
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

A DNN-based algorithm for
multi-constraint intelligent reentry

guidance techology for hypersonic gliding
vehicle

Supervisors

Prof. Diego REGRUTO TOMALINO

Prof. Sophie FOSSON

Prof. Lin CHENG

Candidate

Camilla Zulli

Academic Year 2023/2024
Torino

Abstract

A hypersonic vehicle is an aircraft with a flight speed exceeding 5 times the speed of
sound, combining the characteristics of both spacecraft and aircraft, with significant
military and economic potential. The thesis focuses on a re-entry hypersonic vehicle,
which is a spacecraft that travels through space and re-enters the atmosphere of a
planet (e.g., Earth). When landing, a safe re-entry is needed. The entry guidance
system is crucial for ensuring a successful atmospheric re-entry, particularly for
this class of vehicles which faces multiple constraints during this critical flight
phase. Traditional entry guidance approaches, such as reference trajectory-based
guidance (RTG) and numerical predictor–corrector guidance (NPCG), have been
widely employed in past missions. However, the high non-linearity and non-convex
path constraints of hypersonic vehicles demand more advanced solutions.

This thesis introduces an intelligent multi-constraint entry guidance approach
that integrates a deep neural network (DNN) with the NPCG algorithm for better
real-time performance, and ensures safety during atmospheric re-entry. The DNN
is designed to approximate the relationship between flight states and range and
flight time, enabling rapid and accurate trajectory predictions. The developed
DNN-based predictor significantly improves the NPCG algorithm by replacing
traditional propagation-based predictions, offering robust solutions with real-time
computational capability.

The structure of the thesis is organised as follows: initially, a global overview
about hypersonic vehicles and related works is established. Then, the first section
involves the development of the DNN using Python, with training, testing, and
validation phases. Subsequently, the DNN is integrated into the NPCG algorithm,
where the bank angle and the angle of attack of the vehicle are used as control
variables. The guidance algorithm consists of longitudinal control, in which the
bank angle and angle of attack amplitudes are determined, for each guidance
cycle, by constructing a parametrized height profile, in order to satisfy the range
constraint, and a velocity profile, for meeting the time constraint. Then, lateral
control is elaborated, for the managment of the sign of the bank angle, for each
cycle.

Finally, the thesis presents the results of the proposed approach in terms of

ii

trajectory, longitude, and latitude achieved by the vehicle at the end of the controlled
flight phase. The analysis demonstrates the advantages of incorporating artificial
intelligence into the guidance algorithm, offering improved real-time decision-making
capabilities and overall performance.

iii

Acknowledgements

RINGRAZIAMENTI

Ringrazio tutte le persone che mi hanno supportata in questi anni, ognuna a
modo proprio.

Per prima, la mia famiglia. Senza di voi, tutto questo non sarebbe stato possibile:
mi avete permesso di seguire e portare a termine questo percorso e vivere esperienze
incredibili. Mi avete insegnato a puntare in alto e ad inseguire i miei sogni, incor-
aggiandomi sempre, anche quando alcuni ostacoli sembravano insormontabili. Un
enorme grazie a mamma, papà e Filippa per essere stati i miei più grandi sostenitori.

Un ringraziamento speciale a mia nonna, Lucia e ai miei nonni, Raffaele e
Rosetta. Grazie, per essere sempre stati la mia forza durante questi anni e per
esserlo nella vita, dandomi preziosi consigli e confortandomi nei momenti più difficili.

Grazie anche a mio zio, Barbara e Carlotta. Grazie per aver contribuito al
raggiungimento dei miei obbiettivi. Vi voglio bene!

Ringrazio i miei amici di una vita, che mi sono stati accanto in ogni momento
di questa avventura, nonostante la distanza fisica dell’ultimo periodo.

A Roberta, da anni ormai la mia certezza in amicizia, ovunque io mi trovi nel
mondo. Ci sei sempre, per ascoltarmi, consigliarmi, spronarmi e condividere sia
dubbi e paure che momenti felici e spensierati. Mi auguro che il nostro legame duri
per tutta la vita, perché non ne potrei fare a meno.

A Federica, un’amicizia che dura da quando eravamo bambine, ben prima che
l’università fosse anche solo nei nostri pensieri. Grazie per avermi insegnato cosa
significa avere un’amica che mi supporta in ogni scelta, lasciandomi libera di essere
me stessa.

iv

Un grande grazie anche a Marianna, dolce, gentile e determinata. La tua pre-
senza è ormai diventata per me un porto sicuro, non importa quanto tempo starò
via da casa, perché so che ci sarai sempre al ritorno, per poter costruire altri ricordi
indimenticanili insieme.

E ad Angelica, capace di essere te stessa in ogni situazione, senza mai com-
promessi, con la tua ironia, che ha reso speciali tanti momenti. Sei stata per me
un’importante fonte di ispirazione durante questi anni, oltre che un’amica fantastica,
e continui ad esserlo.

A Chiara e Asia, siete entrate nella mia vita più tardi, ma i momenti che abbiamo
passato insieme sono stati preziosi e fondamentali. Spero di viverne molti altri
ancora.

Grazie a Lorenzo, per essere un punto di riferimento ogni volta che torno a casa,
e per essere il miglior vicino che potessi desiderare.

Grazie a tutti i miei amici di sempre: Riccardo, Samuele, Glendi, Morgan e
Nico, grazie!

Un ringraziamento va anche ai miei colleghi di università. Anche se solo per un
anno, avete reso unico questo percorso. Un grazie speciale a Matteo, Francesca e
Gaetano per aver reso indimenticabili le giornate di lezione, le sessioni infinite e i
momenti di divertimento.

Un grazie di cuore a Franceska, sei arrivata nel momento giusto, quando avevo
bisogno di serenità e di sentirmi a casa anche lontano da casa.

Grazie a tutte le persone meravigliose che ho incontrato durante il mio viaggio
in Cina. Un grazie particolare a Martina, con cui ho condiviso un’esperienza unica,
e senza la quale probabilmente avrei fatto molta più fatica a partire.

Infine, un ringraziamento va ai professori che mi hanno permesso di portare a
termine questo lavoro: il Prof. Diego Regruto Tomalino, la Prof.ssa Sophie Fosson,
il Prof. Lin Cheng e Jingjing Xu. Grazie tante per il vostro supporto.

v

Table of Contents

List of Tables ix

List of Figures x

Acronyms xiii

1 Introduction 1
1.1 Structure of the document . 4

2 Related works 6
2.1 NPCG . 6

2.1.1 How NPCG works . 6
2.1.2 Advantages and drawbacks of NPCG 8
2.1.3 Applications of NPCG . 9

2.2 DNN . 9
2.2.1 Types of DNN . 11

2.3 Focus on the work of Lin Cheng et al. [2]: bank angle parameteriza-
tion and range constraint . 15
2.3.1 Bank angle parameterization for range control 16
2.3.2 DNN for longitudinal and lateral guidance 17
2.3.3 Real-time performance and constraint satisfaction 19

3 Design and implementation of the DNN 20
3.1 Input and output data . 20
3.2 Network description . 21

3.2.1 Structure . 21
3.2.2 Key characteristics summary 22

3.3 DNN accuracy evaluation . 22
3.3.1 Statistics . 23
3.3.2 Partial derivatives . 23

3.4 Observation on the choice of input and output data 26

vii

4 Longitudinal guidance 27
4.1 Problem formulation . 27

4.1.1 Entry dynamics . 27
4.1.2 Flight constraints . 30
4.1.3 Initial descent phase . 31

4.2 Compound HV corridor . 31
4.3 Trajectory parametrization and range constraint management . . . 33

4.3.1 Control parametrization . 33
4.3.2 Range constraint and tracking controller design 35

4.4 Time constraint management . 36
4.4.1 Angle of attack as a function of velocity 36
4.4.2 Reference velocity tracking 36
4.4.3 Time boundaries . 37

5 Lateral guidance 38
5.1 Initial sign of the bank angle . 39
5.2 Bank reversals . 39

6 Simulations and results 40
6.1 Evaluation of real-time performance and convergence 40

6.1.1 Entry trajectory . 40
6.1.2 Convergence accuracy . 41
6.1.3 Real-time performance . 41

6.2 Terminal flight phase management 43

7 Conclusion 45

A Appendix A 47
A.1 Construction of the conventional HV corridor [11] 47

A.1.1 Lower boundary . 47
A.1.2 Upper boundary . 48
A.1.3 Final conventional corridor 48

A.2 CAV-L aerodynamic data [11] . 49
A.3 CAV-L overall parameters [11] . 50
A.4 A look into the code . 50

A.4.1 Tracking controller design and amplitude of the bank angle . 50
A.4.2 Downrange and LOS angle 52

Bibliography 55

viii

List of Tables

3.1 Structure of the DNN . 22
3.2 Summary of DNN training parameters 22
3.3 Statistics of the DNN-based time and range prediction 23
3.4 Partial derivatives for flight time t and downrange Rd. 25

6.1 Comparison between real values and goals in radians 41
6.2 Execution statistics of the DNN-based algorithm 43

A.1 CAV lift coefficient data . 49
A.2 CAV drag coefficient data . 49
A.3 CAV-L aircraft overall parameters and constraints 50

ix

List of Figures

1.1 Representation of a common aero vehicle - low performance (CAV-
L). An unpowered vehicle designed for precision targeting on Earth
(image generated with AI), [3] . 3

1.2 NASA Orion Re-entry Vehicle from NASA website1 3
1.3 Laboratories of the School of Astronautics of Beihang University . . 4

2.1 Reproduction of a notional entry trajectory with notional guidance
segments denoted. Note logarithmic scales on both axes, [4] 7

2.2 Outline of a typical NPC guidance logic, [4] 8
2.3 CNN architecture, showing convolutional, pooling, and fully con-

nected layers . 13
2.4 RNN architecture . 14
2.5 Autoencoder architecture . 15
2.6 Illustration of lateral guidance. ψLOS and ψ are, respectively, the

LOS angle and the heading angle (go to Section 5.1 for definitions), [2] 18

3.1 Flight time comparison of different speeds and weights 24
3.2 Downrange comparison of different speeds and weights 24
3.3 Flight time prediction error comparison of different speeds and weights 24
3.4 Downrange prediction error comparison of different speeds and weights 24

4.1 Illustration of the bank angle, the angle between the horizontal plane
and the wing of the aircraft (left wing in the case of the image), [9] 28

4.2 Illustration of the angle of attack. The chord is the straight-line
distance between the leading edge and the trailing edge of an aircraft
airfoil, [10] . 28

4.3 Compound HV corridor given by the union of the conventional
corridor (HCUb and HCLb) and the terminal flight envelope (HTUb
and HTLb), [11] . 32

6.1 Flow chart of the proposed DNN-based entry NPCG algorithm . . . 41

x

6.2 Entry trajectory under specific initial conditions based on the CAV-L
model . 42

6.3 Longitude as a function of latitude 42
6.4 Downrange as a function of height 42
6.5 Bank reversal history of the considered entry scenario 43
6.6 Terminal trajectory phase with DNN based control 44
6.7 Terminal trajectory phase without control 44

xi

Acronyms

RTG
Reference Trajectory-based Guidance

NPCG
Numerical Predictor-Corrector Guidance

DNN
Deep Neural Network

NASA
National Aeronautics and Space Administration

PRC
People’s Republic of China

CAV-L
Common Aereo Vehicle Low Performance

AI
Artificial Intelligence

APDG
Apollo Powered Descent Guidance

ANN
Artificial Neural Network

NN
Neural Network

xiii

ReLU
Rectified Linear Unit

ELU
Exponential Linear Unit

FFNN
Feed-Forward Neural Network

CNN
Convolutional Neural Network

RNN
Recurrent Neural Network

LSTM
Long Short-Term Memory

NLP
Natural Language Processing

NTM
Neural Turing Machine

TAEM
Terminal Area Energy Management

MSE
Mean Squared Error

MAE
Mean Absolute Error

EI
Entry Interface

HV
Height-Velocity

xiv

QEGC
Quasi-Equilibrium Glide Condition

PI
Proportional-Integral

LOS
Line of Sight

xv

Chapter 1

Introduction

[1] Hypersonic vehicles are a class of aircraft able of traveling at speeds greater
than Mach 5. This category includes a range of vehicles, such as airplanes, missiles,
and spacecraft, combining the characteristics of both aircraft and space vehicles,
thus is mostly involved in military and economic fields. An example of re-entry
vehicle for military purporse is shown in Figure 1.1. In this thesis, we focus on
hypersonic re-entry vehicles, which are designed to travel through space and safely
re-enter a planet’s atmosphere, such as Earth’s.

The atmospheric entry is a challenging process, due to the extreme conditions
which are involved. As the vehicle descends at hypersonic speeds, it encounters
intense aerodynamic forces, together with the generation of extremely high tem-
peratures. Engineers must concentrate both on the design of the vehicle and the
control techniques of its guidance, ensuring the integrity of the structure and safety
of the mission. Historically, missions like NASA’s Apollo program (1961-1972) and
Space Shuttle have demonstrated the complexity of this task, where precise control
over the vehicle trajectory, deceleration, and aerodynamic forces is essential for
a successful re-entry. More recently, vehicles like NASA’s Orion capsule (Figure
1.2), intended for deep space exploration, are specifically designed to withstand
the intense heat generated during re-entry from lunar missions, where the capsule
re-enters Earth’s atmosphere at speeds of up to 40,000 km/h. In the context of
modern research, countries around the world, including the United States, Russia,
and China, have made significant progress in hypersonic technologies. The most
recent developments have led to a focus on two main categories of these vehicles:
powered and unpowered. Re-entry aircraft belong to the latter category, for this
reason, they can be also defined as gliding.

The research work for this thesis has been carried out at the research laboratory
of the School of Astronautics at Beihang University (laboratory in Figure 1.3) in

1

Introduction

Beijing, PRC. This work has been completed also thanks to the support and guid-
ance of a dedicated research group with professors, students, and PhD candidates
from the university. The topic has been chosen with the aim of contributing to
one of the group’s key area of study: the integration of artificial intelligence (AI)
into guidance algorithms, with the purpose of enhancing the performance of the
re-entry of hypersonic vehicles, with a special attention to the real-time correction
of the trajectory, where classical procedures, such as reference trajectory-based
guidance (RTG) and numerical predictor–corrector guidance (NPCG), are lacking.
Traditional methods, while effective, often face challenges when addressing the
complexity of non-linear flight dynamics and non-convex path constraints. The
research group at Beihang University has already explored various approaches
to improve guidance systems, including those that combine AI technologies with
numerical algorithms to optimize the results.

In this thesis, we depart from the intelligent algorithm developed by the research
team [2], introducing a different approach. While the main job of the team’s
algorithm is constructing a parametrized bank angle profile, to follow during the
flight of the vehicle, in order to meet the range constraint, our approach focuses on
the design of a parameterized height profile, to satisfy the range constraint, and a
reference velocity profile, for meeting the time constraint. Both approaches exploit
the predictions of a deep neural network (DNN) that approximates flight states
with respect to range and flight time. According to the determination of reference
height and velocity, the guidance algorithm computes the bank angle and angle of
attack amplitudes for the current guidance cycle, for longitudinal control, while
lateral control involves determining the sign of the bank angle for each cycle.

The development and results of this intelligent guidance algorithm, as well as
the key theoretical foundations behind it, will be further elaborated in the following
chapters.

2

Introduction

Figure 1.1: Representation of a common aero vehicle - low performance (CAV-L).
An unpowered vehicle designed for precision targeting on Earth (image generated
with AI), [3]

Figure 1.2: NASA Orion Re-entry Vehicle from NASA website1

1NASA website URL: https://www.nasa.gov/reference/orion-spacecraft/

3

https://www.nasa.gov/reference/orion-spacecraft/

Introduction

Figure 1.3: Laboratories of the School of Astronautics of Beihang University

1.1 Structure of the document
The document is organized as follows:

• Chapter 2 - A comprehensive review of the related works in the field of
hypersonic vehicles guidance and control, and a detailed overview of deep
neural networks (DNNs), including fundamental concepts and structures.
Then a brief focus on the previous study of the research group at Beihang is
provided.

• Chapter 3 - Explanation of the specific DNN architecture developed for this
research, along with its role in predicting flight characteristics.

• Chapter 4 - Presentation of the longitudinal guidance strategy, with an em-
phasis on how the bank angle and angle of attack amplitudes are computed
based on the height and velocity profiles, ensuring adherence to range and
time constraints.

• Chapter 5 - A thorough description of the lateral guidance method, outlining
the process for determining the sign of the bank angle for each guidance cycle.

• Chapter 6 - Discussion of the obtained results from simulations, analyzing
the performance of the proposed guidance approach and comparing it with
traditional methods.

4

Introduction

• Chapter 7 - Conclusion, summarizing the key findings of the thesis, the impli-
cations for future research, and the potential applications of this innovative
guidance technology.

• Appendix.

5

Chapter 2

Related works

2.1 Numerical predictor-corrector guidance (NPCG)
overview

Numerical predictor-corrector guidance (NPCG) is a foundamental technique used
to manage the complex re-entry trajectories of hypersonic vehicles and plays a vital
role in this process by predicting and correcting the trajectory of the vehicle to
meet the requested constraints.

2.1.1 How NPCG works
[4] The NPCG operates by segmenting the entry trajectory into several phases,
each governed by specific set of control variables. A typical entry trajectory, such
as the one shown in Figure 2.1, begins at the atmospheric interface and ends at
touchdown. The figure emphasizes the descent phase using a logarithmic scale,
showcasing the progression of the trajectory through its various segments. Each of
these segments requires adjustments to the control vector (e.g., vehicle commands)
to meet mission constraints.

The NPCG consists of a systematic process that involves both predicting and
correcting the flight path of the vehicle. The following lines show how it works:

• Prediction: The algorithm generates a predicted trajectory based on the
current state and control vector of the vehicle. This is accomplished by
integration of the three or six degrees of freedom (3DOF or 6DOF) equations
of motion, which model the dynamics during the flight.

• Correction: After establishing the predicted trajectory, the algorithm com-
pares it to the specified constraints (such as landing site coordinates or altitude

6

Related works

101 102 103 104
Velocity, m/s

10−2

100

102

104

106
Al

tit
ud

e,
 m

Terminal Descent

TAEM
Powered Descent

EI

Figure 2.1: Reproduction of a notional entry trajectory with notional guidance
segments denoted. Note logarithmic scales on both axes, [4]

profiles). It calculates the errors between the predicted and desired trajectories
and determines the necessary adjustments to the control vector to minimize
these errors. This correction step uses a gradient-based targeting algorithm to
find the "best" control commands for the current guidance segment.

The converged control vector solution is commanded until the NPCG is called
again, effectively managing the path in real time. For example, the Apollo powered
descent guidance (APDG) generates a desired acceleration vector profile to target
the specific landing sites.

A flowchart illustrating the logic flow of the NPCG is shown in Figure 6.1.
For each segment of the flight, specific waypoints or targets, such as landing site
coordinates, are defined and given as input to the system. Moreover, the algorithm
utilizes several inputs, including the current state of the vehicle from the navigation
system, accelerations from the inertial measurement unit (IMU), and when available,
atmospheric data.

These inputs are used by the NPCG to update internal models related to
aerodynamics, gravity, and atmospheric conditions, all of which vary based on
the specific requirements of the mission. The updated models allow the NPCG
to propagate the trajectory toward a predefined terminal point. The targeting
algorithm, working together with the trajectory propagator, then determines the
control vector that best satisfies the mission constraints for each segment of the
flight.

7

Related works

Figure 2.2: Outline of a typical NPC guidance logic, [4]

2.1.2 Advantages and drawbacks of NPCG
On the one hand, NPCG offers several advantages respect to other entry guidance
approaches, such as RTG [2]:

• Accuracy: NPCG reaches extremely accurate trajectory predictions that
can be adjusted in real time, which is essential for meeting strict landing
constraints during re-entry.

• Flexibility: Unlike RTG methods that rely on offline trajectory planning and
online reference trajectory tracking, NPCG does not depend on an optimized
reference trajectory. This makes it better suited for handling large trajectory
dispersions and the complexities of hypersonic flight.

• Improved performance: With advancements in computer technology,
NPCG has seen significant developments, allowing it to outperform RTG
approaches in certain scenarios, particularly when faced with non-linear flight
dynamics.

On the other hand, there are some critical issues associated with this technique:

8

Related works

• Computational complexity: The need for real-time trajectory propagation
and error correction can require considerable computational resources, making
it challenging to implement in time-sensitive situations. This is the reason
why the DNN technique is utilized to better enable the real-time performance,
as we will see later.

• Non-linear dynamics: The non-linear nature of hypersonic flight dynamics
can complicate the prediction and correction processes, requiring advanced
algorithms and robust models to ensure reliable performance.

2.1.3 Applications of NPCG
NPCG is employed in various aerospace missions where precise trajectory control
is necessary. In particular, it is applied in human-scale Mars entry, descent, and
landing scenarios [4], where the complexities of atmospheric interaction necessitate
reliable guidance systems. This algorithm is also relevant in the development of
next-generation space vehicles, demonstrating its versatility and importance in
aerospace engineering.

2.2 What is a DNN?
[5] [6] Deep learning is a quickly growing field within AI and machine learning. It
builds upon the fundamental principles of artificial neural networks (ANNs), which
are computational models inspired by the structure and function of the human
brain. ANNs are composed of layers of interconnected nodes (neurons), where each
neuron processes input and passes the information forward to the next layer. While
ANNs are effective in solving a variety of tasks, their superficial architecture often
limits their ability to learn complex patterns in data.

This is where Deep Neural Networks (DNNs) come into play. A DNN is
essentially an ANN with multiple hidden layers, allowing it to model complex and
hierarchical relationships in data. These deep architectures enable DNNs to learn
intricate patterns that are otherwise difficult for shallow networks to capture. This
capability has positioned DNNs at the forefront of the research field and real-world
applications, from image recognition and natural language processing to self-driving
cars and even creative tasks like generating art or music.

In deep learning, the layers of a DNN are trained to automatically extract features
from raw data, eliminating the need for manual feature engineering. Each layer in
the network progressively transforms the input into higher-level representations,
with early layers capturing simple patterns, like edges in an image, and deeper
layers capturing more abstract concepts, like objects or scenes. The availability of
large datasets, combined with advancements in computational power (especially

9

Related works

graphics processing units or GPUs), has fueled the rise of deep learning in recent
years, enabling DNNs to outperform traditional machine learning methods in many
domains.

Activation function

An essential component of each layer in a DNN is the activation function [7],
which introduces non-linearity to the model, simulating biological activation to
input stimuli. Without activation functions, the network would simply be a series
of linear transformations, limiting its ability to learn complex patterns. Common
activation functions include ReLU (Rectified Linear Unit), sigmoid, tanh, and ELU
(Exponential Linear Unit).

Classification and regression

In this thesis, we develop a DNN specifically for solving a regression problem. A
regression problem involves predicting a continuous output variable based on one
or more input features, while a classification problem focuses on assigning input
data to discrete categories.

Deep learning can be particularly advantageous for regression problems like the
one we have to face with. The choice of deep learning over traditional machine
learning methods is justified in several ways:

• Handling complex relationships: Regression problems often involve com-
plex, non-linear relationships between input features and output variables.
While traditional machine learning algorithms, such as linear regression or sup-
port vector machines, may struggle to capture these complexities, DNNs can
model intricate patterns effectively due to their multiple layers and non-linear
activation functions.

• Large dataset requirements: The performance of DNNs improves with
larger datasets. Traditional machine learning methods may be sufficient for
small or moderate datasets but cannot perform as well when the amount of
data is extensive. The availability of a consistent number of data points allows
the DNN to learn more robust patterns and relationships.

• Automatic feature extraction: DNNs can automatically learn features
from the raw input data without extensive feature engineering. This contrasts
with traditional machine learning, which often requires domain knowledge to
manually select relevant features.

10

Related works

Supervised and unsupervised learning

In general, classification or regression can be approached using different learning
paradigms: supervised learning involves training a model on labeled data, where the
input features are paired with the corresponding output labels, whereas unsupervised
learning deals with unlabeled data, where the model must identify patterns or
structures within the data without explicit guidance.

Preparation phase

The setup phase of a DNN typically involves three main steps:

1. Training: The model learns from the training dataset by adjusting its weights
to minimize the error between the predicted outputs and the actual outputs.

2. Validation: The performance of the model is evaluated on a separate valida-
tion dataset to tune hyperparameters and prevent overfitting.

3. Testing: Finally, the model is assessed on a testing dataset to measure its
generalization ability on unseen data.

2.2.1 Types of DNN
Deep learning includes a variety of DNN architectures, each optimized for specific
types of data and tasks. Below are some types of DNNs worth mentioning, which
have a profound impact on AI research and applications.

1. Feed forward neural networks (FFNNs)
Feed forward neural networks (FFNNs), also known as dense networks, are
the simplest type of DNN. In FFNNs, each neuron in one layer is connected to
every neuron in the next layer (fully connected), allowing for a comprehensive
learning of complex functions. They are typically used for tasks where the
input data is structured and does not have any specific spatial or temporal
dependencies, such as tabular data or simple classification or regression tasks.
The components of a FFNN include:

• Input layer: This layer receives the input data.
• Hidden layers: These layers transform the input into higher-level rep-

resentations using activation functions, allowing the network to learn
non-linear relationships.

• Output layer: This layer produces the final output, which could be
a class label for classification tasks or a continuous value for regression
tasks.

11

Related works

Although FFNNs are less suited for tasks involving spatial or sequential data
compared to other architectures, they provide a fundamental understanding
of neural networks and serve as the building blocks for more complex DNNs.

2. Convolutional neural networks (CNNs)
Convolutional Neural Networks (CNNs) are one of the most widely used
architectures in deep learning, especially for image and visual data. CNNs
excel at detecting spatial hierarchies in data, making them particularly suited
for image classification, object detection, and segmentation tasks. Unlike
traditional fully connected networks, CNNs apply a series of convolutional
filters to the input, which helps to capture local patterns (e.g., edges, textures)
and reduce the dimensionality of the data.
The components of a CNN include:

• Convolutional layers: These apply filters to the input image to create
feature maps. Each filter detects specific patterns such as edges or textures
at different spatial locations.

• Pooling layers: These reduce the dimensionality of the feature maps
by selecting representative values (e.g., max pooling), which makes the
network more computationally efficient while retaining important infor-
mation.

• Fully connected layers: The high-level features extracted from the
convolutional and pooling layers are passed to fully connected layers (as
a FFNN) for final classification.

CNNs have achieved remarkable success in image classification benchmarks,
such as the ImageNet competition, where they significantly reduced error
rates. Their hierarchical structure allows them to process data in a way similar
to how the human visual cortex processes images, identifying patterns and
assembling them into more complex structures.
In Figure 2.3 the architecture of a CNN is represented.

3. Recurrent neural networks (RNNs) and long short-term memory
networks (LSTMs)
Recurrent Neural Networks (RNNs) are designed to handle sequential data (as
shown in Figure 2.4), making them ideal for tasks where context and order are
crucial, such as speech recognition, time-series prediction, and natural language
processing (NLP). Unlike feed forward networks, RNNs have connections that
loop back, allowing information to persist across time steps. This structure
enables RNNs to "remember" previous inputs, which is essential for processing
sequences where the current output depends on previous data points.

12

Related works

Figure 2.3: CNN architecture, showing convolutional, pooling, and fully connected
layers

However, traditional RNNs suffer from issues like the vanishing gradient
problem, which makes it difficult for them to learn long-term dependencies.
To address this, long short-term memory (LSTM) networks were developed.
LSTMs are a type of RNN that includes memory cells capable of maintaining
information over long sequences. These cells are regulated by gates that control
the flow of information, allowing the network to learn when to remember and
when to forget.
LSTMs have been particularly successful in NLP tasks, where understanding
the context of words and sentences is crucial. For instance, LSTMs have
been used in machine translation systems, enabling accurate translation by
maintaining the context of previous words in a sentence.

4. Autoencoders
Autoencoders are a specific type of DNN used for unsupervised learning.
They are designed to learn efficient representations (encodings) of input data,
typically for tasks like dimensionality reduction, denoising (see Figure 2.5), or
anomaly detection. An autoencoder consists of two main parts:

• Encoder: This part compresses the input data into a lower-dimensional
representation (the "bottleneck").

13

Related works

Figure 2.4: RNN architecture

• Decoder: The decoder reconstructs the input data from the compressed
representation.

The goal of an autoencoder is to minimize the difference between the original
input and its reconstruction, forcing the network to learn a compact and
efficient representation of the data. Deep autoencoders, with multiple layers
of encoders and decoders, are used for tasks like image compression, where
they learn to represent complex features in a more abstract form.

5. Neural turing machines and memory networks
Neural Turing Machines (NTMs) and Memory Networks are examples of
architectures that extend the capabilities of traditional RNNs by introducing
external memory components. These networks are designed to perform tasks
that require complex reasoning, such as question-answering or solving problems
that involve recalling information from a long sequence.

• Neural turing machines (NTMs): NTMs combine the power of
RNNs with an external memory bank, allowing the network to learn
how to read from and write to memory. This architecture makes NTMs
particularly effective for tasks that involve algorithmic processes, like
sorting or following instructions.

14

Related works

Figure 2.5: Autoencoder architecture

• Memory networks: These networks also incorporate an external memory
component but are mainly designed for tasks involving reasoning and
inference, such as understanding stories and answering questions about
them. Memory networks have shown strong performance in question-
answering benchmarks by storing relevant information and recalling it
when needed.

Both NTMs and memory networks are powerful tools for tasks requiring
long-term memory and reasoning, pushing the boundaries of what DNNs can
achieve.

2.3 Focus on the work of Lin Cheng et al. [2]:
bank angle parameterization and range con-
straint

The work introduces a novel predictor-corrector entry guidance algorithm aimed at
improving real-time control of hypersonic vehicles during atmospheric re-entry. A
central element of their approach is the parametrization of the bank angle profile,
which is designed to meet both path and terminal constraints while achieving the
desired covered distance or range. The total distance constraint or range-to-go s,

15

Related works

can be decomposed into two components:
• Downrange: The distance traveled by the vehicle along its trajectory in the

horizontal direction, measured from the entry interface or launch point to the
target location. It represents the longitudinal distance covered or remaining
along the intended flight path.

• Crossrange: The lateral distance perpendicular to the vehicle downrange,
representing the deviation from the ideal flight path. It is used to assess
and correct the lateral position of the vehicle during flight to ensure accurate
heading control.

This work involves the parametrization of the bank angle and the use of DNN for
range prediction and correction in both the longitudinal and lateral channels.

2.3.1 Bank angle parameterization for range control
The paper addresses the trajectory planning problem by parameterizing the bank
angle using a compound bank angle corridor. This approach simplifies the complex
entry guidance problem into a univariate root-finding problem, which is solved
iteratively to ensure compliance with the range constraint.

The entry flight is divided into three phases:
• Initial descent phase: During this phase, the vehicle bank angle is kept

constant at a maximum allowable value, denoted as σImax, to prevent excessive
altitude loss and avoid exceeding heating rate constraints.

• Quasi-equilibrium glide phase: In this phase, the bank angle is controlled
to maintain the vehicle altitude above the minimum boundary determined by
path constraints, such as heating rate and dynamic pressure. The maximum
allowable bank angle is denoted as σEmax.

• Pre-TAEM phase: The final phase before the terminal area energy manage-
ment (TAEM) interface, where the bank angle σT AEM is controlled to meet
the terminal height and velocity constraints.

The bank angle profile is determined by the following weighted sum:
|σ(v)|ω = ω · σmin(v) + (1 − ω) · σmax(v) (2.1)

where ω is a weighting coefficient used as parameter to adjust the bank angle based
on the desired downrange. The function σmin(v) represents the lower boundary of
the bank angle corridor, while σmax(v) represents the upper boundary. By adjusting
ω, the vehicle can achieve different longitudinal downranges, with the relationship
between ω and the downrange being monotonically increasing. This ensures that a
larger ω leads to a smaller bank angle and thus a larger downrange.

16

Related works

2.3.2 DNN for longitudinal and lateral guidance
The DNN developed by Cheng et al. is trained to predict the downrange and
crossrange based on the current flight states and the bank angle profile. This
replaces traditional, time-consuming trajectory propagation techniques with a
faster prediction method, greatly enhancing real-time performance.

DNN for longitudinal guidance

In the longitudinal channel, the DNN approximates the downrange-to-go based on
the current state variables [h, v, θ] (altitude, velocity, and flight path angle) and
the bank angle weighting coefficient ω. The downrange predicted by the DNN is
denoted as:

Netdpre(x, ω) (2.2)

where x = [h, v, θ] is the vector of flight states. The iterative correction of ω is
performed using a modified Newton-Raphson method:

ωk+1 = ωk − λk
z(ωk)

∂Netdpre(x,ωk)
∂ωk

(2.3)

Here, z(ωk) is the difference between the predicted downrange Netdpre(x, ωk) and
the required one, and λk is the step size. This DNN-based iteration allows for
real-time updates of the bank angle without the need for traditional trajectory
propagation.

DNN for lateral guidance and bank reversals

In the lateral channel, the DNN output for the crossrange prediction is denoted as:

Netcpre(x, ω) (2.4)

The lateral control is achieved by adjusting the sign of the bank angle to manage
heading corrections. The DNN-based algorithm predicts the crossrange and, con-
sequently, if the bank angle is maintained or reversed, following the estimations
below:

RNow
c = Netcpre(x, ω) + Sign(σ) · Netdpre(x, ω) · sin(ψ − ψLOS) (2.5)

RNext
c = Netcpre(x, ω) − Sign(σ) · Netdpre(x, ω) · sin(ψ − ψLOS) (2.6)

The decision to hold or reverse the bank angle is determined by comparing the
estimated crossrange RNow

c , calculated according to the current bank angle sign,
with the predicted crossrange if the bank angle reverses RNext

c :

17

Related works

Direction

hold if Rc,next <
Rc,now

kL

reverse if Rc,next >
Rc,now

kL

(2.7)

where kL > 1 is a user-defined coefficient, which determines the magnitude of
the crossrange decrement by a single reversal. This predictive lateral guidance
algorithm ensures a deterministic number of bank reversals, improving the control
over the vehicle heading and crossrange.

Figure 2.6 illustrate the lateral guidance.

Figure 2.6: Illustration of lateral guidance. ψLOS and ψ are, respectively, the
LOS angle and the heading angle (go to Section 5.1 for definitions), [2]

18

Related works

2.3.3 Real-time performance and constraint satisfaction
By leveraging the DNN for both longitudinal and lateral guidance, the proposed
algorithm can achieve real-time performance with a trajectory update frequency
of 20 Hz. In summary, the bank angle parameterization, combined with the
DNN-based range prediction and correction, allows a precise control over the
vehicle’s trajectory while satisfying both longitudinal and lateral range constraints
in real-time.

19

Chapter 3

Design and implementation
of the DNN

The current chapter is aimed to describe the structure and the implementation of
the DNN which will be integrated within the guidance algorithm, subsequently.
The network is developed using PyTorch.

3.1 Input and output data
In this work, the objective of the DNN is to predict the two key parameters during
the re-entry flight: flight time t (measured in seconds [s]) and downrange Rd,
measured in radians [rad] (see definition in Section 2.3. Then, these two quantities
form the output of our neural network.

Instead, the input data consists of: velocity v (measured in meters per second
[m

s
]) and weighting coefficient ω. Previously, we have already mentioned ω in

Chapter 2, when describing the work of the research group, but, while in their
work, ω was used to parameterize the bank angle profile, here it is involved to
parameterize the altitude profile. By varying ω, we can effectively control the
altitude profile of the vehicle during flight, always satisfying path and terminal
constraints.

It is important to note that, in this chapter, the DNN is discussed as a standalone
component. Its integration into the overall guidance algorithm will be addressed
in subsequent chapters, where it will play a crucial role in the predictor-corrector
scheme.

The training data have been provided directly by the research laboratory at
Beihang University, which generated it through a detailed procedure. [2] Specifically,
feasible entry trajectories with different ranges were generated. The dataset consists
of 10,000 different trajectories, with 100 samples extracted from each trajectory,

20

Design and implementation of the DNN

resulting in a total of 1,000,000 data samples. The dataset was then divided into
three subsets: 80% for training, 10% for validation, and 10% for testing, ensuring
a robust learning process for the network.

This extensive dataset allows the DNN to learn the complex non-linear rela-
tionships between the input variables and the flight outcomes, ensuring accurate
predictions in a variety of entry scenarios.

3.2 Network description
The neural network implemented in this work is a fully connected feed-forward
network. It consists of 4 layers: an input layer, 2 hidden layers, and an output
layer. The details of the network structure and its components are given below.

3.2.1 Structure
• Input Layer (fc1): The first layer is a linear transformation that maps

the input data with dimension 2 (input_dim) to a space with dimension
128 (hidden_dim). The ELU (Exponential Linear Unit) activation function is
applied. It is defined as follows:

ELU(x) =

x if x ≥ 0
α(ex − 1) if x < 0

(3.1)

where α is typically set to 1.

• Hidden layers (fc2, fc3): Two subsequent hidden layers, each containing
128 nodes. Both layers apply a linear transformation followed by the tanh
activation function. The tanh function is defined as:

tanh(x) = ex − e−x

ex + e−x
(3.2)

The output of tanh(x) is constrained in the range [−1, 1], providing a strong
non-linear mapping that helps with the learning of complex patterns.

• Output layer (fc4): The final layer is a linear transformation that maps
the 128-dimensional data from the last hidden layer to the output space with
dimension 2. No activation function is applied to the output layer, as is typical
for regression tasks where raw values are required.

21

Design and implementation of the DNN

3.2.2 Key characteristics summary
• Number of layers: 4 (including the output layer).

• Number of nodes per layer: 128 nodes in the hidden layers.

• Activation functions (AF):

– ELU in the input layer. This function allows positive outputs for x ≥ 0
and smooth negative outputs for x < 0, helping to avoid the vanishing
gradient problem.

– Tanh in both hidden layers. This function outputs values in the range
[−1, 1], providing a bounded, non-linear mapping.

– No activation function in the output layer.

Table 3.1: Structure of the DNN

Inputs v (m/s), ω
Outputs t (s), Rd (rad)
Network size 2 / 128
AF Input: ELU; Hidden: Tanh; Output: None

Table 3.1 summarizes the network structure, specifying the inputs, outputs,
layer sizes, and AF used in the network.

3.3 DNN accuracy evaluation
The DNN is trained using the normalized dataset provided by the laboratory. The
key aspects of the training process are summarized in Table 3.2:

Parameter Description
Epochs 200
Optimizer Adam
Initial learning rate 0.002
Loss function Mean squared error (MSE)
Batch size 32
Learning rate adjustment Decreased by 20% every 2 epochs
Model checkpointing Every 10 epochs, the model is saved

Table 3.2: Summary of DNN training parameters

22

Design and implementation of the DNN

The network is trained using mini-batches of 32 samples to stabilize convergence.
The Adam optimizer is applied with an initial learning rate of 0.002, which is
reduced by 20% every 2 epochs to improve performance as the model is near to
the convergence. The mean squared error (MSE) loss function is used to evaluate
the difference between predicted and actual outputs. The training process lasts
200 epochs, with model weights saved every 10 epochs.

3.3.1 Statistics
Three key statistical measures: mean absolute error (MAE), standard deviation
(σ), and maximum absolute error, are provided in Table 3.3.

Metric MAE Standard deviation (σs) Maximum absolute error
Flight time (s) 0.1703 0.1574 1.4905
Downrange (km) 0.7234 0.7035 8.2638

Table 3.3: Statistics of the DNN-based time and range prediction

For the flight time predictions, the MAE is 0.1703 s, σs equal to 0.1574 s and
the maximum absolute error to 1.4905 s. These values indicate that the network
achieved a high level of precision in predicting the flight time, with minimal
variations from the actual values, considering that the time of the re-entry flight
we are analyzing in this thesis is usually on the order of thousands of seconds.

For the range predictions, the MAE is 0.7234 km, and σs is 0.7035 km. The
maximum absolute error is found to be 8.2638 km. The mean of the errors is less
than 1 km, and the maximum error is less than 10 km. In this case too, since the
the large values of the downrange, we can see that the network achieves a high
accuracy for range prediction. From Figure 3.1 to 3.4, flight time and downrange
comparisons of different speeds and weights are reported.

3.3.2 Partial derivatives
Partial derivatives are essential in the training of neural networks as they measure
how changes in the input variables affect the output predictions. In this work,
we utilize the torch.autograd.grad function from PyTorch to compute these
derivatives. This function allows for automatic differentiation, enabling us to
efficiently calculate gradients with respect to our model parameters. These gradients
are critical for optimizing the network during the training process, as they guide
the adjustments made to minimize the loss function.

Table 3.4 summarizes the computed partial derivatives for flight time t and
range S:

23

Design and implementation of the DNN

2000 3000 4000 5000 6000 7000velocity [m/s]
0.0

0.2
0.4
0.6
0.8
1.0

we
igh

t

0

500

1000

1500

2000

fli
gh

t t
im

e
[s

]
Figure 3.1: Flight time comparison
of different speeds and weights

2000 3000 4000 5000 6000 7000velocity [m/s]
0.0

0.2
0.4
0.6
0.8
1.0

we
igh

t

0
2000
4000

6000

8000

10000

do
wn

ra
ng

e
[k

m
]

Figure 3.2: Downrange comparison
of different speeds and weights

2000 3000 4000 5000 6000 7000velocity [m/s]
0.0

0.2
0.4
0.6
0.8
1.0

we
igh

t

−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75

tim
e

pr
ed

ict
io

n
er

ro
r [

s]

Figure 3.3: Flight time prediction
error comparison of different speeds
and weights

2000 3000 4000 5000 6000 7000
velocity [m/s]

0.0
0.2
0.4
0.6
0.8
1.0

 e
ig
ht

−3
−2
−1
0
1
2
3

do
 n
ra
ng
e
pr
ed
ict
io
n
er
ro
r [
km
]

Figure 3.4: Downrange prediction
error comparison of different speeds
and weights

The following snippet of code illustrates how we compute the partial derivatives
using PyTorch [8]:

1 def cal_partial (self , x: np. ndarray):
2 [...]
3

24

Design and implementation of the DNN

Variable Partial derivative Value
Flight time t dt

dv
9.24523132 × 10−2

dt
dω

2.99091414 × 102

Downrange Rd
dRd

dv
2.99091414 × 102

dRd

dω
1.47965992 × 10−1

Table 3.4: Partial derivatives for flight time t and downrange Rd.

4 # Normalize the input based on mean and standard deviation
5 input_p = (x - self.xmean) / self.xstd
6 input_p = torch. FloatTensor (input_p)
7 input_p . requires_grad = True # Enable gradient tracking
8

9 # Forward pass through the neural network
10 output = self.net(input_p)
11

12 df_dx = np.empty ((x.shape [0], 0, 2)) # Initialize array for
partial derivatives

13 for i in range (2):
14 d = torch. zeros_like (output) # Create tensor for gradient

output
15 d[:, i] = torch. ones_like (d[:, i]) # Set one column to

compute the derivative
16

17 # Compute the partial derivative using autograd
18 df_dx_ = torch. autograd .grad(outputs =output , inputs =

input_p , grad_outputs =d, create_graph =True)[0]
19 df_dx_ = df_dx_ . detach ().numpy () # Detach from the graph

and convert to NumPy
20 df_dx_ = df_dx_ . reshape ((x.shape [0], 1, 2)) # Reshape for

concatenation
21 df_dx = np. concatenate ((df_dx , df_dx_), axis =1) #

Concatenate results
22

23 out = np. zeros_like (df_dx) # Initialize output for adjusted
derivatives

24 # Scale the derivatives based on standard deviations
25 out [:, 0, 0] = self.ystd [0] / self.xstd [0] * df_dx [:, 0, 0]
26 out [:, 0, 1] = self.ystd [0] / self.xstd [1] * df_dx [:, 0, 1]
27 [...]
28

29 return out # Return the computed partial derivatives : dt/dv ,
dt/dw , dRd/dv , dRd/dw

Listing 3.1: Partial derivatives calculation in PyTorch

The validity of these derivative values has been thoroughly verified by the

25

Design and implementation of the DNN

research laboratory at Beihang University, ensuring that the model predictions are
reliable and consistent.
Furthermore, the utility of the partial derivatives, specifically their indication of
how changes in the input data affect the output, will be shown in Chapter 4.

3.4 Observation on the choice of input and output
data

In our guidance algorithm, we must adhere to constraints on both range and flight
time, which are known prior to the algorithm initiation. This raises an important
question: why are the inputs and outputs of the neural network not inverted?
Specifically, why do we predict not the velocity and weighting coefficient that satisfy
the constraints on flight time and range, but rather the opposite? The answer
lies in the fact that there is no one-to-one correspondence between the pairs of
time-range and velocity-weighting coefficient. Therefore, if we were to invert the
inputs and outputs of the neural network, the learning rate would be significantly
low, resulting in poor model performance. As we will discuss in the following
chapter, we will need to derive the velocity and the parameter ω from the neural
network predictions.

26

Chapter 4

Longitudinal guidance

In this chapter, we focus on the integration of the DNN within the NPCG algorithm.
By using the predictions provided by the DNN, the trajectory of the vehicle is
corrected in real-time using two control variables: the bank angle (σ) and the
angle of attack (α). The main purpose of the entry guidance system is to steer the
vehicle from the entry interface (EI) to a desired terminal area, all while satisfying
multiple constraints.

• Bank angle (σ): inclination of wings of an aircraft relative to the horizontal
plane (Figure 4.1) [9].

• Angle of attack (α): the angle between a plane wing and the oncoming air
(relative wind) (Figure 4.2) [10].

This chapter specifically illustrates longitudinal guidance, which involves deter-
mining the magnitude of both bank angle and angle of attack. The determination
of the sign of σ will be discussed in the next chapter, while the sign of α is always
positive.

4.1 Problem formulation

4.1.1 Entry dynamics
The 3-D and 6DOF equations of motion for a lifting vehicle through the atmosphere
over a spherical Earth are described as follows, with effects of the rotation of the
Earth neglected.

3MISB Motion Imagery Standards Board 0601.8, 23 October 2014

27

Longitudinal guidance

Figure 4.1: Illustration of the bank angle, the angle between the horizontal plane
and the wing of the aircraft (left wing in the case of the image), [9]

Figure 4.2: Illustration of the angle of attack. The chord is the straight-line
distance between the leading edge and the trailing edge of an aircraft airfoil, [10]

ṙ = v sin θ (4.1)

λ̇ = v cos θ sinψ
r cosϕ (4.2)

28

Longitudinal guidance

ϕ̇ = v cos θ cosψ
r

(4.3)

v̇ = −D

m
− g sin θ (4.4)

θ̇ = 1
v

A
L cosσ
m

+
A
v2

r
− g

B
cos θ

B
(4.5)

ψ̇ = 1
v

3
L sin σ
m cos θ

4
(4.6)

Above, r is the radial distance from the Earth’s center to the vehicle, λ and
ϕ represent the Earth-relative longitude and latitude, respectively, and v is the
Earth-relative velocity. The variable θ denotes the flight-path angle of the velocity
vector, measured upward from the local horizontal direction. More, ψ represents
the heading angle of the velocity vector, measured clockwise in the local horizontal
plane from the north. The mass of the vehicle m is assumed to be constant, as the
entry vehicle is unpowered.

The downrange distance Rd, which is used in trajectory planning, can be
calculated as:

Ṙd = v cos θ
r

(4.7)

The vehicle is driven by Earth’s gravity and aerodynamic forces. The gravita-
tional acceleration g is calculated as:

g = g0
R2

0
r2 (4.8)

where g0 = 9.81 m/s2 denotes the gravitational acceleration at sea level, and
R0 = 6371 km is the radius of the Earth.

The aerodynamic lift and drag forces, denoted as L and D, respectively, are
expressed as:

L = 0.5 ρv2CLSref (4.9)
D = 0.5 ρv2CDSref (4.10)

where ρ denotes the atmospheric density, which is calculated using the US
Standard Atmosphere 1976 model. Sref represents the aerodynamic reference
area, and CL and CD denote the lift and drag coefficients, respectively, which are
functions of the velocity and the angle of attack α. In this case, the angle of attack
α is predetermined as a function of velocity.

29

Longitudinal guidance

4.1.2 Flight constraints
The initial conditions for the hypersonic vehicle entry flight refer to the CAV-L
model [3], and are defined as:

h0 = 100 km,
λ0 = 0◦,

ϕ0 = 0◦,

v0 = 7.200 km/s,
θ0 = −2◦,

ψ0 = 55◦,

t0 = 0 s.

(4.11)

where
r0 = h0 +R0 (4.12)

To ensure flight safety during the entry phase, several flight path constraints are
imposed on the vehicle. These include the heating rate, total g-load (or aerodynamic
load), and dynamic pressure, defined as follows:

Q̇(t) = kQ

A
ρ

ρ0

B0.5
v√
R0g0

(4.13)

Q̇(t) ≤ Q̇max (4.14)

where Q̇(t) represents the heating rate at the stagnation point, and kQ is a
vehicle-dependent constant.
Additionally, the total g-load constraint is expressed as:

n(t) =

öõõôA L

mg0

B2

+
A
D

mg0

B2

≤ nmax (4.15)

Finally, the dynamic pressure constraint is defined as:

q̄(t) = 0.5 ρv2 ≤ q̄max (4.16)

Moreover, specific terminal conditions must be satisfied at the end of the entry
flight. The range-to-go constraint is given by:

S = arccos (sin λ sin λf + cosλ cosλf cos (ϕ− ϕf)) (4.17)

Here, λ and ϕ are the current coordinates, and

λf = 50◦, ϕf = 0◦ (4.18)

30

Longitudinal guidance

represent the terminal longitude and latitude, respectively, indicating the position
of the vehicle projected onto the surface of the Earth. Since this distance is measured
in radians, it can be converted to meters using R0, where the total length of the
arc, d, in meters is given by:

d = R0 · S (4.19)

Equation 4.19 accounts for the curvature of the Earth.
An additional terminal constraint is imposed on the velocity:

v(tf) = vf = 1.8 km/s (4.20)

The target velocity vf represents the stop condition for the guidance algorithm.
Lastly, the control variables σ and α are subject to the following limitations:

|σ| ∈ [0◦, 90◦] (4.21)

α ∈ [5◦, 25◦] (4.22)

4.1.3 Initial descent phase
In the initial phase of re-entry, the vehicle is in free fall, with no control on
the trajectory due to two main factors: its high speed and inertia, which make
it difficult to achieve quick responses, and the low atmospheric density at high
altitudes, which limits the generation of aerodynamic forces on control surfaces.
As the vehicle descends and slows down, control becomes more effective. The
trajectory is simply calculated through the integration of the equations of motion
using the Runge-Kutta method until it reaches a certain height threshold.

To ensure flight safety during this phase, the initial amplitude of the bank angle
(|σ0|) is determined. This is achieved by iterating through potential bank angles and
ensuring that the heating rate (Q̇(t)) remains within acceptable limits, specifically
not exceeding the maximum allowable heating rate (Q̇max).

Finally, we set an initial final time constraint tf for this phase, its validity will
be assessed in Subsection 4.4.3.

4.2 Compound HV corridor
[11] The trajectory of the vehicle must remain within a specific height-velocity
(HV) corridor to accomplish all flight constraints mentioned in Subsection 4.1.2.
The compound HV corridor, known for its simplicity and clear physical meaning,
provides upper and lower bounds for flight trajectory. To ensure smooth transitions

31

Longitudinal guidance

in the height bounds, these are fitted with fifth-order polynomials, as shown by
the red lines in Figure 4.3, where the red dashed line (HCUb) represents the upper
bound and the red solid line (HCLb) is the lower bound.

The aircraft entire corridor is composed of the conventional HV corridor, HCUb
and HCLb, and the terminal flight envelope, HTUb and HTLb, considering the
terminal states.

The corridor defines a feasible flight space. Within this space, the vehicle can
glide while adhering to all process constraints, since they have been considered in
the design of the corridor itself.

Our objective is to ensure that the vehicle remains within this composite HV
corridor throughout the flight. The boundaries have been provided by the laboratory,
and their determination is not part of the work conducted in this thesis. However,
further details on the construction of this feasible space will be included in Section
A.1.

2000 3000 4000 5000 6000 7000
Speed [m/s]

20000

30000

40000

50000

60000

He
ig

ht
 [m

]

Compound HV-Corridor
HVUb
HVLb

Figure 4.3: Compound HV corridor given by the union of the conventional
corridor (HCUb and HCLb) and the terminal flight envelope (HTUb and HTLb),
[11]

32

Longitudinal guidance

4.3 Trajectory parametrization and range con-
straint management

4.3.1 Control parametrization
Relationship between downrange and height

The motion of the aircraft can be described by the following equation of motion,
which relates the downrange distance to velocity [2]:

dRd

dv
=

v cos(θ)
r

−D
m

− g sin(θ)
(4.23)

For simplification, under the quasi-equilibrium glide condition (QEGC), we
assume that r ≈ R0 and θ = 0. This allows us to reduce the equation further by
incorporating the specific expression for drag (D):

dRd

dv
= m

−1
2ρvCLSrefR0

(4.24)

The air density ρ is a function of the height, represented by:

ρ(h) = ρ0e
− h

hs (4.25)

where ρ0 is the air density at sea level, and hs is the scale height. Since ρ
decreases exponentially with altitude, the term dRd

dv
becomes an increasing function

of the height.

This implies that, at higher flight altitudes, the vehicle experiences lower drag,
enhancing its downrange gliding capability.

Height profile parametrization

A method for generating a feasible height profile is weighting the upper and lower
bounds of the composite corridor, as expressed in Equation 4.26:

href = ωh ·HUb + (1 − ωh) ·HLb (4.26)

From the derivation process of the composite corridor, it is evident that the
designed href is a function of velocity and consequently, href satisfies the flight path
constraints. The adjustment of ωh, that is called weighting coefficient, enables the
height profile to rise or fall. By associating this adjustment with the previously
discussed relationship between altitude and range, a parameterized scheme for the
trajectory profile is established, facilitating the accurate satisfaction of the desired

33

Longitudinal guidance

downrange Rdgo through online adjustments of ωh. Considering the k-th guidance
cycle, the Equation 4.26 becomes:

href(k + 1) = ωh(k + 1) ·HUb + (1 − ωh(k + 1)) ·HLb (4.27)

Determination of ωh and vref

An iterative optimization approach is employed to determine the reference veloc-
ity vref and weighting coefficient wh for trajectory planning. This optimization
leverages the deep neural network (DNN) presented in Chapter 3, which predicts
the downrange Rd and flight time t based on the inputs: velocity v and weighting
coefficient ωh. The relationship between the changes in the outputs t and Rd and
the inputs v and ωh can be expressed using the chain rule as follows:

A
dt
dRd

B
=
A

∂t
∂v

∂t
∂ωh

∂Rd

∂v
∂Rd

∂ωh

BA
dv
dωh

B
(4.28)

Given the non-linear nature of the outputs concerning the inputs, a direct
determination of v and ωh is not possible. Instead, an iterative method to refine
these parameters through multiple iterations is implemented, analogous to gradient
descent, where updating the parameters is made in the direction of reducing the
error. Appropriate initializations of the variables are made.

The adjustment of the parameters is expressed as:

A
dv
dωh

B
=
A

∂t
∂v

∂t
∂ωh

∂Rd

∂v
∂Rd

∂ωh

B−1 A
dt
dRd

B
(4.29)

This reflects the principle of Newton’s method, utilizing the inverse of the
Jacobian matrix to update estimates more effectively. The use of the chain rule
highlights how small changes in the input parameters v and ωh affect the outputs t
and Rd. Additionally, ωh is constrained within the range [0, 1].

The iterative process continues until the terminal conditions for both dt (the
difference in time) and dRd (the difference in range) are sufficiently small, indicating
convergence towards a solution that satisfies the required conditions for trajectory
planning.

Filtering of the reference height

[11] The height profile may change too drastically, causing a large jump in the bank
angle tracking instruction. Therefore, the height is filtered before the trajectory
tracker, according to a proportional-integral (PI) filtering algorithm, defined as:

34

Longitudinal guidance

hcmd(k) = (1−kP f)hcmd(k−1)+kP fhref(k)+kIf

Ú
(hcmd(k−1)−href(k−1))dt (4.30)

where hk
ref and hk−1

ref are the reference heights corresponding to the current and
previous sample points, respectively, hk

cmd and hk−1
cmd are the height commands after

filtering of the current and previous sample points. The parameters kP f and kIf are
the proportional and integral filter coefficients, respectively. Their values, generally
in the range [0, 1] are determined using a trial and error approach to ensure optimal
filtering performance.

The choice of these coefficients is crucial for controlling the responsiveness and
stability of the height profile filtering. Higher values of kP f make the system more
reactive to changes in the reference height, while lower values provide a smoother
response. Similarly, higher values of kIf allow for better error correction over time
by integrating past errors, whereas lower values lead to slower adjustments. An
appropriate tuning of these parameters is requested.

4.3.2 Range constraint and tracking controller design
[12] The amplitude of the bank angle σ is computed by tracking the height-velocity
profile using the feedback linearization approach. Since r = R0 + h, it follows that
ṙ = ḣ. According to Equation 4.1, we can calculate the second-order derivative of
the altitude ḧ, and after taking cosσ as the control input u and organizing the
equation into linear form, we can approximate ḧ as:

ḧ = a+ bu (4.31)
where

a = (−D
m

− g sin θ) sin θ + (v
2

r
− g) cos θ, b = L

m
cos θ.

A control law is designed to track the altitude hcmd, calculated from the altitude-
velocity profile, which is expressed as

(ḧ− ḧcmd) + 2λ(ḣ− ḣcmd) + λ2(h− hcmd) = 0 (4.32)
where λ is a constant coefficient that controls the allowable reaching speed of

hcmd. Substituting Equation 4.1 into Equation 4.32, we obtain the amplitude of σ
from:

cosσ = 1
b

1
ḧcmd − 2λ(ḣ− ḣcmd) − λ2(h− hcmd) − a

2
(4.33)

The right side of the equation is restricted to the domain [0, 1] during the
solution process to ensure that the equation is meaningful.

35

Longitudinal guidance

4.4 Time constraint management

4.4.1 Angle of attack as a function of velocity
In Subsection 4.1.1 we presented the angle of attack α as a function of velocity.
Below, the specific relationship between the two quantities [11]:

α =

αmax if v > v1
(αmax−αmin)(v−v2)

(v1−v2) if v2 ≤ v ≤ v1

αmin if v < v2

(4.34)

Where:

• αmax = 20◦ is the maximum angle of attack.

• αmin = 8.5◦ is the angle of attack for maximum upward resistance: the angle of
attack at which an aircraft generates the highest lift-to-drag ratio (L

D
) during

the flight.

• v1 = 4700 m/s and v2 = 3100 m/s are the velocities at the two division points.

• v is the current velocity of the vehicle.

4.4.2 Reference velocity tracking
In the control action for adjusting the angle of attack α, in order to track vref ,
a feedback control strategy is employed, resembling a PI control approach. The
nominal angle of attack αnominal is firstly computed based on the current velocity.
Then, the difference between the current velocity and the reference velocity is
calculated as follows:

error = vnow − vref. (4.35)

To account for accumulated errors over time, the integral component is updated,
and the adjustment to the angle of attack, denoted as δα, is then determined using
both the proportional and integral components:

δα = kp · (vnow − vref) − ki ·
Ú

(vnow − vref) dt. (4.36)

Here, kp and ki are the proportional and integral gain coefficients, respectively,
again tuning according to a trial and error strategy, and the adjustment is clipped
to remain within a specified range of [−5, 5] degrees. Finally, the reference angle of
attack is calculated by combining the nominal angle with the correction:

36

Longitudinal guidance

αref = αnominal + δα. (4.37)

This control strategy ensures that the angle of attack is dynamically adjusted
based on the difference between the current and reference velocities, taking into
account the reference speed, calculated on the basis of predictions made by the
DNN, the velocity that the vehicle should have to accomplish the time constraint.

Basically, since there exists a linear relationship between flight time and range,
when both the starting point and the end point are set, the variables v and ωh

must be adjusted simultaneously to satisfy the time and range constraints.

4.4.3 Time boundaries
Before the guidance algorithm starts, we need to check if the fixed terminal
constraint tf , is respectable. In particular we must ensure that tf is within a
specific range.

In the optimal scenario, after the initial and terminal points are fixed, the
maximum flight time is calculated by determining the necessary velocity, vneed,
that fulfills the range constraint when ωh = 1. However, setting ωh = 1 results in a
large change in velocity dv, defined as the difference between vref (speed that the
vehicle should have to meet both the range and time constraints, calculated with
the help of the DNN, Equations 4.28 and 4.29) and the current velocity vcurr of the
vehicle. This great gap dv is really difficult to bridge, regardless of how the angle
of attack α is adjusted afterward. Therefore, vneed that meets the range constraint
is calculated starting from ωh = 1 and decreasing. Once dv becomes acceptable,
the maximum flight time is achieved. In particular, we fix a tolerance of 800.

Conversely, the minimum flight time is determined by incrementing ωh from 0
upwards.

37

Chapter 5

Lateral guidance

Lateral guidance is the other component for maintaining the desired trajectory
during the atmospheric re-entry phase of hypersonic vehicles. The primary objective
is to ensure that the vehicle stays on course by adjusting the lateral control surfaces
to minimize deviations from the ideal path. One of the key parameters in lateral
guidance is the crossrange (Rc), already defined in Section 2.3.

The rate of change of the crossrange with respect to time, denoted by Ṙc, is
useful for understanding how quickly the vehicle is deviating laterally.

It is defined by the following equation [2]:

Ṙc = v cos θ sin(ψ − ψ0)
r

(5.1)

where ψ0 represents the initial heading angle at the EI.

This equation indicates that the rate of change of the crossrange depends on
the heading error, represented by sin(ψ − ψ0). If ψ aligns with ψ0, the rate Ṙc

becomes equal to 0, implying that there is no lateral deviation from the initial
defined trajectory. Conversely, if there is a significant heading error, the rate will
increase, indicating a need for lateral correction.

By continuously monitoring Ṙc, the lateral guidance system can dynamically
adjust the sign of the bank angle to correct the course of the vehicle and reduce
lateral deviations.

In this thesis, the primary focus is the longitudinal guidance, which forms the
core of the work. In particular, no dedicated control for managing crossrange or
heading angle has been developed. However, a bank reversal logic [13] [14] is
implemented. This logic is described in detail in the following sections of this
chapter.

38

Lateral guidance

5.1 Initial sign of the bank angle
The initial sign of the bank angle σflag is determined by comparing the line of
sight (LOS) angle ψLOS with the terminal heading angle of the vehicle ψT . In this
context, ψLOS represents the angular position between the vehicle and the target
point (λf , ϕf), measured from the current position of the vehicle (λ, ϕ):

ψLOS = arctan
A

sin(λf − λ)
cos(ϕ) · tan(ϕf) − sin(ϕ) · cos(λf − λ)

B
(5.2)

It provides a reference for the direction that the vehicle needs to follow.
This angle is then compared to ψT , which is the final heading orientation of the

vehicle.
Finally, σflag is computed based on the difference between these two angles. If

ψLOS is greater than ψT , σflag is set to 1, indicating a positive roll (right bank).
Conversely, σflag is set to -1, indicating a negative roll (left bank). Mathematically,
this can be expressed as:

σflag =

1, if ψLOS > ψT

−1, otherwise
(5.3)

σflag allows the vehicle to initiate its descent with the correct lateral orientation.

5.2 Bank reversals
In each guidance cycle, σflag is determined by evaluating the delta angle ∆ψ, which
is defined as the difference between the current ψLOS and ψ. This is accomplished
through the function get_delta_range (see Subsection A.4.2 for implementation
details), which calculates ∆ψ as:

∆ψ = ψLOS − ψ (5.4)

After that, the following conditions are evaluated to set σflag:

σflag =

1, if ∆ψ ≥ 1
57.3rad

−1, if ∆ψ < − 1
57.3rad

(5.5)

This approach allows for adaptive control of the sign of the bank angle, enabling
precise adjustments to maintain the desired lateral trajectory throughout each
guidance cycle.

39

Chapter 6

Simulations and results

In this chapter, we present the obtained results from our research, focusing on the
achieved trajectory and accuracy in reaching the final target in terms of longitude
and latitude. We compare the performance of our algorithm, specifically looking
at trajectory update frequency, with data from traditional guidance techniques
that do not utilize predictions from a DNN. Furthermore, the discussed results are
again based on the CAV-L model, Subsection 4.1.2 and Table A.3, [3], which is an
example of re-entry vehicle, employed in the military field.

Figure 6.1 shows the flow chart illustrating the functionality of the algorithm.

6.1 Evaluation of real-time performance and con-
vergence

6.1.1 Entry trajectory
The entry trajectory of the vehicle is shown in Figure 6.2, read from right to left,
illustrating the flight within the HV corridor. After the initial descent phase, during
which no control actions are applied, the vehicle reaches a height threshold (around
60 km) that marks its entry into the corridor. At this point, the guidance algorithm
starts. Throughout the control phase, the vehicle remains well within the corridor
limits, except for a brief moment at the beginning of guidance when it exceeds the
upper boundary of the corridor (looking at the graph, when the red line crosses
the green one, for speeds greater than 6500 m/s). This temporary deviation is
acceptable, as the upper limit can be considered a "soft" constraint, derived from
approximations in the vehicle dynamics. Conversely, the lower limit serves as a
"hard" constraint, because its determination takes path constraints (Subsection
4.1.2) into account and compliance with which is crucial for ensuring the vehicle

40

Simulations and results

Figure 6.1: Flow chart of the proposed DNN-based entry NPCG algorithm

integrity and safety throughout the mission.

6.1.2 Convergence accuracy
The convergence accuracy of the algorithm is evaluated by comparing the target
point with the terminal actual point in terms of longitude and latitude. As shown
in Table 6.1, the absolute error between the target and real values is on the order of
10−4 for longitude and 10−7 for latitude. This indicates that the algorithm achieves
high precision in positioning. The extreme accuracy can also be observed in Figures
6.3 and 6.4.

Parameter Real Value (rad) Goal (rad) Absolute Error (rad)
Terminal Longitude 0.8724 0.8727 0.0003
Terminal Latitude 4.3567e-07 0.0 4.3567e-07

Table 6.1: Comparison between real values and goals in radians

6.1.3 Real-time performance
Relying on our results, the DNN-based approach achieved the performance param-
eters resumed in Table 6.2.

41

Simulations and results

2000 3000 4000 5000 6000 7000
Speed [m/s]

20000

40000

60000

80000

100000

He
ig

ht
 [m

]

Real Trajectory in the Compound HV-Corridor
HVUb
HVLb
Real Trajectory

Figure 6.2: Entry trajectory under specific initial conditions based on the CAV-L
model

0.0 0.2 0.4 0.6 0.8
Longitude [rad]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

La
tit

ud
e

[ra
d]

Longitude as a function of latitude

real trajectory
Target point

Figure 6.3: Longitude as a function
of latitude

0 1 2 3 4 5
Downrange [m] 1e6

20000

30000

40000

50000

60000

70000

80000

90000

100000

He
ig

ht
 [m

]

Downrange as a function of height

real trajectory
Vertical line at x=downrange to go

Figure 6.4: Downrange as a function
of height

In general, studies demonstrate that the entry trajectory must be corrected/up-
dated every 2–5 seconds, due to rapidly changing flight conditions [2] [4]. This
corresponds to a trajectory update frequency of approximately 0.2–0.5 Hz, which
traditional trajectory propagation approach can satisfy. However, hypersonic vehi-
cles need a higher update frequency. This necessitates faster trajectory prediction

42

Simulations and results

Parameter Value
Number of iterations 9,153

Average total execution time ∼ 30.549 seconds
Average time per iteration ∼ 0.003 seconds

Average frequency per iteration ∼ 280 Hz

Table 6.2: Execution statistics of the DNN-based algorithm

algorithms. The frequency of work of our DNN-based approach is significantly
larger than the ones cited before, fully meeting the request.

Our DNN-based algorithm achieves a substantial improvement in overall compu-
tational speed, providing a more efficient solution for real-time re-entry guidance.

2000 3000 4000 5000 6000 7000
Velocity [m/s]

−75

−50

−25

0

25

50

75

Ba
nk

 a
ng

le
 [d

eg
]

Bank angle as a function of velocity

Figure 6.5: Bank reversal history of the considered entry scenario

6.2 Terminal flight phase management
During the terminal phase of flight, achieving the desired terminal constraints
becomes increasingly challenging. This difficulty arises because the HV corridor
narrows significantly as the vehicle approaches re-entry. The reduction in corridor

43

Simulations and results

width complicates the precision of the DNN to make accurate predictions. In
particular, for velocities below 2100 m/s, we chose to cease iterating on velocity
(vref) and weight (ωh) values that would satisfy the constraints, allowing the vehicle
to fall freely. Simulation results indicate that this strategy effectively meets the
time and range requirements while preventing abrupt changes in the terminal HV
profile. Figures 6.6 and 6.7 demonstrate that the trajectory is closer to the desired
path when the vehicle is allowed to be in free-fall during the final phase, as opposed
to when control is continuously applied.

The results presented in Table 6.2, specifically the averages of time and frequency
per iteration, refer to the flight phase in which the DNN is employed.

Figure 6.6: Terminal trajectory
phase with DNN based control Figure 6.7: Terminal trajectory

phase without control

44

Chapter 7

Conclusion

In this thesis, an intelligent re-entry guidance algorithm is developed, combining
a deep neural network (DNN) with a Numerical Predictor-Corrector Guidance
(NPCG) approach. The DNN is designed to predict key flight parameters such
as flight time and downrange, effectively supporting the longitudinal and lateral
trajectory correction. This integration allows the algorithm to meet the demanding
multi-constraint requirements of the hypersonic vehicle re-entry problem, includ-
ing path and terminal constraints, while ensuring real-time performance. The
conducted simulations demonstrate the accuracy and efficiency of the proposed
algorithm, confirming its potential to improve the safety and precision of atmo-
spheric re-entry trajectories.

The presented research addresses an increasingly relevant topic in today’s tech-
nological landscape, where artificial intelligence (AI) is rapidly advancing across
many fields. By incorporating AI techniques such as deep learning into the guidance
algorithm, we contribute to the growing body of knowledge exploring new methods
to improve aerospace technologies. The success of this approach shows that deep
learning can be a powerful tool in handling complex, non-linear problems that
traditional algorithms often struggle to manage.

Looking ahead, the use of DNNs in guidance algorithms opens exciting possi-
bilities for future research and applications. As AI continues to evolve, further
advancements in DNN architectures and training methodologies may lead to even
more robust and adaptive guidance systems, capable of managing increasingly com-
plex mission scenarios in hypersonic and space vehicles. Additionally, integrating
AI with other modern technologies such as edge computing or distributed systems
could allow for even faster and more efficient real-time solutions.

45

Conclusion

Beyond the academic contributions, conducting this research at Beihang Univer-
sity has been a valuable personal and cultural experience. Working in a laboratory
in a country different from my own provided the opportunity to get in touch with
various academic perspectives and observe different approaches to research and
problem-solving. This experience has not only enriched my technical knowledge
but has also broadened my understanding of international collaboration in scientific
fields.

46

Appendix A

Appendix A

A.1 Construction of the conventional HV corri-
dor [11]

The HV corridor is a commonly used concept in atmospheric guidance for re-entry.
It offers the advantage of being simple to calculate and based on clear physical
principles, with straightforward practical applications.

The resolution for determining the HV corridor is based on the following equa-
tions:

ρ(h) = ρ0e
−h/hs . (A.1)

This is the equation for air density at a given height h, where ρ0 is the density
at sea level and hs is a parameter related to the atmospheric scale height.

The equations for lift (L) and drag (D) are given by:

L = 0.5ρ(h)v2CLSref (A.2)

D = 0.5ρ(h)v2CDSref (A.3)

where v is the speed of the vehicle, Sref is the aerodynamic reference area, and
CL and CD are the lift and drag coefficients.

A.1.1 Lower boundary
Substituting A.1-A.3 into 4.13-4.16, we get the height constraints at a specific
velocity v:

47

Appendix A

h >
2
hs

ln
 kQ

Q̇max

A
v√
R0g0

B3.15
 = HQ̇,max(v) (A.4)

h >
1
hs

ln
ρ0v

2S
ñ
C2

D + C2
L

2nmaxmg0

 = Hn,max(v) (A.5)

h >
1
hs

ln
A
ρ0v

2

2qmax

B
= Hq,max(v). (A.6)

These equations determine the lower altitude limit for a given speed, considering
the path constraints.

A.1.2 Upper boundary
The upper bound is determined by the quasi-equilibrium glide condition (QEGC),
which assumes that the flight path angle θ and its rate of change θ̇ are approximately
zero. This simplifies the flight dynamics by ignoring variations in the flight path
angle. Under these assumptions, and neglecting the rotation of the Earth, we can
write:

L cosσ
m

+
A
v2

r
− g

B
= 0 (A.7)

where σ is the bank angle, m is the mass of the vehicle, r is the radial distance
from the center of the Earth, and g is the gravitational acceleration.

Substituting A.1 and A.2 into A.7, we obtain the upper bound equation:

h ≤ −hs ln
 2m(g − v2

r
)

ρ0v2SrefCL cosσ

 (A.8)

A.1.3 Final conventional corridor
Among them, HQ̇,max(v), Hn,max(v), Hq,max(v), and HQEGC(v) correspond to the
thermal peak, normal overload, dynamic pressure, and quasi-equilibrium gliding
altitude boundaries, respectively. The HQEGC(v) has no analytical solution and
needs to be solved iteratively using the secant method, for example.

Finally, we can derive the form of the HV corridor:

Hup(v) = HQEGC(v) (A.9)

48

Appendix A

Hdown(v) = max
1
HQ̇,max(v), Hn,max(v), Hq,max(v)

2
(A.10)

where Hup(v) represents the upper boundary of the corridor, and Hdown(v)
corresponds to the lower boundary of the corridor.

A.2 CAV-L aerodynamic data [11]
For the aerodynamic data, in this thesis, we use the CAV-L configuration, designed
by Boeing in 1998, which is characterized by relatively low lift-to-drag ratios. The
aerodynamic data for the lift coefficient (CL) and drag coefficient (CD) are shown
in Tables A.1 and A.2.

Table A.1: CAV lift coefficient data

Alpha Mach 3.5 Mach 5 Mach 8 Mach 15 Mach 20 Mach 23
10° 0.3401 0.3264 0.3108 0.2856 1.2760 0.2739
15° 0.5786 0.5358 0.4883 0.4491 0.4349 0.4319
20° 0.7975 0.7291 0.6731 0.6137 0.5975 0.5966

Table A.2: CAV drag coefficient data

Alpha Mach 3.5 Mach 5 Mach 8 Mach 15 Mach 20 Mach 23
10° 0.1838 0.1483 0.1295 0.1226 0.1210 0.1217
15° 0.2691 0.2505 0.2308 0.2178 0.2150 0.2159
20° 0.4197 0.3861 0.3599 0.3388 0.3370 0.3409

It can be seen that the aerodynamic parameters are two-dimensional functions
of both the angle of attack (α) and the Mach number (M . However, during actual
computations, performing two-dimensional interpolation is computationally slow.
Therefore, in this thesis, we fit the aerodynamic parameters into a functional form
dependent on α and M , expressed as:

CL(α,M) = CL00 + CL10α + CL01M + CL20α
2 + CL11αM + CL02M

2

+ CL21α
2M + CL12αM

2 + CL03M
3 + CL22α

2M2

+ CL13αM
3 + CL04M

4 (A.11)

49

Appendix A

CD(α,M) = CD00 + CD10α + CD01M + CD20α
2 + CD11αM + CD02M

2

+ CD21α
2M + CD12αM

2 + CD03M
3 + CD22α

2M2

+ CD13αM
3 + CD04M

4 (A.12)

where CLij and CDij are the fitted coefficients of the functions (referring to A.1
and A.2.

A.3 CAV-L overall parameters [11]

Table A.3: CAV-L aircraft overall parameters and constraints

Symbol Value
m0 907 (kg)
Sref 0.35 (m2)

C1 (heat flow coefficient) 11030
Rd (stationary point curvature) 0.1

Q̇max 1200 (kW/m2)
nmax 4 (g0)
qmax 200 (kPa)

With kQ = C1√
Rd

as vehicle-dependent constant.

A.4 A look into the code
The lines of code below, are snippet of the entire program used for the simulations
and represent portions of the algorithm worth mentioning.

A.4.1 Tracking controller design and amplitude of the bank
angle

The following script calculates the derivatives of the height command hcmd, em-
ployed in the tracking controller design, as reported in Subsection 4.3.2, Equation
4.32.

1 def get_h_differential (self , h_ref , h_ref_old , h_cmd , delta_t ,
v_curr):

2

50

Appendix A

3 kp = 0.01 # proportional coefficient
4 ki = 1e-4 # integral coefficient
5

6 h_cmd [0] = h_cmd [1]
7 h_cmd [1] = h_cmd [2]
8

9 self.h_sum += -ki * (h_cmd [1] - h_ref_old) # integral term
10 h_cmd [2] = self.h_sum + (1 - kp) * h_cmd [1] + kp * h_ref #

filtering of h_ref
11

12 h_cmd_dot = (h_cmd [2] - h_cmd [1]) / delta_t # first derivative
of h_cmd

13 h_cmd_dot2 = (h_cmd [2] + h_cmd [0] - 2 * h_cmd [1]) / (delta_t
** 2) # second derivative of h_cmd

14

15 h_cmd_diff = [h_cmd [2], h_cmd_dot , h_cmd_dot2]
16 return h_cmd , h_cmd_diff

Listing A.1: Calculation of the derivatives of hcmd

The function get_tht determines the amplitude of the bank angle σ according
to Equation 4.33.

1 def get_tht (self , state_3 , h_cmd_diff):
2

3 lamda = 0.1 # constant coefficient
4 r = state_3 [0] # states extraction
5 v = state_3 [3]
6 theta = state_3 [4]
7 chi = state_3 [5]
8 downrange = state_3 [6]
9 t = state_3 [7]

10

11 h = r - 6378000
12 alpha = self.Cav. v2alpha (v)
13 rho = self.Earth.h2rho(h)
14 g = self.Earth.h2g(h)
15 cl = self. AeroForce . get_cy (v, alpha)
16 cd = self. AeroForce . get_cx (v, alpha , h)
17 L = 0.5 * rho * v ** 2 * cl * self.Cav.S
18 D = 0.5 * rho * v ** 2 * cd * self.Cav.S
19

20 h_dot = v * math.sin(theta)
21 v_dot = -D / self.Cav.m0 - g * np.sin(theta)
22

23 delta_h = h - h_cmd_diff [0]
24 delta_h_dot = h_dot - h_cmd_diff [1]
25

51

Appendix A

26 h_dot2 = h_cmd_diff [2] - 2 * lamda * delta_h_dot - lamda ** 2
* delta_h

27

28 costht = ((h_dot2 - v_dot * math.sin(theta)) / math.cos(theta)
+ (g - v ** 2 / r) * math.cos(theta)) * self.Cav.m0 / L

29

30 costht = np.clip(costht , 0, 1)
31 tht = math.acos(costht)
32

33 return tht

Listing A.2: Amplitude of the bank angle calculation

A.4.2 Downrange and LOS angle
The script below compute the downrange and the LOS angle, given the current
longitude and latitude, and terminal ones.

1

2 def get_range_angle (self , lamda , phi , lamda_f , phi_f):
3

4 # normalization of the coordinate (initial and final
longitude) between [-pi , pi]

5 while True:
6 if lamda > math.pi:
7 lamda = lamda - 2 * math.pi
8 elif lamda < -math.pi:
9 lamda = lamda + 2 * math.pi

10 else:
11 break
12

13 while True:
14 if lamda_f > math.pi:
15 lamda_f = gamma_c - 2 * math.pi
16 elif lamda_f < -math.pi:
17 lamda_f = lamda_f + 2 * math.pi
18 else:
19 break
20

21 # Inverse Haversine Formula (from the coordinates of two
points to the distance of them)

22 ad = 2 * np.cos(phi) * np.sin ((lamda_f - lamda) / 2)
23 ec = 2 * np.cos(phi_f) * np.sin ((lamda_f - lamda) / 2)
24 cd = 2 * np.sin ((phi_f - phi) / 2)
25 ac = np.sqrt(ad * ec + cd ** 2)
26 rrange = 2 * np. arcsin (ac / 2) * self.Earth.R0
27

52

Appendix A

28 # angle (for the moment I am not interested in the angle)
29 if (lamda_f - lamda) > math.pi:
30 lamda_f = lamda_f - 2 * math.pi
31 if (lamda_f - lamda) < -math.pi:
32 lamda_f = lamda_f + 2 * math.pi
33 angle = np. arctan (np.sin(lamda_f - lamda) / (
34 np.cos(phi) * np.tan(phi_f) - np.sin(phi) * np.cos

(lamda_f - lamda)))
35 if angle == 0:
36 if phi_f < phi:
37 angle = math.pi
38 if (angle < 0) and (lamda_f > lamda):
39 angle = angle + np.pi
40

41 if (angle > 0) and (lamda_f < lamda):
42 angle = angle - np.pi
43

44 return rrange , angle

Listing A.3: Downrange and LOS angle calculation

Instead, the following function determine the difference between the LOS angle
and the current heading angle for bank reversal.

1

2 def get_delta_range (self , state):
3

4 lamda_curr = state [1]
5 phi_curr = state [2]
6 chi = state [5]
7

8 lamda_f = self.Cav. lamdaT # terminal longitude
9 phi_f = self.Cav.phiT # terminal latitude

10

11 # angle (chi_LOS)
12 angle = np. arctan (np.sin(lamda_f - lamda_curr) / (
13 np.cos(phi_curr) * np.tan(phi_f) - np.sin(

phi_curr) * np.cos(lamda_f - lamda_curr)))
14

15 if (angle < 0) and (lamda_f > lamda_curr):
16 angle = angle + np.pi
17

18 if (angle > 0) and (lamda_f < lamda_curr):
19 angle = angle - np.pi
20

21 if chi > np.pi /2:
22 if angle < -np.pi /2:
23 angle = angle + 2*np.pi/2
24

53

Appendix A

25 delta_angle = angle - chi
26

27 return delta_angle

Listing A.4: Difference beetween the LOS angle and the current heading angle
determination

54

Bibliography

[1] Yibo DING, Xiaokui YUE, Guangshan CHEN, and Jiashun SI. «Review of
control and guidance technology on hypersonic vehicle». In: Chinese Journal
of Aeronautics 35.7 (2022), pp. 1–18. issn: 1000-9361. doi: https://doi.
org/10.1016/j.cja.2021.10.037. url: https://www.sciencedirect.
com/science/article/pii/S1000936121004167 (cit. on p. 1).

[2] Lin Cheng, Fanghua Jiang, Zhenbo Wang, and Junfeng Li. «Multiconstrained
Real-Time Entry Guidance Using Deep Neural Networks». In: IEEE Trans-
actions on Aerospace and Electronic Systems 57.1 (2021), pp. 325–340. doi:
10.1109/TAES.2020.3015321 (cit. on pp. 2, 8, 15, 18, 20, 33, 38, 42).

[3] Terry H. Phillips. «A Common Aero Vehicle (CAV) Model, Description, and
Employment Guide». In: (Jan. 2003) (cit. on pp. 3, 30, 40).

[4] Rafael Lugo, Richard Powell, and Alicia Dwyer-Cianciolo. «Overview of a
Generalized Numerical Predictor-Corrector Targeting Guidance with Applica-
tion to Human-Scale Mars Entry, Descent, and Landing». In: Jan. 2020. doi:
10.2514/6.2020-0846 (cit. on pp. 6–9, 42).

[5] Yann LeCun, Y. Bengio, and Geoffrey Hinton. «Deep Learning». In: Nature
521 (May 2015), pp. 436–44. doi: 10.1038/nature14539 (cit. on p. 9).

[6] Jürgen Schmidhuber. «Deep learning in neural networks: An overview». In:
Neural Networks 61 (2015), pp. 85–117. issn: 0893-6080. doi: https://doi.
org/10.1016/j.neunet.2014.09.003. url: https://www.sciencedirect.
com/science/article/pii/S0893608014002135 (cit. on p. 9).

[7] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. «Ac-
tivation functions in deep learning: A comprehensive survey and bench-
mark». In: Neurocomputing 503 (2022), pp. 92–108. issn: 0925-2312. doi:
https://doi.org/10.1016/j.neucom.2022.06.111. url: https://www.
sciencedirect.com/science/article/pii/S0925231222008426 (cit. on
p. 10).

[8] PyTorch documentation. url: https://pytorch.org/docs/stable/index.
html (cit. on p. 24).

55

https://doi.org/https://doi.org/10.1016/j.cja.2021.10.037
https://doi.org/https://doi.org/10.1016/j.cja.2021.10.037
https://www.sciencedirect.com/science/article/pii/S1000936121004167
https://www.sciencedirect.com/science/article/pii/S1000936121004167
https://doi.org/10.1109/TAES.2020.3015321
https://doi.org/10.2514/6.2020-0846
https://doi.org/10.1038/nature14539
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://doi.org/https://doi.org/10.1016/j.neucom.2022.06.111
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html

BIBLIOGRAPHY

[9] aviationfile. What is Bank Angle? 2023. url: https://www.aviationfile.
com/what-is-bank-angle/ (cit. on pp. 27, 28).

[10] SKYbrary. Angle of Attack (AOA). url: https://skybrary.aero/article
s/angle-attack-aoa (cit. on pp. 27, 28).

[11] Lin Cheng. «Study on Real-Time Optimal Closed-Loop Reentry Guidance
Technology for Hypersonic Vehicles». Supervisor: Prof. Bai Chenggang. PhD
dissertation. Beijing, China: Beihang University, 2023 (cit. on pp. 31, 32, 34,
36, 47, 49, 50).

[12] Haoning Wang, Jie Guo, Xiao Wang, Xiang Li, and Shengjing Tang. «Time-
coordination entry guidance using a range-determined strategy». In: Aerospace
Science and Technology 129 (2022), p. 107842. issn: 1270-9638. doi: https:
//doi.org/10.1016/j.ast.2022.107842. url: https://www.sciencedir
ect.com/science/article/pii/S1270963822005168 (cit. on p. 35).

[13] Peng Shi, Jingjing Xu, Lin Cheng, Changhong Dong, and Xu Huang. «Real-
Time Lateral Predictor-Corrector Entry Guidance With Terminal Heading
Angle Constraint». In: IEEE Transactions on Aerospace and Electronic Sys-
tems PP (Jan. 2024), pp. 1–13. doi: 10.1109/TAES.2024.3466125 (cit. on
p. 38).

[14] Kelly M. Smith. «Predictive Lateral Logic for Numerical Entry Guidance
Algorithms». In: (Feb. 2016). url: https://ntrs.nasa.gov/api/citation
s/20160001182/downloads/20160001182.pdf (cit. on p. 38).

56

https://www.aviationfile.com/what-is-bank-angle/
https://www.aviationfile.com/what-is-bank-angle/
https://skybrary.aero/articles/angle-attack-aoa
https://skybrary.aero/articles/angle-attack-aoa
https://doi.org/https://doi.org/10.1016/j.ast.2022.107842
https://doi.org/https://doi.org/10.1016/j.ast.2022.107842
https://www.sciencedirect.com/science/article/pii/S1270963822005168
https://www.sciencedirect.com/science/article/pii/S1270963822005168
https://doi.org/10.1109/TAES.2024.3466125
https://ntrs.nasa.gov/api/citations/20160001182/downloads/20160001182.pdf
https://ntrs.nasa.gov/api/citations/20160001182/downloads/20160001182.pdf

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Structure of the document

	Related works
	NPCG
	How NPCG works
	Advantages and drawbacks of NPCG
	Applications of NPCG

	DNN
	Types of DNN

	Focus on the work of Lin Cheng et al. Chengwork: bank angle parameterization and range constraint
	Bank angle parameterization for range control
	DNN for longitudinal and lateral guidance
	Real-time performance and constraint satisfaction

	Design and implementation of the DNN
	Input and output data
	Network description
	Structure
	Key characteristics summary

	DNN accuracy evaluation
	Statistics
	Partial derivatives

	Observation on the choice of input and output data

	Longitudinal guidance
	Problem formulation
	Entry dynamics
	Flight constraints
	Initial descent phase

	Compound HV corridor
	Trajectory parametrization and range constraint management
	Control parametrization
	Range constraint and tracking controller design

	Time constraint management
	Angle of attack as a function of velocity
	Reference velocity tracking
	Time boundaries

	Lateral guidance
	Initial sign of the bank angle
	Bank reversals

	Simulations and results
	Evaluation of real-time performance and convergence
	Entry trajectory
	Convergence accuracy
	Real-time performance

	Terminal flight phase management

	Conclusion
	Appendix A
	Construction of the conventional HV corridor hypersonicvehicle2
	Lower boundary
	Upper boundary
	Final conventional corridor

	CAV-L aerodynamic data hypersonicvehicle2
	CAV-L overall parameters hypersonicvehicle2
	A look into the code
	Tracking controller design and amplitude of the bank angle
	Downrange and LOS angle

	Bibliography

