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Summary

Knowing the pose of a robot is essential for the successful execution of most of
the tasks it usually performs. Consequently, mobile robot localization becomes a
crucial problem to address.
Odometry is a commonly used technique for the localization of Unmanned Ground
Vehicles (UGVs). It exploits the information coming from the wheel encoders and
the inertial measurement unit (IMU) to estimate the pose of the robot. However, it
is very sensible to slippage, and, since it calculates the position by integrating the
encoders’ data, it accumulates errors, becoming more and more inaccurate in short
time. For GPS-denied zones and indoor environments, Ultra-Wideband (UWB)
seems to be a promising technique for the precise tracking of moving objects. The
huge bandwidth (>500 MHz) allows high resolution in time and consequently in
range too, leading to a positioning error of less than 30 cm.

This study aims to implement and analyze different localization algorithms that
rely only on UWB data for the estimation of the position of a rover. Three dif-
ferent algorithms for nonlinear problems have been implemented, ranging from
standard approaches to more innovative ones. Firstly, two of the mainly used
probabilistic algorithms have been developed, the Extended Kalman Filter (EKF)
and the Unscented Kalman Filter (UKF). While the EKF linearizes the state and
the measurement model at the point of current estimate, the UKF uses a set of
sigma points to better capture the nonlinearity present in the models, making it
more robust against high nonlinearity. An alternative to the more classical and
widely accepted probabilistic algorithms is represented by the combination of a
Neural Network (NN) with the EKF. The main idea is to make the EKF adaptive
by adding a NN to better estimate the error on the measurements coming from
the UWB antennas at each time step, and then use this estimation, converted
into variance, in the filter. Thus, using different variance values for the various
situations allows to better understand which measurements to trust more and
which not, potentially leading to better localization results for the robot.
A fundamental step for the performance evaluation of the different algorithms and
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the training of the NN is the creation of a new dataset. Therefore, all experimen-
tal tests were conducted using the Jackal UGV, equipped with several sensors,
including an IMU, to get information about the orientation, acceleration, and
angular velocity of the rover, the wheel encoders for the linear and angular velocity,
and a UWB antenna, to get the distances between the tag and each of the four
anchors. Also, a Vicon system was used as ground truth. The data coming from
the sensors was collected both under Line of Sight (LOS) and Non-line of Sight
(NLOS) conditions, where different obstacles in different positions were used in
order to test their effect on the radio performance.
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Chapter 1

Introduction

1.1 Objective of the thesis

The ability to precisely determine a robot’s position is essential for most of the task
it usually undertakes. Hence, mobile robot localization is an extremely important
challenge to address.
Odometry is a widely used technique for localizing Unmanned Ground Vehicles
(UGVs), however, it suffers from slippage and accumulates errors over time, becom-
ing more and more inaccurate. For GPS-denied zones and indoor environments,
Ultra-Wideband (UWB) emerges as a promising technique for the precise tracking
of moving objects. The huge bandwidth allows for fine resolution in time, and so
in range too, resulting in a positioning error of less than 30 cm.

The objective of this thesis is to develop different localization algorithms to track
the Jackal UGV in 2D, exploiting the UWB technology. The standard approach
consists of an Extended Kalman Filter (EKF) or an Unscented Kalman Filter
(UKF) using UWB data alone to estimate the position (EKFUW B and UKFUW B).
However, a commonly used strategy for enhancing localization accuracy is sensor
fusion, so both the EKF and the UKF were implemented with sensor fusion too
(EKFSF and UKFSF ). Additionally, an innovative approach was developed by
combining a Neural Network with the EKFUW B, offering a more advanced and
adaptive method for localization.
A fundamental step for the performance evaluation of the different algorithms and
the training of the NN is the creation of a new dataset. Several experimental tests
were performed in different scenarios, both under Line of Sight (LOS) and Non-line
of Sight (NLOS) conditions, involving obstacles of different materials, such as metal,
cardboard, styrofoam, and wood, placed in various positions.
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Introduction

1.2 Overview of the chapters
This section provides a brief description of each chapter and aims to give readers a
clear understanding of the organization and content of the thesis.

Chapter 1 introduces the context and the objective of the thesis, summarizing the
adopted approaches.

Chapter 2 introduces UWB technology, providing a historical overview and its
definition and regulations. Then, UWB advantages are highlighted, demonstrating
why it is particularly promising for indoor localization applications. Finally, the
chapter analyzes the different UWB positioning techniques and presents a compari-
son with other widely used localization technologies.

Chapter 3 introduces the localization problem, exploring its different types. Then,
illustrates two of the most commonly used probabilistic algorithms, the Extended
Kalman Filter and the Unscented Kalman Filter. The last part of the chapter
focuses on a more innovative approach, represented by the combination of a Neural
Network with the EKF, and provides a brief overview of Neural Networks.

Chapter 4 offers a brief description of the instruments used during the conducted
experimental tests and the software platforms employed. Then, delves into the
creation of a new dataset, outlining the environment setup and the data acquisition
process.

Chapter 5 offers a comparative analysis of the different implemented localization
algorithms, analyzing their performance based on experimental tests. It presents
an in-depth analysis of the results obtained from each algorithm, considering key
metrics such as Root Mean Square Error, both along x and y, and on the overall
position, as well as Mean Absolute Position Error in different scenarios.

Chapter 6 concludes the thesis, outlining the conclusions of the work and possible
future works.
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Chapter 2

Ultra-Wideband Technology
for Indoor Localization

2.1 Introduction to UWB Technology

2.1.1 Historical Overview

Despite the common belief, UWB history dates back to the end of the XIX
century, when Guglielmo Marconi conceived the first radio transmitter using the
electromagnetic waves generated by a spark gap. Due to the short duration of
the spark gap pulses, these waves spread across a wide range of frequencies, thus
reflecting the principles of UWB.
At the beginning of the XX century, wireless technology began to spread more,
arising the first issues. Spark gap transmission, in fact, was occupying large part
of the radio spectrum, and without means of synchronization, two stations could
not broadcast simultaneously in the same area. Additionally, spark transmitters
were heavy and very energy consuming, so better spark gap generators were under
research in those years.
A new interest in UWB technology emerged in the late ’60s with significant
contributions.
Between 1969 and 1984, H. F. Harmuth published several papers and books,
exposing the basics for UWB transmitters and receivers.
Almost during the same period, Ross and Robbins extended the use of UWB not
only for communication, but also for radar and sensing applications. In particular,
Ross filed a milestone patent to the US Patent office on 17th April 1973, number
US 3,728,632: “Transmission and reception system for generating and receiving
base-band pulse duration pulse signals without distortion for short base-band
communication system”. Actually, this was the first modern UWB communication
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system.
In 1989, the term “Ultra-WideBand” was coined for the first time by the U.S.
Department of Defense to signify terms like impulse, carrier-free, baseband, time
domain, and much more.
In 1994, T. E. McEwan invented the “Micropower Impulse Radar”. This was the
first time for a UWB to operate at ultra-low power, to be extremely compact, and
inexpensive.
The first commercial approvals came in 2002 by the Federal Communication
Commission (FCC). So, the UWB became commercially viable, allowing it to
operate at low power in an unlicensed spectrum ranging from 3.1 to 10.6 GHz, with
a power spectral density (PSD) lower than -41.3 dBm/MHz.
In 2006, the Institute of Electrical and Electronics Engineers (IEEE) produced a
regulation and a standard for UWB communication, still used nowadays: “IEEE
802.15.4a UWB– Low-Rate Wireless Personal Area Networks (WPANs), Standard
ECMA368 High Rate Ultra Wideband PHY and MAC Standard, Standard ECMA-
369 MAC-PHY Interface for ECMA-368, Standard ISO/IEC 26907:2007, Standard
ISO/IEC 26908:2007”. [1]
UWB became more and more common when Apple released the iPhone 11 with its
UWB U1 chip in 2019, followed later on by Samsung, Google and many others.

2.1.2 Definition and Regulations
According to the previously mentioned IEEE 802-15a standard, an UWB signal is
either a signal with an absolute bandwidth B equal or greater than 500 MHz, or a
signal with a fractional (relative) bandwidth Br larger than 20%.

B ≥ 500 MHz, or Br = (fu − fl)
fc

> 20%, (2.1)

where fu and fl represent the upper and lower frequencies at which the power
spectral density is 10 dB below its maximum and fc = (fu+fl)

2 is the central
frequency.
During the years, different countries have released their own regulations for UWB
devices. In particular, these regulations cover the applications of UWB technology,
the allocated frequency ranges, the emission limits, and the techniques to reduce
possible interference caused by the UWB device. The first regulations were released
in February 2002 by the US FCC, setting the usable frequency range for UWB
indoor applications between 3.1 and 10.6 GHz, and the emission limit to -41.3
dBm/MHz.
In Europe, instead, regulations have been available a bit later, in March 2006.
The usable frequency range here is divided into two bands: 4.2-4.8 and 6-8.5 GHz,
where on the first band a mitigation technique has to be used. Without mitigation,
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the requirement is -70 dBm/MHz instead of -41.3 dBm/MHz.
Emission levels for both FCC and EU are shown in Figure 2.1.

Figure 2.1: FCC and EU spectral mask for Indoor UWB [2]

UWB is able to transmit high data rates thanks to its wide bandwidth. However,
the emitted power has to be very low in order to respect the regulations. The
limitation to -41.3 dBm/MHz for the range 3.1-10.6 GHz results in a total emitted
power of only 0.56 mW for the FCC mask. For the EU, it is even smaller, since
regulations are more strict. Due to this, UWB can only be used for short range
applications.
There are two main approaches to exploit the UWB frequency range:

• Impulse Radio (IR): the transmission is based on very short pulses radiated
directly via the UWB antenna (no need for a carrier) that cover an ultra-wide
bandwidth.

• Orthogonal Frequency Division Multiplexing (OFDM): the UWB spectrum
is divided into a set of broadband OFDM channels, each one transmitted
through a sub-carrier frequency. The orthogonality of the sub-carriers avoids
cross-talks, leading to a more efficient exploitation of the band and a more
robust transmission in case of noise. However, regarding the signal processing,
the complexity is increased.

The choice between which of the two approaches should be followed depends on
the the application. [2]

5
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2.1.3 UWB Advantages

UWB has many unique advantages that have led to its rapid spread. Firstly, as
said before, UWB is able to transmit high data rates over short ranges, in fact, for
localization applications we can talk about real time tracking, since it can reach a
capacity of hundreds of Mbps thanks to its wide bandwidth.
UWB also presents good noise immunity since it works at high frequencies, from 3.1
GHz to 10.6 GHz, thus limiting signal interference with devices on more commonly
used frequencies. [3]
Moreover, the huge bandwidth ensures low transmit power, extending battery life.
Another advantage of UWB signals is the high time resolution that allows an
accurate determination of the Time of Flight (TOF). These signals, in fact, are so
short due to the inverse relationship between time and bandwidth.
Additionally, one of the most common phenomenon in wireless communications is
the multipath propagation. Radio signal, indeed, can reflect, diffract, or scatter
off the different obstacles in the environment, like walls or floor, causing the
original signal to get to the receiver in different moments in time and with different
intensities, since it followed different paths. Luckly, thanks to the high time
resolution and short wave length, an UWB system is able to distinguish two events
that occur with a short time distance to each other, making it much more robust
against multipath propagation.
To conclude, great system design flexibility can be achieved thanks to the large
spectrum, adjusting parameters based on the required data rate, power, and range.
[4]

2.2 UWB for Indoor Localization

UWB seems to be a promising technology for the precise tracking of moving objects
in GPS denied zones and indoor environments.
An UWB system is usually composed of two different types of devices: the tag,
that is the moving transceiver attached to the object to be tracked, and the anchor,
that is the fixed transceiver used as reference point.
At least three anchors are required for 2D positioning. Each anchor, in fact,
represents a circle with the anchor itself as the center and with a radius equal to the
distance between the tag and the anchor. So, in order to uniquely determine the
position of the moving tag, at least three circles are required, since the position is
represented by their intersection. For 3D positioning, instead, at least four anchors
are required, as each one represents a sphere. Additional anchors can be used in
order to get more precise measurements.
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Figure 2.2: Visualization of tag positioning using four anchors, each represented
as the center of a circle.

Moreover, the UWB system is able to calculate the distance between two points via
Time of Flight (TOF), that is the time required by the radio pulses to travel from
one point to another. In fact, the distance of the tag from an anchor is obtained
by dividing the measured TOF by the speed of radio waves.
The huge bandwidth (>500 MHz) allows high resolution in time and consequently
in range too. In a single nanosecond, a wave can travel almost 30 cm. [5]

2.2.1 Positioning Techniques
For UWB positioning, several techniques can be used based on the use case or
application.

Received Signal Strength (RSS)
As long as the radio signal goes far from its origin, it becomes weaker and weaker,
so the further two points are, the smaller the received signal strength will be.
Actually, the RSS value can be used to derive the distance between two points, the
transmitter and the receiver.
Nevertheless, the received signal is not so good, since the indoor environment is
usually full of obstacles, generating lots of reflections of the signal. Due to this,
the error on the RSS value can be very large, making it unsuitable for accurate
localization. [1], [2]
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Creating a map of the power of the received signals in the environment is one of
the approaches to mitigate this problem. It is called fingerprint, and the tag’s
position can be obtained by matching the RSS values of the different anchors to the
previously constructed map. However, also this solution is not the best one, since
it is time-consuming and a new map has to be created for each new configuration
of the environment. [2]

Time of Arrival (TOA)
This technique is one of the mainly used for UWB positioning applications. It uses
the Time of Flight (TOF), so the time required by the signal to travel from the
transmitter to the receiver, to estimate the distance between them. TOF can be
computed since the received message contains the starting time.
However, this arise the first problem, in fact, without a perfect clock synchroniza-
tion between the transmitter and the receiver it is not possible to get an accurate
measurement of the TOF and so of the distance too.
In order to avoid this issue, TOF protocols have been introduce, like Single-Sided
Two Way Ranging (SS-TWR) or Double-Sided TWR (DS-TWR), thus requiring
the time measurement on one device only. In TWR methods, instead of using
direct timestamps, a set of time periods, like tround and treply, is used to get the
distance between two transceivers. This is because a certain measured time interval
is the same for all devices, regardless their own clock references.
For the SS-TWR method, the TOF is computed as:

Ttof = 1
2

1
troundA

− treplyB

2
, (2.2)

where troundA
= τARx − τATx is the round-trip time of a signal measured at Device

A, and treplyB
= τBTx − τBRx is the reply time of a signal measured at Device B.

For the DS-TWR it is quite similar, the same measurements are performed on both
sides, so two round-trip times and two reply times are required. The TOF in this
case is computed as:

Ttof = 1
4

è1
troundA

− treplyB

2
+

1
troundB

− treplyA

2é
(2.3)

To compare the two methods, SS-TWR is easier since it requires only one device
to get the measurements, but may be less precise than DS-TWR, which measures
time on both devices to improve accuracy.

The following figure illustrates the previously described protocols: Single-Sided
Two Way Ranging (SS-) and Double-Sided TWR (DS-).
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Figure 2.3: Illustration of single- and double-sided Two-Way Ranging (TWR)
methods (©2018 IEEE)

However, this method is subject to other errors such as Propagation-Time Delay,
Transmission-Time Delay, Receiving-Time Delay, and Preamble Accumulation-
Time Delay, which are all analyzed in deep in [6].

Time Difference of Arrival (TDOA)
Another widely used method for UWB positioning is the TDOA. The time differ-
ences of the arriving signal between the different anchors are used to locate the tag
in the environment. This technique, in fact, requires almost perfect synchronization
between the anchors, placed in known positions.
Once all anchors have received the tag’s signal and recorded the respective times-
tamp, the synchronization process is performed. Through the difference in the
arrival time it is possible to calculate a hyperbola, which is, by definition, the
locus of points such that the difference of the distances from two fixed points
(two anchors), is constant. The intersection between the hyperbolas represents the
actual position of the tag.
However, with this method, even slight noise can cause big localization errors. [1], [2]

Angle of Arrival (AOA)
Unlike the other techniques, AOA does not require distance measurements, but only
the angle of arrival of a signal with respect to a reference line, usually the anchor’s
axis. The advantage of this approach is that it requires only two measurements
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to localize in 2D, so only the measured angles from two anchors are needed. By
intersecting the lines that represent the direction of the signals, the position of the
tag is retrieved.
Nevertheless, these measurements are more difficult to obtain, and a more complex
hardware, like an antenna array, is required on each of the anchors to measure the
angle of arrival of a signal. [1], [2]

Figure 2.4: Positioning using the Angle of Arrival method [2]

2.3 Comparison with Other Localization Tech-
nologies

This section provides a brief comparison between the different technologies com-
monly employed in the localization field, highlighting their advantages, limitations,
and suitability for different use cases.

Global Positioning System (GPS)
GPS is one of the most widely used localization technologies in the world, mainly
employed for outdoor localization applications, such as road navigation and vehicle
tracking, with an accuracy ranging from 3 to 10 meters. GPS is a navigation system
made up of a constellation of satellites orbiting at about 20,000 km above Earth.
The working principle is very similar to that of UWB: it is able to determine the
receiver’s position by calculating the time required by the signal to travel from the
satellite to the GPS device, located on the Earth surface. Since each satellite only
gives information about the distance between the satellite itself and the receiver,
four satellites are required to determine the location of the GPS device. Indeed,
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each satellite generates a sphere with a radius equal to the distance between the
satellite and the device on Earth, and since three spheres produce two points of
intersection, an additional satellite is needed.
However, GPS highly suffer from signal multipath propagation and requires a free
line of sight to multiple satellites for accurate positioning. As a result, in indoor
environments, the GPS signal becomes very weak, making it unreliable for indoor
localization. [7], [8]

Radio Frequency Identification (RFID)
RFID is a wireless technology that uses radio waves to identify and localize tags
or labels attached to objects. A RFDI system is made up of two components: a
tag and a reader (or antenna). In particular, two different types of tags can be
distinguished, passive and active ones. Passive tags are not provided with an energy
source, they are activated only when they receive a radio signal from the antenna,
while active tags have their own power supply, so they are able to continuously
transmit data, allowing for real-time tracking. Depending on the tag used, RFID
can be employed for different applications.
Passive RFID does not allow for real-time positioning, however, these tags are very
cheap and are used in a variety of applications, like in the access doors, when you
have to scan a card on the reader to let the door open. On the other side, for asset
tracking it is not very suitable, since if the tag is not activated by the antenna, the
localization information is lost.
Active RFID, like UWB, allows for real-time tracking, but its accuracy is on the
order of meters, which is much more than the UWB one, which ranges from 10 to
30 cm. Additionally, active RFID is even more expensive. [9]

Bluetooth Low Energy (BLE)
BLE, as the name suggests, is a Bluetooth version designed to reduce energy
consumption and extend battery life. Although they both operate in the 2.4 GHz
band, they are quite different, and so are their use cases.
Despite the constantly active connection initiated by Bluetooth, BLE is able to
reduce energy consumption by staying in sleep mode unless a connection is initial-
ized, allowing only for a small amount of data transfer.
For indoor localization applications, BLE calculates the position of a tag through
the Received Signal Strength (RSS) technique, better explained in section 2.2.1.
However, this is not the best way of calculating the position, indeed, an accuracy of
around 5 meters is reached, much bigger than the 10-30 cm of the UWB, obtained
by exploiting the Time of Flight (ToF) technique, analyzed in section 2.2.1. In
terms of battery life, both BLE and UWB tags can last several years on a single
battery with location updates every few seconds. However, UWB tags are about
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twice as expensive as BLE tags.
Introduced in early 2020, BLE 5.1 also supports the Angle of Arrival (AOA)
technique, which improves localization performance, despite the more complex
implementation, leading to an accuracy of less than 1 meter. [9], [10]

Wi-Fi Positioning Systems (WPS)
Wi-Fi Positioning Systems exploit the already existing Wi-Fi networks to determine
the location of a device, so no additional hardware is required.
Like the BLE, WPS uses the Received Signal Strength (RSS) technique to estimate
the distance of the device from the nearby routers. An accuracy of 5-15 meters
can be reached, which is a lot with respect to UWB. Moreover, its accuracy can
be affected by factors such as signal interference, the density of access points, and
environmental obstacles. [9]

Camera-based tracking
With the advent of AI-based image processing, camera-based positioning has become
more feasible. Two different approaches can be followed: camera infrastructure and
camera trackers.
In the first approach, a system of fixed cameras is used to track objects or people
in the viewed environment. By using previously trained AI models, it is possible
to identify the tracked objects in real time. However, when the same object is
moving in different areas, so it is viewed by different cameras, the system should
be able to recognize that it is the exactly same object that is just moving around.
Actually, this is not that simple to achieve, and it is not even easy to know where
the objects are located. Moreover, for situations in which objects appear partially
covered or badly illuminated, it is even more difficult. As a result, this approach
is less suitable for asset tracking with respect to UWB. Indeed, with UWB, each
tracked object has its own tag, so the identification problem does not exist. The
only disadvantage is that a lot of tags are required.
Instead of using a system of cameras, camera trackers can also be employed. In
this approach, each object that needs to be tracked has its own camera attached to
it. In this way the identification problem is solved. However, to make the localiza-
tion process easier, some landmarks are added to the environment. This approach
can provide the same accuracy of an UWB system, but it is much more expensive. [9]

Light Detection And Ranging (LIDAR)
LIDAR uses a rotating laser to measure the distance and the angle to obstacles
precisely. However, LIDAR alone is not able to provide the location of an object, it
is mainly used to check for obstacles. In combination with other localization tech-
nologies, such as UWB, it allows for absolute positioning with very high precision,
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on the order of millimeters.
Typically, LIDAR is used for mobile robots in autonomous navigation, when the
robot needs to sense the environment in order to check for possible obstacles along
the path. [9]

To conclude, the table below summarizes the advantages and disadvantages of each
of the previously described localization technologies.

UWB BLE Wi-Fi GPS Camera LIDAR Passive RFID

Positioning
Accuracy 10-30cm 5m 5-15m

5-10m
(outdoor

only)
10-30cm 1cm NA

Scalability ✓ ✓ ✓ ✓ ✗ ✗ ✓

Real-time ✓ ✓ ∼ ∼ ✓ ✓ ✗

No dedicated
infrastructure ✗ ✗* ✗/✓ ✓ ✓ ✓ ✗

Range 20-30m 20m 30m NA 20m 60-100m 5cm-5m

Tracker cost low very low medium medium very high very high ultra low

Table 2.1: Different localization technologies in comparison. [9]

where the symbol ∼ means that Wi-Fi and GPS allow for real-time tracking,
but with a very low update rate, while NA stands for Not Applicable. "The asterisk
* for BLE infrastructures indicates that in certain scenarios (with WiFi access
points that support BLE positioning), there is no need for additional infrastructure.
However, this is not the case for most access points" [9].
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Chapter 3

Localization in Robotics:
Principles and Algorithms

3.1 Introduction to the Localization Problem
Knowing the pose of a robot is essential to most of the tasks a robot usually
performs. Hence, mobile robot localization is an extremely important problem to
tackle.
The pose of a robot, obtained by exploiting the information coming from the wheel
encoders and the inertial measurement unit (IMU), is known as odometry, and it
is one of the mainly used techniques for the localization of UGVs. However, it is
very sensible to slippage, and, since it calculates the position by integrating the
encoders’ data, it accumulates error, becoming more and more inaccurate in short
time. For this reason, for GPS denied zones and indoor environments, UWB seems
to be a promising technique for the precise tracking of moving objects.

Localization problems can be very difficult to be solved, depending on the nature
of the environment and the knowledge a robot may have initially and at run-time.
Three types of localization problems can be distinguished.

• Position tracking assumes that the initial position of the robot is known and
consists in the continuous updating of the robot’s pose as it moves through the
environment. This type of localization problem is local, since the uncertainty
is limited to the region around the robot’s actual pose.

• Global localization is more difficult than positional tracking, in fact, it does
not make any assumption on the initial pose of the robot, which is at first
placed somewhere in the environment.
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• Kidnapped robot problem is even more difficult than the global localization
problem. During its own operation, in fact, the robot is suddenly kidnapped
from its current position and it is moved to a new unknown one. This is
actually a variant of the global localization problem, where each time the robot
is kidnapped, it has to re-localize itself again from scratch. Moreover, this
problem has a practical importance, in fact, it is very useful to test algorithms’
ability to recover from global localization failures.

Another discriminating factor for the difficulty of a localization problem is related
to the environment, which can be static or dynamic.
An environment is called static when the only moving object is the robot, while all
other objects remain at the same position. On the other side, an environment is
dynamic when objects other than the robot can change their location over time.
Of course, localization in dynamic environments is more difficult than in static ones.

The possible approaches can be passive or active. In passive ones, the local-
ization algorithm does not control the motion of the robot, it just observes the
robot operating in the area. In active ones, instead, the algorithm is also responsible
of minimizing localization errors controlling the motion of the robot too, so it
typically leads to better localization results.

To conclude, the difficulty of the localization problem is of course related to
the number of robots to be tracked. So, a multi-robot localization problem will be
much more difficult to solve. [11], [12]

3.2 Probabilistic Algorithms

Probabilistic robotics is a new approach to robotics able to explicitly represent the
uncertainty in robot perception and action by using the probability theory. These
algorithms, indeed, use probability distributions across the entire space of possible
hypotheses to represent robot’s information.
Uncertainty in robotics arises from five different factors: environments, sensors,
robots, models, computation. Usually, this uncertainty has always been ignored,
but as robots are moving to much more complex environments than before, it is of
extreme importance to be able to represent it in order to build successful robots.
Probabilistic robotics is capable of doing exactly this. [11]

Below are listed and explained two of the mainly used probabilistic algorithms in
localization problems.
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3.2.1 Extended Kalman Filter
The Kalman Filter is a powerful algorithm for state estimation, and it is one of the
mainly used in several fields, from target tracking and navigation to microeconomics
and digital image processing. [13]
However, it does not work with nonlinear problems, and since most real-world
problems are nonlinear, an extension of it is required.
Problems can be nonlinear in two different ways: in the motion model and in the
measurement model. The Extended Kalman Filter (EKF) is designed to handle
both of these cases by linearizing the system at the point of current estimate and
then applying the equations of the linear KF.

Just like the KF, the EKF is made up of two main steps: prediction and up-
date. In the prediction step both the state and the covariance for the next time
step are estimated, while in the update step the prediction previously made is
corrected with the measurements coming from the sensors.

The equations for the prediction step are the following ones:

x = f(x, u) (3.1)

F = ∂f(xt, ut)
∂x

-----
xt,ut

(3.2)

P = FPF T + Q (3.3)
where x, the state, is represented by the nonlinear state transition function f(x,u),

where u is the possible control input. The state transition function is linearized
by taking its partial derivative with respect to the state. The Jacobian is then
evaluated at the point of current estimate to obtain matrix F, which is the state
transition matrix.
The covariance matrix P is predicted in the same way as in the linear KF, where
Q is the process noise covariance matrix, which accounts for the uncertainty in the
process over time, due to factors not modelled in the state transition function. So,
the new uncertainty is predicted as the sum of the old one and some additional
uncertainty that comes from the environment (Q).

The equations for the update step are the following ones:

H = ∂h(xt)
∂x

-----
xt

(3.4)

y = z − h(x) (3.5)
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K = PHT (HPHT + R)−1 (3.6)

x = x + Ky (3.7)

P = (I − KH)P (3.8)

As previously stated, nonlinearity can be present in the measurement model too.
Thus, the approach is the same as in the prediction step: the measurement function
h(x) is linearized by taking its partial derivative with respect to the state and then
the Jacobian is evaluated at the point of current estimate in order to obtain matrix
H. This matrix, called measurement matrix, describes how to convert the state into
a measurement, modelling the sensors. In fact, for example, units and scale of the
data coming from the sensors may not be the same as the ones of the state, so this
matrix is responsible of reporting the state into the measurement space.
Then, the residual y, the Kalman gain K, and the updated state and covariance
are computed through the same formulas as in the linear KF. The R matrix used
to calculate the Kalman gain is the measurement noise matrix, which represents
the noise introduced by the sensors during the measurements.
Moreover, for the EKF, matrices F and H are calculated at each time step since
the evaluation point changes each time. [14]

To conclude, while the KF is an optimal filter because the estimate uncertainty is
minimized, all Kalman Filter modifications for nonlinear systems, like the EKF
and the later explained UKF, are sub-optimal filters since approximated models
are used. [15]

3.2.2 Unscented Kalman Filter
Until now the EKF has been the standard approach to solve nonlinear problems,
anyway, another, and sometimes even more suitable algorithm for these kind of
problems is the Unscented Kalman Filter (UKF).
The first and main difference with the EKF is that, instead of using all the points
of a probability distribution, it uses only the so called sigma points. These points
are a set of representative points chosen in order to capture important statistical
properties of the system’s state distribution, like its mean and covariance. The key
idea behind sigma points is to approximate the system’s state distribution without
relying on assumptions of linearity or Gaussianity.

In Python there exist several already implemented functions to choose sigma
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points, like the FilterPy function MerweScaledSigmaPoints() or the JulierSigma-
Points() one. They both need only some parameters to be set in order to better
choose the sigma points that represent the distribution.
In particular, since 2005, Van der Merwe’s algorithm is the mainly used in research
and industry. It requires only three parameters to control how the sigma points
are distributed and weighted: α, β, and κ.
A good choice for α is to use 0 ≤ α ≤ 1, where the larger α the more it will spread
the points far from the mean. Moreover, a larger value for α weights the mean
much more than the other points.
The figure below illustrates how a different value for α can be used to choose
different sigma points.

Figure 3.1: Effect of using different values for α on the sigma points. [14]

β = 2 is a good choice for Gaussian problems, while κ is set equal to 3 − n
where n is the dimension of the state.
Mathematically, the first sigma point is the mean of the input, χ0 = µ, and it is
the one at the center of the ellipses in Figure 3.1. The other sigma points, instead,
are computed as:

χi =

µ +
èñ

(n + λ)Σ
é

i
for i=1 .. n

µ −
èñ

(n + λ)Σ
é

i−n
for i=(n+1) .. 2n

(3.9)

where λ = α2(n + κ) − n. In words, by using these formulas, the covariance
matrix Σ is firstly scaled by a constant and then square-rooted. The symmetry is
ensured by both adding and subtracting it from the mean.
Weights for the mean and covariance of χ0 are computed in different ways.

W m
0 = λ

n + λ
(3.10)
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W c
0 = λ

n + λ
+ 1 − α2 + β (3.11)

where (3.10) is the formula to calculate the weight for the mean, and (3.11) for
the covariance.
The weights for the other sigma points χ1...χ2n are calculated in the same way for
both the mean and the covariance.

W m
i = W c

i = 1
2(n + λ) , i =1 .. 2n (3.12)

As the EKF, the UKF is made up of two main steps: prediction and update.
Once the sigma points and their corresponding weights have been generated using
some function, in the prediction step each sigma point is passed through the non-
linear function f (), generating a new set of sigma points, Y, projected forward in
time according to f (). Then, the mean and covariance of the prior are computed
by applying the Unscented Transform (UT) on the transformed sigma points.
The equations are the following ones:

Y = f(χ) (3.13)

x =
Ø

wmY (3.14)

P =
Ø

wc(Y − x)(Y − x)T + Q (3.15)

where (3.14) and (3.15) are the equations for the UT.
Since the update is performed in the measurement space, the sigma points of the
prior must be converted into measurements through a measurement function h().
So, Z becomes the new set of measurement sigma points. Just like the update step,
the mean and covariance of these points are computed by applying the UT.

Z = h(Y ) (3.16)

µz =
Ø

wmZ (3.17)

Pz =
Ø

wc(Z − µz)(Z − µz)T + R (3.18)

Then, the residual and the Kalman gain are computed as:
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y = z − µz (3.19)

K =
èØ

wc(Y − x)(Z − µz)T
é

P −1
z (3.20)

Finally, the updated state and covariance can be computed through the following
formulas:

x = x + Ky (3.21)

P = P − KPzKT (3.22)

Even though EKF is considered the standard approach for nonlinear problems, it
can be quite difficult to understand and use. UKF, on the other side, is easy to
implement and can lead to even more accurate results than the EKF, especially in
very nonlinear situations. Indeed, the main difference between them is in the way
they treat nonlinearity. The EKF linearizes the state and the measurement model
at the point of current estimate, while the UKF uses a set of sigma points to better
capture the nonlinearity present in the models, making it more robust against high
nonlinearity. The main disadvantage of the UKF is that it can be slower than the
EKF, but this actually depends on how the EKF solves the Jacobian, if numerically
or analytically. If numerically, the UKF is faster. [14]

3.3 Innovative Approach: NN + EKF

3.3.1 Neural Networks Overview
Neural Networks (NN) are powerful models in AI that mimic the behavior of the
human brain. The idea behind NNs, indeed, is to make a machine able to learn,
adapt, and make decisions all alone.
Just like for the human brain, the fundamental unit of an Artificial Neural Network
(ANN) to process and transmit information is the neuron, also called node.
The brain neuron consists of three main parts: the cell body, which contains the
nucleus that controls the functioning of the cell, the dendrites, that receive the
information coming from the other neurons, and the axon, that transmits the
information away. On the other side, the artificial neuron is a mathematical model
designed to reflect the behavior of the biological one. It takes as input x ∈ Rn and
a +1 intercept term. Then the sum of the weighted inputs is computed, and a bias
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term is added.
This process is represented in the figure below as the linear function.

Figure 3.2: Biological similitude between a brain neuron and an artificial neuron

The output of the node is defined as:
y = f

1
b +

Ø
wixi

2
(3.23)

where f is the activation function, a nonlinear function that decides if a neuron
is activated or not, just like the action potential for the biological neuron .
Different activation functions can be used, but one of the most common is the
sigmoid function

f(z) = 1
1 + e−z

= ez

1 + ez
, (3.24)

which takes values in [0, 1].
Other popular activation functions are:

• Hyperbolic tangent (tanh): f(z) = tanh(z) = ez−e−z

ez+e−z ∈ [−1, 1]

• Rectified linear unit (ReLU): f(z) = max(0, z)

Figure 3.3: Plot of some of the most commonly used activation functions [16]
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A NN is composed of many interconnected nodes, organized in layers, where each
node has its own weights and bias. Weights are used to determine how much
influence each input has on the output.
As a result, each layer is characterized by two parameters: a matrix W, that
contains the weights for that layer, and a vector b, that contains the biases.
In each NN three types of layers can be distinguished: the leftmost layer, called
input layer, the rightmost layer, known as the output layer, and finally the hidden
layers, that are the middle ones. In small and more simple NNs, like the one in
Figure 3.5, the hidden layer is a single layer.
Furthermore, the output of a NN can be used as a final result or as an input to the
same NN (loopback), or to another NN (cascade).

Figure 3.4: Example of a small Neural Network architecture [16]

The most common NNs are the so-called Feedforward Neural Networks (FFNNs),
whose graphs does not present any feedback or loops. In fact, the information can
travel only one way, from the input layer, to the hidden layer(s), and finally to
the output layer. Instead, if the information can flow both forward and backward,
the NN is called Feedback Neural Network. Obviously, it is more powerful and
complex than the FFNN.

Neural Networks are so used in a variety of problems because they have some
unique advantages with respect to classical statistical techniques. They are able to
solve very complex and nonlinear problems by dynamically adapting themselves
to them, and to reconstruct the rules that govern the optimal solution for these
problems.
A fundamental part for NNs is the training. Learning from the data, the network
is able to adapt itself each time a new data is available and to find values for the
network parameters (W, b) that make the training error smaller. Usually, the more
data is available, the smaller the error will be.
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Once the NN has been sufficiently trained, it is able to perform well also on new
unseen data.

NNs are suitable for an infinity of problems, like classification, and pattern, speech
or image recognition, but in particular they are employed when the problem is
complex, when classical techniques have not led to good results, and when an
approximate solution can be considered as well. [17] [16] [18]

3.3.2 Adaptive Localization Algorithm
An alternative to the more classical and widely accepted probabilistic algorithms,
like the previously described EKF and UKF, is represented by combining a Neural
Network (NN) with the EKF.
UWB measurements, indeed, are highly influenced by the surrounding environment,
therefore, being able to identify and mitigate Non-line of Sight (NLOS) conditions,
by exploiting machine learning and deep learning techniques, could lead to better
results. [19]
The main idea is to make the EKF adaptive, so to add a NN to better estimate
the error on the measurements coming from the UWB antennas at each time step,
and then use this estimation, converted into variance, in the filter.
Indeed, by only using the EKF, the measurement matrix R is fixed, so the variance
is the same at each time step. Actually, this may not be very accurate, since,
for example, in NLOS conditions, the error could be greater, and it would be
better to trust less the measurements with respect to the dynamical model by
using a bigger variance value. Vice versa, when the robot is quite far from the
obstacles and the line of sight is free it would be better to use a smaller variance
for the measurements. This capacity to change the variance in the filter based
on the different situations could lead to better results in the localization of the robot.

Novelty detection refers to a set of machine learning techniques that are able
to identify new or unknown patterns with respect to the nominal data learned
during the training phase. In particular, in the context of UWB signals, novelty
detection can be employed to identify NLOS and multipath conditions as novelties,
providing an estimation of the error on the information coming from the sensor.
To this aim, the NN was trained on a dataset consisting of different rosbags reg-
istered in the same fixed environment, all under Line of Sight (LOS) conditions,
intentionally inducing overfitting in the model.
During the inference phase, to evaluate its performance in different scenarios, the
NN was tested under both LOS and NLOS conditions. Indeed, introducing an
obstacle in the environment causes UWB signal reflections and NLOS conditions,
leading to a distorted signal compared to the original one. As a result, the model
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detects this deviation with respect to the nominal data, indicating a novelty at the
specific location where the altered signal is detected. [19]

The architecture proposed for this purpose is an autoencoder, a specific kind
of NN consisting of two parts: the encoder and the decoder. The encoder trans-
forms the input data into a lower dimensional latent representation, capturing its
essential features, while the decoder produces a reconstruction of the input from
this condensed information. The general structure of an autoencoder is the one
depicted in the following figure.

Figure 3.5: The general structure of an autoencoder: the input x is mapped by
the encoder function f into h, which is then mapped by the decoder function g
into r , which is the final output and a reconstruction of the original input. [20]

Autoencoders are not designed to learn to set g(f(x)) = x everywhere since this
is not very useful. Instead, they are designed to learn to copy only some specific
input features, those that resemble the training data.
Usually, the dimensionality of the latent space p is lower than that of the input n, as
the information is compressed. However, in this case, an overcomplete autoencoder
architecture was employed. A higher dimensionality for the latent space (p > n)
allows the model to capture more features from the input data, providing a more
detailed and potentially redundant representation of the information.

In particular, the architecture employed in this work is depicted in Figure 3.6.
The encoder stage consists of three dense layers, respectively with dimensions
N = n, NE1, and NE2 = p , where N < NE1 < NE2. Each layer is activated by its
own ReLU function. The decoder stage, instead, comprises two dense layers with
dimensions ND1 and N , where ND1 > N , restoring the initial dimension. While the
first decoder layer is activated by a ReLU function, the second one uses a Leaky
ReLU activation function, introducing a slight negative slope to address potential
dead neurons and enhance the robustness of the model. [19], [20]
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Figure 3.6: The architecture of the employed Neural Network consisting of an
overcomplete autoencoder. [19]

Once the NN has been trained, it is able to predict the distance of the tag from
each anchor in nominal conditions. So, to detect the novelty, an error for each of
the anchors is calculated as the difference between the predicted distances (out-
puts) and the measurements coming from each anchor (inputs). This error is then
converted into variance, in order to use it in the filter. In particular, it is better to
approximate the errors with a line with two saturation points, accurately choosing
the two saturation points.

Figure 3.7 illustrates the relationship between the error and the variance used in
the filter. For small errors (below 0.001) the variance is saturated at a minimum
value of 10−4, indicating that the measurements are reliable and subject to minimal
uncertainty. As the error increases beyond 0.001, the variance grows linearly,
reflecting the increased uncertainty with larger errors. Finally, for errors greater
than 0.6, the variance saturates at 0.1, chosen as an upper limit for the uncertainty.

These values were chosen based on the variance values employed in the base
EKF and UKF algorithms. Indeed, for experiments conducted under LOS condi-
tions, a value of 0.01 (10 cm) was selected, while for experiments conducted under
hard NLOS conditions, the upper limit of 0.1 (approximately 30 cm) was chosen to
account for the worst-case scenario.
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Figure 3.7: Plot showing the relationship between the error obtained by the
Neural Network and the variance used in the filter.

Then, the EKF base algorithm is modified to interact with the Neural Network.
The covariance matrix R becomes dynamic since at each time step it is updated
with the new values estimated by the NN. As a result, the filter is able to adapt
itself to different situations, and better understand which measurements to trust
more and which not, potentially leading to better results in the localization of the
robot.
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Chapter 4

Experimental Work

4.1 Instrumentation
In the experimental tests conducted at the PIC4SeR laboratory, the following
instruments were used. A brief description of each of them is provided below.

4.1.1 Jackal UGV
All experimental tests were conducted using the Jackal UGV, a small, fast and
versatile robot platform designed by Clearpath Robotics.
Equipped with an on-board computer, IMU and GPS fully integrated with ROS,
it is completely customizable with a lot of compatible sensors, cameras and other
accessories that make it especially suitable for research. Moreover, to meet the
need for additional computing power or storage, two payload mounting areas are
available. [21]

Figure 4.1: Top, side, and front views of the Jackal UGV with detailed dimensions
of the payload mounting areas and overall rover size. [21]

Some of the most important technical specifications of the Jackal UGV can be
found in the table below.
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External Dimensions 508 x 430 x 250 mm
Internal Dimensions 250 x 100 x 85 mm

Weight 17 kg
Max Payload 20 kg
Max Speed 2.0 m/s

Battery 270 Wh
Lithium Ion

Run Time Heavy Usage: 2 h
Basic Usage: 8 h

User Power 5V at 5A, 12V at 10A, 24V at 20A
Drivers and APIs Packaged with ROS Kinetic

Integrated Accessories Wireless Game controller, GPS, IMU, On-
Board Computer, WIFI Adapter, Accessory
Mounting Plates

Table 4.1: Jackal UGV Technical Specifications. [21]

In particular, on the Jackal UGV employed in the experimental tests, an UWB
antenna was added. The focus of these tests, in fact, is on the possibility to use the
UWB technology for indoor localization in different scenarios. So, an UWB antenna
used as a tag was added on top of the rover in the smallest payload mounting area.
Other sensors employed, already present on the rover, include: an IMU, to get
information about the orientation, acceleration, and angular velocity of the rover,
and the encoders for the linear and angular velocity.
For a detailed discussion of the rover’s kinematic model, refer to Appendix A.

Figure 4.2: Jackal UGV configuration used for all the experimental tests.
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4.1.2 Qorvo’s DWM1001C modules

Qorvo’s DWM1001 module is an UWB and Bluetooth module based on Decawave’s
DW1000 IC and Nordic Semiconductor nRF52832 SoC, also provided with an on
board motion sensor. [22] This module was then integrated on an evaluation board,
where the firmware is executed by a microcontroller.
Despite an embedded firmware was already available, another firmware, devel-
oped by the Dynamic Distributed Decentralized Systems Group (D3S), a cross-
institutional research group based in Trento (Italy), was used. Depending on it,
the single module can be used both as a tag or as an anchor in an UWB system.

Figure 4.3: Qorvo’s DWM1001C module. [22]

A close-up of the HW features of the Qorvo’s DWM1001C module is provided by
the figure below, while some of the most important technical specifications can be
found in Table 4.2.

Figure 4.4: HW features of the Qorvo’s DWM1001C module. [22]
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Size 19.1 mm x 26.2 mm x 2.6 mm
Operating Band UWB Channel 5: 6.5 GHz

Max PSD - 41 dBm/MHz
Data Rate 6.8 Mbps (IEEE 802.15.4-2011 UWB compli-

ant)
Integrated Antennas Decawave DW1000 UWB transceiver

Bluetooth chip antenna
Firmware D3S Contiki Multi-Ranging

Ranging Accuracy 10 cm (max)
Max Range Up to 60 m in LOS

Ranging Technique SS-TWR or DS-TWR
Max Ranging Frequency 10 Hz (depends on the number of anchors)

Table 4.2: Technical Specifications of Qorvo’s DWM1001C module. [22]

4.1.3 Vicon System
A Vicon motion capture system, consisting of 10 high-resolution infrared cameras,
was used as ground truth to evaluate the accuracy of the different implemented
algorithms. Figure 4.5 shows the configuration of the cameras, highlighted in green,
in the laboratory where all the experimental tests were conducted. In orange,
instead, the current position of the Jackal UGV is highlighted.

Figure 4.5: Configuration of the Vicon system cameras employed in the experi-
mental tests.
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4.2 Software Platforms
This section describes the software development tools employed throughout the
experimental work.
In particular, all the software was executed on a machine running Ubuntu 22.04.4
(LTS). For the real-time collection of the data coming from the onboard sensors of
the Jackal UGV, the second version of Robotic Operating System (ROS) was used.
The ROS2 distribution employed for this work was Humble.
The implemented algorithms were all developed using Python, a widely used
high-level programming language, in the Visual Studio Code environment.

4.2.1 ROS2
The Robotic Operating System (ROS) is a free and open source meta-operating
system for robots that provides some OS-like functionalities, like hardware ab-
straction and low-level device control. As a middleware, ROS connects software
and hardware components, or software with other software, by providing common
services and tools. Actually, it is widely used to develop robotic applications since
it simplifies complex tasks such as communication and data management, allowing
the developer to focus only on the implementation of the higher-level software,
without worrying about low-level hardware management. ROS2 is ROS latest
version, designed to address the limitations of ROS and to improve its capabilities.

A robotic application is a collection of nodes, each providing a specific task,
organized in packages. Unlike the first version of ROS, ROS2 does not rely on
a central ROS Master anymore. Indeed, in ROS, this node was the main one,
responsible for the initialization and the management of the communication be-
tween nodes. ROS2, instead, uses DDS (Data Distribution Service) for the node
communication, allowing for direct interaction between them.
In particular, each node can send and receive data from other nodes via topics,
services, actions, or parameters.
Nodes can publish or subscribe to a topic. For example, a sensor node may publish
data on a topic, while other nodes subscribe to it, reading the content of that
topic, and so retrieving the information coming from the sensor. This way of
communication is asynchronous. On the other side, to implement a synchronous
communication between nodes, services are used. A service client and a service
server are required to implement a request/response communication.
The main difference between these two kinds of communication is that topics are
used for continuous and unidirectional data streams, while services are mainly
employed for requests, so for a bi-directional flow of data.
Actions, instead, are designed for long running tasks, when status updates are
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required, and consist of three parts: a goal, a feedback, and a result. They use the
server-client model, indeed, there is an action client node that sends a goal to an
action server node that acknowledges the goal and returns a stream of feedback
and a result. Finally, parameters allow nodes to dynamically store and retrieve
configuration values. [23]

4.2.2 Python Machine Learning Tools
TensorFlow 2
TensorFlow is an end-to-end open source platform, initially developed by Google
in 2015, for Machine Learning (ML) and AI that offers a variety of tools, libraries,
and community resources. It can be used with a lot of programming languages,
including Python, JavaScript, C++, and Java. Its versatility makes it suitable
both for research and real-world applications in several fields, including image and
speech recognition, generative models, robotics and automation, and many others.
In particular, in this work, TensorFlow Keras was used to implement the NN model
for the last of the three algorithms (NN + EKF).

Keras
Keras is a high-level API that runs on top of the TensorFlow 2 library, used as the
backend. It provides a user-friendly interface, making it easier for developers and
researchers to build and experiment with deep learning models. Another advantage
is its modularity, in fact, it allows users to easily configure layers, optimizers and
loss functions. Moreover, Keras supports both CPUs and GPUs, making it widely
used in several fields.

4.3 Dataset Creation
A fundamental step for the performance evaluation of the different algorithms and
the training of the NN is the creation of a new dataset.

4.3.1 Environment Setup and Measurements
The dataset was collected at the PIC4SeR (Polito Interdipartimental Center for
Service Robotics) laboratory by teleoperating the Jackal UGV within a rectangular
area of 5.50 by 3 meters.
For simplicity, a fixed starting point, that coincides with the fixed inertial reference
frame used for the measurements, was chosen. Each time a new bag was recorded,
indeed, the rover was repositioned at the starting point, with the orientation
pointing forward, along the x-axis.
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Figure 4.6: Fixed inertial reference frame used for the measurements.

In particular, for the experimental setup four anchors and a tag have been used.
Actually, three anchors were already sufficient to track the rover in 2D, but in order
to get a more precise measurement, another anchor was added.

Anchor x [m] y [m]
0 5.50 -1.25
1 5.50 1.75
2 0 -1.25
3 0 1.75

Table 4.3: Positions of the four anchors with respect to the fixed inertial reference
frame.

Different scenarios have been recorded in order to have a dataset as broad as
possible. Indeed, different trajectories were traced by the rover, ranging from
simple square paths to more random ones.
The data coming from the sensors was collected into rosbags both under LOS and
NLOS conditions. In NLOS scenarios, different obstacles in various positions have
been used. The effect of obstacles on the radio performance, indeed, depends on
the material of the obstacle itself. Depending on it, the signal will pass through
the object with little effect or will be completely absorbed. Since radio waves are
electromagnetic waves, conductor material will have a big impact on the signal,
making it less powerful when it reaches the anchor and leading to a worse accuracy
in the measurements.
Obstacles in metal, cardboard, styrofoam and wood in different positions were
employed in the tests.
The figures below show some of the obstacles’ configurations during the conducted
experimental tests.
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(a) (b) (c)

Figure 4.7: (a) Metal obstacle centered (b) Wood obstacle obstructing one anchor
(c) Multiple metal obstacles obstructing two anchors.

A total of 61 rosbags were recorded, including 15 under LOS conditions, with
6 containing square paths and 9 following some more random trajectories. In
addition, 40 bags were recorded under NLOS conditions, with 12 in the presence of
a single metal obstacle, 6 with multiple metal obstacles, 6 with cardboard, 6 with
styrofoam, and the remaining ones with wood, in different positions.
All the relevant information regarding each experiment, such as the duration and
the obstacle type and position, was collected into an Excel file.

4.3.2 Data Acquisition
The data acquisition process was carried out in several sessions, with each session
involving the recording of the ROS2 topics published by the different sensors.
In particular, the following topics were recorded:

• /imu/data: contains the data coming from the IMU, such as the angular
velocities and linear accelerations along the three axis, and the orientation
expressed in quaternions.

• /joint_states: contains the position and velocity of each of the four wheels.

• /odom: contains the data coming from the odometry, such as the position,
the linear and angular velocities along the three axis, and the orientation
expressed in quaternions.

• /uwb_ranging: contains the data coming from the UWB antennas, so the
ranging distance of the tag from each of the four anchors, and other not used
information regarding the power.

• /vicon/Jackal/Jackal: contains the data coming from the Vicon system, so
the position and orientation expressed in quaternions, used as ground truth.
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• /taranis/cmd_vel: contains the linear and angular velocities along the three
axis coming from the Taranis radio.

The data coming from each topic was then converted into a Comma-Separated Value
(CSV) file. Therefore, for each recording, several CSV files were generated, each
containing as columns the different data and as rows the single data acquisitions
with their UNIX-16 timestamp (that is the time past from the midnight of the 1st
of January 1970, measured in nanoseconds).
Moreover, most of the data required some post-processing operations in order to
make it suitable for use in the algorithms, such as the conversion from quaternions
to Euler angles, or from one unit of measurement to another. So, once all the data
had been processed, it was collected into a single CSV file for better clarity.
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Chapter 5

Localization Algorithms:
Analysis and Results

Different algorithms have been developed to evaluate localization performance under
various conditions. The standard approach consists of an Extended Kalman Filter
(EKF) or an Unscented Kalman Filter (UKF) using UWB data alone to estimate
the position (EKFUW B and UKFUW B). Sensor fusion is one of the most commonly
used strategies to improve localization accuracy, so both the EKF and the UKF
were implemented with sensor fusion too (EKFSF and UKFSF ). Additionally,
an innovative approach was introduced by combining a Neural Network with the
EKFUW B, offering a more advanced and adaptive method for localization.

5.1 Sensor Fusion
Sensor fusion is the process of merging the information coming from different
sensors to provide a better understanding of the environment or the system being
observed. Each sensor, indeed, has some limitations in terms of range, precision, or
sensitivity to noise, that can be compensated by integrating data from different
sources.
Sensor fusion is highly employed in fields like robotics, autonomous vehicles, and
automation, which require a lot of sensors, such as cameras, LIDAR, GPS, IMU,
and so on. Merging all the information reduces uncertainty and increases robustness,
enhancing overall performance.

The sensors used during the conducted experimental tests have very different
sampling frequencies, raising the problem of data synchronization. However, in
all the implemented algorithms, no synchronization was performed. Indeed, the
filter starts predicting when it receives the first data from the UWB, since it is the
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one with the lowest sampling frequency, and then predicts the entire state every
time a new measurement arrives, updating only the state variables affected by that
specific measurement.

In particular, in the following algorithms, UWB data was used to estimate the x
and y coordinates, the odometry data for the velocities, both linear and angular,
and the IMU data for the orientation, acceleration and angular velocity of the
rover.

5.2 Localization Algorithms in Comparison
In this section the different implemented localization algorithms are briefly de-
scribed and compared, showing the respective obtained results.

All the developed filters, so EKF and UKF, were implemented using the Fil-
terPy library, a powerful tool designed for implementing and working with Kalman
filters and other filtering algorithms. EKF and UKF algorithms have a very similar
structure, the main difference is in the way they treat nonlinearity, by linearizing
at the point of the current estimate or by using a set of sigma points to capture
the nonlinearity present in the models.
Nonlinearity can be present both in the dynamical model and the sensor model. In
this case, it is present only in the measurement model of the UWB sensor, so in
the function responsible for converting the state into a measurement. Therefore, a
h(x) function returning the Euclidean distance d (5.1) between the current position
(x, y) and the anchor (xa, ya), was required for each of the anchors for both EKF
and UKF.

d =
ñ

(x − xa)2 + (y − ya)2 (5.1)

For the SF algorithms, an 8-dimensional state vector was used, consisting of
x, vx, ax, y, vy, ay, theta, w. In contrast, for the UWB algorithms, the state vector
is 4-dimensional, with x, vx, y, vy.
For the EKF only, the measurement function h(x) is linearized by taking its partial
derivative with respect to the state, and then the Jacobian is evaluated at the point
of current estimate in order to obtain matrix H, defined as follows.

dx = x − xa
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dy = y − ya

H =
è

dx
d

0 0 dy
d

0 0 0 0
é

In EKFSF and UKFSF algorithms, for measurements from other sensors, the
function h(x) is linear and simply extracts the corresponding state variable. As a
result, in EKFSF , matrix H is mostly composed of zeros, with a single 1 in the
position corresponding to the state variable being measured.

Moreover, for both the sensor fusion and UWB implementations of EKF and
UKF, the variance of the UWB measurements is fixed. In particular, for the
experiments conducted under LOS conditions, a very low variance of 0.01 (10 cm)
was chosen since measurements should not present high uncertainty in the absence
of obstacles and should be trusted more with respect to the dynamical model.
Then, the experiments conducted under NLOS conditions were divided into two
categories: soft NLOS and hard NLOS. The first category includes those experi-
ments conducted in the presence of a single obstacle, regardless of the material.
For them, a fixed variance of 0.04 (20 cm) was chosen. The worst-case scenario,
involving multiple metal obstacles, falls under the second category. In this case, a
fixed variance of 0.1 (around 30 cm) was chosen.

Unscented Kalman Filter
UKF uses a set of sigma points to better capture the nonlinearity present in the
model. In this case, sigma points were selected using the function MerweScaled-
SigmaPoints() from the filterpy.kalman module.
To properly select the sigma points, the function requires four parameters: n, that
represents the dimension of the state, α, that regulates how spread the points are
from the mean and its weight with respect to the other points, β, that is chosen
equal to 2 for Gaussian problems, and κ, that is equal to 3-n.
For the UKFUW B, the following values were chosen: n = 4, α = 0.1, β = 2, and
κ = −1. For the UKFSF , instead, n = 8, α = 0.1, β = 2, and κ = −5.

As it is implemented, the UKF generates numerical errors, in particular regarding
the P matrix, that easily becomes non-positive definite after the prediction step,
not allowing the Cholesky decomposition of the P matrix itself. To cope with
this problem, a function, called nearestPD(), was added. This function finds the
nearest positive definite matrix to input. So, each time the P matrix is predicted
or updated, a check on its positiveness is performed. If it is non-positive definite,
the nearestPD() function is called. The Python/Numpy implementation for finding
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the nearest positive-definite matrix was taken from John D’Errico’s port of the
MATLAB code (2013) [24], which credits the work of N.J. Higham (1988) [25].
In this way, the algorithm works for most of the experiments.

Innovative Approach: NN + EKF
As explained in subsection 3.3.2, this last approach makes the EKF adaptive by
adding a NN to better estimate the error on the measurements coming from the
UWB antennas at each time step, and then use this estimation, converted into
variance, in the filter. As a result, the variance is now dynamic.
By analyzing the errors produced by the Neural Network, the filter is able to
recognize which measurements to trust more and which not.
Below there is a comparison between the errors produced by the NN for the same
anchor A1 in different scenarios. On the left, the errors are very small, most of
them are below 10 cm, indeed, they refer to a LOS experiment. In contrast, on the
right, the worst-case scenario involving multiple metal obstacles is depicted, where
the errors are larger, reaching up to 30 cm in some cases.

(a) (b)

Figure 5.1: (a) Errors distribution for anchor A1 under LOS conditions (b) Errors
distribution for anchor A1 under hard NLOS conditions (presence of multiple metal
obstacles).

Then, these errors are converted into variance, in order to use them in the filter.
In particular, it is better to approximate the errors with a line with two saturation
points, accurately choosing the two saturation points at 10−4 and 0.1, as depicted
in Figure 3.7.
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5.3 Tests and Results
This section focuses on the performance evaluation of the different approaches on
the collected dataset. Tests were conducted under both LOS and NLOS conditions,
where LOS is intended only within the area delimited by the four anchors. Outside
this area, the laboratory is filled with potential obstacles, such as people moving,
furniture, and metal objects. NLOS experiments are categorized into two types:
soft NLOS, involving a single obstacle of any material, and hard NLOS, involving
multiple metal obstacles, which represents the worst-case scenario.

LOS conditions
The first set of experiments was conducted under LOS conditions tracing different
trajectories, ranging from simple square paths to more random ones. These tests
show how the different algorithms perform in an almost ideal scenario, free from
obstacles. Comparing these results with the ones coming from more complex and
obstructed scenarios allows for a better understanding of the impact of obstacles
on the localization performance.

Experiment 1: Square paths
Table 5.1 presents a comparison of different positioning algorithms in terms of their
performance metrics, including Root Mean Square Error (RMSE), both along x
and y, and on the overall position, and Mean Absolute Position Error (Mean APE).
The reported values are obtained as averages from six experiments of the same
type.

Algorithms RMSEx[cm] RMSEy[cm] RMSEpos[cm] MeanAPE[cm]
EKFUW B 23.314 27.337 36.05 31.283
UKFUW B 26.874 23.077 35.462 30.407

NN + EKFUW B 23.095 29.407 37.54 33.111
EKFSF 22.93 25.617 34.482 30.475
UKFSF 27.212 22.942 35.649 31.334

Table 5.1: Comparison of different positioning algorithms’ performance in terms
of RMSE, both along x and y, and on the position, and Mean APE. The reported
values are obtained as averages from six experiments of the same type (LOS
conditions - square paths).

In summary, the EKFSF algorithm is the one that improves the most the results
obtained with the EKFUW B, considered as the standard/base approach. Indeed, it
has lower values for all the employed metrics. The other approaches also perform
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well and show some improvements, but only for some of the metrics.

Among the six experiments conducted under similar conditions, a further analysis
of one of them is provided below. In particular, the experiment labeled as bag1 is
examined.
Figure 5.2 shows the partial trajectory on (x, y) plane generated by the different
algorithms, with the ground truth depicted in black. To enhance clarity, only the
partial trajectory is represented, rather than the full one consisting of multiple
identical loops. The following trajectories appear not very smooth due to a lack
of synchronization in the sensor data. Indeed, the employed sensors work at very
different frequencies, ranging from the 5 Hz of the UWB antennas to the 40-50 Hz
of the odometry and IMU. So, to preserve data integrity, it was preferred not to
synchronize them and develop an asynchronous filter that predicts the entire state
every time a new measurement arrives, updating only the state variables affected
by that specific measurement. As a result, for x and y, there are significantly more
predictions than corrections, which causes the trajectory to appear less smooth.

Figure 5.2: Partial trajectory on (x, y) plane - bag1

As said before, outside the area delimited by the four anchors, the laboratory is
filled with furniture or people moving, which could influence the UWB signals.
This is particularly evident in some areas of the graph, where the trajectories of
the algorithms deviate much more from the ground truth compared to other areas,
especially when the UGV is near the boundaries.
Figures below show the Absolute Position Error over the time. In particular,
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Figure 5.3a represents the APE for the UWB algorithms, while Figure 5.3b for
the SF algorithms.

(a) (b)

Figure 5.3: (a) Absolute Position Error for UWB algorithms - bag1 (b) Absolute
Position Error for SF algorithms - bag1.

A more intuitive plot is the one depicted in Figure 5.4. It shows the Cumulative
Distribution Function (CDF) of APE for each algorithm. It tells which is the
probability for an algorithm to have an APE smaller or equal to a certain value.
The further the curve is to the left, the lower the APE will be. So, for example, for
bag1, the algorithm that performs the best is EKFSF .

Figure 5.4: Cumulative Distribution Function (CDF) of Absolute Position Error
- bag1
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Experiment 2: Random trajectories
The second experiment consists in teleoperating the Jackal UGV always under LOS
conditions, but tracing some more random trajectories. As in the first experiment,
from Table 5.2, it is visible that the EKFSF algorithm is the one that improves
the most the results obtained with the EKFUW B.

Algorithms RMSEx[cm] RMSEy[cm] RMSEpos[cm] MeanAPE[cm]
EKFUW B 29.906 32.639 44.355 40.667
UKFUW B 31.919 32.240 45.395 40.619

NN + EKFUW B 30.97 37.082 48.48 45.075
EKFSF 29.469 31.722 43.43 40.405
UKFSF 33.665 33.895 47.795 44.222

Table 5.2: Comparison of different positioning algorithms’ performance in terms
of RMSE, both along x and y, and on the position, and Mean APE. The reported
values are obtained as averages from six experiments of the same type (LOS
conditions - random trajectories).

Among the six experiments conducted under similar conditions, a further analysis
of one of them is provided below. In particular, the experiment labeled as bag12 is
examined.

Figure 5.5: Partial trajectory on (x, y) plane - bag12

43



Localization Algorithms: Analysis and Results

To enhance clarity, Figure 5.5 shows only the partial trajectory on (x, y) plane
generated by the different algorithms, with the ground truth depicted in black.
However, the obtained results refer to full trajectory, since the algorithms were
executed on the full recording of the experiment. The complete trajectory can be
observed in Figure 5.6.

Figure 5.6: Full trajectory on (x, y) plane - bag12

Figures below show the Absolute Position Error over the time. In particular,
Figure 5.7a represents the APE for the UWB algorithms, while Figure 5.7b for
the SF algorithms.

(a) (b)

Figure 5.7: (a) Absolute Position Error for UWB algorithms - bag1 (b) Absolute
Position Error for SF algorithms - bag12.

The CDF of APE below shows that, even though EKFSF and EKFUW B have a
very similar curve, EKFUW B presents some bigger peak values for the Absolute
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Position Error, confirming that, in this particular case, EKFSF performs the best
in localizing the rover.

Figure 5.8: Cumulative Distribution Function (CDF) of Absolute Position Error
- bag12

Soft NLOS conditions
The second set of experiments was conducted under NLOS conditions, with a single
obstacle of different materials, such as metal, cardboard, styrofoam and wood,
placed in various positions. These tests show how the different algorithms are
influenced by the presence of an obstacle based on its type, and how they perform
in a softly obstructed scenario.

Experiment 3: Metal obstacle
The third experiment was conducted in the presence of a metal obstacle, and since
radio waves are electromagnetic waves, it is expected to significantly impact the
signal, making it less powerful when it reaches the anchor and leading to a worse
accuracy in the measurements. In some experimental tests, the scenario is the one
depicted in Figure 5.9a, while in others, the only thing that changes is the obstacle
position.

Table 5.3 shows that all the analyzed algorithms provide considerable improve-
ments with respect to the EKFUW B. In particular, in terms of RMSEpos, EKFSF ,
UKFUW B and UKFSF perform better, with a decrease of 10 cm with respect to
the standard approach. Instead, in terms of Mean APE, the UKFUW B seems to
be the best. NN + EKFUW B also improves the results, but less compared to the
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other algorithms. As expected, localization performance is highly influenced by the
presence of a metal obstacle, indeed, the values of the different metrics are higher
compared to the experiments conducted under LOS conditions.

Algorithms RMSEx[cm] RMSEy[cm] RMSEpos[cm] MeanAPE[cm]
EKFUW B 48.052 37.355 61.272 45.663
UKFUW B 35.616 36.198 50.890 41.166

NN + EKFUW B 37.344 37.466 53.186 46.413
EKFSF 36.225 34.637 50.343 43.526
UKFSF 38.158 33.308 50.736 43.643

Table 5.3: Comparison of different positioning algorithms’ performance in terms
of RMSE, both along x and y, and on the position, and Mean APE. The reported
values are obtained as averages from six experiments of the same type (Soft NLOS
conditions - metal obstacle).

Among the six experiments conducted under similar conditions, a further analysis
of one of them is provided below. In particular, the experiment labeled as bag27 is
examined.

To enhance clarity, Figure 5.10 shows only the partial trajectory on (x, y) plane
generated by the different algorithms, with the ground truth depicted in black.
However, the obtained results refer to full trajectory, since the algorithms were
executed on the full recording of the experiment. The complete trajectory can be
observed in Figure 5.9b.

(a) (b)

Figure 5.9: (a) Soft NLOS scenario - metal obstacle centered (b) Full trajectory
on (x, y) plane - bag27.

46



Localization Algorithms: Analysis and Results

Figure 5.10: Partial trajectory on (x, y) plane - bag27

Figures below show the Absolute Position Error over the time. In particular,
Figure 5.11a represents the APE for the UWB algorithms, while Figure 5.11b for
the SF algorithms.

(a) (b)

Figure 5.11: (a) Absolute Position Error for UWB algorithms - bag1 (b) Absolute
Position Error for SF algorithms - bag27.

The CDF of APE below shows that even though the standard approach, EKFUW B,
is quite good, it presents some very high peak values for the Absolute Position
Error, clearly visible in Figure 5.11a too. All the other analyzed algorithms
provide improvements with respect to EKFUW B, about 90% of their error is below
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40-50 centimeters, and show even smaller peak values. In particular, EKFSF ,
NN + EKFUW B and UKFSF seems to be the best in this case.

Figure 5.12: Cumulative Distribution Function (CDF) of Absolute Position Error
- bag27

Experiment 4: Cardboard obstacle
The fourth experiment was conducted in the presence of a cardboard obstacle
centered in the area delimited by the four anchors, as depicted in Figure 5.14a.

As expected, Table 5.4 shows significantly lower values compared to the experiment
involving a metal obstacle, as cardboard causes less interference with radio waves.
In particular, in this scenario, EKFUW B and EKFSF algorithms show the best
performance, localizing the rover with an error smaller than 40 centimeters.

Algorithms RMSEx[cm] RMSEy[cm] RMSEpos[cm] MeanAPE[cm]
EKFUW B 28.596 27.343 39.658 36.446
UKFUW B 35.626 29.068 45.986 40.635

NN + EKFUW B 30.834 31.39 44.119 40.865
EKFSF 28.401 27.801 39.841 37.045
UKFSF 38.204 29.512 48.281 44.326

Table 5.4: Comparison of different positioning algorithms’ performance in terms
of RMSE, both along x and y, and on the position, and Mean APE. The reported
values are obtained as averages from six experiments of the same type (Soft NLOS
conditions - cardboard obstacle).
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Among the six experiments conducted under similar conditions, a further analysis
of one of them is provided below. In particular, the experiment labeled as bag32 is
examined.
To enhance clarity, Figure 5.13 shows only the partial trajectory on (x, y) plane
generated by the different algorithms, with the ground truth depicted in black.
However, the obtained results refer to full trajectory, since the algorithms were
executed on the full recording of the experiment. The complete trajectory can be
observed in Figure 5.14b.

Figure 5.13: Partial trajectory on (x, y) plane - bag32

(a) (b)

Figure 5.14: (a) Soft NLOS scenario - cardboard obstacle centered (b) Full
trajectory on (x, y) plane - bag32.
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Figures below show the Absolute Position Error over the time. In particular,
Figure 5.15a represents the APE for the UWB algorithms, while Figure 5.15b for
the SF algorithms.

(a) (b)

Figure 5.15: (a) Absolute Position Error for UWB algorithms - bag1 (b) Absolute
Position Error for SF algorithms - bag32.

The CDF of APE below confirms that, in this particular case, EKFSF and
EKFUW B algorithms performs the best in localizing the rover.

Figure 5.16: Cumulative Distribution Function (CDF) of Absolute Position Error
- bag32
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Experiment 5: Styrofoam obstacle
The fifth experiment involves a styrofoam obstacle centered in the area delimited
by the four anchors, as depicted in Figure 5.17a.

Table 5.5 shows values that are very similar to those obtained in the experi-
ment with the cardboard obstacle, as styrofoam has minimal effect on the radio
waves too. EKFSF is the only algorithm that slightly improves the results obtained
with the standard EKFUW B. So, as in the fourth experiment, these two algorithms
are the ones that perform the best.

Algorithms RMSEx[cm] RMSEy[cm] RMSEpos[cm] MeanAPE[cm]
EKFUW B 34.538 30.575 46.189 40.292
UKFUW B 38.774 28.694 48.25 41.931

NN + EKFUW B 36.434 33.167 49.325 44.042
EKFSF 34.108 30.361 45.722 40.684
UKFSF 41.529 30.149 51.332 46.141

Table 5.5: Comparison of different positioning algorithms’ performance in terms
of RMSE, both along x and y, and on the position, and Mean APE. The reported
values are obtained as averages from six experiments of the same type (Soft NLOS
conditions - styrofoam obstacle).

Among the six experiments conducted under similar conditions, a further analysis
of one of them is provided below. In particular, the experiment labeled as bag39 is
examined.

(a) (b)

Figure 5.17: (a) Soft NLOS scenario - styrofoam obstacle centered (b) Full
trajectory on (x, y) plane - bag39.
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To enhance clarity, Figure 5.18 shows only the partial trajectory on (x, y) plane
generated by the different algorithms, with the ground truth depicted in black.
However, the obtained results refer to full trajectory, which can be observed in
Figure 5.17b.

Figure 5.18: Partial trajectory on (x, y) plane - bag39

Figures below show the Absolute Position Error over the time. In particular,
Figure 5.19a represents the APE for the UWB algorithms, while Figure 5.19b for
the SF algorithms.

(a) (b)

Figure 5.19: (a) Absolute Position Error for UWB algorithms - bag1 (b) Absolute
Position Error for SF algorithms - bag39.
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The CDF of APE below confirms that, in this particular case, EKFSF and
EKFUW B algorithms performs the best in localizing the rover.

Figure 5.20: Cumulative Distribution Function (CDF) of Absolute Position Error
- bag39

Experiment 6: Wooden obstacle
The sixth experiment was conducted in the presence of a wooden obstacle, which
is expected to interfere with the radio waves a bit more than cardboard and
styrofoam, but less than metal. Various scenarios were recreated by placing the
obstacle in different positions, including centering it within the area delimited by
the four anchors or placing it directly in front of one of the anchors, as depicted in
Figure 5.22a.

Algorithms RMSEx[cm] RMSEy[cm] RMSEpos[cm] MeanAPE[cm]
EKFUW B 43.653 34.952 56.523 43.555
UKFUW B 35.685 28.786 45.902 39.219

NN + EKFUW B 37.349 36.023 52.007 45.975
EKFSF 35.718 31.984 48.113 42.261
UKFSF 38.093 29.794 48.41 43.296

Table 5.6: Comparison of different positioning algorithms’ performance in terms
of RMSE, both along x and y, and on the position, and Mean APE. The reported
values are obtained as averages from six experiments of the same type (Soft NLOS
conditions - wood obstacle).
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Table 5.6 shows that, in terms of RMSEpos, all the analyzed algorithms provide
considerable improvements with respect to EKFUW B, specifically the UKFUW B.
In terms of Mean APE, instead, only the NN + EKFUW B algorithm does not
provide any improvements, leading to a worsening of the results, probably due to a
more variability in the y-direction accuracy. In contrast, the UKFUW B algorithm
also demonstrates strong performance in terms of Mean APE.

Among the six experiments conducted under similar conditions, a further analysis
of one of them is provided below. In particular, the experiment labeled as bag53 is
examined.

To enhance clarity, Figure 5.21 shows only the partial trajectory on (x, y) plane
generated by the different algorithms, with the ground truth depicted in black.
However, the obtained results refer to full trajectory, since the algorithms were
executed on the full recording of the experiment. The complete trajectory can be
observed in Figure 5.22b.

Figure 5.21: Partial trajectory on (x, y) plane - bag53

Regarding Figure 5.21, as for the previous experiments, only in some areas of the
graph the filters significantly deviate from the ground truth, due to the surrounding
environment. The UKFUW B and UKFSF are the algorithms that most closely
follow the ground truth.
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(a) (b)

Figure 5.22: (a) Soft NLOS scenario - wood obstacle centered (b) Full trajectory
on (x, y) plane - bag53.

Figures below show the Absolute Position Error over the time. In particular,
Figure 5.23a represents the APE for the UWB algorithms, while Figure 5.23b for
the SF algorithms.

(a) (b)

Figure 5.23: (a) Absolute Position Error for UWB algorithms - bag1 (b) Absolute
Position Error for SF algorithms - bag53

The CDF of APE below shows that, in this particular case, UKFUW B, EKFSF

and UKFSF algorithms perform the best.
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Figure 5.24: Cumulative Distribution Function (CDF) of Absolute Position Error
- bag53

Hard NLOS conditions
The third and last set of experiments was conducted under hard NLOS conditions,
thus multiple metal obstacles were involved. In particular, a total of six experiments
were performed, two for each obstacle configuration. Due to the significant presence
of metal in the environment, a further worsening of the results is expected.

Experiment 7: Multiple metal obstacles

Algorithms RMSEx[cm] RMSEy[cm] RMSEpos[cm] MeanAPE[cm]
EKFUW B 61.299 61.353 87.505 76.783
UKFUW B 52.185 52.717 74.48 62.141

NN + EKFUW B 62.385 63.567 89.75 79.361
EKFSF 59.896 56.692 83.218 74.734
UKFSF 51.749 52.151 73.867 61.375

Table 5.7: Comparison of different positioning algorithms’ performance in terms
of RMSE, both along x and y, and on the position, and Mean APE. The reported
values are obtained as averages from six experiments of the same type (Hard NLOS
conditions - multiple metal obstacles).

Table 5.7 shows that most of the algorithms provide considerable improvements
with respect to EKFUW B. In particular, UKFUW B and UKFSF show the lowest
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values for all the considered metrics, decreasing both the RMSEpos and Mean
APE of around 15 centimeters. Although the improvement is minimal (around 1–2
cm), sensor fusion still enhances accuracy, especially in more challenging scenarios
like this one. NN + EKFUW B algorithm, instead, is the only one that, for this
particular case, does not seem to provide any improvements.

Among the six experiments conducted under similar conditions, a further analysis
of one of them is provided below. In particular, the experiment labeled as bag59 is
examined.

To enhance clarity, Figure 5.25 shows only the partial trajectory on (x, y) plane
generated by the different algorithms, with the ground truth depicted in black.
However, the obtained results refer to full trajectory, since the algorithms were
executed on the full recording of the experiment. The complete trajectory can be
observed in Figure 5.26b.
The significant divergence between the estimated trajectories and the ground truth
highlights the impact of the four obstacles present in the environment, which heavily
influence the localization performance, leading to a worsening of the results. This
suggests that UWB-based localization struggles in this specific setup, depicted in
Figure 5.26a, due to the signal interference caused by the obstacles.

Figure 5.25: Partial trajectory on (x, y) plane - bag59
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(a) (b)

Figure 5.26: (a) Hard NLOS scenario - multiple metal obstacles (b) Full trajectory
on (x, y) plane - bag59

Figures below show the Absolute Position Error over the time. In particular,
Figure 5.27a represents the APE for the UWB algorithms, while Figure 5.27b
for the SF algorithms. As expected, the APEs are much higher compared to the
previous experiments, with the UKFUW B and UKFSF showing the lowest ones.

(a) (b)

Figure 5.27: (a) Absolute Position Error for UWB algorithms - bag1 (b) Absolute
Position Error for SF algorithms - bag59

The CDF of APE below shows that the EKFSF slightly improves the overall
performance compared to the EKFUW B. In contrast, both the UKFUW B and
UKFSF , present a much better curve, significantly shifted to the left. With these
two algorithms, about 90% of the errors is below 60-65 centimeters, whereas for
the other algorithms, about 90% of the errors falls below 1 meter.
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Figure 5.28: Cumulative Distribution Function (CDF) of Absolute Position Error
- bag59
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Chapter 6

Conclusions and Future
Works

This work aimed to implement and analyze different localization algorithms for
precisely tracking a UGV by exploiting the UWB technology, including standard
approaches as EKFUW B and UKFUW B algorithms, sensor fusion-based variants
(EKFSF and UKFSF ), and an innovative approach (NN + EKFUW B) for a more
adaptive localization.

The results obtained with the experimental tests demonstrate that, for the EKF,
sensor fusion can significantly enhance localization performance. Indeed, in all the
performed experiments, it achieved better results compared to the EKFUW B. In
particular, under LOS conditions and in the presence of a cardboard or styrofoam
obstacle, that slightly influences radio waves, it provides an improvement of a
few centimeters. While in cases with metal or wooden obstacles the improvement
in RMSEpos was around 10 centimeters, reaching up to 40 centimeters in the
worst-case scenario. For the UKF, instead, sensor fusion was only effective in more
complex situations, with multiple obstacles, showing the benefits of integrating
additional sensors to mitigate the errors caused by the UWB signal reflections and
distortions. In particular, for the last and most complex experiment, the UKFSF

algorithm performs even better than the EKFSF , making it the optimal choice
for this case. However, one drawback of the UKF is that, as it is implemented,
it generates a lot of numerical errors, in particular regarding the covariance ma-
trix P that easily becomes non-positive definite, limiting its use. The last and
most innovative approach, the NN + EKFUW B algorithm, also provides some
improvements compared to EKFUW B in several experiments, but not as much as
the EKFSF . Moreover, due to its even higher computational complexity, it turns
out not to be the best choice. However, this approach should not be excluded,
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as it may offer valuable insights with further testing and optimization in future
works. In particular, in this work, the anchors were placed on the floor, so raising
them on pedestals and increasing their number could reduce the interference from
ground-level obstacles and lead to more precise measurements. Consequently, this
could provide cleaner data for the training of the NN, improving the model’s
accuracy and the precision of the resulting errors.
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Appendix A

Jackal UGV

The Clearpath Jackal UGV is a four wheeled, skid-steering mobile robot (SSMR).
In this kind of robots there is no explicit steering mechanism. Indeed, each pair
of wheels is actuated by a single motor, in order to control the movement and
the steering by changing the velocity and the direction of rotation of each pair of
wheels. For example, if the wheels on the left side turn more slowly with respect
to the wheels on the right side, the robot will turn left, while if the wheels on the
left side move forward and the wheels on the right side backward, the robot will
rotate in place.
For SSMRs, slippage is essential. When a pair of wheels moves more slowly or
in opposite direction with respect to the other one, the wheels on the slower or
opposite side will slip, or skid, on the surface, leading to a small lateral movement.
The combination of versatile movement, adaptability to different surfaces, and
robust design makes skid-steering mobile robots well-suited for all-terrain applica-
tions.

A.1 Kinematic Model
In this section the mathematical model of a skid-steering mobile robot is provided,
assuming it moves on a planar surface.
Two reference frames (RFs) are required: a fixed reference frame (Xg, Yg, Zg) and a
body reference frame (xl, yl, zl) with the origin located at the center of mass (COM)
of the robot itself. The coordinates of the COM in the fixed RF are (X, Y, Z),
where Z is a constant since the robot only moves on the plane. Therefore, the
linear and angular velocities are expressed as follows: v=[vx, vy, 0]T , w=[0, 0, w]T .
If q=[X, Y, θ]T denotes the vector of generalized coordinates, q̇=[Ẋ, Ẏ , θ̇]T denotes
the vector of generalized velocities.
The following equation represents the relationship between Ẋ and Ẏ , along with
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the local velocity components vx and vy.C
Ẋ
Ẏ

D
=

C
cos θ − sin θ
sin θ cos θ

D C
vx

vy

D
(A.1)

Figure A.1 shows the body diagram of the robot, depicting the same relationship.
Moreover, in the planar case, θ̇=w.

Figure A.1: Free body diagram. [26]

Equation A.1 describes the free-body kinematics. No restrictions on the SSMR
plane movement are imposed, so the relationship between wheel velocities and local
velocities should be better analyzed.
Each wheel rotates with an angular velocity wi(t), where i=1, 2, ..., 4, and has a
negligible thickness and a single contact point, Pi, with the plane.
Despite the other wheeled vehicles, the lateral velocity of the SSMR is generally
nonzero, due to the slippage phenomenon typical of these robots. However, for
simplicity, a negligible slip between the wheels and the surface is considered.
So, the following equation can be derived:

vix = riwi (A.2)

where vix is the x component of the velocity vector of the i-th wheel in the
local frame, and ri the rolling radius of that wheel. In the figure below, the radius
vectors di = [dix diy]T and dC = [dCx dCy]T are represented in the local reference
frame from the instantaneous center of rotation (ICR).
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Figure A.2: Wheel velocities. [26]

By using geometry, the following equations have been derived:

∥vi∥
∥di∥

= ∥v∥
∥dC∥

= |w| (A.3)

that, written in a more detailed form, becomes:

vix

−diy

= vx

−dCy

= viy

dix

= vy

dCx

= w (A.4)

Since the coordinates of the ICR are (−dxC , −dyC), equation A.4 can be rewritten
as:

vx

yICR

= − vy

xICR

= w (A.5)

Moreover, from Figure A.2 the following relationships arise:

d1y = d2y = dCy + c

d3y = d4y = dCy − c

d1x = d4x = dCx − a

d2x = d3x = dCx + b

(A.6)

"where a,b and c are positive kinematic parameters", as written in [26]. Com-
bining A.4 and A.6 the following equalities can be derived:
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vL = v1x = v2c

vR = v3x = v4x

vF = v2y = v3y

vB = v1y = v4y

(A.7)

“where vL and vR denote the longitudinal coordinates of the left and right wheel
velocities, vF and vB are the lateral coordinates of the velocities of the front and
rear wheels, respectively”, as stated in [26].
Additional relationships can be obtained by combining A.4 and A.7:

vL

vR

vF

vB

 =


1 −c
1 c
0 −xICR + b
0 −xICR − a


C
vx

w

D
(A.8)

and assuming ri = r for each wheel:

ww =
C
wL

wR

D
= 1

r

C
vL

vR

D
(A.9)

“where wL and wR are the angular velocities of the left and right wheels,
respectively” [26].
By using A.8 and A.9, the relationship between the angular velocities of the wheels
and the velocities of the robot, is the following one:

η =
C
vx

w

D
= r

C
wL+wR

2−wL+wR

2c

D
(A.10)

The accuracy of A.10 highly depends on the slippage phenomenon, decreasing as
long as the slippage increases. To complete the kinematic model of the SSMR, the
following velocity constraint is necessary:

vy + xICRθ̇ = 0 (A.11)

since in not integrable, it represents a nonholonomic constraint. In the Pfaffian
form becomes: è

− sin θ cos θ xICR

é è
Ẋ Ẏ θ̇

éT
= A(q)q̇ = 0 (A.12)

Since q̇ is in the null space of A, the kinematic model of a SSMR is:

q̇ = S(q)η (A.13)

where ST(q)AT(q) = 0 and S(q) is defined as follows:
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S(q) =

cos θ xICR sin θ
sin θ −xICR cos θ

0 1

 (A.14)

For in depth analysis, including the dynamical model and the drive model of the
SSMR, see [26].
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