
POLITECNICO DI TORINO

Master’s Degree
in Computer Engineering

Master Thesis

Development and evaluation of a platform for the
automatic extraction and processing of PCB

information from schematics and placement files

Supervisors Candidate
Prof. Paolo Bernardi Alessio Cappello
Ph.D. Giorgio Insinga

Academic Year 2023-2024

Did you realize
that you were a champion
in their eyes?

Summary

The invention of the Printed Circuit Board (PCB) led to different breakthroughs
in the electronic world. PCBs are the crucial basis for virtually every electronic
device and find application in several fields, ranging from medical to automotive
and IoT to aerospace. An extensive number of components find a place on the
topmost or the bottom layer, and they are connected following an intricate tangle
of connections. Two types of files are essential for understanding how a PCB
works: placement (describes the layout of components on one layer) and schematic
(reports the connections and the pins for each component).
Manually testing a PCB requires looking for a specific component or connection in
a placement or schematic file, which in turn requires the tester to look alternatively
between the board and the manual. Avoiding looking at the manual for each
component and connection would result in an acceleration of the testing phase,
apart from reducing human errors: this can be achieved by synthesising all the
information required for testing in an Augmented Reality (AR) application. The
idea is to have a virtual layout that superimposes the board itself, which allows
the tester to verify the correct functioning of the components without needing to
inspect the manual.
Certainly, some information processing is needed to reach the goal: by just giving
as input the placement and the schematic files of interest, the proposed program
automatically extracts the information required for the AR testing phase. The
application relies on text extraction packages, PDF manipulation tools and image
processing libraries. The user has to upload the manual and select the placement
or schematic files to analyse: then an ad hoc pipeline is launched distinguishing the
operations based on the type of file currently processed. Some manual corrections
may be required since components are obtained from placement files using an edge
detection algorithm, that may encounter troubles and limitations.
At the end of the process, the extracted and elaborated information is written
in some textual files respecting a format suitable for the AR application, keeping
track of only those components appearing in placement and schematic files of
interest.

4

Acknowledgements

Non posso che iniziare i ringraziamenti se non rivolgendomi alla mia famiglia: vi
ringrazio per tutto l’amore e il supporto, nonostante spesso e volentieri non me lo
meriti realmente. Seppur da un punto di vista scolastico e accademico sia stato
il vostro orgoglio, non so se lo stesso può essere detto per il mio ruolo di figlio e
fratello. Non si può essere perfetti, ma grazie per accettarmi per come sono.
Ci tengo a ringraziare il prof. Paolo Bernardi e Giorgio Insinga per l’opporunità
datomi. Apprezzo che mi abbiate lasciato carta bianca per alcune scelte funzionali
e stilistiche, ma non avrei mai ottenuto il risultato finale senza la vostra guida e il
vostro riscontro.
Mentirei se dicessi che questi due anni a Torino non siano stati impegnativi e
turbolenti talvolta: fortunatamente, però, ho incontrato tante persone con cui
condividere momenti sereni e struggenti, e di questo ne sono profondamente grato.
Ringrazio in particolare Francesca, Enf, Marco, Foros, Simone e Kaliroi: in modi
diversi, siete state le persone che più mi sono state vicino e su cui ho potuto sempre
contare.
Una menzione speciale sento di doverla fare nei confronti di Davide, l’amico con
cui ogni sciocchezza può trasformarsi in una risata (vedi l’evento) e al tempo stesso
posso avere un confronto costruttivo, e Angelo, la persona che più vedevo antitet-
ica a me inizialmente nonostante la vicinanza in termini di provenienza, ma che si
è poi rivelato molto simile a me.
Un supporto importante l’ho ricevuto anche da diverse persone del mio paesino
sperduto di una qualunque provincia siciliana: un ringraziamento particolare va
dunque ad Antonio, Nicolas, Mattia e Klevio, per non avermi fatto tagliare defini-
tivamente i contatti con la nostra stupenda ma dannata terra.
Infine, ringrazio in generale tutte le persone che, in entità più o meno rilevante,
hanno contribuito a percepire questo percorso meno difficile di quello che in realtà
è. Non posso prevedere il futuro e non so quanti di voi saranno ancora al mio
fianco, ma non posso che esservi riconoscente.

5

Contents

List of Tables 8

List of Figures 9

1 Introduction 11
1.1 PCB Testing . 11
1.2 Contribution . 12

2 Electronic Support 15
2.1 Printed Circuit Board . 15
2.2 PCB Files . 16

2.2.1 Schematic file . 16
2.2.2 Placement file . 16

3 Software Support 19
3.1 Packages . 19

3.1.1 PDF manipulation . 19
3.1.2 Image processing . 20
3.1.3 Graphical User Interface . 20

4 Application overview 21
4.1 Execution flow . 21
4.2 Start menu . 23
4.3 PDF GUI . 24
4.4 Text extraction . 28

4.4.1 Board outline detection . 28
4.5 Placement components definition 29

4.5.1 Shapes assignment . 29
4.5.2 Manual correction GUI . 35

4.6 Matching phase . 40
4.6.1 Pins text extraction . 40

6

4.7 Highlighting GUI . 41

5 Conclusions 47

A Canny edge detector 49

B Connections graph extraction 51

7

List of Tables

4.1 Data structures overview . 30

8

List of Figures

2.1 Schematic file image example . 17
2.2 Placement file image example . 18
4.1 Execution flow diagram . 22
4.2 Start menu . 23
4.3 Initial GUI, no PDF loaded . 24
4.4 Initial GUI, PDF loaded . 25
4.5 Initial GUI, red crop defined . 26
4.6 Initial GUI, crop confirmation . 27
4.7 Placement file given as input . 32
4.8 Assignment image obtained . 33
4.9 Comparative zoom of input and output 34
4.10 Centroid GUI, example . 35
4.11 Centroid GUI, pins definition . 36
4.12 Centroid GUI, pins positioning . 37
4.13 Centroid GUI, defined pins displaying 38
4.14 Centroid GUI, hidden labels . 39
4.15 Highlighting GUI, empty . 41
4.16 Highlighting GUI, schematic displayed 42
4.17 Highlighting GUI, buttons clicked 43
4.18 Highlighting GUI, placement highlighting 44
4.19 Highlighting GUI, research window 45
5.1 Connections extraction, schematic example 52
5.2 Connections extraction, extracted components 53
5.3 Connections extraction, extracted connections 54
5.4 Connections extraction, first-stage connected components 55
5.5 Connections extraction, final result 56

9

Finally free, the butterfly sheds light on
situations
That the caterpillar never
considered
Ending the internal struggle
Although the butterfly and caterpillar
are completely different
They are one and the same

Chapter 1

Introduction

1.1 PCB Testing
Since the invention of the Printed Circuit Board (PCB) in 1936 by the Austrian
engineer Paul Eisler, the electronic world experienced a series of breakthroughs.
PCBs enabled new levels of miniaturization, allowed the development of advanced
circuits and made industrial production easier and more reliable. Since its inven-
tion, the density of components in a PCB has always been increasing. Nowadays,
a PCB is a complex mix of disparate components connected by small stripes of
copper called traces. A modern PCB has several interconnected layers, with traces
that can freely change layers through vias.
The design of these boards requires a not indifferent amount of effort, but it is just
the beginning: once the PCB has been manufactured, it should be fully tested to
assess its correct behaviour. Connections between components need to be checked,
as well as shortages between signals near each other. Most of the tests are often
automatised in the mass production environment when the design is fixed and no
debugging has to be performed. However, manual tests are essential during the
prototyping and ramp-up phases.
To ease the testing phase, especially when manual intervention is needed, some
test points that are easily accessible to the test engineer’s oscilloscope probes are
left on the PCB. When a component has been selected to be tested, the test engi-
neer needs to find the right location to sample on the PCB under test, and finding
the correct location on a complex board full of components and test points is not
a trivial task.
The entire process can be summarised in the following steps:

• Select a component to test from the board’s schematic

• Find the component’s location on the board’s placement file

11

Introduction

• Finally, look for the component on the PCB in the location found in the
placement file

These steps must be repeated for each component the test engineer has to test.
With complex PCBs, a significant amount of time is spent looking for a specific
component. Additionally, human errors are common and can lead to testing wrong
components with related test quality issues.
Several solutions already exist in various augmented reality forms to mitigate the
risks of testing the wrong components and to let the test engineer save some time.
The simplest solution is to point a PC webcam to the PCB and have the augmented
reality application display the results on the monitor Kowalke et al. [2024]: this
is not convenient, though, as the information is projected on a nearby computer
instead of having it overlaid directly on the board. Another solution requires a
complex setup with a projector and several sensors to project the information
directly on the physical board Ojer et al. [2020]. The drawback of this solution is
that the setup is not easily portable, requiring a certain calibration effort.
Furthermore, all the methods present in the literature require access to the full
design files of the PCB itself. The design files are available only to the designers
of the PCB, but not to the customers who want to test their board or even the
manufacturers who may receive only the production files.

1.2 Contribution
The innovative idea to speed up PCB testing is to use only the schematics and
placement files: the necessary information is extracted and manipulated so that it
can serve as the basis for an Augmented Reality application.
By equipping a headset, the test engineer would have access to all relevant infor-
mation (such as components’ location and connections) without having to move
their eyes recurrently from the board to the manual and back again.
In this work, we show how information is extracted from the placement files and
schematics and processed in a format that will later be required for the Aug-
mented Reality layer. In this work, the term "placement" refers to the silkscreen,
the topmost layer of a PCB, used as the reference that indicates the placement of
the components on a PCB. This is, therefore, the first step towards achieving the
proposed end goal. This work is structured as follows:

• In Chapter 2, a brief description of the electronic support involved is treated,
talking about PCBs and related files.

• In Chapter 3, there is a short review of the existing software packages that
support the application.

12

1.2 – Contribution

• In Chapter 4, the application’s functionalities are broken down and explained
in detail.

• In Chapter 5, conclusions are drawn and possible extensions and future work
are delineated.

13

14

Chapter 2

Electronic Support

2.1 Printed Circuit Board

A Printed Circuit Board (PCB) is a fundamental element in nearly all contempo-
rary electronic devices, representing simultaneously innovation and functionality
in the electronic world. A PCB represents a well-organised complex of electronic
components, including microprocessors, resistors, capacitors and connectors.
PCBs are practically everywhere. In consumer electronics, PCBs are found in
smartphones, laptops, tablets and home appliances, providing efficient and reliable
performance. In the automotive industry, they are used in engine management sys-
tems, navigation devices and sensors, enhancing vehicle safety and connectivity.
Aerospace and defence sectors use PCBs in radar, communication systems and
control units, benefiting from advanced PCB technologies like high-frequency and
rigid-flex boards to ensure optimal functionality in demanding environments.
The development of a PCB starts with the design stage, during which engineers
and designers carefully compose the circuit layout. This stage encompasses the
creation of detailed schematics, which are subsequently transformed into a physi-
cal arrangement that maximises the operational efficiency and exploits the spatial
limitations of the electronic device.
Through various chemical and mechanical techniques, the copper layer is worked
to create the circuit pathways that will eventually accommodate electronic compo-
nents. These pathways, known as traces, facilitate the essential electrical connec-
tions among different circuit elements, ensuring the proper routing of signals and
power across the board. Furthermore, the PCB may incorporate vias, small plated
openings that enable connections between multiple layers in multi-layer PCBs.
PCBs give benefits for their characteristic to enhance the assembly process and
reliability of electronic circuits. By offering a solid plan for component placement
and soldering, PCBs reduce the likelihood of errors and simplify the complex wiring

15

Electronic Support

that would otherwise be necessary for a point-to-point assembly. This results in
more compact, robust and economically viable electronic devices.

2.2 PCB Files
The design and manufacturing of a PCB depend on a variety of specialised files that
describe every detail of the board’s layout, structure and component placement.
Among these files, it is possible to list: Gerber files, used to describe the PCB’s
layers, including copper traces, solder masks, silkscreens and the board outline,
Excellon Drill files, used to specify the locations, sizes and depths of holes in the
PCB, Bill of Materials, used as a list of all components used on the PCB, including
part numbers, descriptions and quantities, essential for component sourcing and
assembly. Two other files are of interest in this work, analysed in the two following
subsections: schematics and placements files.

2.2.1 Schematic file
A schematic file is a detailed diagram illustrating the interconnections among
various electronic components constituting an electrical circuit. Each component
is drawn as a specific symbol that indicates its type and electrical properties such
as value, polarity and pin arrangement.
Schematics allow designers to grasp the flow of signals, the power distribution
and the interactions between components, thereby facilitating the identification of
design issues before moving to the physical layout stage. Indeed, test engineers
can perform simulations directly from the schematic, without the need for physical
prototyping.
An example schematic image is shown in Fig. 2.1.

2.2.2 Placement file
A placement file acts as a map of the electronic components that need to be placed
on the board: it details the exact locations, orientations and specifications of all
components. This is a crucial file for automated assembly machines, providing pre-
cise coordinates for each component’s placement on the PCB along with essential
data such as component reference namings, rotation angles and side of the board
(top or bottom) where the component should be mounted.
These files serve as a relevant reference during the inspection and testing phases,
helping engineers check that components are correctly placed according to the
design specifications: any discrepancies between the placement file and the assem-
bled board can be quickly identified and corrected. An example placement image

16

2.2 – PCB Files

is shown in Fig. 2.2.

Figure 2.1. Schematic file image example

17

Electronic Support

Figure 2.2. Placement file image example

18

Chapter 3

Software Support

3.1 Packages
The proposed tool has been written entirely in Python, with the support of differ-
ent types of packages: PDF manipulation, image processing, and graphical user
interfaces.

3.1.1 PDF manipulation
The following packages have been used to work on PDF files, a usual format for
the boards’ manuals: PyMuPDF (fitz), pdfplumber and pdf2image.
PyMuPDF Artifex [2024] is an open-source high-performance Python library for
data extraction, analysis, conversion and manipulation of PDF and other docu-
ments. It is the reference package when the application needs to open, display and
manipulate PDFs: for instance, when it is required to extract text from schematic
files, this library is the one to be used since it provides the feature of extracting
text blocks.
Pdfplumber jsvine [2015] is a package specifically designed for extracting data from
PDF files, with high performance in obtaining text, tables, images and other con-
tents present in PDF files. It is effective in PDF parsing, enabling some advanced
functionalities. In the application, it is used to extract text from placement, since
it can extract single words effectively.
Pdf2image Belval [2017] is a library designed to convert PDF pages into images.
It acts as a wrapper around PDF rendering libraries, in this case Poppler freedesk-
top.org [2005], facilitating the conversion of each page of a PDF into high-quality
images in formats like PNG, JPEG or TIFF. In the application it is used to con-
vert the schematics and placement files into images, making them suitable for the
following steps of image processing.

19

Software Support

3.1.2 Image processing
The following packages have been used to open, manipulate and extract informa-
tion from images: PIL and OpenCV.
PIL (Python Imaging Library) Clark [2015] is one of the most popular libraries for
image processing. It provides several tools for opening, manipulating and saving
different image file formats. It is the default choice when it is needed to only show
images without performing peculiar manipulations.
OpenCV (Open Source Computer Vision Library) Bradski [2000] is an open-source
library widely diffused for real-time computer vision and image processing tasks.
It encapsulates advanced tools and algorithms that cover a broad range of image
and video processing needs. Inside the application, it is used to draw on existing
images or from scratch. For instance, it is used to visualise the outcome of the
shape detection (treated later) after applying the Canny edge detection algorithm
(treated in Appendix A).

3.1.3 Graphical User Interface
Every Graphical User Interface (GUI) has been developed using tkinter Lundh
[1999], the standard GUI toolkit for Python used to create intuitive graphical
user interfaces quickly and easily. It offers numerous widgets such as buttons,
labels, text boxes, menus, canvas, and more. It is used to create every GUI of the
application: manual loading, components manual correction and pin definition,
placement and schematic components highlighter.

20

Chapter 4

Application overview

4.1 Execution flow

The application starts showing a GUI where the user has to upload the PDF board
manual. Once opened, it is possible to go through the PDF pages and define sev-
eral crops; for each crop, the user has to specify whether it is a placement or a
schematic, and in the former case if it represents the top or the bottom layer. Af-
ter this phase, each crop goes through the text extraction phase: the entire page
where a crop has been taken is processed, but only the words retained inside the
rectangle are kept. The outcome of this phase is a textual file per crop containing
information about the extracted text.
At this point, crops representing placement files go through the shapes assignment
phase: the Canny edge detector analyses the crop (converted from PDF to image)
to extract edges to be composed into significant shapes (shapes with a tiny area
are discarded). For each shape, the geometric centroid is calculated. A trivial
algorithm assigns a component label previously extracted to the shape whose cen-
troid is the closest. This phase is not error-free: a manual correction GUI has
been set up such that the user can correct any mistakes or misses, other than
defining the number of pins and geometry for a shape. The outcome of this phase
is a textual file per placement file containing the updated information about the
defined components.
Schematic crops are further processed after the user ends the manual correction
phase for placement files: only the common components between placement files
and schematics are kept in a textual file. Another textual file is produced about
the pins: at the current state, the pins are extracted by looking inside the compo-
nents that accommodate pins. A specific colour is used to define these components
inside a schematic: in this way, only the labels inside areas of the given colour are

21

Application overview

kept. Furthermore, a support file in the desired format for the AR phase is pro-
duced for each placement file.
In the end, a highlighting GUI allows the user to select components on a schematic
crop by clicking the relative button. When the user switches to a placement crop,
the components relative to the clicked buttons are highlighted.
The execution flow is schematised in Fig. 4.1.

Figure 4.1. Execution flow diagram

22

4.2 – Start menu

4.2 Start menu
The application shows a small window asking for the action to be performed when
launched. As shown in Fig. 4.2, there are three buttons: Load a new manual,
Correct centroids and Compare saved imges.
Load a new manual is used to follow the entire execution flow, allowing the user
to upload a PDF file of a board manual and select the crops of placements and
schematics, as explained in Sec. 4.3.
Correct centroids allows the user to keep the crops defined in the last session and
move directly to correcting the centroids and the pins, as explained in Sec. 4.5.2.
Compare saved images is used only to access the highlighting GUI to identify where
a component is located on both placement and schematic, as explained in Sec. 4.7.

Figure 4.2. Start menu

23

Application overview

4.3 PDF GUI
The application starts with an empty window, where some buttons appear as
shown in Fig. 4.3. The File menu allows the user to load and display a PDF from
mass storage.

Figure 4.3. Initial GUI, no PDF loaded

After opening a PDF of a board, the first page is displayed, as shown in Fig. 4.4.
A top bar is now available, containing arrow buttons to navigate the file and an
entry field to input directly the page number to display after hitting the Enter
button. The keyboard’s arrow buttons are handled in a manner that the user can
also navigate the document by pressing them.
At this stage, the user can define the placement and schematic crops to analyse.
To do so, they can click and drag over the window to define a red rectangle: if
mistakes are made, the user can click the Redo button or just click and drag again.
An example of this action is shown in Fig. 4.5
To confirm a crop, it is sufficient to click on the Confirm button. A small dialogue
window appears, asking to select whether the crop represents a placement or a
schematic. In the former case, it also asks to choose between top or bottom. An
example of the window is shown in Fig. 4.6.
Once all the crops of interest are defined, it is possible to pass to the next stage
by pressing the Continue button at the bottom. The outcome of this phase is a
textual file (referred to as GUI file) containing the absolute path of the input PDF

24

4.3 – PDF GUI

Figure 4.4. Initial GUI, PDF loaded

25

Application overview

Figure 4.5. Initial GUI, red crop defined

26

4.3 – PDF GUI

Figure 4.6. Initial GUI, crop confirmation

27

Application overview

file and the crops defined by the user following the format:

Placement/Schematic $ Page # $ (x0, y0) - (x1, y1)

where # represents the page number, (x0, y0) represents the top-left corner of the
crop and (x1, y1) represents the bottom-right one, all in PDF coordinates. In the
case of a placement file, an additional field is added at the end that can be either
T (top) or B (bottom).

4.4 Text extraction
The textual file produced at the end of the previous phase is the starting point
for this one. Placement files are processed through pdfplumber, which can effec-
tively extract single words from PDF files, while schematics are processed through
PyMuPDF exploiting the word blocks’ extraction. At the end of this phase, a
textual file containing all the text extracted with coordinates is produced per each
crop, following the format:

(Text, x0, y0, x0, y1)

where the coordinates refer to the resolution of the PDF file, which is annotated
in the GUI file.

4.4.1 Board outline detection
Furthermore, the board outline is detected on the placement crops. It is per-
formed here because it is needed for the next stage. The PDF page containing the
placement crop is converted into a 1000 dpi image, and here is the first usage of
the Canny edge detector applied inside the crop region. This is performed by the
find_outline function, whose code is reported below.
The findContours function retrieves only the outermost contours (the mode is set
to RETR_EXTERNAL), ignoring all the other nested edges that represent the
components. At the end, it returns the found rectangle with the largest area,
which coincides with the board outline.

1 def find_outline(image, tl_corner, br_corner):
2 roi = image[tl_corner[1]:br_corner[1], tl_corner[0]:br_corner[0]]
3 edges = cv2.Canny(roi, 50, 150)
4 contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL,
5 cv2.CHAIN_APPROX_SIMPLE)
6 max_area = 0
7 max_rect = None

28

4.5 – Placement components definition

8 for contour in contours:
9 x, y, w, h = cv2.boundingRect(contour)

10 area = h*w
11 if area > max_area:
12 max_area = area
13 max_rect = ((x + tl_corner[0], y + tl_corner[1]),
14 (x + w + tl_corner[0], y + h + tl_corner[1]))
15 return max_rect

Source code 1. The find_outline function

4.5 Placement components definition
The previous phase extracted the text labels from the placement files: now it is
time to assign each component label to the closest shape. This phase is broken
down into two steps: shapes assignment and manual correction GUI.

4.5.1 Shapes assignment
The shapes assignment step begins with converting the PDF page containing the
placement crop of interest into a 1000 dpi image. During the processing of the
first crop, an extra conversion into a 500 dpi image is performed. Every image
processing elaboration is done on high-quality images to reach more accurate re-
sults; however, high-quality images can take some time to be displayed, so in this
application, lower-quality images are used. This is not a concern: 500 dpi is more
than enough to ensure good quality in a GUI, plus it helps speed up the image
loading. The extra conversion performed is used to take note of the resolution of
the 500 dpi version, as well as the 1000 dpi one.
The extracted text is covered using white rectangles: the coordinates are converted
into the 1000 dpi image version to avoid any mistakes. It reduces the noise of the
image, which is now ready to be processed through the Canny edge detector. The
extracted edges are then filtered to retain only those falling inside the crop; these
are then grouped into shapes stored in a dictionary. The code is reported below.

1 # image has text covered with white rectangles
2 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
3 edges = cv2.Canny(gray, 50, 150)
4 contours, _ = cv2.findContours(edges, cv2.RETR_TREE,
5 cv2.CHAIN_APPROX_SIMPLE)
6

7

29

Application overview

8 candidates = {}
9 i = 0

10

11 for contour in contours:
12 epsilon = 0.005 * cv2.arcLength(contour, True)
13 approx = cv2.approxPolyDP(contour, epsilon, True)
14 line = []
15 for vertex in approx:
16 x, y = vertex.ravel()
17 if y < (float(y1)/pdf_res[1]*image_res[0]) and y >
18 (float(y0)/pdf_res[1]*image_res[0]):
19 line.append((int(x), int(y)))
20 if len(line) > 0:
21 candidates[i] = polygon.Shape(line)
22 i += 1

Source code 2. Snippet used to filter valid shapes.

The edge detector, this time, is set to analyse the entire image (the mode is set to
RETR_TREE). The contours are approximated with vertices no more distant than
epsilon from the original edge. Then, the components are stored in a namesake
dictionary having the labels as keys and tuples containing coordinates and the
centre of the labels as values. Before explaining the assignment algorithm, a table
offering an overview of the two main data structures used is shown below.

Name Key Value format
candidates incremental int Shape
components text label (x0, y0, x1, y1, center)

Table 4.1. Data structures overview

The assignment algorithm iterates over all the candidates for each component: the
candidate whose centroid is the nearest to the component centre will be assigned
to that component at the end of the relative iteration. The code is reported below.

1 for k, c in components.items():
2 min = sys.maxsize
3 min_index = -1
4 for i, cand in candidates.items():
5 if cand.centroid is None:
6 continue
7 dist = polygon.distance_between_points(c[4],

30

4.5 – Placement components definition

8 cand.centroid)
9 if dist < min:

10 min = dist
11 min_index = i
12 elif dist == min and cand.area is not None and
13 (candidates[min_index].area is None or
14 cand.area > candidates[min_index].area):
15 min_index = i
16 candidates[min_index].set_label(k)

Source code 3. Shapes assignment algorithm.

While populating the candidates dictionary, small shapes are filtered setting
their centroid to None: this way, these are not considered during the process. At
the end of the algorithm run, the components’ labels are assigned to the closest
shape with the largest area by setting the Shape label. The outcome of this step
is a file containing the (potentially temporary) assignments of the centroids and
an image displaying the labels and the selected shapes. It follows an example of
placement given as input, the assignment image obtained and a comparison zoom.

As can be seen from the comparative zoom, some mistakes can be made during
the assignment phase. For this reason, a graphical way to correct those mistakes
needs to be provided, discussed in the next subsection.

31

Application overview

Figure 4.7. Placement file given as input

32

4.5 – Placement components definition

Figure 4.8. Assignment image obtained

33

Application overview

Figure 4.9. Comparative zoom of input and output

34

4.5 – Placement components definition

4.5.2 Manual correction GUI

During this phase, the user can correct mistakes and misses made during the
shapes assignment stage. The GUI is launched once for each placement image.
Each image has several levels of zoom that are pre-loaded to allow the user to
zoom in and out. The GUI appears as shown in Fig. 4.10.
The labels’ widgets are generated starting from the file generated during the as-
signment phase. It is possible to click on a label and drag it to the desired location,
while the widget handles the coordinates internally. The labels are in the centre
of a yellow circle to increase their visibility and more easily identify which compo-
nents have been covered and which have not.
At the top of the GUI there is a bar hosting different buttons, starting from the
left: zoom in, zoom out, add a new label, edit an existing label, delete a label,
define pins for a component, hide labels and move to the next placement image.

Figure 4.10. Centroid GUI, example

35

Application overview

The add and edit buttons check the label does not exist before confirming to avoid
duplicates. The define pins button makes a popup window appear after clicking a
label. As shown in Fig. 4.11, it is required to indicate the total number of pins,
how many pins per row and the enumerating order. The enumerating order offers
two options: X or Y. Selecting X calculates the remaining pin positions following
the incremental enumeration by rows, while Y does the same but following the
order by columns.

Figure 4.11. Centroid GUI, pins definition

Once confirmed, two green labels appear in the top-left corner: they represent the
component’s first and the last pin, following the format label#number. The user
has to place them in the desired location, and then click on the confirm button at
the bottom. An example is shown in Fig. 4.12.

36

4.5 – Placement components definition

Figure 4.12. Centroid GUI, pins positioning

37

Application overview

Once confirmed again, a simple code snippet calculates the remaining pins and
creates a label for each, as shown in Fig. 4.13. The pins are now defined and
cannot be moved anymore: to edit or delete them, is sufficient to repeat the
process.

Figure 4.13. Centroid GUI, defined pins displaying

In areas with a high density of components, it may be convenient to display only
the areas covered by the labels and to avoid overlapping labels. For this reason, a
button has been provided to hide the labels and, by clicking it again, to display
them again. An example is provided in Fig. 4.14.
Once all the corrections are made, the user can click the rightmost button to
proceed with the next placement image. If all the placement images have been
processed, the application moves on to the next stage.

38

4.5 – Placement components definition

Figure 4.14. Centroid GUI, hidden labels

39

Application overview

4.6 Matching phase
Several textual files are created during this phase where only shared components
between placement files and schematics are kept. More specifically, every pair
placement schematic gets a file. In the end, another version is produced for each
placement file, where all the previous matching files related to it are concatenated.
The files attend the CSV format for the AR testing application, where each row
fills the following fields:

NAME,X-PL-CENTER,Y-PL-CENTER,X-SC-CENTER,Y-SC-
CENTER,INDEX,TOP/BOTTOM

where: NAME is the component’s label, X-PL-CENTER and Y-PL-CENTER are
the coordinates of the label on the placement file calculated for the AR phase, X-
SC-CENTER and Y-SC-CENTER the same as placement fields but for schematics,
INDEX is the index of the page where it appears and TOP/BOTTOM can have
as value T (top) or B (bottom).
More in detail, the coordinates are reported in a range (-0.5, 0.5), where (-0.5, -0.5)
matches with the bottom-left corner. A special line is inserted immediately after
the header filling only the first three fields with the label "OUTLINE", the outline
width and height. The outline information flows from the outline extraction step
to here.

4.6.1 Pins text extraction
Before moving to the final part of the application, a script is used to extract the
pins’ signals from the schematics. As will be shown in the next section, plenty of
buttons will be overlaid over the schematics. At the current application state, the
script exploits the components’ colour as extra information. In this way, only text
contained in regions of that colour will be extracted, hence signal names and pin
numbers. As usual, a textual file is created as the outcome of this operation.

40

4.7 – Highlighting GUI

4.7 Highlighting GUI
Finally, a GUI is set up to display components on both schematic and placement
files: the user can click a component, represented by a button, on a schematic, and
the corresponding label will be displayed on the placement file where the compo-
nent is placed. Before launching it, an image pre-loading phase is needed, similar
to what is performed for the manual correction GUI. Once finished, an empty
window is displayed as shown in Fig. 4.15.

Figure 4.15. Highlighting GUI, empty

41

Application overview

At the top, a menu hosts four sections: placements, schematics, components and
user manual. The user manual section is just a shortcut to display the man-
ual using a visualiser installed on the device. Once clicked, the placements and
schematics show a cascade with all the placements and schematics analysed by
the application. A button bar is shown under the menu, hosting the zoom-in,
zoom-out and magnifier buttons, the last one used to look for a component inside
the current image.
The user can select a schematic to display: it is shown in the window with all the
buttons defined in the previous stage. An example is shown in Fig. 4.16. An extra
button now appeared, allowing the user to unclick all the buttons at once.

Figure 4.16. Highlighting GUI, schematic displayed

42

4.7 – Highlighting GUI

The user can click the buttons, which become yellow, and also can switch to
another schematic image and do the same. An example of buttons clicked is
shown in Fig. 4.17.

Figure 4.17. Highlighting GUI, buttons clicked

43

Application overview

When a placement is displayed, all the selected components via buttons will show
a label, equal to the one in the manual correction GUI. Plus, instead of having the
unclick button, here is a button that hides all the labels, similar to the one already
seen in the manual correction GUI. Following the previous example, in Fig. 4.18
the labels related to the clicked buttons are shown.

Figure 4.18. Highlighting GUI, placement highlighting

44

4.7 – Highlighting GUI

The components’ menu section shows the list of displayed components in the cur-
rent image, grouped by the initial letters. The user can click on a label and the
image portion containing that component will be shown. Clicking on the magni-
fier button, a research window pops up. It works as the components section, also
allowing the user to type and dynamically filter the labels based on what the user
wrote. The research window is shown in Fig. 4.19.

Figure 4.19. Highlighting GUI, research window

45

46

Chapter 5

Conclusions

This work is intended as a first step towards speeding up the PCB testing phase
which currently relies on having the board manual always visible and human at-
tention. There is still a long way to go, but a solid foundation has been built with
this work. Of course, some choices had to be taken in order to achieve acceptable
results, as shown in the shapes assignment section.

A combination of text extraction, image processing and GUI has been proposed to
trace a path, still asking for little human intervention to adjust committed mistakes
in the process. A way should be found to avoid relying on external information to
take certain steps, such as pins’ labels extraction before entering the highlighting
GUI.

Future work may regard the connections graph extraction (briefly discussed in
Appendix B) or automating some phases of the up-to-now shown process. For
instance, one could think of embedding a neural network trained to distinguish
between placement and schematic files when the user is cropping, avoiding the
user specifying the file typology. Another idea could be to train a convolutional
neural network to recognise the most diverse shapes: this could be beneficial es-
pecially to recognise open shapes. Another addition could be embedding Optical
Character Recognition, in case text is present in the manual as lines or images.

47

48

Appendix A

Canny edge detector

The Canny edge detector Canny [1986] is an edge detection operator based on
a multi-stage algorithm that detects a wide range of edges in images. It was
developed by John F. Canny in 1986.
Canny edge detection is a technique to extract useful structural information from
different vision objects and reduce the amount of data to be processed. The general
criteria to achieve high-level performance by edge detectors are:

1. low error rate in edge detection, which means that the detection should not
miss any edge present in the image

2. the edge points are well localised, which translates to minimising the distance
between the edge points marked by the detector and the true centre of the
edge

3. multiple responses to a single edge should be avoided, as well as fake edges
created by image noise.

To satisfy these criteria, Canny used the calculus of variations, that is finding the
function that maximises a given functional. In this problem, the functional takes
into account the three criteria defined above, and the optimal function can easily
be approximated by a Gaussian.
The algorithm goes through several steps:

1. Noise reduction
A Gaussian filter is applied to reduce the image noise level, which may affect
the detector’s performance, such that the image is smoothed. Finding the
proper kernel size for the filter is crucial because the noise sensitivity reduces,
but the localization error increases as the size increases. A Gaussian filter

49

Appendix A

example can be:

G = 1
273

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

2. Intensity gradient calculation

The intensity gradients represent the changes in pixel intensity values: large
gradients refer to strong edges. The intensity gradients are calculated through
derivative filters for the horizontal (Gx) and vertical (Gy) directions. These
two values are used to calculate the gradient magnitude (G) and direction (θ):

G =
ñ

G2
x + G2

y

θ = atan2(Gy, Gx)

where G is calculated through the hypot function and θ through the 2-
argument arctangent.

3. Non-maximum suppression
It is used as an edge-thinning technique to find the location with the sharpest
change of intensity value. For each pixel, the edge strength of the current pixel
is compared to the edge strength of the pixels in the positive and negative
directions: if it has the largest intensity value, it will be preserved, otherwise
discarded.

4. Double thresholding
After the non-maximum suppression, some spurious edge pixels may be left
due to noise and colour variation. A double thresholding technique is then
used to further refine the result. A low and a high threshold are set: pixels
with a gradient magnitude above the high threshold are classified as strong
edge pixels, while the ones below the low threshold are discarded. The pixels
in between are marked as weak edge pixels.

5. Edge tracking by hysteresis
The strong edge pixels are confirmed to be part of the final image; the same
cannot be said for the weak edge ones. It should be determined if a weak
edge pixel comes from a strong edge or noise or colour variation, and keep
weak edge pixels only if they belong to the first category. The idea is that
weak edge pixels are connected to at least one strong edge pixel: the con-
nections can be retrieved through connected-component analysis. The weak
edge pixels connected to at least one strong edge pixel are kept, which can
cause neighbouring weak edge ones to be kept in turn.

50

Appendix B

Connections graph extraction
This appendix represents a starting point for a possible future extension of this
work. The aim is to obtain the connections between components from the schemat-
ics using connected-component analysis. The approach sketched out was to input
different component symbols, as well as the colour of those containing pins. This
way, an image including only the components of the schematic can be obtained
through convolution and colour mask. Plus, one can extract the lines of connec-
tions based on information such as colour, and thus obtain a second image. An
example is shown in the next pages: in Fig. 5.1 a schematic example is shown, in
Fig. 5.2 the extracted components are shown and eventually in Fig. 5.3 the layout
of the connections is shown.

The main problem is to handle the intersection between two connections: unless
some specific symbol is reported (i.e. a full circle), the connections are separated.
The idea is, again, to perform a convolution using the intersection template, remove
them from the image, and store their coordinates. At this point, the connected-
component analysis is used to identify unique connections: the result based on the
reported example is shown in Fig. 5.4, where each connection is associated with a
random colour. Near an intersection, four segments need to be paired top-bottom
and right-left: the pairs should be considered as one connected component (or
blob, to avoid ambiguities). Iterating the process for each intersection yields the
actual connections, as shown in Fig. 5.5.

A first connections graph can be extracted using the blobs: for each component,
the location is known, and a map containing the label as key and the near blobs
as values can be built. Components that are connected share at least one blob.

51

Appendix B

Figure 5.1. Connections extraction, schematic example

52

Appendix B

Figure 5.2. Connections extraction, extracted components

53

Appendix B

Figure 5.3. Connections extraction, extracted connections

54

Appendix B

Figure 5.4. Connections extraction, first-stage connected components

55

Appendix B

Figure 5.5. Connections extraction, final result

56

Bibliography

Artifex. Pymupdf documentation, 2024. URL https://pymupdf.readthedocs.
io/en/latest/.

Belval. pdf2image. https://github.com/Belval/pdf2image, 2017.

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

John Canny. A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, 1986. doi:
10.1109/TPAMI.1986.4767851.

Alex Clark. Pillow (pil fork) documentation, 2015. URL https://buildmedia.
readthedocs.org/media/pdf/pillow/latest/pillow.pdf.

freedesktop.org. Poppler documentation, 2005. URL https://poppler.
freedesktop.org/.

jsvine. pdfplumber. https://github.com/jsvine/pdfplumber?tab=
readme-ov-file, 2015.

Wojciech Kowalke, Krzysztof Górecki, Przemysław Ptak, Liam Cadigan, Brian
Borucki, Nick Warren, and Mario Ancona. A new system supporting the diag-
nostics of electronic modules based on an augmented reality solution. Electron-
ics, 13(2):335, 2024.

Fredrik Lundh. An introduction to tkinter. URL: www. pythonware.
com/library/tkinter/introduction/index. htm, 1999.

Marco Ojer, Hugo Alvarez, Ismael Serrano, Fátima A Saiz, Iñigo Barandiaran,
Daniel Aguinaga, Leire Querejeta, and David Alejandro. Projection-based aug-
mented reality assistance for manual electronic component assembly processes.
Applied Sciences, 10(3):796, 2020.

57

https://pymupdf.readthedocs.io/en/latest/
https://pymupdf.readthedocs.io/en/latest/
https://github.com/Belval/pdf2image
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://poppler.freedesktop.org/
https://poppler.freedesktop.org/
https://github.com/jsvine/pdfplumber?tab=readme-ov-file
https://github.com/jsvine/pdfplumber?tab=readme-ov-file

	List of Tables
	List of Figures
	Introduction
	PCB Testing
	Contribution

	Electronic Support
	Printed Circuit Board
	PCB Files
	Schematic file
	Placement file

	Software Support
	Packages
	PDF manipulation
	Image processing
	Graphical User Interface

	Application overview
	Execution flow
	Start menu
	PDF GUI
	Text extraction
	Board outline detection

	Placement components definition
	Shapes assignment
	Manual correction GUI

	Matching phase
	Pins text extraction

	Highlighting GUI

	Conclusions
	A Canny edge detector
	B Connections graph extraction

