POLITECNICO DI TORINO

Master’s Degree in Mechatronics Engineering

Master’s Degree Thesis

Design of a monitoring tool for the health assessment of

power converters

Supervisors Candidate
Prof. Igor Simone STIEVANO Mattia Rossi
Prof. Paolo MANFREDI






Abstract

Power electronics, in particular power converters, have a pivotal role in multiple
expanding fields like: Electric mobility, renewable energy integration, microgrids, and
smart grid technologies. Reliability for power electronic converters is a significant
concern, since, compared with other electrical modules, they are characterized by a higher
failure rate, as reported in different field reviews. The consequences of a converter failure
are not only limited to the downtime of the system and potential damage to downstream
components. It can also pose a threat to the safety of the system. Those reasons made
the lifetime management of power converters an increasingly studied field.

This master's thesis aims to detect the ageing of a power converter by identifying the
parameters that are associated with the degradation of a component. This goal is
achieved with the implementation of a digital twin of the circuit. The output voltage is
simulated and then compared with the measured output voltage of the converter.
Minimizing the cost function built between the two characteristics, with the
implementation of an optimizer, provides an estimation of the system parameter.

Initially, the method was tested on a simple RLC circuit where a benchmark was made
to choose the most suitable optimizer for this application.

Lastly, once the algorithm proved its efficiency on the RLC circuit, its efficacy was tested
on a buck converter. The higher complexity of the system introduced other challenges,
one of which was to process the output of the simulation in order to align and normalize
the data. A qualitative analysis of the estimation of the failure indicator was then
performed.
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Chapter 1

Introduction

1.1 Overview

The switching mode power converters are characterized by relevant features, including
high conversion efficiency, low weight, and compact size. Those characteristics made this
type of converter a widespread solution for power conversion across different industries,
from applications with lower requirements, such as in consumer electronics for domestic
appliances or portable electronics, to more critical and demanding systems, such as DC

distribution systems or electric motor drives [1].

The widespread adoption of switching-mode power converters in various expanding
industry verticals includes electric mobility, renewable energy integration, microgrid, and
smart grid technologies has made their reliability a priority [2][3][4]. Reliability for power
electronic converters is a significant concern [3] since, compared with other electrical
modules, it is characterized by a higher failure rate, as reported in different field reviews.

Two applications where the reliability of power converters is a significant concern are in
wind turbines and photovoltaic plants. Wind-power generation systems use power
electronic converters to regulate the fluctuating input power and maximize the electrical
energy harvested from the wind [5]. As shown in the histogram of Figure 1, power

converters have a relevant annual failure rate above 15% [6].
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Figure 1 Annual fault rate and downtime percentage of components, figure from [6]



Failures of power converters are even more relevant in photovoltaic plants, where the
inverters were responsible for 37% of the unscheduled maintenance and 59% of the
associated cost [5], as shown in the pie chart in Figure 2.
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Figure 2 Unscheduled maintenance cost (left) and time (right) in PV application [5]

It has to be noted that the cost associated with an unscheduled interruption due to a
fault in a power converter is not restricted to replacing only the faulted converter.
Additional costs come from downtime for maintenance but also from downstream
components that, in the worst-case scenario, can be damaged by the fault leading to the
shutdown of the entire system or starting to work abnormally, impairing the efficiency
of the system [7].

For example, in hybrid electric vehicles, a fault in electric propulsion systems impairs
fuel economy and lengthens the cost recovery period [3]. It is also important to
acknowledge that failures have consequences beyond financial losses since they also pose
a threat to the safety of the system [3].

Monitoring the power converter's performance and behavior is a viable path in order to
estimate the remaining useful life (RUL) of the system and take preventive measures
before anomalies in the equipment turn into system-critical failures [8]. Thus, reducing

the unplanned downtime maintenance and have a significant economic improvement.



1.2 Failures classification and management

In order to correctly manage failures in the equipment, it is crucial to comprehend and
categorize the mechanism and the mechanisms by which these phenomena occur. The

failure mechanism of power converters can be classified as:
e (Catastrophic failures
o Ageing failures.

Catastrophic failures often occur without any warning signs. This type of failure happens
abruptly with time frames that range between the micro to milliseconds and are more
commonly triggered by overstress conditions, such as short circuits or over voltages [2].

Ageing failures occur after several years of operations that lead to a degradation of the
device that can be detected with several indicators. The wear-out caused by the long-
term application makes the components of the power converter too fragile to withstand
nominal electrical and thermal solicitation, and the entire system may collapse [9].

To deal with these two classes of failures, the general guideline for the reliability of power
electronic systems split their management as illustrated in Figure 3.
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Figure 3 Guideline of the reliability of power electronic system, figure from [3]

Fault management deals with catastrophic failures and its main objectives are: protect
the integrity of the system through the implementation of circuit breakers, compensate
and to diagnose the fault [3].

On the other hand, lifetime management deals with predicting failures and extending the
lifetime of the power converter [3]. Different approaches can be followed in order to
predict the remaining useful life of a component and predict a possible failure.
Traditionally, those estimations were handbook driven. Nowadays, in the era of the
industry 4.0, the required accuracy standard for lifetime expectancy is higher since it



allows the transition from preventive maintenance to predictive maintenance [10]. Hence

more advanced strategies for fault prediction have been developed.

1.3 Condition monitor strategies

In order to assess the current health state and estimate the future state of the system
[10], different strategies were developed. As shown in Figure 4, currently, those strategies
are divided mainly into two categories: Model-based and data-based.
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Figure 4 Classification of fault prediction methods, figure from [11]

1.3.1 Data-based methods

Data-based methods are focused on data analysis or on data processing. The data analysis
approach needs to use historical data to find the corresponding relationship between the
statistical characteristics or time domain and frequency domain characteristics of system
fault and system state value. After collecting the current system state value, it is analyzed
and compared with historical data for fault prediction [11]. On the other hand, the data
processing approach utilizes machine learning in order to conduct statistical analysis of
historical data with the objective of determining the corresponding relationship between
the system fault and the system status. By inputting the current system status, it is
possible to predict the system fault information. To implement this strategy, methods

like fuzzy logic and neural networks can be applied [11].



1.3.2 Model-based methods

As shown in the classification of Figure 4, model-based methods are subdivided into
qualitative and analytical models. In order to implement a model-based condition
monitoring that uses an analytical model, it is necessary to firstly develop an accurate
physical model of the system in exam that is able to take into consideration
environmental interference and the wear of the components. The main advantage of this
approach is that it can predict the remaining useful life of a component without knowing
the system state value. The main drawback is that it cannot account for the influence of
the system operation and other modelling factors on the components [11].

To implement a model-based condition monitoring with a qualitative model, it is
necessary to consider the fault transmission relationship between nodes when establishing
the model in order to predict the impact of the fault of a component on other elements
of the system [11].

1.3.3 Digital twin concept

Data-driven techniques for condition monitoring have achieved significant improvement
in the last ten years thanks to the substantial advancement in sensor, communication
and information technologies and data mining [10]. Nonetheless, those approaches have
faced significant challenges due to: Limitation of data availability in different operating
condition and the limited ability to provide reliable and interpretable solutions due to
the black-box nature of artificial intelligence [10].

A novel approach that has promising capabilities for health monitoring is the digital
twin. Firstly, introduced by the U.S. Air Force Research Laboratory as a comprehensive
physical and functional description of a component, product, or system [8]. The Digital
Twin (DT) is an evolution of the conventional model-based approach that generates a
virtual counterpart that mirrors the real system [12]. Compared to data-driven methods,
the virtual mirror of the digital twin is able to trace and assess the performance
degradation of the single components instead of relying on statistical methods [10]. Thus,
this approach is able to take into account the specific operating environment and load
usage of the specific machine instead of relying on average prediction based on historical
data [10].

In order to apply this concept to a power converter, the first requirement is to establish
an accurate mathematical model for the monitored electronic entity [8]. Then, the
measurement architecture and a parameter identification method must be chosen. The
virtual replica will update its electrical parameters continuously according to the existing
measured data from the physical counterpart [13]. Thus, allowing to monitor the
parameter evolution of the different components. By analyzing the physic-of-failure, it
will be possible to identify which parameters are the failure indicators. Identifying the
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behavior of those indices and tracking their evolution will become a powerful tool to
assess the ageing of the various elements of the converter and predict its remaining useful
life.

1.4 Failure mode of critical components

The first step to correctly assess the condition of a power converter is initially to identify
the prone-to-failure components [3]. By collecting and analyzing different surveys that
studied the failure distribution among power electronic components, it is possible to
notice that all of those surveys address the capacitor and the power semiconductor as
the most critical element of the system [5],[7],[14],[15]. According to the results of the
examined surveys, capacitors and power semiconductors are the cause of at least 50% of
the failures in power converters. The pie graph in Figure 5 depicts one of those surveys’
results.
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Power
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Figure 5 Failure distribution among magjor components [3]

Since the literature gives a univocal response on which are the prone-to-failure
components, it is crucial to study the physics of failure of those components in order to
identify which parameters are measurable failure precursors.



1.4.1 Power semiconductor switches

Failure mode in the power semiconductor can occur either at the chip level or at the
package level.
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Figure 6 SiC MOSFET chip-level structure (left) package-level structure (right)

The main concern for chip-level failure in SiC MOSFET is gate oxide breakdown.
Damage to the gate oxide can occur as the result of overstress that can lead to a
catastrophic failure but also due to wear out of the component. Failures caused by the
damage accumulated in the gate oxide region of a MOSFET during regular use are
referred to as time-dependent breakdown (TDDB) [16]. The damage in the gate oxide
can result in excessive leakage current, increased standby power, and decreased response
time. Eventually, the damage will cause a MOSFET to short-circuit [16 3].

The other chip-level failure that occurs in SiC MOSFET is the body diode failure, which
is more commonly provoked by the recombination-induced stacking fault mechanism.
The leading cause of the body diode degradation is the forward voltage bias stress which
leads to an increase in forward voltage and drain leakage current [3]. The continuous
thermomechanical stresses result in the formation of voids and cracks in the solder layers
and reduce the effective area accessible for heat loss reduces, leading to a rise in the
module thermal resistance. These further result in an increase in the device junction
temperature, which may cause acute localized heating; further possibly leading to
catastrophic burnout [17].

The weak spots for package-level failures are bond wires and solder layers. Those
elements are vulnerable to thermomechanical fatigue that eventually weakens the
metallic contacts. The effect of thermomechanical fatigue can be further exacerbated by
humidity and high current density. Humidity can cause a plummet in the metal atom
bonding energy. Therefore, the crack growth rate at the tail of the bond wire increases
due to atom corrosion [3]. High current density stress leads to acceleration in
electromigration-related degradation [18], causing high junction temperatures in bond
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wires which further leads to the increase of on-state drain-source voltage and resistance
[3]. All those types of failure and their characteristics are summarized in the following
Table from [3].

Failure location Failure modes [36] Failure mechanisms [37] Failure Causes [38] Failure Indicator [18, 39]
Short-circuit, Electrical overstress and High electric field, Threshold voltage shift,
|| G Increased gate leakage ESD, Gate voltage exceeds its Drain leakage current,
5 current, Increased gate | Time-dependent dielectric breakdown voltage, Miller Plateau voltage
f‘:. threshold voltage. breakdown. High temperature amplitude.
(o} Body Increased drain leakage recombination-induced The forward voltage bias Drain leakage current,
diode current stacking. stress Body diode forward voltage.

Bond wire cracking and Drain-source on-state voltage,
Increase on-state . - X .
Bond . lift-off, . Drain-source on-state resistance,
X resistance, N : CTE mismatch, Thermo- .
wires Al Corrosion, . Thermal resistance,
mechanical stresses

Open-circuit. . . . .
P bond wire melting. Bond wire resistance.

high temperature,

high temperature,
Open-circuit. Solder fatigue CTE mismatch,
High current density

Package-Level

Solder
layers

On-state drain-source voltage,
Solder layer resistance.

Table 1 Failure location, modes, mechanism, causes and indicators in MOSFETs. Table from [3]

1.4.2 Capacitor

The capacitor is the component that has the most significant impact on the reliability of
the power converter. In particular, the electrolytic capacitor, which is the most common
in power applications due to its high capacity, is also the one with the higher probability
of experiencing wear-out failures due to ageing [19].

The vaporization of the electrolytic fluid is an inevitable consequence of the ageing of
the component. This process leads to an increase in the equivalent series resistor (ESR),
and since it is inversely proportional to the maximum amount of current the capacitor
can handle, the internal temperature of the capacitor begins to increase. As the
temperature increases, the likelihood of dielectric breakdown increases. As a result of
dielectric breakdown, the capacitor enters a short circuit failure mode [16].

Damage to the dielectric membrane is also caused by external stress like High-
temperature thermal shocks and over-voltage. In aluminum electrolytic capacitors, the
dielectric membrane damage will initiate a self-healing process that combines oxygen
from the electrolyte with the aluminum foils to form Al,O, and hydrogen gas as a waste
product. With ageing, this process will increase the rate of vaporisation and degradation
of the electrolyte in the capacitor. Under normal operating conditions, the self-healing
process is not problematic since the hydrogen produced is negligible. However, once the
stress applied to the capacitor becomes relevant, the self-repairing mechanism increases,
resulting in more hydrogen gas production and further electrolyte vaporisation that
increases the capacitor's internal pressure, ultimately causing the pressure relief vent to
open [20].



The processes that lead to the degradation of the electrolytic capacitor are summarized

in the following table from [3].

. Failure modes . . . Failure
Capacitor Failure mechanism [36, 40, 25 Failure Causes |30 ,
P (36, 39] 36. 40. 23] 1301 Indicator [41]
. . . . Voltage stress, ambient
A . Self~healing dielectric breakdown £ . ’
Open-circuit temperature, ripple current siress,
Disconnection of terminals vibration
_ Dielectric breakdown of the oxide Voltage stress, ambient
3 . Short-circuit .
Electrolytic layer temperature, ripple current stress
capacitors i L ambient temperature, ripple current
Electrolyte vaporization P qrress- PP
Performance - — - —
drift Electrochemical reaction including
oxide layer degradation and/or anode Voltage stress
foil capacitance drop .
- . - — - capacitance,
Self-healing dielectric breakdown Voltage stress, ambient temperature cauivalent
Connection instability by heat ambient temperature, ripple current q%ﬁeq
Open-circuit contraction of a dielectric film stress rcl*istal:ncc
. . -
Reduction in electrode area due to . g
the oxidation of evaporated metal Humidity (ESR),
_ _ ! P the dissipation
Film Dielectric film breakdown Vollage siress Factor.
capacitors . . ambient temperature, ripple current : -
P Short-circuit Self-healing caused by overcurrent P M PP the insulation
i _ il E_s’? resistance,
Moisture absorption by film Humidity . leakage
Performance . ] Voltage stress, ambient current
drift Dielectric loss temperature, ripple current stress,
humidity
. . Ambient temperature, ripple
Severe cracking perat PP
. . current stress, vibration
Open-circuit -
. . Voltage siress, ambient
Dielectric breakdown .
q temperature, ripple current stress
Ceramic . - -
: N Cracking; damage to the capacitor . .
capacitors Short-circuit vibration
body
Oxide vacancy migration; dielectric Voltage stress, ambient
Performance . > X i
drifi puncture; insulation degradation; temperature, ripple current stress,
micro-crack within the ceramic vibration

Table 2 Failure location, modes. mechanism, causes and indicators of capacitors. Table from [3]

In all cases, the detection of an incipient failure is made by measuring the ESR since it

is a failure indicator that is shared in common between all failure modes and types of

capacitors.




1.5 Parameter identification strategies

Parameter identification problems have been studied for a long time, resulting in an
extensive number of strategies proposed in the literature to unravel this problem. In the
technical bibliography, various approaches are discussed. These include online methods
where real-time data are obtained and used immediately to identify the unknown
characteristics of the system [21], offline methods, but also methods based on frequency

domain or time domain analysis.

In [21], the parameters of a dc-dc converter are identified from the discretized differential
equations that describe the dynamic behavior of the converters. This approach allows to
obtain both the transfer function coefficient of the controller and the passive component.
The drawback of this solution is that it is invasive since it requires measuring the current

in the inductor.

A non-traditional approach for parameter estimation is proposed in [22]. In [22], accurate
open-loop and closed-loop steady-state models are derived and then used to generate the
training data set to obtain the artificial neural network models [22]. The drawback of
this solution is that it requires a large dataset of training and test signals under different

load conditions [1].

Less exotic solutions, such as recursive least square in [23] and Kalman filter in [24], were
also explored. The Kalman filter proved its effectiveness in tuning the controller and
improving the performance of the system. However, when mapping the transfer function
coefficients, transfer errors could occur for the internal parameters of the converter, and
there could also be no feasible solutions when the unknown parameters are more than
the known equations [9]. Due to the high nonlinearity of the transfer function coefficients,
traditional algorithms, like RLS and Kalman filter, could not succeed in correctly
estimating the parameter as demonstrated in [23]. Also, the extended Kalman filter is
proposed to solve the nonlinear problem. This approach suffers from instabilities due to
the linearization and costly calculation of the Jacobian and Hessian matrices, and its
performance deteriorates when the signal model is highly nonlinear [9]. Another critical
point for the design of the extended Kalman filter and unscented Kalman filter is
determining the covariance matrices of the process noise, the measurement noise, and
the initial state vector. This process often requires tedious trial-and-error tuning or self-
tuning algorithms [24],[9].

A different type of online identification is proposed in [25], where the identification is
based on a dichotomous coordinate descent algorithm and uses an infinite impulse
response adaptive filter as the plant model [25].

All these techniques have their respective advantages and disadvantages, which are
reviewed in [26]. However, all the mentioned strategies for parameter identification share
a common drawback; they are all invasive methods that rely on external excitation
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signals to effectively estimate the parameter [1]. From the literature review, it also
transpired that the researcher focused more on identifying converters through a transfer
function, from which it is not always feasible to obtain the values of passive elements
and control parameters. In the context of parameter estimation for condition monitoring,
the values of the converter's components are ideally identified both in a non-invasive
way and directly in order to detect the indices of degradation that were defined by
analyzing the physic of failure of the component. A method that satisfies both those
requirements is presented in [1]. This method allows the estimate of the values of the
internal parameters by minimizing a cost function calculated on the difference between
a measured output of the system and the simulated output. The optimization is made
by an optimizer algorithm that tunes the parameters of the simulated model.

11



Chapter 2

Parameter identification

2.1 The identification problem

The strategy implemented to solve the identification problem is a white-box approach
that accomplishes the identification of the parameters by minimizing a suitable cost
function. Since this is a white-box approach, it is necessary to define the physics of the
problem through algebraic or differential equations that describe the system's behavior.
The architecture of the power converter and, consequently, the equation that describes
the power converter are well known. Still, some considerations must be adopted in order
to restrain the computational burden [1].

The parameter identification is made by leveraging the voltage or current ripple that is
present at the terminals of any switching mode power converter due to their working
principle. The ripple is constituted by transitory behaviors induced in the passive
components of the circuit by the periodic switching of the transistors, allowing to obtain,
depending on the topology of the converter, higher or lower mean voltages or, in the case
of an inverter, to convert continuous current into an approximation of an alternate

current.

In switching mode power converters, the duty cycle of the ripple is the controlled variable
of the converter that allows the modulation of the output voltage to the desired one.
Therefore, when there are no perturbations applied to the load, the converter controller
achieves a steady state condition, which means that the duty cycle and, hence, the period
of the ripple becomes constant.

The optimization problem is defined in this condition of steady state. The target cost
function for the optimization is determined by measuring the ripple in steady-state
conditions and then comparing the measured curve with a characteristic that was
simulated by using the set parameter chosen for that iteration by the optimizer.

Selecting a suitable cost function for the optimizer is a crucial design choice that could
heavily influence the final performance of the parameter estimation. For this reason,
multiple tests were performed to assess the performance of different definitions and
combinations of cost functions. Once the cost function is defined, the role of the optimizer
is to tweak the values of the passive component of the model in order to minimize the
cost function and consequently minimize the difference between the observed “target”
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characteristics and the simulated one. Matching the output characteristics will provide
an estimate of the values of the components that constitute the model.

In papers [9],[1],[13],[8], the objective function was always defined as a sum of squared
residuals. In [1], a normalization was applied in order to mix different measurements. In

this work, the sum of the square residual e,(x) is defined as follows:

Tt ot

L Z e? x (2.1)

NTtot t=1

frss(®)

Where x is the vector that contains all the parameters that will be estimated and e, (z)
is the difference between the simulated and observed transitory curve at the instant ¢. A
representation of this type of cost function is depicted in Figure 9.
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Figure 7 Evaluation of freq(x)

With the objective of improving the estimation capabilities, different definitions for the
objective function were tested, which included the Huber loss and the sum of absolute
residuals. From the test performed, none of the mentioned definitions for the objective

function produced results that were superior to the standard sum of squared residuals.

Among all the definitions tested, only one approach proved to be effective in improving
the convergence of the optimizer. This approach relied on combining the sum of squared
residual with a term that reflects the difference in timing and amplitude between the
local extrema or a discontinuity of the measured curve and the simulated one.
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This type of contribution in the case of a set of N, local maxima was defined in

Equation 2.1.

caks

1 Npea,ks

2
N Z CL( ;)(takt,,: - tpeak',,-,>2 +b ( ff*( '*mak:) - fm (tpeak,,;>) (2'2)

peaks =1

fpeak (.T) =

Where a and b are scalar values used to balance the contribution of the cost function.
With the proper standardization those parameters could be set to 1. ¢}, and t

represent the timing of the i-th peak of measured and simulated characteristic

peak;

respectively. Lastly, fr. and f, are the functions that describe the observed and
simulated curve respectively.

The number of peaks considered varies on a case-to-case basis since not always
incrementing the number of points proved to be beneficial since it undermines the initial
objective of prioritizing the convergence of a chosen point. This type of cost function is
depicted in the following image.
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Figure 8 Evaluation of f.., ()

The same definition for the cost function could be applied to all types of critical points,
like a local minimum f, . (x). The combination of the cost function built on the peak on
the valleys of the transitory is defined as f.,(x) . The formal definition of f,.,(z) is
presented in Equation 2.5.
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f(:z)($> = (fpcakt T +fm'i,71, T > (23)

N =

The advantage of incorporating in the cost function a contribution that keeps track of
the difference between specific points in the characteristics is that it allows to prioritize
the convergence of the aforementioned points, especially in the initial iteration of the
estimation when the difference between the two characteristics is the highest. In the tests
performed, this resulted in an effective broadening of the range of initial conditions for
which the optimizer is able to converge.

From initial tests of the algorithm with the configuration discussed in the paragraph
3.4.1, it was possible to notice that when minimizing fqq(x), the algorithm was able to
converge to the solution x*, but only if the initial point x was in its proximity. When the
difference between x and x* was too big, the convergence was not guaranteed. The
algorithms had the tendency to stagnate in iterations where little to no improvement is
achieved. On the other hand, when an optimization algorithm tries to minimize f,,(z),
it does not stagnate in parameters that are entirely inexact when more significant
perturbations are applied to the initial condition. However, the confidence interval for
the identification is larger than in the previous case. This last undesired effect has to be
expected since there could be multiple curves that could pass through a limited number
of critical points. Nevertheless, the algorithm never failed to converge to the proximity
of the solution x*.

By mapping the two cost functions in the case of the identification of an RLC parallel
filter where R and L are two variables, and C is kept constant, it is possible to visualize
and compare the two definitions. Although this is a simplified example, it is possible to
notice the same enhanced convergence of f, (z) compared to the frgo(x) that was

observed in tests where the number of parameters to identify was superior.

Figure 9 Comparison between f,, (left) and frgg (Tight)
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Plotting the contour line in the areas where the two functions have the smallest gradient
(with the same depth interval in order to have an equal comparison), it is possible to
compare the most critical area for the algorithm and highlight the plateau present on
frss(x). Analyzing the contour line in Figure 12 it is possible to visualize why freq()

has a lower convergence capability than f. (). An Optimizer that implements only

cp
frss(z) and arrive to a point where the gradient is usually almost zero is unable to exit
from that point and find the absolute minimum of the function.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1 2 3 4 5
L %1078 L <10
cp (l(jf t) and f nRSs ( (’f‘l(]} ! t)

Figure 10 A zoomed comparison between f

It has to be noted that the minimum magnitude of V f,¢s(x) in this mock example is
one order of magnitude smaller than the minimum magnitude of V£, (x). This has the
potential to become highly impactful when errors are introduced in the computation of
the cost function, which is an inevitable occurrence for more complex cases. The
inaccuracies in the evaluation of the cost function could come from:

e Measurement limitation: There are inaccuracies in accurately tracking the
“target” characteristics due to the unavoidable presence of noise in the

measurement and limitations in the sensing hardware.

e Computation inaccuracies: Using a model to reproduce the characteristic curve
of an electronic device will inevitably introduce an approximation error that
comes not only from the finite resolution of the simulation but also from the
discrepancies between the model and the real device.
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Implementing a cost function that is less sensitive to uncertainties could help achieving
a higher degree of robustness in the identification of the parameters, especially in more
complex systems where the computational inaccuracies become more significant due to
the increased computational burden of the simulation and due to the increased bias in

the model.

2.2 The optimizer

In [1], the algorithm used for the optimization was the trust-region reflective non-linear
least square present in the standard MATLAB optimization toolbox. Even if this
approach solved the estimation problem with a good degree of accuracy (the average R?
is 0.9863 for the estimated parameter) is a very time-consuming process, e.g., the
estimation of the passive component in the simplest circuit, the buck converter, required
44 minutes. Other papers propose different algorithms: [9] and [13] implement the particle
swarm algorithm, and [8] implement the Bayesian optimization. In this work, the pattern
search algorithm was adopted with the objective of testing its capabilities in improving
the efficiency of the estimation by reducing the number of function evaluations required
for the estimation of the parameters, with the trivial benefit of lowering the

computational burden and estimation time required to finish the identification.

The pattern search methods are a subclass of direct algorithm, in which the minimum of
function fis searched without the use of derivates [27][29], which is useful when there are
several local optima. However, it is essential when Af is unavailable, either because it
does not exist, or it cannot be accurately estimated due to noise in f or other reasons
[28]. Among the first direct search algorithms were the well-known method of Hooke and
Jeeves and the simplex algorithm of Nelder and Mead [27].

Given an initial point x, € 1 , the pattern search algorithm at each iteration will
generate a set of trial points in €2 whose objective function value is possibly smaller than
f(xx)where x;, is the current best feasible solution, called the incumbent [29]. The trial
points lie on the mesh M, defined by

M, ={x+A}l'D,:x€V,ze NP} e R" (2.4)

Where V, € R" is the set of all evaluated points by the start of iteration k, A}Y' € R, is
the mesh size parameter at iteration k, and D is a matrix in R™"™ composed of np
directions in R™ [29]. The computation of the trial points is made in what is defined as
the poll step. In the poll step a positive spanning set of direction D, € D is chosen to
construct the poll set. The poll set P, is constructed as the neighboring mesh points in
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each of the directions in Dy [27], where the distance from the incumbent is bounded with
a scalar parameter Az called poll size parameter, which could be equal to AY or linked

through the mesh index l, depending on the specific algorithm[29].

P, = {z,+A)'d:d e Dy} C M, (2.5)

The function fis then computed in Py until all the points are evaluated, or a point with
a lower objective function value is found [27]. If the poll step successfully finds an
improved mesh point, it becomes the new incumbent xj,;, and the mesh is coarsened
[27]. Otherwise, if the poll step fails to find an improved mesh point, the incumbent is a
mesh local optimizer and remains unchanged [27]. To further improve the incumbent,
the mesh has to be refined.

More advanced algorithms add a preliminary step to the poll, the search step. In the
search step, the objective function fis evaluated at a finite number of points lying on the
current mesh in an attempt to find a new point with a better function value [29]. In the
search step, user knowledge about the problem coupled with inexpensive surrogates for
the objective function or constraints could be used. The surrogate functions are typically
evaluated at several mesh points, and the expensive functions are then evaluated only at
the most promising trial points [27].

The patternsearch function in MATLAB offers a plethora of different polling and search
algorithms. The performance of all those options may vary depending on the problem
the user is trying to solve [27].

The type of poll methods that are present in the MATLAB library are:

e GPS (Generalized Pattern Search)
e GSS (Generalized Set Search)
e MADS (Mesh Adaptive Direct Search)

Each of the poll methods listed is used in several algorithms that, while implementing
the same general approach, differ in the specific implementation of the method.
Secondly, patternsearch has the following seven search methods:

e GPS (Generalized Pattern Search)

e GSS (Generalized Set Search)

e MADS (Mesh Adaptive Direct Search)

e searchga (search using Genetic Algorithm)

e searchlhs (search using Latin Hypercube Algorithm)

e searchneldermead (search with Nelder-Mead algorithm)
e rbfsurrogate (search with radial basis function surrogate)
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A detailed description of these algorithms is given in MathWorks Global Optimization
Toolbox User's Guide. It has to be noted that if the poll and search steps share the same
methods, the poll step is skipped since the results would be identical [27].

The class of algorithm that had the most success in solving the problem under
consideration was the Mesh Adaptive Direct Search. Implementing a MADS algorithm
for both the search step and poll step significantly impacted the optimizer’s efficiency in
minimizing the objective function. The two algorithms implemented for the search and
poll step were “OrthoMADSPositiveBasisNpl” and  “MADSPositiveBasis2N7,
respectively. Specifically, the “OrthoMADS” algorithm proved to be particularly suited
for the task and consistently solved the problems efficiently.

OrthoMads algorithm implements a deterministic method to generate the poll direction.
This method generates an orthogonal basis by implementing the quasi-random Halton
sequence [29]. As described in detail in [29], the main steps implemented by the algorithm
to construct the directions Dy, are the following:

e A quasi-random Halton sequence is implemented to produce a vector in [0,1],.

e The vector generated is then scaled and rounded to an appropriate length. The
resulting direction is called the adjusted Halton direction.

e The Householder transformation is applied to the adjusted Halton direction,
producing n orthogonal and integer vectors, forming a basis for R™

e The basis is completed to a positive basis formed by 2n OrthoMads poll directions
Dy, by including in D;, the basis and its negatives.

Finally, Figure 13 represents all the operational steps previously described that compose
the OrthoMADS algorithm.
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Figure 11 The OrthoMADS algorithm, figure from [29]

2.3 Performance indices

In order to benchmark the performance of different algorithms, it is required to provide
an estimate not only of the efficiency of the optimization algorithm but also of the quality
of its output. The efficiency of an optimization algorithm is usually referred to as the
computational effort required to obtain a solution. The main parameters used to define
the computation effort are the number of function evaluations and running time. Another
value that could be used is memory but is less common [30].

In complex circuits, the step that had the highest computational burden was the
simulation of the model in order to evaluate the cost function. The time required for the
algorithm to compute the next evaluation point is, in most cases, negligible when
compared to the time required to compute the cost function. The only exception
encountered was with the bayesopt algorithm. For this reason, the parameter used to
evaluate the algorithm's efficiency was the number of function evaluations.

Providing an indicator for the quality of the algorithm output is less intuitive, and there
are a variety of methods. The condition that the approaches to measure the quality of
the solution is the availability of the solution [30]. For the purpose of the analysis, the
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solution was considered available, and in particular, a fixed cost method was
implemented where the final optimization error is the value used to define the quality of
the output. In order to clearly display the result of the simulation, two profile methods
were implemented: the accuracy profile and the data profile.

Both of these profile methods allow to abridge the information about the quality and
efficiency of a solver s € .S in solving batch of problems p € P. Each optimization
problem p is characterized by a unique starting point xg, but the same solution x;,.

2.3.1 Accuracy profile

In the accuracy profile method, the ratio between the problem solved by the algorithm
and the relative accuracy is depicted [31]. This profile method provides a tool to analyze
the output quality of the entire optimization benchmarking test. First, an accuracy
measure is defined for each problem p € P and each solver s € §.

p,S - p,S
_ {_ acc lf _facc <M
Yps =

M if - apc’éS >M or-— a"gﬁ is undefined (2.6)
Where f2* was defined as:
_ 112
PS _ 1o I (%) = £ ()Ml
acc 810 npoints (2 ‘ 7)

In this equation, x, , represent the solution proposed by the solver s to the problem p

and f x is the transitory response of the circuit with parameters equal to the vector x.
Instead of evaluating the quality of the identification on the cost function values, the
RMSE between the transitory curve in time with the real parameter z;, and the identified

parameter x_ . was chosen as the indicator for the accuracy of the output. This decision

DS
was made in order to have a consistent index through all the testing since different types
of cost functions were tested. In the following plot, an example of an accuracy profile is

depicted in Figure 14.
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Figure 12 Example of accuracy profile, figure from [30]

By examining the accuracy profile of this test case, it is possible to make the following
consideration: the M1 method achieves a five-digit accuracy in almost all the problems
under examination. Meanwhile, all the other methods only achieve this level of accuracy
for a maximum of 50% of the test problems. Therefore, M1 is the method to adopt when
the project requires solving the highest number of problems, and a five-digit accuracy is
deemed sufficient. Method M3 achieved a twelve-digit accuracy on almost 40% of the
test problems, and almost half of those problems achieved a fifteen-digit accuracy. This
level of accuracy is not reached by a significant portion of the test problem in any of the
other methods. Therefore, M3 is the method that has to be implemented when the

requirement for accuracy is more stringent.

2.3.2 Data profile

More and Wild introduced data profiles in [32] to benchmark derivative-free optimization
algorithms. This profile method is used to display the efficiency of an optimizer in solving
a problem. The profile displays the percentage of problems (for a given tolerance t ) that
can be solved within a computational budget a [30]. To represent the computational
budget, the number of function evaluations was used. The data profile of an optimization
algorithm s is defined using the following equation:

1
d, a = msize{p €P:t,, <a} (2.8)
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In which 7, . represents the number of function evaluations required to satisfy the
convergence test, and dS a is the percentage of problems that can be solved within «

function evaluation. An example of a data profile graph is presented in Figure 15.
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Figure 13 Ezample of data profile, figure from [30]

From Figure 15, it emerges that method M4 is the most efficient in solving the test
problems. Other considerations could also be made for the other solvers depending on
the function evaluation budget available in the requirement. It has to be noted that Data
profiles do not provide the number of function evaluations required to solve a specific
problem but instead provide a visualization of the aggregate data [30].

23



Chapter 3
Test on an RLC filter

3.1 The models

Before implementing the parameter estimation on a complex converter, a simple RLC
filter was used as a proof of concept. Implementing a mock-up case allowed to have a
simpler environment to test and develop different solutions for the code-related challenges

that will inevitably arise.

The first step was to choose a topology for the RLC that has to be identified and then
compute the dynamical equation that governs its behaviors. The model implemented,

and the computation of its dynamical equations are presented below.

DPS

@ R L C ==

Figure 14 Schematics of the first model

This model is composed of two active components and therefore two state equations are
required to fully describe the behavior of this model. By applying the first Kirchhoff law

on the node:

v, . d
Then, considering the equation of the impedance
d

UL:UC:L—. (32)

Translating the equations in the matrix form to implement them in MATLAB.

SR G R
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For the first tests, the model used to identify the parameters was equal to

the “target” model that had to be identified. In order to verify the robustness of the

identification, a variety of tests were performed with the introduction of noise in

the “target” characteristics and later with the introduction of some parasitic component

to create a discrepancy between the model used in the optimizer for the identification

and the “target”, thus allowing to study how the parameter estimation algorithm behaves

in the case of an asymmetry between the real circuit and the model used for the

identification. A series resistor was added to the inductive and capacitive components to

introduce a bias between the two models, thus allowing to induce an unbridgeable

difference between the two characteristics without changing the topology of the circuit.

The second model and the computation of its differential equation are presented below.

DPS

O
|
I

R1 L

R2 R3

Figure 15 Schematics of the second model

Even for this model, there are only two state variables, and therefore, only two

differential equations are required to describe this model. Implementing the first

Kirchhoff law on the node:

dv, (3.4)
dt

v
Iy="2 41, +C
0 Rl L

By expanding V5 as the combination of the voltage drop across the resistor Ry and the

capacitor is possible to find the first equation:

v, v, (3.5)

1

]() R
1

Similarly, the second equation is derived from the balance of voltages:

dI dv,
VR1 :Ld—tL—}—RzlL :Rlll :Rl <I()—IL—C dt') (3’6)
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With some simplification it becomes.

L di; dv. R, (3.7)
L o Mg :
Ryt Ot T LT RE

By rearranging all the terms, the state equations in matrix form are:
R.

—C (—5 - 1> 0
R,

. ¢ -

R, ! 1 [U] B [Io

| awr
J| dt [ZL} K <1+&>J| ir I(j (3.8)

Once the equations that describe both models were found, the transient response caused
by the input was computed. The transient response that will be implemented in the
identification process is induced by a simple step function as the input. For consistency,
the same input will be used for all the models and tests that were performed.

3.2 The cost function

The first step in building the cost function was to choose which variable to measure in
order to have the best identification. In this case, the choice was between the voltage of
the capacitor or the current of the inductor. For this analysis, the variable used in the
identification was the current, since it was the variable that saw the highest variation in
its value when changing the system parameter. The step response that characterizes the
model is composed by a series of oscillations. The first local maxima and minima are
especially prevalent in the "target" characteristic. For this reason, those two points were
,(w) that is then added to the FRSS, as discussed in the

previous chapter. In order to balance the timing and amplitude contributions of the

chosen to construct the f,
fep(x), both the time and amplitude of the characteristic were normalized with respect

to their respective maximum values.

Optimizing the ratio between those different elements of the cost function is, therefore,
mandatory to optimize the efficiency of the identification. In order to choose a ratio
between all the different components of the cost function, a series of benchmarks were
performed. Implementing the accuracy and data profiles, it was possible to compare
which ratio improved the efficiency of the optimizer in solving the problem. The ratios

were tuned by gradually increasing the contribution of f, (x) until the identification

cp

quality started to be negatively impacted by this process. The accuracy of the
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identification did not suffer initially, but for a more significant contribution of f,., (), a
degradation of the final resolution was observed. Meanwhile, by increasing the

contribution of f. (x), the portion of problems that were solved from the algorithm

cp
initially saw an increase, but after a while, it reached a point of diminishing returns, after
which any increase of f,, (7) started to hinder the ability of the algorithm to converge.

The end product of this tuning process, is a cost function defined as:

fCost L = 0'4fRSS T + 0'3fpeak T + O'Bfiralley(‘%) (39)

The result of the tuning is not the best possible mix of the different contributions for the
specific identification problem but one that significantly improves the result obtained
with only the frqq = . This was a design choice since the performance of a specialized
cost function for a solution x* will never be matched once the solution of the identification
starts to drift due to temperature shifts and the ageing of the device.

3.3 Defining the tests problems

The benchmark of the different algorithms was made by generating a set of problems P.
Each problem p is characterized by the same solution z* and defines a unique
perturbation of the initial conditions z,,. Once the test set is defined, it must be used in
all of the different tests in order to yield meaningful results from the comparison that
has been made [30]. Poorly designed tests in the benchmark will incur the risk of cloaking
the weaknesses or strengths of an optimization algorithm. It is therefore crucial, in order
to avoid misleading results, that an appropriate test set should generally seek to avoid
the following deficiencies [30].

e Not enough problems. Trivially, a limited number of tests will inevitability
impact the reliability of the findings.

e Biased starting points. Not implementing the same set of problems will
unavoidably bias the results. However, more subtle problems can also exist. For
example, if a starting point lies on the boundary of a constraint set, then an
interior point method will be severely disadvantaged [30].

e Too little variety in the problem difficulty. Simply increasing the number of
problems tested will not always result in meaningful findings. Especially when the
computational burden of the test becomes non-negligible, a particular emphasis
on defining the problem set in order to efficiently test the algorithm for a variety

of difficulties is required.
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The problem set was built by following those guidelines. In [30], the minimum number
of tests required to compare different versions of an optimization algorithm effectively is
in the order of one hundred. Following this guideline, when defining P, it was decided to
more than double the minimal recommendation for the number of problems and have
dim(P) = 250.

Implementing a relatively small problem set requires thoughtfully choosing how the
problem set is generated in order to diversify the problems' difficulties and produce the
most meaningful data with the least amount of testing. For those reasons, a parameter
that could be linked to the difficulty of a problem was required when generating a test

set.

The parameter that was chosen to represent the difficulty of a problem was the root
mean square error between the characteristic response of the solution x* and the one of
the problems z, that was defined as RMSEic. Tt is an index used to represent the
difference between the characteristics that the algorithm will have to solve and the

solution.

The choice of RMSEic as the index for the difficulty of a problem was made because,
from the different tests performed, it was the parameter that was the most strongly
related to the number of iterations required to solve the problem, and its value was also
a reliable index to predict and assess the convergence of the algorithm.

N iteration vs. RMSEic patternsearch
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Figure 16 N of iteration as a function of the initial RMSE
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To introduce the widest variety in the problem difficulties, the objective in the generation
of the problem set was to have a uniformly distributed RMSEic that spans from 0 to an
upper boundary that must be sufficiently high in order to encompass the initial condition

from which the algorithm is unable to converge.

The upper boundary for the RMSEic was chosen by studying the convergence capabilities
of the patternsearch algorithm in the ideal case where neither bias nor noise is present
in the model. Following the guidelines in [30], it was purposely set high enough to include
in the set of problems P a portion of around 20% of problems that the patternsearch
algorithm was unable to solve. It was possible to implement the RMSEic since the
convergence of the patternsearch algorithm is characterized by a threshold RMSEic, after
which the conversion probabilities are drastically reduced, as shown in the following
picture.
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Figure 17 Scatter plot between the RMSEic and the RMSE of the solution found by the optimizer.

This graph is characterized by two main levels for the RMSE of the solutions, the
presence of a discrete level in the RMSE solution might suggest the presence of a local
minimum where all the problems that with higher RMSE will converge. This hypothesis
was tested and proved to be untrue.

The problems that the algorithm is unable to solve do not converge to the same
combination of parameters. The similarity in the RMSE is the effect of the topology of
the RMSE as a function of the parameters, which present the same plateaus that were
visualized in the simplified case of frqq. The behavior of the output RMSE allowed to
define a threshold to discern between the problems that the algorithm was able to solve
within an acceptable margin of error from the ones that did not meet the desired standard

of accuracy.
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Since the simulated time used to generate the characteristic is fixed, a boundary on the
position of the first peak must be implemented. Otherwise, there is the risk that the
randomly generated initial condition will be characterized by an extremely large time
constant, thus resulting in a transitory response that, in the time frame of the simulation,
could be approximated to a constant. This situation is an extremely unfavorable one
since the algorithm is incapacitated to detect the consequences of the variation of a
parameter and, therefore, consistently unable to converge. The position of the peak was
computed using the following equations.

o = (3.10)
n \/ﬁ
‘= VL (3.11)
~ 2RVC
T il (3.12)

peak — an—m

To achieve all those requirements, the MATLAB script implemented followed the
following algorithm.

1. Generation of the point the point is generated by perturbating the solution z*

with a uniform distribution bounded between [—ex* ,ex*] where e is a scalar.

2. Check feasibility of the point When a point is considered feasible, it can go to

the next step. In the contrary case, it will be discarded. The point is considered
feasible if it respects the following conditions:

e [t respects the boundaries.

e The first peak occurs in the time limit of the simulation 7}, <T.

sim

3. Compute the RMSEic Use a function to compute the RMSE between the

characteristics of the solution x* and the perturbed point.

4. Validate the point If there are no other points with similar RMSEic, the point

becomes part of the test set. Otherwise, it will be discarded. After a set number of
discarded points, the scalar e that control the magnitude of the perturbation is

increased.
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This algorithm progressively increases the magnitude of the perturbation, allowing the
generation of a set with an increasingly larger RMSEic. This method was chosen since it
proved to be an efficient solution in the generation of the test set.

3.4 Identification results

The performance of the identification was tested in four different cases: with and without
the parasitic component in the model and with and without noise to disturb the input
characteristics. In order to make some comparisons with the patternsearch algorithm,
the non-linear least square was chosen to generate the reference performance. The non-
linear least square was chosen since it was the algorithm used in [1], which is the paper
from which the approach to the identification was taken.

As in [1], the cost function that the non-linear algorithm will try to minimize is a simple
sum of squared residuals. This will showcase the eventual advantages of implementing a
cost function that is composed of different contributions, allowing us to assess the
advantages of this method. In further tests, there was an attempt to adopt the same cost
function used in the patternsearch algorithm, but to no avail since the algorithm did not
recognize the function as a sum of squares.

3.4.1 Test case without noise or bias in the model

Initially, the algorithm was tested in the simplest of cases where there was no noise to
perturb the “target” characteristic, and the model used for the identification perfectly
matched the one to identify. Even if this scenario did not present any disturbances, it
was necessary to define a baseline performance of the algorithms, allowing to track the
eventual degradation of the identification once other factors like noise and bias are
introduced. The parameter of the model for this initial baseline are presented in Table
3.

R[] L [nH] C [nF]
10 100 1

Table 3 System parameter
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The transitory response analyzed in the different tests was generated by injecting an
impulsive voltage of 5V at the capacitor ends. As previously discussed, the cost function
used in the identification was built on the transitory of the inductor current.

All the identification data were then condensed to the previously discussed data profile
and accuracy profile graph in order to highlight the limitations of the different algorithms
in solving the problem. By analyzing the data profile presented in Figure 20, it is possible
to observe the enhanced capability of conversion of the patternsearch algorithm; not only
is it able to converge to a solution with less iteration, but it is also able to converge to a
more significant portion of the problem presented.
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Figure 18 Data profile comparison of patternsearch and lsqnonlin

It has to be noted that the fact that the patternsearch algorithm converged to only 80%
of the problem set P. This was a design choice, in the generation of the problems in order
to test the convergence capabilities to the max, as recommended in [30] a portion of the
problem set P should not be solvable by the algorithm.
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By analyzing now, the accuracy profile of the solution presented in Figure 21, comparing
the patternsearch and the non-linear least square algorithm, it is possible to notice that
in this first test case, the solution found by the non-linear least square algorithm had a
higher degree of accuracy when compared with the solution of the patternsearch
algorithm. From the accuracy profile it emerged that the patternsearch algorithm can
solve 100% of the problems with an RMSE that is zero until the third significant figure
while the non-linear least square can solve less problems but 100% of the solved problems
are solved with an RMSE that is zero until the fifth significant figure.
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Figure 19 Accuracy profile comparison of patternscarch and Isqnonlin

3.4.2 Test case with noise and without bias in the model

As in the previous test the transitory response was generated by a 5V impulse on the
capacitor ends. The system parameters were unchanged from the previous test and are
the ones presented on Table 3. For this test, the “target” characteristic was perturbed
with white noise. The noise-to-signal ratio used for this test was 20db. Before proceeding
with the identification process, the "target' characteristic was filtered with a simple low
pass filter in order to remove the high frequencies that would disrupt the cost function
evaluation. The graph presented in Figure 22, represents the transitory of the inductor
current measured in Ampere over time expressed in second. In Figure 22 are present
both the perturbed characteristics that was the input of the algorithm and the identified
characteristics with the estimated parameter.
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Figure 20 Comparison between the input and the identified characteristic

The parameters that were identified with the patternsearch algorithm were then

organized and presented in the distribution histograms of Figure 235.
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Figure 21 Distribution of the identified parameter: R (left), L (center) and C (right)

In order to assess the quality of the estimation, a normal distribution was fitted to the
frequency distribution of the parameters found. The mean and variance of those normal

distributions are reported in Table 5.

R [22] L [nH] C [nF]
Mean 9.96898% 99.7346 1.00977
Variance 0.0025411 4.27882e-19 6.20942e-23

Table 4 Mean and variance of the normal distribution fitted to the estimated results.
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Observing the result obtained with the patternsearch algorithm, it is possible to notice
that the variance of the fitted Gaussian distribution is minimal, and the most significant
deviation of the mean value from the solution is around 0.04% in the resistor.

By analyzing the data profile under this condition, the difference between the
characteristics of the two algorithms has enlarged. The convergence characteristics of the
patternsearch algorithm did not change drastically when compared with the baseline test
without noise or bias to disturb the measured characteristic. Most of the problems were
solved within the 300-function evaluation, after which there is a point of diminishing
return. On the other hand, the presence of noise significantly worsened the performance
of the non-linear least square. The final portion of problems solved by the non-linear
least square was 54%, which is not dissimilar from the result in the baseline test, where
56% of the test set P was solved. The number of function evaluations required to solve
the problem set was higher when compared with the baseline.

The data profile obtained for this test is presented in Figure 24. When compared with
the one obtained for the previous test in Figure 20, it is possible to notice that even if
the overall number of problems solved is comparable for both algorithms, the number of
function evaluations required is increased. The algorithm that was more harshly affected
by the presence of noise in the signal was the non-linear least square. In the previous
test, the non-linear least square was able to solve most of the problems within the 320
iterations, while in this test most of the problems required at least 500 function

evaluations.
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Figure 22 Data profile comparison of patternsearch and lsqnonlin with noise

35



The accuracy profile obtained in this test is presented in the Figure 25. From the
accuracy profile of the patternsearch algorithm, it is possible to observe an expected
degradation in the quality of the solutions with respect to the baseline test without noise.
The accuracy profile, in this case, was characterized by the same shape present on the
baseline test but shifted to the left of one unit. The sharp fall in the curve indicates that
the RMSE of the patternsearch solutions are consistent throughout the test set. The shift
in the curve indicates a rise in the average RMSE of the solutions of a factor of around

ten.
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Figure 28 Accuracy profile comparison of patternscarch and Isqnonlin with noisc

The presence of noise was extremely impactful to the accuracy of the estimation with
the non-linear least square algorithm. Its solution went from being the one with the best
RMSE result when compared to the patternsearch algorithm to performing worse than
the patternsearch even in the accuracy aspect. The accuracy profile shifted from the
baseline test of around four units, which means that the RMSE of the solutions increased
on average by a factor of 10,000.
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3.4.3 Test case with parasitic component in the model and without noise

In a real-life scenario, it is impossible to build a model that will perfectly match the
characteristics of the real system. To replicate the same scenario, the algorithms were
tested in a case where the model that produces the “target” characteristic was different
from the one used for the identification. Therefore, creating an unbridgeable gap that
the algorithms will try to mitigate. For this test, the model depicted in Figure 17 was
used to generate the “target” characteristic while the model in Figure 16 was used inside
the identification loop. As for the previous test the transitory characteristic was obtained
by injecting at the end of the capacitor a 5V impulse. The parameters of the model to
identify are presented in Table 5:

R, [9] R, [9] Ry [0 L [nH] C [nF]
10 0.3 0.3 100 1

Table 5 Model parameters

Figure 26 presents the differences between the “target” characteristics obtained through
the simulation of the model depicted in Figure 17, and the mean identification found by
the patternsearch algorithm.
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Figure 24 Comparison between the input and the identified characteristic
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In order to study the quality of the estimation, a normal distribution was fitted to the
frequency distribution of the parameters found. The parameters that were identified with
the patternsearch algorithm were then organized and presented in the frequency

distribution histograms of Figure 27.
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Figure 25 Distribution of the identified parameter: R (left), L (center) and C (right)

The mean and variance of those normal distributions fitted through the frequency
distribution are reported in Table 6.

R L C
Mean 8.95767 1.06118e-07 9.18573e-10
Variance 0.00168658 2.22169e-19 4.75453e-23

Table 6 Mean and variance of the normal distribution fitted to the estimated results.

By analyzing the parameter of the normal distribution that was fitted to the data, it is
possible to notice that the optimizer compensated the bias in the model with a shift in
the mean value of the identified parameter. The parameter that was the most affected
by this compensation was the resistance, with a deviation from the baseline identification
of roughly 11%. When comparing the estimated variance of this test with the one
obtained in the baseline test but also in the previous case, where only the white noise
perturbed the “target" characteristic, it is possible to notice that the order of magnitude
of the estimated variance remains the same along the different tests, indicating that the
presence of bias did not significantly alter the quality of the identification.
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With the presence of bias between the two models, the threshold in the RMSE that used
to classify between the problems that were correctly solved from the ones that were not
was increased. From the tests, the RMSE of the solutions presented the same
characteristics observed in the tests without bias that was presented in Figure 19, where
most of the problems are solved with roughly the same RMSE while the remaining
solutions present significantly higher RMSE. The tuning for the classification threshold
was made by analyzing the RMSE of the results and choosing a value large enough to
cut out any outliers but also not strict enough that acceptable solutions are discarded.

The data profile obtained in this test is presented in Figure 28. By analyzing the data
profile of the patternsearch identification, it emerges that, for the threshold used, 99% of
the problems were correctly solved. Similarly to the previous tests, most of the problems
were solved within the three thousand function evaluation, after which there is a point
of diminishing return, after which only a small portion of problems were solved.
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Figure 26 Data profile comparison of patternsearch and lsqnonlin with parasitic components

By analyzing the data profile of the nonlinear least square identification, it emerges that
it performed poorly. At the end of the identification, only 26% of the test set was deemed
solved, which is less than half of the problems solved in previous tests. The rate at which
the problems were solved in relationship with the number of function evaluations was
slightly better.
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The accuracy profile obtained in this test is presented in Figure 29. By studying the
accuracy profile, it is possible to notice that the curve of the pattersearch algorithm is
characterized by a sharp fall, indicating that almost the entirety of the results of the
identification has almost the exact same RMSE.
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Figure 27 Accuracy profile comparison of patternsearch and lsqnonlin with parasilic component

Similarly, the accuracy profile of the Isqnonlin algorithm had the same shape, indicating
that the presence of discrepancies between the models did not disrupt the consistency of
the identifications. When comparing the accuracy profile of the two algorithms, it
emerges that, even under these test conditions, the patternsearch algorithm could find
results that, on average, have an RMSE that is roughly half of the RMSE of the results
found with the classic nonlinear least square.
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3.4.4 Test case with noise and bias in the model

To further resemble a realistic scenario, white noise was introduced to perturb the
“target” characteristics. The ratio between signal and noise was 20db in order to replicate
the same scenario of the previous test with noise. Other than the added noise the model
did not present ulterior differences. The parameters used are the same as the ones used
in the previous test and depicted in Table 5. As for the previous test the transitory
characteristic was obtained by injecting at the end of the capacitor a 5V impulse. The
difference between the inductor current transitory that is the input of the identification,
“target”, characteristics and its best approximation is presented in Figure 30.
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Figure 28 Comparison between the input and the identified characteristic

In order to study the quality of the estimation, a normal distribution was fitted to the
frequency distribution of the parameters found. The parameters that were identified with
the patternsearch algorithm were then organized and presented in the frequency
distribution histograms of Figure 31.
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In order to assess the quality of the estimation, a normal distribution was fitted to the
frequency distribution of the parameters found. The mean and variance of those normal
distributions are reported in Table 7.

R L c
Mean 8.93919 1.05794e-07 9.27824e-10
Variance 0.00340189 8.78708e-19 1.13698e-22

Table 7 Mean and variance of the normal distribution fitted to the estimated results.

Similarly to the previous test case without noise, the algorithm compensated for the bias
in the model with a shift in the mean value of the identified parameter. The introduction
of noise in the estimation did not interfere heavily with the quality of the estimation, as
shown by the variance of the normal distribution that was fitted on the data that has
the same order of magnitude as the previous test without noise. Furthermore, the mean
values of the parameter estimated did not suffer from any significant deviation with
respect to the previous case without noise.

As shown in the data profile presented in Figure 32, the presence of noise improved the
total portion of problems that were solved by the non-linear least square. The number of
function evaluations required by the non-linear least square to solve a problem was, on
average, higher than the number of function evaluations required by the patternsearch

algorithm.

By analyzing the data profile, it is remarkable to notice that the patternsearch algorithm
did not show any meaningful degradation in its efficiency to converge to a solution,
proving its robustness. 90% of the problems were solved within the three thousand
function evaluation mark. At the end of the process, the patternsearch algorithm was
able to solve 249 problems out of the 250 of the test set.
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Figure 30 Data profile comparison of patternsearch and Isqgnonlin with noise and parasitic component

Lastly, the accuracy profile presented in Figure 33 did not show any significant difference
from the previous case. Both algorithms produced results with consistent accuracy, but
the patternsearch algorithm produced solutions that, on average, have an RMSE that is
roughly half of the RMSE of the results found with the classic nonlinear least square.
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Figure 31 Accuracy profile comparison of patternsearch and lsqnonlin with noise and parasitic component
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3.5 Comparison with other optimizers

In the literature, other optimizers were used in order to solve similar problems as in [9]
and [8]. In those papers, the algorithms proposed were the particle swarm optimization
in [9] and the Bayesian optimization in [8]. Since those optimizers proved their
effectiveness in similar applications, some tests were performed in order to compare their
performances with the patternsearch algorithm.

The tests were performed in the simplest case with neither noise nor bias and with a cost
function defined in the same way. The set P of problems comprised 100 initial condition
perturbations, and all optimizers solved the same set P. Even if the dimension of P was
reduced, it was nonetheless sufficient to highlight the main characteristics of those
optimizers.

From the accuracy profile in Figure 3/, it is possible to notice that the “patternsearch”
and the “PSO” algorithms obtained similar results in terms of accuracy. “Bayesopt”, on
the contrary, performed the worst. It has to be stated that the accuracy of the “bayesopt”
algorithm was hindered by the time constraints imposed on the optimization process.
The choice of implementing a time limit for this type of optimizer was a necessary
countermeasure in order to prevent the optimizer from stalling since the algorithm used
did not have the option to exit the optimization once the improvement on the cost
function was below a defined tolerance. Nevertheless, the chosen time limit was three
minutes, which was more than three times the time required for the other algorithm to
solve similar problems.
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Figure 32 Accuracy profile of three different optimizers
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When inspecting the data profile, it is possible to notice that even if the particle swarm
optimization was able to find a solution with accuracy comparable to patternsearch, the
number of function evaluations required was extremely high. The bayesopt algorithm, as
discussed in [8], requires less iteration than the particle swarm optimization but still more
than the one needed for the patternsearch.
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Figure 33 Data profile of three different optimizers

From the test performed, it emerges that the patternsearch algorithm is the most suitable
for the problem under exam since it provided the best results in both the accuracy of the
solution and efficiency in completing the optimization.
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Chapter 4

Application to a Buck converter

4.1 Identification workflow

With the simple RLC circuit, it was possible to perform a large number of iterations to
assess the performance of the solution proposed for the identification. The next step was
to implement the same strategies that proved to be effective in a simple test circuit to a
more complex electronic device. The buck converter was the electronic circuit chosen to
test the proposed identification approach to prove its effectiveness in a more realistic
scenario. As a reference for the main parameters of the model, it was chosen the buck
converter model TPS40200EVM-002, since was also studied in the paper [1].
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Figure 34 Buck converter studied in paper [1]

It was possible to implement an accurate model of this device since Texas Instrument,
the manufacturer of this design, provided in the datasheet of the device all the relevant

parameters.
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The nominal values of the main parameters of this circuit are presented in Table &:

Electrical values Controller values
L 33uH o 0
¢ 20pF a 47 %10~
C, 440puF a, 1.6 x 107°
R, 60mQ b 1
Rc1 60mQ by 47 x 1074
Re 65mQ b, 0

Table 8 Nominal values of the main component(left) and of the controller (right)

As in the previous scenario, the identification process was made by measuring a "target"
characteristic and by minimizing the difference between observed and simulated
responses. For the buck converter, the "target" characteristic used for the identification
is the ripple in steady state condition. To accurately measure the output ripple required
for the identification, high-frequency sensors are needed. Since, ideally, the final
application of this identification process is to have an embedded system that monitors
the health of the circuit, making this system a financially valuable solution is a
requirement. Thus, the number of sensors was reduced compared to [1] and only one
voltage sensor was used to measure the voltage characteristic of the converter's output.
This design choice will inevitably hinder the accuracy of the identification. This
compromise was made since the system's objective was not to obtain the most accurate
identification but to achieve a level of accuracy high enough to detect the degradation
of the components.

Due to the system's complexity, multiple parameter combinations could lead to a
characteristic similar to the "target" one. This results in a cost function that presents a
non-neglectable number of local minima. The risk for the algorithm to end in a local
minimum is high enough to discard the option of a single iteration as a sufficiently
accurate option for the identification. This is especially true for the MOSFET which
presents itself as the most challenging component when it comes to identifying its health
due to the small deviation in its failure indicator. The failure indicator used for the
MOSFET was the AR,, , from the research on the evolution of this parameter, is
presented in [33], it was determined that a AR,, = 50mQ was a safe threshold to
determine the end of life of the component under analysis.

To compensate for the inaccuracy of the identifications the process the following process
was implemented. For each "target' characteristic, ten identifications were performed
with different initial conditions. The initial conditions were generated by perturbing with

47



a white noise the previously identified parameter or, in the case of the first iteration, the
nominal value of the parameter. The final result of the identification was obtained by
mediating the different identification results. The workflow presented is presented in the
graph in Figure 37.

Step O: Previously identified Measured output
First-time identification parameter. voltage ripple
use nominal parameters ‘
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Step 3: l
Combine the identified Output
parameter parameter

Figure 35 Data process cycle

The workflow presented was heavily influenced by the work of the paper [34] where the
previously obtained parameters are implemented as initial conditions for the next
identification and from the ensemble methods presented in [35].

It must be noted that this approach is sensitive to the frequency of the measurement
taken. Reducing the time gaps between the measurement will inevitably bound the
deviation of the parameter to more limited values.

Smaller deviations between the parameter to identify and the initial condition of the
optimizer will inevitably cascade into a reduction in the number of function evaluations
required for the parameter estimation and therefore time. Increasing the time efficiency
of the optimization is therefore a crucial point to improve the performance of the system.
One advantage of this workflow is that limitations in hardware capability can be avoided
not only by upgrading the hardware but also by splitting the computational burden to
multiple devices.
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4.2 Generation of the “target”

The “target” characteristic that was used for the identification was generated with the
Simulink model shown in Figure 38.
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Figure 36 Stmulink model used to generate the "target” characteristic.

Since Simulink has already built in model for the MOSFET and diode, the schematic
slightly differs from the one shown in Figure 36. From the TPS40200EVM-002 BOM
[36], it was possible to find the MOSFET and diode used for the converter which are
FDC5614P and MBRS360, respectively. Nominal parameters of those components were
extracted from their respective datasheets. Model implemented by Simulink and
respective values of the parameter for the FDC5614P transistor were taken from [37] and
are presented in Figure 39
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Figure 37 The MOFET model implemented by Simulink(left) and its parameter (right)

Model implemented by Simulink and respective values of the parameter for the MBRS360
diode were taken from [38] and are presented in Figure 40:
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Figure 38 The diode model implemented by Simulink(left) and its parameter (right)
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For the model that traces the target characteristic, it was chosen to adopt a higher
resolution than the one used inside the estimation loop. This choice was made not only
to reduce the computational burden of the model inside the loop but also to replicate the
unbridgeable gap that is unavoidable when a mathematical model is used to replicate
physical behavior.

The solver implemented for this model was the ode23tb variable-step continuous since it
is suitable for solving nonlinear stiff problems [1]. In this problem, it has faster
convergence and higher accuracy than other solvers, such as the ode45 and odelbs solvers
[1]. The max step for the solver was set to 2 X 1071 seconds, in order to replicate the
5GHz sampling frequency used in [1], and the refining factor was 10. Increasing the
refining factor was necessary not only to improve the output but also to avoid consecutive

zero-crossing violations.

4.3 MATLAB model implementation

For the identification, a second model was assembled. The requirements for this second
model were different from before since it is required to run the model iteratively.
Therefore, the simulation time becomes one of the most relevant factors in the design of
this model. Any inefficiency in the set-up of the model used for the optimization process
will inevitably build up to a considerable time increment at the end of the identification.
The time increment at the end of the optimization ranged from a couple of minutes to

an entire hour on the test performed.

With the objective of optimizing the simulation time, different parameters of the set-up
were tuned. The max step was increased to 5 X 1073 seconds, the refining factor was
tuned down to 5, and the simulation optimizer was implemented in order to verify that
all the settings were optimal for the problem in exam [39].

Optimizing the set-up of the simulation was the first step. The changes implemented
were not limited to the setting of the simulation. The model was simplified by removing
the dynamic control of the duty cycle. The Simulink model that resulted from this

process is presented in Figure 41.
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Figure 39 Model used to generate the characteristic.

All the changes implemented were aimed at minimizing the computational burden of the
model complexity and, therefore, its simulation time. This change led to a significant
reduction in the simulation time. The single function evaluation with the same setting of
the solver went from around 9.8 seconds for the initial tests to 2.4 seconds for the last
model design. It has to be stated that the simulation time is also limited by the
capabilities of the hardware, and therefore, the absolute values presented must be taken
with a grain of salt. The detailed design choices that allowed to shave more than half of
the simulation time are discussed in the following paragraphs.

4.3.1 Duty cycle identification

Removing the dynamic control of the duty cycle was the most impactful design choice
that was made both in terms of the workarounds required and the benefit that this design
choice yielded. Using an open loop configuration removed the negative impact that the
simulation errors had on the feedback but also removed the dynamic controller in a
continuous time domain, which was computationally expensive. With looser requirements
on the simulation, it was possible to produce a steady-state output that was comparable
with the one observed with the original model with a max step for the time domain of
the solver that was one order of magnitude larger.

Without a controller that dynamically computes the duty cycle, it is necessary to define
one that will lead to the desired steady-state condition.

Different approaches could be implemented in order to define the duty cycle. One of
those solutions could be to analytically compute a new duty cycle for each iteration of
the optimization process in order to obtain the desired mean voltage value.

This could be a viable option since all the variables are known. The mean voltage of the
ripple could be extracted from the measured "target" characteristic, and the values of the
components are known since they are the parameter chosen by the optimizer in that

iteration.
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This approach would allow to introduce to the cost function an error contribution that
would take into account the difference between the duty cycle of the “target” and the
identified characteristics.

From the test performed with this approach, there were no measurable improvements in
the convergence efficiency or accuracy of the optimization. The lack of any significant
improvements led this approach to be discarded in favor of a more straightforward
approach that helped to streamline the code and remove a possible source of
miscalculation.

The solution adopted was to use the duty cycle estimated from the “target”
characteristics and then use the same value for all the iterations of the model. In this
way, the duty cycle is computed only once outside the function that will be reiterated.
This approach did not introduce any additional computational burden to the cost
function, therefore optimizing the function evaluation time. The duty cycle estimation
was made by locating the discontinuities in the ripple caused by the MOSFET switching
on and off. The side-to-side comparison of the output voltage ripple and the MOSFET
duty cycle is highlighted in Figure 42.
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Figure 40 Output voltage ripple side-to-side the MOSFET duty cycle

Since the estimation of the duty cycle is a one-off computation, there was not any
particular concern regarding its computational efficiency. Therefore, the discontinuity
was found by implementing the built-in MATLAB function “ischange”. The estimation
of the duty cycle was made on a single ripple period. This was a feasible solution because
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there was no noise to disturb the characteristics. In a real scenario, in order to obtain a
higher quality estimation of the duty cycle and not hinder the quality of the parameter
estimation, it would be preferable to evaluate the duty cycle and "target" characteristics
over multiple ripple periods.

4.3.2 Initial condition

Introducing a static duty cycle reduced the computational burden but inevitably
increased the time required to achieve steady-state conditions, consequently increasing
the required simulated time.

In order to mitigate this effect, the initial conditions of the active components were
initialized as the mean value of the steady-state operating point. The initial condition
for the capacitor was set as the mean voltage value of the “target” ripple. The initial
condition of the inductance was the mean value of the current from the model with the
minimum cost function to that iteration. Initializing the active components in this way
allowed to drastically reduce the time required for the system to achieve a steady state,
as shown in Figure 43.
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Figure 41 Time response with initial condition to zero(blue) and different from zero (orange)

In the test performed, in order to achieve the same identification results, the simulated
time with all the initial conditions set to zero required a simulated time of 0.008 s. In
the case of initial conditions set as discussed before, the required simulated time was
0.001 s. In order to ensure the lack of any residual transient in the final version of the
program, the simulated time was set to 0.002s, doubling the minimum requirements for
this approach.
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4.4 Signal processing

There are two signals that need to be processed in order to compute the cost function:
the "target" characteristic and the simulated one. The first step is to filter the "target"
characteristic from measurement noise. Once that is done, it is required to align and
finally synchronize the data samples of the simulated characteristics with the "target"
ones. A representation of the process is presented in Figure 44.
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Figure 42 Signal processing

The previous figure highlighted that there are two main steps required in order to be
able to evaluate the cost function: Ripple aligning and data synchronization.

It has to be noted that the processing of the measured and simulated characteristics is
not performed in parallel due to the iterative nature of the approach. The measured data
was processed only once before starting the optimization process.

4.4.1 Ripple aligning

In order to compare the two curves, a reference point that is ubiquitous in all ripple
characteristics must be chosen. By analyzing the ripple, it is possible to notice that it
has a very sharp local minimum that is easy to detect, and it is always present
irrespectively of the parameters of the model, since it is caused by the working principle
of the device. For those reasons, the local minimum was chosen as the reference point

from which the ripple will be cut.

In the case of the simulated characteristic of the model, it is necessary to wait for the
device to reach steady-state condition before sampling the ripple that would be compared
to the "target" characteristic. In order to avoid any residual transitory components that
could affect the quality of the identification, only one ripple period was used to generate
the cost function.
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4.4.2 Data synchronization

In this test case, the model used for the data generation and the one used for the
identification is characterized by different options regarding the max step of the
simulation. Therefore, it will be necessary to synchronize the data to the same time step.
This step is not exclusive to the test case under analysis but also to the real-world
scenario, where the fixed measured sampling step will differ from the step used by the
solver to simulate the model.

The first step for the data synchronization was to de-sampling the “target” ripple
characteristics. The “target” characteristic was produced with an extremely high
resolution with the objective of not only producing a curve with the highest quality
possible but also mimicking the sampling rate of 5 GHz implemented in [1]. The number
of points considered for one period of the ripple was reduced from more than 5000 to
2000. Each of the points of the de-sampled set is separated with a fixed step Tp. The
aligning and the de-sampling of the “target” characteristic are performed before entering
the optimization process in order to avoid reiterating a process that will not change for
a fixed “target” characteristic.

The second and last step of the data synchronization is to ensure that for each timestamp
value that is present in the de-sampled “target” characteristic, there must be a
corresponding value of the simulated characteristic. Since the “target” curve is
characterized by a fixed step Ts and the simulated one, for efficiency purposes, was
created with a variable step, an approximation was required. Due to the high density of
points, it is possible to approach this problem with a 1D nearest neighbor by
approximating the value with the desired timestamp by taking its nearest function
evaluation. This crude approach was used initially due to its ease of implementation and,
from the test performed, did not impair the ability to converge. Therefore, a linear
interpolation was implemented with the objective of refining the script and minimizing

any sources of approximation error with minimal increase in the computational burden.

o —vl
o(KT,) = KT, —t, S22 ot with k€ N 0. < 2000 (4.1)
n+l =~ 'n

Where ¢, ., and ¢, are the time stamps of the variable step dataset between which the

time stamp kT, is included.
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4.5 Error function

The cost function used for the identification was constructed on a single period of the
output voltage ripple. This was a design choice made in order to minimize the following

sources of error:

e Residual transitory Even if minimal across several periods a small residual
transitory could be present and negatively impact the quality of the identification.

e Duty cycle variation The continuous controller implemented by the device to
stabilize the output voltage tries to compensate for the ripple by modifying the
duty cycle. This minimal fluctuation in the controlled variable impacts the steady
state ripple by introducing a small periodic contribution with a period several
times larger than the ripple ones. An approach that utilizes multiple periods to
construct the objective function would require to: Estimate the duty cycle for each
ripple period and then aligning the target and the estimated characteristic, to
have the duty cycle of the two characteristics to coincide.

Once the section of the ripple that will be used for the identification of a cost function
was defined and all the data processing required was finished, it was time to define the
objective function. As in [1], the voltage was standardized with respect to the “target”
as described in the Equation 4.2.

vt — Umea'n,t (42)
Ot

vt =

Where v £ is the output voltage, v is the mean value of the “target” ripple and o,

meang

the standard deviation of the “target” ripple. In order to simplify the tuning of the f,,,
it was required to normalize not only the voltage but also the time of the characteristics

in exam. The time was normalized with respect to the ripple period T, as follows.

T’P

Once data were normalized, the next step was to construct the objective function. To
define the f,, component to the objective function, a procedure similar to the one applied

for the identification of the RLC was implemented.

The procedure implemented to choose the characteristic points to construct the f., was
the following. First, the optimization process was run using only the frqq, and its
convergence behaviour was studied. From those tests, it emerged that the two main
characteristics that the optimizer needed to correct were the shape of the transient when

the MOSFET was in the off position and an offset between the two characteristics. With
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the objective of prioritizing the convergence of those errors, two points were used to build
the fep.

The first contribution added to the f., was the timing and voltage difference of the peak.
This contribution was chosen with the objective of helping the algorithm to converge to
the correct shape of the transitory. This contribution for a set of parameters x was defined
as follows.

Frear © =3 (5= 1,)" + (v () — () | (14)

Where ¢, and ¢, are the normalized timing of peak in the “target” and in the simulated
characteristic, v* (t;‘,) and U(tp> are the standardized voltages with respect to the peak
of the “target” characteristics. Since both the time and voltage of the characteristic were
standardized and had similar values, no coefficients were defined when mixing together
the two contributions.

The third contribution that was added to the cost function was the voltage difference of
the ripple endpoint. This contribution was chosen since it proved to be an effective aid
for the algorithm in removing the eventual offset between the two characteristics. This
contribution for a set of parameters x was defined as follows.

fend r = [U* 1 _UZ( 1 ]2 (45)

All those contributions were used to define the cost function that the optimizer will
minimize. The cost for a set of parameters x was defined in the equation 4.6.

fCost T = afRSS T +6fpeak' € +’Yfe,nd T (46)

Where:

a+p+y=1with a,5,7€R (4.7)

As in the simplified example with the RLC circuit, the tuning of the different
contributions was made by defining a set of problems that were fed to the algorithm
implementing different weights for the cost function values. After a defined number of
functions evaluations, the algorithm was stopped, and its progress assessed.

The process used to tune the cost function was similar to the one that was implemented
for the simpler circuit and proved to be very effective. To start, an identification was
made by implementing solely frgg, this served as a reference point in order to assess
the improvements that were made by tuning the cost function. This initial test
highlighted the computational expense required to perform this identification; it took in
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fact around 19 hours to complete this initial identification. Waiting for the algorithm to
finish the estimation was not a feasible option since especially in the first tuning phase
of the algorithm the optimizer was prone to be stuck for multiple function evaluation in
a local minimum. It was chosen to evaluate the progress in the estimation after a fixed
amount of function evaluation, since between the ones described in [31] it was the method
that was more in line with the requirement of the case. The other contributions of the
cost function were gradually increased once the improvement in the identification started
to reach the point of diminishing return, the cost function was then considered sufficiently
tuned. Further tuning was unnecessary since this was a proof of concept and specializing
the algorithm to solve a specific problem could backfire when the parameters of the
system will drift from the nominal ones.

As previously noted, to improve the quality of the identification result, it was chosen to
repeat multiple times the identification problem with perturbed initial conditions. This
initial set of problems was generated by disturbing the a priori knowledge, that comes in
the form of the nominal values, with a white noise. This method proved to be an effective
way to generate a set of results, that can afterwards be analyzed through statistical
methods. For this application, it was chosen to simply mediate the different results of
the multiple identification.

This is the point in the workflow where the concept of digital twin was implemented.
Instead of discarding the previously identified parameter and starting the next
identification from the nominal values, the previously identified parameters were
implemented to generate the set of initial conditions for the next iteration of the process.
A similar recursive process was implemented in [34]. This is a feasible solution since in
this study the focus on the identification of physical parameters that from definition will
evolve in a continuous manner but are also fault indicators that generally drift in their
values with years of normal use. This last property allows to considering this type of
method that requires multiple hours to finish a valuable option.

Implementing the previously identified parameters to generate the next set of initial
conditions allowed to optimize the time required for the process of identification. Since
it allowed to reduce the gap between the initial conditions and the final result.

To obtain the result that will be discussed in the following paragraph it was decided to
use a set of 10 initial conditions, generated with a normal distribution with variance
02 =277 x10™* and mean p = 0. The variance was calculated to have 3¢ = 0.05
meaning that 99.7% of the initial condition generated did not exceed a 5% deviation from
the result from which they were derived.
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4.6 Identification results

To extract meaningful data from the test performed it is crucial to select identification
problems that may highlight any possible shortcomings of the method used. To study
the basic behavior of the system it was chosen to proceed as follows. First, choose one of
the parameters that were highlighted as a failure indicator of a component, then generate
a set of identification problems where the chosen parameter is steadily increased to mimic
the degradation of the associated component. The tests performed were designed to test
two main factors: how much the method is able to pinpoint the root cause of the changes
in the steady state characteristic and eventually quantify how much the deviation of one
parameter would influence the identification of the others and test the accuracy
capabilities of the algorithm while following the drift of the parameter.

As stated in [7] the expected variation in the ESR before it reaches the breaking point,
in the case of an electrolytic capacitor, can be very significant and reach peaks of 2.78
times the initial value. Having such a noticeable increase in its failure indicator makes
one of the two most critical components also the easiest to diagnose for issues and the
best point to start testing the capability of the algorithm.

4.6.1 Capacitor identification

With the objective of simulating a gradual increase of the ESR of one capacitor over
time the following three ripple characteristics were simulated: The first ripple that was
simulated was the baseline where all the parameters were the nominal ones, the second
and third present an increased ESR of 5% and 10% respectively. The smallest ESR
present in the model was chosen, in order to further test the capabilities of the algorithm.

The array of the parameters used in the tests is presented in Table 9.

6o 61 0,

L 33uH 33uH 33uH

Cy 20uF 20uF 20uF

C, 440pF 440pF 440pF

R, 60mQ 60mQ 60mQ
Rc1 60m(Q) 60mQ + 0.3mQ 60mQ + 0.6m)
R 300mQ 300mQ 300mQ
Ron 0.135Q 0.135Q 0.1350

Table 9 vector of parameters used in the test
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The graph presented to depict the data is structured in the following way: The points on
the x-axis are meant to represent a point in time where the parameters are set, and the
y-axis depicts the normalized deviation of the parameters to the respective nominal
values. x(6;) is the first identification made by the algorithm, where R, presented a
5% deviation from the nominal value. Lastly x(6,) is the second identification where
R, presented a 10% deviation from the nominal value. Instead of having a cluster of
points that spread along the y-axis it was decided to present the data using a box chart.
or box plot, provides a visual representation of summary statistics for a data sample.
Given numeric data, the corresponding box chart displays the following information: the
median, the lower and upper quartiles, any outliers (computed using the interquartile
range), and the minimum and maximum values that are not outliers [40].

The graph presented in Figure 45 represents the result of the identification for the
parameter Rcl, the ESR parameter that changed between the identifications.
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Figure 45 Estimation result for Req

From the graph presented, it is important to notice that the algorithm is able to identify
this parameter with an extremely good tolerance. Even considering the outlier, none of
the results crossed the 1% deviation from the solution of the problem. This is an
exceptionally positive result, considering how high the threshold for failure is for this

component.
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Focusing now on how the other failure indicator behaved. The estimation of the ESR of
the second capacitance R, is depicted in Figure 46.
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Figure 44 Estimation result for R,

It is possible to notice that the results obtained for R., did not present any noticeable
deviation from the solution of the problem, suggesting that the algorithm is able to
pinpoint the component that is the root cause of the increased cost function and provide
results without meaningful correlation with the other parameter. This is a very promising
result since it shows that it is possible to identify those two parameters independently.
In the identification of this ESR parameter, none of the results crossed the 1% deviation
from the solution of the problem.

The data of the identification of the R,, are presented in the graph in Figure 47. Ry,
from the test performed, proved to be the most challenging to identify. The identification
of R,, is limited compared to other parameters because its variation did not affect the
output characteristics as deeply as the changes in the ESR.
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Figure 45 Estimation result for Ry,

The results of the identification for R,,, are still very positive. The mean value of between
the results correctly indicates the steadiness of the parameter throughout the test. On
the other hand, the distribution of the result has noticeably a larger variance when
compared with the estimation of the capacitor ESR.

The overall results of this test are positive, especially when compared to the order of
magnitude of the deviation that is required to estimate. As previously stated, the
expected deviation for the ESR of a capacitor before a fault can reach a deviation as
large as 278%. From the accuracy displayed in this test, it is possible to state that the
used method is more than capable of identifying the aging of the capacitor. It has to be
noted that the results presented were possible because even a small deviation in the ESR
was able to harshly impact the output characteristics. This is a crucial factor that
definitely helped the identification process by making the cost function steeper around
the solution which also improves the ability to discern in the real case the inevitable

noise in the measurement from a change in said parameter.
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4.6.2 MOSFET identification

Unlike the previous test with the gradual increase of the ESR evaluating the quality of
the estimation for R,, were not as successful. In the initial test, the deviation of R, was,
as in the previous test, of five and ten percent. This initial test, were a failure since the

algorithm was unable to reliably detect the deviation in the parameter.

Since it was not possible to detect finer parameter deviation, the algorithm was tested
to prove if the system was at least accurate enough to detect the failure of the component.
In [33], a 50% increase in R,, is defined as a warning threshold. With this objective of
proving if the method was able to detect if R,, cross the warning threshold, it was
decided to test the algorithm by identifying the following four ripple characteristics that
were simulated: The first ripple that was simulated was the baseline where all the
parameters were the nominal ones, the second presented an increased R,, equal to half
the warning threshold, the third test presented an increased R,, equal to the warning
threshold and lastly the fourth test presented an increased R,, that exceeds the warning
threshold by 50%. The arrays of the parameters used in the test are presented in Table
10.

6o 6, 6, 63
L 33uH 33uH 33uH 33uH
Cy 20pF 20pF 20pF 20pF
C, 440uF 440pF 440pF 440pF
Ry 60mQ 60mqQ 60mqQ 60mqQ
Rc1 60mQ 60mQ 60mqQ 60mqQ
Rca 65mQ 65m(Q 65m(Q 65mQ
Ron 0.100Q 0.125Q 0.150Q 0.175Q

Table 10 vector of parameters used in the test

As in the previous tests the data are presented in a graph where the point on the x-axis
is meant to represent a point in time where the parameters are set to x(68,,), and in the
y-axis are plotted the results of the identification in the form of the normalized deviation

of the parameters to the respective nominal values.
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Presenting now the result for the identification of R,, on Figure 48, from this first graph
it is possible to observe that even if the overall variance of the result is much higher than
the one found in the previous test, the average value of the different result is overall
consistent with the parameters of the solution.
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Figure 46 Estimation result for Ry,

Observing the data is possible to notice that, with the exception of some outliers, the
results are spread mostly within a 15% deviation. Even if the tolerances for the
identification are so high, the mean of the result consistently follows the solution of the
identification.

Plotting together the mediated results with the actual solution for the identification, as
was made in Figure 49, it is possible to see that the method is a viable way to mitigate
the inaccuracy of the identification. Most importantly this system in have the capabilities
to detect if the drift of R,, exceed the warning threshold that was proposed in [33].
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Figure 47 Mean values for the identifications of Ry (blue dot) compared with the ideal resull (dotted blue line)

We analyze now the other parameter starting from R.;. As can be noticed in the graph
of Figure 50, also in this test, the result of the identification of the ESR parameter was
extremely good. Not only did the mean value of the various identifications differ by
marginal value from the solution, but also the variance of the result was extremely low.
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Figure 48 Estimation result for Req
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Finally, we study the last failure indicator remaining, R.,. It is possible to notice that
similarly to the result found for R.; the mean value of the results differs from the solution
by a neglectable margin. Also, the variance that characterizes the distribution of the

solution is extremely low with values that are consistent with the one found for R.;.
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Figure 49 Estimation result for Re,
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Chapter 5

Application on a single-phase inverter

Since the overall results for the buck converter were deemed positive, a further
investigation of the algorithm performance with a more complex system was made. For
this test, the power converter chosen for the identification process was a single-phase
inverter. This test was performed in order to push the capabilities of the algorithm and
confirm if it was able to extract meaningful data for the fault parameters in a system
with higher complexity.

As in the previous test, a Simulink model was implemented to generate the output
characteristic. The data were then aligned, and a cost function was built on the
differences between “target” and simulated characteristics. The data alignment applied
for this test was the one developed for the previous buck converter test. For the
preliminary test only the basic frgg * cost function described in the equation 2.1 was
used. The inverter model used for this test is depicted in Figure 52.
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Figure 50 Single-phasc inverter Simulink model
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The filter block present in the Figure 52 was modelled as follows:
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Figure 51 Filter schematic in Simulink

The output characteristic of this model is presented in the graph of Figure 54.
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Figure 52 Output characteristic of the single-phase inverter model

It is possible to notice from Figure 54, that this type of device presents a ripple that the
filter block was unable to completely smooth out. To verify the performance of this setup,
as in the previous test, the first set of identification problems generated was aimed to
emulate a drift in the ESR parameter on one of the filter capacitors. The ESR chosen to
be identified was the one relative to the capacitor C¢. This choice was made since, among
the capacitors present in the filter block, Cris the one with the largest ESR. Any shift in
this parameter will therefore have a higher impact on the output ripple. Therefore, should
make this fault parameter the easiest to identify. The vectors of parameters for the

identification problem are depicted in Table 11.
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90 91 02 63

Lfy 2mH 2mH 2mH 2mH

Ls, 2mH 2mH 2mH 2mH

Cr 35uF 35uF 35uF 35uF

Rey 60mQ 60mQ + 15mQ 60mQ + 30mQ 60mQ + 60mQ
Cp1 300pF 300pF 300pF 300pF

Cp2 300pF 300pF 300pF 300pF
Rep1 30000 30000 30000 30000
Repa 3000Q 3000Q 3000Q 30000

Table 11 Set of parameters for the different identifications

As done for the previous identification test, each problem was iterated ten times. The

initial conditions for the first identification were generated by perturbating the nominal

values of the system with Gaussian noise. The variance of said Gaussian distribution was

02 =2.77 x 10~* and mean u = 0. The variance was chosen in order to have 3¢ = 0.05

meaning that 99.7% of the initial conditions generated did not exceed a 5% deviation

from the result from which they were derived. For all the successive identifications, the

mediated result of the previous identification is used as a base for the initial conditions.

The results found are depicted in the graph of Figure 55.
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Figure 53 Identification result of Rey
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Unfortunately, as highlighted in Figure 55, the algorithm was not able to identify any
shift in the parameter values between the different tests. Observing the variance of the
results, one might conclude the presence of a local minima to which the parameter
converges. Studying the result, it was possible to conclude that this was not the case.
The variance in the result was so limited only because the output result did not present
any meaningful shift from the values from which the optimization started. Therefore, the
distribution of the result just mirrors the distribution of the initial conditions.
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Chapter 6

Conclusions

In conclusion, this thesis presented an effective identification method aimed at assessing
the health of the most vulnerable component present in a power electronic system, with
the objective of providing a valuable tool to improve the reliability of the predictive
maintenance performed on this type of system.

The algorithm implemented measures the input and output characteristics of the system
to be identified, it then implements a model to provide a simulated output characteristic
for the measured input. A cost function is then built to highlight the difference between
the measured and simulated output characteristics. Finally, an optimizer was
implemented to minimize the cost function by tuning the values of the component of the
model.

A simple RLC circuit was initially used to perform a thorough analysis on how to build
a cost function that improves the conversion capabilities of the optimization algorithm.
Once the cost function was tuned, different optimization algorithms were benchmarked.
The accuracy of the results and computational efficiency in solving the optimization
problems were the key aspects analyzed to compare the performance of the different
algorithms. To provide a reference baseline performance, the non-linear least square
algorithm was chosen. This choice was made since it is the most used algorithm in
literature. The optimizers tested were patternsearch, PTO and Bayes opt. The result of
this benchmark highlighted that implementing a cost function that leverages some
distinct feature of the output characteristic will result in an improvement in the
convergence capabilities. Among the algorithms tested the patternsearch algorithm
proved to be the most capable one, it was distinguished from the others not only for its
efficiency and accuracy but also for its ability to solve a broader set of problems. The
identification algorithm was then tested for a more complex system, a buck converter.
In those tests, the capabilities of the algorithm to identify the drift in values of the failure
parameter of the capacitor and MOSFET were tested. The algorithm proved its
effectiveness in identifying the ESR values with minimal tolerances of around 1%, this
level of accuracy is much higher than the one requested to assess the health of the
component. The identification result for the R,, of the MOSFET presented tolerances
around the 15% mark, this level of accuracy is not enough to make this algorithm a
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reliable and robust solution for the health assessment of the system. To mitigate the
inaccuracy of the identification multiple identifications were performed with different
initial conditions and the output result of the identification was the mean of those
identifications. From the test performed implementing the mediated result allowed to
correctly identify when the safety threshold for the Ron value is crossed.

The implementation of a Simulink model to generate the output characteristics severely
impaired the efficiency of the algorithm. One identification required 8 hours to perform,
which limited the number of tests that could be performed. The results obtained are
therefore a proof of concept rather than a real benchmark on the performance of this
method.

Future investigations should be performed with more efficient software in order to have
a more reasonable computational burden and be able to provide a more extensive set of
results. A larger dataset would allow for more meaningful data to study in depth the
benefit of a modified cost function and explore different tuning methods in more complex
systems. Finalizing an optimized version of the software would allow to provide the
requirement for the on-board hardware that will perform the computations.
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