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Summary

This thesis proposes the development and deployment of a cloud-based chatbot
on Amazon Web Services (AWS), tailored to enhance the online-shopping process
with responses generated starting from real data of the customer. The research
focuses on advanced Generative AI technologies, particularly the Retrieval Aug-
mented Generation (RAG) methodology and the integration of Agents.
The primary objective is to enhance the customer’s existing Question and Answer
(Q&A) system, leveraging customer-specific data to contextualize and personalize
the responses, thereby minimizing or potentially eliminating the need for human
intervention. Moreover, the developed architecture enables the chatbot to interact
with the system choosing the appropriate action to perform starting from the user
prompt, including product search and shopping cart creation.
A series of experiments are conducted to determine the optimal solution to build
a RAG system within the chatbot. Various factors are considered, including al-
ternatives for storage and retrieval systems as well as the integration with the
AWS environment. Special focus is placed on the design of a structured method
to evaluate the chatbot’s responses. The architecture is then built and deployed
on AWS, integrating Agents.
The experiments demonstrates the effectiveness of the proposed RAG system, re-
vealing the optimal configuration for the storage and retrieval phase. The Agent
integration enables the chatbot to autonomously complete a set of predefined tasks
in the online-shopping process.
In the end the developed cloud-based chatbot improves the efficiency and au-
tonomy of online-shopping systems. Utilizing RAG and Agents, it enhances the
response accuracy and reduce human intervention, ultimately improving customer
experience and making it a viable option for e-commerce platforms.
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Chapter 1

Introduction

The rapid evolution of online-shopping has transformed the way customers interact
with businesses. While customers seek efficient solutions, they prefer personalized
and human-like interactions over generic machine responses. The role of chatbots
has become crucial to provide instant support and handle relatively simple tasks.
In the online shopping context, assistance with product search and personalized
offers and recommendations ultimately streamline the purchasing process. How-
ever, traditional chatbots fail to satisfy the customer expectations, due to their
dependence on a predefined list of answers and limited ability to understand cus-
tomer questions.

The advent of Generative AI introduced new possibilities for enhancing the
chatbot’s capabilities. The core of Gen AI is the ability of neural network models
to understand and generate human-like text. This capability is known as Nat-
ural Language Processing (NLP). Modern chatbots leverage NLP to address the
limitation of the precedent ones. The Retrieval-Augmented Generation (RAG)
methodology, in particular, enables the system to search for relevant information
in response to the user questions. The information are contained in a predefined
knowledge base, consisting of documents, files, tables and more. This provides the
chatbot the ability to generate relevant responses based off his knowledge, offering
dynamic and personalized interactions that significantly improve the user experi-
ence.

The thesis focuses on the development and deployment of a chatbot with Gener-
ative AI capability within the AWS environment, designed to improve the shopping
online experience. The proposed solution leverages the RAG technology and the
interaction with intelligent Agents. Agents enable the chatbot to autonomously
select and execute actions based on the user query. In this way, the customer
experience is improved reducing the manual intervention and simplifying the pur-
chasing process.

The primary objective of this work is to improve the existing Question and
Answer (Q&A) system used in e-commerce integrating customer specific data. A
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1 – Introduction

set of experiments were performed to identify the best components to build an
effective RAG system within the AWS environment. In order to evaluate the re-
sults in a structured form different metrics were computed to assess the system
performance and the quality of the responses.

The thesis is organized as follows:

• Chapter 2: Background - In this chapter is present the general study about
the basics of the technology used. Focusing on Natural Language Processing
(NLP), Embedding and Large Language Models (LLMs), which ultimately
represent the foundation for Generative AI and Retrieval-Augmented Gener-
ation (RAG). It also discusses challenges and potential new directions for the
research.

• Chapter 3: Experimental Methodology -The chapter contains a descrip-
tion of the research objectives followed by an introduction to the AWS envi-
ronment and the more relevant services for the project. Finally, the custom
RAG library to conduct the evaluation is introduced.

• Chapter 4: Experimental Results -Here the results of the experiments
are presented. In order to identify the best configuration various comparisons
are performed.

• Chapter 5: Case Study | GDO -Application of the chatbot to a real world
application. A Web Application consisting of a back-end and front-end infras-
tructure. Additionally, a Generative AI stack includes the implementation of
the RAG system and the Agent.

• Chapter 6: Conclusion and Future Work -Summary of the complete
project and discussion on possible improvements.
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Chapter 2

Background

2.1 Generative AI
Generative AI, also called gen AI, is a sub-field of artificial intelligence (AI) which
is able to create, generate, original content, according to a user request. The
content can be of a variety of different types such as text, image, video or audio,
similar to the data used to train the model.

Gen AI relies heavily on AI, so it is crucial to understand what is AI and how
it has evolved.

What is artificial Intelligence To explain what is artificial intelligence, we
can break down the term: "intelligence" refers to the natural property which char-
acterize a human being, the ability to think, while "artificial" indicates that this
property is not obtained in a natural way but it was created. Thus, AI is a tech-
nology enabling a machine to simulate human intelligence [1].

Introduction to AI AI during the past decades has evolved in order to acquire
human intelligence by increasing the ability to understand and reason like a hu-
man. We can think of it as a technology giving the possibility to train a machine
and giving it all the necessary information to perform some human tasks.
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2 – Background

2.1.1 AI architectures
Different kind of architectures were used to reach this scope, each dealing with
different level of complexity and performing on different tasks. Starting from the
simplest model unable to learn from data arriving to the Transformer which enable
human language understanding and the possibility to perform a variety of tasks
(e.g., Natural Language Processing, image generation and classification, speech
generation)

Rule-Based Systems The first example of AI systems consisted of a set of
predefined if-then rules. The input data is compared against the system’s rule base
and a rule is chosen according to the priority. After the rule selection, the system
executes the corresponding action generating the output. This approach performs
well only in specific domains where a set of precise rules can be formulated.

Machine Learning and Shallow models When computing power and data
availability increased, new mathematical methods emerged introducing the concept
of learning from data instead of relying on hard coded rules. New algorithm
were designed to learn explicit pattern from data and make prediction using that
knowledge.
Some of these are used for classification problems such as decision tree, random
forest, Baesyan classifier and Support Vector Machine (SVM). In particular they
rely on supervised learning (a starting dataset with label is provided and the
model learns to map each input to the expected output) and are able to classify
a given input as belonging to one of the possible output groups. But there are
also algorithms using unsupervised learning(e.g, KMeans) tring to divide the given
inputs in groups (clustering) without knowing the expected output.

Deep Neural Networks After some years the deep learning models arise and
took AI on another level. Deep learning is a sub-field of machine learning dealing
with neural networks, represented by multiple layers of interconnected neurons,
able to capture features and information from data.
Neural network architecture can change according to the task to perform but the
core of the model is always the same: an input layer, an output layer and one
or more intermediate layers, each composed of a number of neurons with param-
eters and linked with weight. For neural network it is important the concept of
Back-propagation, which enables the model to adjust the neurons weights during
training in order to reach the expected output.
Having said that, we can have Convolutional Neural Network (CNN) used for im-
age recognition and computer vision,Recurrent Neural Network (RNN) and Long
Short-Term Memory (LSTM) networks to handle temporal dependencies and NLP
tasks, Generative Adversarial Networks (GANs) and Variational Autoencoders
(VAEs) to generate images or text data.
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2 – Background

Even if this models provided a significant advantage to language understanding
and data generation they still lack in capturing the context of each word because
they are processed one at a time loosing long-range dependencies.

Transformer Architecture With the paper "Attention is All You Need" of
Vaswani et al. in 2017 a AI entered in a new phase. The new proposed Trans-
former architecture was able to address the limitations of the previous neural
network models by processing the input data all at once.
In figure 2.1, the Transformer model architecture.

Figure 2.1: The Transformer model architecture (Vaswani et al., 2017).

The Transformer architecture consists of an encoder-decoder structure. Each
composed on N identical layers containing a multi-head-attention mechanism and
a feed-forward network. Input data is injected in the model after the embedding
transformation (to obtain a numerical vector representation for each word) and
the Positional Encoding, to keep also the information about word ordering. The
Decoder generate the output sequence based on encoder’s output and the previ-
ously generated tokens.
Now let’s analyze each component more in details.

• Feed-Forward Network: FFNN is present in each encoder/decoder layer.
It is composed of 2 dense network layers applying GeLU activation function1.
Even if they are fast processing each word in parallel they lose the connection
between words in the sentence.

1The Gaussian Error Linear Unit, given by the standard Gaussian cumulative distribution
function.
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• Multi-head Attention layer: Attention is used to calculate how much
each word is important for all the other words in the sentence. For this scope
it calculates a query vector, a key vector and a value vector by respectively
multiplying each word representation to a query , key and value matrix. These
are randomly initialized matrices and during the processing phase the values
will be adjusted in order to minimize the loss function and produce the correct
output.
To calculate the attention of a specific word with respect to all the others the
dot product of the query vector and all the key vectors is computed and then
divided by the square root of the dimensions. Then the softmax function is
applied to obtain a result between 0 and 1. In the end to obtain the word
representation it performs the weighted sum of each value vector multiplied
by the softmax result and sends each representation to the FFNN layer.
In this way attention capture the relationships of the data but one layer is not
enough to capture them all. For this reason multi-head attention is used to
let a network learn more relationship path, using multiple different query, key
and value matrices. Each set of matrices is called an attention head and will
produce different query, key and value vector and eventually different word
representations that will be combined at the end.
In the decoder is present a different kind of attention layer, the masked one
(MLM). This masks some of the inputs words and try to adapt the weights of
the layer to complete the sentence with the correct missing ones. By the way
the model is still not considering word order, even if it also provide context
information for a word.

• Positional Encoding: to tell the transformer the relative position of each
word it combines each word representation with the position in the sentence.
In this way before being passed to the encoder and the attention layer the
input representation will also contain information about word position.

• Residual Connections: Add & Norm. It adds the inputs of the attention
layer to its outputs and then normalize values to stay in the 0-1 range. This
is done to make the learning job easier for each layer by keeping track of the
differences of the outputs with respect to the inputs after the transformation
and it’s applied also after the FFNN layer.

• Linear and Softmax: the Linear layer is used at the end to further pro-
cessing the input data by applying a simple linear transformation for a clas-
sification problem, for example. Then the Softmax is applied to obtain the
probability of each word to generate.

During training of the model the following steps are performed:

1. Input embeddings are calculated to represent the single word.

2. A vector representation of the position of the word in the sentence is added
to the previous representation obtaining new embeddings after the Positional
Encoder.
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2 – Background

3. Vector embeddings reach the Encoders and here are processed to obtain as
output a new vector representation of each word reflecting also the context of
the sentence it is used into and the relationships with other words.

4. The expected output sentence is sent to the Decoder and an embedding rep-
resentation is obtained after the Positional Encoding.

5. The masked multi-head Attention layer process the sentence and adjust the
model weights to correctly predict the masked word and output the query
vector to the next attention layer. This will also receive the key and value
vector from the output of the Encoder.

6. The output embedding of the decoder is passed to the linear layer to map it
to the word vocabulary and then the Softmax function is calculated.

7. Now the model compare the expected output with the obtained output and
calculate the loss, back propagating the error to adjust the model weights.

Other types of Transformer architecture have been developed over the years.
For example BERT (Bidirectional Encoder Representations from Transformers)
is an autoencoder model (encoder-only transformer) trained using bidirectional
representation, masked language modeling (MLM) and next sentence prediction
(NSP). It is used, for example, for classification tasks and can generate embed-
dings of words useful for semantic similarity (more details in the Embedding chap-
ter). Then GPT (Generative Pre-trained Transformer) is an autoregressive model
(decoder-only transformer) is trained to learn statistical language representation
by predicting the next token given the previous ones. This model is the standard
for generative tasks.

The advancements in Transformer based models like BERT and GPT have
impacted many AI applications and from now on i will focus on NLP.

12



2 – Background

2.2 Natural Language Processing for Generative
AI

The main objective of a gen AI model is to generate text coherent with the con-
text and similar to the text a human can produce. In order to do this the model
needs to understand the human language and learn the meaning of each word to
use it in the right context. Thus, we would like to give computers the ability to
understand and communicate with human language and this was possible using
the Transformer architecture.
This process can be referred as NLP (Natural Language Processing).

NLP NLP is based on computational linguistics, a discipline of linguistics that
uses data science to analyze language and speech performing syntactical and se-
mantical analysis, and on machine learning / deep learning. It can be seen as
composed of two different parts: Natural Language Understanding (NLU) and
Natural Language Generation (NLG). The first one focusing on determining the
meaning of a sentence, the second enabling the computer to produce text.

There are three different approach to NLP that have been applied using the
latest architecture available for the years:

1. Rule-Based NLP: based on simple if-then decision trees.

2. Statistical NLP: relying on machine learning it extract, classify and labels
text. Then assigns a statistical likelihood to each possible meaning of those
elements. To do this it introduced the concept of vector representation of a
word.

3. Deep learning NLP: it uses neural network models and huge amount of text
data to increase accuracy. We can consider different models:

- Sequence-to-Sequence (seq2seq) based on recurrent neural networks (RNN)
- Transformer using self-attention (BERT)
- Autoregressive trained specifically for text generation (GPT)
- Foundation models prebuilt to support NLP tasks

NLP Tasks There are several NLP tasks that involve understanding, generating,
and processing human language. Some of them are:

• Tokenization: Breaking down a text into smaller units, usually words or sub-
words (tokens).

• Named Entity Recognition (NER): Identifying and classifying named entities
like person names, organization names and dates in text.
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• Sentiment Analysis: Determining the sentiment expressed in a piece of text
(positive, negative, neutral).

• Machine Translation: Automatically translating text from one language to
another.

• Part-of-speech tagging: Determining which part of speech (noun, verb, adjec-
tive) a word or piece of text belongs.

• Text Generation: Produces text that’s similar to human-written text.

• Question Answering: Generating answers to natural language questions.

• Summarization: Generating concise summaries of longer texts.

• Speech Recognition and Synthesis: Converting spoken language into text
(speech recognition) and text into spoken language.
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2.3 Embeddings
One problem to solve for NLP is how to use textual words in deep learning model
like neural networks. The solution relies in embeddings. Embeddings are numer-
ical multi-dimensional vectors representing text, image, video and audio where
the distance and direction between vectors reflect the similarity and relationships
among the corresponding words. The closer two vectors are the more similar are
the two words, for example, in semantic meaning. Using this representation it is
possible for a simple or complex model to learn the human language.

During the years many approaches were tried to create the best numerical rep-
resentation of a text maintaining the semantic meaning and without consuming
too much resources.

2.3.1 Traditional Embedding Strategies
One-Hot Encoding Description: This method considers categorical data and
at first assigns a numerical value for each different category. After that it represents
each categorical value as a binary vector where only the element in the position
corresponding to that category is “hot” (set to 1), while the others remain “cold”
(or, set to 0).
In figure 2.1 we can see an example applied to different categorical values of the
column Colors.

Colors Numerical Red Green Yellow
Red 1 1 0 0

Green 2 0 1 0
Red 1 1 0 0

Yellow 3 0 0 1

Table 2.1: One-Hot Encoding of Colours

In this way machine learning algorithms, such as a decision tree, can work di-
rectly with categorical data mapped to binary vector. The resulting vectors are
easy to interpret and prevents the model from interpreting the data as ordinal
(having an inherent order).

But it’s pretty clear that dealing with many unique categories, like words in a
sentence, can significantly increase the size of the feature space and therefore it
is not practically applicable. Also, using this method, the semantic relationships
and similarities between words are lost. For this reason similar words are repre-
sented as completely different ones, making it difficult to handle tasks requiring
understanding of the language.

Bag of Words (BoW) Description: It considers different documents where
each unique words is seen as a separate dimension in the vector space. Given n
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different words the document will be represented by a vector of dimension n where
the value of each dimension is equal to the frequency of that dimension’s word in
the document.

Consider for example the following documents:

• Document1 = "Red Yellow White Red"

• Document2 ="Yellow Green Black"

The vocabulary is defined as {Red, Yellow, White, Green, Black}. The vector
representation of each document is shown in Table 2.2.

Document Red Yellow White Green Black
Document 1 2 1 1 0 0
Document 2 0 1 0 1 1

Table 2.2: Bag of Words (BoW) Encoding of Documents

Despite being a versatile, easy to implement solution providing interpretable
results, this technique does not consider the order of words inside documents nor
the word correlation. For this reason semantic information are lost. Moreover it is
not able to handle the case of words having different meaning in different context.
In the end, also in this case, the results can be big sparse vectors when the size
of documents increase which ultimately can create problems for some machine
learning algorithms.

TF-IDF (Term Frequency–Inverse Document Frequency) Description:
TF calculate how frequently a word appears in a document.

TF(t, d) = Number of times term t appears in document d

Total number of terms in document d

IDF measures how important a word is, giving less weight to word appearing
frequently but less important (e.g,"a", "is", "the").

IDF(t) = log
A Total number of documents

Number of documents with term t

B

Then TF-IDF is calculated for each document multiplying the TF and IDF value
for each word. In this way it is possible to calculate how each word is relevant to
each document.

Consider for example the following documents and calculate the TF-IDF for
each word 2.3:

• Document1 = "Red Yellow White Red"

• Document2 ="Yellow Red Green Black"

16
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Document Term TF IDF TF-IDF
Doc1 Red 0.5 0 0
Doc1 Yellow 0.25 0 0
Doc1 White 0.25 0.693 0.173
Doc2 Yellow 0.25 0 0
Doc2 Red 0.25 0 0
Doc2 Green 0.25 0.693 0.173
Doc2 Black 0.25 0.693 0.173

Table 2.3: TF, IDF, and TF-IDF values for each term in both documents

In this way we can say that, for example, the word White is as relevant to Doc1
as the word Green is relevant to Doc2.

With this method it’s easy to identify important terms in a document to under-
stand what is the document about and helps differentiating between common and
rare terms. It is scalable and language independent. But it ignores word order, it
only measures term frequency and does not consider the meaning of each term so
it’s difficult to recognize synonyms and similar words. Also, it can result in very
high-dimensional vector as the number of words increase.
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2.3.2 Neural Network-Based Embedding Strategies

Strategies to represent a word as a vector presented up to now all have some lim-
itations: the output are sparse vectors wasting lots of memory and they do not
take into account the context and semantic meaning of words. For this reason Em-
beddings were introduced to represent words using dense vectors and maintaining
the relationship of similarity also in the embedding space. And this was possible
thanks to the usage of Neural Network.

Word2Vec Description: It takes the One-Hot encoded words and, considering
the context, generates the embeddings(vector representation). W2v first define a
window size of n words and give this in input to a neural network with just one
hidden layer. This neural network’s input and output layer are typically large,
representing the vocabulary size, and the hidden layer dimension is the desired
embedding size.

The model will try to predict a target word given the context of n words (Con-
tinuous Bag of Words version) or to predict the target context of n-1 given one
word (Skip-Gram version).
Then the models weight are adjusted according to the possible error signal sent
by the network if it failed to predict the target word or context words.
After that, the window is shifted and a new group of words is processed by the
network.

In this way the model is trained on a large corpus of text and learns, using a
supervised task, to correctly associate similar words and remembering the context
they are used in. The result for each word is an embbedding, with a number of
dimensions equal to the size of the hidden layer, such that in the vector space
similar words are placed close to each other (to calculate the distance the cosine-
similarity metric can be used). Also, embeddings are able to represent relationships
and associations between words. For example in the vector space, words repre-
senting countries (e.g., Italy, Spain, France) will be close to each other and the
same happens for words representing cities (e.g., Rome, Madrid, Paris). Moreover
the equation Rome-Italy + Madrid will return Spain, since embeddings remember
relationships between words learned during training.

Still this technique has some limitations: a word can have more than one mean-
ing depending on the context, but it has always the same vector representation;
the fixed context window size makes it difficult to understand more complex long-
range dependencies; to perform well a huge number of words is needed and this
can affect memory and computation resources. The last one can be solved with
optimization techniques such as Negative Sampling and Hierarchical Softmax(to
reduce computational complexity during training).
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FastText
Description: It is an extension of Word2Vec developed by Facebook to handle
out-of-vocabulary words and understand the different structure of words (e.g, verb
tense, plural, prefix and suffix, compound names).
The first step consists in breaking down words in n-grams (subwords) and then
performing the same training of the Word2Vec using the skip-gram or CBOW
model. In this way it is possible to obtain the embeddings for each n-gram.

For example using n=3 (trigram) the word playing will be split in "pla", "lay",
"ayi", "yin", "ing". Embeddings are gerated for each sub-word and the sum of this
will be the vector representation of playing.

Using this approach the neural network model is trained to predict words based
on the n-grams it has seen and not only on the target words. This results in a better
embedding representation of words not seen during training and also increase the
embedding precision by capturing the morphology of each word.
But this strategy results in an increase of model size, resource consumption and
training times.

ELMo (Embeddings from Language Models):
Description: This strategy was published in 2018, “Deep Contextualized Word
Embeddings”, and for the first time it was possible to generate different vector
representation for the same word used in different context.

The first step consists in splitting down words into characters and inputs them to
a Convolutional Neural Network to obtain a vector representation. It is the same
approach of FastText to capture morphological meaning of words and handling
words that were not seen during training, but using character-level tokenization
to increase robustness and spell checking.
After that, a bidirectional Long Short-Term Memory (LSTM) neural network is
used to process text reading from left to right and right to left capturing context
from both directions: for each word the LMST keep a forward and backward hid-
den states. These states, at the end, are combined together to obtain the final
embedding representation.

The main advantage of this strategy was to obtain embeddings which are context
sensitive. For example the sentences:
I read a book
Did you book the room?
Contains the same book word used with different meaning and therefore their
embeddings will be different.
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2.3.3 Statistical Embedding Strategies
GloVe (Global Vectors for Word Representation): Description: It is an
algorithm developed by researchers at Stanford to capture global statistical infor-
mation about a corpus of text.
At first it computes the word-word co-occurrence matrix. This is a large sparse
square matrix with dimensions equal to the number of unique words in the corpus
of documents. For each entry in the matrix (combination of two words) it counts
the number of times this two words appear together in the corpus of documents
according to a predefined window size. This window specify how far the words can
be on the same documents to say they appear together.

Consider for example the following documents and calculate the co-ocurence
matrix 2.4:

• Document1 = "Red Yellow White Red"

• Document2 ="Yellow Red Green Black"

• Window = 2

Red Yellow White Green Black
Red 0 2 1 1 1

Yellow 2 0 1 1 0
White 1 1 0 0 0
Green 1 1 0 0 1
Black 1 0 0 1 0

Table 2.4: co-occurence matrix for GloVe

We can see that using a window size equal to 2 "Yellow" and "Green" increment
the counter while "Yellow" and "Black" not.

In the end to compute the vector representation of each word an objective
function is computed:

Minimize
Ø
i,j

f(Xij)
1
wT

i wj + bi + bj − log(Xij)
22

where:

• wi and wj are word vectors,

• bi and bj are bias terms,

• Xij is the co-occurrence count of words i and j,

• f(Xij) is a weighting function that adjusts the influence of each co-occurrence
count.

20



2 – Background

The solution is found through iterative optimizations and at the end for each word
we obtain a dense vector representation.
These vectors encode semantic and syntactic information and allow to find simi-
larities between words and to understand global word usage patterns.
By the way, it requires more memory to store the co-occurrence matrix and doesn’t
perform well with small corpus of text.
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2.3.4 Transformer-Based Embedding strategies
BERT (Bidirectional Encoder Representations from Transformers) De-
scription: First introduced by Delvin et al. in 2018 this model is composed of
multiple layers of bidirectional transformers and it is characterized by two dinstict
phases: the pre-training and the fine-tuning.
During pre-training Masked Language Modeling (MLM) is performed by randomly
masks some of the input tokens and trying to predict them. Also Next Sentence
Prediction (NSP) is used to predict whether a given sentence follows another sen-
tence. By doing this the model is able to understand the context of words and
sentence relationships.
After this the model is fine-tuned adding a simple output layer to be specialized
on specific tasks.

To generate embeddings, at first first the input is split in words (tokens) and
two special tokens are added at the beginning (CLS) and at the end (SEP). Then
a vector representation of each token is obtained together with Segment and Po-
sition embeddings. The first indicating the belonging sentence and the second the
position in the sentence. At this point the input is fed to the model which, at the
end will contain the vector representation of each word inside the hidden layer of
the model.

In this way it was possible to obtain full context aware embeddings, able to rep-
resent word and sentence relationships and to handle words with different mean-
ings.
Also it provides a way to start with general context trained model and fine-tune
it for specific tasks using only the data necessary for that task making it versatile
and efficient.
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2.4 Large Language Models
Large Language Models (LLM) are a class of AI models based on architectures
like Transformers, pre-trained on a large amount of text data and fine-tuned for
specific tasks. They provide many improvements for NLP and AI applications.
Using LLMs is possible to generate coherent and relevant text for tasks like text
completion, question answering and summarization. They are very versatile since
it is possible to start from an LLM and fine-tune it using a relatively small dataset
of labeled data for different applications and domains. Nevertheless, they require
lots of computational power and memory and are expensive to deploy. Also, LLMs
rely on the data they were trained on which can become outdated and resulting
in inaccurate outputs.

Applications of Large Language Models LLM have a wide range of appli-
cations in many different fields and industries.
Chatbots and virtual assistants can respond instantly and accurately to user ques-
tions enhancing user experience. In the Educational field they can be used to
support students learning, in customer service to speed up the process of infor-
mation retrieval and increasing efficiency. Their ability in NLP can contribute in
creating new original contents and having meaningful conversations with users.
They can be used to summarize texts or write new articles or translate conversa-
tions in real time or provide personalized suggestions in e-commerce platforms.
Moreover they can increase human productivity as virtual assistants answering
mails or generating code to help developers and much more.

Optimizing LLM Scaling laws describe the trade-offs between model and dataset
size for a fixed budget of computational resource [4]. These laws states that is pos-
sible to obtain better performance by increasing the number of words used to train
the model or the number of model parameters. By the way increasing the size of
the model keeping the same dataset size will result in an increase of the computa-
tional resources required.
The Cinchilla paper compared model performance of various model and dataset
size combination [5]. According to this study they stated that many of the big
model on the market are over-parameterized and could achieve the same perfor-
mance by just increasing the dataset size, reducing the model size.
In particular the paper claims that the optimal dataset size (expressed as number
of tokens) has to be 20x the number of model parameters.
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2.4.1 Fine-Tuning
Fine-tuning allows to specialize the LLMs capabilities and optimize its perfor-
mances on narrower and specific dataset. This in particularly important since
training of a model is a significant cost in term of resources and time. With fine
tuning it is possible to leverage pre-trained LLM models and their ability to under-
stand and generate text and use them for domain specific tasks. Using a smaller
specific dataset it is possible to increase the accuracy of the response of the LLM
model without consuming too much resources.
There are different types of fine-tuning:

• Supervised fine-tuning: The model is further trained on a labeled dataset
specific for the target task such as text classification and entity recognition.

• Few-shot learning (instruction fine-tuning): When is not easy to find/create
a labeled dataset it is possible to provide few examples of the required task
to the input prompt.

• Transfer learning: In case the desired task to perform is different from the
one the model was trained on.

• Domain-specific fine-tuning: This type of fine-tuning is used to adapt
the model to a specific domain. A dataset containing information about a
particular domain is used to train the model to understand and generate
domain specific language.

• Fine-tuning with reinforcement learning: The model learns to generate
outputs that maximize the reward received. This strategy is used when a
labeled dataset doesn’t exist and human evaluate manually output of the
model giving it rewards or penalties.

Parameter-Efficient Fine-Tuning (PEFT) In general Fine-tuning is a pro-
cess that starts from the weights of the pre-trained model and update them, but
not all of them, since it would require lot of time and resources and could cause
the problem of catastrophic forgetting (loss of model’s core knowledge). The tech-
nique called parameter-efficient fine-tuning (PEFT) aims to reduce the number of
trainable parameters decreasing the computational resources without impacting
on performances.
It is possible for example to use adapters. These are new layer, trained for spe-
cific tasks, added to the end of the transformer model keeping the other network
parameters stable.

Low Rank Adaptation (LoRA) Another approach to reduce the costs of fine-
tuning is to apply a reparameterization on high dimensional matrices to capture
the low-dimensional structure of model weights and obtaining lower rank matrices.
Also, QLoRA further reduces the computational complexity by quantizating the
transformer model.
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Limitations One of the primary issue of fine-tuning LLM is that they need high-
quality, domain specific dataset which could be difficult to find or create. Using
low-quality dataset can introduce biases into the model and decrease quality and
performances.
Another important limitation of fine-tuned models is that their knowledge is lim-
ited only to data used to train them (maybe old). The only way to be up-to-date is
to fine-tune again the model with the new data resulting in increasing complexity
and consumption of resources.
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2.4.2 Retrieval-Augmented Generation (RAG)
This approach was developed to address some of the fine-tuning challenges. In
particular using this method is possible to retrieve relevant documents from large
corpus of text (also the Internet) and generate text, based on those documents
(dynamic information retrieval). Documents can be easily updated and this allow
the model to always have access to up-to-date information. Also it provides a
effortless strategy to make the AI model aware of proprietary data and can increase
accuracy by referencing only this data in the response.

Implementation In Figure 2.2, the RAG architecture.

1. Relevant documents are stored in some data store system in any possible
format or also the Internet can be considered a sort of place where documents
are stored.

2. All the documents are sent to so a machine to be pre-processed.

3. (a) The documents are split in chunks. There exists a variety of different
chunking strategy such as Recursive Character Text Splitting or Semantic
chunking.

(b) Each chunk is then converted to an embedding representation using an
Embedding model (described in previous section).

4. The vector embeddings are stored in a Vector Storage. This are data storage
specifically designed to wok with vectors and providing different functionalities
like indexing and auto-update. One of this is FAISS 2.

5. When the documents are correctly saved the user can perform a query to a
model. This starts the retrieval phase.

6. The query is converted to an embedding representation and arrive to a search
engine (provided by the vector storage).

7. The search engine using a similarity function 3 search for documents in the
vector store relevant to the given query.

8. The vector store returns one or more selected documents.

9. The search gives back the documents to the generative model.

10. (a) The documents are added to the original query in the form of context (a
precise prompt template is necessary).

(b) The text generation model receives the augmented prompt and respond to
the query referencing information contained in the retrieved documents.
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Figure 2.2: RAG system architecture.

RAG technique can be useful in a variety of task such as question answering and
dialog systems like chat bots. It speeds up the process of specialization of the AI
model with respect to fine tuning and can also provide evidences for the responses.
Nevertheless, it suffers of the same problem of fine-tuning related to data quality:
poor quality or incomplete data can introduce biases in the responses.

Prompt Engineering Even if a LLM is trained on a big dataset and has lots of
parameters it is not going to perform well on generative tasks if the prompt (input
to the model) is not good enough. Prompt structure are model specific but are
always composed of: Instruction, the piece of text describing the task to perform,
and Context, relevant information passed to the model helping him to solve the
task.
Prompt Engineering is a new skill focused on effectively apply generative AI models
to specific tasks and use cases. Set up properly a prompt requires many iterations
on the model responses, adjusting the prompt piece by piece. In fact, for a model
is possible to learn from the context before generating text using the so-called
in-context learning.
There are different techniques based on passing one or more example in the prompt
to generate text based on the examples provided. One-shot inference adds one in-
struction in the prompt with a possible query and generation format. Few-shot

2FAISS is an opensource library for efficient similarity search and clustering of dense vectors
3Similarity functions are used to determine the proximity of two vectors in the embedding

space. Some of these are Euclidean distance and Cosine similarity.
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inference include more than one example. While zero-shot does not add any ex-
ample to the prompt.
The generated text resulting from a well structured prompt, completed with pos-
sible examples, are far more accurate than the ones generated with zero-shot infer-
ence. This increase the model accuracy without modifying the model itself, which
is a valuable result.

Agents RAG is useful for tasks where we want the model to acquire specific
knowledge from pre-saved documents before generating text, but it is also possible
to give the model the ability to think and perform the steps necessary to solve a
task using an Agent. This piece of software is able to create a step-by-step plan
to solve the task performing a RAG workflow and collecting responses from data
lookup and/or invoking API. These responses are used to augment the prompt
and generate the final result.
The Agent often use a ReAct framework combining chain-of-thought reasoning
with action planning providing prompt with a structure containing: Question, the
user requested task, Thought, reasoning step to decide how to solve the problem,
Action, invoking API or retrieving documents and Observation, the result after
the action. The Observation step is used to check if the task has been completely
solved, otherwise restarting the process adding in the context the previously found
results.
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2.5 Challenges and new directions for LLMs
Large Language Models (LLMs) have made significant improvements in natural
language processing and generation over the last year. Despite these advance-
ments, there are still significant challenges to address to improve efficiency, scala-
bility and reliability.
Many limitations are caused by the cost and resource requirements for this mod-
els to always perform better. But also general concerns regarding the response
interpretability and ethical considerations.

Computational Cost and Resource Requirements The training cost in-
crease as the size of the model and the dataset and require specialized hardware
and significant energy consumption. This represent a problem in terms of cost and
also scalability.
Models should be able to handle large volumes of concurrent requests and for
this reason the computational resource requirement increase. Also they should
achieve real-time performances and maintain low latency, which is important for
applications like chatbots.

Training Dataset It is crucial to use dataset big enough to increase model
performances but the data quality is important as well. The ability of the model
to generate coherent and reliable text is based on the data used to train it. If
the dataset is not big enough or the data are not so diverse and maybe incorrect,
responses will be characterized by the same biases of the dataset. For this reason
it is important to evaluate the quality of the data before feeding them to the LLM.
Moreover in the last period techniques to generate new data have been studied to
increase the performance of the models. This Syntetic data can increase diversity
in the dataset but they need to preserve data privacy and security.

Multimodal Models NLP is not the only application of LLM. Multimodal
models can combine different data format like text, images and speech to increase
the understanding of the model and address more complex tasks. It is possible to
generate text from speech or videos from text for example.
These are based on the Diffusion architecture, trained using unsupervised learning
and are able to capture the relationships and interactions of different elements also
over time.

Model Evaluation Evaluating a model generated text without human inter-
vention is not easy since it is non-deterministic. There exists different evaluation
metrics to evaluate models on specific tasks like Rouge and Bleu. The first focus-
ing on summarization tasks and the second on the translation ones. Both of them
consider the n-grams in which input and output can be split and Rouge calculate
the recall while Bleu the precision.
For more general tasks the evaluation of n-grams matching is not suitable. One
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approach it is being studied is LLM evaluating LLM. It can be useful when in
the dataset is present an expected output, like an expected answer to a question,
generated by a human, and asking the model to evaluate how much the model
generated response is similar to it. Some libraries exists like RAGAS, which also
provide metrics to evaluate the RAG workflow.
In general, metrics like GEVAL can be used to evaluate a model output without
any ground truth and there are also metrics to evaluate Hallucinations, Biases and
Consistency of the generated text.
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Chapter 3

Experimental Methodology

3.1 Objectives
The objective of this thesis is to explore and develop innovative solutions in the
field of Artificial Intelligence, with a particular focus on Generative AI. The core
project involve the creation of a shopping assistant for a leading enterprise in the
large scale retail sector (GDO) which will enhance the customer’s capability to
interact with the main site.
This project leverages the RAG technology and intelligent Agents to deliver precise
and contextual answers to customer inquiries. All the development is carried out
on the AWS (Amazon Web Services) platform, which offers specialized services to
support the implementation of these technologies within the chatbot.

One of the central goals is to harness the power of the RAG technology to ob-
tain more relevant answers, based on a predefined knowledge base 1. In contrast to
traditional chatbots, based on predefined answers or simple retrieval mechanism,
RAG enables the retrieval of the documents related to the given question and
generate a response using the acquired knowledge.
For the RAG technology to function effectively, several steps are necessary, includ-
ing indexing documents in the vector storage, configuring retrieval parameters,
and selecting the appropriate text generation model. Therefore, the first part of
my thesis project focused on developing a library designed to speed up the creation
of the RAG pipeline and to evaluate it. This custom library offers a comprehen-
sive overview of various implementation strategies for the technology, focusing on
different vector storage options for embedding documents in the knowledge base.
It also explores diverse chunking strategies to enhance storage and retrieval effi-
ciency and analyzes the results of different text generation models and retrieval
parameters, such as the number of documents retrieved per query.
Additionally it offers a method to evaluate the outcomes using the RAGAs (Retrieval-
Augmented Generation Assessment System) library, enabling the identification of

1A database designed to store and retrieve complex documents, especially in support of arti-
ficial intelligence systems

31



3 – Experimental Methodology

the most effective solution.

Moreover, since the AWS platform offers two distinct services to implement this
kind of solution, a comparative study was conducted to determine the most suit-
able approach for predefined scenarios. Specifically, the focus was on identifying
the break-even point to guide the selection of the optimal service for each specific
situation.
In summary, the objectives of this thesis are multi-faceted, encompassing the de-
velopment of a state-of-the-art chatbot, the creation of a custom library for op-
timizing the RAG technology, rigorous evaluation of the system quality and the
identification of the most effective service options.
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3.2 AWS Ecosystem
Amazon Web Services (AWS) provides a robust and versatile environment for de-
veloping advanced artificial intelligence (AI) solutions, including chatbots. Among
its extensive suite of services, AWS Bedrock and AWS SageMaker are the way to
go for implementing Generative AI (Gen AI) technologies.

General Services In order to complete the project and design the library many
supporting services have been used, including:

• S3: The S3 service offers the possibility to define Buckets, a container for
objects or files. It is possible to organize it in sub folder and to store documents
of different format for long period of times.

• Lambda: This enables developers to run function’s code in a server-less man-
ner. The code is executed in a pay-per-use basis on an high available infras-
tructure, without the need to specify any compute resources.

• CloudFormation: This service helps to model and configure AWS resources
dealing with creation, update and delete situations. Related resources are
organized in Stacks to efficiently manage them together.

• Elastic Container Register (ECR): A container image registry to easily store,
share and deploy docker container images.
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3.2.1 AWS Bedrock
AWS Bedrock is a service designed to simplify the creation and deployment of
generative AI applications. It offers:

• Pre-trained Models: there are many high quality models, some proprietary
other open source, already trained and ready to be adapted to specific situa-
tions accelerating the development process.

• Scalability and Management: it manages the underlying infrastructure, en-
suring scalability and reliability. Therefore the developer can avoid to focus
on infrastructure related problems.

• Bedrock KnowledgeBase: is a service relying on the OpenSearch (another
AWS service) vector storage, which automatically index documents and con-
figure the retrieval mechanism, also providing an automatic sync functionality
to handle document updates.

• Bedrock Agents: the default Bedrock implementation of an Agent, providing
the Orchestration prompt and enabling the creation of action-groups to tell
the LLM which API (defined in precedence using an openApi model) to invoke.

3.2.2 AWS SageMaker
AWS SageMaker is a comprehensive service that provides tools for building, train-
ing, and deploying machine learning models. It is particularly valuable for devel-
oping custom AI solutions, including those required for advanced chatbot func-
tionalities. It offers:

• Integrated Development Environment: an integrated development environ-
ment (IDE) with built-in Jupyter notebooks, allowing developers to experi-
ment with machine learning models.

• Training and Tuning: SageMaker simplifies the process of training and tuning
models with automated machine learning (AutoML) capabilities and hyper-
parameter optimization.

• Model Deployment: SageMaker provides streamlined deployment options.
This includes the deployment of the model on callable endpoints for real-time
inference.
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3.2.3 Break Even Point
The study to determine the optimal service for each use case began with an anal-
ysis of the functionalities and costs of the available services.
This was followed by a comparison of the RAG pipeline performance when imple-
mented using models from AWS Bedrock and AWS SageMaker for text generation.
The goal was to understand the differences in performance between the models pro-
vided by the two services.
It is possible to consider different factors impacting the choice of the model:

• Costs: Bedrock offers a "pay-per-use" option based on the number of generated
tokens so that the user only pays when he calls the API to generate the
response.
Sagemaker instead needs a deployed endpoint to call the model, and the user
pays for the its compute capacity in terms of virtual hardware performances.
Bedrock also offers a Provisioned throughput solution paying in advance for
usages of a long period of time.

• Vertical and Horizontal Scaling: SageMaker supports automatic scaling, whereas
Bedrock does not. In SageMaker, scaling involves selecting a CloudWatch
metric, defining a target value, scaling instances accordingly, and setting cool-
down periods to manage the scaling rate.

• Security: SageMaker offers complete control over data, with protections for
data both at rest and in transit.
Bedrock gives limited control over infrastructure, as AWS manages and stores
custom models and data, which might reduce visibility and control.

• Fine-tuning: both the services offers the possibility to fine-tune (Domain adap-
tation and Instruction Based) the models.

• Models Availability: as of this project SageMaker offers much more models
than Bedrock. Also many of them are fine-tunable.

• Customization: Bedrock offers pre-trained foundation models to rapidly de-
velop application using the Gen AI technology, but it is also possible to cus-
tomize these models to specialize them for less common scenarios. Never-
theless, Sagemaker is a better choice when we need to built/train/deploy
specialized models, providing extensive options and control over the machine
learning cycle.

Conclusions AWS Bedrock and AWS SageMaker provide a powerful and in-
tegrated environment for developing advanced generative AI solutions, including
chatbots.
AWS Bedrock is an ideal choice to quickly develop applications that integrate the
Gen AI technology using the already trained foundation models. It is better suited
for use cases where model customization is not necessary like customer support
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chatbots, requiring just the NLP support offered by base foundation model.
Instead, AWS SageMaker excels in situations requiring more control over infras-
tructure, model training, customization and deployment. Use cases demanding
highly specialized models, such as those in healthcare, would benefit the Sage-
maker adoption and will help data scientist and machine learning engineers, by
providing a flexible environment to experiment.
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3.3 Custom RAG library
In a RAG pipeline is possible to consider the following core components:

• Chunker: to split input documents, when predefined characters are encoun-
tered, obtaining relatively small pieces of text called chunks.
The chunks are further processed by calculating the embedding representation
to efficiently compare them.

• Vector Storage: It is a database to store the embeddings and efficiently com-
pare them. It offers indices optimized for vector search to retrieve documents
in a fast way.

• Retriever: The component used to retrieve relevant documents to a user query
and generate a response based on those.

During the project i developed a library in Python offering different imple-
mentation of these components to compare their quality and performance. This
library is flexible and can be customized by adjusting different parameters. It can
be useful to speed-up the RAG pipeline creation or evaluation and it integrates
seamlessly with the AWS environment.
The library offers three different scripts: indexing, testing and evaluation. Using
the SageMaker Processing Job functionality, it is possible for users to define the
environment’s characteristics, such as CPU and RAM, where a job is launched
to execute the desired code image. Indeed, a docker image is built and stored in
the AWS ECR (Elastic Container Registry) for each script. The job is enabled
to read and execute it in the predefined environment by passing all the necessary
configuration parameters.
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3.3.1 The Dataset
In order to conduct the experiments to evaluate the quality of the RAG pipeline it
was necessary to find a Dataset containing a reasonably big amount of documents.
The Sec-10-Q was chosen, where the PDF source documents contain financial
information about different tech companies: AAPL, AMZN, INTC, MSFT, NVDA;
divided according to the financial quarter they refer to.
It also offers a list of 195 questions about them, labelled with human answers
2. Therefore, it was possible to compare the model generated answers with the
human ones, and determine how similar they are. After all, the final objective for
a generation model would be to replicate a human answer in the best possible way
in terms of correctness and coherence.
An extract of the q&a table is shown in figure 3.1.

Figure 3.1: List of questions and answer present in the dataset

2The answer were generated by an other LLM and manually corrected by the researchers
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3.3.2 Indexing

This script represent the core of the library, building the RAG pipeline by process-
ing input documents and storing them in a vector storage 3. The input documents
are read from a data source (the S3 bucket) and processed through the chunking
phase.
After the this phase the chunks are converted in embedding representation using
the Amazon Titan Embedding model.

Chunker

For the initial stage, processing of the documents, I implemented two different
versions of the Chunker (Recursive and Semantic), and the Bedrock Titan model
was used to calculate the embedding representation of each chunk.

Recursive Chunker The Recursive Chunker leverages the Langchain Recursive
Character Text Splitter to split each document in chunks [6]. This method employs
a hierarchical splitting strategy, starting by dividing the text at the paragraph level
and, if a paragraph is still too large, splitting it again at a sentence level. In this
way each chunk is meaningful and coherent and contains semantically related piece
of text.
Users can define the chunk size and chunk overlap parameters. The chunk size is
important since Large Language Models (LLMs) have a maximum token capacity.
Chunk overlap refers to the number of characters at the end of one chunk that
are repeated at the beginning of the next chunk. This is done to preserve context
among chunks helping the model to understand the continuity of the text.
For my experiments i chose a chunk size of 2000 and overlap of 200.

Semantic Chunker The Semantic Text Splitter in LangChain [7] is an exper-
imental method to split text based on semantic similarity, addressing the limi-
tations of others techniques that might disrupt the semantic flow by relying on
predefined delimiters. This approach leverages language models to understand
the text’s meaning during the chunking process. For this strategy an embedding
model (Amazon titan) is used to calculate embeddings for each sentence so that
the most related ones are grouped in the same chunks.
It is possible to define the threshold after which two sentences will be assigned to
different chunks. For my experiments i choose the default way to split text (based
on percentile) so that all differences between sentences are calculated, and then
any difference greater than 0.8 is split.

3The component of the knowledge base responsible for data storage, in particular using high
dimensional vectors
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Vector Storage

After processing the documents and generating embeddings for each chunk, various
options were explored to store them to allow for a faster retrieval in subsequent
steps.

FAISS The first vector storage option considered is FAISS (Facebook AI Simi-
larity Search) [8], an open source library to search for vectors in an efficient way.
It offers a method to create a FAISS index, stored locally, starting from the input
chunks.
This tool is based on an in memory database to store vectors, for this reason
does not scale. Moreover it offers approximate nearest neighbor search to improve
speed, but impacting on the accuracy.

Opensearch Amazon OpenSearch Serverless is a managed service offered by
AWS to operate and scale OpenSearch clusters (Open Source Search Engine) in
the cloud AWS [9]. This is a search and analytics engine using Collections where
the user can upload documents, or in this case embeddings. It offers also a specific
functionality to work with high dimensional vectors and store them in an index.
This solution provides scalability, efficiency and security features. Also, as a man-
aged AWS service, it simplifies the indexing process for developers, reducing man-
ual steps and overhead.

Bedrock KnowledgeBase Amazon Bedrock provides an even simpler method
for indexing documents through its managed service KnowledgeBase [10]. It is
possible to define a DataSource (an S3 bucket for example) which is then synchro-
nized with the underlying vector storage, performing automatically the processing
of the documents to obtain the embeddings. By default KnowledgeBase is built on
top of OpenSearch for storing vectors, simplifying indexing and the development
process. Additionally, it supports automatic updates of documents. This solution
make use of its default processing phase implementing a Recursive Chunker with
configurable parameters.

Amazon Kendra Kendra is another AWS managed search service powered by
machine learning [11]. It offers intelligent search functionalities by using NLP
to understand the document’s context and the meaning of the query. To in-
dex documents users need to create a DataSource and upload documents. After
that, documents are automatically processed, generating embeddings. Such as the
KnowledegBase options it doesn’t require manual processing of documents sim-
plifying the indexing process, and it relies on a search engine with performance
comparable to OpenSearch.
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3.3.3 Testing
After the knowledge base has been created, users can make queries to the system.
The knowledge base is searched, and one or more documents (the ones which best
answer the query) are retrieved. In the end, the text generation model can generate
a response based on the information contained in the retrieved documents.

Retriever

Different vector storage solutions offer different methods for retrieving documents,
and all of them have been analyzed to perform the comparison.
In this phase it is possible to specify the number of documents to retrieve for
each query (top-K). For my experiment, i used the values 1,3,5,7. This approach
allowed to compare the effectiveness and relevance of the search phase, analyzing
the impact of the top-K on the quality of the answers.
Also, to compare the Amazon Bedrock and SageMaker services, two different text
generation models were considered, one per each service.

Retrieve from Vector Storage

FAISS The FAISS library offers a simple method to retrieve relevant documents
to a user query, searching in the pre-loaded FAISS index. This method receive the
top-K parameter to specify the number of documents to retrieve and returns them
with an associated score representing the L2 or Euclidean distance.

OpenSearch Using this AWS service it is possible to invoke the retrieval func-
tion, which by default consider the cosine similarity as the distance metric. It also
accept the top-K as a parameter.

Bedrock KnowledgeBase Relying on the OpenSearch engine, it makes use of
the same retrieval method of the previous option. Additionally, it provides the
functionality to retrieve-and-generate, invoking the search function and automat-
ically passing the returned documents to the text generation model, simplifying
the development process.
The previous options instead, require the retrieved documents to be manually
processed and included in the prompt for the generation model.

Kendra Amazon Kendra implement a retrieve method based on semantic sim-
ilarity and leverages NLP to understand the query context to return the top-K
most relevant documents. The relevance score is based on the cosine distance, as
well as metadata.
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Text Generation Model

In order to evaluate the differences between the Bedrock and Sagemaker services
two different models were used to generate the final response. From the Bedrock
foundation models, Anthropic Claude 2 was used [14], while Meta’s LLaMA 2 13B
Chat was selected from SageMaker JumpStart [13].
A crucial point in this phase is represented by the design of a prompt for the
generation model including the documents retrieved in the retrieval phase.

Bedrock Model Invoking a Bedrock foundation model is very straightforward
since they provide the basic API to invoke them. The method receives the prompt,
augmented with the context retrieved, and generate a response.

SageMaker Model Amazon SageMaker offers the Jumpstart functionality to
use pre-trained models and fine-tune or simply invoke them. There are many
available models and each of these, according to the size and other parameters,
has its own requirements in terms of CPU and memory.
Moreover, to invoke a SageMaker model it is first necessary to deploy an endpoint
to host it. The endpoint correspond to a cloud environment were the model can
be accessed using an API. After the model is deployed on the endpoint it can be
called in the same way of the Bedrock one, by passing the prompt with the relevant
documents included.

Model Parameters All the generation models can be customized by specifying
the temperature, the topK (different from the one of the retriever) and the top-P.
These are inference-type parameters changing the way models choose the next to-
ken.

• Temperature: it refers to the "randomness", modifying the probability of the
next word in a sentence. An high value will increase the diversity in the chose
of the words, leading to a more creative response. While a low value makes
the model more repetitive, increasing coherence.

• TopK: this parameters refers to the maximum number of words from which
the model will choose the next one. It limits the model choice to words with
greater probability. A model with an high value has more variability, instead
models with lower ones makes the output more predictable.

• Top-P: it apply a dynamic filter on the subset of possible next words, consid-
ering only the subset of words whose cumulative probability does not exceed
the value p. High values increase diversity, lower ones decrease it.

It is crucial to choose a good combination of these parameters to be sure the
model can generate coherent response imitating the human creativity.
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For my experiments, to compare the two different models in the same situa-
tions, the same combination of parameters was used: Temperature=0, Top-P=0.1,
topK=40.

43



3 – Experimental Methodology

3.3.4 Evaluation
Once the test have been conducted, the obtained result is a dataset where each
question is associated to a human answer (the ground truth) and a model generated
answer. Also, during the retrieval process, the relevant documents for each query
were stored to evaluate also the quality of the knowledge base.
The evaluation of LLM generated text, as of today, is still a far from simple
process. Some linguistic metrics were considered, traditionally used to evaluate
some machine learning task. Also performance metrics, related to the time to
retrieve documents and to generate an answer were collected. Lastly, the RAGAs
framework (Retrieval-Augmented Generation Assessment) was used to calculate
different metrics about the quality of the RAG pipeline.

Evaluation Metrics

All the following metrics were collected and analyzed to compare the different
results.

Linguistic These traditional metrics give a score to the generated text, compar-
ing it to the expected one. Their implementation is provided by the Hugging Face
Evaluate library [15].

• BLEU (Bilingual Evaluation Understudy Score): particularly useful in ma-
chine translation tasks, this metric evaluates n-gram precision. It checks how
many n-grams (contiguous sequences of n items from a given sample of text)
in the generated text are present in the expected output.

• ROUGE (Recall-Oriented Understudy for Gisting Evaluation): this metric
can be used to evaluate tasks where the recall is more important, such as
summarization. It measures how much of the reference text is captured in the
generated one.

• Meteor (Metric for Evaluation of Translation with Explicit Ordering): calcu-
lates the harmonic mean of precision and recall, with a higher weight given
to recall. With respect to the other two, this metric considers synonyms,
stemming and word order in the evaluation, making it more robust. But still
it is not able to evaluate complex texts where a semantic understanding is
required.

Specialized Metrics for RAG Systems The RAGAs framework [16] offers
diverse metrics to evaluate all the aspects of a RAG pipeline. The core phases to
evaluate are the retrieval (how relevant are the documents to the query and to the
ground-truth) and the generation (how similar is the generated text with respect
to the expected answer).
This first set of metrics is used to evaluate the quality of the context (documents
retrieved) and the impact it has on the generated answer.
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• Context Precision: evaluates how well the items (chunks) of the retrieved
context match the ground-truth relevant items for a given query.

• Context Recall: evaluates whether each sentence in the ground-truth can be
attributed to the retrieved context.

• Context Relevancy: evaluates whether sentences in the retrieved context are
relevant for answering the question.

The following group instead gives insight about the the generated answer, eval-
uating how closely the generated text matches the expected one and whether it
accurately reflects the information from the retrieved documents.

• Answer Semantic Similarity: evaluates the semantic similarity between the
answer and the ground-truth by computing their embedding representation.

• Answer Correctness: is computed as a weighted average of factual correctness
(using F1 score) and the semantic similarity between the given answer and
the ground-truth.

• Answer Relevance: is defined as the mean cosine similarity of the original
question to several artificial questions, which where generated (reverse engi-
neered) based on the answer.

• Faithfulness: evaluates whether each sentence in the answer can be inferred
from the context.

Most of the RAGAs metrics follow the "LLM as-a-judge" approach, where an
other LLM is utilized to evaluate the results. This is particularly evident in met-
rics like the Faithfulness or Context Relevance, where the model evaluates the
generated content against the retrieved context or ground truth and provides a
score. Instead, metrics relying on answer similarity focus on the cosine distance
between the embedding representations of the generated answer and the reference
one to give a score.
For my experiments i used the Mistral 7B instruct model, from Bedrock foundation
models, to perform the evaluations.

Other Metrics for RAG Evaluation Before RAGAs was chosen, a study on
other different solution to evaluate a RAG system was conducted.
The Hugging Face Evaluate library offers basic metrics to evaluate machine learn-
ing models in diverse NLP tasks. Nevertheless, there aren’t metrics specialized in
evaluating the RAG retrieval and generation phase.
The DeepEval library [17] implements many of the metrics present in the RAGAs
library, also introducing a new one called G-EVAL. This metric is particularly
interesting because it is able to evaluate ANY custom criteria making use of the
"LLM as-a-judge" approach. Despite its flexibility, G-EVAL is more difficult to set
up and configure. Given the complexity and the time required to evaluate a single
answer, I decided to use RAGAs for my experiments.
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Performance Metrics This set of metrics is used to evaluate the performance
of the retriever (to search and return relevant documents from the knowledge base)
and of the generation model to answer in a fast way.

• Time to Retrieve: refers to the time needed by the vector storage to search
the relevant documents based on the user query and return them. This is
especially useful to compare the different vector storage solutions.

• Time to Answer: indicates the number of seconds the generation model needed
to generate an answer after receiving the prompt with the query and the
context. This can offer a comparison on the performance of the two types of
models considered: the Bedrock and the SageMaker ones.
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Experimental Results

Thanks to the custom library it was possible to easily index documents using
diverse chunking strategies and vector storage solutions. For each distinct con-
figuration tests were conducted on the same dataset using the different models
offered by the Bedrock and SageMaker service, while also considering different
top-K values. In the end, the quality of the generated response and the general
performances have been evaluated.
The experiments were conducted using the following parameters:

• Chunking strategies: Recursive Character Text Splitter and Semantic Text
Splitter, both by LLangchain. Bedrock KnowledgeBase and Amazon Kendra
also offer their default chunking strategies (referred as Custom for Knowledge-
Base and Default for Kendra).

• Vector Storages: FAISS, Amazon OpenSearch, Bedrock KnowledgeBases and
Amazon Kendra.

• Number of retrieved Documents (top-K): values 1, 3, 5, 7

• Text Generation Models: Claude2 from Bedrock Foundation Models and
LAMA2 13b from SageMaker Jumpstart.

The total number of tests using all the possible combinations of these parameters
would be 64, but due to the large dataset size (195 questions) and budget and time
limitations, some configurations were not tested.

• For Amazon Kendra, tests were conducted using both its Default chunking
strategy as well as the Recursive and Semantic Splitters. This approach was
essential to evaluate the impact of the Chunker on the same vector storage.

• For the Bedrock KnowledgeBase vector storage solution, only its default doc-
ument processing was performed. This is based on a Recursive Character
Splitter with a chunk size and overlap of 1000 and 99, respectively. This
limitation was introduced because a comprehensive comparison of processing
strategies had already been carried out using the Kendra vector storage.
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• Tests using the LLaMA model were conducted only considering the top-k
value 3. This decision was made because all the tests conducted using the
other model already provided good insights into the impact of the number of
retrieved documents on response generation. The value 3 represent an average
of the values used by Bedrock model and it gives the possibility for a direct
comparison on the same configuration.
Moreover, the Lama model comes with a lower limit in term of prompt size,
and for this reason higher top-k values could not be used.
Still it was possible to compare results of the different generation models on
40 different configurations.

Considering the introduced limitations, the total number of test becomes 40 (32
using the Claude model and 8 using LAMA model).
In table 4.1 is present a visual overview of the different configurations tested.

VECTOR STORAGE CHUNKING STRATEGY TEXT GENERATION MODEL TOP-K

FAISS

RecursiveCharacterTextSplitter
CLAUDE 2

top1
top3
top5
top7

LLAMA2 13b top3

Semantic chunking
CLAUDE 2

top1
top3
top5
top7

LLAMA2 13b top3

OPENSEARCH

RecursiveCharacterTextSplitter
CLAUDE 2

top1
top3
top5
top7

LLAMA2 13b top3

Semantic chunking
CLAUDE 2

top1
top3
top5
top7

LLAMA2 13b top3

KENDRA

RecursiveCharacterTextSplitter
CLAUDE 2

top1
top3
top5
top7

LLAMA2 13b top3

Semantic chunking
CLAUDE 2

top1
top3
top5
top7

LLAMA2 13b top3

Default chunking
CLAUDE 2

top1
top3
top5
top7

LLAMA2 13b top3

KNOWLEDGE BASE Custom chunking
CLAUDE 2

top1
top3
top5
top7

LLAMA2 13b top3

Table 4.1: Test Configurations
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4.1 RAG Analysis
In order to perform the analysis of the results, each test produced a CSV file con-
taining the utilized parameters and the values of the computed metrics. Once all
the files have been uploaded on a S3 bucket, a Glue Crawler job 1 was launched
to derive an SQL table from these.
Amazon Glue Crawler enables to populate a table starting from different file for-
mat, specifying the corresponding delimiter (comma separated value in this case).
This service will scan all the files, deriving the table schema from the file content
and folder organization, and at the end populating it with the contained values.
The Metrics table schema is structured as follows:

• vector_storage: Refers to the vector storge solution (FAISS, OpenSearch,
KnowledgeBase, Kendra).

• chunking_strategy: Describes the approach used to break down the data
into manageable chunks for processing (Recursive, Semantic, Default for Kendra
and Custom for KnowledgeBase).

• topk: Refers to the number of retrieved documents (1, 3, 5, 7).

• meteor: Measures the precision and recall of predicted text against reference
text.

• sacrebleu: The BLEU metric to evaluate the precision.

• rouge-l: Variant of ROUGE that evaluates the overlap of longest common
sub sequences between predicted and reference text.

• context_precision: calculate the precision of the context for which the
answer is retrieved.

• context_recall: Measures the recall of the context used to generate the
answer.

• context_relevancy: Determines the relevance of the context with respect
to the query.

• answer_similarity: Evaluates the semantic similarity between the gener-
ated answer and the correct answer.

• answer_correctness: Assesses whether the generated answer is factually
correct.

• answer_relevancy: Measures the relevance of the generated answer to the
posed query.

1AWS Glue crawler is an automated tool to discover and catalog data.
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• faithfulness: Evaluates how accurately the generated text reflects the infor-
mation in the retrieved context.

• time_to_retrieve_documents: The time taken to retrieve the necessary
documents for generating an answer.

• time_to_answer: The time taken to generate the answer.
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4.1.1 Vector Storage Comparison
Analyzing the results of the Bedrock model, it is possible to compare the different
vector storage solutions by calculating averages of the computed metrics.
In figure 4.1 it is possible to visualize the different scores obtained for the quality
metrics.

Figure 4.1: Comparison of the quality metrics for the different vector storage
solutions

Vector_storage Meteor Rouge sacrebleu Context_Precision Context_Recall Context_Relevancy Faithfulness Answer_similarity Answer_correctness Answer_relevancy
FAISS 0.28 0.20 0.076 0.81 0.83 0.14 0.37 0.85 0.38 0.17
KNOWLEDGE 0.28 0.21 0.070 0.81 0.84 0.38 0.42 0.85 0.40 0.20
OPENSEARCH 0.28 0.20 0.086 0.81 0.83 0.14 0.37 0.85 0.39 0.16
KENDRA 0.25 0.19 0.078 0.76 0.81 0.26 0.32 0.81 0.36 0.08

Table 4.2: Tabular representation of the vector storage results

Overall, linguistic metrics average score(meteor, sacrebleu and rouge) is below
0.3. This reveals their limitations in evaluating LLM text generation, since they
are useful in tasks like summarization and machine translation and are not effec-
tive to determine if two sentences express the same concept.
RAGAs metrics regarding context retrieval and recall obtained relatively high val-
ues, indicating the retrieval process of the RAG pipeline is effective. All the vector
storage solutions performed similarly, with the Amazon Kendra implementation
scoring the lowest.
Nevertheless, with the exception of answer similarity, the other results are below
0.4. This indicates that, in general, the generated answers do not align to the
expected ones.
It is also important to note that these metrics heavily rely on the scores assigned
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by the evaluator model (Mistral), therefore the reason for the low scores may be
attributed to the model’s limitations in understanding.
With this in mind, Amazon Kendra got the lowest scores for these metrics while
the KnowledgeBase solution achieved the highest ones. Anyway, as it is clear from
the figure, OpenSearch and FAISS performed similarly to KnowledgeBase.
Analyzing the metrics more in detail:

• The answer similarity metric scored high values, indicating the generated and
expected answers have similar vector representations. This is a particularly
important metric to determine the quality of the generated answer, as it’s
score is independent of others LLM evaluation.

• Context precision and recall also have high scores, demonstrating the retrieved
documents contains the information to generate the response.

• Context and answer relevancy are the RAGAs metrics with the lowest score.
These two heavily rely on the computation performed by the evaluator model
and they will probably increase by using a more powerful model.

Time Performances From the time performances point of view, the average
retrieval time is relatively high for the Kendra and KnowledgeBase solution, though
staying under one second. FAISS seams to be the fastest solution to retrieve
documents, closely followed by OpenSearch.
The time to generate answers across the different solutions is similar and remains
under 10 seconds 4.3. This was expected since it is primarily influenced by size of
prompt sent to the model, depending on the top-k value.

vector_storage avg_time_to_retrieve avg_time_to_answer
KENDRA 0.712 7.787
FAISS 0.094 8.524
KNOWLEDGE 0.483 7.678
OPENSEARCH 0.148 8.291

Table 4.3: Average times for vector storage solutions
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4.1.2 Chunking Strategy Comparison
Analyzing the results obtained from the Bedrock model it is possible to point out
the effect of the chosen chunking strategy on the generated response quality.
In figure 4.2 it is possible to see the differences in the quality metrics results.
The results are consistent with the previous ones where only context precision,
context recall and answer similarly achieved high scores.
The Chunking strategy is affecting only the processing phase. When chunks are
created in a more intelligent way they preserve better context understanding, fa-
cilitating the retrieval of highly relevant documents to the user query. For this
reason, i initially expected the Semantic strategy to obtain better results. How-
ever,in the end the scores were nearly identical.
The Default chunking strategy used by Amazon Kendra vector storage got the
lowest results, while the Custom one, implemented by Bedrock KnowledgeBase,
has the highest ones.

Figure 4.2: Comparison of the quality metrics for the different chunking strategy
solutions

Chunking_Strategy Meteor Rouge sacrebleu Context_Precision Context_Recall Context_Relevancy Faithfulness Answer_similarity Answer_correctness Answer_relevancy
Custom 0.2811 0.2069 0.086 0.8061 0.8438 0.3768 0.4190 0.8502 0.4015 0.1995
Def 0.2591 0.1937 0.071 0.7603 0.8094 0.2422 0.3064 0.8101 0.3573 0.0913
Rec 0.2669 0.1978 0.074 0.8016 0.8121 0.2107 0.3410 0.8375 0.3674 0.1137
Sem 0.2744 0.2006 0.075 0.7923 0.8358 0.1593 0.3601 0.8406 0.3861 0.1565

Table 4.4: Quality metrics for different chunking strategies

We can focus on a single vector storage solution, Amazon Kendra, to analyze
the effect of the different chunking strategies, and in particular of the Semantic
strategy. In figure 4.3 only RAGAs metrics results are present for the Kendra
vector storage solution.
Even in this case the scores between the different strategies remain the same,
without any noticeable improvement from using the Semantic strategy. Therefore,
at least at the time of this project, i do not consider particularly relevant this

53



4 – Experimental Results

experimental feature.

Figure 4.3: Comparison of the quality metrics using different chunking strategies
and the Kendra vector storage

Time Performances Regarding the time performances, the considerations
made during the previous vector storage comparison remain valid, where the De-
fault and Custom strategy (corresponding to the Kendra and KnowledgeBase so-
lutions) take the more time to retrieve documents. The Recursive strategy appears
as the best solution to retrieve documents and generate the final text, from the
time point of view.

Table 4.5: Average times for chunking strategy solutions

chunking_strategy avg_time_to_retrieve avg_time_to_answer
Def 0.7190 8.050
Custom 0.4835 7.679
Rec 0.3062 7.677
Sem 0.3279 8.638
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4.1.3 Top-K Comparison
Comparing the results obtained retrieving different number documents (top-k pa-
rameter), enables to show the differences in term of quality of the context and
time to retrieve.
High values of this parameter will more likely give the model more understanding
of the context to answer the question. However, it will also increase the possibility
that the model answer is not so precise. Also the retrieval and generation times
will be negatively affected since the model need more time to analyze the context
to produce a response.
In figure 4.4 and table 4.6 we can analyze the scores of the quality metrics.

As we already said, the metrics which scored the highest are context precision,

Chunking_Strategy Meteor Rouge Sacrebleu Context_Precision Context_Recall Context_Relevancy Faithfulness Answer_similarity Answer_correctness Answer_relevancy
k1 0.2582 0.1952 0.072 0.8268 0.8188 0.3879 0.3700 0.8307 0.3557 0.1166
k3 0.2697 0.1978 0.073 0.7943 0.8068 0.2186 0.3702 0.8326 0.3719 0.1272
k5 0.2756 0.2009 0.079 0.7816 0.8315 0.1487 0.3459 0.8391 0.3945 0.1477
k7 0.2785 0.2041 0.078 0.7716 0.8415 0.1097 0.3172 0.8448 0.3870 0.1593

Table 4.6: Quality metrics for different top-k values

Figure 4.4: Comparison of the quality metrics for the different top-k values

context recall and answer similarity.
The context precision is evaluating how closely the context aligns with the ex-
pected answer. This is done by counting the number of items present in the
context matching those in the ground truth. Given a larger context, higher top-k
value, the amount of items in the context not present in the answer increase, scor-
ing lower for that metric. As a matter of fact, the figure is showing this behaviour,
with the highest score for top-k 1 and lowest for top-k 7.
The context recall, on the other hand, count how many items in the expected
answer are present in the context retrieved. For this reason a higher number of
retrieved documents generally increase this score.
Analyzing the context relevancy results, despite the low scores, it is evident that
using a lower top-k increases the number of statement in the context relevant to

55



4 – Experimental Results

the answer.
These three metrics highlights the fact that even if retrieving more documents in-
creases the chances of correctly answering the question, if the retriever is efficient
and it is able to return the most relevant documents to a user query, just 1 or 3
documents provide all the necessary information.
Despite this considerations, the answer similarity metric still scores high for all the
values of the top-k. This is showing that the generated answer is matching closely
the expected one regardless of the size of the context used. It also stress the fact
that a single well-chosen document can provide all the necessary information to
produce a correct answer, as long as it is the most relevant.

Time Performances Analyzing the average time results 4.7, as expected,
the time to answer increases with the number of retrieved documents. However, the
time to retrieve decreases as more documents are searched. This is counterintuitive
since one would expect that searching more documents in the knowledge base
would take longer.

chunking_strategy avg_time_to_retrieve avg_time_to_answer
k1 0.4054 6.779
k3 0.3719 7.766
k5 0.3947 8.635
k7 0.3804 9.155

Table 4.7: Average times for top-k solutions

To better understand this strange results, it is possible to focus on the different
vector storage and compare the effects of the top-k values as in figure 4.5.
The results show a strange pattern for the Amazon KnowledgeBase and Kendra
vector storage, where the time to retrieve using top-k 1 and 5 is higher than the
time for top-k 3 and 7. A possible explanation could be that these Amazon ser-
vices are optimized for batch operations, requiring less time to retrieve a higher
number of documents.
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(a) FAISS (b) OpenSearch

(c) KnowledgeBase (d) Kendra

Figure 4.5: Average Time to Retrieve for Different Vector Storage Methods Across
Top-K Values

4.1.4 General Comparisons
Some general considerations can be done analyzing the results of all the test for
the Bedrock generation model. In particular, the objective is to find out the best
solution to realize a RAG pipeline.
The first analysis we can perform regards the average time to retrieve documents.
From the previous paragraphs it is already known that the FAISS and OpenSearch
vector storage have the best scores.
The figure 4.6 is confronting all the solutions revealing that FAISS with top-k 1
and the Semantic chunking strategy is the one taking less time with an average
of 0.088s. The OpenSearch solution with top-k 1 and Recursive strategy instead
scored 0.146s. The worst results comes from the Kendra vector storage.

Figure 4.6: Comparison of the time to retrieve metric

To analyze the best solution from the quality point of view i aggregated the metrics
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evaluating the context and the ones evaluating the answer in two different metrics
representing the averages of all the values.
In figure 4.7 it is possible to see that the solution using Bedrock KnowledgeBase
with top-k 1 is the one with the highest context quality score, followed by Kendra
with top-k 1. These managed services seams to offer the best solution to store and
retrieve documents of the context for a given query, containing all the necessary
information to generate the answer.
In figure 4.8 the results of the answer quality metrics are shown.
This group of metrics evaluate how closely the generated response aligns to the
expected one and to the context producing it. We can see that the FAISS solution
with top-k 7 and the Semantic strategy is the one with the highest score (0.491).
The KnowledgeBase solution with top-k 5 reached a value of 0.485, while Kendra
based configurations are the ones with the lowest scores around 0.39.

Figure 4.7: Comparison of the context quality metrics

Figure 4.8: Comparison of the answer quality metrics
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4.1.5 Bedrock VS SageMaker

To determine the best service for the development of the RAG system many fac-
tors need to be accounted.
As already described in chapter 3.2, costs, specialization and final goal need to
considered.
In this section a more detailed comparison on the two services is accomplished.
The implemented RAG system is designed to work with different text generation
models, offered both by Bedrock and SageMaker. Therefore, by analyzing the re-
sults obtained using two distinct generation models belonging to different services,
it is possible to draw relevant conclusions.
Since the SagkeMaker model was evaluated only for topk 3, the comparison is done
only with the configurations with the same topk for the Bedrock model.

Perfomance Comparison The text generation model has only an impact after
the retrieval phase, thus the different models do not influence the average time to
retrieve documents.
Analyzing the diagram 4.9 it is possible to understand the differences related to
the time in generating an answer.

Figure 4.9: Comparison of time to generate answer for different services

59



4 – Experimental Results

The results show that the Lama2 SageMaker model is generating answers faster
than the Claude2 Bedrock model. Taking approximately one second less per ques-
tion.
This indicates the Lama2 model generate text before the Claude2.

Quality Comparison Now we want to focus on the effect of the choice of the
model on the quality of the answer generated, in terms of accuracy and relevancy
to the context.
It is possible to compare the different results obtained by the two models on the
totality of the experiments.
Figure 4.10 shows the computed metrics.

Figure 4.10: Comparison of quality metrics for different services

Most of the metrics score the same results for the different services. Anyway the
score of the faithfulness is notably better for the SageMaker model. This indicates
that the answer generated aligns more closely to the context. Also answer relevancy
is higher for this model, indicating the answer is more relevant to the query.
The results show relatively better quality achieved by the Lama2 model from
SageMaker.
In order to further analyze the data we can compare the results obtained by the
different vector storage for the two services 4.11.

The plots follow the general trend where metrics score are higher for the Sage-
Maker model, in particular faithfulness and answer relevancy. This result underline
the fact that the Lama2 model generated more accurate response independently
from the vector storage used, and indeed from the retrieval phase of the documents.
Since the context generated is the same, only the model ability in generating an
answer are evaluated.
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(a) OpenSearch Vector storage (b) FAISS vector storage

(c) KnowledgeBase vector storage (d) Kendra vector storage

Figure 4.11: Comparison of quality metrics for the services for the different vector
storage implementations

4.2 Conclusions
The custom library succeeded in the objective of simplifying a RAG system cre-
ation and testing, allowing to easily customize the several components adjusting
the parameters.
The results of the various tests confirmed some expected behaviours but also high-
light some discrepancy. By analyzing the obtained results the following consider-
ations can be drawn:

• FAISS vector storage is the fastest vector storage to retrieve documents, but
KnowledgeBase with an appropriate top-k value scored higher for context
quality metrics. Regarding these two solution they got very similar scores for
the answer quality metrics.

• The Semantic chunking strategy seams particularly effective in enhancing the
FAISS results for the answer quality metrics.

• The top-k parameter influences the different vector storage in different ways.
However, higher values increase the time to generate the answer without al-
ways increasing the quality of the answer or the context.

• The considered SageMaker model overall performs better than the Bedrock
one. It takes less time to produce an answer and the quality of it seams higher.
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In conclusion, the best solution for a RAG system appears to be the FAISS vec-
tor storage combined with a small top-k value and the Semantic chunking strategy.
Despite being one of the fastest and more accurate configuration, it falls short in
scalability, making it less suitable for enterprise projects involving a large number
of documents for the knowledge base. Also, it requires the developer to manually
index documents and track updates, increasing the development time.
For this reasons, Amazon Bedrock KnowledgeBase may be a better alternative. It
highly performs in terms of context and answer quality, and it automatically man-
ages documents updates. Moreover it provides a retrieve and generate function,
which accelerate the time to production and eliminates the need for developers to
manage document processing and infrastructural concerns, simplifying the devel-
opment.
Considering the small differences in terms of performances and quality of the
Bedrock and SageMaker model, the first may be a better alternative keeping in
mind the costs.

62



Chapter 5

Case Study: GDO

The project focuses on developing a shopping assistant for a company in the large-
scale retail industry (GDO). The ultimate goal is to enhance customer interaction
during the online shopping phase by providing advanced features. Customers will
be able to create their shopping carts in a more intuitive and innovative way by
asking natural language questions to the chatbot.
Key capabilities of this chatbot includes:

• Natural Language Understanding: The chatbot is capable of understanding
and processing customer questions posed in natural language. Whether a
customer asks about product availability, requests specific items, or inquires
about recipes, the chatbot can comprehend the intent behind the query and
respond accordingly.

• Database Interaction: The chatbot has access to the company database to
check in (almost) real-time products availability and all the information about
them.

• Cart Management: Customers can interact with their shopping cart directly
through the chatbot. This is programmed to add or remove products based
on user commands, allowing customers to efficiently build their carts without
the need to scroll through hundreds of products on the company website. This
streamlined process makes shopping faster and more convenient.

• Recipe Creation: The shopping assistant can suggest products based on var-
ious characteristics, such as "high-protein," "gluten-free," or "vegan" items.
Moreover, it has a knowledge of the basic recipe ingredients and can combine
different user filters to recommend the best products tailored to individual
dietary needs.

• Information Retrieval: Beyond cart management and product availability, the
chatbot can provide detailed information on a variety of topics. This includes
general information about the company, answers to frequently asked questions
(FAQ), and specific details about the store where the shopping is taking place,
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such as opening hours or online shopping hours. This ensures that customers
not only have a convenient shopping experience but also have easy access to
all the information they need to make informed decisions.
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5.1 RAG pipeline
The chatbot is built using Amazon Bedrock services, utilizing the Claude3 foun-
dation model for text generation. The KnowledgeBase service is responsible for
developing the RAG pipeline, while Bedrock Agents enable the model to call APIs.

Implementation Based on the precedent study of RAG technology with differ-
ent solution, we chose Bedrock KnowledgeBase vector storage, with it’s default
chunking strategy and top-k values. This approach ensures efficient generation
time and increments the accuracy and contextual understanding of the generated
response.
The source documents are stored in an S3 bucket and cover frequently asked ques-
tions (FAQs) on various topics, including registration, loyalty programs, and how
to order online. Other documents provide legal information about the company
and user privacy regulations.
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5.2 Agents
The project solution is based on this advanced technology offered by Amazon
Bedrock, allowing a model to invoke previously defined APIs.

• The first step consists in the implementations of the APIs the model will
call. These APIs are represented by Lambda functions, with their Docker
images built and stored in the Elastic Container Registry (ECR) provided by
Amazon.

• The model needs a way to understand the purpose of each API, what inputs
they require, and what outputs they return. This allows it to select the best
API based on the user’s query. To achieve this, the OpenAPI schema is used.
This consists in a JSON file describing the API, defining its parameters and
expected response. All the schema are saved in an appropriate S3 bucket.

• The main advantage in using the Bedrock Agent service is represented by
the built-in orchestration prompt and Agent implementation. When a user
submits a query to the model, it determines the best actions to generate a
response. Notably, the model is queried recursively, storing the results of each
step and taking additional actions until the query is fully answered.
In practice, this allows the model to call one or more APIs (represented by
action groups) if necessary or search the knowledge base to retrieve all the
necessary information. Then, it can analyze the context and generate a com-
prehensive response.

• An important part in the development of such agent is the design of a suitable
system prompt. This is used to set up the model answer tone and define the
types of questions it can address, as well as those it should avoid. The prompt
also includes examples of potential action flows the model should follow to
respond to specific queries.
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5.2.1 Action Groups
Three action groups where defined to address all the capacities of the shopping
assistant:

1. Search product: Check product availability in company’s inventory and re-
trieve information about it.

2. Cart interaction: Display the content of the cart or, given a list of products,
add or remove them from the cart.

3. Get Store General Info: For a specific store, return general information (ad-
dress, contacts, website), store’s opening hours or the operating hours of the
online shopping service.

Search Products Interacting with the vast client database of products repre-
sented a challenge, as querying the entire database for every product search was
not feasible. The main issue was that users often searched for a product by name,
and the only way to find it in the database was to use a like function applied to
different fields. However, after a few tests, we found out the results where not
satisfactory. For example, a search for milk will return lots of unrelated products,
such as milk chocolate or milk buns.
Returning so many results from the database negatively impacted performance
and necessitated additional filtering to exclude irrelevant results. Moreover, the
Bedrock Agent has limitations on the size of the response returned by the API.
In the end, if a customer asks for milk we cannot answer with detailed information
about milk buns instead.
For all these reasons a dump of the products data was saved on an Amazon
OpenSearch Collection. This approach enables the creation of an index supporting
efficient searching of products by name.
The index is configured to handle various fields with different weights and uses a
tokenizer for partial matching. It also leverages an edge-ngram-analyzer to allow
partial matching of product names and a lowercase-normalizer for consistent case-
insensitive searches. The index includes various field types, such as text, keyword,
and float, to handle different product attributes effectively.
The applied search function uses the multi_match function to consider matches in
different fields. Also the fields weights are different to give relevance to attributes
such as the Legal denomination of sale more than the Description.
With this solution the results were definitely more accurate. Still, given that the
product database contains many variants of the same product (milk in different
formats, brands, and characteristics) a search for a simple product name would
still return an excessive number of results. To address this problem, a score is
assigned to each matching product, according to the weight functions, and the top
ones are returned to the Agent.
The search function also gives more weights to product matching a specific brand.
In this way it gives the possibility to return more frequently products belonging
to a given partnership.
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Cart Interaction The agent is programmed to track the session ID of the con-
versation with the user. This session ID uniquely identifies a single user and serves
as a key in a database table to store all information related to the cart.
An Amazon DynamoDB table is utilized to store cart content as a dictionary field,
where the key is the session ID. This is a non-relational database, document-based
like MongoDB.
The action group is designed to manage three distinct cases:

1. Add to Cart: This API adds a new entry to the database table, containing
the details of the product(s) to be added.

2. Remove from Cart: This API allows for the deletion of one or more products
from the cart.

3. Check Content: The API queries the table and returns the list of products
currently in the cart.

Each product is identified by its ID, and details include name, description, image,
etc.

Get Store General Info This action group invoke APIs that query the original
company database table to retrieve the necessary information. Using the session
ID of the request, the specific store can be identified. Based on this information,
a query is performed on the company Vertica 1 database to obtain general details
about the store, such as its name, address, and contact information.
Additionally, the store’s opening and service hours can be retrieved. Each store
has different service hours, indicating the times during which online shopping and
home delivery services are available.
Overall, these three APIs enable the retrieval of all the essential information about
a store.

1A columnar database designed for analytics, ideal for real time data analysis
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5.3 Project Infrastructure
The project do not only deal with Generative AI but also involves creating a suit-
able back-end and front-end infrastructure to ensure a scalable, secure, and reliable
solution. AWS services support the creation of such a server-less application. All
the infrastructure is developed using the AWS CDK (Cloud Development Kit),
a software development framework for defining cloud infrastructure in code and
provisioning it through AWS CloudFormation.

Back-end Stack This stack includes several key components: API Gateway,
DynamoDB tables, Cognito User Pools, and Lambda functions. In figure 5.1 there
is an high level description of the project infrastructure.

• API Gateway: A REST API is created to handle the different incoming re-
quest and forward them to the correct service. Based on the request path the
request is sent to the corresponding Lambda function.

• Cognito Authorizer: Attached to the API Gateway to ensure all requests are
authenticated. This component is used in the context of the OAuth2 scope to
perform user login and authorize requests. It consists of a User Pool containing
registered users and enforcing login with a username and password.
Following the OAuth2 Authorization flow, it returns an access token upon
successful login and adds a specific header to the requests to indicate they are
authorize, also identifying the user.

• DynamoDB tables: The Cart table is created at this point having the session-
id as the key.
A Session-Parameters table is also deployed to store session-specific parame-
ters such as the identifier of the specific store.

• Lambda function: This function is configured to handle API requests and
perform actions based on the request path.
The Lambda includes different endpoints to interact with the cart (update-
Quantity, emptyCart, showContent) but the core endpoint is the invokeAgent.
When a request with this path is received, it integrates with the Bedrock ser-
vice to send the user query to the Agent and format responses.

Networking Stack This Stack aims to create a networking infrastructure in
AWS, which is crucial for the back-end components to function securely and effi-
ciently.

• VPC (Virtual Private Cloud): The VPC represent an isolated network where
the different components can communicate securely. It is deployed across two
availability zones to provide high availability and fault tolerance.
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Figure 5.1: Back-end infrastructure

• Subnets: A public subnet contains resources that needs to be accessible from
the Internet, such as the API GW, to handle incoming requests from external
users. The private subnet, instead, host resources that should remain isolated
by the public internet. For instance the Lambda function can only be reached
by other resources within the VPC, enhancing security.

Front-end Stack The stack includes several components to ensure a scalable,
robust and secure deployment leveraging AWS services. The application utilizes
the same VPC created in the networking layer.

• Elastic Container Service(ecs): Cluster set up in the VPC to orchestrate the
deployment and scaling of the containerized applications. It ensure the appli-
cation is always running and provide the auto-scaling functionality to adjust
the number of EC2 instances (underlying infrastructure for the running con-
tainers).

• DNS: Amazon Route 53 is used as a DNS, managing the domain name. An
SSL/TLS certificate ensure security in the connection to the application.

• Fargate Service: automatically deploys a Load Balancer to distribute traffic
between the container running the application.

The infrastructure is built using CDK, while the front-end pages employees Next.js
framework.
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Figure 5.2: Web application appearance
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Chapter 6

Conclusion And Future
Work

The work proposed a flexible configurable library designed to simplify and accel-
erate the implementation of a RAG pipeline. It deploys the necessary services
and offers the possibility to test the pipeline on a given dataset. Additionally,
it provides a functionality to evaluate the results for statistics analysis and make
informed decisions based on the quality of the generated responses.
The experiments did not definitely determine a single configuration superior to all
the others, since the results were very similar. Nevertheless, the resulting data
highlight that the solution combining the FAISS vector storage, the experimen-
tal Semantic Chunking strategy, a top-k value of 3 and the SageMaker jumpstart
LAma2 model produced the most accurate and high-performing results.

By integrating the RAG methodology, the Agent is able to reason about the
user query and search customer data to find the most relevant pieces of informa-
tion to answer completely and accurately to the question. In this way, the chatbot
is capable of satisfying user query without the intervention of a human person.

The system also exploits the Agent capability to call APIs to build the shopping
cart in a completely innovative way, allowing clients to simply type the items and
quantities they need. Additionally, it is able to perform complex reasoning tasks
such as finding the cheapest product or the one the highest protein count.
This innovation saves the user time by eliminating the need to scroll through all
the products to choose what to buy.
The chatbot can personalize user interactions, allowing to ask for suggestions such
as Create a cheap protein-rich breakfast and receiving a cart with the necessary
products. Also, the shopping assistant can provide personalized product recom-
mendations and offer the option to request a recipe, automatically adding the
necessary products to the cart.

Possible Improvements The designed project solution allows to benefit of the
technological features offered by the RAG and Agent technology. Anyway, it comes
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with some trade off and possible improvements:

• Agentic RAG: The developed system successfully retrieve the correct doc-
uments from the data source to generate the answer to the user query. This
approach avoid the time and costs needed to fine-tune a model to answer the
specific questions about a particular domain.
Nevertheless, a more recent and advanced approach can be followed. Agentic
RAG systems leverages an Agent to iterate over the retrieval of documents
from a vector storage. The iteration phase increase the quality of the context
generated and guarantee only the necessary documents to answer a query are
retrieved.
With the current RAG solution we would need to develop an additional system
to evaluate the accuracy of the generated answers. In contrast, an Agentic
RAG can assess if the documents retrieved can answer the query, decide to
retrieve more or determine the answer is not present in the context provided.

• Guardrails: In a system of this kind we need to control the chatbot answers
to be sure they align to what we expect. In particular it must not generate
text about specific topics or about something it doesn’t know.
For the project we designed a complex prompt explaining what the system
should not answer. Anyway this is not a structured solution.
The Bedrock service offer a new feature called Guardrails exactly for this
scope. It is possible to define the unwanted behaviour in terms of topics
or words, and the guardrail will intervene and possibly mask the answer.
Moreover, using the Grounding and Relevance analysis it will evaluate himself
on how much the generated answer aligns to the ground truth and to the query,
automatically discarding answers under a predefined threshold.

• Workflows: One of the greatest limitation in the current project is repre-
sented by the time required to answer. Agents are very powerful, but slow
in generating the answer. Due to the complexity of the orchestration prompt
and the time required to choose the best action to answer a query, the average
time to answer is around 10-15 seconds. Which, for some applications, is not
acceptable.
A possible alternative is represented by the design of predefined flow of ac-
tions, Workflows, which the generation model will follow. In this way it is
guaranteed that all the steps required are performed before answering the
query. Moreover, the time to answer decrease since the model just have to
choose the workflow instead of thinking about the steps to reach a result.
A possible implementation is offered by Bedrock Prompt Flows, enabling to
define the flow of operations to perform and services to call for predefined
inputs.

• Batch Inference: Another disadvantage of the RAG technology relies in the
time and costs required to answer to many questions contained in a dataset
all at once. For my experiments the costs for answering all at once all the
questions was particularly high.
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With the new Batch Inference option, Bedrock gives the possibility to decrease
the costs by operating on the group of questions in batch, instead of the single
ones.
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