logging and Monitoring Failures. Logs capture the actions
performed within an application, and proper analysis of these logs is critical
for detecting suspicious activities and identifying potential attackers. With-
out effective logging and monitoring, security breaches may go unnoticed.

• Server-Side Request Forgery. This vulnerability occurs when the URL
provided by the user is not properly validated before the web application
retrieves the remote resource. The vulnerability allows attackers to manipu-
late the application into sending requests to unintended destinations, which
can result in data leaks or other malicious actions.

2.2.2 OWASP Core Rule Set
"The OWASP CRS is a set of generic attack detection rules for use with ModSe-
curity or compatible WAFs. It aims to protect web applications from a wide range
of attacks, including the OWASP Top 10, with a minimum of false alerts."[5] In
this section, we will discuss the most significant features of the CRS.

Anomaly Scoring

The key idea this mechanism exploits is the separation of the inspection and de-
tection rules from the blocking functionality. "Anomaly scoring, also known as
collaborative detection, is a scoring mechanism used in CRS. It assigns a numeric
score to HTTP transactions (requests and responses), representing how anomalous

13

2.2. OPEN WEB APPLICATION SECURITY PROJECT

they appear to be. Anomaly scores can then be used to make blocking decisions."[6]
Rules designed to detect particular attack patterns and malicious behavior are

executed individually. If a rule matches, it does not immediately cause any block-
ing action; the transaction continues. Instead, the matched rule contributes to
an ongoing anomaly score for the transaction. This score increases based on the
number of matched rules. Additionally, each triggered rule typically logs details
about the match, such as the rule’s ID, the data that triggered the rule, and the
requested URI, for future reference. The blocking evaluation phase take place two
times in a complete HTTP transaction:

1. Inbound. When all the rules examining the request data have been pro-
cessed, a first blocking evaluation is conducted. If the inbound anomaly
score meets or exceeds the inbound anomaly score threshold, the transaction
is blocked. Transactions that do not reach this threshold proceed as usual;

2. Outbound. When all the rules analyzing the response data have been ap-
plied, a secondary blocking evaluation is performed. If the outbound anomaly
score meets or exceeds the set outband anomaly threshold, the response is
blocked from reaching the user.

By maintaining separate anomaly scores and thresholds for inbound and outbound
traffic, request and response data can be inspected and scored independently. Fig-
ure 2.6 shows an example of Anomaly Scoring mechanism.

Figure 2.6: Anomaly Scoring Example

Given how this mechanism operates, it’s crucial to carefully set the appropriate

14

2.2. OPEN WEB APPLICATION SECURITY PROJECT

values for the thresholds and properly configure the severity levels. To each CRS
rule is assigned a severity level, with varying anomaly scores linked to each level.
As a result, different rules can increase the anomaly score by different amounts
when they are triggered. The four severity levels are:

• Critical, with a default anomaly scoring of 5;
• Error, with a default anomaly scoring of 4;
• Warning, with a default anomaly scoring of 3;
• Notice, with a default anomaly scoring of 2.

This means that when a critical severity rule is triggered, the anomaly score in-
creases by 5 points. Modifying the default severity scores or adding new ones is
generally not recommended. Lowering the scores can weaken detection capabili-
ties, while raising them might negatively impact application performance.

Once the severity levels are defined, the anomaly score thresholds can be set. It
is usually advised to configure this threshold at 5, ensuring that any transaction
triggering a single critical severity rule will be blocked. Raising the threshold can
reduce the system’s sensitivity, possibly allowing some attacks to slip through.
Conversely, lowering the threshold may increase the likelihood of blocking legiti-
mate transactions, potentially affecting the application’s normal operation.

Paranoia Levels

Another crucial aspect that requires configuration when employing the Core Rule
Set is the PL (Paranoia Level), which makes it possible to define how aggressive
CRS is in detecting possible attacks.[7]

In practice, the Paranoia Level dictates the number of rules that are enforced:
the higher the Paranoia Level, the more rules are executed. PL1 offers a basic
set of rules that rarely, if ever, trigger false alarms. PL2 builds on this by adding
additional rules designed to catch more types of attacks, but with these added
rules comes an increased likelihood of false alarms triggered by legitimate HTTP
requests. At PL3, the rule set expands further to cover more specialized attacks,
which consequently increases the occurrence of false positives. Finally, at PL4,
the rules become extremely stringent, detecting nearly every possible attack, but
this heightened sensitivity also results in a significant amount of legitimate traffic
being incorrectly flagged as malicious.

An elevated paranoia level makes it more difficult for attackers to evade detec-
tion, yet this comes at the cost of more false positives. When false positives arise,
they must be addressed through fine-tuning. This involves writing rule exclusions.

15

2.2. OPEN WEB APPLICATION SECURITY PROJECT

Figure 2.7: Paranoia Levels

A rule exclusion is a directive that either entirely or partially disables another rule,
applying the exclusion to specific parameters or particular URIs. This approach
allows the rule set to remain fully intact while ensuring that the CRS installation
is no longer disrupted by false positives.

Choosing the right paranoia level is primarily influenced by the purpose of the
web application and the sensitivity and quantity of the data it processes. The
CRS project suggests the following guidelines:

• PL1. Baseline security, this is appropriate for anyone running a basic HTTP
server on the internet;

• PL2. Adequate for applications that handle personal information, such as
users’ names and addresses;

• PL3. Suitable for applications that process sensitive data, such as bank
details;

• PL4. Necessary only if the application manages secret or restricted data.
It’s essential to recognize that Paranoia Levels and Anomaly Scoring are com-
pletely separate concepts with no direct link. The paranoia level determines the
number of active rules, while the anomaly threshold dictates the number of rules
that can be triggered before blocking a request.

16

2.3. MODSECURITY

2.3 ModSecurity

ModSecurity is an open-source Web Application Firewall that provides a robust
layer of protection for web applications. It operates primarily as a module for
Apache HTTP Server, but it can also be used with other web servers such as
Nginx and IIS through various connectors. ModSecurity is designed to detect and
mitigate a wide range of web-based attacks, including the OWASP Top 10, through
the exploitation of CRS. In this section Modsecurity will be examined in depth,
according to [8]. Among the most important features of ModSecurity there are:

• HTTP Traffic Logging. Web servers are typically proficient at logging
traffic in a way that supports marketing analysis but often lack the capabil-
ity to effectively log traffic to web applications, especially when it comes to
capturing request bodies. Attackers exploit this weakness by using POST
requests, which many systems fail to log properly, leaving them vulnerable.
ModSecurity overcomes this limitation by enabling complete HTTP trans-
action logging, allowing full requests and responses to be recorded. It also
offers fine-grained control over what is logged and when, ensuring that only
relevant information is captured. Additionally, ModSecurity can be config-
ured to mask sensitive data in certain fields before it is written to the audit
log, protecting confidential information while maintaining detailed logs.

• Real-Time Monitoring and Attack Detection. Beyond its logging ca-
pabilities, ModSecurity can also actively monitor HTTP traffic in real-time
to detect potential attacks. In this role, ModSecurity functions as a web
intrusion detection system, enabling you to respond swiftly to suspicious
activities occurring on your web infrastructure.

• Flexible Rule Engine. At the core of ModSecurity lies a versatile rule
engine that drives its functionality. This engine utilizes the ModSecurity Rule
Language, a specialized programming language tailored for handling HTTP
transaction data. The Rule Language is designed to be user-friendly, making
basic tasks straightforward while still offering the flexibility to perform more
complex operations.

• Flexible Deployment Mode. ModSecurity is well-suited for deployment
as both a network-based WAF or a host-based WAF. This versatility allows it
to protect web applications in various environments, whether it’s monitoring
and filtering traffic at the network level or securing individual servers directly
at the host level.

• Attack Prevention and Virtual Patching. ModSecurity can promptly
act to prevent attacks from reaching web applications, through three possible

17

2.3. MODSECURITY

modus operandi:
1. Negative\Positive security model. ModSecurity can work both

with an allowlist or a blocklist approach;
2. Known weaknesses and vulnerabilities. ModSecurity’s rule lan-

guage makes it an excellent tool for external patching. External patch-
ing, also known as Virtual Patching, focuses on minimizing the window
of exposure. In many organizations, it can take weeks to apply patches
to application vulnerabilities. With ModSecurity, applications can be
protected externally, without modifying the application’s source code
or even accessing it, thus securing the systems until a permanent patch
is implemented.

• Portability. ModSecurity is recognized for its compatibility with a broad
spectrum of operating systems.

2.3.1 Configuration Directives
ModSecurity’s configuration typically involves several files, each serving a specific
purpose. These are the primary configuration files:

• modsecurity.conf : This is the main configuration file for ModSecurity. It
contains global settings and directives that control how ModSecurity oper-
ates, such as logging, audit configurations, and core settings.

• crs-setup.conf : This file is used to set up and customize the OWASP Core
Rule Set. It includes settings for paranoia levels, anomaly score thresholds,
and other parameters specific to the CRS.

• rules/*.conf : These files include rules for detecting and preventing various
types of attacks. The OWASP CRS, for instance, includes multiple rule files
like ‘REQUEST-920-PROTOCOL-ENFORCEMENT.conf’, ‘REQUEST-934-
APPLICATION-ATTACK-GENERIC.conf’ etcetera.

The activation process of the CRS is as follows[9]:
1. Download the CRS from the official website;
2. Extract the rule set files to a familiar location on the server, usally within

the web server’s directory;
3. Set up the main CRS configuration file, the crs-setup.conf file, for the settings

regarding Anomaly Scoring and Paranoia Levels;
4. Specify the location of the rules to the web server by including the rules con-

figuration files, through the command Include "/path/to/coreruleset/*.conf".

18

2.3. MODSECURITY

In this section the main directives that can be written inside the modsecurity.conf
file will be discussed.

SecRuleEngine

This directive provides the ability to configure the rules engine. The possible
values are:

• On. This means the rules are processed;
• Off. This means the rules are not processed;
• DetectionOnly. This means the rules are processed but no disruptive action

will be executed, so malicious transactions will be logged but not blocked.
The syntax is as follows:

SecRuleEngine On|Off| DetectionOnly

SecRequestBodyAccess and SecResponseBodyAccess

These two directives control whether ModSecurity is allowed to access the request
and response bodies, respectively. The syntax is as follows:
SecRequestBodyAccess | SecResponseBodyAccess On|Off

Of course if a complete protection is wanted, it’s mandatory to enable both
features in order to allow ModSecurity to inspect both request and response bodies.

SecArgumentsLimit

This directive is used to define the maximum number of arguments that can be
processed, through the follow syntax:
SecArgumentsLimit LIMIT

When applying this directive, it’s advisable to create a rule that blocks any
request with more arguments than the specified limit. Failing to do so could allow
an attacker to bypass detection by placing their payload in a parameter beyond
the last one analyzed.

SecDefaultAction

This directive in ModSecurity is used to define a set of default actions, in a specific
phase, that will apply to all rules that follow it unless those rules explicitly specify

19

2.3. MODSECURITY

different actions. It simplifies rule writing by allowing the user to set common
actions once, rather than having to repeat them for each individual rule. The
general syntax is:
SecDefaultAction "action1 ,action2 , action3 ..."

An example of usage could be:
SecDefaultAction "phase :2,deny ,log ,status :406"

In this example, the rule will be executed in the phase 2 and if the rule matches
the transaction will be denied and logged, returning the code error 406 (Not Ac-
ceptable).

All rules following a SecDefaultAction directive within the same configuration
context will inherit its settings unless explicitly overridden. Each SecDefaultAction
directive must define a disruptive action and a processing phase; meta-data actions
are not permitted within this directive.

SecRule

A SecRule is a directive like any other understood by ModSecurity. The difference
is that this directive is way more powerful in what it is capable of representing.[10]
This is arguably the most crucial directive, as it allows the user to define rules
for analyzing parts of HTTP requests and responses, in this context referred to
as variables, using an operator. If the conditions defined by the operator are met,
specific actions can be taken. The general syntax is:
SecRule VARIABLES OPERATOR [ACTIONS]

Each rule must specify one or more variables and the operator for inspecting
them. If no actions are defined, the default actions will apply. It’s important
to note that a default action list is always in place, even if it was not explicitly
configured with SecDefaultAction. Instead, if a rule specifies actions, these will
override the default actions, resulting in the final set of actions that will be applied.

An example of usage could be:
SecRule ARGS "<script >" "phase :1,deny ,status :403 ,log ,id
:1002 , msg:’XSS Attempt Detected ’"

In this example ARGS, which define the variable to inspect, checks if all query
string and POST parameters contain the keyword ‘<script>’. The pattern string
‘<script>’ is commonly used in XSS attacks. If the rule, with unique identifier
1002, detects this pattern string, it blocks the request, logs the incident with the
indicated message and returns a 403 (Forbidden) code error.

20

2.3. MODSECURITY

2.3.2 Processing Phases

ModSecurity enables rules to be assigned to one of the following five phases of the
HTTP request lifecycle:

• Request Headers;
• Request Body;
• Response Headers;
• Response Body;
• Logging.

It is crucial to keep in mind that data accumulates across phases; therefore, a
rule in a particular phase will have access to all the data collected in preceding
phases of the transaction. The execution phase of a rule, as we have already seen,
can be specified in the actions of the designed rules. Moreover, rules are executed
based on their assigned phases, so even if two rules are listed consecutively in a
configuration file, they will not necessarily execute in sequence if they are set for
different phases.

In this section it will be explained what happens inside each phase.

Phase 1: Request Headers

Rules in this stage are executed immediately after the request headers are received.
At this point, the request body hasn’t been processed yet, so not all request
parameters are available. Rules should be placed in this stage if they need to
be executed early, either to take action before reading the request body or to
determine how the request body will be managed.

Phase 2: Request Body

This is the main phase for analyzing inputs, where most application-focused rules
should be applied. At this stage, it can be certain that the request arguments are
available, assuming the request body has been processed. ModSecurity supports
four types of request body parsing in this phase:

• application/x-www-form-urlencoded;
• multipart/form-data;
• XML;
• JSON.

21

2.3. MODSECURITY

Phase 3: Response Headers

In this phase the rules are executed prior to sending back the response headers to
the client. This allows for observation of the response before it is sent.

Phase 4: Response Body

This phase serves as the general-purpose output analysis stage. Here, you can
apply rules to examine the response body, assuming it has been buffered. This is
the appropriate phase for checking the outbound HTML for signs of information
disclosure, error messages, or text indicating failed authentication.

Phase 5: Logging

This phase is executed right before logging occurs. Rules defined in this phase can
only influence how the logging is performed. At this stage, it’s too late to deny
or block transactions. In fact, this phase is special because it is executed at the
end of each transaction, regardless of the outcomes of the previous phases. This
ensures that it will be processed regardless of whether the request was intercepted
or if an allow action was used to permit the transaction.

2.3.3 Making the rules
As discussed, rules in ModSecurity are created using the SecRule directive, which
generally is made up of 4 parts:

• Variables. These determine the specific parts of the request or response
that the rule will inspect;

• Operators. These define the conditions under which the rule will be trig-
gered;

• Actions. These specify what should happen when the rule’s conditions are
met;

• Transformations. These instruct ModSecurity how it should normalize
variable data, they are specified in the action part of a rule.

Variables

Let’s examine now some among the most relevant variables that can be used to
write rules within ModSecurity.

22

2.3. MODSECURITY

ARGS variable is critical when inspecting an HTTP request in ModSecurity be-
cause it encompasses all the arguments, including those from a POST request
payload and URL arguments. ARGS can be used with a fixed parameter to match
arguments with that exact name, or with a regular expression to match any ar-
guments whose names match the regular expression itself. Essentially, most user-
controlled input and potential attack payloads are contained within this variable.

If there is need to focus the analysis on a specific subset of parameters, the
user can select them by name using the syntax ARGS:<parameter_name>.
Conversely, if there are parameters that you want to exclude from analysis, you can
do so using the syntax ARGS:!<parameter_name>. However, it’s essential
to exercise caution when excluding parameters from the analysis, as this could
inadvertently exclude critical parameters, allowing an attacker to insert a payload
and potentially bypass the WAF.

FILES variable contains the names of files in a request body of type multipart/form-
data. This variable is useful for monitoring file uploads, particularly for detecting
attempts to exploit file upload functionality by inserting malicious code into the
application. For instance, you can use the FILES variable to write rules that block
file uploads with potentially dangerous extensions such as .aspx or .php. This can
help prevent attackers from uploading files that could be used to compromise your
system.

However, it’s important to understand that the FILES variable only includes the
names of the files in the request body. This means that attackers might bypass
such rules by placing malicious file names in other parts of the request, not just
in the multipart/form-data section. Therefore, while using the FILES variable
is a useful security measure, it should be complemented with additional security
practices to ensure comprehensive protection.

RESPONSE_BODY variable includes the content of the web server’s response.
This can be useful for detecting information disclosures or sensitive data leaks
within the response content.

Still, it is essential to remember that this variable will only be populated if
ModSecurity has been configured to access the response body. If ModSecurity is
not set up to inspect the response body, any rules that rely on this variable will
be ineffective.

REMOTE_ADDR variable holds the IP address of the client making the re-
quest. This can be useful for creating rules to block known malicious IPs or to
enforce IP-based protections against brute-force attacks.

23

2.3. MODSECURITY

Nevertheless, it’s important to keep in mind that IP addresses can be altered to
bypass detection. Additionally, if ModSecurity is placed behind a reverse proxy or
load balancer, REMOTE_ADDR might show the proxy’s IP address rather than
the client’s true IP.

REQUEST_URI variable represents the URI of the HTTP request, excluding
the scheme, such as http or https, host, and query string. It typically includes the
path and any query parameters that are part of the request. This variable is useful
for writing rules that need to inspect or act upon the request’s target URI. For
instance, you can create rules to block requests to certain paths or detect patterns
in query parameters.

Inspecting REQUEST_URI is generally efficient as it involves only the URI
part of the request. Still, complex patterns or extensive rule sets may impact
performance. Furthermore, logging the variable can be useful for auditing and
debugging purposes to see which URIs are being accessed or triggering rules.

Operators

After selecting the variables that the rule will apply to, the next step is to define
the condition under which the rule will be activated and the associated actions will
be executed. This is achieved using operators. ModSecurity offers a wide range
of operators, but we will focus on the most pertinent ones for the purposes of this
thesis.

@rx operator executes a match based on the regular expression pattern supplied
as a parameter in order to decide if the rule should be triggered or not. It is the
default operator and the most important one; if a rule does not specify a different
operator, it will automatically use @rx.

Regular expressions are a powerful tool because they allow the detection of
various potential attack payloads with a single rule. For instance, if we want to
block the use of <code> and <script> HTML tags, which could be part of an
XSS attack payload, we don’t need to write two separate rules. Instead, we can
use a single regular expression to match both tags.

SecRule VARIABLES "@rx <code >|<script >" ACTIONS

This example illustrates the power of regular expressions in identifying potential
attack patterns. Despite their versatility, crafting regular expressions can be a
challenging task, where errors are common. In the context of a WAF, such mistakes
can lead to vulnerabilities and potential security breaches. Another important

24

2.3. MODSECURITY

point is that ModSecurity performs pattern matching in a case-sensitive manner
by default. To prevent attackers from exploiting case sensitivity to bypass rules,
it’s highly recommended to make the regular expressions case-insensitive. This
can be achieved by using the lowercase transformation function, which will be
discussed later, or by adding the ?i prefix directly within the pattern.

@ipMatch operator can be used in combination with the REMOTE_ADDR vari-
able to match IP addresses against specified patterns, which can include single IP
addresses, ranges of IPs, or even entire subnets. It is useful for implementing se-
curity rules based on the client’s IP address, such as blocking or allowing traffic
from specific IP addresses or ranges. This operator can handle both IPv4 and IPv6
addresses with the follow syntax:
SecRule REMOTE_ADDR " @ipMatch 192.168.1.100" ACTIONS

@inspectFile operator invokes an external program for each variable specified
in the target list. The variable’s contents are passed to the script as the first
command-line argument, while the program itself must be specified as the operator
initial argument. This operator is especially useful for applications with file upload
features, as it allows for a thorough examination of uploaded files to assess their
safety and identify any malicious content.

All types of script are supported, but the LUA script is preferred as Modsecurity
has an internal LUA engine which would process internally the script. Internally
processed scripts typically execute faster because they avoid the overhead of pro-
cess creation and have complete access to ModSecurity’s transaction context. The
operator syntax is as follows:
SecRule FILES_TMPNAMES " @inspectFile <script_name >.<
script_extension >" ACTIONS

It’s important to note that the @inspectFile operator should be exclusively used
with the FILES_TMPNAMES variable. Using it with other variables, such as
FULL_REQUEST can expose the server to code execution vulnerabilities.

Numerical operators like @lt, @le, @eq, @ge, and @gt are useful for imposing
constraints based on numeric values, such as, for example, the count of HTTP
request arguments. An example of rule could be:
SecRule &ARGS "@ge 20" ACTIONS

This rule would trigger actions if the number of request arguments exceeds or
is equal to 50. It’s important to be aware that if the specified variable cannot be

25

2.3. MODSECURITY

interpreted as an integer, these operators will default to treating the variable as
0. This behavior might lead to unintended issues or security vulnerabilities in the
protected web application.

Actions

After selecting the variables for a rule and choosing the appropriate operator to
evaluate them, the final step in crafting a ModSecurity rule is specifying the actions
that will be executed when the rule is triggered. ModSecurity provides five different
types of actions:

• Disruptive actions, which trigger ModSecurity to perform a specific re-
sponse, that often involves blocking the transaction. However, not all dis-
ruptive actions result in blocking, the ALLOW action, for instance, though
considered disruptive, actually permits transactions rather than obstructing
them. It’s crucial to remember that only one disruptive action can be applied
per rule. If multiple disruptive actions are specified or inherited, only the
last one will be applied. Also, it’s important to keep in mind that disruptive
actions will not be carried out if the SecRuleEngine is set to DetectionOnly.

• Non-disruptive actions, which instruct ModSecurity to perform a task
that does not influence the flow of rule processing. For example, setting or
modifying a variable is considered a non-disruptive action.

• Flow actions, which affect the flow of rule processing. An example could
be the skip action that, if activated, will instruct ModSecurity to forego
evaluating the subsequent n rules for the ongoing transaction.

• Meta-data actions, which are employed to offer additional details about
rules, such as assigning them a severity level, an identifier, or a description
to be logged when the rule is activated.

• Data actions, while not true actions themselves, function as containers that
store data utilized by other actions, such as the status action that holds the
status that will be used for blocking transactions.

Now let’s examine the most relevant actions that ModSecurity offers.

allow is a disruptive action that halts rule processing upon a successful match and
permits the transaction to continue. This action can offer a more detailed control
over what happens, through three possible options:

1. When used alone the allow action impacts the entire transaction. It will stop
processing in the current phase and skips all remaining phases, apart for the
logging phase which is designed to always execute.

26

2.3. MODSECURITY

2. When used with the phase parameter, allow will stop the engine from pro-
cessing any further in the current phase, but other phases will proceed as
usual.

3. When paired with the request parameter, allow will stop the engine from
processing the current phase, and the next phase that will be processed is the
RESPONSE_HEADERS phase.

block is a disruptive action that performs the disruptive action defined by the
previous SecDefaultAction. This action serves as a placeholder designed for rule
creators who want to request a blocking action without defining the exact method
of blocking. The purpose is to leave these decisions to the users of the rules, giving
them the flexibility to specify how the blocking should be carried out or to override
the blocking if they so desire.

The SecRuleUpdateActionById directive enables users to override how a rule
manages blocking. This is beneficial in three scenarios:

1. If a rule has blocking hard-coded, but the user wants it to use the policy it
determines.

2. If a rule is configured to block, but the user would rather have it issue a
warning instead.

3. Conversely, if a rule is set to only issue a warning, but the user needs it to
enforce blocking.

deny is a disruptive action used to stop the processing of a rule and to intercept the
transaction. It will typically send back an HTTP status code like 403 (Forbidden),
although this can be customized.

id is a meta-data action used in the SecRule directive to assign a unique numeric
identifier to a rule. Each rule added to a ModSecurity instance must have a unique
ID.[11] As a result of this the user necessitates careful planning when generating
IDs to avoid conflicts with other rules. This becomes particularly important when
using rule sets like the OWASP CRS. Since CRS is designed to be used alongside
other rule sets, ensuring that ID ranges do not overlap between different rule sets
is essential. To help manage this, the OWASP maintains a list of reserved ID
ranges.

It is important to note that the ID is an identifier only; it does not affect the
relative order in which rules are executed: there is a possibility that rules with
inferior IDs will be processed after rules with superior IDs.

27

2.3. MODSECURITY

phase is a meta-data action that assigns the rule to one of the five available pro-
cessing phases. Additionally, it can be used within the SecDefaultAction directive
to set the default actions for rules in a specific phase.

It’s important to understand that if the user assigns a rule to the wrong phase,
the variable referenced in the rule might not yet be accessible. This could result
in a false negative, where the rule logic is correct, but the malicious data is missed
simply because the phase was incorrectly specified.

setvar is a non-disruptive action that offers the possibility to create, remove or
update a variable, remembering that variable names are case-insensitive. For cre-
ating a variable and initializing it at the same time, the user can use the follow
syntax:

setvar:tx.<attribute >=<value >

Transformation functions

As we observed in subsection 2.1.1, one of the key stages in the ID analysis process
is normalization. In ModSecurity, this stage is accomplished using transformation
functions. These functions are defined in the action portion of a rule and are
structured with the following syntax:

SecRule VARIABLES OPERATOR "t: TRANSFORMATION_FUNCTION ,
..."

Transformation functions are employed to modify input data prior to its use in
matching, such as during operator execution. Importantly, the original input data
remains unchanged. When a transformation function is requested, ModSecurity
generates a copy of the data, applies the transformation to this copy, and then
evaluates the operator against the transformed result.

Now let’s examine the most relevant transformation functions that ModSecurity
offers.

htmlEntityDecode transformation function is used to convert characters en-
coded as HTML entities back into their original one-byte form. This is particularly
effective in defending against XSS attacks. For instance, an attacker might encode
the <script> tag payload using HTML entities like this:

\< ;\&\#115;\&\#99;\&\#114;\&\#105;\&\#112;\&\#116;\& gt
;

28

2.3. MODSECURITY

If the htmlEntityDecode transformation function isn’t applied, the WAF might
not detect this payload as malicious. When the browser interprets the content, it
would convert the entities back to their original characters, allowing the script to
execute.

lowercase transformation function is used to convert all characters to their lower-
case equivalents. This transformation is particularly useful in scenarios where case
sensitivity can lead to bypassing security rules. For instance, if a rule is designed
to detect certain keywords or patterns in an HTTP request, and an attacker alters
the case of these keywords, the rule might not trigger if case sensitivity is not
addressed; for example if the attacker uses a payload like <ScrIpT> instead of
<script>.

urlDecodeUni transformation function is used to decode encoded characters in
a URL, back to their original form, including Unicode characters that may have
been encoded using multiple bytes. Similar to the htmlEntityDecode function,
this is vital for preventing bypasses that exploit encoding techniques to disguise
malicious content. Without this function, an attacker could obscure a <script>
tag by encoding it as %3Cscript%3E, allowing it to bypass detection mechanisms.
Once the encoded payload reaches the web server, it would be decoded back to its
original form, potentially leading to an attack.

utf8toUnicode transformation function is used to convert UTF-8 encoded char-
acters into Unicode. This function is particularly useful for ensuring that all char-
acters are properly normalized and understood in their Unicode form, which can
help in detecting and mitigating attacks that exploit character encoding issues,
minimizing the amount of false positives and negatives.

Multiple transformation actions can be applied to the same rule, creating a trans-
formation pipeline. The transformations are executed sequentially, following the
order they appear in the rule.

Typically, the sequence of transformations is very important. For example, when
dealing with evasion tactics, performing transformations in the wrong order could
allow a savvy attacker to bypass detection. Here’s an illustration of a scenario
where the correct sequence of transformations is fundamental to preventing eva-
sion:

SecRule ARGS "@rx <script >" "id :1000 , deny , t:
htmlEntityDecode , t: urlDecodeUni "

29

2.3. MODSECURITY

Furthermore, let’s suppose to have the follow payload, which is the <script>
payload first HTML-encoded and then URL-encoded:
%26 lt%3 Bscript %26 gt%3B

With this payload, the transformation functions will result to be in an incorrect
order, leading to the subsequent string analyzed by the WAF:
<script>

The rule will not detect this string, causing a security bypass.
As we approach the conclusion of this chapter, we have gained an in-depth

understanding of the operational mechanics of a WAF and explored the key fea-
tures for configuring both ModSecurity and the CRS. We have also observed that
setting up a WAF is a complex process that demands meticulous attention and
considerable time to prevent misconfigurations that could potentially be exploited.
Regrettably, developers often lack either the time or expertise required for optimal
WAF configuration, which can leave systems vulnerable and allow attackers to
circumvent defenses and exploit application weaknesses. In the next chapter we
will examine VEREFOO, the framework which is the main topic of this thesis,
together the technologies it makes use of.

30

Chapter 3

VEREFOO

The rising incidence of cybersecurity threats highlights the urgent need to ad-
dress misconfigurations in NSFs (Network Security Functions) such as firewalls
and VPNs. When network administrators rely on manual methods, the allocation
of filtering or protection rules across NSFs often ends up being inefficient, creating
vulnerabilities within the system.

To overcome this challenge, there is a rising necessity for automated policy-
based network security management tools. These tools are intended to assist
human operators by streamlining the creation and configuration of security services
through automation. This automated process involves setting policies for each
NSF, ensuring that they meet the required security standards or intentions. The
advantages of Security Automation are significant, including the elimination of
human error, the automatic analysis of policy conflicts, and the formal verification
of policy correctness.

The introduction of advanced technologies such as SDN (Software-Defined Net-
work) and NFV (Network Function Virtualization) have elevated automation to a
central role in cybersecurity. These technologies enable a more sophisticated and
comprehensive application of automation, leading to the deployment of security
mechanisms that are not only more resilient but also highly efficient. However,
despite the promising potential, research in this field remains in its nascent stages.
Recently, a range of innovative approaches have been published, exploring how
these technological advancements can be strategically leveraged to enhance cyber-
security.

This chapter will first introduce the foundational technologies of SDN and NFV,
which are essential for comprehending the underlying principles of VEREFOO.
The work done for this thesis, as previously mentioned, aims to be a contribution

31

3.1. SOFTWARE DEFINED NETWORK

and extension of this tool. Then, with this foundational knowledge in place, the
chapter will delve into the core principles and functionalities of VEREFOO.

3.1 Software Defined Network

SDN, as described in [12], represents a networking paradigm that utilizes software-
based controllers or APIs to interface with the underlying hardware infrastructure
and manage traffic flow across the network. In contrast to conventional archi-
tectures that depend on specialized hardware devices like routers and switches,
SDN facilitates the creation and management of virtual networks and allows con-
trol over traditional hardware through software-driven methods. This paradigm
introduces a centralized server to handle the routing of data packets, signifying a
substantial change in how network traffic is orchestrated and managed compared
to traditional approaches.

Computer networks can be divided in three planes of functionality[13]:
• Data Plane. This plane controls the real-time flow of network traffic, en-

compassing both the physical infrastructure and the virtual components in-
volved. It relies on rules and forwarding tables to ensure efficient packet
delivery to the desired destination.

• Control Plane. This plane is responsible for making decisions about the
most efficient paths for network traffic. It encompasses sophisticated func-
tions such as network management strategies, routing algorithms and switch-
ing mechanisms. Furthermore, it maintains continuous communication with
the data plane, delivering detailed instructions on how to handle, route, and
prioritize traffic effectively.

• Management Plane. This plane comprises software services, including
tools based on the SNMP, which are utilized for remote monitoring and
configuration of control functionalities.

In traditional networks, the control and data planes were tightly coupled, embed-
ded in the same networking devices, and the whole structure was highly decentral-
ized, reducing flexibility and increasing management complexity.

SDN creates a distinction between the data plane and the control plane, enabling
a centralized controller to oversee network strategy without being directly involved
in data forwarding. This feature offer potential advantages such as boosted perfor-
mance, streamlined configuration, and fostering innovation in network design and
operations. In fact, SDN’s capability to obtain real-time network status allows
for centralized control of the network, driven by both current network conditions

32

3.2. NETWORK FUNCTION VIRTUALIZATION

and user-defined policies. This real-time oversight enables the optimization of net-
work configurations and enhances overall network performance. The advantages
of SDN are further highlighted by its ability to serve as a versatile platform for ex-
perimenting with new techniques and fostering innovative network designs. This is
largely due to SDN’s programmability and its capability to define isolated virtual
networks through the control plane.

Figure 3.1: SDN architecture

Northbound and Southbound interfaces serve as the connection points between
the different layers of SDN. They drive communication between the control plane
and the data plane, while also bridging the control plane with external applications.
These APIs empower the controller to command network devices programmati-
cally, updating forwarding tables, directing traffic, and dynamically responding to
evolving network conditions.

3.2 Network Function Virtualization
The central concept of this technology is that each function operates as a software
process, eliminating the need for dedicated hardware and allowing it to run on
general-purpose servers. While SDN is concerned with creating forwarding paths
through software, NFV focuses on the virtualization of computing resources.

There are several ways to implement network functions in a virtualized manner.
One approach is based on the use of virtual machines, which offer strong isolation.

33

3.2. NETWORK FUNCTION VIRTUALIZATION

Each time a new virtual machine is created, a separate hardware profile is defined,
along with a distinct operating system that can be installed, independent of the
hypervisor. As a result, this method is particularly well-suited for scenarios where
safeguarding access to services is of critical importance. However, this advantage
comes at the cost of significant memory and disk space requirements.

The modern approach to virtualization is based on Docker. Docker’s success is
largely due to its portability. Once a Docker container is created, it can easily be
moved to another machine without issues. The potential problem of independent
file systems consuming large amounts of disk space can be addressed through
layered file systems. This type of file system allows multiple Docker containers
to share parts of the file system with each other and the hypervisor. The main
limitation is the lack of isolation between containers, which can lead to security
vulnerabilities. For this reason, using Docker in environments where each container
is owned by a different user may not be the best solution.

Figure 3.2: NFV technology applied to SDN architecture

NFV and SDN are intricately linked and mutually complementary technologies.
NFV enhances SDN by virtualizing the SDN controller itself, enabling it to operate
on cloud infrastructure. This virtualization allows for the dynamic relocation of
controllers to optimal positions based on current network demands and conditions.
Conversely, SDN supports NFV by offering programmable network connectivity
between virtualized network functions. This programmability facilitates optimized
traffic management and steering, ensuring efficient network operations and perfor-
mance.[14]

The limitations of the SDN paradigm would become more evident without NFV,
given that the hardware it relies on lacks adaptability and flexibility. This hardware

34

3.3. VEREFOO FRAMEWORK

is designed for the static execution of specific functions. In contrast, NFV brings
a transformative element by virtualizing network functions traditionally tied to
hardware, effectively converting them into flexible software entities.

Ultimately, the benefits that NFV technology adds to SDN are multiples:
• There is significant flexibility in deploying new functions, as it only requires

the creation of a new Virtual Machine or Docker container on the host Op-
erating System, rather than the need to purchase and configure dedicated
hardware equipment;

• It enables dynamic connectivity between functions within the same server
through a software switch, which can potentially be configured as an SDN
switch;

• The virtualized functions on the same server share computational resources,
which can be dynamically allocated based on their specific needs;

• Forwarding rules can be easily created on the switch proactively, rather than
reactively, with minimal communication between the switch and the SDN
controller.

3.3 VEREFOO Framework

The primary goals of the framework known as VEREFOO (VErified REfinement
and Optimized Orchestration) are to refine high-level NSRs (Network Security
Requirements), optimally allocate, and automatically configure the selected NSFs
(Network Security Functions) to meet security constraints. It also ensures the
proper placement of each virtual network function (in this thesis, Web Application
Firewalls) within the Allocation Graph, a topology derived from the Service Graph
(both concepts will be explained soon).

To accomplish these outcomes, VEREFOO addresses a MaxSMT (MAX-Satisfiability
modulo theories) problem using the z3 solver, a theorem prover developed by Mi-
crosoft Research, along with Verigraph, a framework created by the Polytechnic
of Turin that specializes in verifying requirements for VNE (Virtual Network Em-
bedding) scenarios.

Before exploring the details of VEREFOO, it is useful to provide the concepts
of Service Graph and Allocation Graph, needed for a better comprehension of this
section.
Service Graph. A Service Graph is a logical network topology composed of var-
ious interconnected network functions, such as load balancers, web caches, NATs,

35

3.3. VEREFOO FRAMEWORK

Figure 3.3: Example of Allocation Graph derived from a Service Graph

and forwarders. It is typically designed by a network architect tasked with defin-
ing a complete end-to-end service. Unlike the more linear structure of a Service
Function Chain, which represents an ordered sequence of service functions and
constraints applied to specific packets or flows, a Service Graph offers greater flex-
ibility. In a Service Graph, the functions can be arranged in a more complex,
non-linear structure, supporting multiple paths between endpoints and potentially
incorporating loops.

It is important to note that in a Service Graph, NSFs such as firewalls are
typically not included. The primary focus of the Service Graph is to deliver a fully
functional network service to the user, rather than addressing security concerns.

Allocation Graph. An Allocation Graph is a logical topology that can either
be built from scratch or derived from a Service Graph. While it retains the same
network functions as the Service Graph, it introduces additional nodes, which are
called Allocation Places (APs), on each link connecting consecutive nodes. These
APs serve as potential spots where NSFs, such as WAFs, can be deployed. In
the Allocation Graph, NSFs configuration is handled automatically. If no NSF is

36

3.3. VEREFOO FRAMEWORK

placed at an AP, but the AP is involved in at least one input requirement, the
AP will be filled by a forwarder. The forwarder’s role is to ensure that packets are
routed along their intended path without interruption.

An important point to mention is that, although the transformation from a
Service Graph to an Allocation Graph is automated, the service designer retains
control by imposing constraints on the process. This includes the ability to man-
date the allocation of a specific NSF to a particular AP or to prohibit the placement
of a new AP in certain locations. While this feature enhances flexibility and re-
duces computation time by narrowing the solution space, it can also result in less
optimized outcomes.

The figure 3.3 shows an example of Allocation Graph derived from a Service Graph.

3.3.1 VEREFOO architecture
VEREFOO architecture, illustrated in figure 3.4 and described in [15], requires
two essential input elements:

• a Service Graph, from which an Allocation Graph will be generated, or alter-
natively, directly an Allocation Graph through a Service GUI, which offers
access to a Network Functions Catalog. From this catalog, the user can
select which functions (either basic network functions or NSFs) to allocate
directly onto their graph. This approach is useful when the user feels confi-
dent in specifying the placement of allocation points from the outset, where
the functions should be installed.

• a set of NSRs to outline the security constraints that need to be fulfilled.
These constraints can be defined using either a high-level or medium-level
language, depending on the user’s expertise. This is facilitated through a
Policy GUI, which is designed to streamline and simplify the process of cre-
ating and specifying these requirements. The basic NSRs are two:

1. Reachability Property: It indicates that a destination node Y MUST
be reachable from a source node X along at least one path within the
topology;

2. Isolation Property: It specifies that a destination node Y MUST
NOT be reachable from a source node X in any of the possible paths
within the topology.

The contribution of this thesis will introduce new NSRs as input of VERE-
FOO, as we will see later.

After receiving these inputs, VEREFOO will progress through multiple phases

37

3.3. VEREFOO FRAMEWORK

Figure 3.4: VEREFOO architecture

before arriving at the final result. A preliminary phase is represented by the Policy
Analysis module. This module ensures the consistency and absence of conflicts
among the requirements, detecting any potential errors. Once the verification is
successful, it provides the minimal set of requirements that need to be fulfilled.
If any errors cannot be automatically resolved, the module generates a detailed
report outlining these issues.

If certain NSRs are expressed using the high-level language, these requirements
are then converted into the medium-level language by the High-To-Medium mod-
ule. The medium-level language includes all the detailed information needed for
the framework to subsequently generate the corresponding NSFs that will fulfill
the specified requirements.

Let’s now examine in greater detail these two types of languages:
• Based on a subject-verb-object-parameters paradigm, the high-level language

is used for designing and abstracting HLP (High-Level Policies). Each state-
ment is characterized by a subject that represents the entity responsible for
enforcing the NSRs, a verb that designates the required action, and a tar-
get object of the action, followed by additional arguments to provide more
details. The key feature of the high-level language is its ability to formulate

38

3.4. SATISFIABILITY

simple expressions that end-users can understand and use without special-
ized or in-depth knowledge. The aim is to offer an optional auxiliary tool,
such as a predetermined list of security policies that users can select from.

• The medium-level language is designed to provide all the necessary data
for configuring network functions in the subsequent phase, as form of MLP
(Medium-Level Policies). Consequently, its target audience is the technical
community, such as security administrators. To avoid being tied to specific
implementations, MLP must be presented in an abstract manner, indepen-
dent of their particularities.

The next step involves the Network Function Selection Module, which is respon-
sible for reviewing the requirements and selecting the most appropriate NSFs to
meet them. These functions are chosen from the Network Function Catalog that
includes all the functions managed by the framework.

The ADP (Allocation, Distribution, and Placement) module serves as the core
component of the architecture. Its purpose is to compute a Service Graph en-
hanced with NSFs. The input consists of medium-level NSRs, the chosen list
of NSFs, and either the original Service Graph or the pre-processed Allocation
Graph. Furthermore, the output of the ADP module comprehends the list of
medium-level policy rules used to configure each instance of a network function.
The specific low-level configuration, which depends on the implementation of the
deployed function, is then generated by the Medium-To-Low module. This module
translates the vendor-independent expressions into the specific rules that must be
applied to the appropriate network function.

3.4 Satisfiability

3.4.1 Boolean Satisfiability Problem
In the fields of logic and computer science, the SAT (Boolean Satisfiability Prob-
lem)[16] represents a foundational challenge which tries to understand if a valid
interpretation can be found for a given Boolean formula. The crux of this prob-
lem lies in determining whether it is possible to assign TRUE or FALSE values
to the variables in the formula in such a way that the entire expression evaluates
to TRUE. If such an assignment exists, the formula is said to be satisfiable; if no
such assignment can be made, it is deemed unsatisfiable. Importantly, the SAT
problem is not concerned with finding the most optimal solution but merely with
identifying whether there is any combination of variable assignments that renders
the formula TRUE. The primary objective is simply to ascertain whether or not
the formula can be satisfied.

39

3.4. SATISFIABILITY

For instance, let’s consider the formula a∧¬b. This formula is satisfiable because
assigning a = true and b = false causes the formula to evaluate as true. On the
other hand, consider the formula a ∧ ¬a. This formula is unsatisfiable because no
assignment of values for a would make the formula true under any circumstances,
as the two conditions contradict each other.

The importance of SAT extends beyond its intrinsic complexity; it was the first
problem shown to be NP-complete, a result formalized by the Cook–Levin theo-
rem. This designation means that solving any problem within the NP class, which
encompasses a vast array of optimization and decision problems, is as difficult as
solving a SAT problem. Despite its critical role in computational theory, no effi-
cient algorithm currently exists that can solve all instances of SAT problems. The
search for such an algorithm remains a formidable challenge, intricately connected
to the unresolved P versus NP problem, one of the most significant open questions
in computer science.

3.4.2 Satisfiability Modulo Theories
SMT (Satisfiability Modulo Theories)[17] extends the concept of SAT by incorpo-
rating more complex logical constructs. While SAT deals exclusively with formulas
expressed in basic Boolean logic, SMT extends basic logical formulas to include
more complex domains such as integers or real numbers, and sophisticated data
structures like arrays or strings. The term modulo refers to the fact that these
formulas are interpreted with respect to a particular formal theory in first-order
logic, typically without the use of quantifiers, enabling SMT to solve problems
that go beyond the scope of pure Boolean logic.

SMT solvers, such as z3, are powerful tools designed to address the SMT problem
for a practical range of inputs. These solvers form the foundation for a variety of
applications in computer science, including automated theorem proving, program
analysis, software verification, and testing. To address SMT problems, z3 lever-
ages a specialized SMT solver that integrates search pruning techniques along with
heuristic combinations of algorithmic proof methods known as tactics; these tac-
tics are defined by various parameters that require fine-tuning to achieve optimal
performance.

Given that SAT is already classified as NP-complete, the SMT problem, due to
its more expressive and complex language, typically results in even more intricate
challenges. That is why SMT problems are generally NP-hard and, in many cases,
they can be undecidable. An undecidable problem is one for which it is impossi-
ble to design an algorithm that consistently produces a correct yes-or-no answer.
Researchers focus on identifying specific theories or subsets of theories that render

40

3.4. SATISFIABILITY

SMT problems decidable and investigate the computational complexity of these
decidable instances. The decision procedures derived from this research are often
integrated into SMT solvers, enhancing their ability to handle particular problem
sets.

3.4.3 Maximum Satisfiability Modulo Theories
MaxSMT (MAX-Satisfiability modulo theories) is an extension of SMT designed to
handle optimization problems where determining the best possible assignment of
truth values is essential for decision-making. This approach is especially valuable
in fields like formal verification of hardware and software, automated theorem
proving, and constraint optimization problems.

While SMT and SAT aim to check whether a logical formula can be satisfied,
MaxSMT goes beyond that by seeking an assignment that maximizes the number
of satisfied clauses or constraints in the problem. In a MaxSMT problem, the core
elements include a set of logical constraints (often representing real-world condi-
tions) and an objective function that defines the goal to be optimized. MaxSMT
explores the space of potential solutions, not only ensuring that the logical con-
straints are satisfied but also maximizing the outcome defined by the objective
function, leading to the most optimal configuration.

For instance, let’s consider the following conjunctive formula composed of 2
variables and using the basic Boolean operators[18]:

(x0 ∨ x1) ∧ (x0 ∨ ¬x1) ∧ (¬x0 ∨ x1) ∧ (¬x0 ∨ ¬x1)

This formula is intrinsically unsatisfiable. Regardless of how truth values are
assigned to the two variables, at least one of the four clauses will inescapably
evaluate to false. However, when framed as a MaxSMT problem, the goal shifts to
maximizing the number of clauses that can be satisfied. In this case, the maximum
number of claused that can be satisfied at the same time is three. Thus, satisfying
three clauses for this formula is the optimal solution to the MaxSMT problem.

To enhance the flexibility of formulating a MaxSMT problem, several variants
exist. The core idea is that in some scenarios, not all constraints can be met. To
accommodate this, the problem is divided into two categories: hard constraints and
soft constraints. Hard constraints are those that must be satisfied and represent
critical requirements such as firewall placements or specific allocation restrictions
set by the service designer. On the other hand, soft constraints are used to capture
optimization goals and are not strictly necessary for the solution but are desirable
to maximize. In VEREFOO, the solver’s objective is to find a solution that meets
all hard constraints while optimizing the satisfaction of the soft constraints. This

41

3.5. Z3 THEOREM PROVER

approach allows for a more flexible handling of constraints and optimization goals,
ensuring that essential requirements are fulfilled while still aiming to achieve the
best possible outcome for the optional constraints.

When dealing with soft constraints in a MaxSMT problem, varying weights can
be assigned to different clauses to reflect the penalty associated with falsifying a
clause, thereby indicating its relative importance. Introducing these weights trans-
forms the instance into a weighted MaxSMT problem, where the constraints are
classified into hard and soft, making the problem partial. In a weighted partial
MaxSMT problem, the goal is to find an assignment that satisfies all the hard
constraints while minimizing the total weight of any soft constraints that aren’t
met. This methodology is employed in VEREFOO to optimize resource utiliza-
tion, specifically focusing on the total number of NSFs allocated and the rules
configured, as described in [19]. This approach in VEREFOO not only facilitates
automation and optimization but also ensures formal correctness. The soft con-
straints delineate the optimization goals, while the hard constraints represent the
essential requirements. This structure allows for minimal human intervention, as
the primary task for users is to provide the NSRs, with the system handling the
rest.

3.5 Z3 Theorem Prover
Z3 is a cutting-edge theorem prover developed by Microsoft Research, designed
to tackle SMT problems. SMT extends the SAT problem by incorporating addi-
tional theories such as equality reasoning, arithmetic, fixed-size bit-vectors, and
quantifiers. This powerful tool is widely used in software analysis and verification
contexts to address complex logical and computational challenges.[20] It offers
APIs in different high-level programming languages, like C, C++, python and
Java.

3.5.1 Z3 Architecture
The top-left of figure 3.5 provides an overview of the interfaces available for inter-
acting with z3. Users can interface with z3 via SMT-LIB2 scripts, which serve as
the standard input format for the solver. These scripts can either be provided as
text files or piped directly into z3. Alternatively, one can interact with z3 through
API calls in high-level programming languages (in VEREFOO, for instance, Java
APIs are utilized). These high-level API calls essentially act as proxies for func-
tions based on a C-based API, offering a flexible integration with z3 in various
development environments.

42

3.5. Z3 THEOREM PROVER

Figure 3.5: Z3 architecture

Unlike solvers that focus on verifying the satisfiability of a given set of asser-
tions, tactics work by transforming assertions into new sets of assertions. This
process generates a proof tree where nodes correspond to goals, and the branches
or children of each node represent subgoals. Many valuable pre-processing steps
can be expressed as tactics, which take an original goal and break it down into
smaller, more manageable subgoals. This decomposition is essential for simplify-
ing and organizing the solving process, often improving the overall efficiency of the
solution strategy.

Z3 extends its capabilities beyond basic satisfiability checking by offering support
for optimizing objective functions. This feature is particularly useful when the goal
is to find the best solutions based on specified criteria. The optimization module
allows users to define objectives, such as maximizing or minimizing a particular
arithmetic term t. For example, using the command maximize(t) directs the solver
to seek solutions that increase the value of t. Additionally, the weighted partial
MaxSMT method discussed in subsection 3.4.3, provides another way to define
optimization objectives by incorporating weights for soft constraints, ensuring a
balance between constraint satisfaction and optimality.

Z3 Example

Here’s an example illustrating how z3 works in practice, using a trivial MaxSMT
problem. Let’s say we want to solve a system of linear inequalities, whose hard

43

3.5. Z3 THEOREM PROVER

constraints are:
x + y <= 4

x >= 0

y >= 0

While the soft constraints are the following:

x >= 2 with weight 2

y >= 3 with weight 5

We can use z3 to determine whether these inequalities are satisfiable, and if so,
to find values for x and y that satisfy the hard constraints, meanwhile trying to
satasfy as many soft constraints as possible. In the SMT-LIB2 format, the input
for z3 would look like the listing 3.1:

1 (set - option :opt. priority box) ; Consider the weights
2 (set -logic QF_LIA)
3
4 ; Declare integer variables
5 (declare -fun x () Int)
6 (declare -fun y () Int)
7
8 ;Hard constraints
9 (assert (<= (+ x y) 4))

10 (assert (>= x 0))
11 (assert (>= y 0))
12
13 ;Soft constraints with weights
14 (assert -soft (>= x 2) : weight 2)
15 (assert -soft (>= y 3) : weight 5)
16
17 ;Check satisfiability and maximize soft constraint

satisfaction
18 (check -sat)
19 (get -model)

Listing 3.1: Example of a SMT problem expressed in z3 language.

The output might be the one shown in listing 3.2:

44

3.5. Z3 THEOREM PROVER

1 sat
2 (model
3 (define -fun y () Int 3)
4 (define -fun x () Int 1)
5)

Listing 3.2: Example of a SAT solution expressed in z3 language.

As we already mentioned in subsection 3.4.3, the weights help the solver prioritize
which soft constraints to satisfy. The higher the weight, the more important that
soft constraint is. If we invert the weights, for example, the solution that the z3
solver will provide us will be different.

This chapter explored the pivotal roles of SDN and NFV in modern network
management. SDN improves control and flexibility, while NFV enables cost-
effective deployment of network functions. We also introduced VEREFOO, a
framework that refines NSRs, optimally allocates NSFs, and ensures their proper
placement within virtualized network environments. By leveraging MaxSMT and
the z3 solver, VEREFOO addresses complex security and orchestration challenges
in virtual networks. In the following chapter, we will outline the primary objectives
of this thesis.

45

Chapter 4

Thesis approach

This chapter outlines the approach adopted for the future work. The thesis objec-
tives will be presented and explained. The final objective is broken down into a
series of smaller goals that must be achieved in order to meet the overall aim.

As discussed in chapter [3], network virtualization has radically transformed the
approaches used to manage and configure network security. The most prominent
technologies in this field are NFV and SDN. Together, these technologies provide a
high degree of flexibility and agility, as new software simplifies the tasks of network
administrators.

In this context, security configurations must evolve as quickly as the network it-
self, making manual configuration increasingly challenging. Based on this premise,
and following the analysis conducted in the previous chapters regarding web ap-
plication firewalls and their configuration, the goal of this work is to design and
implement a solution capable of automatically configuring and deploying WAFs
within a network. Whether or not a WAF is pre-assigned, this configuration must,
starting from the initial service graph, meet a set of requirements defined by the
service designer.

This work specifically focuses on the defense against web-based attacks, which
are becoming increasingly frequent and sophisticated. By utilizing a WAF as
virtual network function, and exploiting the ModSecurity CRS, the proposed solu-
tion aims to protect web applications from a wide range of threats, including SQL
injection, XSS, and other vulnerabilities exploited by attackers. The automatic
configuration and deployment of WAFs across the network ensures that security
policies are consistently applied, reducing the risk of misconfigurations and enhanc-
ing the overall security posture of the network. This automated approach helps
to maintain up-to-date defenses in the face of evolving attack vectors, providing a

46

Thesis approach

dynamic and responsive security solution.
To achieve this objective, the ADP module of the VEREFOO framework, exam-

ined in chapter [3], has been extended. The extension of the module was carried
out step by step.

• The first objective was to design and implement a new type of NSR in order to
allow service designers to configure OWASP rules of WAFs using a high-level
or mid-level language. The corresponding outputs were also modeled and
implemented accordingly. To achieve this first objective, WAFs technology
has been studied, in particular it has been examined in detail ModSecurity,
along with the OWASP CRS from which the model took shape.

• The second objective was to develop and implement a new feature in VERE-
FOO that would allow the creation of a WAF. This feature can be used to
automatically assign and/or configure a WAF based on the requirements de-
fined by the administrator. This second objective was also broken down into
three smaller tasks to achieve the final goal:

1. Manual configuration of OWASP rules;
2. Automatic configuration and allocation of OWASP rules;
3. Integration with the firewall implementation.

To ensure optimality in the automatic configuration and allocation of the WAF, the
problem was approached by formulating it as a MaxSMT problem. The solution
was obtained using the z3 solver, which allowed to meet the defined requirements
while optimizing the network security configurations.

47

Chapter 5

Modeling of Network Security
Requirements

The following chapter will provide a description of the Network Security Require-
ments model. NSRs represent the second input to the VEREFOO framework, in
addition to the Service Graph. Specifically, NSRs define connectivity constraints
between two endpoints, that can be can be classified into two different types, as
already mentioned in chapter [3]:

• Reachability Property: It indicates that a destination node Y MUST be
reachable from a source node X along at least one path within the topology;

• Isolation Property: It specifies that a destination node Y MUST NOT
be reachable from a source node X in any of the possible paths within the
topology.

The goal of this chapter is to provide a model for creating security rules that
manage the category of threats regarding web-based attacks, such as SQL injection
and XSS. Before moving on to the next section, which analyzes the developed
model in detail, it is important to make a preliminary note. The model has been
designed to be an extension of the firewall model already existing in VEREFOO.
The model decouples firewall security rules from those specifically designed to
counter web-based attacks, thereby rendering their application independent. It
is feasible to activate solely the functionalities for defending against web attacks
while deactivating the isolation and reachability constraints, or as an alternative,
to enable only the the isolation and reachability constraints while leaving the web
attack defenses inactive. Both decisions will lead to the placement of a WAF, if
necessary to meet the NSRs.

48

5.1. THE MODEL

5.1 The model
As described in previous chapters, WAFs are defined by specific parameters that
can be configured to create rules. Let us now examine the characteristics that have
been selected and made available to a user. Each rule r ∈ R is represented by the
following format:

[Action, IPsrc, IPdst, PORTsrc, PORTdst, transportProto, HTTPmethod,
URL, Domain]

• Action ∈ {Allow, Deny}
1. Allow corresponds to the reachability constraint. It permits the flow

of network traffic from one endpoint to another;
2. Deny corresponds to the isolation constraint. It blocks the flow of

network traffic from one endpoint to another.
• IPsrc is the source IP address of the communication for which the rule is

defined;
• IPdst is the destination IP address of the communication for which the rule

is defined;
• PORTsrc is the source port number or range of ports for the communication

for which the rule is defined;
• PORTdst is the destination port number or range of ports for the commu-

nication for which the rule is defined;
• transportProto is the transport-level protocol of the communication for

which the rule is defined;
• HTTPmethod ∈ {GET, HEAD, DELETE, POST, PUT, PATCH} is the

HTTP request method used in the communication for which the rule is de-
fined;

• URL is the string that represents the URL for which the rule is defined;
• Domain is the string that represents the domain for which the rule is defined.

For representing IP addresses, such as IPsrc and IPdst, it has been utilized the
conventional dot-decimal notation:

ip1.ip2.ip3.ip4

where ipi, ∀i ∈ {1,2,3,4} can be an integer in the range from 0 to 255, inclusive,
or alternatively, a wildcard symbol denoted as ∗. This symbol allows for a unified

49

5.1. THE MODEL

declaration of both a network address and its corresponding netmask, instead of
using two separate elements. For instance, the representation 20.0.0.∗ can be used
to express endpoints within the network 20.0.0.0/24, while 30.0. ∗ .∗ characterizes
the network 30.0.0.0/16. In the z3 context the wildcard symbol is represented by
the -1 number, so, for instance, instead of 20.0.0.∗ will be used 20.0.0.-1.

The source and destination ports, PORTsrc and PORTdst, can be specified using
either a single number or a range of numbers, within the interval [0, 65535]. To
illustrate, if it is required that the source 10.0.0.1 must not be able to reach the
destination 20.0.0.1 when the port numbers fall within the range [1000, 2000], the
traffic flow between the two endpoints must be blocked if the packets have a source
port number within this interval. This ensures that the isolation requirement is
met.

Finally, the transportProto element represents the layer-4 protocol used above
the IP layer. The possible values are TCP and UDP, or, alternatively, the wild-
card ∗. In this case, ∗ means that the property’s satisfiability must be ensured,
accounting for the possibility that the source may send both TCP and UDP pack-
ets.

Concerning the defense against web attacks using the OWASP CRS, in chapter
[2] it was explained the activation process of owasp rules in ModSecurity. In our
model each OWASP rule o ∈ O is represented by the following format:

[IPsrc, IPdst, OWASPrule]

The user can activate one or more OWASP configuration files using the following
syntax:
ACTIVATE <IPsrc > <IPdst > <OWASPrule >

where OWASPrule ∈ {METHOD-ENFORCEMENT, SCANNER-DETECTION,

PROTOCOL-ENFORCEMENT, PROTOCOL-ATTACK, MULTIPART-ATTACK,

APPLICATION-ATTACK-LFI, APPLICATION-ATTACK-RFI,
APPLICATION-ATTACK-RCE, APPLICATION-ATTACK-PHP,

APPLICATION-ATTACK-GENERIC, APPLICATION-ATTACK-XSS,

APPLICATION-ATTACK-SQLI, APPLICATION-ATTACK-SESSION-FIXATION,

APPLICATION-ATTACK-JAVA, BLOCKING-EVALUATION, DATA-LEAKAGES,

DATA-LEAKAGES-SQL, DATA-LEAKAGES-JAVA, DATA-LEAKAGES-PHP,

DATA-LEAKAGES-IIS, WEB-SHELLS, BLOCKING-EVALUATION}.

This means that if multiple configuration files need to be activated, the keyword
ACTIVATE must be repeated. The following listing shows an example.

50

5.2. XML REPRESENTATION

ACTIVATE METHOD - ENFORCEMENT 0 10.0.0.1 30.0.5.2
ACTIVATE DATA -LEAKAGES -SQL 0 10.0.0.2 30.0.5.2

These instructions will be first translated into the medium-level language and
then, during the translation phase from the medium-level language to the low-level
language, the filenames specified after the keyword ACTIVATE will be translated
in the z3 language, evaluated from the z3 solver and used as configuration of the
WAF.

5.2 XML representation
This section outlines how the XML model for configuring the input parameters of
the framework has been updated.

5.2.1 Input schemas
In this paragraph, we analyze the XSD schema of the security requirements pro-
vided as input.

1 <xsd: element name=" PropertyDefinition ">
2 <xsd: complexType >
3 <xsd:sequence >
4 <xsd: element name=" Property " type=" Property "
5 minOccurs ="0" maxOccurs =" unbounded "/>
6 <xsd: element name=" OWASPprop " minOccurs ="0"
7 maxOccurs =" unbounded ">
8 <xsd: complexType >
9 <xsd: attribute name="value" type="OWASP"

10 use=" required "/>
11 <xsd: attribute name="graph" type="xsd:long"
12 use=" required "/>
13 <xsd: attribute name="src" type="xsd: string "
14 use=" required "/>
15 <xsd: attribute name="dst" type="xsd: string "
16 use=" required "/>
17 <xsd: attribute name="isSat" type="xsd: boolean "/>
18 </xsd: complexType >
19 </xsd:element >
20 </xsd:sequence >
21 </xsd: complexType >
22 </xsd:element >

Listing 5.1: Property Definition XML schema.

51

5.2. XML REPRESENTATION

As we can see in the listing 5.1, PropertyDefinition is the main element that
allows the insertion of a security requirement. It can either be of type Property or
OWASPprop.

• Property is the element that allows for the insertion of filtering require-
ments;

• OWASPprop is the element that allows for the insertion of an OWASP rule
for protection against specific web-based attacks; it contains the following
attributes:

1. graph is the number of the graph in which the OWASP rule is desired;
2. src is the source IP address of the communication for which the OWASP

rule is desired;
3. dst is the destination IP address of the communication for which the

OWASP rule is desired;
4. isSat is a boolean value that will be true if the MaxSMT problem is

satisfiable, and false otherwise;
5. value is the OWASP rule that is desired to activate in the communi-

cation. The listing 5.2 provides the list of available OWASP rules, as
enums.

1 <xsd: simpleType name="OWASP">
2 <xsd: restriction base="xsd: string ">
3 <xsd: enumeration value ="METHOD - ENFORCEMENT "/>
4 <xsd: enumeration value ="SCANNER - DETECTION "/>
5 <xsd: enumeration value ="PROTOCOL - ENFORCEMENT "/>
6 <xsd: enumeration value ="PROTOCOL - ATTACK "/>
7 <xsd: enumeration value ="MULTIPART - ATTACK "/>
8 <xsd: enumeration value =" APPLICATION -ATTACK -LFI"/>
9 <xsd: enumeration value =" APPLICATION -ATTACK -RFI"/>

10 <xsd: enumeration value =" APPLICATION -ATTACK -RCE"/>
11 <xsd: enumeration value =" APPLICATION -ATTACK -PHP"/>
12 <xsd: enumeration value =" APPLICATION -ATTACK - GENERIC "/>
13 <xsd: enumeration value =" APPLICATION -ATTACK -XSS"/>
14 <xsd: enumeration value =" APPLICATION -ATTACK -SQLI"/>
15 <xsd: enumeration
16 value =" APPLICATION -ATTACK -SESSION - FIXATION "/>
17 <xsd: enumeration value =" APPLICATION -ATTACK -JAVA"/>
18 <xsd: enumeration value ="BLOCKING - EVALUATION "/>
19 <xsd: enumeration value ="DATA - LEAKAGES "/>
20 <xsd: enumeration value ="DATA -LEAKAGES -SQL"/>

52

5.2. XML REPRESENTATION

21 <xsd: enumeration value ="DATA -LEAKAGES -JAVA"/>
22 <xsd: enumeration value ="DATA -LEAKAGES -PHP"/>
23 <xsd: enumeration value ="DATA -LEAKAGES -IIS"/>
24 <xsd: enumeration value ="WEB - SHELLS "/>
25 <xsd: enumeration value ="BLOCKING - EVALUATION "/>
26 </xsd: restriction >
27 </xsd:simpleType >

Listing 5.2: OWASP list XML schema.

As we can understand from the precedent XSD schemas, to insert OWASP rules
in the form of NSRs we must instantiate an OWASPprop for each desired rule in
a specific communication.

Concerning the Property element, the XSD schema is shown below:

1 <xsd: complexType name=" Property ">
2 <xsd:choice >
3 <xsd: element name=" HTTPDefinition " type=" HTTPDefinition "
4 minOccurs ="0"/>
5 <xsd: element name=" POP3Definition " type=" POP3Definition "
6 minOccurs ="0"/>
7 </xsd:choice >
8 <xsd: attribute name="name" type="P-Name" use=" required "/>
9 <xsd: attribute name="graph" type="xsd:long"

10 use=" required "/>
11 <xsd: attribute name="src" type="xsd: string "
12 use=" required "/>
13 <xsd: attribute name="dst" type="xsd: string "
14 use=" required "/>
15 <xsd: attribute name=" lv4proto " type=" L4ProtocolTypes "
16 default ="ANY"/>
17 <xsd: attribute name=" src_port " type="xsd: string "/>
18 <xsd: attribute name=" dst_port " type="xsd: string "/>
19 <xsd: attribute name="isSat" type="xsd: boolean "/>
20 <xsd: attribute name="body" type="xsd: string "/>
21 </xsd: complexType >
22 <xsd: complexType name=" HTTPDefinition ">
23 <xsd: attribute name=" httpmethod " type="xsd: string "/>
24 <xsd: attribute name="url" type="xsd: string "/>
25 <xsd: attribute name=" domain " type="xsd: string "/>
26 </xsd: complexType >

Listing 5.3: Property XML schema.

53

5.2. XML REPRESENTATION

The Property element as we already mentioned contains fields needed for the in-
sertion of filtering requirements. The choice command is present in the schema,
ensuring the exclusivity between HTTPDefinition and POP3Definition elements.
The first is a structure that contains fields for defining web-based rule, that oper-
ates at the HTTP protocol level; the second follows the same concept as HTTPDef-
inition, but for the POP3 protocol. This schema has not been modified in this
thesis work, therefore no further information will be provided about filtering.

5.2.2 Output schemas
Based on the inputs, the framework calculates the result, which, if necessary, will
include one or more WAFs to be integrated into the network topology. In this
paragraph, we will analyze the XSD schema of a Web Application Firewall.

1 <xsd: element name=" firewall ">
2 <xsd: complexType >
3 <xsd:sequence >
4 <xsd: element ref=" elements " minOccurs ="0"
5 maxOccurs =" unbounded "/>
6 <xsd: element ref=" owasp_rules " minOccurs ="0"
7 maxOccurs =" unbounded "/>
8 </xsd:sequence >
9 <xsd: attribute name=" defaultAction " type=" ActionTypes "/>

10 </xsd: complexType >
11 </xsd:element >

Listing 5.4: WAF XML schema.

The elements definition contains all the fields described in section 5.1. A new
element has been added to the schema for the management of OWASP rules,
the owasp_rules element. The following listing shows the definition of this new
element:

1 <xsd: element name=" owasp_rules ">
2 <xsd: complexType >
3 <xsd:sequence >
4 <xsd: element name=" owasp_rule " type="OWASP" minOccurs ="0"
5 maxOccurs =" unbounded "/>
6 <xsd: element name=" source " type="xsd: string "/>
7 <xsd: element name=" destination " type="xsd: string "/>
8 </xsd:sequence >
9 </xsd: complexType >

10 <xsd: unique name=" unique_owasp_constraint ">

54

5.3. MAXSMT PROBLEM MODELING

11 <xsd: selector xpath =" owasp_rule "/>
12 <xsd:field xpath ="."/>
13 </xsd:unique >
14 </xsd:element >

Listing 5.5: OWASP rules output XML schema.

As shown in listing 5.5 the owasp_rules element is composed of three additional
nested elements:

• owasp_rule is the OWASP rule that has been activated in this commu-
nication. The maxOccurs field is set to unbounded, this means that more
istances of this element can be generated, effectively making it possible to
activate multiple rules for a given communication;

• source is the source IP address of the communication for which the OWASP
rule is activated;

• destination is the destination IP address of the communication for which
the OWASP rule is activated.

The unique constraint on the owasp_rule attribute is useful for the manual con-
figuration of OWASP rules. It ensures that a WAF can’t be configured to activate
two equal rules.

5.3 MaxSMT Problem Modeling
In section 3.4 the satisfiability problems were introduced, including the MaxSMT
problem. Now it will be presented the adaptation of the MaxSMT problem re-
ported in [21] to the objectives of this thesis.

5.3.1 MaxSMT problem objectives
The MaxSMT problem, in relation to a WAF defending against web-based attacks,
has two key objectives that can safeguard the network topology:

1. Minimizing the number of WAFs allocated within the Allocation Graph,
ensuring optimal resource utilization when deploying NSFs that implement
WAFs on the substrate network;

2. Minimizing the number of OWASP rules in each WAF policy, enabling a more
readable configuration for the service designer and simplifying management
or modifications, thereby reducing the risk of human error.

Although these two objectives are theoretically independent, they are intertwined

55

5.3. MAXSMT PROBLEM MODELING

in the MaxSMT problem through shared variables, ensuring for both of them si-
multaneously an optimal solution. Nevertheless, greater emphasis is placed on
reducing the number of deployed WAFs, as the cost of introducing extra WAF in-
stances far outweighs the expense of configuring additional rules within an existing
WAF.

5.3.2 Match function
Before showing the constraints defined in the MaxSMT problem for an OWASP
requirement, it is important to introduce the match function. The match function
checks whether a packet matches a specific rule. Given a generic rule r and a
generic packet pk0 in a given point of analysis, the match function returns TRUE
only if all conditions outlined in the following formula are satisfied:

r.match(pk0) ⇐⇒ pk0.IPsrc ⊆ r.IPsrc

∧ pk0.IPdst ⊆ r.IPdst

∧ pk0.OWASPrule ⊆ r.OWASPrule

When a WAF receives a packet, the conditions of each NSR, i.e. the OWASP
rules, are applied to the packet’s fields. If a rule matches the packet, it will be
subsequently executed the default action, which in the case of OWASP rules it is
always to discard the packet.

5.3.3 OWASP NSRs model
Let Os be defined as the set of OWASP rules that can potentially be activated in
the context of a given flow. Each o ∈ Os consists of the pair (Oi, a), where Oi with
i ∈ [0, 22) represents the specific OWASP rule and a is the action to be executed,
which can be true if the rule should be activated, or false if the rule should not be
activated.

Oi = [OWASPrulei, IPsrc, IPdst]
a ∈ {true, false}

Let f = [ns, ts,a, na, ta,b, nb . . . , nk, tk,d, nd] ∈ F be a generic traffic flow, where
ns ∈ Na represents the source endpoint, ts,a represents the traffic flow between
the source endpoint and the second node na ∈ Na directly connected to it, follows
an intermediate ordered list of nodes and associated traffic flows to connect them,
nd ∈ Na represents the destination endpoint of the entire traffic flow, and tk,d

represents the traffic flow from the penultimate node to the final endpoint.

56

5.3. MAXSMT PROBLEM MODELING

The following conditions must be met for the flow f to satisfy requirement Oi,
assuming that a is true:

(1) α(ns) ⊆ Oi.IPsrc ∧ α(nd) ⊆ Oi.IPdst

(2) ts,a ⊆ (Oi.IPsrc, ∗, ∗)
(3) tk,d ⊆ (∗, Oi.IPdst, Oi.OWASPrulei)
α is the function that, given an endpoint as a parameter, returns its IP address

or the range of addresses, if a subnet is involved. Assuming this, the previous
three formulas aim to:

(1) verify that the source and destination endpoints IP addresses correspond
respectively to IPsrc and IPdst of the rule.

(2) and (3) verify, respectively, that the traffic flows from the source endpoint
to the destination endpoint contain the specific OWASP rule.

Aggregation

As we mentioned in subsection 5.3.1, one of the objectives pursued from this thesis
is the minimization of OWASP rules. To optimize the process of allocating OWASP
rules, it is necessary to aggregate all flows with different source or destination
addresses that have the same rules and whose sources belong to the same LCP
(Longest Common Prefix), ensuring that no flow is excluded. Let’s consider the
basic network topology shown in figure 5.1, in which a WAF has been already
allocated in the optimal AP:

Figure 5.1: Basic network topology example

Let’s suppose to have the following OWASP requirements:

57

5.3. MAXSMT PROBLEM MODELING

1 <OWASPprop value ="METHOD - ENFORCEMENT " graph ="0"
2 src=" 10.0.0.1 " dst=" 30.0.5.2 "/>
3 <OWASPprop value ="WEB - SHELLS " graph ="0"
4 src=" 10.0.0.2 " dst=" 30.0.5.2 "/>
5 <OWASPprop value ="WEB - SHELLS " graph ="0"
6 src=" 10.0.0.3 " dst=" 30.0.5.2 "/>

Listing 5.6: OWASP aggregation first example input.

There is no possibility for an aggregation in this case, therefore the output
configuration of the WAF will show three distinct flows.

1 <owasp_rules >
2 <owasp_rule >METHOD - ENFORCEMENT </ owasp_rule >
3 <source >10.0.0.1 </ source >
4 <destination >30.0.5.2 </ destination >
5 </ owasp_rules >
6 <owasp_rules >
7 <owasp_rule >WEB -SHELLS </ owasp_rule >
8 <source >10.0.0.2 </ source >
9 <destination >30.0.5.2 </ destination >

10 </ owasp_rules >
11 <owasp_rules >
12 <owasp_rule >WEB -SHELLS </ owasp_rule >
13 <source >10.0.0.3 </ source >
14 <destination >30.0.5.2 </ destination >
15 </ owasp_rules >

Listing 5.7: OWASP aggregation first example output.

It cannot be used 10.0.0.* as source for the WEB-SHELLS OWASP enforcement
because it would imply web protection for the first flow also, i.e. 10.0.0.1-30.0.5.2;
this would cause the WAF to consume more resources than necessary, leading to
a suboptimal configuration. Now let’s do another example regarding the network
topology shown in figure 5.1 with different requirements:

1 <OWASPprop value ="METHOD - ENFORCEMENT " graph ="0"
2 src=" 10.0.0.1 " dst=" 30.0.5.2 "/>
3 <OWASPprop value ="MULTIPART - ATTACK " graph ="0"
4 src=" 10.0.0.1 " dst=" 30.0.5.2 "/>
5 <OWASPprop value ="METHOD - ENFORCEMENT " graph ="0"
6 src=" 10.0.0.2 " dst=" 30.0.5.2 "/>

58

5.3. MAXSMT PROBLEM MODELING

7 <OWASPprop value ="MULTIPART - ATTACK " graph ="0"
8 src=" 10.0.0.2 " dst=" 30.0.5.2 "/>
9 <OWASPprop value ="METHOD - ENFORCEMENT " graph ="0"

10 src=" 10.0.0.3 " dst=" 30.0.5.2 "/>
11 <OWASPprop value ="MULTIPART - ATTACK " graph ="0"
12 src=" 10.0.0.3 " dst=" 30.0.5.2 "/>
13 <OWASPprop value ="WEB - SHELLS " graph ="0"
14 src=" 10.0.0.3 " dst=" 30.0.5.2 "/>

Listing 5.8: OWASP aggregation second example input.

In this case an aggregation is possible, as shown in listing 5.9:

1 <owasp_rules >
2 <owasp_rule >WEB -SHELLS </ owasp_rule >
3 <source >10.0.0.3 </ source >
4 <destination >30.0.5.2 </ destination >
5 </ owasp_rules >
6 <owasp_rules >
7 <owasp_rule >METHOD - ENFORCEMENT </ owasp_rule >
8 <owasp_rule >MULTIPART -ATTACK </ owasp_rule >
9 <source >10.0.0. -1 </ source >

10 <destination >30.0.5.2 </ destination >
11 </ owasp_rules >

Listing 5.9: OWASP aggregation second example output.

This is the best result a service designer could receive, inasmuch it would be
provided the best readability for this configuration, ensuring the minimum expen-
diture of resources with respect to the number of OWASP enforcements installed
on the WAF. In order to achieve this result, a hard constraint and a soft constraint
have been formulated in the MaxSMT problem.

Aggregation constraints

Given a generic set of elements o ∈ Os, to ensure the minimal expenditure of
resources, the mathematical relationship between the activated and non-activated
OWASP rules, formulated as hard constraint, is the following:

∀ (Oi , a) , a = true ⇒
Þ
j /=i

(Oj , ¬a)

As previously mentioned, VEREFOO includes the wildcards feature, which, in

59

5.3. MAXSMT PROBLEM MODELING

order to optimize the readability of OWASP rules in alignment with the model
proposed in this thesis, must be activated in the limited number of cases stated
in this section. To achieve this goal, a soft constraint has been formulated. The
constraint is of the form Soft(f, c), where f is a function and c is the weight
associated with it.

Let Fo be the set of flows that connect a web client or a subnet to a specific web
server. For every o ∈ Os with a = true, if there is no flow f ∈ Fo that does not
contain o, then o can be aggregated in Os and the wildcards feature exploited.

∀o ∈ Os : (/∃f ∈ Fo : o /∈ f ∩ o.a = true) ⇒ Soft (aggregatable (o) = true, ch)

With regard to the value assigned to ch, it should coincide with the one assigned
for the minimization of isolation and reachability constraints, as also in this case,
the goal is of lesser importance compared to that of OWASP minimization, which
will be discussed further in subsection 5.3.5.

Therefore, the usefulness of such aggregations is limited to a few specific cases,
where all or most of the flows have the same OWASP rules, effectively reducing the
number of OWASP_rules instances within the allocated WAFs. The combination
of these two constraints allows us to achieve the second of our initial objectives.

Integration

The existing set of NSRs in VEREFOO, as previously mentioned, includes isola-
tion and reachability constraints. These constraints, in the MaxSMT model, are
defined as requirements r, composed of the pair (C, a), where a ∈ {Allow, Deny}
and C ∈ {IPsrc, IPdst, PORTsrc, PORTdst, transportProto}. In order to in-
tegrate web-based attacks defense functionalities via OWASP enforcements with
the aforementioned constraints, the formulation of two more hard constraints was
required.

For our purposes, if an isolation constraint is already in place for a given com-
munication, with the WAF working in blocklisting mode, specifying an OWASP
requirement is unnecessary. This is because packets would already be discarded
at the IP level, preventing further analysis at the application level; hence, the
installation of an OWASP enforcement would be redundant in such cases.

In the original model each default action for the firewalls was determined before
solving the MaxSMT problem, as described in [21]. This solution would have
assured the optimality as concerns the minimization of rules enforced on each
firewall, inasmuch it would have limited the number of constraints generated. This

60

5.3. MAXSMT PROBLEM MODELING

peculiarity has been exploited in our model in order to achieve our goals.
Let ah be a generic AP in the set AA of APs, and let us introduce the wlst

predicate, which is true for ah if the WAF allocated on it will operate in allowlisting
mode, false if the WAF allocated on it will operate in blocklisting mode. Let
Rs and Os be respectively the set of r and o requirements for the network; the
mathematical relationship between each requirement r and each requirement o is
the following:

If wlst(ah) = false, then
∀o ∈ Os : (∃r ∈ Rs : Oi.IPsrc ⊆ C.IPsrc ∧ Oi.IPdst ⊆ C.IPdst) =⇒ o.a = false

A slightly different observation has to be made in the case of a WAF in al-
lowlisting mode. Installing OWASP enforcements on it would add an extra layer
of defense, ensuring that even traffic from trusted sources is scrutinized for poten-
tial security threats. In fact, even if the source is trusted, it doesn’t necessarily
mean that its content is free of harmful exploits.

This means that in the case of a WAF in allowlisting mode, it is necessary that
a reachability constraint is present for the communication on which an OWASP
enforcement is desired to be installed. Without this condition, once again the
OWASP enforcement would be redundant, as the packets for that communication
would already be discarded at the IP layer. Therefore, the mathematical relation-
ship between each requirement r and each requirement o become the following:

If wlst(ah) = true, then
∀o ∈ Os : (/∃r ∈ Rs : Oi.IPsrc ⊆ C.IPsrc ∧ Oi.IPdst ⊆ C.IPdst) =⇒ o.a = false

It is important to note that OWASP constraints are subject to a form of de-
pendency on isolation and reachability constraints, which hold greater impact in
decision-making. This dependency is essential, as isolation and reachability con-
straints govern packet handling at a lower level of the OSI stack, whereas OWASP
constraints apply at a higher level.

5.3.4 Maximal Flows
Let Fo ∈ F be the set of flows that satisfy o.Oi. The theory of maximal flows
aims to improve and optimize flow management by considering only a subset of
Fo, which, although smaller, is equally representative. This subset is denoted as
F M

o and includes only those flows which are not subflows of any other flow in Fo.
This approach aggregates traffic flows that exhibit the same behavior, by fol-

lowing identical node sequences and experiencing the same modifications, into one

61

5.3. MAXSMT PROBLEM MODELING

cohesive maximal flow. By adopting the maximal flows, the number of distinct
instances that need to be considered is reduced, and consequently, the number of
constraints input into the model is also decreased. In other words, there are fewer
flows to consider.

Maximal flows offer another advantage: they are generated before the MaxSMT
problem is formulated. Consequently, the variables concerning the flow model,
when the MaxSMT problem is formulated, are no longer free but already set to
particular values. By minimizing the number of free variables, the search space
for the MaxSMT problem is reduced, leading to improved performance in its res-
olution.

Let’s consider the algorithm proposed in [21] for the computation of maximal
flows and shown in figure 5.2. In this thesis work, some small adjustments have
been made to integrate the maximal flows with the OWASP rules placement.

Figure 5.2: Algorithm for computation of maximal flows

The initial set of paths consists of all possible paths that have n0 as the starting
node and nm+1 as the final node, where n0 has an IP address that is one of those
contained in o.Oi.IPsrc and nm+1 has an IP address that is one of those contained
in o.Oi.IPdst.

In the computation, the fields of interest for tr
0,1 and tr

m,m+1 were modified:

tr
0,1 = (α(n0) ∧ Oi.IPsrc, ∗, ∗)

tr
0,1 = (∗, α(n0) ∧ ∗, Oi.IPdst, Oi.OWASPrulei)

62

5.3. MAXSMT PROBLEM MODELING

5.3.5 WAF allocation
It may be necessary to allocate a WAF in a given AP solely to set one or more
OWASP rules. As concerns WAF allocation, the original model has remained
untouched. It is based on the following soft constraint:

∀ah ∈ AA.Soft(allocated(ah) = false, ch)

where ah is a generic AP in the set AA of APs.
This condition allows minimizing the number of APs allocated by the framework.

In fact, since a WAF can be allocated in any AP, it is necessary to introduce a
condition where it is preferable that no WAF is allocated in any AP (the optimal
condition).

63

Chapter 6

Implementation and Validation

In this chapter, the implementation of the model theorized in chapter 5 will be
presented. Examples of network topologies will be shown, where both manual
and automatic configuration of OWASP rules will be performed. Finally, the
performance and scalability of the model will be analyzed.

6.1 Manual configuration
In the manual configuration process, the service designer is responsible for defining
the security configuration of the network topology. Within this context, VERE-
FOO enables the verification of whether the configured topology adheres to the
specified security criteria, through the insertion of NSRs. Let us consider the
network topology shown in figure 6.1:

Figure 6.1: Example of network topology for manual configuration

64

6.1. MANUAL CONFIGURATION

As can be observed, the proposed topology presents four web clients (c1, c2,
c3, c4) on the left, belonging to two different subnets, whose traffic is handled
by two simple forwarders (f1, f2) with their respective static routes, simulating
generic routers. In addition to the web clients, there are two web servers (s1, s2)
on the right and two WAFs (w1, w2), already deployed by the service designer
in the optimal locations. These WAFs are responsible for analyzing the packets
originating from the web clients and destined to the web servers. The table 6.1
presents a definition of each node, along with its IP address as utilized within the
VEREFOO environment, and its respective role within the network topology.

Name IP Address Role
c1 10.0.0.1 Web Client in 10.0.0.0/24
c2 10.0.0.2 Web Client in 10.0.0.0/24
c3 10.0.1.1 Web Client in 10.0.1.0/24
c4 10.0.1.2 Web Client in 10.0.1.0/24
f1 20.0.0.1 Forwarder
f2 20.0.0.2 Forwarder
w1 20.0.0.3 Web Application Firewall
w2 20.0.0.4 Web Application Firewall
s1 30.0.5.1 Web Server
s2 30.0.5.2 Web Server

Table 6.1: Newtork nodes for manual configuration example.

Now, let us assume that the service designer wants to verify that the configured
WAFs comply with the NSRs of table 6.2.

Policy IPsrc IPdst Psrc Pdst tProto
Isolation 10.0.0.1 30.0.5.2 * * ANY

PROTOCOL-ENFORCEMENT 10.0.0.1 30.0.5.1 // // //
METHOD-ENFORCEMENT 10.0.0.1 30.0.5.1 // // //

APPLICATION-ATTACK-JAVA 10.0.0.2 30.0.5.1 // // //
APPLICATION-ATTACK-XSS 10.0.1.1 30.0.5.1 // // //

DATA-LEAKAGES-IIS 10.0.1.1 30.0.5.1 // // //
SCANNER-DETECTION 10.0.1.1 30.0.5.2 // // //
MULTIPART-ATTACK 10.0.1.2 30.0.5.2 // // //

WEB-SHELLS 10.0.1.2 30.0.5.2 // // //
BLOCKING-EVALUATION 10.0.1.2 30.0.5.2 // // //

Table 6.2: NSRs for manual configuration example.

These requirements include an isolation property and various OWASP properties

65

6.1. MANUAL CONFIGURATION

between web clients and web servers. After providing the NSRs as input along
with the network topology, VEREFOO will formulate a MaxSMT problem and
verify that the manually allocated WAFs shown in figure 6.2 meet the security
requirements. If the verification is successful, the output will appear as shown in
figure 6.3, meaning that all requirements are satisfied.

Figure 6.2: WAFs manual configuration

66

6.2. AUTOMATIC CONFIGURATION

Figure 6.3: WAFs manual configuration output

As we can further examine from figure 6.2, WAF w2 has an additional OWASP
rule for the c3/s2 communication, the MULTIPART-ATTACK enforcement. This
does not preclude the solution from being satisfiable, as the key factor is that all
the rules within the requirements are satisfied. Naturally, the reverse is not true; if
even a single OWASP rule included in the NSRs is missing from the WAF manual
configuration, the solution would become unsatisfiable.

6.2 Automatic configuration

Figure 6.4: Example network topology AG for automatic configuration

The automatic configuration, in contrast to the manual one, allows the auto-
matic allocation of WAFs within the provided network topology, configuring these

67

6.2. AUTOMATIC CONFIGURATION

WAFs with the OWASP rules specified in the requirements, as well as the isolation
and reachability constraints inherent to the firewall, which have been successfully
integrated into the implementation developed in this thesis work. In accordance
with the MaxSMT model formulated in chapter 5, the minimum number of WAFs
will always be allocated, along with the minimum number of rules, which will be
aggregated by LCP to enhance the overall readability of the configuration.

For this test, a more complex network topology was examined compared to
the one used for manual configuration, which includes a higher number of web
clients, APs and web servers. The aforementioned topology, represented by the
allocation graph in figure 6.4, includes seven web clients (c1, c2, c3, c4, c5, c6, c7)
belonging to three different subnets, thirteen APs (a1, a2, a3, a4, a5, a6, a7, a8,
a9, a10, a11, a12, a13), and three web servers (s1, s2, s3). The table 6.3 presents a
definition of each node, along with its IP address as utilized within the VEREFOO
environment, and its respective role within the network topology.

Name IP Address Role
c1 10.0.0.1 Web Client in 10.0.0.0/24
c2 10.0.0.2 Web Client in 10.0.0.0/24
c3 10.0.1.1 Web Client in 10.0.1.0/24
c4 10.0.1.2 Web Client in 10.0.1.0/24
c5 10.0.1.3 Web Client in 10.0.1.0/24
c6 10.0.2.1 Web Client in 10.0.2.0/24
c7 10.0.2.2 Web Client in 10.0.2.0/24

a1...13 20.0.0.1...13 Allocation Place
s1 30.0.5.1 Web Server in 30.0.5.0/24
s2 30.0.5.2 Web Server in 30.0.5.0/24
s3 30.0.5.3 Web Server in 30.0.5.0/24

Table 6.3: Newtork nodes for automatic configuration example.

The primary objective in this network is to protect the three web servers from
cyberattacks originating from web clients belonging to different subnets. Specif-
ically, several requirements have been defined, as shown in table 6.4, requiring
reachability from whole network to server s1 and from the subnet below (c3,c4,c5)
to server s3, besides isolation from c6 to s2. In addition to these, various OWASP
requirements have been defined for different client-server communications.

After computing the requirements, VEREFOO will provide the Service Graph
of the new network topology. As we can see in figure 6.5, a single WAF has been
allocated in what was previously AP a10, along with two forwarders for packets
routing; the automatically generated configuration of this WAF, is instead shown
in figure 6.6.

68

6.2. AUTOMATIC CONFIGURATION

Policy IPsrc IPdst Psrc Pdst tProto
Isolation 10.0.2.1 30.0.5.2 * * ANY

Reachability 10.0.1.-1 30.0.5.3 * * ANY
Reachability 10.0.-1.-1 30.0.5.1 * * ANY

PROTOCOL-ENFORCEMENT 10.0.0.-1 30.0.5.1 // // //
DATA-LEAKAGES-SQL 10.0.0.-1 30.0.5.1 // // //

WEB-SHELLS 10.0.0.-1 30.0.5.1 // // //
DATA-LEAKAGES-PHP 10.0.1.1 30.0.5.2 // // //
DATA-LEAKAGES-PHP 10.0.1.2 30.0.5.2 // // //
DATA-LEAKAGES-PHP 10.0.1.3 30.0.5.2 // // //

BLOCKING-EVALUATION 10.0.0.2 30.0.5.3 // // //
PROTOCOL-ATTACK 10.0.1.2 30.0.5.3 // // //
MULTIPART-ATTACK 10.0.2.1 30.0.5.3 // // //

APPLICATION-ATTACK-LFI 10.0.2.2 30.0.5.2 // // //
APPLICATION-ATTACK-XSS 10.0.2.2 30.0.5.2 // // //
APPLICATION-ATTACK-RCE 10.0.2.2 30.0.5.2 // // //
APPLICATION-ATTACK-SQLI 10.0.2.2 30.0.5.2 // // //

METHOD-ENFORCEMENT 10.0.2.1 30.0.5.2 // // //
SCANNER-DETECTION 10.0.2.1 30.0.5.2 // // //

Table 6.4: NSRs for automatic configuration example.

Figure 6.5: Example network topology SG for automatic configuration

69

6.2. AUTOMATIC CONFIGURATION

Figure 6.6: Example of WAF automatic configuration output

As can be seen from figure 6.6, the WAF is set on blocklisting mode, that is be-
cause there are more reachability than isolation constraints. Had the requirements
included only OWASP constraints, the default action would have been set to allow
by default. All the requirements are satisfied as concerns both reachability/iso-
lation constraints and OWASP enforcements; furthermore, the best readability is
ensured, as all subnets have been aggregated where needed.

70

6.3. PERFORMANCE AND SCALABILITY

As we could expect, METHOD-ENFORCEMENT and SCANNER-DETECTION
rules are missing from the configuration, as there is a deny action from c6 to s2
which would make the rules redundant.

6.3 Performance and scalability
This section presents the results of the performance and scalability evaluations
conducted on the developed feature of the framework. The aim is to demonstrate
the objectives that have been met and to identify areas for improvement to address
any existing limitations in future iterations.

All the tests have been carried out on a machine equipped with an Intel Core i7
at 1.80-1.99 GHz and 8 GB of RAM.

Three types of tests have been performed:
• Fixed number of NSRs with increasing number of APs;
• Fixed number of APs with increasing number of NSRs;
• Increasing number of APs and NSRs.

In the first case, shown in figure 6.7, the evolution of computational time is an-
alyzed in relation to the increasing number of APs, while maintaining a fixed
number of 10 NSRs. As can be observed, the time increases linearly with the
number of APs, reaching approximately 6.5 seconds in the worst case.

Figure 6.7: Results of scalability tests for APs

In the second case, shown in figure 6.8, the evolution of computational time

71

6.3. PERFORMANCE AND SCALABILITY

is analyzed in relation to the increasing number of NSRs, while maintaining a
fixed number of 10 APs. As can be observed, the maximum computational time
reached is approximately half second. This result highlights the high scalability of
the OWASP requirements, as could be inferred from the lightweight and optimized
MaxSMT model.

In fact, the OWASP rules are aggregated based on source-destination pairs. This
means that if there are ten OWASP requirements that require protection from
10.0.0.1 to 30.0.0.1, for example, only a single packet will be generated, which wiil
flow across all the possible paths. Once the satisfiability of that packet is verified,
all ten enforcements will be applied to it.

In this specific test, efforts were made to achieve the greatest possible uniformity
in the diversification of source-destination pairs and OWASP rules alone, in order
to accurately simulate the needs of a real service designer.

Figure 6.8: Results of scalability tests for NSRs

The primary impact on computational time is therefore due to the complexity
of the network topology for this feature. To confirm this, a third and final test was
conducted, shown in figure 6.9, where both the number of APs and NSRs increase
proportionally.

The results of the third test, in fact, do not differ significantly from those of the
first test, with only about a one-second difference in the worst-case scenario, i.e.,
100 APs and 100 NSRs. Ultimately, the OWASP enforcements feature demon-
strates high scalability and optimal performance.

72

6.3. PERFORMANCE AND SCALABILITY

Figure 6.9: Results of scalability tests for APs and NSRs proportionally increased

73

Chapter 7

Conclusions

During the course of this thesis, enhancements to the ADP module of VEREFOO
were developed and designed to extend the capabilities of the framework. This
work was carried out with the future goal of utilizing the developed framework in
real-world contexts where automation of security for web-based attacks is required.

Initially, a comprehensive study was conducted on the functioning of Web Ap-
plication Firewalls, with a particular focus on ModSecurity, an open-source Web
Application Firewall with significant capabilities. Based on the rule model em-
ployed by ModSecurity to ensure security against web-based attacks in compliance
with the OWASP Top Ten, a MaxSMT problem was formulated to facilitate the
integration of VEREFOO with the Core Rule Set.

Subsequently, the model was successfully implemented for both manual and
automatic configurations. In addition, the implementation was integrated with
the existing firewall module, allowing both implementations to coexist, thanks to
new dependency constraints between them which were formulated.

After the aforementioned tasks were completed, a series of performance and
scalability tests were conducted to understand the differences in computation time
across various operational and network conditions. The results indicate that the
computation time for the implemented feature has proven to be encouraging and
consistent with the proposed model, confirming the optimality of the solution.

In the future, to enhance the work presented in this thesis, the implementation
of the Web Application Firewall should be completed, specifically concerning the
filtering of URLs and domains. Additionally, the framework could be further
enriched with new virtual network functions.

74

Bibliography

[1] Medium. WAF: Web Application Firewalls — How do they even work? url:
https://medium.com/codex/waf-web-application-firewalls-3373d520385f
(visited on 08/16/2024).

[2] Paloaltonetworks. What Is a WAF? | Web Application Firewall Explained.
url: https://www.paloaltonetworks.com/cyberpedia/what-is-a-web-
application-firewall (visited on 08/16/2024).

[3] Modshieldsb. Demystifying WAF Rules: Signature-based vs. Anomaly Detec-
tion. url: https://www.modshieldsb.com/demystifying-waf-rules-
signature-based-vs-anomaly-detection/ (visited on 08/16/2024).

[4] Hackerone. Web Application Firewall: 3 Types of WAF and Key Capabil-
ities. url: https : / / www . hackerone . com / knowledge - center / web -
application-firewall (visited on 08/16/2024).

[5] OWASP Foundation. OWASP CRS Project. url: https://coreruleset.
org/ (visited on 08/16/2024).

[6] OWASP Foundation. Anomaly Scoring. url: https://coreruleset.org/
docs/concepts/anomaly_scoring/ (visited on 08/16/2024).

[7] OWASP Foundation. Paranoia Levels. url: https://coreruleset.org/
docs/concepts/paranoia_levels/ (visited on 08/16/2024).

[8] SpiderLabs. ModSecurity Reference Manual. url: https://github.com/
owasp-modsecurity/ModSecurity/wiki/Reference-Manual-(v3.x) (vis-
ited on 08/21/2024).

[9] OWASP Foundation. Installing CRS. url: https://coreruleset.org/
docs/deployment/install/ (visited on 08/21/2024).

[10] OWASP Foundation. Making Rules. url: https : / / coreruleset . org /
docs/rules/creating/ (visited on 08/30/2024).

[11] OWASP Foundation. Rule IDs. url: https://coreruleset.org/docs/
rules/ruleid/ (visited on 09/01/2024).

75

https://medium.com/codex/waf-web-application-firewalls-3373d520385f
https://www.paloaltonetworks.com/cyberpedia/what-is-a-web-application-firewall
https://www.paloaltonetworks.com/cyberpedia/what-is-a-web-application-firewall
https://www.modshieldsb.com/demystifying-waf-rules-signature-based-vs-anomaly-detection/
https://www.modshieldsb.com/demystifying-waf-rules-signature-based-vs-anomaly-detection/
https://www.hackerone.com/knowledge-center/web-application-firewall
https://www.hackerone.com/knowledge-center/web-application-firewall
https://coreruleset.org/
https://coreruleset.org/
https://coreruleset.org/docs/concepts/anomaly_scoring/
https://coreruleset.org/docs/concepts/anomaly_scoring/
https://coreruleset.org/docs/concepts/paranoia_levels/
https://coreruleset.org/docs/concepts/paranoia_levels/
https://github.com/owasp-modsecurity/ModSecurity/wiki/Reference-Manual-(v3.x)
https://github.com/owasp-modsecurity/ModSecurity/wiki/Reference-Manual-(v3.x)
https://coreruleset.org/docs/deployment/install/
https://coreruleset.org/docs/deployment/install/
https://coreruleset.org/docs/rules/creating/
https://coreruleset.org/docs/rules/creating/
https://coreruleset.org/docs/rules/ruleid/
https://coreruleset.org/docs/rules/ruleid/

BIBLIOGRAPHY

[12] Wenfeng Xia et al. “A Survey on Software-Defined Networking”. In: IEEE
Communications Surveys & Tutorials 17.1 (2015), pp. 27–51. doi: 10.1109/
COMST.2014.2330903.

[13] Diego Kreutz et al. “Software-Defined Networking: A Comprehensive Sur-
vey”. In: Proceedings of the IEEE 103.1 (2015), pp. 14–76. doi: 10.1109/
JPROC.2014.2371999.

[14] Yong Li and Min Chen. “Software-Defined Network Function Virtualization:
A Survey”. In: IEEE Access 3 (2015), pp. 2542–2553. doi: 10.1109/ACCESS.
2015.2499271.

[15] Daniele Bringhenti et al. “Towards a fully automated and optimized network
security functions orchestration”. In: 2019 4th International Conference on
Computing, Communications and Security (ICCCS). 2019, pp. 1–7. doi: 10.
1109/CCCS.2019.8888130.

[16] Wikipedia. Boolean satisfiability problem. url: https://en.wikipedia.
org/wiki/Boolean_satisfiability_problem (visited on 09/05/2024).

[17] Wikipedia. Satisfiability modulo theories. url: https://en.wikipedia.
org/wiki/Satisfiability_modulo_theories (visited on 09/05/2024).

[18] Wikipedia. Maximum satisfiability problem. url: https://en.wikipedia.
org/wiki/Maximum_satisfiability_problem (visited on 09/05/2024).

[19] Daniele Bringhenti et al. “Automated optimal firewall orchestration and con-
figuration in virtualized networks”. In: NOMS 2020 - 2020 IEEE/IFIP Net-
work Operations and Management Symposium. 2020, pp. 1–7. doi: 10.1109/
NOMS47738.2020.9110402.

[20] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In:
Tools and Algorithms for the Construction and Analysis of Systems. Ed. by
C. R. Ramakrishnan and Jakob Rehof. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 337–340. isbn: 978-3-540-78800-3.

[21] Daniele Bringhenti et al. “Automated Firewall Configuration in Virtual Net-
works”. In: IEEE Transactions on Dependable and Secure Computing 20.2
(2023), pp. 1559–1576. doi: 10.1109/TDSC.2022.3160293.

76

https://doi.org/10.1109/COMST.2014.2330903
https://doi.org/10.1109/COMST.2014.2330903
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/ACCESS.2015.2499271
https://doi.org/10.1109/ACCESS.2015.2499271
https://doi.org/10.1109/CCCS.2019.8888130
https://doi.org/10.1109/CCCS.2019.8888130
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories
https://en.wikipedia.org/wiki/Maximum_satisfiability_problem
https://en.wikipedia.org/wiki/Maximum_satisfiability_problem
https://doi.org/10.1109/NOMS47738.2020.9110402
https://doi.org/10.1109/NOMS47738.2020.9110402
https://doi.org/10.1109/TDSC.2022.3160293

	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Objectives
	Outline

	Web Application Firewalls: ModSecurity and OWASP Core Rule Set
	Web Application Firewall
	WAF structure
	WAF categorization

	Open Web Application Security Project
	OWASP Top 10
	OWASP Core Rule Set

	ModSecurity
	Configuration Directives
	Processing Phases
	Making the rules

	VEREFOO
	Software Defined Network
	Network Function Virtualization
	VEREFOO Framework
	VEREFOO architecture

	Satisfiability
	Boolean Satisfiability Problem
	Satisfiability Modulo Theories
	Maximum Satisfiability Modulo Theories

	Z3 Theorem Prover
	Z3 Architecture

	Thesis approach
	Modeling of Network Security Requirements
	The model
	XML representation
	Input schemas
	Output schemas

	MaxSMT Problem Modeling
	MaxSMT problem objectives
	Match function
	OWASP NSRs model
	Maximal Flows
	WAF allocation

	Implementation and Validation
	Manual configuration
	Automatic configuration
	Performance and scalability

	Conclusions

