
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Artificial Intelligence and Data Analytics

Master Degree Thesis

Enhancing PPG-Based
Heart Rate Estimation

combining Data Augmentation
and Model Pre-training

Supervisors

Prof. Daniele Jahier Pagliari1

Dr. Alessio Burello1,3

PhD. student Luca Benfenati1

Dr. Xiaying Wang2

Prof. Luca Benini2,3

Candidate

Sofia Belloni

1. Politecnico di Torino, 2. ETH Zurich, 3. Università di Bologna

Academic Year 2023-2024

This work is subject to the Creative Commons Licence

Abstract

Accurate heart rate (HR) estimation from photoplethysmographic (PPG)
signals is critical for health monitoring applications, such as cardiovascular
disease management, fitness and activity tracking, and detecting arrhyth-
mia or other heart-related abnormalities. Without subjects’ movements and
with personalized subject data, nowadays HR- estimation can be considered a
“solved problem”, even with low-cost commercial smartwatches. However, in
a more general and realistic scenario of daily life, this task remains challeng-
ing due to motion artefacts (MA) and inter-subject variability. This thesis
addresses these challenges by proposing a series of improvements to existing
neural network architectures for more robust and accurate HR estimation.

We first explored different Deep Learning approaches, starting with a
Masked Autoencoder for unsupervised feature learning. While this model
provided an initial reference, it did not meet the desired performance in
HR estimation. Subsequently, we focused on improving the state-of-the-art
PULSE (Ppg and imU signal fusion for heart rate Estimation) architecture,
a model designed specifically for HR estimation from PPG signals. To better
capture localized features, we replaced the dilated convolutions in the original
model with standard convolutions, increasing the filter size and eliminating
the need for dilation.

Building on our new architecture, we introduced a pre-training step where
the model task is the reconstruction of PPG signals. To implement this, we
restructured the PULSE model into an encoder-decoder architecture. Specif-
ically, we replaced the final two linear layers with a decoder that mirrors the
encoder architecture, utilizing both the multi-headed attention mechanism
and transposed convolutional layers to reconstruct the input signal from the
latent space. Inspired by U-Net, we also introduced two skip connections
between the corresponding encoder and decoder layers to retain spatial in-
formation during the up-sampling process.

As a last step, to further improve model robustness and generalization, we
applied a variety of data augmentation (DA) techniques to expand the train-
ing data, particularly targeting heart rate variability. These augmentations,
inspired by a recent paper on improving PPG-based HR monitoring with syn-
thetically generated data, proved highly effective in enhancing model perfor-
mance, especially for subjects with atypical beats-per-minute (BPM) ranges.
In our experiments, we applied the pre-training on the PULSE model using
data from the public WESAD dataset and from a new un-labelled dataset
coming from West Attica University, to form a comprehensive dataset of

3

490,000 samples. The model has been finally evaluated on the PPG-Dalia
dataset, the widest labelled dataset to compare with state-of-the-art models,
using the Leave-One-Subject-Out (LOSO) protocol.

In conclusion, our proposed enhancements to the PULSE model led to
a 12.4% reduction in MAE on the PPG-DaLiA dataset, achieving a final
MAE of 3.53 compared to best state-of-the-art competitor, PULSE, that
achieves 4.03 BPM of MAE with similar model complexity. Note that most
of our enhancements are applied during training, therefore not modifying
significantly the complexity of the model inference, usually executed on a low-
power edge device such as a smartwatch. This work sets a new benchmark in
HR estimation accuracy from PPG signals, demonstrating the power of pre-
training and data augmentation techniques in improving the performance of
an already state-of-the-art architecture.

4

Contents

List of Tables 7

List of Figures 8

1 Introduction 11

2 Background 17

2.1 HR estimation . 17
2.1.1 PPG signals . 18
2.1.2 Accelerometer data . 19

2.2 Deep Learning approaches . 20
2.2.1 Temporal Convolutional Neural Network 20
2.2.2 Autoencoder . 21
2.2.3 The transformer . 22

3 Related works 27

3.1 Classical Approaches . 27
3.2 Deep Learning Approaches . 29

3.2.1 Deep-PPG . 29
3.2.2 Q-PPG . 30
3.2.3 Attention-PPG . 31

4 Methods 35

4.1 Data Preprocessing . 36
4.1.1 Z-Score Normalization 37
4.1.2 Data Augmentation Techniques 37

4.2 Model Architecture . 42
4.2.1 Masked Autoencoder 42
4.2.2 PULSE . 47
4.2.3 Pre-training architectures 49

5

4.3 Self-supervised learning . 51
4.3.1 Pre-training . 53
4.3.2 Fine-tuning . 55

4.4 Post-processing . 56

5 Results 57

5.1 Datasets . 57
5.1.1 PPG-DaLiA . 57
5.1.2 WESAD . 58
5.1.3 Dataset from West Attica University 58

5.2 Experimental Set-up . 59
5.3 Masked Autoencoder results 60
5.4 PULSE results . 62

5.4.1 Baseline Model (Our PULSE) 62
5.4.2 Data Augmentation results 63
5.4.3 Pre-training results . 64

5.5 Discussion . 66

6 Conclusion and future works 71

Bibliography 77

6

List of Tables

4.1 Data Augmentation configurations explored 42
5.1 MAE Post-processing Results on PPG-DaLiA. 60
5.2 MAE Post-processing Results on PPG-DaLiA. 63
5.3 PULSE MAE Post-processing Results on PPG-DaLiA with

Different DA Configurations. 63
5.4 PULSE MAE Post-processing Results on PPG-DaLiA with

transfer-learning (TL). 65
5.5 PULSE MAE Post-processing Results on PPG-DaLiA after

transfer-learning with different DA configurations applied dur-
ing pre-training (PT). 65

5.6 PULSE MAE Post-processing Results on PPG-DaLiA after
transfer-learning with different DA configurations applied both
during pre-training and fine-tuning. 66

6.1 PULSE MAE Post-processing Results on PPG-DaLiA pre-
trained with heavy autoencoder. 76

7

List of Figures

2.1 Working principle of a reflection-type PPG sensor [21]. 18

2.2 Typical PPG signal form [9]. 19

2.3 The Photoplethysmography signals. (a) is the normal PPG
signals. (b) is the PPG signals affected by motion artifacts
during movement [10]. 19

2.4 Schema of a basic autoencoder. 21

2.5 The Transformer- model architecture [13]. 23

2.6 (left) Scaled Dot-Product Attention. (right) Multi-Head At-
tention consists of several attention layers running in parallel
[13]. 24

3.1 Proposed CNN-architecture with NL = 1 . . . 8 convolution-
maxpool layers. Ntr refers to the number of segments used
together for heart rate tracking. N depends on NL. Input:
Ntr × Nch × NF F T matrix [6]. 30

3.2 Proposed Q-PPG design space exploration flow [22]. 31

3.3 Detailed illustration of the teacher-student knowledge distil-
lation process. The Teacher Network is shown in the upper
section, and the Student Network in the lower section. The
losses LRel, LSoft, and LHard are combined to compute LKD,
which is used to update the Student Network’s weights [24]. . 33

4.1 Spectogram from a raw signal using FFT on overlapping win-
dowed segments [26]. 38

4.2 Synthetic signals obtained from the application of the six DA
technique to a 8 seconds window of the PPG-DaLiA dataset
[20]. 40

4.3 Detailed description of the architecture of our Masked Autoen-
coder for manage PPG signals in frequency domain [25]. . . . 44

4.4 Original PPG heatmap. 45

4.5 Reconstructed PPG heatmap, with 15% mask ratio. 45

8

4.6 Masked Autoencoder pre-training and fine-tuning pipelines. . . 46
4.7 PULSE network architecture [23]. 48
4.8 Multi-head cross-attention module applied to PPG and 3axial

accelerometer feature maps. The PPG embedding acts as a
Query tensor, while the 3-axial accelerometer embeddings are
Key and Value tensors [23]. 48

4.9 Architecture of light autoencoder based on PULSE for signal
reconstruction pre-training task, compared to our PULSE ar-
chitecture. 50

4.10 Architecture of heavy autoencoder based on PULSE for sig-
nal reconstruction pre-training task, compared to our PULSE
architecture. 52

4.11 PULSE pre-training and fine-tuning pipelines. 54
4.12 PPG signal reconstruction example. 55
5.1 Results of HR estimation through Masked autoencoder. 61
5.2 Results of light autoencoder based on PULSE. 68
6.1 Results of heavy autoencoder based on PULSE. 76

9

10

Chapter 1

Introduction

Heart rate (HR) is a key indicator of cardiovascular health and can provide
important information about an individual’s physical and mental state. Con-
tinuous HR monitoring has become essential not only for patients with med-
ical conditions, but also for healthy individuals interested in fitness and gen-
eral well-being [1]. Early wrist-worn HR monitoring devices used a separate
chest band, equipped with Electrocardiogram (ECG) sensor. However, this
solution is very expensive and uncomfortable to wear on a daily lives, even
though it provides accurate results. In recent years, the use of photoplethys-
mography (PPG) for heart rate estimation has grown significantly due to
the popularity of wearable devices such as Apple Watch [2] and Fitbit [3]. In
fact, they have become increasingly popular due to their convenience, porta-
bility, and ability to collect and process various types of data. Wrist-worn
wearable devices have made continuous access to this information possible,
improving users’ quality of life through non-invasive HR monitoring. PPG
sensors use light-emitting diodes (LEDs) and photodiodes to measure blood
volume changes in the microvascular bed of tissue, estimating HR in real time
[4]. While emitting light onto the skin, the photodiode detects changes in
light intensity caused by blood flow: the greater the change in blood volume,
the greater the attenuation of light picked up by the photodiode [5]. This
relationship allows the peaks of the PPG signal to be associated with the
user’s heart rate, making this method a reliable option for HR tracking. HR
estimation from PPG signals, however, still presents challenges. Under ideal
conditions, without subjects’ movements and personalised subject data, HR
estimation can be considered a ‘solved’ problem, even using low-cost com-
mercial devices. However, in realistic scenario of daily life, body movements

11

1 – Introduction

generate motion artefacts (MA) that alter the signal and compromise the ac-
curacy of HR estimation. These artefacts are caused by variations in sensor
pressure on the skin or the infiltration of ambient light between the photodi-
ode and the wrist, which introduce variability and noise into the PPG signals.
Common practices utilize filtering approaches that correlate the motion data
coming from acelerometers and the PPG signal using classical signal process-
ing techniques, such as adaptive filtering or peak detection to cancel out the
noise and eventually remove the MAs [24].

In recent years, various deep learning approaches have been explored to im-
prove HR estimation from PPG signals. For example, models based on con-
volutional networks (CNNs), which exploit their ability to extract spatial fea-
tures from signals, and recurrent networks (RNNs) have been implemented
[6]. Furthermore, the publication of large datasets for monitoring heart rate
in the presence of motion artefacts has accelerated the spread of new HR
estimation model. The most common datasets in this field are PPG-DaLiA
[6] and WESAD [7]. PPG-DaLiA is a large dataset that collects PPG and
accelerometer data during the daily activities of 15 subjects, with the aim
of compensating possible MA and accurately estimating HR in real-life con-
texts. WESAD, on the other hand, is a multimodal dataset designed for
the study of stress and HR monitoring, containing data collected from PPG,
ECG and accelerometer sensors on different subjects during specific activ-
ities. However, one of the biggest obstacles in this field is the difficulty of
finding labelled data. Labelling is a long and onerous process that requires
considerable time and resources. This problem is particularly evident in the
context of PPG data where, on the other hand, the collection of unlabelled
data is relatively straightforward. In fact, unlabelled PPG signals can be eas-
ily collected in large quantities because they do not require complex human
supervision during collection. The opportunity to have a huge amount of
unlabelled data available is a very important resource that can be exploited,
for example, using self-supervised learning (SSL) techniques. The main idea
of SSL is to define an unsupervised task on a large unlabelled dataset, with
the aim of capturing the underlying structure and patterns of that specific
type of data, in order to learn a data representations as generally as possi-
ble. Once this pre-training phase is completed, the general representations
obtained can be used to fine-tuned the model in specific downstream tasks,
which are usually tasks for which a relatively small amount of labelled data
is available. Although the SSL paradigm is widely used in other fields such

12

1 – Introduction

as computer vision and natural language processing [28], the use of SSL ap-
plied to PPG data is still a relatively unexplored area. This is one of the
main strengths of our research: we are among the first to implement SSL
techniques for PPG data analysis, reducing the need for HR labelling.

In this context, a significant contribution of this thesis is the use of a new
dataset provided by West Attica University, containing a large amount of un-
labelled data collected from subjects without heart disease and mainly at rest.
The integration of this data is an opportunity to improve the performance of
HR estimation models through an effective pre-training. For this reason, we
propose an innovative approach that integrates self-supervised learning and
data augmentation techniques, inspired by [20] to enhance HR estimation
performance of deep learning models. While our method is mostly orthog-
onal to the specific deep neural network selected, we assess its performance
using PULSE (Ppg and imU signaL fuSion for heart rate Estimation pulse),
the state-of-the-art deep learning model for HR estimation from PPG signals
on PPG-DaLiA. PULSE integrates temporal convolutions and a feature-level
Multi-Head Cross-Attention (MHCA) module to improve accuracy and en-
sure greater interpretability of results. By incorporating a pre-training phase
alongside augmentation techniques, we enhance the robustness and accuracy
of PULSE without adding to the inference complexity, making it well-suited
for deployment on low-power edge devices such as smartwatches. We are
the first to introduce a self-supervised pre-training step by restructuring the
selected deep learning model into an autoencoder-like framework, inspired
by U-Net [27]. During this first training phase, the autoencoder-like archi-
tecture is used to learn a compressed and meaningful representation of PPG
signals, improving the model’s ability to recognise relevant patterns even in
the presence of noise or signal variability. After pre-training the model is
fine-tuned on PPG-dalia reaching state-of-the-art performance for HR esti-
mation. Additionally, we explored different data augmentation (DA) tech-
niques to further increase the variability and representativeness of the data.
These techniques were applied to create a dataset that better reflects the
possible patterns that may be encountered in real-life contexts. Although
the available datasets contain a large amount of data, they were collected
from a relatively small number of subjects, limiting their ability to represent
a heterogeneous population in terms of age, gender, physical condition etc.
[6]. The use of DA allowed a greater variety of conditions to be simulated,
thus improving the robustness of the model in real-life scenarios.

13

1 – Introduction

To conclude, the contributions of this thesis can be summarised as follows:

• Modification of the PULSE architecture: we replaced dilated con-
volutions with standard convolutions, increasing the filter size and re-
moving dilation, enabling the model to focus on more localized features
and improving efficiency.

• Introduction of a new unlabelled dataset: this dataset has been
collected by West Attica University and it includes the PPG and tri-axial
accelerometer data.

• Introduction of a pre-training step: we restructured the PULSE
model into an autoencoder-like framework, inspired by U-Net [27]. This
allowed us to pre-train the model on WESAD and the newly collected
dataset from West Attica University, mentioned above. The pre-training
focuses on PPG signal reconstruction, improving the model’s ability to
capture critical signal characteristics, thereby enhancing HR estimation
accuracy.

• Integration of data augmentation: we applied data augmentation
techniques, inspired by [20], to expand the pre-training dataset, signif-
icantly improving the model’s generalization and robustness to noisy
inputs.

It is important to underline that, since we worked only on the training phase,
our modifications do not affect significantly the inference time. In fact, the
complexity of inference remains mostly unchanged, making it suitable for
deployment on low-power edge devices like smartwatches.

This thesis is structured as follows:

• Chapter 2 explains the background, providing an overview of the funda-
mental theoretical concepts, including PPG signals, HR estimation and
deep learning techniques used in the context of this thesis.

• Chapter 3 presents a review of the existing literature, exploring the main
approaches and models developed for HR estimation from PPG signals.

• Chapter 4 discusses the different architectures and methods tested, in-
cluding the pretraining and fine-tuning protocols and the data augmen-
tation techniques implemented.

14

1 – Introduction

• Chapter 5 presents and analyse all the experiments and the results ob-
tained during the work.

• Chapter 6 addresses some final considerations on the results and on the
overall project, as well as some comments on possible future works.

15

16

Chapter 2

Background

2.1 HR estimation

Heart rate (HR) represents the number of heart beats per minute (BPM) and
it is an essential physiological measurement as it is one of the most common
and significant indicators of an individual’s cardiovascular health, indicating
how efficiently the heart pumps blood throughout the body. Usually, adults
have a resting HR ranging from 60 to 100 BPM [8]. However, it can vary
in response to several factors, including physical activity, emotional state,
posture and general health. HR estimation is crucial in many applications,
from fitness to health monitoring, to assess physical condition and detect
any anomalies. HR estimation commonly involves calculating the time gap
between two consecutive heartbeats. One of the most accurate and com-
mon methods of measuring heart rate is the Electrocardiogram (ECG). The
ECG measures the electrical activity of the heart through electrodes placed
on the skin at specific points on the body. A notable limitation of ECG is
its invasiveness and the necessity of electrode placement, which may not be
practical for continuous daily monitoring [5]. As a result, wrist-worn heart
rate monitors have gained popularity in recent times. These devices typically
use PPG to monitor heart rate, which is now widely used in most commer-
cial wearable devices. Nevertheless, estimating heart rate from PPG signals
presents more challenges compared to traditional ECG data [6].

17

2 – Background

2.1.1 PPG signals

A photoplethysmogram is an optical measurement that uses Light-Emitting
Diodes (LEDs) and a photodetector at the surface of the skin to detect varia-
tions in blood volume [24]. The two most common LEDs are red and infrared
(IR), which exhibit distinct absorption properties in the bloodstream.

Figure 2.1: Working principle of a reflection-type PPG sensor [21].

Figure 2.1 illustrates the working principle of a PPG sensor. The photodetec-
tor captures light and it is used to estimate blood volume changes. The PPG
signal is widely used for HR estimation due to its non-invasive nature, ease of
acquisition and integration into wearable devices such as smartwatches and
fitness trackers. The signal is composed of a pulsatile component (“AC”),
which reflects changes in blood volume synchronized with each heartbeat,
and a slowly varying basis (“DC”), which includes lower frequency compo-
nents due to breathing, to the activity of the sympathetic nervous system and
the regulation of body temperature. The first phase is primarily concerned
with systole, and the second phase with diastole and wave reflections from
the periphery [4]. HR can be estimated by analyzing the repetitive spikes of
the AC signal, which correspond to heartbeats. The PPG signal is typically
represented as a cyclic waveform in which each cardiac cycle appears as a
peak, as shown in Figure 2.2.

However, PPG signals are often contaminated by noise and artifacts, such
as body motion and changes in sensor pressure. They are known as MA and
they complicate signal analysis, making HR estimation a complex task. In
fact, MA can cause irregularities in the PPG waveform, including fluctuations

18

2.1 – HR estimation

Figure 2.2: Typical PPG signal form [9].

in the signal amplitude and shape, as represented in Figure 2.3. As a result,
the use of PPG signals affected by artifacts may limit the accuracy of HR
estimation. For this reason, they represent one of the main challenge in this
field.

Figure 2.3: The Photoplethysmography signals. (a) is the normal PPG sig-
nals. (b) is the PPG signals affected by motion artifacts during movement
[10].

2.1.2 Accelerometer data

Accelerometer data is used to detect body movements and provide additional
information that helps improve heart rate estimation from PPG signals. An
accelerometer measures acceleration along one or more axes and can identify
intentional movements, tremors, or vibrations. In combination with PPG
data, the accelerometer data helps to identify and correct segments of the

19

2 – Background

PPG signal that are altered by artefacts. By integrating this information,
it is possible to mitigate the effect of motion noise, improving the accu-
racy of estimates. Initial approaches for MA removal use adaptive filters or
techniques based on spectral analysis, which exploit the correlation between
acceleration signals and noise in the PPG signal to clean them from artefacts.

2.2 Deep Learning approaches

From the past, several algorithms have been used to estimate HR from PPG
signals in the presence of MA, including traditional machine learning models
such as adaptive filters and signal processing techniques. More recently, deep
learning has become a powerful technology, capable of achieving state-of-
the-art performance in several fields. Deep learning-based approaches have
shown promising results in improving the accuracy and robustness also of HR
estimation by exploiting the ability of these models to learn and generalize
from large amounts of data. This chapter explores some of the main models
used in Deep Learning approaches for PPG-based HR estimation..

2.2.1 Temporal Convolutional Neural Network

Temporal Convolutional Neural Networks (TCNs) are a type of neural net-
work designed specifically to handle sequential data. They consist of dilated,
causal 1D convolutional layers with the same input and output lengths [11].
As we sad, causal convolutions are one of the fundamental characteristics of
TCNs as they do not allow information from the future to influence predic-
tions in the past. This ensures that the model respects the temporal sequence
of events. On the other hand, a dilated convolution allows to expand the re-
ceptive field of the network without having to increase the number of layers.
The concept is to introduce a space between the convoluted elements, allow-
ing to “look” further into the past. A convolutional layer in a TCN is then
formulated as:

ym(t) =
K−1
∑

i=0

Cin−1
∑

l=0

xl(t − d · i) · W
(i)
l,m

where x and y are the input and output feature maps, t and m are the
output time-step and channel, respectively, W represents the filter weights,
Cin is the number of input channels, d denotes the dilation factor, and K
is the filter size [24]. Thanks to these characteristics, TCNs offer many
advantages in the analysis of sequential data with respect to other types

20

2.2 – Deep Learning approaches

of models such as Recurrent NNs. First of all, convolutions can be run in
parallel, improving efficiency compared to other models. Another important
feature is the flexibility of the receptive fields: by increasing the number of
layers, the size of the filters or the dilation factor, the length of the network
memory can be adjusted. Finally, TCNs avoid the problem of explosive or
vanishing gradients, as they do not use recurrent iterations.

2.2.2 Autoencoder

An autoencoder is a type of artificial neural network used primarily for unsu-
pervised learning, designed to efficiently compress (encode) the input data so
that the original input can be reconstructed (decoded) from this compressed
representation [12]. The main goal is to minimize the difference between the
input (x) and the output (x′). The difference between the original and recon-
structed data is quantified using a loss function, which for an autoencoder is
often defined as:

L(x, x
′) =

1

n

n
∑

i=1

(xi − x′
i)

2.

So, minimizing the loss means minimizing the discrepancy between x and x
′.

An autoencoder consists of 3 components: encoder, code and decoder (Figure
2.4). The encoder compresses the input into a more compact representation

Figure 2.4: Schema of a basic autoencoder.

called code or latent space. The encoder’s goal is to reduce the size of the

21

2 – Background

input while preserving the most important features. This can be expressed
mathematically as:

z = fenc(x) = Ã(Wencx + benc)

where Wenc and benc are the weights and biases of the encoder, and Ã is
a non-linear activation function. The decoder attempts to reconstruct the
original input from the compressed representation. It is symmetrical to the
encoder in order to expands the latent space, trying to recreate the original
data. This reconstruction process is given by:

x
′ = fdec(z) = Ã(Wdecz + bdec)

where Wdec and bdec are the weights and biases of decoder. Autoencoders
are often used as a pre-training task for supervised models, where latent rep-
resentations z are used as relevant features that describe underlying pattern
in the input. These learned features can be used to initialize the weights
of a neural network to speed up training and improve model convergence.
Beyond this, autoencoders are employed in several tasks such as denoising,
where they learn to remove noise from input, or anomaly detection, where
they are used to identify anomalies in new data that do not match the learned
patterns.

2.2.3 The transformer

Transformers are a neural network architecture introduced in 2017 by Vaswani
et al. [13] and revolutionized deep learning, especially in natural language
processing (NLP), thanks to its ability to manage data sequences more effi-
ciently than previous architectures. The main feature of Transformers is the
“attention” mechanism, which allows the model to weigh the importance of
different parts of an input during processing, eliminating the need for recur-
rent or convolutional networks, which were previously dominant in sequence
modeling tasks. Transformers are composed of two main blocks: the encoder
and the decoder, as shown in Figure 2.5. The encoder transforms the input
into an internal representation and it consists of multiple identical layers,
each of which is composed of:

• Multi-Head Self-Attention (MHSA) allows the model to consider all po-
sitions of the input sequence simultaneously, evaluating the relationships
between embeddings regardless of their position in the sequence.

22

2.2 – Deep Learning approaches

• Feed-Forward Neural Network (FFNN) through which input is passed
after attention to apply nonlinear transformations.

Figure 2.5: The Transformer- model architecture [13].

Each subcomponent is followed by a normalization and residual connection
mechanism, which adds the subcomponent’s original input to its output.
The decoder uses the internal representation to generate the output. It is
composed of multiple identical layers and it has an additional step compared
to the encoder.

• Masked Multi-Head Self-Attention, similar to the encoder attention, but

23

2 – Background

with a “mask” that prevents the model from looking beyond the current
position when generating output.

• Multi-Head Attention where the decoder receives input from the encoder,
allowing the model to focus on specific parts of the input when generating
the output.

• Feed-Forward Neural Network, same as the encoder.

At the end of the decoder, a final classification layer uses the softmax acti-
vation function to predict next-token probabilities.

As mentioned at the beginning of this section, the key element is the atten-
tion mechanism, which computes a representation of the input by consid-
ering all positions in the sequence. This mechanism is carried out in multiple
so-called heads of both the encoders and the decoders: within these heads,
multiple operations and steps are performed. A graphical representation of
these operations is shown in Figure 2.6. The first step consist of creating

Figure 2.6: (left) Scaled Dot-Product Attention. (right) Multi-Head Atten-
tion consists of several attention layers running in parallel [13].

three vectors from each encoder’s input vector by multiplying the embed-
ding by three matrices that are trained during the training process. As a
result, for each input a Query vector, a Key vector, and a Value vector are

24

2.2 – Deep Learning approaches

created. The attention mechanism computes the relevance of each input
word to every other word in the sequence by taking the dot product of the
Query with the Key, followed by a scaling operation and the application of
a softmax function to ensure that the weights sum to 1:

Attention(Q, K, V) = softmax

(

QKT

√
d

)

V

where Q represents the query matrix, K is the key matrix, V is the value
matrix, and d is the dimension of K. To make the attention work effectively,
the dot products are scaled by 1√

d
, which mitigates the issue of having large

dot products when the dimension d increases, preventing small gradients
in the softmax function. This produces the attention score. This score is
calculated for each element of the input sequence and is used to generate
a weighted sum of the value vectors, which is the new representation of the
input word. This operation is done in parallel across multiple heads, allowing
the model to attend to different aspects of the input sequence simultaneously.
This is known as Multi-Head Attention:

E(Q, K, V) = concat(head1, . . . , headh)W 0

where each attention head computes attention independently with different
learned projections for Q, K, and V, and the results are concatenated and
linearly transformed. The final output is a representation of the input se-
quence where each element is influenced by the most relevant parts of the
input. One of the main advantages of this mechanism is its ability to focus
on specific parts of the input sequence depending on their relevance, instead
of relying on fixed-length context windows.

25

26

Chapter 3

Related works

In this chapter, the main works related to heart rate estimation based on
PPG signals are presented. In recent years, research in this field has devel-
oped fast due to the advent of new wearable devices and the implementation
of advanced machine learning and deep learning techniques. The accurate
estimation of HR represents an important challenge, especially in real-life
conditions, where user movements and subject variability can compromise
the quality of the prediction. Several approaches have been proposed to ad-
dress these difficulties, from traditional models based on signal processing to
more recent deep learning techniques.

3.1 Classical Approaches

To address the challenges posed by MA, initial approaches in the litera-
ture proposed filtering techniques, where the correlation between accelera-
tion data and PPG signals was leveraged to remove noise and mitigate MA
before extracting HR from the cleaned signal [14], [15].

Among the model-driven approaches, TROIKA [16] paved the way to al-
gorithm exploration, combining three main modules that lend their names
to the system: decomposiTion, sparse signal Re-cOnstructIon, and spectral
peaK trAcking. Signal decomposition allows partial mitigation of MA, while
the sparse reconstruction module provides a high-resolution estimate of the
PPG signal spectrum that is robust to noise. Finally, spectral tracking mod-
ule identifies heart rate-related peaks and improves the spectral resolution of
the signal. For validation, the authors gathered a new dataset with record-
ings from 12 subjects during fast running at the peak speed of 15 km/hour.

27

3 – Related works

They collected a single-channel PPG signal, a three-axis acceleration signal,
and an ECG signal, allowing HR annotations as ground truth. TROIKA
succeeds in partially mitigating the impact of MA on PPG signals, achieving
a MAE of 2.34 BPM on their dataset. However, these methods often suffer
from poor generalization due to the high number of tunable hyperparameters.

Other studies such as Independent Component Analysis (ICA) [17] and
Kalman filtering [18], explored only scenarios with minimal motion artifacts.
To address this limitation and reach a satisfying accuracy in case of high MAs,
Zhang et al. [19] introduced a novel approach called JOint Sparse Spectrum
reconstruction (JOSS). This approach focuses on the fact that the spectra of
simultaneous PPG and acceleration signals share common spectral structure
characteristics, resulting in an alignment between the frequency locations of
MA within PPG spectrum and corresponding locations in acceleration spec-
trum. By using the multiple measurement vector (MMV) model to estimate
signals, JOSS allows easy identification and removal of MA spectral peaks
present in the PPG spectra without the need for additional signal process-
ing modules. Experimental results, obtained in the same 12 PPG datasets
used in TROIKA, shows improvement in accuracy with a MAE of 1.28 BPM.

Afterwards, Huang et al. [14] introduced a novel approach, TAPIR, a light-
weight algorithm based on four main steps: adaptive filtering, peak detection,
interval tracking and refinement. TAPIR uses both PPG and acceleration
data to effectively remove movement artefacts using least mean square (LMS)
adaptive filtering. MA are eliminated by the adaptive filter, which takes ac-
celerometer data with delays of up to 250 ms as input and the PPG signal
as the desired output. The filtered signal provides an estimate of the noise
caused by motion, which is then subtracted from the PPG signal. After
MA removal, the signal is processed to identify local peaks, which are then
tracked and corrected at different time scales to ensure accurate heart rate
estimation. Unlike previous approaches, TAPIR is designed to be robust
under intense motion conditions, demonstrating a MAE of 4.6 BPM on the
DaLiA dataset and 4.2 BPM on the WESAD dataset, obtaining significantly
lower error rates compared to most of the contemporary algorithms. In ad-
dition, TAPIR is computationally efficient, making it suitable for low-power
portable devices.

Despite significant advances, these approaches still suffer from limitations
in complex real-world environments where movement variability of physical

28

3.2 – Deep Learning Approaches

activity can introduce significant MA that reduce the accuracy of HR esti-
mation.

3.2 Deep Learning Approaches

Only in recent years HR estimation has been investigated using Deep Learn-
ing techniques. The main difficulties lie in the limited available memory
of the microcontrollers (MCUs) used in wrist-worn wearable devices, which
cannot support DL models with millions of parameters. In addition, train-
ing effective DL models requires large amounts of labelled data, which are
difficult to obtain because annotation of signals is an expensive and time-
consuming process. This scenario has changed with the introduction of large
datasets such as PPG-Dalia, which was specifically designed for HR tracking
in the presence of motion artefacts and includes recordings from 15 subjects
during different daily activities.

3.2.1 Deep-PPG

One of the first deep learning model was introduced by the authors of PPG-
DaLiA dataset and demonstrated better performance than previous approaches.
Reiss et al. [6] proposed a method based on convolutional neural networks
(CNN) that takes as input PPG and accelerometer signals processed through
the Fourier transform (FFT) to analyse them in the frequency domain. Fol-
lowing this approach, the time signal of PPG and accelerometers is segmented
using a 8-seconds sliding window, with 2-seconds shift. As a second step,
the FFT is applied to each time signal segment, resulting in Nch=4 time-
frequency spectra, one for each signal channel. Subsequently, these spectra
are filtered by keeping only the range between 0 and 4 Hz, which corresponds
to a maximum heart rate of 240 BPM. The number of FFT points per seg-
ment and channel is 1,025. Z-normalisation is applied to each channel to
ensure consistency of the input data. The final time-frequency spectra, rep-
resented as a matrix Nch × NFFT for each 8-second segment are the input for
the deep learning model, as shown in Figure 3.1.

For the architecture of the model, several hyperparameters were tested, in-
cluding the number of filters and filter size in each convolutional layer, the
activation function, the convolutional and pooling layer steps, the size of
the fully connected layer, the dropout rate, the loss function and the opti-
misation method. The first convolutional layer performs the fusion of PPG

29

3 – Related works

Figure 3.1: Proposed CNN-architecture with NL = 1 . . . 8 convolution-
maxpool layers. Ntr refers to the number of segments used together for
heart rate tracking. N depends on NL. Input: Ntr × Nch × NF F T matrix [6].

and accelerometers channels, while the second level fuses the time segments
involved in heart rate tracking. Subsequent convolution and pooling layers
improve the model’s ability to learn increasingly complex patterns in the
data, thereby improving the accuracy of heart rate estimation. Finally, the
last fully connected layer outputs the estimated heart rate. CNN has proven
to be more effective than classical approaches, reducing the mean absolute
error by 31% on the PPG-DaLiA dataset (reducing MAE from 11.06 BPM
to 7.65 BPM) and by 21% on WESAD dataset (reducing MAE from 9.45
BPM to 7.47 BPM).

3.2.2 Q-PPG

In [22], Burrello et al. focused their research to reduce the complexity of
models used for estimating heart rate based on PPG. Quantized-PPG (Q-
PPG) uses Neural Architecture Search (NAS) and quantisation techniques
to generate a set of deep Temporal Convolutional Networks (TCNs) from a
single basic architecture. The exploration process is divided into two main
phases, as represented in Figure 3.2:

1. Architecture Optimization: Starting from a seed TCN, they vary its
structure to trade-off computational cost and HR tracking error. To
achive that, they use a cascade of two NAS tools, MorphNet, used to
optimize the number of output channels (or features), and Pruning-In-
Time (PIT), used to search for the optimal dilation parameter d.

2. Precision Optimization: To trim down the model size, enhancing the
Pareto frontier, hardware-friendly quantization is introduced. It allows

30

3.2 – Deep Learning Approaches

Figure 3.2: Proposed Q-PPG design space exploration flow [22].

to replace all floating point multiply-and-accumulate (MAC) operations
required for inference with integer MACs.

One benefit of this approach is that Q-PPG exploration has to be per-
formed only once for a given dataset and seed model. The researchers de-
ployed their results on a real embedded smartwatch device powered by an
STM32WB55 MCU from ST Microelectronics. The quantization optimiza-
tion results in networks spanning a size spectrum, ranging from the largest
at 1MB (in floating-point representation) to the smallest at less than 1kB.
The most extensive model that can accommodate the target embedded de-
vice, STM32WB55, requires approximately 412kB, yielding a Mean Absolute
Error (MAE) of 4.41 beats per minute (BPM).

3.2.3 Attention-PPG

In [24] Kasnesis et al. introduced PULSE, a novel and lightweight DL ar-
chitecture that utilises TCNs and a multi-headed cross-attention module
(MHCA) at the feature level for the fusion of sensory data. This model rep-
resents the current state-of-the-art and the starting point for our project. In
this work, authors also have implemented a knowledge distillation mechanism
to transfer acquired skills from a more complex network (Teacher Network)
to a lighter network (Student Network). This architecture aims to improve

31

3 – Related works

HR estimation based on PPG sensors, addressing the problem of MA affect-
ing the measurements.

The Teacher Network, similar to Q-PPG [22], consists of:

• 3 consecutive convolutional blocks, each with dilated 1D convolutions,
ReLU activations, average pooling, and dropout (0.5).

• A MHCA module that integrates PPG data features with accelerome-
ter features. In this process, the PPG signal features serve as queries
(Q), while the accelerometer features form the keys (K) and values (V),
enabling effective fusion of sensory modalities.

• Layer normalization operation .

• Two dense layers, with the last one producing the estimated HR.

The Student Network is a lighter version of the Teacher Network, where the
MHCA module is replaced with a modality-wise convolution. This substitu-
tion reduces computational complexity while maintaining good performance.

The Knowledge Distillation process transfers the Teacher Network’s knowl-
edge to the Student Network using three types of losses:

• LHard: calculates the difference between the true HR values and those
predicted by the Student Network:

LHard =
1

N

N
∑

i=1

|yi − ŷs
i |

where yi represents the true values and ŷs
i represents the values predicted

by the Student Network.

• LSoft: measures the difference between the predictions of the Teacher
and Student Networks:

LSoft =
1

N

N
∑

i=1

∣

∣

∣ŷt
i − ŷs

i

∣

∣

∣

where ŷt
i are the predictions of the Teacher Network and ŷs

i those of the
Student Network.

32

3.2 – Deep Learning Approaches

• LRel: evaluates the distance between the pre-final dense layer outputs of
the Teacher and Student Networks, using the softmax function to ensure
numerical stability:

LRel =
1

N

N
∑

i=1

(

softmax(Ri) − softmax(R̂i)
)2

where Ri and R̂i represent the pre-final activations of the Teacher and
Student Networks, respectively.

The overall loss for knowledge distillation is given by:

LKD = µ (´LHard + (1 − ´)LSoft) + (1 − µ)LRel

where ´ and µ are hyperparameters that balance the contributions of the
different loss components.

Figure 3.3: Detailed illustration of the teacher-student knowledge distillation
process. The Teacher Network is shown in the upper section, and the Student
Network in the lower section. The losses LRel, LSoft, and LHard are combined
to compute LKD, which is used to update the Student Network’s weights [24].

The entire process is summarised in Figure 3.3. After the distillation process,
quantization is applied to further reduce the model size and facilitate execu-
tion on low-power microcontrollers. The models have been deployed on two

33

3 – Related works

microcontrollers, demonstrating their ability to perform real-time inference,
with a MAE of 4.81 BPM and memory usage of 37.9 kB, 10.9 times lower
than current state-of-the-art models.

34

Chapter 4

Methods

In this chapter, we describe in detail our innovative approach that integrates
self-supervised learning and data augmentation techniques to enhance HR es-
timation performance of deep learning models. Our method can be divided
into several steps including data preparation and processing, pre-training,
fine-tuning with transfer learning, and post-processing to improve the relia-
bility of the results. The first step involves data pre-processing, where the
PPG and accelerometer signals are segmented into time windows with over-
lap. Subsequently, data are normalised using z-score normalisation, ensuring
that data are on the same scale. To further improve the model’s performance
and enlarge the amount of available data for training, Data Augmentation
(DA) techniques are applied, creating synthetic data.

As our approach is orthogonal to the deep learning model selected, we tested
two different architecture. In the first part of the this work, we evaluated the
performance of a Masked Autoencoder to establish a benchmark that would
serve as a reference model. During this phase, the autoencoder was trained
to test its ability to extract relevant features from data by reconstructing
the input signals. Subsequently, during the fine-tuning phase, the last part
of the network was slightly modified to adapt it to the final HR estimation
task, using the knowledge gained in the previous phase.

Next, we focused on the PULSE model, which currently represents the state
of the art for HR estimation. To evaluate the effectiveness of our approach,
we re-implemented the PULSE model as a baseline, introducing some changes
to the hyperparameters to improve its robustness and to reduce computa-
tional complexity. In particular, the dilated convolutions used in the original

35

4 – Methods

version are replaced by standard convolutions. This changes allow the model
to maintain high performance by reducing the computational load, without
compromising the model’s ability to extract relevant features from PPG sig-
nals. In this case, during pre-training phase, the model is trained for the
input signal reconstruction task on a large combined dataset including WE-
SAD and West Attica University data, using an autoencoder-like framework
inspired by the U-Net model [27]. The autoencoder is based on the PULSE
model architecture, without the classification head, and employs multi-head
attention mechanisms to improve feature extraction. We explore DA tech-
niques to significantly increase also the pre-training data, enhancing model’s
robustness to different and noisy inputs. After pre-training, the model is
fine-tuned for HR estimation. During this phase, the autoencoder decoder is
removed and replaced by a classification head consisting of two linear layers.
The model is then fine-tuned using the PPG-DaLiA dataset. Finally, a post-
processing step is introduced to smooth out the prediction avoiding random
peaks.

4.1 Data Preprocessing

To prepare the PPG signal and acceleration data, we segment the raw data
into contiguous time windows. Specifically, raw data is divided into sliding
windows of 8-seconds each and 2-seconds shift and, based on the training
phase, the label is calculated as the average of the signal peaks in each time
window. In addition to time domain analysis, where signal characteristics
are extracted directly from sampled values, data can also be analysed in the
frequency domain. Working in the frequency domain, PPG signals are di-
vided into time windows, and Fast Fourier Transform (FFT) is applied to
convert the data from the time domain to the frequency domain, generating a
spectrogram showing the energy distributed between the different frequencies
over time. This approach allows the heart rate to be estimated by identifying
peaks in the frequencies associated with the heart rate, generally between 0
and 4 Hz. Figure 4.1 represents the process described with a visual example.
To improve the representation of frequencies in relation to human percep-
tion, the mel scale is used, which transforms frequencies so that differences
between low frequencies are more perceptible than high ones. We perform
the following mathematical operation to convert frequencies to the mel scale:

mel(f) =

f, if f ≤ 1000 Hz

2595 × log
(

1 + f
700

)

, if f > 1000 Hz

36

4.1 – Data Preprocessing

For the analysis, the MelSpectrogram from the TorchAudio library was used,
configured to optimise the extraction of frequency characteristics from PPG
signals in the following way:

1 transform = torchaudio . transforms . MelSpectrogram (

2 sample_rate =32,

3 n_fft =510 ,

4 win_length =32,

5 hop_length =1,

6 center =True ,

7 pad_mode =" reflect ",

8 power =2.0 ,

9 normalized =True ,

10 f_min =0,

11 f_max =4,

12 n_mels =64

13)

4.1.1 Z-Score Normalization

Normalization is a crucial step in pre-processing as it helps to mitigate the
influence of outliers and ensures that the data is on a the same scale. We
normalize the windows using per-channel z-score:

zi =
xi − µtrain,i

Ãtrain,i

,

where xi denotes the samples of channel i, while µtrain,i and Ãtrain,i represent
the mean and standard deviation values, respectively, estimated on the train-
ing set. In particular, in cases where a pre-training phase is included, the
mean and standard deviation are computed considering all the datasets that
constitute the pre-training dataset. These values are then used to normalise
the entire fine-tuning dataset. In the absence of pre-training, the mean and
standard deviation are computed on the target dataset only. These values are
then used to normalise the validation and test datasets, ensuring consistency
across all phases of the model’s development.

4.1.2 Data Augmentation Techniques

Data augmentation (DA) has become an essential technique in the field of
biomedical signal processing, especially to enhance deep learning models

37

4 – Methods

Figure 4.1: Spectogram from a raw signal using FFT on overlapping win-
dowed segments [26].

without increasing algorithm’s complexity. In this thesis, we investigate the
use of data augmentation strategies to improve the performance and robust-
ness of models trained on biomedical PPG signals for heart rate monitoring.
The main goal of DA is to reduce the risk of over-fitting and improve the
generalization capabilities of deep learning models. In fact, the performance
of deep neural networks tends to improve as the amount of data increases.
However, collecting “real-world” data for PPG-based heart rate monitoring
is expensive, primarily because it requires the use of a medical-grade ECG

38

4.1 – Data Preprocessing

device to accurately measure the ground truth heart rate.

Data augmentation represents a widely employed data-driven strategy that
involves creating altered versions of the original dataset to increase the size
of the training set. Specifically, new data points, denoted as x̂i, are generated
from the original data points xi by introducing noise or implementing scale,
shape, or temporal transformations. Burrello et al. [20] propose four classical
DA techniques designed for time-series data and two novel and customize
transformations, on both PPG and 3D-acceleration data. Figure 4.2 shows
an example of the 6 augmentations considered, each of which will be described
in detail below.
The classical DA transformations are jittering, scaling, magnitude warping

and time warping. These are applied to the single 8-second window and they
keep the HR label unchanged.

• Jittering involves introducing noise to the signal by adding a value
sampled from a Gaussian distribution with mean µ = 0 at each time
step t. This is mathematically represented as:

Xt = Xt + N(0, Ã) ∀t

• Scaling allows to enlarge or reduce the amplitude of the original signal.
A single value is drawn from a Gaussian distribution with mean µ = 1,
and it is used to multiply the entire input window:

X = X × N(1, Ã)

• Magnitude Warping modifies the magnitude of the input signal by
scaling the signal’s envelope with a cubic spline that interpolate points
randomly chosen from a Gaussian distribution with mean µ = 1:

X = X × CubicSpline(0...T, N(1, Ã))

• Time Warping alters the signal on its time axis. As a result, the
signal appears stretched in some areas and compressed in others. In
fact, it changes the time intervals between successive samples from the
original fixed interval 1

fs

(where fs represents the sampling frequency)
to the differences between points on a randomly generated cubic spline,
denoted as CSt − CSt−1:

X = Interp (Cumulative (CubicSpline(0 . . . T, N(1, Ã))) , X)

39

4 – Methods

Figure 4.2: Synthetic signals obtained from the application of the six DA
technique to a 8 seconds window of the PPG-DaLiA dataset [20].

Burrello et al. [20] observed also that individuals at the extremes of the Beats
Per Minute (BPM) spectrum, with very low or very high average BPM,
were often poorly tracked. This issue arises because the majority of the
training data tends to fall within a more typical BPM range. To address this
challenge, they introduce two novel data augmentation techniques which not
only help to reduce over-fitting but also expand the BPM range within the
training dataset.

40

4.1 – Data Preprocessing

• Divide_2 extend ranges the lower bound of BPM. For each input win-
dow of duration T , a continuous segment of length T/2 is randomly
selected and is then time-stretched back to the original window size (0
to T) with resampling. The BPM label corresponding to this window is
reduced by half.

• Multiply_N is designed to expand the upper limit of the BPM range.
This approach uses various up-scaling factors ranging from 1.1× to 2×,
creating a temporary augmented dataset consisting of windows of length
2T formed by concatenating two consecutive original windows. The
BPM label for these windows is calculated over the entire 2T duration.
According to the selected multiplication factor, a segment of length 1.1T
to 2T is randomly sampled from the 2Twindow. Finally, this signal is
rescaled to fit the original T -length window using linear interpolation,
with the BPM label adjusted to reflect the up-scaling.

To further improve the performance of our models, we apply DA before
feeding the data to the neural network. In particular, we implemented the
same DA transformations described above. We explore two configurations
of DA to cover different sizes of training datasets, and see how they affect
the results. Table 4.1 shows the configurations, indicating the increase in the
training set size compared to the original non-augmented dataset, the type
of data augmentation applied, and the percentage of new samples generated
by each transformation relative to the original dataset size. The notation
Multiply_[x-y, z] specifies the minimum (x), maximum (y), and step (z) of
the multiplication factors used. For instance, Multiply_[1.4-2.0, 0.6], 200%
refers to a 200% augmentation of the original dataset with synthetic data
generated by multiplying the heart rate frequency by 1.4 and 2.0.

As the table shows, the first configuration tested 8x Data Augmentation
includes all the techniques presented by Burrello et al. [20] while the second
one 11x Data Augmentation focuses only on those approaches that expand
the BPM range. These configurations were tested during both pre-tuning
and fine-tuning. All signals have been normalized with z-score normalization
before applying the transformations. Finally, the models were trained with
the augmented dataset, including both synthetically generated data and the
original data.

41

4 – Methods

Augmentation [x] Augmentation Type Percentage (%)

8x

Jittering 100%
Scaling 100%
Time Warping 100%
Magnitude Warping 100%
Divide_2 100%
Multiply_[1.4 - 2, 0.6] 200%

11x
Divide_2 100%
Multiply_[1.2 - 2, 0.1] 900%

Table 4.1: Data Augmentation configurations explored

4.2 Model Architecture

After the pre-processing step, in which the raw input signal is segmented,
normalized and various DA techniques are applied, our approach involves the
integration of SSL techniques to improve accuracy in the final HR estimation
task. A key aspect of our approach is that it is orthogonal to the specific
deep neural network selected. This means that the principles on which it
is based can be applied regardless of the type of network used. We test its
performance by applying this approach to two different models, a masked
autoencoder and PULSE, both described in detail below.

4.2.1 Masked Autoencoder

The first architecture considered in this thesis is based on Masked Autoen-
coders and allows us to establish a benchmark that would serve as a reference
model. The key concept behind the Masked Autoencoder architecture is to
mask part of the input data and train the model to reconstruct the missing
content. This is why they fall into the category of denoising autoencoders.
This architecture is particularly effective for learning general representations
of the data, as it forces the model to extract the key features and underlying
patterns of the data itself, allowing large models to be trained by reducing
redundancy in the input information.

First, the input is masked: the PPG signals are transformed into Mel-
spectrograms and divided into a regular grid of non-overlapping patches.
These patches are subsequently flattened and projected using a linear pro-
jection. A fixed sinusoidal positional embedding is added to each patch,

42

4.2 – Model Architecture

which keep information about relative position of the patches within the
spectrogram. The positional embeddings are vectors that provide the model
information about the order of the patches, thus preserving the structure
of the input during processing in the Masked Autoencoder. Then a part of
them is removed. The masking ratio determines the amount of data that is
removed. In our work, this hyper-parameter is set to 15%. The visible part
of the input is then sent to the model. Our Masked Autoencoder, like any
autoencoder, consists of:

• Encoder : receives the masked input and processes it to extract the rel-
evant features. Its goal is to create a latent representation of the signal.
Our encoder consists of Transformer Encoder blocks and it processes
the input through attention layers and multi-layer perceptron (MLP),
as shown in Figure 4.3.

• Decoder : receives the full set of encoded masks, and a set of “random-
noise” patches, i.e. patches composed by random numbers that fill the
space left by the masked patches. The decoder also consists of Trans-
former Encoder blocks and it has the task of reconstructing the original
input from the extracted features.

We utilized the following hyperparameters:

• depth = 4: The number of transformer encoder blocks in the encoder.
A higher value allows the model to learn increasingly abstract represen-
tations, but may increase the computational complexity.

• num_heads = 16: The number of heads in the MHA mechanism.
Each attention head focuses on a different part of the input, allowing
the model to consider different aspects of the several in parallel.

• embed_dim = 64: This parameter defines the size of the latent space,
in which each patch is encoded. Each patch is transformed into a vec-
tor of size 64, thus reducing the complexity of the original signal, but
retaining relevant information.

• decoder_depth = 8: The number of transformer encoder blocks in
the decoder.

• decoder_embed_dim = 64: Defines the size of the embedding in
the decoder.

43

4 – Methods

Figure 4.3: Detailed description of the architecture of our Masked Autoen-
coder for manage PPG signals in frequency domain [25].

• decoder_num_heads = 16: Similar to the num_heads parameter in
the encoder, this value represents the number of MHA heads used in the
decoder.

We used this model for the pre-training task on signal reconstruction. This

44

4.2 – Model Architecture

step allows us to train the model on large amounts of unlabelled data, ex-
ploiting the model’s ability to learn general representations of the signal,
which can then be used for the specific task of HR estimation. During the
pre-training phase, the loss function is computed using the Mean Squared
Error (MSE) metric, i.e. as the distance in pixel between the original and
reconstructed spectrogram. The loss is computed only on masked patches.
Figure 4.4 and Figure 4.5 show a graphic example of the PPG heatmap re-
construction via Masked Autoencoder.

Figure 4.4: Original PPG heatmap.

Figure 4.5: Reconstructed PPG heatmap, with 15% mask ratio.

45

4 – Methods

Once the pre-training is over, we replace the decoder from the original Masked
Autoencoder with a regression tail composed of two convolutional layers, a
pooling layer, and a final linear layer. Starting from the hidden represen-
tation created by the encoder, the regression tail can perform the final HR
estimation task. Pre-training and fine-tuning phases are described in detail
in Section 4.3, while Figure 4.6 graphically illustrates the pipeline of these
two stages. However, the results of this phase did not meet expectations

original PPG
spectrogram

Z-normalization

Patchify and masking

D
ata Pre-processing

M
asked A

utoencoder

Encoder

Decoder

Encoder

Classification Head
Unmasking

Unpatchify

original PPG
spectrogram

Z-normalization

Patchify and masking

D
ata Pre-processing

PRE-TRAINING FINE-TUNING

MSE

PPG spectrogram
reconstructed

M
odel

HR

Figure 4.6: Masked Autoencoder pre-training and fine-tuning pipelines.

46

4.2 – Model Architecture

in terms of HR estimation accuracy, highlighting the need for a different
architecture.

4.2.2 PULSE

The PULSE (Ppg and imU signaL fuSion for heart rate Estimation) model
is a state-of-the-art deep neural network for heart rate estimation that uses
PPG signals and tri-axial motion data from accelerometers, presented by
Kasnesis et al. [23]. PULSE integrates temporal convolutions and a feature-
level Multi-Head Cross-Attention (MHCA) module to improve accuracy and
ensure greater interpretability of results. The network architecture (Fig-
ure 4.7) consists of three 1D convolutional blocks of increasing channel num-
ber (32, 48, 64). Each block contains three consecutive dilated convolutions
with a dilation rate of 2, allowing the model to capture short-term temporal
variations of both PPG and 3-axis acceleration changes. The outputs from
each block are downsampled using average pooling layers with predefined
pooling sizes. After the convolutional blocks, the generated feature maps are
fed into the MHCA module, where the PPG signal acts as a query vector (
Q) and the features extracted from the three-axis accelerometers act as key
(K) and value (V) vectors, as shown in Figure 4.8. This approach allows
the model to better capture dependencies between physiological and motion
data and reduce over-fitting. Finally, the output of the attention module is
normalized and passed through two dense layers, the last of which produces
the estimated HR.

In our implementation of the PULSE model, we utilized the following hyper-
parameters:

• conv_blocks=3: The model consists of three convolutional blocks.

• conv_layers=3: Each convolutional block consists of 3 layers.

• in_channels=[1, 32, 48]: The input channels for each convolutional
block. The blocks increase the number of channels allowing more sophis-
ticated feature extraction as the data progresses through the network.

• out_channels=[32, 48, 64]: The output channels for each convolu-
tional block. These values indicate how the feature maps are expanded
as they move through the network, with the last block producing 64
output channels.

47

4 – Methods

Figure 4.7: PULSE network architecture [23].

Figure 4.8: Multi-head cross-attention module applied to PPG and 3axial
accelerometer feature maps. The PPG embedding acts as a Query tensor,
while the 3-axial accelerometer embeddings are Key and Value tensors [23].

48

4.2 – Model Architecture

• padding=(0,4): Padding of (0,4) is applied to maintain the spatial di-
mensions of the feature maps after convolution, ensuring that the output
dimensions are consistent throughout the network.

• dropout=[0.5, 0.5, 0.5]: A dropout rate of 0.5 is applied across all
convolutional blocks to help in preventing overfitting.

• pooling_size=[(1,4), (1,2), (1,2)]: Average-pooling is applied after
each convolutional block with sizes (1,4), (1,2), and (1,2) respectively.
This reduces the dimensionality of the feature maps, while preserving
the most important features.

• heads=4: Number of parallel attention heads used in the attention
mechanism.

• dim=16: The dimension of the attention mechanism.

• dense_out=32: The first fully connected layer has an output size of
32.

• ppg_channels=1: The model processes a one-channel PPG signal.

We modify the original architecture by changing:

• kernel_size=(1,9): This represents the size of the filter applied during
convolution.

• dilation=1: Convolutional filters are applied to adjacent elements with-
out skipping any, resulting in a standard convolution.

The original model utilizes a kernel size of (1,5) with a dilation of 2. This
choice is due to the fact that, since dilation is set to 1, our model is performing
standard convolutions that allow to concentrate on more localized features
maintaining a comparable inference latency. This modification forms the first
key contribution of this project, as it leads to improve heart rate estimation
performance while maintaining efficiency.

4.2.3 Pre-training architectures

In order to consider a self-supervised pre-training step, we need to modify
the deep learning architecture that we chose to validate our approach, i.e.
PULSE, and restructure it in a way that can enable its pre-training on a

49

4 – Methods

huge amount of unlabelled data. We take inspiration from the autoencoder
architecture, which compresses input data into a lower-dimensional represen-
tation (encoding), called latent space, and then reconstructs the input from
this encoding. Two different autoencoder architectures were implemented,
both inspired by the U-Net model [27], which presents a similar structure,
consisting of an encoder and a decoder, both implemented using multiple
convolutional layers, dropouts for regularisation, and MHA mechanisms to
improve feature extraction. The main differences between the two architec-
tures lie in the number of convolutional blocks used and their complexity, as
described below.

Light Autoencoder Architecture

In the Light Autoencoder Architecture, the encoder consists of PULSE model
without the classification head, as shown in Figure 4.9.

ReLU Conv. Block
(32 channels)

Conv. Block
(48 channels)

Conv. Block
(64 channels)

Cross-Attention
(h:4, d:16)

Layer Normalization

Dense 1 (32 neurons)

Dense 2 (1 neuron)HR

1D Conv3
(filter:1x9,
dilation:1)

Avg pooling

Dropout: 0.5

a) Our PULSE b) PULSE-autoencoder (light)

1D Conv3
(filter:1x9,
dilation:1)

ReLU

1D Conv3
(filter:1x9,
dilation:1)

ReLU

Conv. Block
(32 channels)

Conv. Block
(48 channels)

Conv. Block
(64 channels)

Cross-Attention
(h:4, d:32)

Layer Normalization Self-Attention
(h:4, d:32)

Layer Normalization

Encoder Decoder

skip
connection

Transp. Conv.
(48 channels)

Transp. Conv
(32 channels)

Transp. Conv.
(1 channel)

Figure 4.9: Architecture of light autoencoder based on PULSE for signal
reconstruction pre-training task, compared to our PULSE architecture.

As in PULSE model, the input signal is processed using three convolutional

50

4.3 – Self-supervised learning

blocks with increasing channels (i.e. 32, 48 and 64). Afterward, the produced
feature maps are fed to the MHCA module, which helps to catch dependen-
cies between the PPG and accelerometer data. The attention output is then
normalized with a normalization layer, obtaining our latent space. The de-
coder is designed to reconstruct the original signals from latent space and for
this purpose it mirrors the structure of the encoder. Similar to the encoder,
the decoder also employs multi-headed attention mechanisms. In this case,
however, the input tensor is correlated with itself. Afterward, transposed
convolutional blocks attempts to reconstruct the spatial dimensions of the
input. Inspired by U-net [27] architecture, two skip-connections have been
added: after each up-sampling step, features from the corresponding block
of the encoder are concatenated. As a result, the first two convolutional
steps of the decoder path consist of an upsampling of the feature map that
doubles the number of feature channels, as they consider a concatenation
with the corresponding feature map from the contracting path. This skip-
connection approach helps in retaining the spatial information which might
get lost during down-sampling.

Heavy Autoencoder Architecture

Next, we implemented a more complex and deeper version compared to the
Light one. This architecture uses a higher number of convolutional blocks
in the encoder, allowing a more detailed and richer representation of the
signal features. Instead of three blocks, the Heavy architecture uses four
convolutional blocks, with increasing number of channels (i.e. 32, 48, 64 and
80), as shown in Figure 4.10. This increase in complexity allows the encoder
to capture a wider range of patterns in the data, improving the quality of the
latent representation. Also in this case, the decoder mirrors the structure of
the encoder to reconstruct the original signal. Skip-connections play an even
more crucial role in this version, helping to maintain high spatial resolution
in the reconstruction stages.

4.3 Self-supervised learning

Self-supervised learning (SSL) is a machine learning approach that helps
models learn from the information contained in the data themselves, without
the need for labels and it is useful when annotated data is scarce or difficult
to obtain. SSL has emerged as a dominant paradigm because of its ability
to learn from huge amounts of unlabelled data. Initially, a pretext task is

51

4 – Methods

ReLU Conv. Block
(32 channels)

Conv. Block
(48 channels)

Conv. Block
(64 channels)

Cross-Attention
(h:4, d:16)

Layer Normalization

Dense 1 (32 neurons)

Dense 2 (1 neuron)HR

1D Conv3
(filter:1x9,
dilation:1)

Avg pooling

Dropout: 0.5

a) Our PULSE b) PULSE-autoencoder (heavy)

1D Conv3
(filter:1x9,
dilation:1)

ReLU

1D Conv3
(filter:1x9,
dilation:1)

ReLU

Conv. Block
(48 channels)

Conv. Block
(64 channels)

Conv. Block
(80 channels)

Cross-Attention
(h:4, d:16)

Layer Normalization Self-Attention
(h:4, d:16)

Layer Normalization

Encoder Decoder

skip
connection

Conv. Block
(32 channels)

Transp. Conv.
(48 channels)

Transp. Conv
(32 channels)

Transp. Conv.
(1 channel)

Transp. Conv.
(64 channels)

Figure 4.10: Architecture of heavy autoencoder based on PULSE for signal
reconstruction pre-training task, compared to our PULSE architecture.

52

4.3 – Self-supervised learning

defined. This task involves generating pseudo-labels from specific properties
or transformations of the unlabeled data, without human intervention. This
phase is also called pre-training. After the model is trained on the pretext
task, it has learned useful representations from the data. These representa-
tions capture meaningful information about the data’s underlying structure,
even though the model was not explicitly given any labels during the pre-
text task. The acquired information are then fine-tuned on a downstream
task, which is the task we are truly interested in. This is why this phase
is called fine-tuning. Usually, the dataset on which the model is fine-tuned
is smaller than the one on which it has been trained, and the task is more
specific. While SSL has seen most of its success in Computer Vision [29],
Natural Language Processing [30][31], it has drawn a lot of attention also in
the Medical AI fied [32][33]. To the best of our knowledge, this is the first
effort to apply SSL to PPG-data to improve HR estimation. We use SSL
to pre-train a generic model, specifically the PULSE model, and transform
it into an autoencoder-like architecture, to compress and reconstruct input
signals. This approach forces the model to capture meaningful latent repre-
sentations. During the pre-training phase, the model learns to reconstruct
input signals by extracting the most relevant features from unlabelled data,
which allows it to recognise the underlying structures of PPG signals. Once
the pre-training phase is complete, we go back to PULSE architecture and
use the weights learnt during pre-training to initialise the encoder part of
the model. This part represents the majority of the architecture, with the
exception of the last classification layers. In this way, we exploit the rep-
resentations already learned to improve the accuracy of the HR estimation
during the fine-tuning phase. Figure 4.11 graphically illustrates the pipeline
of the entire process.

4.3.1 Pre-training

The model undergoes a pre-training phase where it is optimized for the signal
reconstruction task and a fine-tuning phase trough transfer learning for HR
estimation, described in details in Section 4.3.2. During pre-training, we use
the Mean Square Error (MSE) as the reference metric, defined as:

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2

where yi represents the true values, ŷi represents the predicted values, and
n is the number of data points. The goal of pre-training task is to minimise

53

4 – Methods

original PPG
signal

Z-normalization

Data Augmentation

D
ata Pre-processing

A
utoencoder-like architecture

MSE

O
ur PU

LSE

HR

PULSE-encoder

PULSE-decoder

PULSE-encoder

Classification Head

PPG signal
reconstructed

original PPG
signal

Z-normalization

Data Augmentation

D
ata Pre-processing

PRE-TRAINING FINE-TUNING

Figure 4.11: PULSE pre-training and fine-tuning pipelines.

MSE between the original and the reconstructed signals. Pre-training has
multiple benefits. By training the model on a generic task such as signal
reconstruction, it develops a more abstract understanding of the data, with-
out being bound to a specific task, reaching a greater generalization. This

54

4.3 – Self-supervised learning

approach improves the robustness of the model to adapt to different types
of signals. Pre-training also helps to learn the intrinsic patterns of the PPG
signal, providing the model with a solid base as it captures key informa-
tion that will be useful during fine-tuning. SSL reduces the need for large
amounts of labelled data and prepares the model for fine-tuning, where it
uses the learned representations to specialise in the heart rate estimation
task. Pre-training, therefore, not only improves the overall performance of
the model but also its ability to adapt to new data, making the model more
efficient and accurate. Figure 4.12 shows a graphic example of the PPG
signal reconstructed via autoencoder.

(a) Original PPG signal.

(b) Reconstructed PPG signal.

Figure 4.12: PPG signal reconstruction example.

4.3.2 Fine-tuning

Once the model has learned general representation of PPG data during pre-
training, we exploit these during the fine-tuning, where the model learns
to predict the hearth rate of each time window. In the fine-tuning phase,
the decoder is removed and the classification head, composed of two linear

55

4 – Methods

layers, for HR estimation is added to reconstruct the initial PULSE model.
The pre-trained weights learned in the previous phase are used to initialize
the layers shared between the two architectures, i.e. the layers belonging to
the PULSE-autoencoder part of the architecture. We use the Mean Absolute
Error as the reference metric, defined as the differences between the predicted
HR and the true value from the dataset:

MAE = |HRtrue − HRpred|

A lower MAE indicates that the model is better at predicting targets. To en-
sure a robust and sufficiently generic model, we validated all models according
to the Leave-One-Session-Out (LOSO) cross-validation protocol proposed in
[23]. LOSO allows to test the model on sessions completely independent of
those used for training, simulating real scenarios where the model must adapt
to new subjects not previously seen. The LOSO protocol consists of divid-
ing the dataset into distinct sessions, each representing a specific subject or
condition. At each iteration, one session is dropped from the training set
and used as the test set. This process is repeated until each session has been
used once as a test set.

4.4 Post-processing

The last component of our methodology is post-processing, which we apply
directly on the output of PULSE model. This step is independent from the
others and is related to the need to deal with the unpredictable errors that
data-driven models may generate, especially when the processed inputs differ
significantly from those used during the training phase. As described in [22],
during continuous heart rate monitoring, it is reasonable to implement a
simple filtering mechanism on the outputs. Indeed, we can assume that a
prediction that deviates significantly from previous ones represents a model
error. The post-processing methods clips output values in case the prediction
is more or less 10% of the averaged 10 last estimated values. Specifically, the
latest PULSE prediction HRn is compared with the average of the previous
N, En,N = E[HRn−1,..,HRn−N]. If the difference between these two values
is larger than a threshold Pth, the estimate is clipped to HRn = En,N ± Pth,
with N = 10 and Pth =En,N /10, identical for all patients.

56

Chapter 5

Results

5.1 Datasets

In this project, three different datasets have been used to train and test the
models previously described: PPG-DaLiA [6], WESAD [7] and an additional
private dataset provided by West Attica University. Every sample is com-
prised of one-channel PPG (sampling rate 64Hz) and tri-axial accelerometer
(sampling rate 32Hz), used to compensate motion artefacts. It is common
practice in heart rate tracking via PPG signals to use a sliding window ap-
proach characterized by 8 seconds length window with 2 seconds shift, as
described in Section 4.1. This means that all data signal is segmented with
this sliding window, and the goal is to determine the heart rate on each
8-second window segment. In this project only PPG-DaLiA has been used
for HR estimation, since it is the only dataset that provides labels extracted
from the ECG-signal that can be used as HR ground truth. On the other
hand, WESAD dataset and the data provided by West Attica University
dataset do not have labels that represent HR ground truth for the 8-second
segments. This is why they were used for the pretraining task. All datasets
are described in detail in the following paragraphs.

5.1.1 PPG-DaLiA

PPG-DaLiA is a large dataset with a wider range of activities performed
under natural and close to real-life conditions used for motion compensation
and HR estimation. The dataset includes 15 subjects, eight female and seven
males, aged 21–55 years, who were asked to perform 8 everyday activities
(walking, driving, walking upstairs/downstairs, playing table soccer, eating,

57

5 – Results

working, cycling). These activities are also included as extra labels for human
activity recognition. The dataset was gathered using an E42 [34] wrist-worn
device placed on the subjects’ nondominant wrist, capturing one-channel
PPG (at a 64Hz sampling rate), tri-axial accelerometer (at a 32Hz sampling
rate), Electrodermal Activity (EDA) (at a 4Hz sampling rate), and body
temperature (at a 4Hz sampling rate) signals. Simultaneously, the subjects
wore a smart belt on their chest to collect ground truth ECG labels. The
ground truth heart rate was calculated as the average instantaneous heart
rate within each 8-second window. This dataset has approximately two-hour
recording sessions per subject, that corresponds to 64,697 samples in total
after segmentation (8-second window with 2-second shift).

5.1.2 WESAD

WESAD is a multimodal dataset for wearable stress and affect detection.
Data collection was conducted using two wearable devices: a wrist-worn de-
vice equipped with sensors for PPG, accelerometer, electrodermal activity,
and body temperature, and a chest-worn device equipped with sensors for
ECG, accelerometer, respiration, and body temperature. The primary goal
behind this dataset was to collect a wide amount of data to identify and
differentiate various affective states, such as neutral, stress, and amusement.
As a result, WESAD mainly consists of data recorded during sedentary ac-
tivities. PPG and accelerometers are sampled at 32Hz while ECG signal
at 700Hz. Unlike typical PPG datasets, the labels in WESAD do not di-
rectly correspond to heart rate values; instead, they are discrete numbers
representing specific states (e.g., 0 = not defined / transient, 1 = baseline,
2 = stress, 3 = amusement, 4 = meditation...). It is possible to easily ex-
tract the HR value from the ECG signals, but this step is not necessary as
this dataset will only be used for an unsupervised task. The data collection
involved 15 participants, aged between 24 and 35 years, each contributing
approximately 100 minutes of data, that corresponds to 43,385 samples in
total after segmentation (8-second window with 2-second shift).

5.1.3 Dataset from West Attica University

This dataset has been collected by West Attica University. The data were
acquired using the Empatica E4 device, a wearable wristband that allows
monitoring physiological parameters, including the PPG and accelerometer
signal. Data collection was carried out on a group of healthy subjects with

58

5.2 – Experimental Set-up

no diagnosed heart disease. During the collection process, the participants
were mainly in a resting condition. This dataset consists of 449,544 samples
in total after segmentation (8-second window with 2-second shift).

5.2 Experimental Set-up

We used Python 3.7 and PyTorch framework to design and train the neural
network. All the datasets are downsapled to 32 Hz, using input windows of
dimension 4 × 256, normalized with a per-channel z-score normalization, as
described in Section 4.1. We used the pretraining and fine-tuning protocols
described in the previous chapter, measuring accuracy of our models through
the Mean Absolute Error (MAE). Finally, we applied the post-processing
method outlined in Section 4.4, where output values are clipped if the pre-
diction deviates by more than 10% from the average of the last 10 estimated
values.

We selected Adam [35] as network optimizer, having the following hyperpa-
rameters:

• During pretraining: learning rat equal to 0.001, ´1:0.9, ´2: 0.95, and ϵ:
1 × 10−8. The learning rate is adjusted using a half-cycle schedule after
the warm-up phase, ensuring a smooth decay of the learning rate over
the remaining epochs.

• During fine-tuning: learning rate equal to 0.0005,´1: 0.9, ´2: 0.999, ϵ:
1 × 10−8.

The pre-training is performed on a large combined dataset including WE-
SAD and West Attica University data, with a total of over 490,000 samples.
For the Masked autoencoder pre-training, the batch-size is set to 128 and
the pre-training loop consists of 200 epochs but to prevent over-fitting this
number represents an upper bound, as an early stop with 20 epochs patience
occurs when the loss starts to increase or no longer decreases consistently. In-
stead, for PULSE-based autoencoder pre-training the batch-size is set to 512
and the pre-training loop consists of 500 epochs with 50 epochs patience. In
both cases, we save model parameters as soon as a new minimum of the loss
function is found. Once the pre-training phase is complete, the stored check-
points are used as the starting point for the heart rate estimation task. The
fine-tuning is performed on the PPG-DaLiA dataset. We validated all mod-
els according to the Leave-One-Session-Out (LOSO) cross-validation protocol

59

5 – Results

proposed in [23], where the 15 subjects are divided into four data folds; 3 are
used as the training set, while the remaining one is divided to form the test
set (1 subject) and the validation set. For HR estimation through Masked
autoencoder architecture the batch-size is set to 128 and the training cycle
for each patient consists of 200 fine-tuning epochs, with an early stop on the
validation fix to 20 epochs. The batch-size for PULSE heart rate estimation
is set to 256 and the training cycle consists of 500 fine-tuning epochs, with a
patience of 150 epochs.

5.3 Masked Autoencoder results

As explained in Chapter 4, in the first part of this work we focused on a
Masked Autoencoder model, to establish a benchmark that would serve as
a reference model. According to the self-supervised learning approach, we
first pre-train the Masked Autoencoder on WESAD and West Attica Univer-
sity datasets to be able to extract good features from data by reconstructing
the input signals in frequency domain. Once the model has learned gen-
eral representation of PPG data during pre-training, we exploit these during
the fine-tuning phase, with the transfer-learning approach. The last part
of the network was slightly modified to adapt it to the final HR estimation
task where the models learns to predict the heart rates of the PPG-DaLiA
subjects.

Table 5.1: MAE Post-processing Results on PPG-DaLiA.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Mean

Masked Autoencoder 5.36 5.30 3.65 5.84 17.04 5.91 3.28 8.15 8.08 4.31 7.46 5.84 3.52 4.28 4.83 6.19
Masked Autoencoder with PT 5.21 5.38 3.50 5.93 13.63 6.82 3.22 8.42 7.92 4.05 6.94 5.91 3.45 4.17 4.76 5.95

Table 5.1 shows the results obtained using the Masked Autoencoder and its
pre-trained version for heart rate estimation on PPG-DaLiA dataset subjects.
The evaluation parameter used is the MAE, expressed in BPM, calculated
for each subject, with a final average reported in the last column. The
results show that the Masked Autoencoder without pre-training achieves an
average MAE of 6.19 BPM. There are significant differences between subjects:
for example, for S5 the error is very high (17.04 BPM), whereas for other
subjects such as S7 it is much smaller (3.28 BPM). This could suggest that
the model generalises better for some subjects than others, possibly due to

60

5.3 – Masked Autoencoder results

MA in the PPG signals or different physiological conditions. When pre-
training is performed, there is an overall reduction in the average error to
5.95 BPM. This demonstrates the effectiveness of pre-training on different
datasets, as it allows the model to learn more robust representations of the
data, which are then refined during fine-tuning for the specific task of heart
rate estimation. However, although pre-training generally reduces the error,
there are still particular cases (such as S5 and S6) where the error remains
relatively high, indicating the possibility of further improvements.

Masked autoencoder
= 6.194

Masked autoencoder PT
= 5.958

0

2

4

6

8

10

12

14

16

M
AE

Average MAE and MAE Values per Subject

Figure 5.1: Results of HR estimation through Masked autoencoder.

Figure 5.1 shows the results of HR estimation with the Masked Autoencoder
architecture through the use of a bar chart: bars represents the average MAE
BPM across all patients, while dots represent the MAE BPM of each single
patient. This visualization allows us to understand if there are critical pa-
tients, i.e. those patients that experience a MAE BPM which is too high to
be considered for real-world deployment. It is evident that pre-training has a

61

5 – Results

positive impact on the performance of the Masked Autoencoder, improving
the model’s ability to generalise to a complex task such as heart rate estima-
tion. However, even with pretraining, this model did not meet the desired
performance in HR estimation.

5.4 PULSE results

In this section, we present experimental results from various configurations of
our approach on the selected deep learning models, i.e. PULSE. We explore
the impact of several techniques on the baseline PULSE model, including
modifications to the original architecture, data augmentation, pre-training
with an autoencoder, and combinations of these methods. The aim is to
assess how each approach influences the accuracy of heart rate estimation.
We begin by examining our version of PULSE model, with standard convo-
lution instead of dilated ones, followed by the application of data augmen-
tation techniques during training to improve model performance. Next, we
investigate the effects of pretraining using an autoencoder combined with
the PULSE model. Finally, we integrate data augmentation during both
pre-training and fine-tuning. Each subsection provides a detailed analysis of
each approach and the corresponding results, highlighting its strengths and
possible limitations.

5.4.1 Baseline Model (Our PULSE)

First of all, the PULSE model described in Section 4.2.2 is replicated to ob-
tain baseline results, which are then used as a reference for comparing the
outcomes of subsequent approaches. We modify the original architecture,
presented by Kasnesis et al. [23], by changing the convolutional kernel size
from (1, 5) with dilation 2 to (1, 9) with dilation 1, switching from dilated
convolution to standard one. In fact, the larger kernel size enhances the
detection of subtle, short-term variations in PPG and accelerometer signals,
while dilated convolutions with dilation 2 may miss critical local fluctuations.
Additionally, standard convolutions reduce the over-smoothing effect of di-
lation and improve noise handling. As a result, thanks to this modification,
we have improved heart rate estimation performance while maintaining effi-
ciency. We use the LOSO training protocol described above. Table 5.2 shows
the MAE after post-processing of the HR estimate on PPG-DaLiA, together
with results reported in the original paper [23] and in Deep PPG [6] and

62

5.4 – PULSE results

Table 5.2: MAE Post-processing Results on PPG-DaLiA.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Mean

Our PULSE 3.14 2.91 1.96 4.20 7.67 2.53 1.94 7.61 6.17 2.58 3.18 5.14 1.84 2.43 2.62 3.73
PULSE [23] 3.78 3.04 2.20 4.41 6.95 3.71 2.39 8.17 6.19 2.60 3.85 5.22 1.98 3.13 2.79 4.03
Deep PPG [6] 7.73 6.74 4.03 5.90 18.51 12.88 3.91 10.87 8.79 4.03 9.22 9.35 4.29 4.37 4.17 7.65
Q-PPG [22] 3.78 3.36 2.33 4.84 9.95 4.38 2.20 5.88 7.59 2.74 4.55 5.20 2.14 2.99 3.47 4.36

Q-PPG [22] approaches. The results demonstrate that the changes made to
our version of the PULSE model allow to obtain results comparable to those
of the original model, with an improvement in performance in some subjects.
In fact,standard convolution let the model focus on more localized features
and reduce the complexity associated with capturing temporal dependencies,
thereby enhancing the model’s performance in dynamic environments.

5.4.2 Data Augmentation results

To further improve the performance of the PULSE model compared to the
baseline results, we applied the two DA configurations, described in Sec-
tion 4.1.2, to the dataset used during the training phase. Also in this case,
we use the LOSO training protocol described in 5.2. We act only on the in-
put data, keeping the model unchanged. Table 5.3 shows the post-processed
MAE for each subject in the PPG-DaLiA dataset using two DA configura-
tions increasing the training set by 8 and 11 times respectively.

Table 5.3: PULSE MAE Post-processing Results on PPG-DaLiA with Dif-
ferent DA Configurations.

Augmentation S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Mean

Our PULSE 3.14 2.91 1.96 4.20 7.67 2.53 1.94 7.61 6.17 2.58 3.18 5.14 1.84 2.43 2.62 3.73
8x 3.18 3.18 1.97 4.23 5.69 2.36 2.18 7.23 7.55 2.65 3.40 4.88 2.01 2.49 2.56 3.71
11x 3.93 3.79 2.36 5.21 4.33 2.84 2.34 6.78 6.23 3.53 3.31 3.93 2.06 2.69 3.27 3.78

The PULSE model without augmentation achieves a mean MAE of 3.73.
This is used as a benchmark to assess the effectiveness of the different DA
techniques applied subsequently. The 8x augmentation, which includes all
the techniques presented by Burrello et al. [20], shows an average MAE
of 3.71, very similar to the configuration without augmentation. This sug-
gests that the augmentation applied in this configuration does not lead to a
significant improvement in the average model performance. However, there
is a reduction in MAE for subject S5 (from 7.67 to 5.69), suggesting that
augmentation may be effective for certain subjects. The 11x augmentation,

63

5 – Results

which focuses on techniques that extend the BPM range, achieves an average
MAE of 3.78, slightly higher than the baseline model without augmentation.
However, this configuration shows the most significant improvement for S5
(4.33 MAE), suggesting that DA focused on BPM range expansion may im-
prove performance for patients with a different average BPM. On the other
hand, higher MAE on some subjects indicates that, for subjects with a HR
range already well-represented in the original data, DA is not always useful,
since it can increase the noise in the training data.

5.4.3 Pre-training results

The main objective of this step is to test whether pretraining based on sig-
nal reconstruction can improve performance during subsequent fine-tuning
by learning meaningful representations of the PPG signal. Next, we evalu-
ate the impact of DA on model accuracy. Specifically, we analyse (1) the
application of DA during pretraining only, in order to make the autoencoder
more robust to different patterns of the PPG signal, and (2) the application
of DA during both pretraining and fine-tuning with the PULSE model. This
approach allows us to understand the effectiveness of augmentation at dif-
ferent stages of the learning process and to measure its impact on the final
model accuracy. In following subsections, we present the results obtained
using the light autoencoder, which has proven to be the most effective in
terms of performance. The results of the heavy autoencoder model can be
found in the appendix.

PULSE-based Light Autoencoder

First, we use the autoencoder described above in 4.2.3 to perform the pre-
training on signal reconstruction task. Pre-training is performed using the
signals from the WESAD dataset, containing 449,544 samples, and the dataset
provided by West Attica University, with 43,385 samples, as a training set.
Once the pre-training is completed, transfer-learning is performed as de-
scribed in Section 4.3.2. Table 5.4 shows the post-processed MAE for each
subject in the PPG-DaLiA dataset after fine-tuning with transfer-learning.
The application of pre-training with the autoencoder followed by fine-tuning
with the PULSE model leads to a slight reduction in the average MAE to
3.67. Although the improvement is not significant in all cases, the results
obtained suggest that pre-training the model with an autoencoder can in-
deed improve the overall performance of the PULSE model. However, the

64

5.4 – PULSE results

Table 5.4: PULSE MAE Post-processing Results on PPG-DaLiA with
transfer-learning (TL).

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Mean

PULSE 3.14 2.91 1.96 4.20 7.67 2.53 1.94 7.61 6.17 2.58 3.18 5.14 1.84 2.43 2.62 3.73
PULSE with TL 3.08 3.67 1.91 4.18 7.28 2.61 1.83 8.23 6.27 2.30 3.22 4.94 1.76 2.29 2.56 3.67

inter-subject variability highlights the importance of further experiments to
optimise pre-training and to explore data augmentation approaches during
pre-training and fine-tuning to improve model accuracy.

PULSE-based Light Autoencoder with Augmentation on Pre-training

The pre-training dataset is then further expanded using the two data aug-
mentation techniques described in Section 4.1.2. We act only on the pre-
training input data, keeping the model and the training protocol unchanged.
Table 5.5 shows the MAE results of the PULSE fine-tuned model on PPG-
DaLiA dataset, with the application of the different DA configurations during
pre-training.

Table 5.5: PULSE MAE Post-processing Results on PPG-DaLiA after
transfer-learning with different DA configurations applied during pre-training
(PT).

Augmentation S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Mean

Our PULSE 3.14 2.91 1.96 4.20 7.67 2.53 1.94 7.61 6.17 2.58 3.18 5.14 1.84 2.43 2.62 3.73
8x during PT 3.32 3.07 2.02 4.44 5.40 2.50 1.91 8.25 8.45 2.65 3.37 7.40 12.81 2.45 3.03 4.74
11x during PT 3.35 3.15 2.20 4.38 5.64 2.35 1.93 5.16 6.38 2.87 3.30 5.49 1.84 2.43 2.53 3.53

Expanding the pre-training dataset 8-times (8x augmentation), mean MAE
increased to 4.74. The application of DA brings improvements for specific
subjects such as S5 (5.40 vs. 7.67 without DA), but worsens results in other
cases such as S8 (8.25 vs. 7.61) and S13 (12.81 vs. 1.84). This indicates that
the addition of synthetic data introduced variability that made pre-training
less effective for some data patterns. By expanding the pre-training dataset
11-times with techniques that expand the BPM range, the average MAE
drops to 3.53. Significant improvements are shown in problematic subjects
such as S5 and S8, demonstrating that more synthetic data can actually
improve model learning by providing a more varied and robust pre-training
set. However, we have to underline that this improvements are not uniform
across all subjects, suggesting a sensitivity to DA effects.

65

5 – Results

PULSE-based Light Autoencoder with Data Augmentation on both
Pre-training and Fine-tuning

In the last step, we evaluate the effect of applying data augmentation not
only during pre-training but also in the fine-tuning of the PULSE model. The
same two augmentation techniques described above are applied to further
expand the fine-tuning data set. Table 5.6 shows the post-processed MAE
for each subject in the PPG-DaLiA dataset using two DA configurations
increasing the training set of both pre-training and fine-tuning by 8 and 11
times respectively.

Table 5.6: PULSE MAE Post-processing Results on PPG-DaLiA after
transfer-learning with different DA configurations applied both during pre-
training and fine-tuning.

Augmentation S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Mean

Our PULSE 3.14 2.91 1.96 4.20 7.67 2.53 1.94 7.61 6.17 2.58 3.18 5.14 1.84 2.43 2.62 3.73
8x 3.23 3.30 8.23 9.57 5.16 2.45 1.96 7.21 9.25 2.77 2.99 3.76 1.91 2.78 2.77 4.48
11x 3.58 3.38 2.17 4.52 3.76 2.53 2.17 7.60 7.66 2.89 3.82 5.36 2.18 2.70 3.11 3.83

The expansion of both pre-training and fine-tuning dataset 8-times (8x aug-
mentation) resulted in an average MAE of 4.48, higher than baseline. Al-
though in some subjects the MAE remains stable or slightly better than
baseline, subjects such as S3, S4 and S9 show a significant worsening in per-
formance. This may be due to the fact that the huge augmentation of the
dataset introduced variability that the model was unable to handle effectively
during fine-tuning. Additionally, augmentation applied to the fine-tuning
dataset requires modifying the labels, which can lead to poor generalization
to unseen data. In the configuration with an 11x expansion of the dataset, the
average MAE drops to 3.83, an improvement over the 8x configuration but
still slightly worse than the baseline. This suggests that while increasing the
dataset size through augmentation can provide more diverse data for train-
ing, the process of label modification introduces challenges in maintaining
the model’s ability to generalize effectively to new, unseen samples.

5.5 Discussion

The overall results of the experiments conducted highlight several key as-
pects. Our approach prove to be effective regardless of the model used,

66

5.5 – Discussion

demonstrating the success of SSL pre-training and data augmentation tech-
niques in improving performance in HR estimation from PPG signals. We
started with the Masked Autoencoder architecture. However, we obtained
unsatisfactory results with respect to HR estimation, especially in the pres-
ence of MA. Nevertheless, pre-training on this architecture proved to be
effective, allowing the model to learn meaningful representations of the PPG
signal. This had a positive impact in the fine-tuning phase, demonstrating
that even if the Masked Autoencoder architecture is not the most suitable
for heart rate estimation, pre-training still plays a key role in optimising per-
formance. In fact, introducing pretraining allows the MAE to reduce from
6.19 to 5.96, improving performance by 3.8%.

Afterwards, we moved to the PULSE architecture, i.e. the state of the art
for HR estimation on PPG-DaLiA. Switching to PULSE confirmed the effec-
tiveness of our pre-training and data augmentation strategies, which further
improved the performance of the model. We restructure PULSE into an
autoencoder-like framework, testing two different architecture, the light and
the heavy autoencoder. Results shows that the performance improvement
of HR estimation from PPG signals depends on the architecture used and
the stage at which the augmentation techniques are applied. The results of
the heavy autoencoder model can be found in the appendix. As highlighted
by the charts in Figure 5.2, the light autoencoder performs better than the
baseline PULSE model, with a significant improvement in performance. The
original PULSE model achieved a MAE of 4.03 BPM using dilated convolu-
tions, representing a starting point for our work. By modifying the architec-
ture and replacing the dilated convolutions with standard convolutions, we
are able to reduce the MAE to 3.73 BPM. This corresponds to an average
error reduction of approximately 7.4%. At the beginning, we only apply DA
techniques during the fine-tuning phase, without pre-training. The average
MAE do not improve significantly, remaining around 3.71 and 3.78 BPM,
depending on the DA configuration applied. This result could be due to
the fact that applying DA at this stage requires changing HR labels, which
can lead to insufficient generalisation to unseen data, making the learning
process more difficult. However, in the DA configuration that expands the
BPM range (PULSE_11x), although the MAE is slightly higher than in the
baseline model, the variance between individual subjects decreases. By in-
troducing pre-training through the light autoencoder, the finetuned PULSE
shows improved performance, achieving a MAE of 3.67 BPM. Pre-training
ensures that the model can learn broader features without compromising its

67

5 – Results

PULSE
= 3.73

PULSE_8x
= 3.71

PULSE_11x
= 3.78

PT
= 3.67

8x_PT
= 4.74

11x_PT
= 3.53

8x_PT_FT
= 4.48

11x_PT_FT
= 3.83

0

2

4

6

8

10

12

M
AE

Average MAE and MAE Values per Subject

Figure 5.2: Results of light autoencoder based on PULSE.

ability to generalize to unseen data. While this improvement is modest, it
underscores the potential of SSL, which could deliver even greater perfor-
mance gains with access to more pre-training data. The application of DA
techniques during pre-training further improves the results for some subjects,
generating synthetic data that made the model more robust to variations not
present in the original dataset. We must underline that DA improvements de-
pend on the kind of DA configuration applied. When the pre-training dataset
is increased by a factor of 8 (8x_PT), using all DA techniques presented in
[20], the average MAE increases to 4.74. This suggests that the addition
of synthetic data introduce variability that make pre-training less effective
for some data patterns. On the other hand, by expanding the pre-training
set only with techniques that increase the range of BPM, the average MAE
decreases to 3.53 BPM, confirming our intuition that augmentation at this
stage further improves generalisation especially for patients with a different
average BPM. With this setup, we achieve a 12.4% MAE reduction compared
to the original PULSE model and a 5.3% compared to the modified PULSE.
This improvement is due to the larger pre-training dataset and the augmen-
tation techniques that expand the BPM range, helping to reduce overfitting

68

5.5 – Discussion

and enhance model robustness. Using Data Augmentation only during pre-
training leads to better results than applying it in both pre-training and
fine-tuning. Expanding the fine-tuning set allows more synthetic data to
be used, but this interferes with the learning of relevant features on target
dataset, leading to performance degradation.

These results highlight the effectiveness of applying augmentation techniques
to pre-training data in enhancing state-of-the-art performance, without adding
complexity and without altering HR labels. Our approach avoids potential
discrepancies between training and test data, as evidenced by the inferior re-
sults in applying augmentation to fine-tuning, when HR labels were modified
alongside augmentation.

69

70

Chapter 6

Conclusion and future
works

In this thesis, we addressed the problem of HR estimation from PPG signals,
a crucial topic for health monitoring, fitness tracking, and the management
of cardiovascular diseases. The main goal was to improve the accuracy and
robustness of HR estimation in realistic scenarios, where the presence of MA
and inter-subject variability represent significant challenges. To address these
challenges, we propose a novel approach that integrates self-supervised pre-
training and data augmentation techniques to improve the performance and
robustness of deep learning models in estimating HR from PPG signals. A
key aspect of our approach is that it is orthogonal to the chosen deep learn-
ing model: it can potentially be applied to different architectures, without
introducing additional computational complexity. In particular, the com-
bined use of pre-training and DA does not change significantly the inference
latency, making it suitable for implementation on low-power edge devices
such as smartwatches. To validate our approach, we chose to apply it to the
PULSE model, which represents the state-of-the-art for HR estimation from
PPG signals. Initially, we replaced the dilated convolutions in the original
architecture with standard convolutions, increasing the size of the filters and
eliminating dilation. While this architectural modification changed the com-
putational complexity of our model, it allowed to focus on more localised
features and improved accuracy. Next, we introduced a pre-training phase,
restructuring the PULSE model into an autoencoder-like architecture, in-
spired by U-Net. This phase allowed the model to learn more general and
robust representations of the PPG signal, improving its ability to extract

71

6 – Conclusion and future works

relevant patterns even in the presence of MA or signal variability. In addi-
tion, we applied DA techniques that proved to be effective in increasing the
performance of the model, especially for subjects with atypical BPM ranges.
Our experiments involved the use of data from the public WESAD dataset
and a new unlabelled dataset provided by the West Attica University, creat-
ing a pre-training dataset comprising over 490,000 samples. The model was
then evaluated on the PPG-DaLiA dataset, the largest labelled dataset for
comparison with state-of-the-art models, using the LOSO protocol. These
refinements led to a 12.4% reduction in MAE on the PPG-DaLiA dataset,
achieving a final MAE of 3.53 BPM compared to the best state-of-the-art
competitor, original PULSE, which achieves a MAE of 4.03 BPM. Notably,
our approach significantly improved performance for critical patients, making
it more applicable for real-world use in wearable health monitoring. In con-
clusion, our proposed approach, independent of the starting model, proved
to be a key element in improving heart rate estimation, and the PULSE ar-
chitecture proved to be the most suitable to fully exploit these techniques,
representing a new benchmark in HR estimation task from PPG signals. Be-
cause it is orthogonal to the chosen model, our approach can potentially be
applied to other architectures, paving the way for further research to make
non-invasive HR monitoring increasingly accurate and reliable.

Despite the promising results, there are still some directions that can be
explored for further improvements:

• Expansion of the pre-training dataset: The inclusion of more unlabelled
data, e.g. from subjects with different demographic characteristics and
physical conditions, could help the model to generalise even better.

• Research on the optimal DA strategies: Exploring new DA techniques,
for example based on generative adversarial models (GANs) or the use of
more sophisticated transformations, could lead to further improvements
in performance.

• Refinement of self-supervised learning objectives: Developing more so-
phisticated self-supervised learning tasks, such as masking strategies,
may help the model’s ability to learn more abstract representations, fur-
ther enhancing HR estimation performances.

• Application to other architectures: Since our approach is orthogonal
to the model used, it might be interesting to apply it to different deep

72

6 – Conclusion and future works

learning architectures to assess how the observed benefits extend to other
models.

73

74

Appendix

PULSE-based Heavy Autoencoder

In this section, we report the results obtained using the heavy autoencoder,
a more complex architecture than the light autoencoder described in Section
4.2.3. All experiments conducted with the light model, presented in Section
5.4.3, were also replicated using the heavy autoencoder, although the results
obtained were not as successful. The heavy autoencoder was tested under
the same conditions, including the following scenarios:

• Pre-training of the heavy autoencoder, followed by PULSE fine-tuning
on the heart rate estimation task.

• Pre-training of the heavy autoencoder with 8x and 11x Data Augmen-
tation combinations, followed by fine-tuning on PULSE.

• Pre-training of the heavy autoencoder with DA, followed by fine-tuning
with DA combinations applied to further expand the fine-tuning dataset.

The results show that despite the increase in model complexity and the use
of Data Augmentation, the heavy autoencoder failed to achieve the same
performance as the light autoencoder. The larger number of parameters and
increased model depth seem to have introduced too much variability, leading
to a deterioration in overall performance. Below, Table 6.1 shows the results
in terms of MAE for the different configurations tested. The results confirm
that the heavy autoencoder architecture fails to outperform the light au-
toencoder, despite the increased complexity and the attempt to improve the
model through DA. Although there were some improvements in problematic
subjects with the application of DA only during pre-training, the addition of
DA during fine-tuning led to an overall deterioration in performance. This
suggests that the increased complexity of the autoencoder heavy and the
introduction of synthetic data during fine-tuning may overload the model,
making it less efficient in handling variability in real data.

75

6 – Conclusion and future works

Table 6.1: PULSE MAE Post-processing Results on PPG-DaLiA pre-trained
with heavy autoencoder.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Mean

PULSE 3.14 2.91 1.96 4.20 7.67 2.53 1.94 7.61 6.17 2.58 3.18 5.14 1.84 2.43 2.62 3.73
PT 3.18 2.86 1.95 4.15 6.11 2.51 1.87 8.16 6.38 2.47 3.12 5.86 1.77 2.51 2.64 3.71
8x PT 3.11 3.05 2.00 4.05 6.44 2.63 1.89 7.62 6.73 2.53 3.21 5.14 1.78 2.42 2.86 3.70
11x PT 3.10 2.87 1.99 4.35 6.05 2.62 1.82 7.74 6.14 2.43 3.63 5.39 1.81 2.44 2.87 3.69
8x PT + 8x FT 3.32 3.43 1.94 4.52 6.84 2.67 1.84 7.12 8.23 2.90 2.23 4.28 1.92 2.38 2.93 3.84
11x PT + 11x FT 3.60 3.74 2.13 4.67 3.67 2.64 2.21 7.87 8.49 3.03 3.15 5.04 1.97 2.53 3.02 3.85

PULSE
= 3.73

PULSE_8x
= 3.71

PULSE_11x
= 3.78

PT
= 3.71

8x_PT
= 3.70

11x_PT
= 3.69

8x_PT_FT
= 3.84

11x_PT_FT
= 3.85

0

1

2

3

4

5

6

7

8

M
AE

Average MAE and MAE Values per Subject

Figure 6.1: Results of heavy autoencoder based on PULSE.

76

Bibliography

[1] Avram, Robert, et al. "Real-world heart rate norms in the Health eHeart
study." NPJ digital medicine 2.1 (2019): 58.

[2] Apple. Apple Watch Series. https://www.apple.com/lae/watch/.

[3] Fitbit. Fitbit Charge 4. https://www.fitbit.com/global/us/

products/trackers/charge4.

[4] Allen, John. "Photoplethysmography and its application in clinical phys-
iological measurement." Physiological measurement 28.3 (2007): R1.

[5] Castaneda, Denisse, et al. "A review on wearable photoplethysmography
sensors and their potential future applications in health care." Interna-
tional journal of biosensors & bioelectronics 4.4 (2018): 195.

[6] Reiss, Attila, et al. "Deep PPG: Large-scale heart rate estimation with
convolutional neural networks." Sensors 19.14 (2019): 3079.

[7] Schmidt, Philip, et al. "Introducing wesad, a multimodal dataset for wear-
able stress and affect detection." Proceedings of the 20th ACM interna-
tional conference on multimodal interaction. 2018.

[8] Avram, Robert, et al. "Real-world heart rate norms in the Health eHeart
study." NPJ digital medicine 2.1 (2019): 58.

[9] Heo, Seongsil, Sunyoung Kwon, and Jaekoo Lee. "Stress detection with
single PPG sensor by orchestrating multiple denoising and peak-detecting
methods." IEEE Access 9 (2021): 47777-47785.

[10] Ye, Yalan, et al. "Combining nonlinear adaptive filtering and signal de-
composition for motion artifact removal in wearable photoplethysmogra-
phy." IEEE Sensors Journal 16.19 (2016): 7133-7141.

[11] Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun. "An empirical evalua-
tion of generic convolutional and recurrent networks for sequence model-
ing." arXiv preprint arXiv:1803.01271 (2018).

[12] Bank, Dor, Noam Koenigstein, and Raja Giryes. "Autoencoders." Ma-
chine learning for data science handbook: data mining and knowledge
discovery handbook (2023): 353-374.

77

Bibliography

[13] Vaswani, A. "Attention is all you need." Advances in Neural Information
Processing Systems (2017).

[14] Huang, Nicholas, and Nandakumar Selvaraj. "Robust ppg-based ambula-
tory heart rate tracking algorithm." 2020 42nd Annual International Con-
ference of the IEEE Engineering in Medicine & Biology Society (EMBC).
IEEE, 2020.

[15] Nabavi, Seyedfakhreddin, and Sharmistha Bhadra. "A robust fusion
method for motion artifacts reduction in photoplethysmography signal."
IEEE Transactions on Instrumentation and Measurement 69.12 (2020):
9599-9608.

[16] Zhang, Zhilin, Zhouyue Pi, and Benyuan Liu. "TROIKA: A general
framework for heart rate monitoring using wrist-type photoplethysmo-
graphic signals during intensive physical exercise." IEEE Transactions on
biomedical engineering 62.2 (2014): 522-531.

[17] Zhang, Zhilin. "Heart rate monitoring from wrist-type photoplethysmo-
graphic (PPG) signals during intensive physical exercise." 2014 IEEE
global conference on signal and information processing (GlobalSIP).
IEEE, 2014.

[18] Lee, Boreom, et al. "Improved elimination of motion artifacts from a pho-
toplethysmographic signal using a Kalman smoother with simultaneous
accelerometry." Physiological measurement 31.12 (2010): 1585.

[19] Zhang, Zhilin. "Photoplethysmography-based heart rate monitoring in
physical activities via joint sparse spectrum reconstruction." IEEE trans-
actions on biomedical engineering 62.8 (2015): 1902-1910.

[20] Burrello, Alessio, et al. "Improving ppg-based heart-rate monitoring with
synthetically generated data." 2022 IEEE Biomedical Circuits and Sys-
tems Conference (BioCAS). IEEE, 2022.

[21] Kumar, Sanjeev, et al. "A wristwatch-based wireless sensor platform for
IoT health monitoring applications." Sensors 20.6 (2020): 1675.

[22] Burrello, Alessio, et al. "Q-ppg: Energy-efficient ppg-based heart rate
monitoring on wearable devices." IEEE Transactions on Biomedical Cir-
cuits and Systems 15.6 (2021): 1196-1209.

[23] Kasnesis, Panagiotis, et al. "Feature-Level Cross-Attentional PPG and
Motion Signal Fusion for Heart Rate Estimation." 2023 IEEE 47th Annual
Computers, Software, and Applications Conference (COMPSAC). IEEE,
2023.

[24] Kasnesis, Panagiotis, et al. "Replacing Attention with Modality-wise
Convolution for Energy-Efficient PPG-based Heart Rate Estimation using
Knowledge Distillation." Authorea Preprints (2023).

78

Bibliography

[25] Zhu, Lingxuan, et al. "Spectralmae: Spectral masked autoencoder for
hyperspectral remote sensing image reconstruction." Sensors 23.7 (2023):
3728.

[26] Jeon, Hohyub, et al. "Area-efficient short-time fourier transform proces-
sor for time–frequency analysis of non-stationary signals." Applied Sci-
ences 10.20 (2020): 7208.

[27] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Con-
volutional networks for biomedical image segmentation." Medical image
computing and computer-assisted intervention–MICCAI 2015: 18th inter-
national conference, Munich, Germany, October 5-9, 2015, proceedings,
part III 18. Springer International Publishing, 2015.

[28] Del Pup, Federico, and Manfredo Atzori. "Applications of self-supervised
learning to biomedical signals: A survey." IEEE Access (2023).

[29] Jaiswal, Ashish, et al. "A survey on contrastive self-supervised learning."
Technologies 9.1 (2020): 2.

[30] Baevski, Alexei, et al. "Data2vec: A general framework for self-
supervised learning in speech, vision and language." International Con-
ference on Machine Learning. PMLR, 2022.

[31] Baevski, Alexei, et al. "wav2vec 2.0: A framework for self-supervised
learning of speech representations." Advances in neural information pro-
cessing systems 33 (2020): 12449-12460.

[32] Kostas, Demetres, Stephane Aroca-Ouellette, and Frank Rudzicz.
"BENDR: Using transformers and a contrastive self-supervised learning
task to learn from massive amounts of EEG data." Frontiers in Human
Neuroscience 15 (2021): 653659.

[33] Benfenati, Luca, et al. "BISeizuRe: BERT-Inspired Seizure Data
Representation to Improve Epilepsy Monitoring." arXiv preprint
arXiv:2406.19189 (2024).

[34] Empatica. E4 wristband 2014. https://www.empatica.com/en-eu/

research/e4/

[35] Kingma, Diederik P. "Adam: A method for stochastic optimization."
arXiv preprint arXiv:1412.6980 (2014).

79

	List of Tables
	List of Figures
	Introduction
	Background
	HR estimation
	PPG signals
	Accelerometer data

	Deep Learning approaches
	Temporal Convolutional Neural Network
	Autoencoder
	The transformer

	Related works
	Classical Approaches
	Deep Learning Approaches
	Deep-PPG
	Q-PPG
	Attention-PPG

	Methods
	Data Preprocessing
	Z-Score Normalization
	Data Augmentation Techniques

	Model Architecture
	Masked Autoencoder
	PULSE
	Pre-training architectures

	Self-supervised learning
	Pre-training
	Fine-tuning

	Post-processing
	Results
	Datasets
	PPG-DaLiA
	WESAD
	Dataset from West Attica University

	Experimental Set-up
	Masked Autoencoder results
	PULSE results
	Baseline Model (Our PULSE)
	Data Augmentation results
	Pre-training results

	Discussion
	Conclusion and future works
	Bibliography

