

POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

October 2024

Development of a WebApp for safe mission planning for

UAS in urban areas

 Candidate: Supervisors:

ANGELO MICHELE DEL GUERCIO Dr. STEFANO PRIMATESTA

 Ing. GIANLUCA RISTORTO

I

SUMMARY

In recent years, the use of drones, or Unmanned Aircraft Systems (UAS), has

experienced unprecedented growth, with applications ranging from environmental

monitoring to surveillance, extending to sectors such as logistics and transportation.

However, operating these devices in urban environments presents complex challenges

in terms of safety and risk management. Specifically, drones flying in populated areas

can pose a danger to people on the ground in the event of malfunctions or accidents.

Furthermore, the integration of these technologies into civilian contexts must comply

with strict regulations to ensure both safety and privacy. The core issue lies in the fact

that the impact of a drone in a populated area can have devastating consequences,

making it essential to develop advanced tools that enable precise flight mission

planning while minimizing risks. The need for risk assessment and careful route

planning for flight operations has led to the development of this project, which aims to

create an interactive platform for the safe management and planning of drone

operations.

The rapid proliferation of drones has made risk management in flight operations

increasingly crucial. In Europe, the SORA (Specific Operations Risk Assessment)

guidelines have become the standard reference for authorities and industry operators.

SORA allows for the assessment of the risk associated with a flight operation based on

a series of parameters, such as population density, the characteristics of the operational

area, and the required safety levels. Currently, there are few tools available to assist

UAS operators in conducting risk assessments according to SORA guidelines. These

tools, while attempting to simplify the assessment process, are not fully automated and

often require expert intervention, leading to significant costs, especially for small and

medium-sized operators. Even aviation authorities, such as EASA (European Union

Aviation Safety Agency), provide guidelines and standard forms that allow operators

to manually perform risk assessments. However, these free resources require in-depth

knowledge of regulations, and no fully automated platforms exist that entirely replace

II

human intervention. Another major issue is that manual SORA procedures can be time-

consuming, slowing down operational processes in a context where the number of

drone operations is steadily increasing.

The primary objective of this project is to develop an interactive web application for

the safe planning of flight operations in populated environments. The platform,

designed for professionals such as drone operators or surveillance agencies, offers

advanced mission planning and management functionalities through an intuitive map-

based interface. The key features include:

 Risk map generation, based on data such as population density and the

characteristics of the surrounding environment.

 Safe route planning, minimizing operational risks through the analysis of critical

areas.

 Custom configuration of flight parameters, such as altitude, speed, and the

drone's payload.

 Display of critical information directly on the map.

The application utilizes React.js to manage the user interface, while the backend is

developed in Node.js, ensuring a smooth and high-performance user experience.

Communication with a ROS server is handled via WebSocket, guaranteeing real-time

data reception and processing.

The project development process was divided into several phases:

1. User interface design: The web app was designed with a user-friendly

approach, allowing the operator to interact with the map, select areas of interest,

and configure mission parameters.

2. Implementation of risk map generation: A key feature of the project is the

ability to generate risk maps and low-risk paths. The ROS server, connected to

III

the web app, processes the data provided by the user and returns a map of the

risk areas.

3. Integration with the ROS server: A crucial aspect of the project was the

integration of the web app with ROS, which runs the algorithms for risk map

generation and flight planning.

4. Testing and performance optimization: Various tests were conducted

throughout development to verify the effectiveness and reliability of the

application.

5. Compliance with regulations: The application was designed to ensure that

operators can configure missions following existing regulations.

The goal of this thesis project is to provide an intuitive and fast tool for risk assessment

in these operations, reducing the complexity and costs associated with existing

solutions. In the future, through further development, this project could significantly

contribute to the safe and compliant management of drone flights, with potential

applications in multiple sectors, including surveillance, logistics, and environmental

monitoring.

IV

CONTENT

SUMMARY ___ I

1. Introduction __ 1

1.1 Context __ 2

1.2 Objectives __ 3

1.3 Contribution __ 4

1.4 Outline___ 5

2. State of the art __ 7

2.1 Regulations ___ 7

2.1.1 STS ___ 9

2.1.2 PDRA __ 10

2.1.3 LUC __ 11

2.1.4 SORA ___ 11

2.2 Available tools __ 14

3. Background __ 16

3.1 ROS __ 16

3.2 Framework __ 18

3.2.1 Risk-aware planning ___ 18

3.2.2 Risk map generation ___ 19

3.2.3 Path planning ___ 21

3.3 Software Tools ___ 23

3.3.1 Editor: Visual Studio Code ___________________________________ 23

3.3.2 Markup languages: HTML e CSS ______________________________ 23

V

3.3.3 JavaScript, React.js e Node.js _________________________________ 24

3.3.4 ROS ___ 24

3.3.5 ROSbridge_suite __ 25

3.3.6 Leaflet ___ 26

3.3.7 Additional tools ___ 28

4. Development ___ 30

4.1 Frontend __ 30

4.1.1 Home.js __ 31

4.1.2 Drone-map.js ___ 33

4.1.3 Risk map __ 36

4.1.4 Path planning ___ 38

4.2 Backend___ 39

4.2.1 Drone data management _____________________________________ 40

4.2.2 Server.js ___ 42

5. WebApp overview __ 44

5.1 Risk map computing ___ 47

5.2 Path computing ___ 51

6. Conclusions and future works _______________________________________ 57

7. References ___ 59

VI

LIST OF FIGURES

Figure 1. Drone delivery ___ 1

Figure 2. ENAC and EASA logos __ 9

Figure 3. SORA steps __ 14

Figure 4. ROS system diagram ___ 18

Figure 5. Main architecture of risk map generation __________________________ 20

Figure 6. Example of risk map with Iris+ aircraft. __________________________ 22

Figure 7. Tools used ___ 29

Figure 8. Structure of /src directory _____________________________________ 30

Figure 9. Section of handleSubmit function in home.js_______________________ 32

Figure 10. .srv file for risk map service request ____________________________ 34

Figure 11. requestData fields. These values are used to compute the risk map. ____ 34

Figure 12. Section of drone-map.js for the visualization of map and drawing tools _ 35

Figure 13. Section of drone-map.js for the visualization of risk map and form

component ___ 35

Figure 14. Section of drone-map.js for the visualization of computed path and path

selection component ___ 36

Figure 15. Section of the service call to ROS server for risk map request ________ 37

Figure 16. .srv file for path planning service request ________________________ 38

Figure 17. Service call to ROS server for path planning request ________________ 39

Figure 18. Backend structure ___ 40

Figure 19. Home page __ 44

Figure 20. Drone selection in home page _________________________________ 45

Figure 21. Form for new drone ___ 45

Figure 22. Form for new drone with error messages _________________________ 46

Figure 23. Main page __ 47

Figure 24. Area selection with drawing tools ______________________________ 48

file:///C:/Users/Utente/Desktop/THESIS.docx%23_Toc179924766

VII

Figure 25. Values error messages

Figure 26. Error message when area is not found ___________________________ 48

Figure 27. Risk map result __ 49

Figure 28. Risk map result ROS server side _______________________________ 50

Figure 29. Example of an area with start and goal position selected _____________ 51

Figure 30. Path planning error message __________________________________ 52

Figure 31. Path planning result ___ 52

Figure 32. Path planning result ROS server side ____________________________ 53

Figure 33. Risk map simulation result ____________________________________ 54

Figure 34. Risk map simulation result ROS server side ______________________ 54

Figure 35. Path planning simulation result ________________________________ 55

Figure 36. Path planning simulation result ROS server side ___________________ 55

Figure 37. Another example of path planning simulation _____________________ 56

Figure 38. Result ROS server side of fig.37 simulation ______________________ 56

1

CHAPTER 1

1. Introduction

The term "Unmanned Aircraft" refers to any aircraft that operates or is designed to

operate autonomously or be remotely piloted without an onboard pilot. This definition

includes all types of unmanned aircraft, including radio-controlled flying models,

regardless of whether they are equipped with an onboard camera.

Drone regulations use the term "Unmanned Aircraft System" (UAS) to refer to a drone,

its system, and all other equipment used to control and operate it, such as the control

unit, any launching equipment, and more.

Figure 1. Drone delivery

2

1.1 Context

In recent years, drones, also known as Unmanned Aircraft Systems (UAS), have seen

increasing use in various sectors, including environmental monitoring, surveillance,

logistics, and precision agriculture. This widespread adoption has been made possible

by technological advancements in component miniaturization, cost reduction, and

improvements in autonomous flight capabilities. However, the integration of drones

into urban environments presents a series of complex challenges, primarily related to

safety, privacy protection, and cybersecurity.

Flight operations in cities expose drones to considerable risks, such as collisions with

people or infrastructure, technical malfunctions, and interference with other aerial or

ground systems. In particular, in the event of a malfunction or accident, a drone could

cause significant damage to both the population and infrastructure, making risk

management an absolute priority. In addition, there are privacy concerns, as drones are

capable of collecting potentially sensitive video and audio data. Lastly, cybersecurity

represents another critical issue: drones could be vulnerable to cyberattacks that

compromise the mission or cause deliberate harm.

In this context, there is a growing need to develop advanced tools for the safe planning

of drone flight operations, especially in densely populated environments. Planning

must ensure not only the safety of citizens and infrastructure but also compliance with

current regulations, such as those established by the Specific Operations Risk

Assessment (SORA), which governs the use of drones in complex scenarios.

The research group referenced in this work has already made significant contributions

to the study of these issues, with publications regarding the creation of risk maps for

drone use in cities [1][2] and the planning of safe, low-risk routes [3]. Despite these

advances, there remains a need to develop a practical and intuitive user interface that

allows drone operators to use these advanced tools to safely manage their flight

missions.

3

This thesis work aims to address this need by developing a web app that enables

operators to plan flight missions in urban environments, providing a visualization of

risk areas and suggesting safe routes.

1.2 Objectives

This thesis is part of a larger project aimed at developing innovative tools for planning

safe drone routes, with a specific focus on operations in urban environments. The main

objective of the project is to address the challenges related to flight operation safety,

risk management, and regulatory compliance, by providing advanced technological

solutions that minimize potential hazards associated with drone use in complex and

densely populated contexts.

The project aims to develop a digital infrastructure capable of supporting operators in

flight mission planning by offering risk assessment tools and suggesting routes that

minimize the likelihood of accidents. The ability to evaluate and mitigate risks is

essential to ensure that drones can operate safely, even near densely populated areas,

critical infrastructure, or zones with significant operational restrictions.

Furthermore, the project aims to support compliance with international regulations and

guidelines, such as the SORA (Specific Operations Risk Assessment) framework,

which sets strict standards for the safety of drone operations in complex environments.

Adopting these guidelines not only helps ensure safety during missions but also

facilitates the authorization process of operations by the competent authorities.

The overall objective of this work is to contribute to the development of an ecosystem

of digital tools that, by integrating technologies such as risk assessment and

autonomous planning, can improve the safety and efficiency of drone operations in

urban settings.

4

1.3 Contribution

The main contribution of this thesis is the development of an interactive web app for

the safe planning of drone flight operations in urban environments. The specific goal

of the thesis is to provide an accessible and intuitive tool that allows drone operators

to plan safe flight routes, assess associated risks, and ensure compliance with current

regulations. This digital tool aims to bridge the gap between sophisticated risk planning

technologies developed in the academic context and the practical needs of operators in

the field.

The first key contribution is the development of the user interface, which allows users

to interact with maps and flight planning tools in a simple and intuitive way. The web

app enables operators to define flight routes, select start and destination points, and

configure operational parameters such as drone altitude and payload. The interface is

designed to ensure optimal management of critical information, providing users with a

clear and immediate visualization of risk areas.

The second contribution lies in the integration of the risk planning framework

developed by the research group with the web app’s back-end system. The ROS (Robot

Operating System) server receives the data sent from the user interface, processes the

information, and returns the generated risk maps. This process allows for a rapid risk

assessment, enabling users to quickly adjust planned routes to minimize operational

risks. Communication is handled via WebSocket, ensuring a constant data flow

between the web application and the ROS server, which is essential for keeping the

information updated throughout the entire planning process.

Another innovative aspect of this work is the web app’s ability to implement advanced

risk visualization and management functions, making analytical tools accessible to

users who were previously confined to academic research or complex specialized

software. The risk maps generated by the server are displayed overlaid on the planned

route map, allowing operators to immediately assess the level of risk associated with

each zone crossed by the drone.

5

Finally, the web app provides a modular and scalable platform that can be extended

with new functionalities to further improve the precision and safety of flight operations.

Although these functionalities are not yet implemented, the structure of the application

is designed to facilitate future additions, thus contributing to a flexible planning

ecosystem adaptable to users' needs and technological advancements.

Therefore, the contribution of this thesis is not limited to the development of a simple

web application but extends to the creation of a comprehensive infrastructure for the

safe planning of drone missions, integrating advanced risk management technologies

with intuitive user interfaces. This system can support a wide range of operational

scenarios, with potential applications in sectors such as surveillance, logistics, and

environmental monitoring.

1.4 Outline

The thesis is structured into the following chapters, each addressing a key aspect of the

development of the web app and the context in which it operates.

In Chapter 2, the state of the art regarding the currently available tools for planning

drone flight missions and the technologies that assist operators in complex

environments is presented. An overview of the main international regulations

governing the use of drones is also provided, with particular attention to the SORA

(Specific Operations Risk Assessment) guidelines, which are essential for

understanding the legislative framework and the safety implications in operations

within populated areas.

Chapter 3 is dedicated to the technical background of the project. Here, the theoretical

foundations of the safe planning framework used for risk assessment and the generation

of risk maps are examined. Additionally, a general overview of ROS (Robot Operating

System), the system used to manage communication and the computation of risk maps,

6

will be provided, highlighting ROS's role in coordinating safe planning and integration

with the web app.

In Chapter 4, the development of the interface between ROS and the web app is

described in detail. This chapter explains the design and implementation process of the

application, with a focus on data management, user interaction, and real-time

communication with the ROS server for processing risk maps and planning safe routes.

Chapter 5 presents the results obtained, showcasing the implemented functionalities

and the overall operation of the web app. The communication between the web app

and the ROS server is described, illustrating a complete storyline of the flight planning

phases, from defining the starting and destination points to visualizing risk maps and

generating the optimized route.

Finally, in Chapter 6, the conclusions of the work performed are drawn, and potential

extensions and future improvements are discussed.

7

CHAPTER 2

2. State of the art

This chapter delves into the regulations governing the use of drones, with particular

attention to the Specific category and the SORA (Specific Operations Risk

Assessment) risk assessment system, which is essential for operations in urban

environments.

2.1 Regulations

The current regulations for the use of drones are primarily governed by EASA

(European Union Aviation Safety Agency) and ENAC (National Civil Aviation

Authority) in Italy. These regulations govern drone operations based on risk categories

and the characteristics of the flight environment. EASA introduced Regulation (EU)

2019/947, which divides drone flight operations into three categories that manage

operations in three different types of risk scenarios.

1. Open: Low-risk operations that do not require authorization but must comply

with certain weight and distance limits, such as flying below 120 meters and

away from people. This category is further divided into three subcategories: A1

(flying over people but not gatherings), A2 (flying close to people), and A3

(flying far from people).

2. Specific: This includes higher-risk operations with civil drones, where safety is

ensured by the drone operator obtaining operational authorization from the

national competent authority before commencing the operation. To obtain

operational authorization, the drone operator is required to conduct a risk

8

assessment, which will determine the necessary requirements for the safe

operation of the civil drone(s).

3. Certified: High-risk operations, similar to those in traditional aviation, require

certifications for the drone, the operator, and the pilot.

The Specific category is of particular interest for operations in urban contexts as it

covers missions with a moderate level of risk that cannot be classified as Open but do

not require the stringent certifications of Certified operations. This is the category we

take as a reference in this thesis for flight operations.

Examples of UAS operations in the "Specific" category include:

 BVLOS – Beyond Visual Line of Sight

 When using a drone with MTOM (Maximum Take-Off Mass) > 25 kg

 Flying above 120 m from the ground level

 When dropping material

 When using a drone in an urban environment with an MTOM > 4 kg or without

a class identification label

Operators intending to fly in urban environments must conduct a thorough risk

assessment to obtain authorization. To operate in the Specific category, operational

authorization is required, which can be obtained through various methods:

1. Declaration based on a Standard Scenario (STS), applicable from January 1,

2024.

2. Operational authorization based on a PDRA (Predefined Risk Assessment),

which are risk assessments predefined by EASA.

3. Authorization without a PDRA, using the SORA (Specific Operations Risk

Assessment) methodology.

9

4. Obtaining a Light UAS Operator Certificate (LUC), which allows for operations

with fewer restrictions.

2.1.1 STS

The European Standard Scenario (STS) is a predefined operation described in

Appendix 1 of Regulation (EU) 2019/947. It is one of several options for operators to

initiate their operations. An operator is not required to obtain operational authorization

to conduct an operation covered by an STS. If it is verified that the operation can be

covered by an STS, it is sufficient to submit a declaration to the National Aviation

Authority (i.e., ENAC in Italy) of the state of registration.

So far, two EU STS have been published:

 STS 01 – VLOS in a controlled land area in a populated environment;

 STS 02 – BVLOS with airspace observers on a controlled aircraft.

Figure 2. ENAC and EASA logos

10

2.1.2 PDRA

The Predefined Risk Assessment (PDRA) is an operational scenario for which EASA

has already conducted a risk assessment and has published as an acceptable means of

compliance (AMC). The published PDRAs so far are:

 PDRA-S01 — Agricultural work, short-range cargo transport operations

 PDRA-S02 — Surveillance, agricultural work, short-range cargo operations

 PDRA-G01 — Surveillance, long-range cargo operations

 PDRA-G02 — All ranges of operations

 PDRA-G03 — Linear inspections, agricultural work

The PDRA still requires operational authorization from the National Aviation

Authority (NAA), but the process is simplified. Instead of conducting a risk

assessment, the UAS operator can simply fill out the PDRA table, prepare the

Operational Manual (OM), and submit the application to the registering NAA. The

PDRA table is a sort of checklist on how to develop the procedures that must be

included in the OM.

If the operation falls within the scope of one of the published PDRAs, the applicant can

quickly develop the operator's manual and evidence of compliance using the PDRA

table to demonstrate that the operation is safe. The review of documentation will also

be simplified for the NAA.

Some entities caution against the use of STS and PDRA, suggesting that it would be

safer to involve all stakeholders in the SORA content process and review. Operations

using STS require only a declaration and not an actual authorization, so caution is

needed when using these predefined schemes.

11

2.1.3 LUC

The Light UAS Operator Certificate (LUC) is an optional certificate for drone

operators that grants specific privileges, such as the ability to conduct operations in the

Specific category without needing to obtain separate authorizations from the National

Aviation Authority (NAA). This allows operators to self-assess and self-authorize

missions, reducing wait times for formal approvals while maintaining high safety

standards.

The NAA evaluates the operator's ability to manage risk and comply with safety

regulations before issuing the LUC. The level of privilege can include:

1. Conducting operations according to standard scenarios without the need to

submit declarations.

2. Self-authorizing operations that fall within the Predefined Risk Assessments

(PDRA).

3. Self-authorizing all operations without requiring external authorizations.

However, the LUC is not a "blank check": the operator can only conduct operations

described in the approval terms established by the NAA and applicable regulations.

2.1.4 SORA

In the event that an operation is not covered by an STS or PDRA, applicants are

required to conduct a risk assessment, identify mitigation measures, and meet safety

objectives. To this end, the risk assessment methodology known as SORA (Specific

Operations Risk Assessment) was developed by JARUS (Joint Authorities for

Rulemaking on Unmanned Systems) and subsequently recognized by EASA. This

methodology is of particular relevance to the work behind this thesis.

With SORA, drone operations in the Specific category are assessed, ensuring the safety

of aerial operations based on a detailed risk analysis. This methodology allows

12

operators to evaluate the risks associated with their missions and to implement

appropriate mitigation measures.

The SORA process consists of several key phases, each designed to identify and reduce

risks to both people on the ground and other aircraft. Below are the main phases:

1. Definition of the Operation: In this phase, the operator describes the planned

mission, geographical areas, duration, and type of drone used. The operational

concept (ConOps) is also defined, providing an overview of the operation.

2. Preliminary Ground Risk Class (GRC): The risk to people on the ground is

assessed and classified based on various factors such as population density, type

of operation (VLOS or BVLOS), and drone size. The preliminary GRC is an

estimate of risk based on the initial analysis of the operational area.

3. Mitigation of Ground Risk: After identifying ground risk, the operator can

implement measures to reduce it, such as limiting the flight area or adopting

safety technologies (e.g., parachutes, safe landing systems).

4. Preliminary Air Risk Class (ARC): Here, the risk of collision with other

aircraft is assessed. The risk is determined by the flight environment, expected

altitudes, and proximity to other aircraft.

5. Mitigation of Air Risk: The operator adopts measures to reduce the risk of

collision, such as using detection and avoidance technologies or adopting

specific flight corridors.

By combining the values of residual air and ground risk, the intrinsic risk values of the

entire operation, known as SAIL (Specific Assurance Integrity Level), are defined. A

high-value SAIL represents an operation with a high potential risk. Depending on the

SAIL index obtained, the operation will be considered more or less risky:

 Low Risk (SAIL I and II)

 Medium Risk (SAIL III and IV)

13

 High Risk (SAIL V and VI)

For SAIL I and II, compliance can be demonstrated with a declaration. In these low-

risk zones, all operations falling under standard scenarios (STS) or PDRA can be

found.

If the SORA result (after the application of mitigations) yields a SAIL III or SAIL IV,

an Operational Authorization will be required. At this point, the competent authorities

will indicate to the operator the possibility of needing to carry out a design verification

of the entire aircraft or one of its subsystems, especially if this helps to mitigate risk

and reduce the number of SAIL by 1 or 2 units.

If the result is SAIL V or SAIL VI after the application of mitigations, the operator

must undergo an aircraft certification process according to the airworthiness standards

described in the PART21 document, contained in Implementation Rule 1702/2003,

which establishes the requirements and procedures for the certification of aircraft,

products, parts, and related organizations.

Once the SAIL is determined, the applicant must review the 24 operational safety

objectives (OSO) and demonstrate compliance with a level of robustness that increases

with the SAIL (e.g., operations with a higher SAIL will need to demonstrate a more

stringent standard).

The final step is to assess the risk level of the area adjacent to the operational area and

to meet the requirements to protect that area and contain the drone within the

operational area in case of unwanted flight.

After completing all the steps of SORA, the operator must submit the application form

for operational authorization, the risk assessment, compliance evidence, and finally the

operator's manual to the NAA. The NAA, after verifying the information provided, will

issue the operational authorization.

Risk analysis is essential for operations in the Specific category due to the higher level

of risk compared to the Open category. The SORA method was designed as a guide to

14

identify the right mitigations and reduce risk to an acceptable level. However, its

application can be complex for many UAS operators, as it requires a deep

understanding of drone operations and manual data collection that can take days. This

is problematic for operators needing rapid approvals.

Moreover, with the increase in drone operations, national authorities will have to

manage a growing number of requests, which could slow down the obtaining of

approvals. While standard scenarios and predefined risk assessments (PDRA) can help,

they will not completely solve the problem, especially for operations outside the EU,

where SORA may be used without the applicability of standard scenarios.

Figure 3. SORA steps

2.2 Available tools

Currently, the tools available to assist operators in obtaining a SORA assessment are

limited and often require a high level of technical expertise, in addition to significant

costs. One of the few existing platforms is Online SORA Samwise, which allows users

15

to perform a risk assessment based on SORA guidelines, but its use can be complex.

This type of tool is not fully automated; the operator must still possess a thorough

understanding of the current regulations and the processes necessary to manage safety

and the risks associated with drone operations.

Tools like this aim to streamline the process, but they often require the involvement of

an expert to assist UAS operators in entering data and verifying safety measures. These

consulting services, while helpful, can entail high costs that may be prohibitive for

small- to medium-sized operator groups. Many companies offering such tools provide

support packages that include personalized assistance but at considerable prices.

In addition to paid platforms, some free tools provided by authorities like EASA or

national aviation authorities can be used to conduct manual SORA assessments.

However, these tools require the operator to independently gather all necessary

information and demonstrate compliance with the required standards. For instance,

EASA publishes guidelines and standard forms that operators can follow to perform

their own risk assessments, but there are still no fully automated and free platforms that

can replace human input and technical skills.

The main challenge lies in the fact that many drone operations need to be approved

quickly to meet commercial demands, but the lengthy timelines required to manually

complete SORA procedures can slow down operational processes, especially as the

number of drone operations continues to rise.

In conclusion, while there are tools that aim to facilitate the risk assessment process,

most still require significant expertise and associated costs, highlighting the need for

new, more accessible, and automated solutions for a broader range of UAS operators.

This thesis work fits into this context, aiming to provide a simple and fast tool for

rapidly obtaining a risk assessment.

16

CHAPTER 3

3. Background

This chapter examines the technical and conceptual context underlying the

development of the safe drone navigation project. Specifically, two key elements will

be explored: the safe navigation framework and the technological infrastructure that

enables its implementation. A central aspect is the use of the Robot Operating System

(ROS), an advanced middleware platform that facilitates communication between

different robotic components and allows for the implementation of complex planning

and control algorithms. Finally, the main software tools used to build the application

will be described.

3.1 ROS

The Robot Operating System (ROS) is an open-source middleware platform designed

to facilitate the development of complex robotic applications. Although its name

suggests it might be an operating system, ROS is actually a framework that provides

tools and libraries for inter-process communication. Its primary goal is to standardize

robotic software development, allowing developers to focus more on the specific

functionalities rather than the technical details of communication and interoperability

between different components.

ROS supports a distributed architecture in which various nodes, each responsible for a

specific task (e.g., navigation, perception, or motion control), can communicate with

one another through a publish/subscribe mechanism. Communication can take place

17

through different channels, such as services and topics, though in the context of this

project, services are primarily used.

In ROS, services enable synchronous communication between a client node and a

server node. A service allows a node to send a request and wait for a response from

another node, which is useful in operations requiring immediate processing or direct

feedback, such as path planning. This is exactly what happens in the project: the web

app sends service requests to the ROS server to calculate paths and create risk maps

based on the drone's data and surrounding environment. ROS services ensure secure

and coordinated operations, enhancing system integration and the overall effectiveness

of the drone's autonomous navigation system.

Additionally, ROS provides high-level services such as map management, localization,

and path planning, all of which are essential for developing autonomous systems. Its

modularity allows developers to extend functionality with additional packages, many

of which are created and shared by the open-source community.

In the context of this flight operation planning project for drones, ROS plays a critical

role in managing operations and integrating various subsystems. Specifically, it is used

to manage the communication between the web app and the server, which performs

advanced calculations like risk map creation and path planning. ROS's ability to handle

sensors, actuators, and data processing allows for risk-aware planning, meaning flight

planning that takes into account risks associated with the area being flown over,

including factors like population density and no-fly zones. Thus, ROS provides a robust

and flexible infrastructure that supports the safe management of autonomous flight

operations, making it possible to implement advanced navigation systems.

18

Figure 4. ROS system diagram

3.2 Framework

The safe navigation framework discussed in this work is designed to ensure that drones

can operate efficiently and safely in complex and populated environments, such as

urban areas. Safety is a key aspect of drone operations, as these devices must avoid

obstacles, comply with safety regulations, and minimize risks to people and

infrastructure. To this end, the framework integrates two crucial elements: the creation

of risk maps and risk-aware flight planning.

3.2.1 Risk-aware planning

Risk-aware planning is an advanced approach to route management for drones and

other autonomous vehicles that takes into account the potential risk associated with

each point along the path. Unlike traditional planning, which primarily optimizes

aspects such as distance or flight time, risk-aware planning incorporates risk variables

to ensure the safety of both the drone and the surrounding people and infrastructure.

19

This type of planning uses risk maps that divide the flight area into cells, each of which

is assigned a risk value based on factors such as population density, the presence of

obstacles, no-fly zones, and environmental conditions. The system processes the route

by selecting the least risky areas to minimize the potential for accidents or damage.

The result is a flight path that not only optimizes time or energy consumption but also

minimizes exposure to hazardous areas, making this approach essential for operations

in urban environments or where stringent safety restrictions apply. Risk-aware

planning is thus crucial to ensuring regulatory compliance and mitigating risks in

complex operational scenarios.

3.2.2 Risk map generation

The safe navigation framework employs an advanced approach to risk map generation,

which is crucial for planning safe flights in complex environments. These maps are

cell-based, where each cell represents a specific geographic area associated with a risk

value. Each square cell is equidistant, and the map covers a predefined wide area. The

generation of risk maps takes into account various factors: from environmental

characteristics to drone parameters, such as flight direction and altitude, along with

external factors like wind.

The risk in each cell is calculated as the probability of causing harm to people or

property, considering scenarios of accidental drone descent. The final risk map is a

two-dimensional matrix of cells that geographically represent the risk to the population

below. Each cell is identified using a local NED (North-East-Down) coordinate system,

allowing for precise association of each area with its corresponding risk level.

The map creation process is based on a multilayer model that integrates different

informational layers, each containing homogeneous data such as population density,

obstacles at varying heights, the level of protection offered by the terrain, and no-fly

zones. Currently, the population density layer is based on realistic but not real data due

20

to technical and privacy reasons. In the future, real-time data reception will be

integrated to provide a continuously updated risk assessment. These layers are then

combined to create a global map that considers both the risk associated with potential

drone descent events and the presence of flight-restricted areas and obstacles.

Essentially, the framework first produces event maps for each descent scenario, and

then combines these maps with data on obstacles and no-fly zones to generate the final

risk map. This multilayer approach allows for detailed risk analysis associated with

each map cell, enhancing the safety and efficiency of drone flight planning.

Figure 5. Main architecture of risk map generation

21

3.2.3 Path planning

Once the risk map is calculated, the path planning algorithm computes an optimal route

that minimizes risk to people on the ground, based on the risk values provided by the

generated map. The planned path consists of a series of waypoints that the drone can

follow during flight. Risk is measured in terms of the probability of causing incidents

per flight hour, so the planner seeks to minimize flight time in high-risk areas, thereby

reducing exposure to potential hazards.

The planning method employed is based on the RRT* (Optimal Rapidly-exploring

Random Tree) algorithm. RRT (Rapidly-exploring Random Tree) is a sampling-based

path-planning algorithm designed to efficiently explore large, complex spaces. RRT

generates a tree by progressively exploring the search space, connecting random points

(nodes) with the nearest point on the existing tree and expanding into unexplored

directions. This makes it well-suited for planning in complex spaces, such as those

involving obstacles or environmental constraints.

RRT* is an optimized version of RRT that, in addition to connecting new nodes to the

nearest point, seeks the connection with the lowest movement cost, which in the

context of drone flight corresponds to risk. Moreover, the RRT* algorithm includes a

"rewiring" phase that allows continuous reorganization of the tree to improve the path,

gradually converging towards an optimal solution over time.

Since risk values are expressed per flight hour, the concept of Time Reliance directly

relates to the risk associated with the drone’s flight. Risk depends not only on the path

but also on the exposure time to potential hazards. The longer the drone flies over a

populated area, the higher the likelihood of causing damage in the event of a failure or

accident. Therefore, risk is modeled as proportional to flight time; the longer the time

spent in a risky zone, the higher the probability of an incident occurring. This approach

is inspired by the concept of reliability in complex systems, where the risk of failure

increases with system usage time.

22

In summary, RRT* combines the efficiency of spatial exploration with path

optimization in terms of risk and time, ensuring that the drone follows the safest route

while minimizing exposure to high-risk zones during flight. This approach enables the

planning of paths that are not only efficient in terms of flight but, more importantly,

safe, reducing the likelihood of accidents in complex or densely populated

environments.

Figure 6. Example of risk map with Iris+ aircraft. The white line is the minimum risk path computed with the risk-aware path
planner.

23

3.3 Software Tools

In this chapter, the software tools used for the development of the webapp will be

described, including the development environment, programming languages, and

frameworks that were essential in completing the project.

3.3.1 Editor: Visual Studio Code

The development environment used was Visual Studio Code, a highly versatile editor

that supports a wide range of programming languages. With the integration of

extensions like Git for version control, VSCode was essential in maintaining an

efficient and organized workflow. Its ability to manage multiple environments and its

ease of use make it an ideal tool for full-stack development, from front-end code to

back-end logic.

3.3.2 Markup languages: HTML e CSS

HTML (HyperText Markup Language) was used to define the structure of the web app,

creating a solid foundation for the content and interface. Each React component relies

on a markup architecture defined through JSX (a syntax similar to HTML) for the

dynamic creation of user interface elements. The HTML semantics provide a clear and

accessible structure, contributing to a well-organized layout for users.

For style and visual design, the project utilized CSS (Cascading Style Sheets) to define

the appearance and layout of the web app. CSS was employed to manage the

positioning of elements, typography, and colors, with a particular focus on ensuring

the app's adaptability to different screen resolutions by using responsive layouts.

24

3.3.3 JavaScript, React.js e Node.js

The core of the project is JavaScript, the primary language for client-side interaction

logic. Thanks to its flexibility and power, JavaScript enabled the creation of a

responsive user interface, management of communications with the ROS server, and

implementation of dynamic functionalities for processing and visualizing flight data.

For front-end development, React.js was used, a JavaScript framework that simplifies

the creation of dynamic user interfaces through state management and reusable

components. Each part of the user interface, from input forms for flight data to map

visualizations, was developed as an independent component, which enhanced the

modularity and maintainability of the code. React's Virtual DOM management allowed

for optimized interface updates, improving performance.

For the back-end, Node.js was used along with Express.js, a minimalist framework for

building RESTful APIs. Node.js, being a server-side JavaScript environment,

facilitated integration with ROS and managed client-server requests asynchronously.

Express.js simplified the definition of routes for the APIs, enhancing communication

with the ROS server to request path planning and manage the returned data.

3.3.4 ROS

The core of the integration with the operations calculation system is the ROS (Robot

Operating System) middleware, used for managing robotic operations and

communication between various nodes of the system. In this project, ROS topics were

not used for data exchange; instead, services were employed, which provide a

synchronous communication mode between client and server. The roslibjs library was

fundamental for interfacing the web app with ROS via the WebSocket protocol,

allowing for the direct and reliable sending of planning requests and the reception of

path data.

25

3.3.5 ROSbridge_suite

ROSbridge_suite is an essential package in the project that enables communication

between a ROS (Robot Operating System) system and non-native ROS applications,

such as a web app. This package provides a standard interface that allows sending and

receiving messages between the ROS server and external applications through common

protocols, such as JSON over WebSocket, REST, or other standard communication

formats.

In the context of our project, ROSbridge_suite allows our web app to send commands

and receive data from a ROS system that handles the calculation of risk maps and paths.

This is crucial as it enables our application to interact with the ROS system without

requiring the direct installation of the ROS middleware within the web app, thereby

increasing portability and simplifying the system architecture.

ROSbridge_suite consists of several components, the most important of which is the

ROSbridge_server, which acts as a central server to manage requests and responses

between ROS and external applications.

The ROSbridge_suite package includes:

 ROSbridge_server: The main component that listens for and manages external

connections.

 Protocols: Supports various communication protocols such as WebSocket,

HTTP/REST, TCP, etc.

 WebSocket Client: A client that enables communication via WebSocket with

ROS, ideal for interactive web applications like the one we are developing.

The ROSbridge_server is the heart of the ROSbridge_suite package. It is a server that

translates ROS messages into a web-readable format, such as JSON, and sends them

via WebSocket or HTTP to connected clients. This server allows non-ROS applications

to interact with the ROS system transparently. For our project, the ROSbridge_server

26

enables the web app to send service requests, receive feedback, and retrieve the

necessary data to display risk maps and plan paths.

The operation of the ROSbridge_server is based on a request-response cycle:

1. Request from the WebApp: Our web app sends a request in JSON format to

the ROSbridge_server. This may include commands for drone control, requests

for sensor data, or other information managed by ROS.

2. Translation to ROS Format: The ROSbridge_server translates this request into

a ROS message and sends it to the appropriate ROS node.

3. Processing the Request: The ROS system processes the request and generates

a response, which is sent back to the ROSbridge_server.

4. Sending the Response: The ROSbridge_server translates the response into

JSON and sends it to the web app, which displays it or performs the appropriate

action.

One of the main advantages of using the ROSbridge_server is that it allows exposing

ROS functionalities to a wide variety of clients without requiring those clients to be

part of the ROS framework. This is crucial in our project since the web app, being

based on technologies like React and Node.js, cannot natively interface with ROS.

Thanks to ROSbridge, we can display data without compromising the modularity and

lightweight nature of the web app.

3.3.6 Leaflet

Leaflet is one of the most widely used JavaScript libraries for creating interactive maps

in web applications. Its main strength lies in its lightweight nature (less than 40KB)

and extensive functionality provided by a broad ecosystem of available plugins. These

plugins enhance its capabilities with additional features such as drawing tools,

27

management of vector and raster layers, support for geospatial data in GeoJSON

format, and more.

Leaflet is compatible with a wide range of map sources, including OpenStreetMap,

Mapbox, Google Maps, and many others. This makes Leaflet an ideal tool for projects

requiring the integration of detailed, customizable maps with real-time or context-

specific data, such as the risk maps used in our project.

The main features of Leaflet include:

 Interactive Map Visualization: Leaflet allows users to visualize maps that they

can explore through pan and zoom tools, providing an interactive and dynamic

experience.

 Layer Management: Leaflet enables the addition of multiple layers to the map,

such as tile layers, markers, polylines, and polygons. This layering capability is

crucial for our project, as it allows for the overlay of risk maps, flight paths, and

other relevant information on the selected area.

 Event Management: Leaflet handles events such as clicks, hovers, drags, and

zooms. This enables a high level of interactivity and customization of the map,

allowing for specific actions when users interact with certain elements on the

map, such as selecting areas or points of interest for path planning.

 Support for Geospatial Data: Leaflet provides support for the GeoJSON

format, a standard for representing geographic data such as points, lines, and

polygons, which is widely used for visualizing information like boundaries,

paths, or selected areas.

One of Leaflet's major strengths is its modularity. Numerous libraries and plugins

extend Leaflet's core functionalities, allowing for the creation of highly customized and

specific applications. In our project, Leaflet is used alongside the React-Leaflet library,

a wrapper that facilitates the integration of Leaflet into React applications. With React-

Leaflet, we can leverage the reactivity and modularity of React to manage the state and

28

interactions of the map efficiently, improving the rendering management and dynamic

updating of map elements.

For example, through React-Leaflet, it is possible to synchronize the drawing of the

flight area with the selection of specific points for path planning, dynamically updating

the user interface without needing to reload the page.

A key plugin for the project is Leaflet-Draw, which adds advanced drawing tools to

Leaflet, such as the ability to draw polygons, rectangles, circles, and lines directly on

the map. Thanks to this plugin, users can interact with the map intuitively by drawing

the flight area, modifying shapes, and receiving real-time coordinates of the selected

areas. This information is then used to calculate the risk map, enhancing the safety and

effectiveness of flight operations.

3.3.7 Additional tools

The project was versioned using Git, with the repository hosted on GitHub. This

enabled efficient code management, tracking changes to facilitate collaboration with

potential future developers.

The WebSocket protocol was used to maintain a continuous bidirectional connection

between the web app and the ROS server, allowing for rapid exchange of the necessary

information for flight planning.

In conclusion, the combination of these tools and technologies made it possible to

develop a powerful and dynamic web app capable of handling drone flight planning in

complex environments safely. The integration of HTML, CSS, JavaScript, React, and

Node.js created a coherent and modular workflow, while ROS provided support for

mission management.

29

Figure 7. Tools used

30

CHAPTER 4

4. Development

In this chapter, we will delve into the technical and practical aspects of the

implementation of communication between ROS and the web app, highlighting how

the system was built and the challenges faced during the process.

4.1 Frontend

The web application was developed using React, a popular JavaScript framework for

building user interfaces. The structure of the front-end is based on a component-based

architecture, where each component handles a specific part of the interface and

functionality. The code is modular, and each component is responsible for a defined

aspect of the application's logic. Below a detailed description of the key components is

discussed.

Figure 8. Structure of /src directory

31

4.1.1 Home.js

The Home.js component plays a crucial role in the architecture of the application. It

handles several important functions, such as the selection and addition of new drones,

as well as user interaction for submitting the necessary data for a flight mission.

The component allows users to either select an existing drone from a list or add a new

one through a dynamic form. The form is toggled by clicking a button, which alternates

visibility between selecting from existing drones and displaying the form to add a new

drone. A dropdown menu shows the list of already saved drones, allowing the user to

select one and move on to the next screen. The technical data related to the selected

drone, stored in the database, is fetched via API and passed to the next component.

Alternatively, if the user wants to use a drone not already in the database, they can fill

out a form containing the following fields:

 Model: The name of the drone model

 Max cruise speed: The drone's maximum cruise speed

 Max flight time: The maximum flight time the drone can sustain

 Mass: The drone's weight in kilograms

 Radius: The drone's radius (or interaxis)

 Max payload: The maximum weight the drone can carry

These technical parameters are defined for each drone and can be displayed in a

technical sheet. Once the new drone and its parameters are defined, the data is saved

to the database through an API and passed to the next component.

Upon clicking the 'Submit' button, a function is called to distinguish between the two

cases. If a drone is selected from the list, its data is retrieved and passed along. If the

32

form is submitted, the function checks that the form fields are filled correctly before

saving the data and passing it to the next step.

Figure 9. Section of handleSubmit function in home.js

A CSS file (App.css) manages the layout and visual elements of the page, ensuring that

the Home.js component remains simple and intuitive for the user. This CSS file is

responsible for defining styles such as positioning, spacing, fonts, colors, and

responsiveness, ensuring that the interface is user-friendly and visually appealing.

33

4.1.2 Drone-map.js

In the project, one of the key components for user interaction with the simulated flight

environment is the Drone-Map.js component. This component, built using the Leaflet

and React-Leaflet libraries, is essential for providing an interactive map that allows

users to select the area of interest for the calculation of the risk map and the planning

of the drone's path. The component integrates with other modules of the web app, such

as the flight mission form and the interface for selecting the start and end points for

path planning.

Within the component, the user has the ability to use drawing tools to select the specific

mission area. These tools are enabled through the integration of a plugin for Leaflet

that allows the creation of shapes such as polygons, rectangles, and circles. For this

application, only the creation of rectangles is enabled, as the software for calculating

the risk map requires an area exclusively in this shape.

In this component, requestData is defined and managed through useState. This contains

the data for the mission_bb, that is, the values of the flight mission's bounding box

parameters, which will be sent to the ROS server for the map calculation. These include

the coordinates of the northwest and southeast points of the selected area, model name,

date and time, payload weight, altitude, and operating speed. The parameters defined

here in JavaScript are managed on the ROS side in a .srv file written in C++. Both

cases are shown below in the figure.

34

Figure 10. .srv file for risk map service request

Figure 11. requestData fields. These values are used to compute the risk map.

35

Using the tools offered by Leaflet, the creation, modification, and deletion of the shape

(i.e., rectangle) for area selection are managed, in addition to the map visualization.

The display of the risk map image returned by the server (with ImageOverlay) and the

drone's path (with Polyline) is also handled.

Figure 12. Section of drone-map.js for the visualization of map and drawing tools

Figure 13. Section of drone-map.js for the visualization of risk map and form component

36

Finally, two fundamental components are called: the one containing the form to be

filled in with the mission parameters (i.e. ModalComponent) and the component that

allows the selection of the start and end points of the mission for route calculation (i.e.

PathModal). The MarkerHandler manages the creation of markers on the map for these

start and goal positions.

Figure 14. Section of drone-map.js for the visualization of computed path and path selection component

4.1.3 Risk map

The service-form-component.js file manages the form submission. It displays the fields

for the flight mission parameters, which is the requestData previously discussed. The

form contains, in addition to the button for submitting the data, a button that allows

resetting the fields.

When the completed form is submitted, the handleSubmit() function checks that all

fields have been correctly filled in. Regarding the ‘datetime’ field, a specific function

was created to ensure that the string sent is in the correct format and that the date

entered is not earlier than the current time.

37

If there are one or more incorrect fields, or if an attempt is made to submit the form

without first defining an area on the map, error messages are displayed, indicating what

needs to be corrected.

If everything is correct, the riskMap() function is called. This establishes a connection

with the ROS server, creates a service request with requestData, and finally calls the

service. If the operation is successful, the images returned by the server are saved in

the /public/images folder located in the backend, via the saveImage() API. A Promise

is used to wait for each image to be saved, after which the service ends. If there are no

errors, the risk map image is taken from the /images folder and displayed on the map

over the selected area.

Figure 15. Section of the service call to ROS server for risk map request

38

4.1.4 Path planning

The path-modal.js file creates a component that contains two buttons: one to set the

start point and the other for the goal point for calculating the path that the drone must

follow. Pressing either button activates the MarkerHandler function, which, as

mentioned earlier, manages the click on the map to define the location of the point.

Once the two points are defined, a button appears that, when clicked, calls the

pathPlanning() function defined in the ROS-path.js file. This function, similar to the

previous riskMap() function, establishes a connection with the ROS server. It then

creates a request message with the values of the required parameters: an ID that

identifies the risk map image, the coordinates of the start and goal positions, and the

altitude. These parameters are similarly defined, just like for the risk map, in a .srv file

on the ROS side.

Figure 16. .srv file for path planning service request

The service is then called, which, in case of success, will return an array of waypoints,

that is a sequence of points that, when displayed on the map, will show the low-risk

path calculated by the software.

39

Figure 17. Service call to ROS server for path planning request

Both the service-form-component and the path-modal components have corresponding

.css files (form-modal.css and path-modal.css, respectively) that manage the layout of

the two elements on the page.

4.2 Backend

The backend of this application is organized according to a structured and modular

architecture, which facilitates the management of data retrieval, insertion, and

modification related to drones within a database. Each component of the backend has

a specific responsibility, allowing the code to remain organized, reusable, and easily

maintainable. This separation ensures that each component focuses on a precise aspect

of data management, improving internal cohesion and system understanding.

40

Figure 18. Backend structure

4.2.1 Drone data management

The models folder contains the definition of the data models used to represent drones

within the application. Each drone is defined by a set of key attributes such as model,

maximum cruise speed, maximum flight time, mass, operational radius, and maximum

payload capacity. These attributes are mapped to the database tables where drone data

is stored. The Drone model serves as a blueprint for saving and retrieving data from

41

the database, as well as ensuring that the data complies with the defined format and

constraints.

The DAO (Data Access Object) layer is responsible for direct interaction with the

database. In this layer, CRUD (Create, Read, Update, Delete) operations on drone data

are implemented. This layer abstracts the complexity of database management and

provides a clean interface for other parts of the system. The DAO encapsulates all

database-related operations and provides simple methods for data insertion and

retrieval.

The Service layer orchestrates the business logic of the application. It receives data

from the DAO and implements the necessary logic to process it before sending it to the

client or controller. This layer provides an additional level of abstraction between the

DAO and the Controller, ensuring that the controller does not have to worry about

business logic, but only about orchestrating requests and responses. The Service can

also contain validation logic, data transformation, or interaction with other system

components before passing the data to the DAO or the Controller.

The Controller is the part of the system that handles HTTP requests coming from the

web app. It receives client requests, sends them to the appropriate services, and returns

a response. The controller usually follows the REST pattern, where each resource in

the system has a defined set of operations (e.g., GET, POST, PUT, DELETE). The

Controller handles receiving the HTTP request, invoking the appropriate services, and

returning a response to the client in the form of JSON. This allows the web app to

interface with the backend in a simple and standardized way.

The dbmanager.js file manages the opening and closing of connections to the database.

It is responsible for configuring the database and managing it correctly. Often, this file

contains the database credential configuration and manages the connection pool to

improve performance.

42

4.2.2 Server.js

The server.js file serves as the entry point for starting the application's backend. It is

configured to handle HTTP requests, interact with the database, and save images to the

server.

Here, the Express framework is initialized, which will be responsible for managing

HTTP requests. The server is set to listen on port 3001, and the HTTP header x-

powered-by is disabled to enhance security by preventing the exposure of the use of

Express. Middleware functions are then handled, which are executed before managing

requests. Specifically:

 Morgan is used for logging HTTP requests (in development mode).

 express.json() and express.urlencoded() allow the server to parse the body of

requests, including JSON and URL-encoded data, with a size limit of 50MB.

 express.static() is used to expose static files (such as images), making the images

saved in a specific public directory accessible.

CORS (Cross-Origin Resource Sharing) is then configured, allowing the server to

handle requests from a different domain (in this case, the frontend on localhost:3000).

Options include enabling credentials and managing the response in case of success.

The DBManager is instantiated afterward.

APIs related to drone management are handled by the droneController, which is

responsible for CRUD operations on drone data. Requests sent to the /api path are

routed to the controller for handling.

An API is also defined that allows images to be saved to the server. It receives the

name and image data (in base64 format) from the front-end and saves it in the

public/images folder. If an error occurs during saving, a 500 error is returned; if

successful, a confirmation message is returned.

43

Finally, the server is started and configured to listen for requests on port 3001. A log

message is displayed to indicate that the server is active and listening.

In conclusion, the backend of the drone management system is constructed following

a well-defined structure that clearly divides responsibilities among model

management, data access, business logic, and HTTP interface. This division helps keep

the code organized and easily scalable while efficiently managing drone-related

operations.

44

CHAPTER 5

5. WebApp overview

In this chapter, the functionalities of the application will be demonstrated through the

use of screenshots and appropriate comments. An example operation will also be

shown, along with the overall appearance of the app, so that one can visualize what the

previously discussed code renders on the screen.

Figure 19. Home page

The Home page displays a currently very simple screen, featuring a Navbar at the top

with the app's logo. The Navbar remains fixed on the screen even in subsequent pages,

and clicking the logo (the name SORA is just an example) returns the user to this

screen, allowing for quick access to the main page at all times.

45

In the central selection panel, there are two elements. The first is a drone selection

menu. Clicking it will open a dropdown that shows a list of drones currently saved in

the database.

Figure 20. Drone selection in home page

Once a drone is selected, the ‘Submit’ button will appear, confirming the choice and

navigating to the next page after retrieving the drone's data from the database.

A second option is to manually enter the details of a drone. By clicking on ‘Insert new

drone,’ a form will open with various fields representing the technical parameters of

the drone.

Figure 21. Form for new drone

46

Once the fields are filled out, pressing the ‘Submit’ button will navigate to the next

page. The newly entered drone will be saved in the database, and its data will be used

for subsequent calculations. Clicking ‘Back to selection’ will return the user to the

previous panel.

Figure 22. Form for new drone with error messages

A validation function checks that all fields are filled out correctly; otherwise, an error

message is displayed under each field, as shown in the figure above.

47

5.1 Risk map computing

The next page represents the true core of the application. It contains the map and the

components that allow users to manage the data to be sent for flight planning.

Figure 23. Main page

The page, as shown in the figure, displays the map (from OpenStreetMap) on which

the user can choose the area where they want to perform the operation. In the top right

corner, we find the drawing tools provided by Leaflet, which allow the user to define

a rectangular area that can later be modified or deleted. Selecting the area is the first

step the operator must take to proceed with the operation.

48

Figure 24. Area selection with drawing tools

Next, there is a form that the operator must fill out with the flight mission data. Again,

a validation function checks that the entered data is correct; otherwise, an error message

will be displayed, specifying which fields are incorrect.

 Figure 25. Values error messages Figure 26. Error message when area is not found

Regarding the date, it must be entered in the format specified in the form and cannot

be earlier than the current time. If an attempt is made to submit the data without first

defining an area, an error message will appear to inform the user of this. A 'RESET'

button allows all fields in the form to be cleared.

49

If the operator has successfully completed these two steps—defining the area and

filling out the form—they can submit the data by pressing the 'SEND' button and wait

for the ROS server to calculate the risk map. This will then be displayed on the map

above the selected area.

Figure 27. Risk map result

The image above shows the result of an example operation that the team performed.

We can see how the returned image, made semi-transparent to allow the operator to

see the map underneath, is consistent with the one processed by the ROS server, shown

below. The color represents the level of risk associated with that area: red indicates a

high risk, yellow/green a medium risk, and blue/purple indicates a low risk.

50

Figure 28. Risk map result ROS server side

51

5.2 Path computing

Once the risk map is obtained, the next step is to calculate the optimal path associated

with the area in question. The "Set a path" component allows the operator to select the

starting and ending points of the mission. Pressing one of the two buttons enables the

selection of the corresponding point; pressing it again cancels the operation. When

enabled, the pressed button will be green. If a point has already been selected, pressing

the corresponding button will delete it, allowing the user to select another one.

Figure 29. Example of an area with start and goal position selected

Once the starting and goal points are defined, the "COMPUTE PATH" button will

appear. Pressing it will send a request to the server to calculate the path. If you attempt

to do this without first calculating a risk map, an error message will be displayed

reminding you to do so.

52

Figure 30. Path planning error message

The team, as an example, calculated a path based on the previously calculated risk map.

The result is shown in the image below, which can be considered representative of what

the final result of any planning may look like.

Figure 31. Path planning result

53

Once the path is obtained from the server, it is displayed on the risk map between the

two selected positions. The image, once again, is consistent with that processed on the

ROS side.

Figure 32. Path planning result ROS server side

Looking at these images, one can see how the calculation software attempts to generate

a path that is as safe as possible, trying to avoid the highest-risk areas even if it means

lengthening the route.

Below, as an example, are the results of other simulations. As before, each map will be

followed by the corresponding result from the ROS server. Observing Figures 35 and

37, it is evident that even a slight shift in the goal point can lead to a significantly

different low-risk path.

54

Figure 33. Risk map simulation result

Figure 34. Risk map simulation result ROS server side

55

Figure 35. Path planning simulation result

Figure 36. Path planning simulation result ROS server side

56

Figure 37. Another example of path planning simulation

Figure 38. Result ROS server side of fig.37 simulation

57

CHAPTER 6

6. Conclusions and future works

The project developed for planning drone flight operations in populated areas

represents a significant contribution within a continuously evolving technological

context. The integration of a web application with advanced planning and risk

management tools, compatible with the Specific Operations Risk Assessment (SORA)

required by EASA, has demonstrated the potential to provide operators with an

effective tool to ensure safety and regulatory compliance.

The user interface, based on React and libraries like Leaflet and React-Leaflet, allows

for interactive maps to visualize mission area selection and risk map calculation. The

interface with ROS (Robot Operating System) enables the web app to connect to a

backend system that manages risk map calculations and sends commands to the drone.

The backend handles requests asynchronously, allowing for smooth communication

with the ROS server for processing maps and supporting images. Systems have been

implemented for managing and saving data, such as images generated from risk maps,

ensuring traceability of operations and the ability to analyse data in post-processing.

Future works may include the introduction of a user authentication and registration

system, allowing operators to create personal accounts. This feature would enable the

saving of previous flight missions and their associated risk maps in the user’s area,

facilitating the retrieval and analysis of past operations. Additionally, users could

customize their accounts to receive suggestions or notifications about regulatory

updates. Another useful enhancement could be the ability to export planning results,

such as risk maps or flight trajectories, in JPG or PDF formats. This would be

advantageous for creating documentation to share with other team members or

regulatory bodies to demonstrate compliance with safety regulations, providing a

structured archiving of mission data.

58

A crucial aspect for future development will also be user feedback. As the platform is

used by an increasing number of operators, their contributions will be essential in

identifying areas for improvement. Features such as post-mission surveys or the ability

to report issues directly from the application could accelerate the implementation of

new functionalities and enhancements.

The project has achieved remarkable results, creating a functional platform that could

serve as a foundation for the future development of advanced planning tools for drone

operations. Continuing down this path, the system could become an indispensable tool

for safe and compliant operations in the drone industry.

59

7. References

[1] Primatesta, Stefano, Alessandro Rizzo, and Anders la Cour-Harbo. "Ground risk

map for unmanned aircraft in urban environments." Journal of Intelligent &

Robotic Systems 97 (2020): 489-509.

[2] Milano, Matteo, Stefano Primatesta, and Giorgio Guglieri. "Air risk maps for

unmanned aircraft in urban environments." 2022 International Conference on

Unmanned Aircraft Systems (ICUAS). IEEE, 2022.

[3] Primatesta, Stefano, et al. "An innovative algorithm to estimate risk optimum

path for unmanned aerial vehicles in urban environments." Transportation

research procedia 35 (2018): 44-53.

[4] https://dronefacile.it/regolamento-droni/

[5] https://eudroneport.com/it/blog-it/metodologia-sora/

[6] https://droneitalia.online/valutazione-del-rischio-sora/

[7] https://it.wikipedia.org/wiki/Specific_Operations_Risk_Assessment

[8] https://towardsdatascience.com/what-why-and-how-of-ros-b2f5ea8be0f3

[9] https://www.smartcitiesworld.net/news/dhl-launches-its-first-regular-urban-

drone-delivery-service-4189

[10] https://www.enac.gov.it/

[11] https://medium.com/level-up-web/amazingly-useful-html-css-and-javascript-

tools-and-libraries-d73b10fbae29

[12] https://www.designveloper.com/blog/what-is-react/

[13] https://react-component-depot.netlify.app/

[14] https://leafletjs.com/

[15] https://react-leaflet.js.org/

