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Abstract

This work focuses on the application of diffusion models, a very well-known type
of generative artificial intelligence, to the mathematical and physical problem of
the computation of entropy. The main goal of this work is to show that diffusion
models can be used to compute entropy in a very efficient way, exploiting their
recognized ability to learn the underlying data distrbution of a system.

To this scope, first of all a good part of the presented work has been dedicated
to the study of similar methods present in literature, to understand in particular
which datasets are used to benchmark the task of entropy computation. This
analysis brought to the result that in the physics world the preferred choice is to
focus on spin systems, such as the Ising and XY models, for which the entropy has
been analytically computed. Hence, these systems have been studied and methods
to create samples from them have been implemented to create the corresponding
datasets on which to train the diffusion models.

Moreover, an in depth study of the history and development of diffusion models
to understand their functioning and how to exploit their capabilities has been
carried out, with particular attention to the data preparation and to what is called
the score network. To implement this last function a transformer architecture
has been chosen for its versatility and powerful computational properties, that
respondend well to the necessities given by the structure of the data.

Diffusion models are a fairly recent technology, and to exploit their full potential
it is important that all people in the scientific community, even if not specialized
in machine learning or data science, see the great benefits that the application of
this technology may bring. It was for this reason and to prove the applicability
of this type of generative AI in a very wide variety of fields, that the choice was
made to apply diffusion models to the task of entropy computation, where they
had never been employed before.

Entropy computation is a well-known problem in science since this quantity
can give a lot of information on the data one is treating, but unfortunately it is



often unfeasible to analytically compute it for systems or datasets. Up to now, few
attempts have been made to use deep learning techniques to estimate this quantity.

The objective of this thesis has been to implement and test the proposed method
employing diffusion models: all the code developed for the present work, including
the entropy computations, the scripts for dataset generation and visualization, are
available at this GitHub repository.
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Chapter 1

Introduction

The present work is based on and contributes to the large quantity of papers and
projects exploring the capabilities of diffusion models. Diffusion models are a
modern class of generative models, meaning their task is to generate objects of
interest; they are widely used nowadays thanks to their extraordinary capacities
in the generation of any type of content, may this be high fidelity images, videos,
audio contents or even of specific domains of interest. Due to the large success
of these models and their great capabilities, it is very important to study their
functioning, the possibilities that they offer and their implications.

In particular, the present work focuses on the application of diffusion models
not specifically to content generation, but to entropy computation. It has in fact
been shown that diffusion models can be used to compute important mathematical
quantities such as mutual information, and following this path it is interesting to
try to exploit them also for the computation of entropy, which is a very important
physical problem often really difficult or impossible to solve analytically. In the
following chapters we will show how a specific part of the diffusion model, i.e. the
score network, can be used to learn a really important quantity relative to the data
distribution, i.e. the score, and starting from this computations can be made to
retrieve the entropy of a chosen system. In particular, the thesis is organized as
follows:

• In Chapter 2 the evolution and the functioning of diffusion models will be
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Introduction

explained, together with all the mathematical concepts necessary to understand
the following chapters. This comprehends notions of measure theory and
stochastic calculus, as well as all the mathematical quantities such as KL
divergence and entropy that will be used. This chapter will also introduce
how entropy estimation and diffusion models are linked.

• In Chapter 3 the physical systems for which the entropy will be computed will
be introduced, as well as the methods to generate the necessary corresponding
datasets. This chapter will also offer a deeper focus on the system design and
explain the choices that were made regarding the model architecture.

• In Chapter 4 the results of the experiments conducted to test the method
will be presented. These will not be limited to the final results, but will also
extend to all the checks that were made to ensure that the system is working
as expected.

• In Chapter 5 the conclusions that can be drawn from this work will be exposed,
discussing what worked optimally and what could still be material of future
research.

2



Chapter 2

Related works

2.1 Mathematical background

2.1.1 Measure theory

Definition 1 Given a set X, let P (X) represent its power set, i.e. the set of all
possible subsets of X. Then, a subset Σ ∈ P (X) is called a σ-algebra if and only
if the three following conditions are satisfied:

• X ∈ Σ

• If A ∈ Σ, then Ac ∈ Σ

• If A1, A2, ... ∈ Σ, then t∞
i=1 Ai ∈ Σ

Definition 2 Let X be a set, and Σ be a σ-algebra over X. A function µ : Σ→
[0, +∞] is called a measure if it satisfies the following properties:

• µ(∅) = 0

• σ-additivity: if A1, A2, ... ∈ Σ are pairwise disjoint, then µ(t∞
i=1 Ai) = q∞

i=1 µ(Ai)

A pair (X, Σ) is called a measurable space, and the members of Σ are called
measurable sets. Moreover, a triple (X, Σ, µ) is called a measure space.

Definition 3 A probability space (Ω,F ,P) is a measure space where

3
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• Ω is the sample space, i.e. the set of all possible outcomes

• The σ-algebra F is called event space, is the set of events, an event being a
set of outcomes in the sample space

• P is called probability function and assignes to every event in the event space
a probability between 0 and 1, satisfying P(Ω) = 1

A very special kind of measure, beside the probability measure, is the Lebesgue
measure, which is used to assign a measure to subset of high dimensional Eucledian
n-spaces. Up to three dimensions it coincides with the standard measures of length,
area and volume, but generalizes the concept for every n. Considering any interval
I = [a, b] ⊆ R, and its length l(I) = b− a, for any subset E ⊆ R, first the Lebesgue
outer measure λ∗(E) is defined:

λ∗(E) = inf
I ∞Ø

i=1
l(Ii) : (Ii)i∈Nsequence of open intervals with E ⊂

∞Û
i=1

Ii

J
(2.1)

The generalization to higher dimensions is done as follows: given any rectangular
cuboid C which is a Cartesian product of open intervals C = I1 × I2 × ...× In, let
vol(C) = l(I1)× ...× l(In) denote its volume. For any subset E ⊆ Rn, the Lebesgue
outer measure is defined as:

λ∗(E) = inf
I ∞Ø

i=1
vol(Ci) : (Ci)i∈Nsequence of cuboids with E ⊂

∞Û
i=1

Ci

J
(2.2)

Some sets E satisfy the condition that for every A ⊆ R

λ∗(A) = λ∗(A ∩ E) + λ∗(A ∩ Ec) (2.3)

such sets are said to be Lebesgue-measurable, and the Lebesgue measure λ is defined
as the restriction of the Lebesgue outer measure to the set of Lebesgue-measurable
sets, moreover, the sets of all such E is a σ-algebra.

Another concept that will be used in the future sections is the Radon-Nikodym
derivative. A measurable space is said to be σ-finite if it can be written as a
countable union of measurable sets with finite measure, meaning

4
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X =
∞Û

i=1
Xi µ(Xi) <∞ (2.4)

The Euclidean space is σ-finite with respect to the Lebesgue measure, because
as we saw it is the union of countably many cubes with finite volume, and this is
a very important property that allows to define the Radon-Nikodym derivative,
which is a way to define the derivative of a measure with respect to another one,
when the two measures are absolutely continuous with respect to each other.

Theorem 1 (Radon-Nikodym Theorem) Let (X, Σ, µ) be a σ-finite measure
space, and let ν be another measure on the same space such that ν is absolutely
continuous with respect to µ. Then, there exists a σ-measurable function f : X →
[0, +∞) such that for every A ∈ Σ:

ν(A) =
Ú

A
f dµ (2.5)

the function f satisfying the above equality is called the Radon-Nikodym derivative
of ν with respect to µ, and it is denoted as dν

dµ
. It is analogous to the derivative in

calculus since it describes the rate of change of density of one measure with respect
to another.

2.1.2 Stochastic Calculus

Stochastic calculus is a branch of mathematics created to deal with stochastic
processes; in particular we will work with stochastic differential equations. Such
equations have the form:

dXt = f(t, Xt) dt + g(t, Xt) dWt (2.6)

where

• Xt is the random variable defining the state of the system at time t

• f : Rm × [0, T ]→ Rm is called the drift coefficient

• g : [0, T ]→ Rm is called the diffusion coefficient

5



Related works

• dWt is a Brownian motion

Definition 4 A Brownian motion is a stochastic process Wt ∈ R such that:

• W0 = 0

• Wt has independent increments for non-overlapping time intervals

• Wt −Ws ∼ N(0, t− s) for 0 ≤ s ≤ t

• Wt has continuous paths

The diffusion equation that we will be working with is a special case of stochastic
differential equation, and it is given by the following form:

dXt = f(t, Xt) dt + g(t) dWt (2.7)

where we can see that the diffusion coefficient only depends on time.
Given this diffusion equation, an interesting problem, solved by [1], is to find

the reverse-time SDE, which is the SDE that describes the reverse of the diffusion
process, reverting time. It is found that this is given too by a stochastic differential
equation

dX̂t = −f(t, X̂t) dt + g(t) dŴt (2.8)

and the reverse drift coefficient can be computed as:

f̂(t, Xt) = f(t, Xt)− g2(t)∇x [log p(t, Xt)] (2.9)

2.1.3 Markov Chains Monte Carlo

The algorithms used in the following sections to model physical systems that will
give the datasets of interest are based on Markov chains. Hence an introduction to
this topic and an analysis of its foundations are necessary to allow to understand
how some of the algorithms that have been used to the scope of this thesis work.

A Markov chain is a stochastic process that satisfies the Markov property (also,
memoryless property), which states that the conditional probability distribution of

6
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future states of the process depends only upon the present state and not on the
sequence of events that preceeded it. In other words, the future is conditionally
independent from the past, given the present; for each state one can exactly compute
the transition probabilities to any other configuration

A discrete-time Markov chain with state space X is defined by a transition
probability matrix P where the rows are labeled with the entries of X and Pij =
P(Xn+1 = j|Xn = i). A property that naturally follows is that all elements in each
row of P sum up to 1; it is said to be a stochastic matrix.

A Markov chain is also characterized by its initial distribution π(0), which
gives for each state the probability of it being the first one during the system
evolution P(X0 = i) = πi(0). Once the transition matrix and the initial probability
distribution have been specified, the probability distribution of the trajectories
can be computed. From the definition of P it follows that, given the probability
distribution of the states at a certain time t, π(t+1) = P ′π(t). From this recoursive
formula, which is known as Kolmogorov equation, one can derive that at every
step, the probability distribution of the state of the system is given by the vector

π′(t) = π′(0)P t (2.10)

For every stochastic matrix the probability distribution π such that

π = P ′π (2.11)

is called invariant probability distribution, and it is well-known in many field such
as graph theory to have very important properties and applications. It naturally
follows that if the initial probability distribution π(0) is equal to the invariant one,
then for every time instant the probability distribution of the states will remain
unchanged, which is the reason for which π is also called stationary distribution.
Any stochastic matrix P can always be thought of as the normalized weight matrix
of some (in general, weighted and directed) graph GP . The existence of a stationary
distribution is not guaranteed for every stochastic matrix, but it is for all the ones
that are irreducible and aperiodic. A matrix is said to be irreducible if on the graph
that it defines it is possible to reach any state from any other state in a finite

7
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number of steps, and aperiodic if the greatest common divisor of the lengths of all
cycles in such graph is 1.

It can be shown that if P is an irreducible and aperiodic stochastic matrix
and π = P ′π is its unique stationary probability vector, then if at any t ≥ 0 the
probability distribution vector of a Markov chain with transition probability matrix
P is called π(t), then

lim
t→∞

π(t) = π (2.12)

no matter what the initial conditions π(0) were. This is equivalent to saying
that for a Markov chain X(t) with transition probability matrix P , the marginal
probability distribution of X(t) converges to the stationary probability vector π as
t grows large. This is a first step needed to prove the following results given by
the Ergodic theorem, which will guarantee that the empirical frequency of visits of
a Markov chain in any given state i converges to the stationary probability πi of
that state.

Theorem 2 (Ergodic theorem) Let X(t), t = 0,1, ... be a Markov chain with
irreducible transition probability matrix P . Let π = P ′π be the unique invariant
probability distribution of P . Then, for any function f such that Eπ[|f(X)|] <∞
and for any arbitrary initial probability distribution:

lim
T →∞

1
T

T −1Ø
t=0

f(X(t)) = Eπ[f(X)] (2.13)

with probability 1.

This theorem is fundamental in the applications of Markov Chain Monte Carlo
(MCMC) statistical methods: the basic concept is that in many relevant appli-
cations, the state space X is very large and one is only interested in computing
weighted averages Eπ[f(X)] of observable functions f : X → R with respect to a
probability distribution π, but given the size of the system the probability vector
π is hard or practically impossible to compute explicitly. However, thanks to the
result of the theorem, one can compute the quantities of interest by constructing a
Markov chain with invariant distribution π and, for large enough t, use its samples

8
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to approximate the expected value of f .

Other very important concepts in understanding Markov Chain Monte Carlo
that simulate physical systems that obey to empirical laws come from game theory
and are best response dynamics and noisy best response dynamics. They can be
modeled with Markov chains and have some properites that ensure convergence
to the desired results. If one considers the simulation of a physical systems were
many particles interact, this can be seen as a game where each particle is an agent
that interacts with all the others or at least the ones in its neighborhood which it
is connected with.

In game theory, a game is defined by players V and for each player i a set of
possible actions Ai, potentially infinite. The set of all possible states of the game,

X =
Ù
i∈V
Ai

is called configuration space. Each vector x ∈ X is a possible configuration, an
assignment to each player of a specific action.

Each player has also a utility function ui : X → R that assigns to each
configuration a real number that quantifies the reward that player i gets from that
state. The players are considered rational elements that act to maximize their
utility. The triple (V , {Ai}, {ui}) is called a strategic form game. Given these
elements, the best response (BR) function can be defined as

Bi(x−i) = argmaxai∈Ai
ui(ai, x−i) (2.14)

i.e. the set of rational action that player i would choose in order to maximize its
utility if he knew the actions of all the other players ant that those would not
change. A very important concept in game theory is the one of Nash equilibrium,
which is a configuration in which all players are playing a best response to the
others. It is said to be strict if for every player such best response is unique. The
interpretation of a Nash equilibrium is that in such configuration no player has
any strict incentive to unilaterally change its action, as its current utility is the
maximum he can get given the actions chosen by every other player. However

9
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one must note that a Nash equilibrium could still be a sub-optimal choice for the
players; it is possible that coordinated deviations of more than one player from
their actions in a Nash equilibrium would lead to a higher utility for these players.
A game theoretic approach is widely used in optimization problems, when one must
optimize a target functional

Φ :
Ù
i∈V
Ai → R (2.15)

This functional, that could for example represent some physical property such as
the energy of a certain system, can often be decomposed in a sum of local terms

Φ(x) =
Ø

F ∈F
ΦF (x|F ) (2.16)

where F is a family of subsets of V and ΦF is a local functional that depends only
on the actions of the players in F . By defining the utilities of the players as

ui(x) =
Ø
F ∋x

ΦF (x|F ) (2.17)

one can construct (V , {Ai}, {ui}) which is a potential game with potential Φ where
the variables of the systems are considered the players.

Now that we know how physical systems and optimization problems can be
modeled as games, we can define what a potential game is and how the potential
can be maximized with noisy best response dynamics.

A game (V , {Ai}, {ui}) is said to be an (exact) potential game if there exists
a function Φ : X → R such that for any player i, given any two configurations
x, y ∈ X that differ only for the action associated with player i, the following holds
true:

ui(y)− ui(x) = Φ(y)− Φ(x) (2.18)

A very important property of potential games is that the configurations that
belong to the set of global maximum points of the potential are Nash equilibria.

Now one can talk about evolutionary dynamics given by the series of actions
of all the players; in contexts where the game is used as a modeling tool to solve
optimization problems, such dynamics can be interpreted as distributed algorithms.

10
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The best response dynamics is a game-theoretic learning process defined by a
Markov chain where at each time step a player is chosen and it updates is action
choosing from a uniform distribution on the set corresponding to its best response
to the present configuration; this gives the transition matrix of the Markov Chain,
while the state space coincides with the configuration space X of the game.

The best response dynamics has a very useful property: given a finite ordinal
potential game with configuration space X and set of Nash equilibria N ⊆ X , the
best response dynamics X(t) is such that, for every starting configuration X(0)
there exists a finite time T > 0 such that X(t) ∈ N for every t ≥ T . This, however,
does not ensure that this dynamics will find the points of maximum of the potential,
because even if all of the global maxima are Nash equilibria, it is not true that all
Nash equilibria are maxima of the potential; there may be some that are "locally"
the best configuration available, thus not encouraging the agents to change their
strategy, but overall represent sub-optimals configurations.

This problem is resolved with the addition of noise to original dynamics; there
are various way to do this, one of which gives the logit dynamics, or noisy best
response dynamics. This model as before selects randomly one player whose action
will be updated, but now the transition matrix for every two configurations x, y ∈ X
is given by

Λx,y =


eηui(yi,x−i)q

a∈Ai
eηui(a,x−i)

if x and y differ only in entry i

0 otherwise
(2.19)

as one can see in this case there is a certain probability that the agent that
changes action will make a choice that is not belonging to its current best response
set. The parameter η is a parameter whose inverse corresponds to a measure of
the noise. If it is put to zero, thus meaning "infinite noise", the dipendence on the
utility vanishes and the agent choses its action from a uniform distribution over all
its possible ones, while as η grows the noise decreases and eventually disappears
and each agent will chose from a uniform distribution over its best response set,
returning to the case of the best response dynamics.

11
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Theorem 3 Suppose that (V , {Ai}, {ui}) is a potential game with potential function
Φ. Then, for every η > 0, the noisy best response dynamics is an irreducible
reversible Markov chain with invariant probability distribution

π(x) = eηΦ(x)

Z(η) where Z(η) =
Ø
y∈X

eηΦ(y) (2.20)

for every configuration x ∈ X .

One can notice that in the vanishing noise limit the stationary probability
distribution π converges to a uniform probability over the set argmax{Φ(x) : x ∈
An}, which gives the global maximizers of the potential function. As said before,
this set will belong to but not necessarily coincide with the set of Nash equilibria:
the dynamics that has been defined is able to discriminate the Nash equilibria
selecting just those maximizing the potential.

The combination of this result with the Ergodic theorem (Th. 2.1.3) gives a
very powerful tool: in the limit of a long time, the noisy best response Markov
chain will have spent almost surely almost all of its time in argmax{Φ(x) : x ∈ An},
This is at the basis of many Markov Chain Monte Carlo algorithms widely used in
statistical physics, based on the Glauber dynamics, which is the name of the noisy
best response dynamics when applied to a physical context. In this framework, the
energy is the potential function that has to be minimized by finding an appropriate
configurations of the agents, π is referred to as the Gibbs distribution, Zη is the
partition function, a well-known quantity that is linked to many physical propertis
amog which entropy, and the noise 1

η
is often interpreted as the temperature of the

system. These results have shown how it is possible to simulate complex physical
systems relying on the mathematical properties of Markov Chains and potential
games; this offers a legit basis to justify the algorithms that will be used in the
following sections, in particular the Metropolis-Hastings algorithm which, apart
from slight modifications and the speed of covergence, is almost identical to the
Glauber dynamics.
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2.2 Mathematical quantities of interest

This work is focused, rather than on the capability of diffusion model to generate
content, on the exploitation of their capacity to learn what is called the score
function of the input data in order to derive other quantities of interest from it to
extend their domain of application. For the following discussion, the reader must
be familiar with concepts such as entropy, Kullback–Leibler (KL) divergence and
mutual information.

2.2.1 Entropy

Entropy is a scientific concept that describes the disorder, randomness or uncertainty
of a certain state. It has applications, among others, in thermodynamics, statistical
mechanics and information theory. It is often a crucial quantity of a system that is
important to characterize, because it plays a key role in phase transitions and in
general in the evolution of a physical system. Unfortunately, it is often difficult
to compute; analytical computation of entropy is possible only for rather simple
systems. Traditional definitions of entropy in classic thermodynamics are strictly
related to physical characteristics such as temperature and heat. In information
theory the entropy of a random variable is the average level of uncertainty inherent
to the variable’s possible outcomes, and it is defined for a certain measure µ as:

H(µ) = −
Ú

dµ(x) log µ̄(x) (2.21)

where the relationship between the probability measure µ and the corresponding
probability density µ̄ is dµ(x) = µ̄(x) dx. This expression is the same as the
statistical mechanics definition, that is also focused on the degree of disorder of
physical systems. The entropy can be viewed as the expected value of what is
called "surprise", or "information content", which is given by log(1/µ̄(x)). Such
quantity is defined in information theory to measure how much a certain content is
informative. This starts from the idea that the greater the "surprise" that a certain
measurement brings, the higher the information that it conveys. On the other
hand, registering an event that is almost certain to happen is not surprising at all
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and thus does not convey any useful or additional information, for this reason the
surprise/information of an event with probability one is zero.

2.2.2 KL-divergence

The KL-divergence, also called relative entropy, is defined between two measures to
quantify their distance, how far or equal they are to each other, and is defined as:

DKL(µA||µB) =
Ú

dµA log
A

dµA

dµB

B
(2.22)

if the Radon-Nikodyim derivative dµA

dµB
exists.

Notice that this quantity is not symmetric and it measures how a probability
measure µA is different from a reference probability measure µB; one interpretation
of the KL divergence between these two quantities is the expected excess of surprise
when µB is used to approximate µA.
Because this quantity is not symmetric, it is not a metric on the space of probability
distributions, while, as the name explains, it is a divergence, meaning an asymmetric,
generalized form of squared distance. Two really important properties of the KL-
divergence are the fact that it is always non-negative and that it is equal to zero
if and only if the two probability measures under consideration are equal to each
other.

2.2.3 Mutual Information

The mutual information between the random variables A, B quantifies how much
they are related and they can say about each other. To measure it, one can notice
that this concept is strictly related to the independence between these two variables.
In fact, it is clear that if two variables are independent from each other, observing
data from one will not give additional information about the second, meaning that
the shared information between the variables is zero. Given these considerations,
the definition of the mutual information is the following:

I(A, B) = DKL(
è
µA, µB

é
||µAµB) (2.23)
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where
è
µA, µB

é
is the joint measure.

2.2.4 Important mathematical relations

Now that entropy, KL-divergence and mutual information have been defined, some
useful equivalences must be reported which will be used in the following sections
and which unveil the strict relationship between the quantities that were just
introduced.

In particular it is easy to derive from the definition of KL-divergence its rela-
tionship with the entropy, where the cross entropy H(A, B) has been defined

DKL(µA||µB) =
Ú

dµA log
A

dµA

dµB

B
=
Ú

dµA log
A

1
µ̄B

B
−
Ú

dµA log
A

1
µ̄A

B

= H(A, B)−H(A)
(2.24)

The following set of equations instead shows that the mutual information can
be thought of as the reduction in entropy of one measure when the other one is
known:

I(A, B) = H(A)−H(A|B)

= H(B)−H(B|A)

= H(A) + H(B)−H(A, B)

= H(A, B)−H(A|B)−H(B|A)

(2.25)

Where the conditional entropy is H(A|B) =
s

H(Ay) dµB(y). Let us prove the
first equivalence
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I(A, B) =
Ú

a∈A

Ú
b∈B

p(A,B)(a, b) log p(A,B)(a, b)
pA(a)pB(b) da db =

=
Ú

a∈A

Ú
b∈B

p(A,B)(a, b) log p(A,B)(a, b)
pB(b) da db−

Ú
a∈A

Ú
b∈B

p(A,B)(a, b) log pA(a) da db =

=
Ú

a∈A

Ú
b∈B

pB(b)pA|B=b(a) log pA|B=b(a) da db−
Ú

a∈A
pA(a) log pA(a) da

=
Ú

b∈B
pB(b)

Ú
a∈A

pA|B=b(a) log pA|B=b(a) da db−H(A) =

= −
Ú

b∈B
pB(b)H(A|B = b) db + H(A) =

= −H(A|B) + H(A) = H(A)−H(A|B)

(2.26)
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2.3 Diffusion models and generative AI

The scope of diffusion model is to learn the distribution of the data space of interest,
with the aim of being eventually capable of sampling from it, creating new, unseen
data that although being artificially generated still may seem plausible. For this
reason, they belong to the field of generative AI. Quite often, the generation is
conditioned, meaning that the model learns to generate samples conditioned on
some prompt that is given: in fact, for example, it is not only useful to train a
model able to reproduce credible pictures, but it is of great importance that the
models responds well to user’s needs, for example if the goal is to have a generated
picture of a man the conditioning signal may be the label "man" and the model
would have to sample not from the whole distribution of the space of all possible
pictures, but only from those depicting a man.

2.3.1 Generative models

Generative AI models are widespread and rapidly improving: they succeed in
generating text, audios, video and any kind of data. They are statistical models
that reproduce the joint distribution of an observable and a target variable, with the
final scope of generating samples from the observable, potentially even conditioned
on the target. With the advent of deep learning, deep generative models have
arisen, unifying statistical generative models with deep neural networks, that require
large quantities of data and resources to be trained but have showed to be able
to model reliably intricate mathematical relationship within the data itself that
would otherwise be unfeasible to work with. A few of the most famous example of
architectures for deep generative models are variational autoencoders (VAEs) and
generative adversarial networks(GANs).

Variational Autoencoders

These type of models use expectation-maximization to optimize a lower bound of
the data likelihood, which is usually intractable. Variational autoencoders stemmed
from the autoencoder architecture, which is very successful in performing its task of
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dimensionality reduction. This task is fundamental for efficiency reasons because,
while maintaining the most important features of the data, allows to have significant
reductions in computational time and resources necessary to process data with
respect to dealing with high dimensionality objects. Variational autoencoders,
with respect to their predecessors, have introduced modifications to the encoder-
decoder structure that allow not only the embedding of the data, x, into a latent
space, with variables z, while retaining the most important features, but also
allow generation of new data from the original distribution. The key idea behind
variational autoencoders is that, in theory, if the autoencoder architecture was able
to organize data in the latent space in a meaningful and "smart" way, one could
sample a point in the latent distribution and decode to generate all the possible
data.

A variational autoencoder is an architecture composed of both an encoder
and a decoder and is trained to minimize the reconstruction error between the
encoded-decoded data and the initial data. However, differently from a standard
autoencoder, instead of encoding an input as a single point it encodes data in the
latent space as a distribution. This is done in order to introduce some regularization
of the latent space, to avoid overfitting and ensure that the latent space has good
properties that enable the generative process. To train the model, firstly the input
is encoded as distribution over the latent space, then a point from this space
is sampled from the regular distribution and lastly, when the sampled point is
decoded, the reconstruction error can be computed and backpropagated through
the network.

The task is hence to try to maximized the probability that the data x is given
by the parmetrized probability distribution pθ(x), which is assumed to have the
form of a Gaussian which parameters are the mean and covariance matrix. The
relationship with respect to the distribution in the latent space is given by

pθ(x) =
Ú

z
pθ(x|z)pθ(z) dz (2.27)

where also pθ(x|z), called the likelihood, which will be computed by what is called
a probabilistic decoder, is taken to be a gaussian distribution. The computation of
pθ(z|x) being intractable, it has to be approximated with qϕ(z|x), which will be
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the task of the probabilistic encoder and allow to infer the latent variable from
the actual data without doing any integrals. The required regularization of the
latent space comes from the assumption that the prior pθ(z) is equal to a standard
gaussian.

Variational autoencoder jointly optimize the generative models parameters
θ in order to minimize the distance between the input and the corresponding
reconstructed output, as all autoencoders, and minimize the distance between
qϕ(z|x) and pθ(z|x). With this last objective in mind, one can express the distance
between two distributions as the Kullback-Leibler divergence

DKL(qϕ(z|x), pθ(z|x)) = Eqϕ(z|x)

C
ln qϕ(z|x)

pθ(z|x)

D
=

= Eqϕ(z|x)

C
ln qϕ(z|x)pθ(X)

pθ(x, z)

D
=

= ln pθ(x) + Eqϕ(z|x)

C
qϕ(z|x)
pθ(x, z)

D (2.28)

Re-arranging the terms, the evidence lower bound (ELBO) can be defined

Lθ,ϕ(x) := Eqϕ(z|x)

C
pθ(x, z)
qϕ(z|x)

D
= ln pθ(x)−DKL(qϕ(z|x), pθ(z|x)) (2.29)

the ELBO is the training objective that has to be maximized by the variational
autoencoder, since it can be noticed that it allows to simoultaneously maximize
the log-likelihood of the observed data and minimize the divergence between the
approximate posterior qϕ(z|x) and the exact posterior pθ(z|x). It is called this way
because it can be noticed that it is a lower bound for the log-likelihood.

The maximization of the ELBO is made by gradient descent, but a slight
problem appears: differentiating with respect to ϕ does not allow to obtain a good
formulation of the error, because it appears in the probability distribution over
which the expected value is taken. To bypass this difficulty, the reparametrization
trick must be used: since the latent variable z follows a normal distribution it
can be reparametrized as a function of another variable distributed as a standard
gaussian, ϵ. Doing this allows to obtain the following unbiased estimator for the
gradient:
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∇ϕ Eqϕ(z|x)

C
ln pθ(x, z)

qϕ(z|x)

D
= Eϵ

C
∇ϕ ln pθ(x, µϕ(x) + Lϕ(x)ϵ)

qϕ(µϕ(x) + Lϕ(x)ϵ|x)

D
(2.30)

where µϕ(x) and Lϕ(x) are the parametrized mean and standard deviation of
qϕ(z|x).
The considerations made up to now for the ELBO have been used also in the
training of diffusion models and are mentioned in [2].

Figure 2.1: Schematic representation of reparametrized Variational autoencoder
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2.4 Diffusion models evolution

Let us first give a brief overview of how diffusion models work: the core of every
diffusion models is given by the score function,

sµ(x) def= ∇ logx ν̄µ (2.31)

where ν̄µ is the probability distribution of the data in the domain of interest.
The score function is often easier to reproduce than the original probability density
function because it does not require the heavy calculations needed for normalization
related to the partition function; nevertheless, once it is known, it allows to sample
from the data distribution thanks to the Langevin dynamics. This has been the
historical reason for which score-based generative models were thought.

The score is the true objective of the neural network that the diffusion model is
based on, which is called score network. To learn and infer the score from the
available data, different well-known architectures can be used: what has proven to
be very effective in the past, and has been the standard score network for years is
a simple U-Net, while recently [3] has introduced the transformer architecture in
diffusion problems, creating the Diffusion Transformer (DiT).

To properly learn the score function it is important to be able to reproduce it
also in low density regions; otherwise, since when the data dimensionality is high
the initial sample to which the iterative Langevin dynamics is applied is highly
likely to come from low density regions, the procedure will derail from the very
beginning and will not be able to generate high quality and representative data.

To avoid this, the procedure that has been thought is to perturb the data with
noise in such a way to populate also low density regions and improve the accuracy
of the estimated scores. Overall diffusion models are given by the progressive
corruption of the information given by the available data by the addition of noise,
and the exploitation of neural network to learn the opposite process in order to
be able to create new data samples starting from a prior that it is easy to sample
from, for example, Gaussian noise.

Let us now describe all the steps of the development of diffusion models that
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are necessary to understand them nowadays.

2.4.1 Score matching

The goal of generative models is to learn the distribution that underlines the data
one is interested in. This can be done by searching for a parametrized pθ(x), but the
problem is that it is only possible to approximate the probability density function
up to a multiplicative constant Z(θ):

pθ(ξ) = 1
Z(θ)qθ(ξ) (2.32)

where even with the functional form of q known it is often very difficult to
compute

Z(θ) =
Ú

ξ∈Rn
qθ(ξ) dξ (2.33)

which is an integral that is practically impossible to compute analytically as soon as
the data dimensionality n starts to grow. Hence training a model that parametrizes
the probability distribution by maximizing the log-likelihood of the data becomes
unfeasible for the presence of the normalizing constant Z(θ). For these reasons one
can model the score function instead, which does not depend on the normalizing
constant. Ideally the parametrized score function sθ should be trained with objective
function

Ep(x)
è
∥∇x log p(x)− sθ(x)∥2

é
(2.34)

but this is impossible because the true data score ∇x log p(x) is unknown. To
circumvent this problem, various score-matching techniques have been developed
over the years, one of which is denoising score matching. Considering a noise
distribution qσ(x̃|x), the noise-corrupted data in given by qσ(x̃) =

s
qσ(x̃|x)pd(x)dx;

the objective was then proved by [4] to be:
1
2Eqσ(x̃|x)pd(x)

è
∥∇x log qσ(x̃|x)− sθ(x̃)∥2

é
(2.35)

In this case, the smaller the noise scale, the better the denoising score approxi-
mates the ground-truth score.
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Once the score-based model is trained a way to sample from the data distribution
is given by the iterative procedure called Langevin dynamics, which allows to
use the learned score to sample new data. This consists in starting from a sample
from an arbitrary prior x0 ≃ π(X), that is usually taken to be a standard Gaussian
distribution, and iterating the following:

xi+1 = xi + ϵ∇x log p(x) +
√

2ϵzi i == ,1, ..., k (2.36)

where the zi are distributed following a standard Gaussian. If ϵ is sufficiently
small and the process is carried out for a large number of steps the Markov Chain
defined converges to a sample from the original distribution p(x). Of course being
∇x log p(x) not directly available the quantity that is used in its place is the
estimated score given by the trained score-network

2.4.2 Challenges of score-based generative modeling

Two main problems were found by [5] in the naive application of score-based
generative modelling: the manifold hypothesis and low data density regions

• The manifold hypothesis: this is a well-known fact, often addressed in machine-
learning, that holds true for many commonly employed datasets. The manifold
hypothesis states that many real-world high-dimensional datasets actually lie
along low-dimensional latent manifolds inside that high-dimensional space.
The high-dimensional space is what is called the ambient space. This poses
a series of difficulties for score-based generative models. The score, which
requires to take a gradient with respect to the whole ambient space, is undefined
when the data is confined in a low dimensional manifold. Moreover, score-
matching techniques only return a consistent estimator for the score if the
data distribution is supported on the whole space.

• Low density regions: In regions where the data density is low, there will
not be a good enough quantity of data. This means that in such regions the
score-matching objective function, that takes an expected value with respect to
the available data, will not have a sufficient number of samples to be accurate
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in its estimate, hence the obtained scores will only be reliable in regions
when the data density is high. When sampling with Langevin dynamics, the
first noise sample will likely belong to a low-density region. Being that the
score is not accurate there, this will derail the sampling dynamics from the
very beginning. This makes the generation of high quality samples which
are actually representative of the data distribution really difficult. Moreover,
when the data is composed by a mixture of data distributions separated by
a low density region, it has been shown that the Langevin dynamics is not
able to recover exactly the relative weights of the original modes, thus not
converging to the true distribution.

2.4.3 Noise conditional score networks

To overcome the difficulties exposed above, it has been found beneficial to perturb
the data with random Gaussian noise. This allows to get over the manifold
hypothesis, since the Gaussian noise distribution has support on the whole space,
making score estimation consistent. Moreover, it allows to fill the low density
regions to have more training signal. The larger the noise with which the original
distribution is perturbed, the greater the previous benefits will be significant.
Though on the other hand, large noise corrupts the data in a significant way and
alters too much the original distribution. Using multiple noise levels gives a sequence
of noise-perturbed distributions that converge to the true data one. Considering a
number L of noise scales with increasing standard deviations σ1 < σ2 < ... < σL,
for each of these the perturbed distribution is given by

pσi
(x) =

Ú
p(y)N(x; y, σ2

i I) dy (2.37)

and samples from pσi
(x) can be drawn by sampling x from p(x) and z from

N(0, I) and computing x + σiz. Having these distributions for all noise scales, the
score network can now be trained to learn the score function for each one of them,
with the objective function that now is:
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LØ
i=1

λ(i)Epσi (x)
è
∥∇x log pσi

(x)− sθ(x, i)∥2
é

(2.38)

where λi is a weighting function often chosen to be λi = σ2
i . Once the model is

trained and can reproduce scores relative to all noise scales, samples are generated
starting from noise through iteratively applied Langevin dynamics with learned
scores relative to decreasing noise scales: because the noise is decreasing this process
is called annealed Langevin dynamics, which is explained in 1.

Algorithm 1 Annealed Langevin dynamics
1: procedure Annealed Langevin Dynamics({σi}L

i=1, ϵ, T )
2: x̃0 ∼ N(0,1) ▷ Initialize x̃0
3: for i← 1 to L do
4: αi ← ϵ · σ2

i

σ2
L

5: for t← 1 to T do
6: zt ∼ N(0, I) ▷ Draw noise from standard Gaussian
7: x̃t = x̃t−1 + αi

2 · sθ(x̃t−1, σi) +√αizt ▷ Update sample
8: end for
9: x̃0 ← x̃T

10: end for
11: return x̃T

12: end procedure

2.4.4 Diffusion probabilistic models

To model complex data-sets using highly flexible families of probability distributions
in machine learning, [6] develop diffusion probabilistic models. Their main idea was
to follow concepts studied in non-equilibrium statistical physics to systematically
and slowly destroy structure in a data distribution through an iterative forward
diffusion process, then learn a reverse diffusion process that restores structure in
data.

To do so, a forward (or inference) diffusion process which converts any complex
data distribution into a simple and tractable one was defined, and then a reversed
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generative diffusion process was trained to recover the original probability distribu-
tion. Calling the data distribution q(x(0)) and the tractable and well-behaved one
π(y), the former is transformed into the latter by the repeated application of a of a
Markov diffusion kernel Tπ(y′|y; β), where β is the diffusion rate

π(y) =
Ú

dy′Tπ (y′|y; β) π (y′) (2.39)

q
1
x(t)|x(t−1)

2
= Tπ

1
x(t)|x(t−1); βt

2
(2.40)

The forward trajectory that defines the path of the evolving probability distri-
bution, when starting from the data one and performing T steps of diffusion, is
given by:

q
1
x(0,...,T )

2
= q

1
x(0)

2 TÙ
t=1

q
1
x(t)|x(t−1)

2
(2.41)

where q
1
x(t)|x(t−1)

2
was either Gaussian or binomial diffusion; this allows to

have a reversal of the diffusion process that has the identical functional form as
the forward one. The generative distribution that has to be trained is given by:

p
1
x(T )

2
= π

1
x(T )

2
(2.42)

p
1
x(0,...,T )

2
= p

1
x(T )

2 TÙ
t=1

p
1
x(t−1)|x(t)

2
(2.43)

The training of the model is carried out by maximizing the model log-likelihood,
that is used to estimate the mean and covariance of the Gaussian diffusion kernel.
Hence, the task of estimating a probability distribution has been reduced to the one
of finding the functions defining mean and covariance of a sequence of Gaussians
by means of regression.

2.4.5 Denoising Diffusion Probabilistic Models

Diffusion models and denoising score matching discussed up to now were linked
by [2]. Diffusion models were different from other types of latent variable models
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because the approximate posterior q(x1:T |x0), called forward process, is fixed to
be a Markov chain that gradually adds Gaussian noise to the data according to
a variance schedule β1, ..., βT . In [2] the choice was made not to learn these last
parameters but to set them to constants instead. The whole diffusion process can
then be re-parametrized in such a way that highlights the analogies with denoising
autoencoders and Langevin dynamics: in fact, the regression task of learning the
means of Gaussian kernels linking different steps of the diffusion process can be
seen as learning the noise that was added to invert the diffusion process itself. The
variational bound on log likelihood that must be trained then becomes:

Lt−1 = Ex0,ϵ

C
β2

t

2σ2
t αt(1− ᾱt)

------ϵ− ϵθ

1√
ᾱtx0 +

√
1− ᾱtϵ, t

2------2D+ C (2.44)

where C is a constant independent of θ, αt = 1 − βt and ᾱt = rt
s=1 αs. This

objective resembles the one given by denoising score matching over multiple noise
scales indexed by t.

2.4.6 Generative modelling through Stochastic Differential
Equations

A very interesting result was given by [7] that allowed to reunite many of the
previous approaches in a more general framework showing that the transition from
images to uninformative noise can be done following the subsequent stochastic
differential equation:


dXt = ftXt dt + gt dWt

X0 ∼ µ
(2.45)

where µ is the probability measure of the data, corresponding to the probability
density µ̄ such that dµ(x) = µ̄(x) dx. Given a certain f , g and initial condition, the
path measure Pδx , i.e. the probability space of the system evolution, is determined.
We can define νµ

t as the pushforward of the complete path measure onto time
instant t ∈ [0, T ], where of course the initial probability measure is νµ

0 = µ. As
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time grows, the pushforward of the complete path measure tends to approximate
a standard Gaussian. This can be seen as applying an infinite number of noise
scales. The randomness and noise are given by the dWt term is the standard
Wiener process, i.e. a Browninan motion. What is called the drift coefficient of the
equation is the vector-valued function f while g is a scalar function known as the
diffusion coefficient.

A process like the one described by Eq. 2.45 progressively transforms data to
noise; being able to reverse this process allows to start from noise and generate
samples belonging to the data distribution. Luckily, the reverse of a diffusion
process is also a diffusion process, given by the following reverse-time SDE:


dX̂t = ftX̂t dt− g2

t sµ
t (X̂t) dt + gt dŴt

X̂0 ∼ νµ
T

(2.46)

As it can be seen, the availability of the score is what makes it possible to
create new samples following Eq.2.46 starting from noise; time in this framework
is running from T to 0, hence dt is a negative timestep, and the starting point of
the defined reverse diffusion process is νµ

T ∼ N(0, I), i.e the final distribution of
the forward diffusion process. The score can be hence learned with score matching
to be able to reverse the SDE and generate new samples. The overall process is
schematized in Fig. 2.2.

These results offer a wide framework, and it reunites many different approaches.
In practice, with any choice of appropriate f and g functions, a diffusion process
can be set up. Of course, all processes defined by SDEs must be discretized to
allow a practical implementation of the algorithm.

The perturbations that were introduced in the distribution by [5] using multiple
noise scales {σi}N

i=1 are equivalent to the following Markov chain from the data
distribution to the prior one:

xi = xi−1 +
ñ

σ2
i − σ2

i−1zi−1 i = 1, ..., N (2.47)

where zi ∼ N(0, I). This can be shown to be a discretization of a diffusion
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Figure 2.2: Score-based generative model

process where f is the null function and

gt =
ó

d [σ2(t)]
dt

(2.48)

where σ(t) is now a continuous function reproducing the different noise scales.
It can be demonstrated that a diffusion process with these choices has always
exploding variance as t→∞, and for this reason the corresponding SDE was called
Variance Exploding Stochastic Differential Equation (VE-SDE).

On the other hand the perturbation kernels of [2] give a discrete Markov chain
described by:

xi =
ñ

1− βixi−1 +
ñ

βizi−1 (2.49)

which can be shown to be a discretization of an SDE with

ft = −1
2β(t)x gt =

ñ
β(t) (2.50)

where β(t) follows a linear schedule from βmin to βmax. This yields a process
with fixed variance of one when the initial distribution has unit variance, and
is hence called Variance Preserving Stochastic Differential Equation (VP-SDE).
Thanks to this nice properties the VP-SDE is well-known and widely used; the
present work always uses this choice to perform the diffusion process.
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2.5 MINDE

The current work is a study and an extension to the MINDE model, presented
in [8]. This work has shown how to exploit disintegration properties of the path
measures that define the whole diffusion processes and the Girsanov theorem to
obtain the KL divergence between two measures as a difference of score functions.
The following disintegration properties hold for the forward diffusion process

dPµA

dPµB (ω) = d(PµA#ω0)
d(PµB #ω0)(ω)dµA(ω0)

dµB(ω0)
= dµA(ω0)

dµB(ω0)
(2.51)

where we have conditioned the evolution of the process on the initial conditions,
and for the backward diffusion process P̂µ:

dP̂µA

dP̂µB
(ω) = d(P̂µA#ωT

)
d(P̂µB #ωT

)
(ω)dνµA

T (ωT )
dνµB

T (ωT )
(2.52)

The first equation has as a consequence the fact that DKL

è
µA∥µB

é
= DKL

è
PµA∥PµA

é
while from the second equation one can derive that

DKL

è
P̂µA

, P̂µB
é

= EP̂µA

C
log d(P̂µA#ωT

)
d(P̂µB #ωT

)

D
+ EP̂µA

log dνµA

T

dνµB

T

 (2.53)

In the right hand side of this last equation, the first term can be evaluated by
means of the Girsanov theorem, while the second one is the KL divergence between
the results of the diffusion process of the two measures, which should both become
standard gaussians; hence this term should always be in practice very small.

Unifying all these computation, with the additional information that the
KL divergence between two path measures is invariant to time reversal, i.e.
DKL

è
P̂µA

, P̂µB
é

= DKL

è
P̂µA

, P̂µB
é
, one can derive the final expression for the

KL divergence between two measures:

DKL

è
µA, µB

é
= EPµA

CÚ T

0

g2
t

2 ∥s
µA

t (Xt)− sµB

t (Xt)∥2 dt

D
+ DKL

è
νµA

T ∥ν
µB

T

é
(2.54)

If the actual scores in the first term of the above formulas are substituted with
the ones obtained by training a score network, an estimator for the KL divergence
between two measures is obtained:
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e(µA, µB) =
Ú T

0

g2
t

2 E
νµA

t

è
∥s̃µA

t (Xt)− s̃µB

t (Xt)∥2
é

dt (2.55)

Then, exploiting Eq.2.24 one can obtain the estimator for the entropy of a given
measure. Since to evaluate the entropy of a given measure one must have the cross
entropy and KL divergence with respect to a second measure, this last one can
be taken to be a reference one such as a gaussian distribution with mean 0 and
standard deviation σ, γσ, obtaining:

H(µA) = H(µA, γσ)−DKL(µA, γσ) = N

2 log
1
2πσ2

2
+ EµA [X0]

2σ2 −DKL(µA, γσ) ≃

≃ N

2 log
1
2πσ2

2
+ EµA [X0]

2σ2 − e(µA, γσ)−DKL

è
νµA

T ∥ν
γσ

T

é
(2.56)

where the last term, besides being almost null because both distribution tend
to become standard gaussians, has known form equal to N

2 (log(χT ) − 1 + 1
χt

),
where χt = (k2

t σ2 + k2
t

s t
0 k−2

s g2
s ds) with kt = e

s t

0 fs ds and T is equal to the time
corresponding to the ending of the diffusion process. This term, called diffusion
time, determines a tradeoff between the efficiency of score matching, which is
favoured by small diffusion times, and the fitness of the approximation of the final
distribution being a standard gaussian, which instead is better for larger diffusion
times. A study on this tradeoff and the selection of the optimal diffusion time has
been done by [9], however in most implementations, including the current work, it
is common to select this parameter to be equal to 1.
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Chapter 3

Problem statement and
system design

This work intends to show the applicability of diffusion models not only in what
traditionally has been their principal field of employment, i.e. the generation
of new data, but also in different domains of potential scientific interest. This
is very important to get the whole scientific community interested in the last
advancements in these topics and to allow the benefits coming from the newly-
discovered capabilities of deep learning to permeate every field of knowledge,
solving even problems that were deemed to be too complex to be analyzed. While
it has already been shown that diffusion model can efficiently recover the mutual
information between different distributions, it is interesting to assess this capabilities
also in the estimation of entropy. Entropy is a crucial concept to be studied and in
statistical physics is fundamental to properly describe many important processes
such as phase transitions, pattern formation and protein folding. Since it is often
unfeasible to evaluate the probabilities of all possible microstates of a systems,
which would be required for the computation of this important physical quantity,
the current ability of studying relevant thermodynamical properties of physical
systems is to some extent limited. The exact, analytical computation of entropy is,
in fact, limited to simple and weakly interacting systems; for all others, entropy
computation quickly becomes unfeasible, with computation requirement that scale
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exponentially with system size. Some common methods used in the past to estimate
entropy were to experimentally measure the temperature dependence of the specific
heat ant then exploiting the relationship S = S(0) +

s T
0

Cp

T
dT , or directly estimate

the free energy of the systems. It is useful to remember the fundamental relationship
that subsists between enthalpy, entropy and free energy

G = H − TS (3.1)

In the above formula, G is the free energy, the state function whose changes
represent the maximum amount of work that the system can perform in a process at
constant temperature and determine, based on the sign, if a process is favourable or
not. H is instead the enthalpy, that in turn is given by the sum of the internal energy
of the system ant the product of its pressure and volume. T is the temperature of
the systems and of course S is the entropy. This relationship is important because
together all these quantities allow to completely describe the evolution of systems.

Given the importance of these quantities and the difficulties in their computation,
the exploration of the possibilities offered by machine learning is not completely
new, as it was already explored by some approaches among which [10] and [11].
However, the exploitation of diffusion models in particular in the estimation of
entropy is a possibility that must be explored given also their previously proven
efficacy in estimating relevant mathematical quantities.

3.1 Domains of Application

Machine learning algorithms can be exploited in a large variety of fields; with the
current work, we want to prove the efficiency of diffusion models in offering precious
insights in computationally difficult physical models. The first one that we are
going to analyze is the Ising model.

33



Problem statement and system design

3.1.1 Ising model

This mathematical framework allows the description of systems of magnetic dipole
moments of atomic spins. The model consists of discrete variables representing the
two possible values for the spins arranged in a lattice. For a general Ising model,
the hamiltonian function that the system tends to minimize is:

H(σ) = −
Ø
⟨i,j⟩

Jijσiσj − µ
Ø

j

hjσj (3.2)

where Jij is the interaction between any two adjacent sites i and j and h

is an external magnetic field. If the interaction between two spins is positive
then the bond is said to be ferromagnetic, while if it is negative it is said to be
antiferromagnetic. Very often a simplified version of Ising models is studied that
has no external field interacting with the lattice and where it is assumed that all
nearest neighbors have the same interaction strength J , that is commonly chosen
to be equal to 1. The hamiltonian henceforward becomes the following:

H(σ) = −J
Ø
⟨i,j⟩

σiσj (3.3)

The peculiarity of the Ising model is that, even being relatively simple, in two
ore more dimensions it starts to exhibit interesting physical properties: it is in
fact characterized by a phase transition. At low temperatures the spins are in
an ordered phase, where they are all aligned with each other, but as temperature
increases they make a transition to a disordered phase.

The temperature of at which the phase transition can be identified, called critical
temperature, is for the case under analysis Tc ≈ 2.269. For this reason, we will
study a range of temperatures that is developed around Tc and that completely
captures the entropy evolution.

Ising models are often generated by means of a Markov chain Monte-Carlo
simulation thanks to the well-known Metropolis-Hastings algorithm. Starting
from a randomly initialized state, the evolution of the system to a configuration
of minimum energy follows a Markov chain. A set of possible configuration is
generated from the initial one, each of which differs just for one spin. A probability
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is assigned to each of the reachable states, and then once a move is selected, an
acceptance probability is defined to determine wether the change in configuration
will take place or not. Overall, this determines the transition probability matrix of
a Markov chain. If these probabilities are defined appropriately, after a sufficiently
large number of steps the system will converge to a configuration that is a minimum
of the potential, i.e. minimizes the hamiltonian. The description of the Metropolis-
Hastings algorithm can be found in 2.

Briefly, given a square lattice size of N ×N , the generation of samples for every
temperature of interest is done in the following way: the lattice is initialized ran-
domly, then at each iteration one spin is randomly flipped: if this action produces a
decrease in the energy of the system it is always accepted and the configuration is
updated consequentially. If instead the flipping of the spin produces an increment

in the overall energy the action is accepted with probability e
−

∆E

T . The algo-
rithm stops when a stopping criteria such as a maximum number of iterations is met.

All the grids of spins that have been simulated for the purposes of this thesis
have considered periodic boundary conditions (PBC), which are a type of
boundary conditions very common in both computer simulations and mathematical
models for physical systems. In fact, in molecular dynamics PBC are really useful
when coupled with Monte Carlo modeling to calculate the bulk properties of fluids.
The idea at the basis of this type of condition is to describe the world with a
small unit cell, in the present case, our grid of spins of dimension N × N ; in
small words we could say that ideally if an object moves across this unit cell and
crosses one of its borders, it re-appears on the opposite side. Giving the definition
formally in topological terms, the space made by periodic boundary conditions in
two dimensions is equivalent to a torus. Up until now we have only considered
two-dimensional systems of spins, with only nearest-neighbors interaction. In a
two dimensional square lattice the nearest neighbors of each particle are four: the
particle exactly above, the one below, the one to the left and that to the right.
Of course, without periodic boundary conditions, this would mean that particles
on the borders have a different behaviour than all the others, having a different
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number of nearest neighbors with which interact, and that contribute to the energy
of the particle and the hamiltonian of the whole system. Since as previously said it
is often interesting to study the bulk properties of physical systems, and develop
different models to study separately the surface properties, with periodic boundary
conditions the space is bent into a torus; in this way, the particle present in the
top-left corner of the grid that represents the system under study will not only
have as nearest neighbors the particles to its right and the particle below it, but
will also have an interaction with the particles in the down-left corner and the
top-right one. A graphical representation is given in Fig. 3.1

Algorithm 2 Metropolis - Hastings algorithm
1: procedure Metropolis(N, J, T, num_iter)
2: lattice← rand(N ×N) ▷ A lattice of size N x N is initialized randomly
3: n← 0
4: while n < num_iter do
5: n← n + 1 ▷ Update iteration
6:
7: ▷ Select a random spin of coordinates i, j
8: i← rand
9: j ← rand

10:
11: S ← the sum of the spin values of the neighbors of the selected spin
12: ∆E ← 2 · lattice(i, j) ·J ·S ▷ compute energy from flipping selected spin
13: if ∆E < 0 then
14: lattice(i, j) = −1 · lattice(i, j)
15: else
16: ▷ Accept "bad" move with a certain probability
17: r ← rand

18: if r < e
−

∆E

T then
19: lattice(i, j) = −1 · lattice(i, j)
20: end if
21: end if
22: end while
23: return lattice ▷ The simulated configuration is returned
24: end procedure

Given its simplicity but at the same time its peculiarity, this system is often a
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Figure 3.1: Graphical representation of periodic boundary conditions on a two-
dimensional square lattice

starting point when benchmarking new algorithms and methods. The Ising model is
in fact a very good testbed for the study of phase transitions and critical phenomena,
and it is often used to test new methods; besides the already cited papers relative
to entropy computation, other studies interested in applying machine learning to
physical systems have used this dataset as the standard starting point, such as [12,
13].

3.1.2 XY model

The classical XY model, also called classical rotor (rotator) model, O(2) model or
vortex model is a lattice model of statistical mechanics, and is often studied for
its interesting thermodynamical properties ([14]). For every lattice site there is
an assigned spin which is given by s = (cos(θ), sin(θ)); in other words an angle is
assigned to every lattice site.
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Given a set of interaction terms between the different positions Jij and an
external field hi, the hamiltonian of the system is given by

H(σ) = −
Ø
i /=j

Jij cos(θi − θj)−
Ø

j

hj cos θj (3.4)

The most commonly studied case, which will be used also in all simulations, is
the one in which Jij = 0 except for couples of nearest neighbors. While in the 2D
Ising model, where spins can take only values ±1, there is a phase transition for
which below a critical temperature there is long-range order, for the XY model
things are different. In fact, for the Mermin-Wagner theorem, the same things
would not be possible for the XY model, because this theorem states that in a
number of dimension minor or equal than two, if the system is invariant under
a continuous symmetry, no stable ordered phase can exist at finite temperatures.
This model was however studied by Berezinskii, Kosterlitz and Thouless in the
late 1970s and they showed that it nevertheless shows a quasi-long-range order.
This leads to a particular phase transition that is said to be of infinite order and
is named after the scientists (Berezinskii–Kosterlitz–Thouless transition, or, quite
often, Kosterlitz-Thouless transition). The critical temperature for this transition
has been found to be Tc ≈ 0.892. Once again, the range of temperatures taken
under analysis to study this model will develop around this value.

The model under analysis allow the creation of topological defects of the field θ(r)
called vortices, which satisfy the Laplace equation ∇2θ(r) = 0. At low temperatures
isolated vortices are unfavourable, and if they exists they are coupled in neural pairs
that annihilate each other in the long distance effect while at high temperatures
they are favourable. Overall the XY model shows the cited transition between
a disordered high-temperature state to a quasi-ordered state below the critical
temperature.

As the previous model, the XY model can be simulated by means of the
Metropolis-Hastings algorithm, with the only difference that being now the spins
continuous variables, once a site has been selected the flipping of its spin θi is
done by choosing a random angle ϕ and evaluating the energy difference that one
would have by substituting this new value to the previous angle assigned to the
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site, which is given by

∆E = −J
Ø

θj∈neighbors(θi)
cos(θi − θj)− cos(θj − ϕ) (3.5)

The acceptance probability is then given by the same formula as in the Ising model,
that is e−∆E/T .

However for simulating the XY model, another MCMC algorithm is often used
([15]), the Wolff algorithm, that is particularly efficient in this case. This algorithm,
instead of performing local updates, relies on global ones flipping large clusters of
spins at once. The idea behind the Wolff algorithm is to create a cluster of spins
that are all quasi-parallel with respect to each other and are added to the cluster
with a certain probability, then all the spins in the cluster are flipped at once. As
explained in [16], this procedure is efficiently obtained by defining the following
rule for a spin flip:

θnew
i,j = 2ϕ− θold

i,j (3.6)

where an angle ϕ ∈ [0, π[ has been randomly selected randomly.With this definition
in mind, the algorithm procedure is the following: the cluster is initialized with a
random site of the lattice, then as long as there are spin in the cluster that have
never been updated, one of them is selected and flipped, then all its neighbors
are examinated and added to the cluster with a probability depending on their
alignment with the spin that has just been flipped and on the temperature. Once
all the spins in the cluster have been flipped, another cluster is randomly initialized
and the procedure is repeated until a stopping criteria such as a maximum number
of iterations is met. The algorithm is described in 3.

39



Problem statement and system design

Algorithm 3 Wolff algorithm
1: procedure Wolff(N, J, T, num_iter)
2: ▷ to each lattice site assign a vector s.t. σij = (cos(θij), sin(θij))
3: lattice← rand(N ×N) ▷ A lattice of size N x N is initialized randomly

with a vector as described above
4: n← 0
5: while n < num_iter do
6: n← n + 1 ▷ Update iteration
7: ▷ Select a random spin of coordinates i, j
8: i, j ← rand
9: ▷ Add it to a new-forming cluster C

10: C ← (i, j)
11: for site ∈ C, site has never been updated do
12: r← random unitary vector
13: ▷ Flip site spin
14: σnew

i,j = 2r− σold
i,j

15: for (k, l) in neighbors of (i,j) do
16: ∆E = −J cos

1
σold

i,j − σk,l

2
+ J cos

1
σnew

i,j − σk,l

2
17: if ∆E < 0 then
18: p← rand

19: pc ← 1− e

∆E

T

20: if p < pc then
21: C ← C ∪ (k, l)
22: end if
23: end if
24: end for
25: ▷ All neighbors have been checked and possibly added to the cluster
26: end for
27: ▷ All sites in the cluster have been checked and flipped
28: end while
29: return σ ▷ The simulated configuration is returned
30: end procedure
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3.2 Model architecture

The input of our network will be constituted by two "modalities": we are in fact
considering two types of data, not only the spin configurations, but also their
corresponding temperature. Up to now many methods explored in literature
required the training of a different model for computing the entropy of the system
at every different temperatures. In the present work the developed architecture is
instead able to compute with just one model the entropy of the analyzed systems
at every temperature. This has been done exploiting the capacity of diffusion
model to learn conditional scores: indicating the conditional measure of the spin
configuration given the temperature by µAT

Then the formula to get the results for each temperature is:

H(A|T ) =
Ú

H(At) dµT (t)

≃ N

2 log
1
2πσ2

2
+ EµT (t)EµAt

è
X2

0

é
−
Ú

e(µAt , γσ) dµT (t)− N

2

A
log(χT )− 1 + 1

χT

B

= N

2 log
1
2πσ2

2
+ EµA

è
X2

0

é
−
Ú

e(µAt , γσ) dµT (t)− N

2

A
log(χT )− 1 + 1

χT

B
(3.7)

where e(µAt , γσ) is the estimator for the KL divergence discussed in Sec. 2.5,
for which computation it is necessary to learn the conditional score s̃µAT , which is
obtained by feeding the score network with both the diffused spin configurations
and the information regarding the temperature of the original data. When using the
VP-SDE, sampling various time instants t for the diffusion process, the perturbed
configurations can be obtained by:

Xt(X0, ϵ) = √αtX0 +
√

1− αtϵ (3.8)

where αt = rt
s=1(1− βs) and ϵ ∼ N (0,1). With the discussed input, the score

network is then trained to reproduce the score. Traditionally as score network it
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has been common to use a U-Net architecture, but in this work to keep in count the
fact that the input is two-dimensional and to avoid loosing information regarding
the relative positions of the spins in the grid we are going to employ a diffusion
transformer, whose structure is discussed in the following section.

3.2.1 Score network: Diffusion Transformer

Transformers are deep learning architectures introduced in 2017 by [17] that
have had a huge success in the AI field because of their extraordinary capacities
of understanding data and inferring information from it thanks to an attentive
analysis of the context. Particularly useful in the analysis of sequential data, they
allowed great performance improvements in the field of speech and text analysis,
but are nowadays widely used almost everywhere.

They were born to process sequential data and overcome some limitations of
the previous approaches, that often employed recurrent neural architectures which
albeit being effective required a long training time, while transformers have no
recurrent units.

The capacity of transformer to learn efficient representation for the data from
which information can be extracted, is given by their excellent understanding of
the context, which is implemented thanks to the attention mechanism.

The latter is a machine learning method that mimics the human skill of recognize
which parts of a certain image or text are important to rapidly understand what
one is facing and hence what should the attention be focused on. In practice,
this is accomplished by assigning to each piece of data an attention score that
is used to weight the input. The computation of this kind of weights can occur
simulataneously, since unlike recurrent architectures the inputs do not have to be
processed sequentially, hence the task can be parallelized, reducing the training
time with respect to previous approaches.

Moreover, attention allows the exploitation of long-distance dependencies be-
tween data inputs, while recurrent architectures tended to be give more importance
to nearer inputs. The main components of the attention mechanism are three sets
of vectors called queries, keys and values. Each piece of an input sequence is
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equipped with its own triad of these vectors, all extracted for the input tokens by
means of different linear projections. When having to determine how important
each piece of input is related to all the others, the query and key vector are matched
against each other to compute a score value given by their dot product. The score
obtained in this way are passed through a softmax function and the final attention
vector will be given by the weighted sum of this result with the value vectors. To
summarize, the attention, or context vector, of a certain token with respect to all
the others, given the query vector q of that token and the value and key vectors (v,
k) of all tokens is given by:

eq,ki
= q · ki

αq,ki
= softmax(eq, ki)

attention(q, K, V ) =
Ø

i

αq,ki
vki

Traditionally, in computer vision Convolutional Neural Networks (CNNs) have
been the preferred tool to process visual data; this type of neural network are based
on convolution operations and pooling layers that allow extracting information
from images at different levels of resolution and recognize the most important
graphical features.

Recently, with the advent of the transformer architecture, a shift in the paradigm
has come through and the Vision Transformer (ViT) architecture has been created.
Differently from CNNs, which leverage pixel-level data and local patterns, ViTs
treat the input images as a sequence of patches and exploit the self-attention
mechanism to learn meaningful relationship within images. Self-attention is a
powerful mechanism thanks to which elements in a sequence are weighted based
on their relevance. Since image data is two dimensional, this intrinsic structure
has to be maintained to properly analyze it; CNNs used to do it thanks to the
many convolutional layers. In the visual transformer instead, the image is first
divided in patches of a fixed size that represent it at a local level; then, each of
its patch is flattened into a single vector, which allows to create an analogy with
the Natural Language Processing domain where the transformer architecture was
created to process sequence of tokens. At this point, the dimensionality of the
embedding can be optionally reduced by means of linear transformation. As in all
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transformer-based models, to keep track of the relative positions of the elements
under analysis positional encodings are added; in this case it allows to keep track
of the spatial relations that are present within the different patches that composed
the image.

At this point the data enters the core part of the model which is equivalent to
the encoder part of the original transformer architecture, composed by multiple
layers of multi-head self-attention that compute the importance score of the various
patches to understand which ones must be prioritized and multi-layer perceptron
(MLP) blocks.

Starting from vision transformers, [3] created the Diffusion Transformer (DiT)
to exploit the powerful transformer architecture also in the field of generative
diffusion model, when traditionally only simpler U-Nets had been applied. This
kind of neural network was composed by a contracting path (encoder) and an
expanding one (decoder), characterized by residual connections. The fact that the
DiT model is based on ViT and hence treats images as sequence of patches allows
capturing dependencies between those patches thus allowing the understanding of
long-range pixel-level interactions. During a diffusion process one does not only
deal with images, but also with their progressively disrupted versions as the time
of the diffusion process progresses. Summarizing, the important things to keep
track of during the process are the corrupted image, the current time step and
possibly a conditioning signal, that very often is a class label that can be passed
to the network to make it learn how to generate samples specific to that class:
these are the inputs of the diffusion transformer, that takes the role of the score
network trying to predict the score function to reverse the diffusion process. The
proposed architecture is graphically represented in Fig. 3.2 Note that it as been
shown by [18] that the same network can be trained to learn both the conditional
and marginal distribution: however, since for the present scope of the computation
of entropy conditioned on the temperature only the first one was needed, this fact
was not exploited in the implemented model.

As it can be seen, the first step is the division of the input image into patches that
are processed by a linear embedding to have a result a sequence of tokens, each of the
same dimension, as it happened in traditional transformers in NLP. The positional
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Figure 3.2: Diffusion Transformer Architecture

embedding for these tokens are created exploiting sine and cosine functions at
various frequencies that allowing retaining information about the relative positions
of the tokens with respect to each other. The time and conditioning information
is embedded as well; they will be called t and c and together they form the
conditioning that enters the true diffusion transformer block. The patchified images
and this overall conditioning signal will hence undergo a series of identical diffusion
transformer blocks. The transformer blocks, besides the attention mechanism, have
adaptive normalization layers whose scale and shift parameters are regressed from
the sum of the embedding vectors of t and c.

Since the target of the score network is to guess the random noise that was
added to a certain image, the output must have exactly the same shape of the
original spatial input, hence the sequence of image tokens must be decoded; this is
done by means of a standard linear decoder.
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Experimental results

In this section the results of the many experiments carried out to assess the
performances of the method explianed are presented. Besides the effective final
results of the entropy computation, that will be presented in Sec. 4.2, it is really
important to have a full comprehension of the intermediate steps of the process,
to verify that everything is working correctly and as expected, which was done
exploiting the experiments presented in Sec. 4.1.

During all the trainings necessary to perform the various experiments performed,
the weights of the model were updated with an exponential moving average, which
has been shown by [19] to be among the best practices for the training of the
models. Then, after the stabilization of the value of the loss function, a sufficient
number of iterations were waited before the checkpoints and the results were saved.
This is done in order to have a smooth learning process being careful to retain only
information relative to the weight that actually minimized the objective function.

The time integral necessary to obtain the KL divergence estimator in Eq. 2.55
is in general intractable and for this reason it is evaluated through Monte Carlo
integration. The necessary time instants sampling can be carried out either in a
uniform way over the diffusion interval or with importance sampling, following the
techniques described by [20] and [21], that have been shown to reduce the variance
of the estimations during the training and allow faster convergence.
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4.1 Sanity checks

4.1.1 Noise prediction and content generation on spin sys-
tems

Since during the training phase the model is optimized trying to predict the noise
that was added to each image, a first step in the evaluation of the model is to
check if this is in fact working. One can hence compare the original image to the
one obtained from the subtraction from the noisy version of the noise predicted
by the neural network to evaluate their similarity. Such subtraction will be called
"denoised" version. So, given the noisy image and its corresponding temperature,
one wants to see if the noise predicted by the score network is actually similar
to the one that was added to the real image to obtain the noisy version. This
gives a first estimate of the capabilities of the model to learn the data distribution,
expecially focusing on its ability to learn a conditional distribution over the set
of possible labels, because of course even when given the same noisy image, the
noise estimation must vary in function of the known temperature of the original
image. The results for the Ising model can be visualized in Fig. 4.1, where black
and white have been used to represent the two possible values for the spins (±1).

The results seem satisfactory: it can be noticed that for temperature below the
crtitical one, when the configuration results in spins that should all be aligned,
with few exeptions that slowly grow in number with the temperature of the system,
even if a lot of noise is added to the configuration the model is able to recover in a
very good way the starting configuration: meaning that it has learned that when
conditioned on that temperature the data should have aligned spins, and thus even
if fed a mixed configuration it is able to understand that it consists almost entirely
of added noise. One can remark that in the case under analysis the original image
was almost completely recovered, but it has happened that when the noise added
was very large and the temperature is lower than the crtitical the denoised image
was the opposite of the real one (e.g. all spins down instead of all spins up). This
is however perfectly reasonable, since the information about the temperature gives
the model the knowledge that the spins should be aligned, but the mix of up and
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Real Noisy Denoised

T=1.6

T=2.6

T=2.7

Figure 4.1: Real, noisy and denoised configurations of the Ising model

down spins in the noisy image does not allow to recover which of the two possible
configurations the original image belonged to. As a further comment to the result
of this experiment, one can notice that as expected for temperatures above the
critical one present a large number of possibilities with mixed spins, that can be
easily reconstructed in a very precise way.

After this trivial check, further ones must be carried out. Even if the scope of
this work was not the generation of new data, still, the fact that diffusion model
were built for this scope renders imperative to assess that everything is working as
expected and that the trained model is in fact able of effectively generate consistent
data, even if such data is not the ultimate target of the work.

To do so, a random subset of possible temperatures has been sampled, and for
each of them, starting from a random configuration, the diffusion process was run
to generate the corresponding data through a discretization of Eq. 2.46. This
means that iteratively the network is fed with a noisy image and the temperature,
and it computes the score, then a denoising step is performed to obtain the next
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Real Generated Real Generated

T=1.3 T=2.9

T=1.6 T=3.6

T=2.6 T=3.8

T=2.7 T=3.9

Figure 4.2: Real configurations of the Ising model at various temperature com-
pared to the ones generated by the diffusion process

image in the sequence, until the diffusion process is completely reversed and a clean
image has been generated. In Fig. 4.2 the results of this experiment are shown
for the Ising model; we can see that the real data (i.e. the configurations obtained
by MCMC simulations) and the ones produced by the generative model are very
similar. At low temperatures almost all spins are aligned, whereas at temperatures
above the critical one the spins start to assume all two possible values, firstly
arranging in relatively big groups of parallel spins and then, as the temperature
further increases, becoming very randomly mixed.

The same experiments and considerations of course can be carried out also for
the XY model. In this case, spins can rotate on a plane, assuming continuous
values, so to represent their value each spin in the 20× 20 grid is represented by
an arrow pointing in the direction of the angle assigned to that site. For ease of
visualization, a color has been assigned to each possible value of angles according
to a continuous and periodic color map, presentedi in Fig. 4.4.
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Real Noisy Denoised

T=0.28

T=0.82

T=1.32

Figure 4.3: Real, noisy and denoised configurations of the XY model

Figure 4.4: Color map used to represent the spin values of the XY model

In Fig. 4.3 it can be seen an example of what was referenced before: at a low
temperature with all spins aligned if a lot of noise is added the system may fail
in exacting predicting the noise, but the results are still understandable since the
"denoised" image is a configuration with all spins aligned, even if not in the same
direction of the original one. This happened because from the noisy image it was
not possible to recover information about such direction. In the following row,
around the critical temperature, we can see a case in which some noise, but not too
much, has been added and the system perfectly manages to recover the original
configuration. In the last row, once again a large quantity of noise was added
making the original structure unrecognizable; the denoised image still is somehow
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similar to the original, even if at this high temperature one would expect a larger
variety of spin values, as there were in the real configuration. Hence, to check that
the model has learned the correct data distribution for every temperature, as before
it is necessary to assess the generative capabilities of the diffusion process. This can
be found in Fig. 4.5, where it can be seen also for high temperatures the generated
spin configurations seem likely. As expected, for low temperatures the spins are all
aligned, with more or less waves depending on how low the temperature is, and as
the temperature increases the spins start to rotate more and become cahotic for
the highest ones.
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Real Generated

T=0.28

T=0.42

T=0.82

T=0.91
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T=0.96

T=1.32

T=1.41

T=1.45

Figure 4.5: Real configurations of the XY model at various temperature compared
to the ones generated by the diffusion process
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4.1.2 Entropy computation on multivariate gaussians

Let us now move to the entropy computation, which is the core of the problem. In
the ensemble of activities that have been carried out and constitute the material of
the present work, it has found out that the model developed does not perform well
on the generated dataset of the Ising model. An explaination to this behaviour was
found in the fact that as explianed in Sec. 2.5 the estimator for the entropy that we
are using is based on the estimate of the KL divergence of the probability measure
of the data with respect to a gaussian distribution, but the results regarding this
last qantity always assumed the measures to be absolutely continuous in order

for the Radon-Nikodyim derivative dµA

dµB
to exist. But this is not the case for a

discrete distribution, and since the spins in the Ising model can assume only values
in a discrete set, the probability measure of the data would be formed by a sum
of Dirac deltas, and the Radon-Nikodyim derivative and hence the KL divergence
would not be defined.

For this reason, the focus was shifted on continuous datasets. As a first check,
the efficiency of the method on a simple set of multivariate gaussian distributions
was tested, since this is a common and relatively simple distribution for which the
entropy can be computed analytically. Given a covariance matrix Σ and a mean
vector µ that were generated randomly, the probability distribution is given by the
formula:

p(x) = 1
(2π)d/2

ñ
det(Σ)

exp
3
−1

2(x− µ)T Σ−1(x− µ)
4

(4.1)

and strarting from this, recalling the definition of entropy for a continuous
random variable in Eq. 2.21 one can derive that the expression of the entropy is:

H = 1
2 log

1
(2πe)d det(Σ)

2
(4.2)

For various possible dimensions of the multivariate gaussians, several distribu-
tions were created, chosing randomly the corresponding Σi and µi, and for each of
these distributions 20000 possible configurations were sampled, each of them labeled
with the corresponfing i and the ground truth entropy was computed according
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to the formula shown above. This last quantity was then compared to the result
obtained by the application of the MINDE model when given as input the gaussian
data, and the results are shown in Tab 4.1.

Dimension i Ground Truth MINDE

9

0 2.8438 2.8228
1 3.0631 3.1198
2 2.7101 2.8784
3 2.8453 2.9021
4 3.0224 3.0959

16

0 3.1781 3.2369
1 3.3124 3.3832
2 3.1951 3.3134
3 3.1086 3.3177
4 3.3400 3.5103

Table 4.1: Entropy computation for multivariate gaussians

4.2 Entropy computation results on spin systems

Given the positive results on the datasets composed by multivariate gaussian
distribution, one can now confidently move to the evaluation of the presented
method on the XY model. One of the first things that was noticed was that,
depending on the normalization of the data, a shift in the entropy result was
observed. It is however a well-known fact in entropy computation that this quantity
is invariant to translation but not to scaling: in a formal way, given a random
variable X with probability distribution f , if the transformation Y = σX + c is
applied then

H(Y ) = H(X) + log(σ) (4.3)

It is a common practice in entropy computation to obtain what is called excess
entropy, i.e. subtract to the total entropy of the system the entropy corresponding
to an equilibrium configuration, which is the entropy of an ideal gas. In our case,
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this quantity corresponds to the entropy of a single spin. Since spins can rotate
freely on the XY plane, their relative positions to each other will be determinated
by the hamiltonian and behave accordingly to what described up to now, but when
considering a single spin it will assume values following a uniform distribution
over the range of possible angle values. The entropy of a uniform distribution is
analytically known and equal to the logarithm of the amplitude of the interval
over which it is defined. Subtracting this quantity also fixes the ambiguity of the
shifting of the entropy when the data is rescaled. This happens because in this way
if the data is scaled by a factor σ for the phoenomenon described before the entropy
would increase by a factor log(σ), but now in the subtraction of the entropy of a
single spin the interval over which the uniform distribution is defined is multiplied
by σ as well, giving an overall contribution of − log(σ) that annihilates the shifting
effect. Excess entropy is henforth invariant to scaling. For these reasons, given that
the data were scaled between -1 and 1, a quantity equal to log(2) was subtracted
to the results of the model in order to obtain the final result, which is shown in Fig.
4.6. To obtain the value depicted, since what was created through this work is an
estimator for the entropy, several runs of the entropy computation were made and
their results for each temperature were averaged. As it can be seen, the results
are in perfect accordance to the ground truths and the errors are comparable with
the best results present in literature, thus confirming the efficiency of the method
for entropy computation and once more confirms the great capabilities of diffusion
models to learn even complex data distributions.

Moreover, in Fig. 4.7 one can see that even in the Ising model case, the model,
even if with less precision, is capable of correctly estimating the entropy variations
with the temperature, even if it fails to retrieve the correct values. Since however
entropy is often defined up to an additive constant, knowing that what is truly
important for thermodynamic reasons are its variations, the results can still be
considered satisfactory, and it can be seen that the phase transition, which is often
the ultimate target of entropy estimations, is correctly identified.
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Figure 4.6: Evaluation of MINDE model on the XY dataset: entropy per temper-
ature computed with MINDE compared to the ones obtained from Monte Carlo
methods and taken as ground truth

Figure 4.7: Evaluation of MINDE model on the Ising dataset: entropy variations
per temperature computed with MINDE compared to the ones obtained from the
analytical formula
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Temperature Entropy Ground Truth MINDE
0.1 -2.1408 -2.0823
0.15 -1.9312 -1.9055
0.19 -1.8074 -1.7651
0.24 -1.6832 -1.6567
0.28 -1.6001 -1.5540
0.33 -1.5101 -1.4815
0.37 -1.4463 -1.4143
0.42 -1.3743 -1.3492
0.46 -1.3216 -1.2904
0.51 -1.2604 -1.2365
0.55 -1.2144 -1.1804
0.60 -1.1600 -1.1348
0.64 -1.1182 -1.0803
0.69 -1.0674 -1.0387
0.73 -1.0276 -0.9962
0.78 -0.9780 -0.9478
0.82 -0.9380 -0.8991
0.87 -0.8865 -0.8597
0.91 -0.8431 -0.8057
0.96 -0.7829 -0.7598
1.00 -0.7284 -0.6969
1.05 -0.6581 -0.6363
1.09 -0.6046 -0.5746
1.14 -0.5435 -0.5139
1.18 -0.4998 -0.4636
1.23 -0.4515 -0.4125
1.27 -0.4174 -0.3738
1.32 -0.3797 -0.3397
1.36 -0.3529 -0.3089
1.41 -0.3232 -0.2896
1.45 -0.3021 -0.2638
1.50 -0.2784 -0.2804

Table 4.2: Tabular data regarding evaluation of MINDE model on the XY dataset

58



Experimental results

Temperature Entropy Varitions Ground Truth MINDE
1.0 0.0000 0.0000
1.1 0.0044 -0.0030
1.2 0.0111 -0.0028
1.3 0.0207 0.0020
1.4 0.0337 0.0041
1.5 0.0505 0.0523
1.6 0.0718 0.0607
1.7 0.0981 0.1004
1.8 0.1301 0.1379
1.9 0.1689 0.1654
2.0 0.2162 0.2292
2.1 0.2749 0.2798
2.2 0.3512 0.3502
2.3 0.4495 0.4655
2.4 0.5466 0.5677
2.5 0.6167 0.6451
2.6 0.6653 0.7223
2.7 0.7020 0.7463
2.8 0.7315 0.7838
2.9 0.7560 0.7732
3.0 0.7769 0.8096
3.1 0.7949 0.7876
3.2 0.8106 0.8234
3.3 0.8243 0.8260
3.4 0.8365 0.8601
3.5 0.8473 0.8560
3.6 0.8569 0.8432
3.7 0.8656 0.8700
3.8 0.8735 0.8942
3.9 0.8806 0.8920
4.0 0.8871 0.8898

Table 4.3: Tabular data regarding the evaluation of MINDE model on the XY
dataset
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Chapter 5

Conclusions

This work has explored in depth both the worlds of generative AI and of entropy
estimation.

Firstly, it has succesfully studied and reproduced various spin systems that
have been used in literature for entropy estimation models. Samples from the
data generated with Markov-Chain Monte Carlo methods have been manually
inspected and have been found to follow the physical properties and characteristics
predicted by the theoretical models, thus confirming the efficiency of the employed
algorithms.

Diffusion models have been studied with attention to details and have once
again been found very effective not only in generating new data but in truly
learning the data distributions, in ways that allow to exploit them to make even
elaborate computations to find mathematical quantities of interest starting from
such distributions.

The data generated by the implemented method has been found to be perfectly
coherent with the original ones, and the model has been able to learn and dis-
criminate different data distributions for different temperatures of the spin system.
The results for the entropy computation are satisfactory: in both the analyzed
spin systems the model is able to successfully retrieve the curve of the entropy as
a function of the temperature, and is thus capable of correctly identifying phase
transitions and retrieving the variations of entropy that can be used to study
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thermodynamic properties of the systems.
While for the Ising models the results are less precise due to the considerations

made in the previous sections, for the XY models the accordance between the
theoretical and the diffusion model results is very good, aligned with or even better
than the best machine learning entropy estimators present in literature up to
now. Anyway, the results obtained in this work are very promising and show that
the diffusion models can be used to estimate the entropy of a system with good
precision.

As future challenges and improvements, even more physical datasets could be
generated and explored, such as the Ising model on a triangular lattice. To do
so and to overcome the difficulties of the presented method on discrete datasets,
which was certaintly the biggest shortcoming of the method presented in this thesis,
a possible further exploration would be that of trying to exploit both methods
that have been found valid also with descrete datasets, such as the one presented
in Appendix A, which relies on the computation of mutual information, with the
diffusion model able to estimte such quantity.

Overall this work has explored a way of computing entropy that was never
experimented with before, and has had a success in reproducing the entropy curves
and the genertion of new data, paving the way for the exploitation of diffusion
models for an ever wider range of applications and scientific problems.
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MICE

As stated in the previous sections, it is a common practice in entropy computation
to subtract a constant equal to the entropy of an "ideal gas" composed of copies of
the smallest subsystem. This however wasn’t something known from the beginning
of the work, and for a long time there seemed to be a constant error between the
output of the presented model and the ground truths provided by [22]. To find
the source of this "error", and confirm wether it was a problem of the dataset, of
the method or, as it turned out to be, a simple lack in the common practices in
entropy calculation, another method was used to compute the entropy of the spin
systems at different temperatures and compare them with the results of MINDE.
The chosen method was the MICE architecture proposed in [11]. This relies once
again on the relationship between entropy and mutual information. In particular,
given two random variables A and B, the following relationship holds:

H(A, B) = H(A) + H(B)− I(A, B) (A.1)

Given this formula, the MICE method iteratively computes the entropy of large
systems by computing the entropies of its halves and their mutual information. In
other words, considering the entire system X0 of size V0, the two halves that it can
be divided in are both named X1, since they are assumed to be statistically indis-
tinguishable, and the mutual information between them will shortly be expressed
as I(X1). By applying recursively the relationship
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H(X0) = 2H(X0)− I(X1) (A.2)

the final formula can be obtained for the entropy of the whole system normalized
by size of the system:

h(X0) = H(X0)
V

= hm −
1
2

mØ
i=1

I(Xi)
Vi

(A.3)

where m is the number of itarations during which the system is divided in halves
until the smallest subsystem of entropy hm, formed by just one spin, is reached.
Actually hm can be ignored because it’s an uninteresting addictive constant and
corresponds to the quantity that is usually subtracted to obtain the "excess entropy".
Implementing the MICE model, it was found that this was exactly the quantity
that seemed to be an error in the MINDE results, while simply if subtracted from
the total entropy results it lead to have perfect accordance with the ground truths.
The authors of the MICE model employed for their method a different and older
estimator for the mutual information with respect to MINDE, i.e. MINE, a model
presented in [23].
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