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Abstract

System-Level Test (SLT) is a relatively new test approach, performed on top of many other
manufacturing test phases to enforce Automotive SoCs’ reliability. SLT is applied by specific
Automatic Test Equipment (ATE), which programs the SoC to run Functional Test Programs
and monitors their execution to ensure the integrity of the SoC’s functional capabilities. A
current industrial concern is how to grade the ability of SLT procedures to stimulate the SoC
resources. This work introduces an advanced technique tailored for multicore SoC architectures
that leverages execution trace analysis of functional programs executed within an ATE ecosys-
tem, including CPUs and FPGA resources. A comprehensive data flow graph is extracted from
the execution traces on the ATE system to encapsulate all read/write operations on registers
and memory addresses. This graph is then dynamically analyzed to assess whether each data
point propagates correctly to the program termination. A custom metric is computed to quan-
tify the overall data flow integrity. The method accounts for synchronization across multiple
cores, ensuring accurate evaluation of data flow within and across logical processing units. Ex-
tensive experimentation on a STMicroelectronics automotive device demonstrates the method’s
computational efficiency and quantifies the gain in metric accuracy, time and human resources.



Summary

The first and main topic of the thesis is the extension of the existing methodology for computing
the Connectivity. The Connectivity is a novel metric aimed at evaluating the usefulness of each
instruction of the execution of a disassembly trace. In particular, the programs that are evaluated
are System-Level Test (SLT) programs: the ones that are used to discover Hardware defects in
the SoCs. The Connectivity algorithm analyzes each instruction and finds if there are some that
do not contribute to the computation of the signature, which is the final output of SLT programs.
The operations required to evaluate a SLT program are the following:

• The SLT program is executed on the target SoC with a debugger (ATE) that dumps each
instruction and produces a disassembly trace of execution.

• The trace is transferred from the debugger to an external PC.

• The trace is then analyzed by the Connectivity algorithm, executed on the PC.

The extension focuses on the multicore evaluation. Before this extension, the Connectivity metric
could only evaluate the trace of execution of a single CPU core. Because of this limitation, there
were some cases where the Connectivity evaluation was inaccurate. For instance, no steps were
done to check if a different core of the SoC read the data written in memory by an instruction.
Similar situations are problematic since the original methodology did not track that data flow.

The dump of the traces and the computation of the Connectivity require a lot of time. The
debugger slows down the execution of a program by orders of magnitude. Thirty seconds of
real-time execution can become several hours when the debugger dumps the instructions. This
time must be added to the time required to perform the evaluation once the trace is completely
dumped. An entirely new approach has been proposed to speed up the computation. A new
algorithm was developed to perform the evaluation in parallel with the dump of the instructions.
The advantage of this new approach is that the time for performing the evaluation is reduced
because the evaluation is completed as soon as the trace dump is completed. The evaluation is
directly performed on the tester Hardware (ATE). Two main problems had to be faced when
developing this algorithm:

• Space complexity (the tester has limited memory, so the algorithm must not consume too
much memory)

• Synchronization between the debugger, which dumps one instruction at a time, and the
algorithm, that must recompute the partial evaluation at each new instruction.

The multicore algorithm proved to increase the connectivity accuracy of multicore programs.
Multicore programs were evaluated using the single-core and multicore versions of the algorithm
to compare their Connectivity. The runtime algorithm was tested by running it on the tester
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Hardware. Its low space complexity allowed it to execute without exceeding the memory limits.
The synchronization between the algorithm and the debugger has been implemented correctly.
Ideally, the algorithm should have been always faster than the debugger, but sporadically it is
not, so the debugger must pause the execution waiting for the computation to finish in some
cases. Despite this, a significant amount of time is still saved compared to the previous approach.
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Chapter 1

Introduction

System-Level Test (SLT) [10] has recently been introduced as an additional manufacturing test
flow phase to intercept marginal defective behaviors that escaped previous test phases such as
Scan and Built-In Self-Test test procedures aiming to test every system component separately.
SLT is usually performed by specialized Automatic Test Equipment (ATE) [1] that uploads,
launches, and monitors the execution of Functional Test Programs to verify the integrity of the
SoC’s functional capabilities. Nowadays, SLT challenges have become even more pronounced
with the increasing complexity of multi-core SoC architectures.

A typical industrial practice for SLT often involves booting an Operating System and schedul-
ing applications to mimic the mission behavior of the SoC. A key concern is how to effectively
evaluate SLT programs’ testing abilities. In particular, when chip makers create the SLT pro-
cedures, it is difficult to guess which mission applications will be programmed by chip users.
Therefore, silicon test engineers struggle to create Functional Test Programs that must resem-
ble the final application but also be broad enough in their functional scope to cover as many
functional configurations as possible. Such a development process is often holistic, relying more
on test engineers’ experience than on computed coverage figures because it is challenging to
set up fault coverage evaluation processes for a full System-on-Chip, and eventual measurement
environments based on fault simulation tools are exceptionally time-consuming. In response,
recent works [3, 2, 12, 9] have proposed indirect methodologies to quickly analyze the quality of
functional test programs and grade their fault detection capabilities without fault simulation.

This work further explores indirect measurements as an alternative to fault simulation. In
particular, it proposes to exploit the capabilities of the SLT-oriented ATE ecosystems to quickly
grade the testing value of functional test procedures designed explicitly for SLT of multi-core
architectures.

The proposed strategy leverages ATE architecture and its capabilities to retrieve execution
traces from the SoC programmable elements, such as multiple CPUs inside the same SoC. The
thesis illustrates how to compute a specific SLT metric, called connectivity [3], directly on-site
at the ATE. Programmable elements of the ATE, such as microcontrollers and FPGA circuits,
are used to crunch SLT information coming from the chip on the fly. By the direct analysis
of instruction traces related to different CPUs and programmable SoC components, the ATE
computes and returns connectivity values to the host PC controlling the SLT application instead
of collecting and transmitting a large amount of data to be analyzed later, thus providing a
substantial gain in time.

The algorithm described in the thesis permits a quick evaluation and direct validation of the
test procedure on-board the ATE. It brings many significant benefits, including the possibility

6



Introduction

of evaluation of SLT programs that tackle multi-core architectures and the early deployment of
an SLT recipe for the ATE, which saves precious application engineer efforts.

The proposed methodology is applied to a medium-sized System-on-Chip (SoC) used in safety-
critical applications in the automotive area. Experimental results show the evaluation of several
System-Level Test applications developed on a ATE development station. The performance of the
ATE-based method is compared with Fault Simulation and server-based trace analysis methods.
Human effort benefits are qualitatively described, together with a description of a debug flow
for SLT functional programs that enable climbing the connectivity metric by patching SLT, for
example tuning compiler options.

The thesis is organized as follows. Chapter 2 introduces functional test programs and how
to compute the connectivity metric offline and for single-core applications. Chapter 3 illustrates
the methodology by introducing the multi-core connectivity and how to compute it run-time on
board the ATE. Chapter 4 describes the case study and the experimental setups, and the results
compared with previous techniques. Finally, Chapter 5 concludes the thesis with a summary and
hints on possible future works.

7



Chapter 2

Background

2.1 Functional test program evaluation

The manufacturing test flow for SoCs usually includes phases ranging from structural methods
(like Built-In Self-Test and other Scan-oriented techniques) to functional strategies (such as
Software-Based Self-Tests). Such test strategies mainly deal separately with the individual test of
the heterogeneous elements included in the SoCs (i.e., memories, logic gates, analog components,
etc.).

For this reason, many silicon companies have also recently introduced an additional test
phase, called System-Level Test (SLT) [4, 10, 14] to highlight problems due to heterogenous
components interactions, communications, Hardware-Software interactions. SLT generally tar-
gets test escapes from previous test phases where DfT may also have introduced untestability [13,
7]. SLT’s target is to run a certain application (often the one that will be shipped with the Hard-
ware) on the target chip to test whether it works correctly without errors or failures. Unlike
other test methodologies, SLT more directly considers the working conditions under which the
Hardware will operate; thus, the SLT Software is often an operating system, i.e., the same that
will be executed once the Hardware is shipped. Unfortunately, SLT is often unaware of the
underlying Hardware structure and follows a “black box” approach. Consequently, its results
are less correlated with the final fault coverage, whose reduction is the ultimate design target.
Moreover, designing the test programs is often intrinsically problematic and requires repeated
attempts, including time-consuming simulation and fault simulation campaigns.

2.2 Indirect measurements for SLT and Connectivity met-
ric

Looking for alternative measurements of SLT effectiveness without simulation or fault simula-
tion is a relevant topic today in the test community. These approaches include on-chip current
measurement-based approaches like [11], and application trace-based ones at the microarchitec-
tural level [9] or at low, Hardware-level, such as connecting to the real chip through a physical
test port [3].

In the present thesis, Hardware-level traces are the source of information. An important back-
ground for the proposed strategy is the alternative metrics presented recently, i.e., the so-called
connectivity [3]. This metric shows a significant correlation with fault coverage. Connectivity is
a metric that analyzes the execution trace of a functional application and provides a fast way to
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Background

measure the effectiveness of an application in terms of its testing ability without the necessity of
elaborating on the netlist design.

The central concept of connectivity is determining whether the generated data is accurately
propagated to the program’s endpoint or a designated signature point. Once this verification
is complete, the strategy assigns a score that reflects the program’s overall “connection” level,
indicating how effectively data flows through the functional test program.

To compute the program’s “connectivity”, the authors convert the instruction trace of the
functional test program into a Control and Data Flow Graph (CDFG). The graph is then tra-
versed, either in the forward or backward direction [5], to follow two different types of operations:

• Read-After-Write (RAW), i.e., instructions that update a destination (i.e., write into a
register or a memory location) and then use this value (i.e., read it).

• Write-After-Write (WAW), i.e., instructions that update the value of a destination twice
(i.e., write) in sequence without using (i.e., reading) the first one.

Each WAW edge implies an information loss, and the instruction that writes the lost value
is marked as useless. On the contrary, each RAW edge correctly propagates a value between
registers or memory locations. WAW and RAW edges allow the authors to color the graph nodes
as “good” or “bad” and produce high-level metrics representing whether the functional test
programs effectively carry their computed value to a diagnostic point, i.e., a Software signature
in memory or a Hardware diagnostic register. To provide fine-grain feedback to test engineers,
the graph analysis is combined with the executable file and the source code to locate code lines
affecting the computed metrics.

The methodology is illustrated in Figure 2.1. The execution trace on the left-hand side runs
three instructions that, for the sake of simplicity, write a value in a single destination. The first
and second instructions write an immediate value to a register, whereas the last sets the sum of
R0 and a value into R1. It is easy to understand that the third instruction immediately overwrites
the data written in R1 by the second instruction. For this reason, the second instruction is useless
and marked as “bad” (i.e., black). The color of the three nodes is then used to compute the
overall connectivity and to rectify the problem in the functional program.

Instruction SRC DST

li R0, 1 R0
li R1, 2 R1
add R1, R0, 1 R0 R1

Figure 2.1. RAW and WAW analysis of an assembly code snippet.

9



Chapter 3

Proposed Methodology

This thesis proposes a strategy to early deploy SLT Functional procedures directly on a spe-
cialized ATE architecture [1]. As shown in Figure 3.1, the proposed method exploits the func-
tionalities of an SLT-oriented ATE to validate SLT Functional programs and quickly grade their
testing ability based on a connectivity metric extended from [3] to multi-core applications.

Figure 3.1. Overall view of the proposed approach.

The validation and grading flow in Figure 3.1 starts from the host PC, which is in charge of
transmitting the binary code of a SLT program to be applied by the SLT ATE (i.e., a compiled
and executable version of the SLT Functional program). The host PC communicates with the
computational resources of the ATE, which are usually contained in a microcontroller. This
microcontroller coordinates many functionalities related to the application and evaluation of the
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Proposed Methodology

SLT. It drives the circuitries mapped on FPGA to upload the SLT functional program, launch
it via a functional reset, and trace the SLT program execution by retrieving information about
the executed instruction through the chip debug features. Such a trace download is based on
triggering a debug trap that permits the extraction of the current instructions’ opcode, operands,
and memory elements content where needed (for example, for load and store instructions). Trace
information, normally stored in a dedicated RAM, is not rawly transmitted to the host PC
but elaborated on the fly onboard the ATE, again by the microcontroller resources, as soon
as they are available and in parallel to the tracing operations. In such a way, compared to
a traditional approach in [3], where quite a large amount of data needs to be transmitted to
the host PC, only a small amount of information is returned by the ATE, thus saving time
and minimizing the necessity to implement a communication protocol to synchronize the ATE
and the host PC. The development of SLT procedures on the ATE triggers several industrial
benefits and simplifies the tasks of application engineers responsible for transferring SLT code
from simulation/emulation/debugger-based development setups to the ATE ecosystem.

3.1 Multi processor connectivity computation

The connectivity strategy introduced in the background section analyzes each trace instruction
by instruction to find the ones that harm the final coverage. Instructions that do not propagate
any value are considered useless to improve the final coverage, as every signature computation
performed along the program does not depend on them. Furthermore, a value may not be
propagated because a subsequent instruction overwrites it or because no subsequent instructions
read it.

When an application runs on multiple master cores, such as CPUs, DSPs, DMA controllers,
or AI HW Accelerators, each one manipulates its registers and shared memory locations, which
can also be used to communicate with the other cores. This means that the destinations written
by an instruction on a core can be read by subsequent instructions executed by the same core
or instructions running on other cores. For this reason, the connectivity evaluation is extended
in this thesis to evaluate RAW edges that span the activity of different cores. Significantly,
the proposed approach explained in the following progresses the state-of-the-art [3, 9, 2, 12] by
pioneering the evaluation of SLT conceived for multicore computations.

The two code snippets reported in Figure 3.2 illustrate the difference between the single-
core and the multi-core algorithms. Destinations are marked in purple and sources in blue for
ease of reading. Squared nodes represent load and store instructions, whereas register-based
instructions are circle-shaped nodes. Instruction 5 running on core 0 is a load instruction that
writes to the memory location 0xF6CA; this location is later read by instruction 6 of core 1. If
the algorithm evaluates each trace separately, the instructions are considered “unconnected” and
not contributing to fault coverage, as represented on the CDFG on the left-hand side in yellow.
On the contrary, if the evaluation considers multi-core behaviors, the instructions working on
memory location 0xF6CA become “connected” and can be green-colored as a value is propagated
from one core to another. Since that memory destination becomes green, other instructions for
the first core become connected, such as instructions 1 and 3 for core 0.

Conversely, the multicore analysis can correctly determine that instruction 3 of core 1 (marked
in red), also written to the same memory address 0xF6CA, gets overwritten by core 0.

The order of execution of instructions that modify shared memory is an important factor.
Synchronization points implemented in the SLT Software (i.e., semaphores) ensure that a core
correctly reads information written by another core. This analysis makes pinpointing depen-
dency arcs between writing and reading operations among multiple cores easy. Accordingly, this
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Core 0

li R1, 0

li R0, 1

add R0, R0, R1

li R1, 0

e stb R0, 0xF6CA

addi R1, R1, 1

e stb R1, 0xF6CA

li R0, 0

e stb R0, 0xF6CA

Core 1

li R0, 0

addi R1, R0, 1

e stb 0xFF, 0xF6CA

li R1, 0

addi R1, R1, 1

e lbz R0, 0xF6CA

addi R0, R0, 1

addi R1, R0, 4

add R0, R1, R1

Figure 3.2. Single and multi-core connectivity.
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Proposed Methodology

information is exploited to evaluate the correct placement of synchronization points, bringing
three pieces of information to the attention of the programmer:

• Uninitialized memory read: the presence of reads at memory locations that were never
explicitly initialized. The delay of a write operation could have moved the initialization
phase after the corresponding reading phase.

• Missing synchronization between read and write operations: a reading instruction of a
data value written by another operation but without synchronization. It represents a read
operation delayed long enough to swap its order with a write operation.

• Writes without subsequent reads: the presence of memory writes without an explicit read.
This could be caused by a situation similar to the first example.

These three cases represent situations where the code is most likely to be incorrectly synchronized.
This could lead to out-of-order executions of the instructions involved and catastrophically impact
the SLT testing effectiveness.

3.2 On-tester quick computation of the connectivity

Figure 3.3 illustrates the difference between possible SLT effectiveness evaluation flows. So far,
the most used strategy is based on Simulation (SIM) and Fault Simulation (FSIM). This approach
increasingly becomes unpractical, as Simulation and Fault Simulation require prohibitive CPU
time. Once a SLT suite of programs is produced after SIM/FSIM, an additional step is needed
to move it on the tester, called ATE Deploy.

Conversely, indirect measures that leverage the on-chip execution to extract instruction traces
largely save time by trading off the accuracy of the estimation. If the ATE architecture is used,
a very useful synergy is established among test and application engineers because it minimizes
the efforts to deploy the SLT to the ATE.

In Figure 3.3, offline and online possibilities are displayed. The offline version is based on the
transfer of full traces from the ATE and assumes an application engineer passes data to crunch
to the test engineer. On the contrary, a single test engineer works on the ATE by following the
online philosophy, where the support supplied by the application engineer is minimized together
with the evaluation time.

The main idea behind the online version of the indirect measurement approach is to interleave
the computation of SLT metrics, such as the Connectivity, directly along the execution of the
SLT program driven by the ATE on a good chip. As shown in Figure 3.1, FPGA circuitries on the
SLT ATE permit the retrieval of instructions’ information by implementing traps programmed
through the debug features of the chip. Then, the microcontroller of the ATE performs the
connectivity computation. The system is optimized by implementing a pipeline-like mechanism
visually illustrated in Figure 3.4. The efficiency is maximized if the connectivity computation for
instruction i takes the same or less time than the successive instruction i+1 trace. In multicore
SoCs, consecutive instructions may come from different cores.

The algorithm conceived to compute the connectivity on the fly is illustrated in Figure 3.5.
On the left hand, the execution trace of the SLT program presented in Figure 3.2 is shown in the
final form. Instructions from cores 0 and 1 are regularly interleaved because the two CPUs run
at the same frequency and in a fully parallel fashion. Nevertheless, the order of the instructions
from different cores may be irregular. The illustrated algorithm does not care about the core
provenance of the instruction and works in both conditions.
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Proposed Methodology

Figure 3.3. SLT effectiveness measurement flows.

Figure 3.4. Online evaluation of SLT applications.

The graph on the right side of Figure 3.5 results from the elaboration of the multicore trace.
Every node represents a data value, which is extracted by the instruction and could be a register
value or a memory location. Green nodes represent values readable by future instructions and
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Proposed Methodology

contain the current value of the registers or memory location. Black nodes store values that do
not propagate to the end of the trace in any way. Finally, gray nodes represent values propagated
to the end of the trace but are not readable anymore by any future instructions.

In this new representation, edges are used to keep track of RAW operations defined in the
previous work [3]. A node pointing to another means that the pointed node reads the node’s
value, so information transported by the analyzed instruction is currently propagated. A new,
fictitious node called End Of Trace (EOT) is introduced, marking the program’s end. Since
no further instructions are performed after this node and the content of the core registers are
supposed to be checked for potential execution mismatches, any node pointing to the EOT,
directly or indirectly, is considered green.

Notice that, as previously specified, the graph is updated every time the debugger generates
a new instruction. When a new instruction is produced, the ATE microcontroller performs the
online procedure described in Algorithm 1.

Core Instruction
0 li R1, 0
1 li R0, 0
0 li R0, 1
1 addi R1, R0, 1
0 add R0, R0, R1
1 e stb 0xFF, 0xF6CA
0 li R1, 0
1 li R1, 0
0 e stb R0, 0xF6CA
1 addi R1, R1, 1
0 addi R1, R1, 1
1 e lbz R0, 0xF6CA
0 e stb R1, 0xF6CA
1 addi R0, R0, 1
0 li R0, 0
1 addi R1, R0, 4
0 e stb R0, 0xF6CA
1 add R0, R1, R1

Figure 3.5. Online multi-core connectivity computation: code (left-hand side) and
corresponding graph (right-hand side).

The procedure visits all instructions within the trace, or when it works online, it examines
each new instruction as soon as this is generated by the debugger (line 1). Then it loops over all
of its destinations (line 2), creating a new node for each one (line 3). Looping over the sources of
the current instruction, the algorithm connects them to the new nodes (line 7) before detaching
any old node sharing the same destination from the EOT node (line 11). The pseudo-code is
reported in Algorithm 1.
At the end of this procedure, each node has an implicit color depending on its outgoing edges:

• A node is green if it has an outgoing edge pointing directly to the EOT. These nodes
represent the registers and memory locations currently stored in the core.

• A node is gray if it does not point directly to the EOT but exists along a path from the
node to the EOT. These nodes represent the values that have been overwritten, but their
information is propagated through other nodes.

• A node is black if a path from the node to the EOT node does not exist. These nodes
represent the values overwritten without impacting the execution.
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Proposed Methodology

The connectivity is computed by dividing the number of nodes not black by the total number of
nodes.

Algorithm 1 CDFG: Online construction.
1: for all (istructions ∈ trace) do
2: for all (dest ∈ instruction) do
3: create new node
4: new node.dest = dest
5: for all (sources ∈ instruction) do
6: if (source ∈ graph and ∃ edge source =⇒ EOT ) then
7: create edge source =⇒ new node
8: end if
9: end for

10: if (dest ∈ graph and ∃ edge dest =⇒ EOT ) then
11: remove edge
12: end if
13: create edge new node =⇒ EOT
14: end for
15: end for

From the time and memory complexity point of view, the proposed algorithm generates a
graph with as many nodes as the number of trace destinations. Indeed, the procedure adds a
new node to the graph for each instruction’s destination. To reduce the RAM occupation of
the microcontroller, it is possible to merge graph nodes into single nodes or delete useless nodes
whenever possible. This optimization is referred to as graph compression in Figure 3.4 and can be
implemented by adding a counter for each node data structure. This node information represents
the number of destinations the node keeps track of. In general terms, the compression is based
on removing nodes already reaching a final “black” state and merging “gray” nodes connected
exclusively. According to RAM limitations, the compression step is not necessarily applied after
every instruction analysis; it can be performed only time by time. Figure 3.6 shows the CDFG
of Figure 3.5 in its memory-optimized version.

Figure 3.6. Memory-optimized version of the CDFG.
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Chapter 4

Experimental results

SLT Functional Program Executed Instructions Est. FSIM Time [h]
SingleCore RTOS 108,235 7,154.92

AMP RTOS 145,848 9,641.34
AMP RTOS - fixed 145,829 9,640.09

SMP RTOS 154,493 10,411.14
SMP RTOS - O1 175,227 11,583.45

SMP RTOS - Conserve stack 157,642 10,420.99
SMP RTOS - Address anchor 157,648 10,421.38

SMP RTOS - No omit frame pointer 165,299 10,927.15
XBAR SLT app 1 364,293 24,081,74
XBAR SLT app 2 376,580 24,893,99
XBAR SLT app 3 664,265 43,911.51
XBAR SLT app 4 14,196,439 938,461.54

Table 4.1. Different SLT applications used for the experiments.

Several tests have been run on a 40 nm automotive System-on-Chip of the SPC58 family from
STMicroelectronics and reported in this section. The device is a multi-core chip that includes
three PowerPC VLE ISA CPUs, which were developed for safety-critical applications in the
automotive field. The chip includes approximately 20 million gates, and its three CPUs show
around 1.5 million port-level faults.

4.1 Experimental setup

The experimental setup is a development station that includes all elements of a single-site SLT
ATE. It addresses the SPC58 micro-controller which is hosted on a socket and connected to a
ATE driver board, including a microcontroller and a Xilinx Ultrascale+ MPSoC FPGA, based
on a previous work [6]. The setup is shown in Figure 4.1. All programs are loaded on the
Device Under Test (DUT) through the FPGA circuitries. FPGA design also cares of trapping
the execution after each instruction to extract the information the connectivity algorithm needs.
The overall system hosts 4GB of RAM accessible by the MPSoC. The microcontroller system
runs on several cores and is controlled by a custom Ubuntu-like version. By running several OS
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Experimental results

SLT Functional Connectivity metric [%]
Program Core 0 Core 1 Core 2 Multicore

SingleCore RTOS NA NA 72.4 72.4
AMP RTOS 23.71 NA 75.19 76.79

AMP RTOS - fixed 70.15 NA 73.89 74.87
SMP RTOS 79.15 79.15 73.93 75.57

SMP RTOS - O1 82.87 82.87 70.71 72.83
SMP RTOS - Conserve stack 79.15 79.15 73.89 75.53
SMP RTOS - Address anchor 79.15 79.15 73.89 75.53

SMP RTOS - No omit frame pointer 88.36 88.36 76.72 78.08
XBAR SLT app 1 85.15 84.76 90.14 87.74
XBAR SLT app 2 84.33 84.13 89.72 86.97
XBAR SLT app 3 91.88 92.06 91.13 91.65
XBAR SLT app 4 83.21 83.17 83.07 83.15

Table 4.2. Single-core Multi-core connectivity differences.

SLT Functional Offline Execution Time [s]
Program Dump Trace Transfer Analysis Total

SingleCore RTOS 3,720 152 66 3,938
AMP RTOS 3,360 208 90 3,658

AMP RTOS - fixed 4,680 204 93 4,977
SMP RTOS 6,660 219.2 92 6,971.2

SMP RTOS - O1 5,040 243.2 99 5,382.2
SMP RTOS - Conserve stack 3,120 220.8 96 3,436.8
SMP RTOS - Address anchor 3,540 222.4 96 3,858.4

SMP RTOS - No omit frame pointer 4,500 233.6 100 4,833.6
XBAR SLT app 1 13,440 500 816 14,756
XBAR SLT app 2 12,840 516.8 2,051 15,407.8
XBAR SLT app 3 22,831 411.2 722 23,963.7
XBAR SLT app 4 487,927 8,560 4,218 500,704.7

Table 4.3. Offline execution times.

threads on several ARM-A53 cores, the ATE microcontroller manages the algorithm execution
and communication with the host PC. Advanced features, such as sending live updates of the
connectivity, are also provided to the test engineer for implementing feedback loops to increase
the SLT program effectiveness.

The execution trace is produced while each core of the SoC under test is running contem-
porarily. To correctly align the traces of execution, each trace dump containing the information
about the currently executed instruction is complemented by a progressive number function-
ing as a timestamp. Two instructions with the same timestamp are considered to be executed
simultaneously on different cores.
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Figure 4.1. Experimental setup with DUT on the left and SLT-ATE on the right.
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SLT Functional Online Algorithm
Program Execution Time [s]

SingleCore RTOS 2,682.1
AMP RTOS 2,422.6

AMP RTOS - fixed 3,374.3
SMP RTOS 4,801.9

SMP RTOS - O1 3,633.9
SMP RTOS - Conserve stack 2,249.6
SMP RTOS - Address anchor 2,552.4

SMP RTOS - No omit frame pointer 3,244.5
XBAR SLT app 1 9,690.4
XBAR SLT app 2 9,257.8
XBAR SLT app 3 16,461.2
XBAR SLT app 4 351,803.7

Table 4.4. Online execution times.

4.2 SLT applications Evaluation

The set of SLT Functional Programs listed in Table 4.1 was evaluated using the proposed online
indirect approach and compared with the offline version.

The rows of the table are subdivided according to the type of SLT application considered.
The table starts with analyzing a Single Core Real-Time Operating System (RTOS), using as
starting point µCOS − III [8], then extended with a custom multicore version. Asymmetric
Multi-Processing (AMP) applications exercise two CPUs, one running a bare-metal application,
while the second executes a single-core version of the RTOS. At the same time, the Symmetric
Multi-Processing (SMP) RTOS treats all three cores equally with a multicore scheduler. Ad-hoc
developed SLT applications are reported, too. All programs are written in high-level C language
and compiled using optimization level two (basic) as a baseline. For each SLT program, Table 4.1,
Table 4.2, Table 4.3, and Table 4.4 report several information.

The column Executed Instructions of Table 4.1 reports the number of low-level assembly
instructions retrieved along the trace phase. The SLT suite shows application flows ranging
from a hundred thousand to fourteen million traced instructions. Timing-wise, the SLT program
execution duration spans from a few hundred milliseconds to some seconds.

Connectivity metrics results for single and multicore SoCs are reported in Table 4.2. The
columns named Core 0, Core 1, and Core 2 report the connectivity metric values computed
with the single core metric described in [3]; the Multicore column reports the connectivity value
measured with the multicore approach proposed in this thesis. Such figures highlight how the
single-core connectivity may be significantly far from the most correct one computed over all
cores.

The estimated fault simulation CPU time in hours is reported in the FSIM column of Ta-
ble 4.1. With a medium-sized system like the one used in this work, being able to fault-simulate
SLT has become way more utopic than in the past.

Offline and online method performance approaches are finally illustrated in Table 4.3 and
Table 4.4. Offline is divided into trace generation, file transfer, and algorithm computation on
the host PC. Trace generation results in the most time-consuming activity, with the cost of about
20ms to dump a single instruction. The final column of Table 4.4 is related to the online strategy,
and reports its overall execution time, as it is difficult to distinguish between trace generation
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and algorithm execution times. On average, the online approach is 33.16% faster than the offline.
The ATE feature enabled a live update from the microcontroller running the algorithm on

the host PC, which permitted the extraction of extremely useful insights about the SLT program
test effectiveness.

• Figure 4.2 plots the connectivity value evolving along the trace execution. The points on
this plot are computed every time a new instruction is added to the graph. Therefore, it
can be seen that the connectivity drops from the initial 100% (no instruction evaluated
yet) to about 82%. As long as new “good” instructions are evaluated, the connectivity
grows, but may again fall, as it happens in the case study. Two minor coverage drops can
be identified before a monotonic “slight” drop till the end of the measurement.

• Figure 4.3 shows how many black nodes are discovered for each instruction, along the trace
execution. This representation reflects what is happening in Figure 4.2, but it highlights
the “badness” of each instruction. In this way, the engineers can identify more easily the
instructions that are more problematic.

• Figure 4.4 shows the distribution of black nodes not chronologically, but along the code.
The blue plot is the amount of black nodes identified by the instruction at that address,
while the orange plot is the number of times the instruction at that address is executed.
This graph is even more useful for the SLT developers, who can figure out which instructions
of the SLT code are more problematic.

With this live feature, topic instructions or code segments can be identified and used to tune the
SLT program and increase its testing quality. In the experimental cases, AMP and SMP RTOS
variations span from a basic version to more cured ones, enhanced by tuning compile options or
fixing evident deficiencies of the original code emerging from the results analysis, as tables show
for XBAR applications that were developed in sequence and addressing each a specific weakness
that was highlighted by connectivity drops.
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Figure 4.2. Connectivity trend along a SLT functional program execution.

Figure 4.3. Black nodes distributed in chronological order of execution.
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Figure 4.4. Black nodes distribution along the code (blue), with the corresponding
flamegraph (orange).
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Chapter 5

Conclusions

Starting from this work, there are some future directions that can be followed in order to augment
the accuracy of the connectivity evaluation:

• Analysis of the destinations bit-wise: instead of building the Control and Data Flow
Graph with destinations as nodes, it is possible to consider every different bit of each
register/memory-location as a different node. With this kind of analysis, the accuracy of
the evaluation can increase even more, since the data propagation can be inspected in a
more precise way. However, the memory complexity of the analysis would increase a lot,
because the number of nodes added by a single instruction multiply by the number of bits
of its destinations.

• Instruction behavior definitions: in line 7 of Algorithm 1, instead of connecting each reader
to each writer, it is possible to create a Read-After-Write edge according to the internal
structure of the instruction. Each instruction, depending on which operations it performs,
propagates data between its sources and destinations in a different way. It is not true
that every destination of the instruction reads always from every source. This kind of
improvement requires a deeper analysis of each instruction, which can require a lot of time.

In literature, different indirect methodologies exist to grade SLT applications [3, 12]. This work
progresses the state-of-the-art in this topic by proposing an instruction trace-based metric to
assess SLT procedures for multicore architectures. The proposed framework is run directly on
ATE enabling easy and early handover from test and application engineers.
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Acronyms

AI Artificial Intelligence. 11

AMP Asymmetric Multi-Processing. 17, 18, 20, 21

ARM Advanced RISC Machine. 18

ATE Automatic Test Equipment. 1, 5–7, 10, 11, 13, 15, 17–19, 21, 24

CDFG Control and Data Flow Graph. 5, 9, 11, 16, 24

CPU Central Processing Unit. 1, 6, 11, 13, 17, 20

DfT Design for Testability. 8

DMA Direct Memory Access. 11

DSP Digital Signal Processor. 11

DST Destinations. 9

DUT Device Under Test. 5, 17, 19

EOT End Of Trace. 15

FPGA Field Programmable Gate Array. 1, 6, 11, 13, 17

FSIM Fault Simulation. 13, 17, 20

GB Giga-Bytes. 17

HW Hardware. 1, 2, 8, 9, 11

ISA Instruction Set Architecture. 17

MPSoC Multi-Processor System-on-Chip. 17

OS Operating System. 6, 17

PC Personal Computer. 1, 6, 10, 11, 18, 20, 21
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Acronyms

RAM Random-Access Memory. 11, 16, 17

RAW Read-After-Write. 5, 9, 11, 15, 24

RTOS Real-Time Operating System. 17, 18, 20, 21

SIM Simulation. 13

SLT System-Level Test. 1, 4–8, 10, 11, 13, 14, 17–22, 24

SMP Symmetric Multi-Processing. 17, 18, 20, 21

SoC System-on-Chip. 1, 6–8, 13, 17, 18, 20

SRC Sources. 9

SW Software. 8, 9, 11

VLE Variable-Length Encoding. 17

WAW Write-After-Write. 5, 9

XBAR Cross-Bar Switch. 17, 18, 20, 21
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