
POLITECNICO DI TORINO
Master’s Degree in COMPUTER ENGINEERING

Master’s Degree Thesis

Recognizing human activities in a
privacy-preserving way

Supervisors

Prof. Alessio SACCO

Prof. Guido MARCHETTO

Candidate

Bruno PALERMO

October 2024

ii

Acknowledgements

This is an achievement that I owe to all the people who have been close to me
during these intense years, both here and up above. Family, friends, and figures
who have played a fundamental role in my growth, both personal and academic.
Special thanks to mamma Maria, papà Nunzio and my siblings, Enrico and Giulia,
who have always provided me with a safe haven, a place I am lucky enough to call
Ohana.

To my dear friends: Chiara, Giulia and Sebastiano, to whom I owe countless
stories over the years. You have been the light that has illuminated my experience
in Turin. To Marco, who like a brother has shared these five years with me, a true
right-hand man.

Thanks to Doriana, my roommate on the spectral Corso Racconigi house and
fellow compaesana, and to the guys on the fourth floor of the Borsellino with whom
I spent unforgettable Sunday lunches.

To Filippo, a Piedmontese colleague who made me discover the mountains as a
Sicilian. From him, I learnt that long slopes only precede breathtaking peaks. To
Eliza, an extraordinary person, for the sleepless nights we spent studying together
and for her constant support. A thought also goes to the guys from Trapani, sincere
friends, that despite the distance, have always encouraged me along my path and to
all the summer days we shared.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xii

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 2
1.3 Thesis structure . 2

2 Background 3
2.1 Human Activity Recognition . 3

2.1.1 HAR problem . 4
2.1.2 Problem definition . 4
2.1.3 Relaxed Problem Definition 4
2.1.4 HAR process . 5
2.1.5 Data acquisition . 5
2.1.6 Data preprocessing . 6
2.1.7 Model training . 9
2.1.8 Activity Classification . 13

2.2 Introduction to Federated Learning 14
2.2.1 Flower Framework . 14
2.2.2 gRPC . 15

2.3 Introduction to Transfer Learning 16
2.3.1 Tensorflow . 16
2.3.2 TF Lite . 17
2.3.3 Post-Training Quantization 17

3 Related Work 19
3.0.1 HAR in smartphone devices: 19

v

3.0.2 Federated Learning: . 20
3.0.3 Transfer Learning . 21
3.0.4 Federated Transfer Learning (FTL) 22

4 System 23
4.1 System Overview . 23
4.2 PHAR Android Application . 23

4.2.1 Project overview . 26
4.2.2 Real-Time Sensor Monitoring 26
4.2.3 Test Configuration . 28
4.2.4 Local Testing . 28
4.2.5 Federated Testing . 31
4.2.6 TensorFlow Library . 32

4.3 Flower Learning Server Setup . 35
4.3.1 How Flower Server and Clients Collaborate 35

5 Experimental results 38
5.1 Data acquisition . 38
5.2 Data preprocessing . 40

5.2.1 Resampling . 40
5.2.2 Normalization . 40
5.2.3 Data Segmentation . 42

5.3 Model . 45
5.3.1 Post-training quantization 48

5.4 Classifications and Evaluations . 49

6 Conclusions 59

Appendix 61

Bibliography 69

vi

List of Tables

5.1 Overview of the datasets. A: Accelerometer, G: Gyroscope, M:
Magnetometer . 39

5.2 Class distribution of samples in the MS dataset. 39
5.3 Class distribution of samples in the MA dataset. 40
5.4 Summary statistics of various attributes in the dataset before nor-

malization. 41
5.5 Summary statistics of various attributes in the dataset MA before

normalization. 42
5.6 Class-wise sample counts and percentages per partition, including

overall partition totals and their percentage of the entire MS. P:
partition . 43

5.7 Class-wise sample counts and percentages per partition, including
overall partition totals and their percentage of the entire MA. P:
partition . 44

5.8 Baseline performance metrics for the MA-MA and MS-MS datasets. 45
5.9 Resulting metrics for the combination of datasets 46
5.10 Baseline performance metrics for the MA-MA and MS-MS datasets. 50
5.11 Resulting metrics for the combination of datasets 51
5.12 Performance metrics for various dataset combinations (Samples: 600) 52
5.13 Comparison of Training Time (TT) between No-FL and FL for

Python version. 56
5.14 Comparison of Accuracy and F1-Score between No-FL and FL for

Python version. 57

vii

List of Figures

2.1 Aliasing . 7
2.2 Data segmentation . 8
2.3 Convolution layer computation . 11
2.4 Max-pooling layer computation . 12
2.5 Softmax example . 13

4.1 System overview . 24
4.2 Overview . 27
4.3 Real-Time sensor monitoring section 28
4.4 Test configuration overview . 29
4.5 Transfer Learning Overview . 29
4.6 Transfer Learning notification . 31
4.7 Federated Learning Notification . 32
4.8 Federated Learning Overview . 33
4.9 Overview of the Flower Server and client Interaction from [48] . . . 36

5.1 Activity recognition process . 38
5.2 Frequency response of the Butterworth low-pass filter. 41
5.3 Impact of Range normalization on model accuracy 43
5.4 Impact of MinMax normalization on model accuracy 43
5.5 Impact of Robust normalization on model accuracy 43
5.6 Impact of Z-Score standardization on model accuracy 43
5.7 Comparison of the effects of different normalization techniques on

model accuracy over multiple samples settings. 43
5.8 Effect of Robust normalization on model accuracy with Adam opti-

mizer . 44
5.9 Effect of Robust normalization on model accuracy with RMSProp

optimizer . 44
5.10 Effect of Z-Score standardization on model accuracy with Adam

optimizer . 44

viii

5.11 Effect of Z-Score standardization on model accuracy with RMSProp
optimizer . 44

5.12 Comparison of the effects of different normalization techniques on
model accuracy across various sample settings and hyperparameters. 44

5.13 Comparison of model performance across different sample configura-
tions and clients (Android vs. Python). 46

5.14 Effect of quantization on the model size 48
5.15 TL: Classification metrics vs. Number of Pre-trained Models for

Android version . 53
5.16 TL: Classification metrics vs. number of pre-trained models for

python version . 53
5.17 TL: Training time vs. number of pre-trained models for Android

version . 54
5.18 TL: Training time vs. number of pre-trained models for Python

version . 54
5.19 TL: Accuracy for quantization method averaged on dataset combi-

nations using pre-trained layers . 55
5.20 TL: F1-Score for quantization method averaged on dataset combina-

tions using pre-trained layers . 55
5.21 TL: Training time for quantization method averaged on dataset

combinations using pre-trained layers for Android version. 56
5.22 FTL: Comparison of accuracy for Android and Python versions . . 57
5.23 FTL: Comparison of f1-score for Android and Python versions . . . 58

1 Performance of 600 samples configuration with no pretrained layers
before FL-TL . 61

2 Performance of 2000 samples configuration with no pretrained layers
before FL-TL . 61

3 Performance of 2500 samples configuration with no pretrained layers
before FL-TL . 62

4 Performance of 3000 samples configuration with no pretrained layers 62
5 Performance of 4500 samples configuration with no pretrained layers

before FL-TL . 63
6 Non normalized attributes distribution of MotionSense dataset . . . 63
7 Normalized attributes distribution of MotionSense dataset 64
8 Non normalized attributes distribution of MobiAct dataset 64
9 Normalized attributes distribution of MobiAct dataset 65
10 The initialization file setting up the initial parameters. 65
11 The bottleneck model. 66
12 The optimizer file utilized for optimization 66
13 The inference file generating predictions. 67

ix

14 The training head model . 67
15 A customized version of the model proposed in [51]. 68

x

Acronyms

Adam
Adaptive Moment Estimation

AI
Artificial Intelligence

CNN
Convolutional Neural Network

DL
Deep Learning

FC
Fully Connected

FedAvg
Federated Averaging

FL
Federated Learning

GDPR
General Data Protection Regulation

gRPC
Google Remote Procedure Call

HAR
Human Activity Recognition

xii

MCU
Microcontroller Unit

MEMS
Micro-Electro-Mechanical Systems

ML
Machine Learning

PTQ
Post-Training Quantization

ReLU
Rectified Linear Unit

RPC
Remote Procedure Call

SGD
Stochastic Gradient Descent

TF
Tensorflow

TFLite
TensorFlow Lite

TL
Transfer Learning

xiii

Chapter 1

Introduction

1.1 Motivation

The rapid evolution of ML is transforming industries and reshaping entire research
fields. Among these advancements, HAR stands out as a promising area that
bridges human activities and ML technologies. HAR involves the identification
of physical activities such as jumping, running, or sleeping using data captured
from sensors that might be embedded in ubiquitous devices like smartphones[1].
and watches. This capability has significant applications in fields ranging from
healthcare [2, 3], and surveillance [4] to smart environments [5].

In today’s privacy-conscious world, the challenge is not only to advance in ML
to support data-driven decision-making, predictive analysis, environmental impact
assessments, and cost savings, but also to do so in a way that safeguards user
privacy and complies with regulations like the General Data Protection Regulation
(GDPR) and adheres to data minimization principle [6] for the privacy of consumer
data. Preserving privacy is essential to mitigate security risks when handling
personal and sensitive data. It is especially critical in applications like HAR, where
ensuring accurate predictions and minimize centralizing user data is necessary due
to the sensitivity of the information involved.

Moreover, computational and storage limitations, particularly in mobile and
edge devices, present an additional layer of complexity[7]. With these constraints
in mind, there is an increasing demand for efficient ML techniques that minimize
the amount of data required for training while still providing rapid and reliable
predictions.

Transfer Learning proves to be an efficient technique in this scenario. Rather
than building models from scratch, it enables the reuse of pre-trained models,
which can be used to related tasks, even when using different data sources. This
method greatly reduces the amount of training required and accelerates deployment,

1

Introduction

making it particularly well-suited for resource-constrained environments like mobile
applications in HAR by minimizing the need for extensive training data.

Federated Learning enables decentralized model training across multiple
devices without transferring personal data to a central server[8]. In a FL setting,
each device—such as a smartphone—trains the model locally on its own data,
and only the updated model weights are shared with the central server. This
ensures data privacy while still improving the global model’s performance. FL is
particularly relevant for HAR, where users’ activity data is inherently personal and
sensitive, and traditional centralized approaches would raise privacy concerns as in
the case of smart environments. [5].

1.2 Objective
This thesis explores how various techniques can converge on a device already in the
hands of billions: the smartphone. By utilizing the sensors built into smartphones,
it is possible to gather the data needed for HAR while safeguarding user privacy
and addressing the computational constraints of mobile environments.

Overcoming these challenges requires a multi-dimensional approach. First,
creating an environment that builds on prior challenges by following the steps
outlined in the background section. Next, investigating how to deploy models
on smartphones using existing tools, while understanding and addressing their
limitations. Finally, integrating privacy-preserving methods like FL ensures that
progress in accuracy and efficiency does not come at the cost of user security or
data privacy.

1.3 Thesis structure
The thesis is structured to offer a comprehensive understanding of its objectives,
beginning with an explanation of the fundamental concepts and progressing through
the implementation, the experimental tests and final results. It starts with an
analysis of the foundational background, outlining theories and techniques. This
is followed by a detailed review of the related work being conducted on the field,
highlighting critical observations and how this thesis seeks to address challenges and
drive further progress. The next section provides an overview of the experimental
system, including the setup, results, and analysis. Finally, the thesis concludes
with a reflection on the insights gained, observations, and recommendations for
future research directions.

2

Chapter 2

Background

Before introducing the solution that has been developed and tested, it is important
to clarify some of the concepts that will be mentioned. This will provide the
necessary context to comprehensively understand what will be discussed in the
next chapters. Among the concepts, the following three key areas of focus in this
thesis are outlined:

• Human Activity Recognition

• Federated Learning

• Transfer Learning

2.1 Human Activity Recognition
A noteworthy research field due its applications in numerous interdisciplinary
study area is HAR. By analyzing a sequence of observations on human actions
within certain environmental conditions, HAR aims to identify the activity being
performed.

Given its multifaceted nature, HAR can be approached through various strategies,
including logic and reasoning, probabilistic models, data mining or ML. ML, in
particular, involves discovering patterns and relationships using algorithms and
models. This approach is particularly useful for identifying subtle or complex
patterns in data, such as sensor readings associated with activities like walking,
standing, running, and sitting, which might not be immediately apparent.

Data for HAR can be collected from various sources, including social media,
video surveillance [4], or raw sensor data. This section will define the HAR problem
specifically within the context of raw sensor data, outlining the core concepts
involved.

3

Background

2.1.1 HAR problem

2.1.2 Problem definition
Activities are complex events that can be structured using a formal approach.
Consider a set S = {S0, . . . , Sk−1} of k time series, where each series represents
measurements of a particular attribute over a time interval I. The goal is to
partition this interval into consecutive segments I0, . . . , Ir−1, each labeled with the
activity being performed. These intervals must satisfy several conditions: they
must be consecutive, non-empty, each represent only one activity, and their union
must cover the entire time span I [9].

Solving this problem deterministically is infeasible due to the vast (potentially
infinite) number of attributes that can influence activity recognition. Moreover,
in real-world scenarios, assigning a single activity to each time interval is often
unrealistic. For instance, running can occur while holding a phone or breathing,
resulting in multiple overlapping attributes that describe the combination of these
activities. Accurately identifying the activity of "running" may require considering
both acceleration and location data, to give an example. However, in cases such as
running on a treadmill, location data may not provide sufficient information, since
it remains constant, while acceleration alone might struggle to distinguish running
from other activities, such as swimming. To cope with these challenges, constraints
must be relaxed and approximations introduced to account for overlapping and
ambiguous signals.

2.1.3 Relaxed Problem Definition
To address the limitations of the previous formulation, a relaxed version of the
problem is defined. The goal is to find a mapping function f : Si → A, such that
f(Si) closely approximates the actual activity performed during each interval Ii.
In this relaxed approach, it is acknowledged that during transition periods between
activities, multiple activities can overlap within a single time window. To capture
these overlapping patterns at the boundaries of time intervals, overlapping windows
can be introduced. This approach allows the model to better handle ambiguous
signals that occur at activity transitions.

Furthermore, the set of activities A is defined as a set A = {a0, . . . , an−1} of
activity labels, where each label corresponds to a distinct activity. By using this
relaxed approach, the model can more effectively deal with the inherent complexity
of human activities, reducing the error introduced by sharp transitions between
activities. The overlapping windows help mitigate the ambiguity that arises when
multiple activities occur within a single time window, providing a smoother and
more accurate representation of the activity being performed.

4

Background

2.1.4 HAR process
There are 4 steps that can be found in the HAR process:

• Data acquisition: this involves collecting raw data from sensors, such as
accelerometer, gyroscope and magnetometer. The data is the representation
of the physical movement made by the subject of the study which is associated
with the human activity.

• Data preprocessing: raw sensor data is cleaned and transformed to prepare
it for analysis. This step includes noise reduction, data filtering, normalization,
segmentation into meaningful time intervals, and feature extraction.

• Model training: this step involves teaching a ML model to recognize and
classify activities based on preprocessed data. The process includes choosing
an appropriate algorithm (e.g., decision trees, support vector machines, or
neural networks) and tuning its hyperparameters to optimize performance.

• Activity classification: after the model is trained, it is used to classify
activities based on new data. The model processes the features extracted from
incoming data and generates predictions of the activity being performed.

2.1.5 Data acquisition
Given the outline of the HAR process, it is important to introduce smartphone
sensors to highlight their advantages. These benefits will be explored in detail in
the subsequent chapters.

Smartphone sensors

Smartphones have become indispensable in our daily lives. Originally invented
in 1849 by the Italian innovator Antonio Meucci, the telephone has undergone
remarkable evolution. Within a century, phones began incorporating sensors,
transforming them into the smart, interactive devices we rely on today.

These powerful innovations have become so pervasive that by 2020, over 5 billion
phones will be in use worldwide [10]. Each device is equipped with advanced sensors
like accelerometers, gyroscopes, and GPS, which continuously monitor various user
activities, including physical movements. Their widespread usability is driven by
their affordability and availability in the market.

The sensors embedded in smartphones, such as gyroscopes and accelerometers,
are classified as transducers because they convert energy from one form to another.
Typically made using Micro-Electro-Mechanical Systems (MEMS) technology,
these miniaturized mechanical and electro-mechanical elements perform essential

5

Background

mechanical functions, enabling parts of the sensor to move and interact with the
environment. The mechanical energy detected is converted into electrical signals,
which is then processed at regular intervals. This processing involves amplification,
digitization, and transmission to the system for visualization.[11]

2.1.6 Data preprocessing
Preprocessing is a fundamental step to improve the quality of the sensor data. A
general preview of the subsequent steps is illustrated.

Resampling

To ensure comparability across data sources, it is essential that all data be sam-
pled at the same frequency. When resampling, whether through interpolation
or aggregation, a low-pass filter must be applied first. Without this, decimating
(reducing the sampling rate) a signal can introduce undesirable aliasing. Aliasing
occurs when higher frequency components are misrepresented as lower frequencies,
leading to distortion. To prevent this, decimation must always be combined with
an anti-aliasing filter. For clarity, the example 2.1 illustrates this process in more
detail.

Normalization

Sensor readings can be influenced by various factors, including sensor characteristics
and environmental conditions. To ensure consistent and comparable data, it’s
essential to first remove outliers that could skew the normalization process. After
outliers are addressed, scaling features to a common range normalizes the data,
making it more uniform across different sensors and conditions. Common normal-
ization techniques include Min-Max Scaling, and Robust Scaling or standardization
techniques like Z-Score Standardization. The choice of normalization technique
depends on factors such as the presence of outliers, the distribution of the dataset,
and the domain.[12]

The following is a list of the most commonly used normalization functions
employed in this study.

Z-Score Standardization
Z = x − µ

σ
(2.1)

where:

• x is the data point,

• µ is the mean of the dataset,

6

Background

0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Am
pl

itu
de

Original Signal

0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

Signal After Applying Alias Filter

0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

Signal After Downsampling (With Filter)

0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Am
pl

itu
de

Signal After Downsampling (Without Filter)

Figure 2.1: Aliasing

• σ is the standard deviation of the dataset.

Min-Max Normalization

x′ = x − xmin

xmax − xmin
(2.2)

where:

• x is the original data point,

• xmin is the minimum value of the dataset,

• xmax is the maximum value of the dataset.

Range Normalization

x′ = a + (x − xmin)(b − a)
xmax − xmin

(2.3)

where:

7

Background

• a and b define the desired range,

• x is the original data point,

• xmin is the minimum value of the dataset,

• xmax is the maximum value of the dataset.

Robust Normalization
x′ = x − Q1

Q3 − Q1
(2.4)

where:

• Q1 is the first quartile (25th percentile),

• Q3 is the third quartile (75th percentile),

• x is the original data point.

Data Segmentation

In the next step, the data are processed into sections known as segments. The size
of each segment is crucial, as it influences the model’s performance in subsequent
stages. Larger segments may require more computational resources and might not
effectively capture specific activities, while smaller segments may be too granular,
potentially failing to represent the activity accurately. [13, 14, 15].

A common approach for data segmentation is the sliding window technique,
where time-series data is divided into overlapping segments based on a defined
window size. In this method, the time-series data are split into segments with
overlapping regions determined by a window step size. The choice of window size
and step size depends on factors such as data availability, the need to capture
patterns at boundaries, computational cost, and redundancy.

Figure 2.2: Data segmentation

8

Background

Figure 2.2 illustrates an example where a single time-series array representing
the study of a specific attribute is segmented using a sliding window approach.
Here, a defined window size captures a particular time frame, and this window is
then applied across the data, allowing for overlapping segments.

2.1.7 Model training
In the next step, it is necessary to identify a model capable of handling sensor data
effectively. A model encapsulates the core logic required for making predictions
based on the processed data. It must be contextualized within the specific applica-
tion and requirements of the HAR system. In the following, a brief introduction
to deep learning, focusing on its relevance and application in the context of HAR.
This overview will lay the groundwork for the detailed discussions in the subsequent
and the chooses made.

Introduction to Deep Learning

ML is a broad field focused on developing systems that can learn and adapt without
explicit programming for each specific task. Central to ML are algorithms and
models, which define the methods and approaches used to enable this learning.

One area within ML is Deep Learning, which utilizes complex models known as
neural networks. These models are inspired by the structure and functioning of
the human brain, specifically its interconnected neurons.

Neuron

A neuron is a specialized cell in the brain that communicates through a combination
of chemical and electrical signals. They transmit information across synapses—gaps
between neurons—using electrical impulses called action potentials. Neurons receive
multiple inputs, process this information, and then transmit signals to other neurons
in an evolving pattern. [16]

Neural Networks

Neural networks consist of layers of interconnected nodes or neurons that process
data in a manner similar to the brain’s own processing system. With limited human
assistance, they can learn and model the relationship between input and output
data that are nonlinear and complex.

Each node in the network is linked to others with a specific weight and threshold.
If a node’s output surpasses its threshold, the node activates and sends information
to the next layer. If the output falls below the threshold, the node stays inactive,
and no information is passed to the next layer.

9

Background

A basic neural network has interconnected neurons in three layers:

• Input Layer: Receives various features from the data source, process and
categorize passing to next layers.

• Hidden Layer: Intermediate layer where data is processed through weighted
connections and activation functions. This layer perform complex transforma-
tions on the data.

• Output Layer: Produces the final predictions or classifications based on the
processed data. For instance, in a classification task with multiple categories,
the output layer might use a dense layer with several nodes (one for each
category for multi-class classification problems), often employing techniques
like one-hot encoding to represent different classes.

Neural networks have been proven to be effective in various industries where
they find application. In the medical field, they enhance image classification for
diagnostic purposes. In social networks, they refine target marketing strategies. In
finance, they aid in making precise financial predictions. In the energy sector, they
improve electrical load forecasting.

Convolutional Neural Networks

Neural networks can be classified based on how data flows from the input node
to the output node. One category is the feedforward neural network, which is the
simplest type of neural network. In a feedforward network, neurons are arranged
in layers that process data sequentially, with no feedback loops.

A CNN is a specialized form of feedforward neural network designed to automat-
ically learn features through the optimization of filters (or kernels). By employing
regularized weights and limiting connections, CNNs effectively address issues like
vanishing and exploding gradients.

In CNNs, hidden layers carry out specific mathematical operations, such as
summarization or filtering, known as convolutions. These operations are particularly
effective for tasks like classification and computer vision. CNNs utilize linear algebra
techniques, such as matrix multiplication, to detect patterns within for example
images. [17]

The primary layers in a CNN include the convolutional layer, pooling layer, and
fully connected (FC) layer. The convolutional layer is typically the first, and it
may be followed by additional convolutional or pooling layers. The final layer is a
fully connected layer.

10

Background

Convolutional Layer

The convolutional layer is the building block of a CNN. It operates by applying a
filter (or kernel) to the input data. The filter, a set of weights, slides across the
input data, performing a dot product at each position to produce an output known
as the feature map or activation map. This process is called convolution. Visually,
it can be seen as in the figure 2.3 Consider an input matrix of size 6 × 6. The

Figure 2.3: Convolution layer computation

convolutional filter, or kernel, is a smaller matrix that slides over the input matrix.
As the kernel moves over the input matrix, it performs a dot product between the
kernel and the patch of the input matrix that it currently covers. This dot product
produces a single value, which is then stored in the output matrix. The kernel
slides over the input matrix according to the stride parameter, which determines
how many steps the kernel moves each time.

Hyperparameters such as the number of filters, stride, and padding influence the
dimensions of the output data from that layer. The number of filters determines
how many kernels are applied to the input matrix, with each filter producing an
output matrix, thereby increasing the depth of the output. A higher stride means
that the kernel steps over more fields, resulting in a reduced size of the output
matrix. Padding involves adding extra fields around the border of the input matrix.

After each convolution operation, an activation function is applied. A popular
one is Rectified Linear Unit (ReLU) introducing nonlinearity into the network. The
ReLU function is defined as:

ReLU(x) = max(0, x) (2.5)

where x is the input to the activation function. The ReLU function replaces all
negative values with zero and leaves positive values unchanged.

11

Background

Pooling Layer

Pooling layers (or downsampling layers) perform dimensionality reduction, reducing
the number of parameters. To do so, an aggregation function as a filter is sweep
across the input. The two main types of pooling are max pooling, which selects the
maximum value in each receptive field, and average pooling, which calculates the
average value. Pooling helps in reducing overfitting. An example of max pooling is
listed in the figure 2.4

Figure 2.4: Max-pooling layer computation

In the example 2.4 provided, it is illustrated how performing max pooling on a
6x6 matrix with a stride of 1 affects the output dimensions, resulting in 4x4. By
examining a specific patch of the matrix, the result is determined by selecting the
maximum value within that patch.

Fully-Connected Layer

Classification takes place in the FC layer. Every node is connected to every node in
the previous layer. This layer aggregates the features extracted by previous layers
to classify the features into different categories. Typically, a softmax activation
function is used in the final FC layer to output probabilities, indicating the likelihood
of each class.

The Softmax activation function is commonly used in the final layer of a neural
network for classification tasks. It transforms the raw output scores, also known as
logits, into a probability distribution over classes. The Softmax function is defined
as:

Softmax(zi) = eziq
j ezj

(2.6)

where zi represents the score (or logit) for class i, and the denominator is the
sum of the exponentiated scores for all classes j. This normalization ensures that

12

Background

the outputs are in the range [0, 1] and sum up to 1, making them interpretable as
probabilities.

Figure 2.5: Softmax example

Figure 2.5 illustrates an example where the final layer of neurons applies the
softmax function, ultimately producing the output as a probability distribution
across the classes.

2.1.8 Activity Classification
Finally, to ensure the ML model can effectively interpret categorical activity labels,
techniques such as one-hot encoding are employed. In particular, one-hot encoding
transforms each activity into a binary vector, where each position in the vector
corresponds to a unique category. The position corresponding to the activity is set
to 1, while all other positions are set to 0.

Finally, to ensure the ML model interprets an activity defined as a categorical
activity label techniques such as one-hot encoding are used. It involves mapping
the activity into a binary vector where the position corresponding position is set to
1, and all other positions are set to 0.

For instance, in this study, four activities were considered: Walking, Running,
Sitting, and Standing. These activities are encoded as follows:

• "Walking" → [1, 0, 0, 0]

• "Running" → [0, 1, 0, 0]

• "Sitting" → [0, 0, 1, 0]

• "Standing" → [0, 0, 0, 1]

13

Background

2.2 Introduction to Federated Learning
ML models face a significant challenge: they often require vast amounts of data to
perform effectively. Centralizing this data can present issues, particularly regarding
data security and privacy. To address this, FL, also known as collaborative learning,
offers a decentralized approach.

The concept was first proposed by Google in 2016 [18]. The basic idea is
that the computation must be moved to the data. The main participants in the
technique are the clients (data owners) and the server (responsible for aggregating
and managing the model). The training process is organized into iterations called
"rounds." During each round, the server setup a global model initializing the model
parameters randomly or from saved ones, the model is sent to the connected devices,
clients nodes perform local training on their data, and send the updates back to
the server. Finally, the server aggregates these parameters using techniques like
FedAvg, which computes a weighted average of the model weights received from
clients. The weight of the average is determined by the number of samples each
client used for training, ensuring that each data point has an equal influence on
the global model.

Mathematically, it is expressed as:

θt+1 =
NØ

i=1

ni

n
θt

i (2.7)

where:

• θt+1 is the updated global model at round t + 1,

• θt
i represents the local model parameters from client i at round t,

• ni is the number of data points on client i,

• n = qN
i=1 ni is the total number of data points across all clients.

To optimize the local models, common optimization algorithms employed include
Stochastic Gradient Descent (SGD) and Adaptive Moment Estimation (Adam).

FL allows for faster convergence since it leverages diverse datasets distributed
across multiple clients.

2.2.1 Flower Framework
Flower is a notable open-source framework for FL, offering an extensive setup
and practical examples for integrating FL with various ML frameworks. It is
supported by a robust community of developers and data scientists, and includes
code examples for deployment on edge devices such as Android and iOS. [18]

14

Background

Flower is designed to be scalable, supporting large numbers of clients, and is
adaptable to different client configurations. It is client-agnostic, accommodating
various programming languages and hardware; communication-agnostic, allowing
diverse data serialization and communication methods; and privacy-agnostic, sup-
porting multiple privacy-preserving techniques. This versatility enables Flower to
incorporate new FL algorithms and adjust to the evolving ML landscape.

The architecture of Flower is divided into two main components:

• Server Side: This includes the Client Manager, which manages ClientProxy
objects and coordinates communication with clients; the FL Loop, which
oversees the FL process; and the Strategy component, which configures training
rounds, aggregates results, and supports different FL algorithms.

• Client Side: Consists of either an Edge Client Engine for real devices or a
Virtual Client Engine for simulations. Both types of clients interact with the
server through a protocol designed for model training and evaluation on local
data partitions.

Flower separates the FL process from decision-making. The FL Loop handles
the learning process, while the Strategy component makes decisions regarding FL
procedures. This separation facilitates support for a range of client platforms and
implementations, enhancing Flower’s flexibility.

For communication, Flower employs bi-directional gRPC streams. gRPC was
selected for its efficient binary serialization and its capability to handle multiple
messages without additional connection overhead. This choice streamlines com-
munication between clients and servers, minimizing manual configuration needs.
Below is a brief overview of the gRPC protocol.

2.2.2 gRPC
Remote Procedure Call (RPC) is a protocol that enables a program to execute a
procedure on a different address space (heterogeneous) as if it were a local call.

The process is abstracted so that the client code doesn’t need to worry about the
complexities of network communication. To enable procedure calls in a distributed
environment, the following must be considered:

• Server Location: Dynamically locate the server before issuing a call.

• Call Synchronization: Manage and synchronize multiple concurrent calls
on the server.

• Argument Passing: Address the challenge of passing arguments by reference
due to disjoint address spaces.

15

Background

• Partial Failures: Anticipate and handle potential network or server failures
to ensure reliability.

The client sends a request to a server process that is listening for remote calls. This
request includes the name of the procedure to be called and the parameters required.
The server executes the procedure and sends the result back to the client. Procedure
arguments and return values must be converted (marshalling/unmarshalling).

RPC can operate over various protocols such as HTTP, TCP, or UDP, which
handle the data exchange between client and server.

Among RPC frameworks, gRPC is one of the most popular. Created by Google
in 2016, gRPC is a modern, high-performance, open-source framework designed to
simplify the development of distributed systems. It enables seamless communication
between services, regardless of their underlying languages or platforms.

gRPC leverages HTTP/2 as its transport protocol, abstracting away the com-
plexities of the protocol from developers. This allows them to work with a straight-
forward API without needing to manage the details of HTTP/2. gRPC uses
Protocol Buffers (Protobuf) as its interface description language (IDL) to define
the structure of data and services. Protobuf is a language-neutral, platform-neutral,
binary serialization format that specifies the messages exchanged between gRPC
clients and servers. The Protobuf compiler generates stubs, which serve as simpli-
fied interface for client to make remote calls handling serialization of request and
deserialization of server responses.

With its efficient use of HTTP/2 and Protobufs, gRPC offers superior perfor-
mance in terms of speed and bandwidth usage compared to many other RPC
frameworks. gRPC’s support for multiple programming languages and platforms
makes it ideal for diverse environments.

gRPC is designed to handle high-performance needs in large-scale distributed sys-
tems, making it applicable for microservices architectures, cloud-native applications,
and IoT.

2.3 Introduction to Transfer Learning
2.3.1 Tensorflow
Tensorflow (TF) is an open-source platform developed by the Google Brain Team
under the Apache Open Source License, widely used for ML and DL applications.
Released in 2015, TF was initially created to advance research in machine intelligence
and deepen the understanding of deep learning. Google chose to make it open-
source to accelerate AI development, which has led to its adoption by a large and
active community of data scientists and developers. This broad support has made
TF one of the most popular and widely used ML frameworks.[19]

16

Background

TF can run on various computational platforms, including CPUs, GPUs, and
Google’s TPUs, without requiring code changes. This capability allows TF to be
deployed across a wide range of devices, from portable devices to high-end servers.

Users can build models using data flow graphs within the library, where nodes
represent mathematical operations and edges signify data represented by means of
tensors: multidimensional array. Built on top of TF, Keras is a high-level API that
makes deep learning model easier to be used. Offering smaller and more readable
code, developers option this library because it requires less cognitve load.

2.3.2 TF Lite
Tensorflow Lite (TFLite) is an open-source deep learning framework designed for
on-device inference, commonly referred to as Edge Computing. It provides both
prebuilt and customizable execution environments, enabling the deployment of ML
models on mobile, embedded, and IoT devices. TFLite is optimized for resource-
constrained edge devices and supports multiple platforms, including Android, iOS,
embedded Linux, and microcontroller units (MCUs). [20]

TFLite offers APIs that allow developers to generate and deploy optimized
TF models on mobile and embedded devices. These models are compressed and
fine-tuned to ensure high performance even on devices with limited computational
resources. Additionally, TFLite uses FlatBuffers for data serialization and access.

2.3.3 Post-Training Quantization
For small devices with limited hardware capabilities, TF Lite offers quantization
methods that reduce model size and efficiency, particularly by improving CPU and
hardware accelerator performance while minimizing the impact on accuracy. The
available options for post-training quantization are:

• No Quantization: During the conversion to TF Lite, compatibility issues
might lead to conversion errors, resulting in unexpected results. Running
the model without quantization can help verify that the original TF model’s
operators are compatible with TFLite. It also serves as a baseline for debugging
errors introduced by subsequent quantization methods. For example, if a
quantized model produces incorrect results but the floating-point model is
accurate, the issue likely stems from the quantized version of the TFLite
operators.

• Dynamic Range Quantization (DRQ): This method reduces memory
usage and increases computational speed without requiring a representa-
tive dataset for calibration. It statically quantizes only the weights from
floating-point to 8-bit integers at conversion time, achieving 8-bit precision.

17

Background

Dynamic-range operators further optimize latency by dynamically quantizing
activations based on their range, performing computations with 8-bit weights
and activations. Although the outputs are stored in floating-point format, this
method provides near-fixed-point inference latency, balancing performance
with simplicity.

• Full Integer Quantization (FIQ): This approach provides further latency
reductions, decreased memory usage, and compatibility with integer-only
hardware accelerators by quantizing all model math to integer values. Full
integer quantization requires calibration or estimation of the range (min, max)
for all floating-point tensors in the model. Since variable tensors (such as model
input, activations, and model output) need to be calibrated, the converter
requires a representative dataset. This dataset typically consists of a small
subset of few hundred samples of training or validation data.

18

Chapter 3

Related Work

Inspired by advancements in ML, a multitude of reviews and surveys have examined
HAR and associated techniques using smartphones.

3.0.1 HAR in smartphone devices:
One of the pioneering studies in HAR using smartphone sensors was conducted by
Saponas et al. [1] introducing iLearn, a system using the iPhone’s accelerometer
and Nike+iPod Sport Kit for real-time activity classification. By employing a Naïve
Bayesian Network, iLearn achieves accurate recognition without retraining data in
case of new users. However, this research necessitates active data collection from
multiple devices in the early stage, followed by merging them for model training.

Surveys over the existing work related to HAR has been conducted. For example,
Lara et al. [9] reviewed 28 HAR systems using wearable sensors, highlighting key
design considerations. The study identified challenges such as learning approach,
obtrusiveness, flexibility, recognition accuracy, and other important design issues.
From the survey and many others like [12, 21] it is possible to outline many of the
factors to consider when performing HAR.

Sampling rate, for example, Chung et al.[22] recommends using a low sampling
rate, such as 10 Hz, which can effectively recognize activities while conserving
battery life. However, other research suggests that higher sampling rates, typically
between 20 Hz and 50 Hz, are better for capturing detailed activity patterns [23,
24].

Another factor to consider is the time sliding window size. Researches made on
this matter [25, 9, 26, 27] discusses the varies number of seconds to consider. Sousa
et al. [25] conclude that the optimal window to consider depends on the specific
activity to be recognized and the attributes considered.

Gu et al. [21] emphasize the need for normalizing among data sources. While
min-max normalization is common [28, 21, 29], it can be problematic in presence of

19

Related Work

outliers, so standardization is often recommended. Proper data rescaling improves
computational efficiency and model performance [30].

Dataset selection is a crucial factor in activity recognition research, particularly
since many studies are conducted in non-laboratory settings, which can compromise
the accuracy of results [31]. Samples from few partecipants per dataset can also
hinder the generalizability of findings. When choosing a dataset, it is essential to
consider the sensors employed, the context in which the data was collected, and the
specific features included in the dataset. When dealing with imbalance datasets,
study reports that to address dataset imbalance, F1-score as performance metric,
is effective in imbalanced classification contexts [32].

Finally, sensor attributes and their placement are considerations to make in
activity recognition research [33, 34]. Utilizing a combination of sensors rather than
relying on a single sensor can enhance performance [35, 33]. The most commonly
used sensors in the literature include accelerometers, gyroscopes, and, occasionally,
magnetometers [36].

Over the past decade, common models for HAR include decision trees, Support
Vector Machines (SVM), Naive Bayes, and Gaussian Mixture Models (GMM) [25].
Recently, DL models like CNNs and Recurrent Neural Networks (RNNs) have
emerged as promising alternatives [28]. While CNNs excel in processing image
data, recent studies have also applied them to sensor data, such as accelerometer
readings, demonstrating their usage in HAR tasks [21, 29].

TL has found utility across various domains, including text sentiment classifica-
tion [37], image classification [38], and HAR [39].

3.0.2 Federated Learning:
So far, the discussion has focused on methodologies for implementing HAR without
addressing privacy concerns related to sensor data.

In the context of smartphone health applications, Majumder et al. [7] highlight
the lack of focus on privacy and security in many publications on the area of the
study, stressing the urgent need for robust data privacy-aware algorithms.

FL is a Google’s technique [8], which adheres to data minimization principles
[6], ensuring that only essential no sensitive information are collected on server.
Researches based on this techniques have been conducted.

For example, a FL-based study [40] implemented a semi-supervised framework
for segmenting COVID-19 affected regions in 3D chest CT scans from institutions
in China, Italy, and Japan, ensuring patient data privacy. Accurately identifying
anatomical structures and reducing false positives, it was generalized thanks to its
across diverse datasets, including those without COVID-19 cases.

Additionally, research [41] presents the first commercial results of FL in training
RNN language models for next-word prediction in virtual keyboards on smartphones.

20

Related Work

The study compares server-based training using stochastic gradient descent (SGD)
with on-device training utilizing the FedAvg algorithm, allowing multiple clients to
collaboratively train a shared model without disclosing their raw data. The results
demonstrate that the federated model achieves a 5% relative improvement in top-1
recall compared to the server-trained model when evaluated on client cache data,
significantly improving keyboard prediction for applications like Gboard.

Another study on HAR in smart environments compared the use of local,
centralized, and FL approaches, using RNNs. The results showed that both
federated and centralized learning achieved better performance, with FL being the
preferred option due to its enhanced privacy protection[5].

Finally, the article done by Beutel et al. [18] proposes the Flower framework
effectively supports large-scale heterogeneous FL workloads, showcasing its potential
across various applications, including healthcare, due to its strong privacy-preserving
features.

3.0.3 Transfer Learning

To address all the above issues fasting the training time on a constrained device TL
is introduced. TL reduces memory and computational requirements by minimizing
the amount of training data needed, as compared to training models from scratch
without pre-trained weights [42]. This has led researchers to focus on applying
large pre-trained models to both similar and diverse tasks, aiming for broader
adaptability and improved performance across different domains.

A study on vulnerable road user detection demonstrated that TL can enhance
accuracy while reducing training time, achieving over 98.71% accuracy with smart-
phone sensor data [43]. To consider both storage efficiency and processing speed,
the compression of CNN models is considered.

Studies have explored various techniques for model compression, demonstrating
significant improvements in performance while maintaining accuracy.

Cheng et al. [44] examine quantization techniques and demonstrate that mobile
image classification can achieve a 4-6× speedup and 15-20× compression while
maintaining comparable accuracy.

Finally, Orăs,an et al. [45] investigated post-training quantization (PTQ) tech-
niques in TensorFlow Lite to reduce model size by employing 8-bit integer repre-
sentations instead of 32-bit floating-point numbers. Their study, analyzing small,
medium, and large CNN models, highlights variations in compression ratios and
accuracy changes based on different quantization methods.

21

Related Work

3.0.4 Federated Transfer Learning (FTL)
Research combining previous main techniques represents a state-of-the-art advance-
ment in the field, as there have been limited studies conducted on this topic across
domains.

Chen et al. [46] present FedHealth, a FTL framework designed to enhance
customization based on user data and facilitate data aggregation while preserving
privacy evaluated in the contexts of HAR and Parkinson’s disease.

Wang et al. introduce FTL-CDP [47], a FTL framework designed for cross-
domain prediction in smart manufacturing. This framework allows groups of
smart devices to share knowledge through a central server making it suitable for
integration with existing smart manufacturing systems.

22

Chapter 4

System

4.1 System Overview
The architecture of the PHAR system is designed around a client-server model that
facilitates efficient and scalable FL workflows. At its core, the system consists of an
android client and a server that work together to manage and execute ML tasks.

The figure 4.1 shows the FedAvg algorithm, which enables multiple clients to
collaboratively train a shared model without revealing their raw sensor data. In this
implementation, clients maintain models that are partially pre-trained, meaning the
base model section’s weights are fixed, while the head model weights are updated
using the generalized model’s weights received from the server.

The communication between the client and the server is performed through the
use of the Flower framework. Flower is a comprehensive framework that simplifies
the complexities of FL communication. It automates much of the communication
processes required for FL, including tasks such as model updates and aggregation.
This automation is necessary for maintaining synchronization between multiple
clients and the central server.

Subsequent sections of this document will provide a detailed examination of the
specific components within this architecture and their interactions, explaining how
they contribute to the system’s functionality.

4.2 PHAR Android Application
The PHAR Client is an Android application developed for testing and evaluating
TFLite models using techniques of TL and FL.

Developed using Android Studio and implemented in Java (version 1.8). Central
to the application’s functionality is the Transfer API library (version 2.16.1), which
facilitates the ML operations necessary for both local and FL. This library provides

23

System

Figure 4.1: System overview

the tools needed to run TensorFlow Lite models.
To improve the user experience, the PHAR Client integrates a sophisticated

notification system. This feature is designed to keep users informed about the
ongoing status of tests, whether they are being conducted locally on the device or
through FL with the server. Users are continuously updated on the progress of
their tasks and are able to respond promptly to any issues that arise.

When tests demand significant storage resources, there’s a risk of causing
application crashes. To mitigate this, the notification system alerts users to
potential issues. Indeed if a crash occurs, the system automatically restarts and
resumes the tests from where it was interrupted. Users are notified if a problem
arises, indicated by the disappearance of the notification, which signals that the
testing thread has been suspended.

Managing non-garbage collected memory, allocated outside the typical heap
managed by the garbage collector, was a major challenge in developing the appli-
cation. This was particularly crucial when handling the large continuous binary
buffers needed to store samples for training and testing, which presented unique

24

System

issues. Direct buffers were advantageous in this context, as they enable faster
I/O operations by bypassing the need to copy data between the Java heap and
native memory, while also reducing the strain on garbage collection processes.
However, the trade-off is that direct memory requires careful manual management,
which introduces a higher risk of memory leaks or crashes if not managed properly.
The rapid allocation and deallocation of this memory compounded these risks,
requiring substantial effort to ensure both the notification system and the overall
memory management were combined to meet these demands without compromising
application progress.

The application requires specific permissions to access device storage and data.
These permissions are necessary for several functions, including running background
threads, posting notifications, enable the FL connection, and storing test results in
CSV format. The permissions requested include:

• Access to network state (ACCESS_NETWORK_STATE) to check the status of
network connectivity.

• Foreground service (FOREGROUND_SERVICE) for running tasks in the fore-
ground, even when the app is not actively used.

• Receive boot completed (RECEIVE_BOOT_COMPLETED) to ensure the app
can start services after the device restarts. THis ensure that the device can
restart testing in case of any crash.

• Retrieve tasks (RETRIEVE_TASKS) to access information about ongoing tasks.

• Ignore battery optimizations (REQUEST_IGNORE_BATTERY_OPTIMIZATIONS)
to prevent the app from being affected by system battery-saving features.

• Internet access (INTERNET) to enable network communication.

• Read and write external storage (READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE, MANAGE_EXTERNAL_STORAGE) for accessing and man-
aging files on external storage. These are necessary to write, read the csv files
stored in the device.

• Data sync for foreground services (FOREGROUND_SERVICE_DATA_SYNC) to
designate that the ‘FlowerWorker‘ operates as a foreground service specifically
for data synchronization tasks. This allows the service to transfer data between
a device and the cloud over a network.

• Post notifications (POST_NOTIFICATIONS) for sending notifications to the
user. These include both the local testing and federated testing.

25

System

• Bind job service (BIND_JOB_SERVICE) to allow the ‘FlowerWorker‘ class
to schedule and manage background tasks using the Job Scheduler. This
permission ensures that only authorized components can bind to and execute
jobs through the service, enabling management of long-running tasks such as
server communication and data processing while conserving system resources.

4.2.1 Project overview
The PHAR Client is customizable to run with loaded pre-trained models, with
options for quantization, and percentage of non-trainable layers. In the current
version, the models consist of five trainable layers, and users can load the model
with the specific number of trainable layers, ranging from 0% (fully trainable)
to 83% (all layers pre-trained except for the final dense layer used for activity
classification). Utilizing pre-existing knowledge from the pre-trained models and
adapting them to new datasets decreases the chances of overfitting or consuming
excessive computational power.

PHAR Client’s features include:

• Real-Time Sensor Monitoring: Provides live monitoring of sensor data
collected from the user’s device. This feature ensures that the sensor data is
valid and helps to identify any potential connectivity or accuracy issues before
model training and evaluation begin.

• Pretrained Model and Dataset Selection: Users can choose from various
pre-loaded models and datasets, with the option to work with quantized.
Additionally, users can configure the number of trainable layers to suit specific
testing scenarios.

• Local Training: In addition to supporting pre-trained models, the PHAR
Client allows for local training and evaluation using datasets stored on the
device. Users can adjust the trainability of model layers.

• Federated Learning Testing: The client supports FL, enabling collaborative
model training across multiple devices without the need for centralized data
sharing. This is especially useful for privacy-sensitive applications where data
cannot be directly transferred between devices.

The application starts with a general description of the project.

4.2.2 Real-Time Sensor Monitoring
The Real-Time Sensor Monitoring feature provides a dynamic display of sensor
data, enabling users to verify sensor readings as they are collected. This feature is

26

System

Figure 4.2: Overview

useful to ensuring that the application effectively captures real-time data, reflecting
the actual sensor inputs.

Upon application startup, a ‘SensorManager‘ instance registers listeners for
the available sensors, including the gyroscope, accelerometer, magnetometer, and
rotation vector sensors. The data from these sensors is stored in a matrix designed
to hold up to 50 records, each containing multidimensional sensor inputs. This
matrix enable tracking and recording the most recent sensor data.

As the sensors generate data, the ‘SensorHandler‘ class processes this information
in real time. The data is continuously updated in the matrix, and once the matrix
reaches its capacity of 50 records, the data is saved to ‘readyRecord‘. This record
can then be utilized for real-time training or analysis.

This feature ensures that sensor data is monitored, managed, and displayed
in real time, providing accurate and timely feedback on sensor status and data
collection.

27

System

Figure 4.3: Real-Time sensor monitoring section

4.2.3 Test Configuration
This feature enables users to select from the available ML models within the ap-
plication. By recursively scanning the model folder, it displays a nested directory
structure that reflects the path to each model, along with its associated config-
urations. Current options include model quantization and the number of frozen
pre-trained layers.

Users can also choose between different datasets for training and testing. The
available datasets are MotionSense (MS) and MobiAct (MA), with the first dataset
partition selected by default. Additionally, partitions can be selected for FL setup.

4.2.4 Local Testing
This section details the use of TL without FL. The current implementation provides
a Train and Test button, which allows the system to test all available model and
dataset combinations. To enhance the user experience, a real-time notification
system updates users on the status of ongoing tests.

When the “Train and Test” button is selected, the system initiates a structured
training and evaluation process. This is managed by the TransferLearningLocal
class and the FlowerClient class. The process begins by iteratively selecting
various parameters, such as the model type, total number of samples, and dataset
combinations. The models differ in their quantization levels and layer configurations,
offering a wide range of configurations for testing. The datasets considered include
options such as MS and MA. The selected samples are divided into two parts: 80%

28

System

Figure 4.4: Test configuration overview

Figure 4.5: Transfer Learning Overview

of the data is allocated for training, while the remaining 20% is used for evaluation.
When using a single dataset, this 80-20 split is maintained. In scenarios involving
two datasets, 80% of the data is taken from the first dataset for training, while the
remaining 20% is sourced from the second dataset for evaluation.

29

System

The datasets used have already undergone pre-processing. This includes nor-
malization, the removal of outliers, and the synchronization of sampling fre-
quencies, ensuring that the data is ready for the next stage. Each dataset is
split into four portions, simplifying data selection for federated learning. The
NormalizedPreprocessing class handles the extraction of samples and splits them
into time-series sequences. Subsequently, these sequences are divided into smaller
segments, referred to as "sections," which serve as input data for the model.

The method createTimeSeries() constructs time-series data by iterating over
different activities (e.g., walking, jogging) and reading data from corresponding
CSV files. The data is then structured into sequences with labels indicating the
activity. Each sequence is comprised of multiple features, such as roll, pitch, yaw,
and rotation rates, forming the input data for training and evaluation.

The timeSeriesToSection() method refines the time-series data by dividing it
into smaller windows using a sliding window technique. Each window, or segment,
contains a fixed number of samples (e.g., 50), and the sliding window moves with a
predetermined step size (e.g., 10 samples), creating overlapping segments. This
method is crucial in capturing both short-term and long-term temporal dependencies
in the data. The resulting sections are structured so that 80% are used for training,
while the remaining 20% are reserved for evaluation.

Each segment is shaped as a 9 × 50 matrix, representing 50 time steps for
each of the 9 sensor dimensions. This ensures that for every sensor dimension, 50
consecutive records are preserved per segment, providing a comprehensive view of
temporal patterns in the input data.

The TransferLearningLocal class manages the workflow, including the creation
of notifications to indicate progress. It initializes a FlowerClient instance with
the appropriate model path, sets up the model, and proceeds with training and
evaluation.

The FlowerClient class is integral to this process. It acts as a wrapper around
a federated learning model managed by the TransferLearningModelWrapper.
This class handles model parameters and the training process. Specifically, the
FlowerClient updates the model parameters, performs training, and evaluates
performance. Training is conducted over a specified number of epochs, during
which the model’s weights are adjusted based on the provided data. Evaluation is
performed by assessing the model’s performance on the testing set, with metrics
such as accuracy, loss, and F1-score being computed and recorded.

Once training and evaluation are complete, the results are saved in a CSV file
for further analysis. This file includes metrics such as accuracy, loss, F1-score,
and training time, providing a view of the model’s performance across different
configurations.

Although the real-time training and evaluation buttons are operative, they are
not yet fully finalized. As a result, when users interact with these features, a toast

30

System

Figure 4.6: Transfer Learning notification

notification appears, displaying the message "coming soon". This indicates that
while initial testing has been completed successfully, further refinements are still in
progress.

The Real-time Train button, when clicked, presents an Alert Dialog that lists
the currently available activities. Users, by selecting one of the displayed activities,
can initiate the recording process. The system waits for the sensor data matrix
to update, after which it moves the data to the model input. Once the user is
satisfied with the training for the selected activity, they can terminate the session
by pressing the easily recognizable stop button.

On the other hand, the Real-time Test button provides a different function.
When clicked, it displays an Alert Dialog that predicts the most probable activity
the user is engaged in, along with the corresponding accuracy. This gives the user
immediate feedback on the model’s performance based on the current sensor inputs.

4.2.5 Federated Testing
At the bottom of the application page, users have can configure and manage settings
pertinent to FL tasks. Users can enter the server’s IP address, port number, dataset
partition, and model details. After inputting this information, clicking the Start
Client button initiates a validation process to ensure the accuracy of these settings.
Upon successful validation, the client establishes a gRPC connection with the server,
which then confirms the connection.

Once the connection is established, the Flower worker begins its operation by
opening a gRPC channel to receive messages from the server. This operation is
handled by a dedicated executor thread, which prevents the main thread from
being blocked and ensures that the application continues to function smoothly.

Additionally, a notification like the one in Figure 4.7 is displayed. It indicates
that FL is currently running. The user has the option to cancel FL if desired.

The FlowerWorker class plays a central role in managing the FL tasks. It facili-
tates communication with the server through gRPC, handling various messages that
may include requests for model parameters, training instructions, and evaluation
commands. The class’s connect() method establishes the gRPC connection with

31

System

Figure 4.7: Federated Learning Notification

the server using the provided IP address and port. This connection is crucial for
ongoing communication throughout the FL process.

When messages are received from the server, the FlowerWorker processes them
appropriately. For instance, the methods handleFitIns() and handleEvalIns()
are responsible for managing the fitting and evaluation processes. These methods
parse the received data, perform the necessary computations, and prepare responses
to send back to the server.

To maintain application responsiveness, the FlowerWorker utilizes an executor
thread to handle gRPC communication. This setup ensures that the main thread
remains unblocked. Additionally, the worker is configured to run in the foreground to
prevent the system from terminating it during long-running tasks. This is achieved
by creating a persistent notification through the createForegroundInfo() method.

Robust logging mechanisms is also integrated into the worker. If an error occurs
or if the task is canceled, detailed logs are recorded in the "FlowerResults.txt" file.
These logs capture the status and outcomes of operations.

Users can disconnect from the network at any time by clicking the Stop Client
button. This action activates the worker’s onStopped() method, which sets a
cancellation flag, notifies observers that the worker has been stopped, and sends a
cancellation message via gRPC. As a result, an error is raised, indicating that the
client has left the network.

Furthermore, a Clear Logs button allows users to remove any unnecessary logs
related to the connection history. These logs, which are stored in the "Flower-
Results.txt" file, include details about the connection status and FL operations,
complete with timestamps for each action. They also document training and
evaluation metrics such as accuracy, loss, and training time.

4.2.6 TensorFlow Library
Once the Flower worker is initialized, it sets up the necessary components for the
transfer learning model. This involves loading various models: the initialization
model, bottleneck model, training head model, inference model, and optimizer
model. Each model serves a specific purpose in the training and inference process.

To process dataset samples, the TransferLearningModel class converts the

32

System

Figure 4.8: Federated Learning Overview

input data into a format suitable for the model. This conversion process is handled
in several steps:

• Conversion to DirectByteBuffer: Input data, initially represented as a 2D
float array (float[][]), is transformed into a DirectByteBuffer. Each ele-
ment of the array is converted to bytes and placed into the DirectByteBuffer.

• Bottleneck Generation: The DirectByteBuffer containing the input data
is passed through the base model, where the bottleneck representation is
generated. The output of the base model is referred as the bottleneck.

• Sample Storage: The generated bottleneck, along with the associated activity
label, is stored in either the training or testing samples list, depending on the
sample’s purpose. This ensures proper categorization for model evaluation
and training.

During training, the model updates its parameters using the stored training sam-
ples. It processes data in batches, computes gradients, and performs optimization
steps to enhance performance. Testing involves evaluating the model on the test
samples to measure accuracy and other performance metrics, comparing predictions
with activity labels to assess effectiveness.

33

System

The TransferLearningModel class is central to the TL process, managing the
lifecycle of the model, including initialization, training, inference, and parameter
updates.

The LiteBottleneckModel class generates bottleneck representations from
input data using a TensorFlow Lite model. It processes data to extract feature
vectors efficiently.

The LiteInferenceModel class manages the inference process, utilizing bottle-
neck representations and model parameters to produce predictions.

The LiteTrainHeadModel class focuses on the training head of the model,
updating parameters based on computed gradients.

The LiteOptimizerModel class handles optimization, updating the optimizer
state and applying algorithms to enhance model performance.

The LiteInitializeModel class sets initial parameter values for the model
before training begins.

To generate these files being loaded in the android application it is necessary to
use a TFLite convertor. It consists of generation of two sequential neural network
inserting the layers respectively for the base model and the head model. In the
first, pre-trained weights generated from the entire MS dataset, avoiding random
initialization and providing a solid foundation for training. The base model is saved
in TensorFlow’s SavedModel format, necessary for conversion to TensorFlow Lite.
The head model, responsible for classification and on-device training, is defined to
process from the base model.

The final step involves using the TFLiteTransferConverter class to convert the
combined base and head models into TensorFlow Lite format. This class manages
the conversion, generating models for initialization, bottleneck processing, training,
and inference. It also offers options for quantization to optimize the model. The
resulting TensorFlow Lite model is then saved.

The figures below show examples of the generated converted files. In particular
the one shown is a CNN model that uses representative dataset quantization and
Adam optimization with a learning rate of 0.0001. The first three trainable layers
are frozen.

• Bottleneck Model: Figure 11 shows the compressed feature vector represen-
tation of the input data.

• Training Head Model: Figure 14 illustrates the model’s head used for
classification tasks.

• Optimizer Model: Figure 12 depicts the model’s optimizer used for updating
parameters.

• Initialization Model: Figure 10 demonstrates the initial setup of model
parameters.

34

System

• Inference Model: Figure 13 shows the model used for generating predictions.

4.3 Flower Learning Server Setup
The server configuration begins by defining the training and testing datasets,
selecting the model, and determining the number of sections for the current trial.
After loading the model and freezing its base weights, the server is initialized
with the FedAvgAndroid strategy, a customized version of the Federated Averaging
(FedAvg) algorithm. This strategy coordinates the distributed learning process by
handling client sampling, averaging local updates to refine the global model, and
optionally including custom functions for configuring training and evaluation.

Additionally, the client setup involves initializing clients with the model, datasets,
and configuration settings like the maximum number of sections to use. The server
also tracks cumulative training time, updating it at each round by collecting the
maximum training time from clients and adding it to the cumulative total.

The strategy sets parameters such as the minimum number of clients required
for training and evaluation, the fraction of clients involved, and acceptable failure
flag. It also defines an evaluation phase, where the global model is assessed using
metrics like loss, accuracy, and F1 score, with results saved in CSV format after the
final round. The server aggregates and updates the global model by reconstructing
weights based on updates from clients.

Performance evaluation occurs after each round of training, with metrics aggre-
gated to provide insights into the model’s effectiveness. This ongoing evaluation
guides adjustments for subsequent rounds, ensuring progress in the FL process.

4.3.1 How Flower Server and Clients Collaborate
The interaction between the Flower server and its clients follows a well-defined
sequence, coordinating federated learning steps between the server and participating
clients. The following steps outline the process of how the Flower framework
manages the training and evaluation of models in a federated setting:

1. Initialization of Model Parameters: The process begins with the
Flower server obtaining the initial model parameters. These parameters, typically
representing the global model, are initialized using the initialize_parameters
method. The initialized parameters are then sent to the clients, enabling them to
begin the federated training process.

2. Configuration of Federated Training: Once the initial model parameters
are shared with the clients, the server invokes the configure_fit function to
configure the next round of federated training. The configure_fit method
generates a list of client proxies and their respective FitIns (Fit Instructions),

35

System

Figure 4.9: Overview of the Flower Server and client Interaction from [48]

which consist of the current global model parameters and configuration settings.
These instructions are sent to the selected clients.

3. Local Training on Clients: Each participating client receives the FitIns

36

System

and proceeds to perform local training on its private dataset. The clients complete
the training process and return the results, encapsulated in FitRes (Fit Results),
to the Flower server.

4. Aggregation of Model Parameters: The server then aggregates the
locally updated model parameters received from the clients using a weighted
averaging approach. This aggregation process generates a new set of global model
parameters, reflecting the contributions of each client. The aggregated parameters
are sent back to the clients, completing one round of FL.

5. Centralized Evaluation: The customized Flower server perform centralized
evaluation using the updated global model. The server can evaluate the model’s
performance using a validation dataset partition available to the server.

6. Configuration of Federated Evaluation: Next, the server initiates the
evaluation phase by invoking the configure_evaluate method. This function
generates evaluation instructions (EvaluateIns) for the clients, containing the
global model parameters and any necessary configuration. The instructions are
sent to the selected clients.

7. Local Evaluation on Clients: The clients evaluate the global model
using their local validation data and return the results in the form of EvaluateRes
(Evaluation Results).

8. Aggregation of Evaluation Results: The server aggregates the evaluation
results received from the clients, allowing it to assess the global model’s performance
based on the client data. The aggregated evaluation results are used to determine
the effectiveness of the model after the current round of FL.

9. Iterative Rounds of Training: This process repeats iteratively, with the
server between rounds of federated training and evaluation until the pre-configured
number of rounds is completed.

37

Chapter 5

Experimental results

In this section, we delve into the core analysis conducted for the thesis, outlining
the actions taken, the results obtained, and the insights gained from the tests
performed. The results were derived from a series of experiments designed to
validate initial assumptions, with each test serving to confirm or challenge the
hypotheses put forward.

Figure 5.1: Activity recognition process

The figure 5.1 shows the process of activity classification using sensor data and
a deep neural network. It involves data acquisition, preprocessing, model training,
and classification. The following sections highlight the results and process involved
during this thesis research.

5.1 Data acquisition
To collect data for the experimental results, a review of widely used datasets was
conducted, with a focus on those utilizing sensors commonly found in smartphones.
Specifically, the combination of accelerometers, gyroscopes, and magnetometers was
considered because capable to classify activities of daily living with high accuracy

38

Experimental results

(over 91%) as studies shows [25]. The accelerometer used to measure the 3D
acceleration of the phone, the gyroscope to measure the 3D angular velocity and
the magnetometer.

To achieve this, the Android Studio environment was initially explored to
understand the main components and how to manage sensor interactions and
activities. According to the Android documentation [49], these sensors have been
used together since Android 2.3 (API Level 9), released in 2010, and are now
supported by over 99.8% of Android devices [50].

This approach was selected with the aim of applying real-time sensor data from
mobile devices in future applications. Based on this objective, the MS and MA
datasets were chosen for analysis. Table 5.1 highlights key aspects of these datasets,
focusing on the portions relevant to this research.

Dataset Records Classes Participants Sampling Fre-
quency

Sensors

MS 1,412,865 6 24 50 Hz A, G, M
MA 16,756,325 20 67 200 Hz A, G

Table 5.1: Overview of the datasets. A: Accelerometer, G: Gyroscope, M:
Magnetometer

MS: Data were collected using an iPhone 6s placed in the participant’s front
pocket, utilizing the accelerometer and gyroscope at a 50 Hz sampling rate. During
the experiment, participants wore flat shoes and placed the smartphone in their
front trouser pocket. The dataset comprises trials from 24 participants performing
various activities, including walking, jogging, sitting, standing, and upstairs and
downstairs . Data collection was supervised, with participants actively labeling the
activities.

Class Samples Percentage
JOG 134,231 9.50%
SIT 338,778 23.98%
STD 306,427 21.69%
WLK 344,288 24.37%
Total 1,123,724 100.00%

Table 5.2: Class distribution of samples in the MS dataset.

MA: Data were collected using a Samsung Galaxy S3 smartphone equipped
with the LSM330DLC inertial module, which includes accelerometer, gyroscope,
and orientation sensors. Sampling was performed at the highest possible rate using
the "SENSOR_DELAY_FASTEST" setting (200 Hz). The smartphone was placed
in the participant’s trouser pocket, with data recorded freely, without any fixed
orientation, to simulate everyday use. The dataset includes recordings from 57
participants performing activities including walking, jogging, upstairs, downstairs,

39

Experimental results

sitting, standing. Data collection was supervised.
For this analysis, the selected activities are from the ambulation group: sitting,

standing, walking, and running. The chosen attributes include acceleration (both
linear and gravitational), the rotation rate, and the smartphone’s orientation
(attitude).

Class Samples Percentage
JOG 362,039 4.30%
SIT 226,492 2.65%
STD 3,592,445 42.48%
WAL 3,650,240 50.57%
Total 7,831,216 100.00%

Table 5.3: Class distribution of samples in the MA dataset.

The class distribution is imbalanced, making the F1-Score a useful metric in
the last section[32]. Indeed, the F1 score is a useful metric for measuring the
performance of classification models when you have imbalanced data because it
takes into account the types of errors—false positives and false negatives—and not
just the number of predictions that were incorrect.

5.2 Data preprocessing

5.2.1 Resampling
Studies have shown that adopting a sampling rate lower than 200Hz not only
increases the sparsity of activity data but also effectively captures abrupt motions
characteristic of primary activities like the previously discussed. The optimal range
for sampling such activities is between 20Hz and 50Hz [27, 24]. Consequently,
reducing the sampling frequency of the MA dataset is essential, not only to minimize
data storage but also to ensure compatibility with other datasets used in this study.

To achieve this, a fourth-order Butterworth filter was employed to ensure
a flat frequency response within the passband, preventing aliasing during the
downsampling process. The resulting filter response 5.2 is shown below. After
applying the filter, decimation was carried out as part of the down-sampling process
by selecting 1 out of every 4 consecutive samples.

5.2.2 Normalization
After the resampling phase, it is necessary to rearrange the range of values. Normal-
ization options were considered, taking into account factors such as the presence
of outliers and the variance from the mean. A careful examination of the dataset

40

Experimental results

0 20 40 60 80 100
Frequency [Hz]

200

150

100

50

0

M
ag

ni
tu

de
 [d

B]

Butterworth Low-Pass Filter Frequency Response

Frequency Response
-3 dB Cutoff
Cutoff Frequency (50 Hz)

Figure 5.2: Frequency response of the Butterworth low-pass filter.

samples before normalizing the attributes revealed a Gaussian distribution in most
of the attributes. In this context, applying Z-Score standardization could effectively
remove outliers within the range of [-3, 3].

To give more insights of the value observed in the figures ?? ??, the tables 5.4
intend to summarize the attributes statistics for the MS dataset and 5.5 intend to
summarize the attributes statistics for MA one.

Attribute Mean Std Median Min Max
attituderoll -0.18 1.57 0.12 -3.14 3.14
attitudepitch -0.99 0.49 -1.18 -1.57 1.57
attitudeyaw -0.15 1.54 -0.14 -3.14 3.14

rotationRatex 0.01 1.29 -0.00 -17.37 10.47
rotationRatey 0.01 1.23 0.00 -18.41 17.54
rotationRatez 0.01 0.81 0.00 -12.15 11.44
accelerationx 0.04 0.45 0.02 -6.53 8.11
accelerationy 0.80 0.63 0.88 -4.83 8.00
accelerationz -0.10 0.52 -0.04 -7.84 7.88

Table 5.4: Summary statistics of various attributes in the dataset before normal-
ization.

The rationale behind this step is to prevent outliers from distorting model
training, which could otherwise impact performance. Although removing these
outliers might result in excluding some samples associated with highly intensive
activities, such as running, efforts were made to minimize class imbalance. By
defining a specific range, the aim is to limit the influence of outliers and focus on
a more representative dataset, thus improving the quality and reliability of next
model quantization and training.

41

Experimental results

Attribute Mean Std Median Min Max
attitudeazimuth 181.54 107.05 192.62 -89.80 360.00
attitudepitch -71.42 57.01 -86.54 -180.00 180.00
attituderoll 1.37 16.81 0.94 -88.14 89.95

accx 0.18 3.25 0.21 -19.44 19.53
accy 7.60 6.16 9.63 -19.56 19.59
accz 0.02 2.77 -0.22 -18.62 18.51

gyrox -0.02 1.03 -0.02 -10.00 9.97
gyroy -0.01 1.01 0.00 -10.01 10.01
gyroz 0.01 0.63 0.01 -9.99 9.94

Table 5.5: Summary statistics of various attributes in the dataset MA before
normalization.

To further validate this choice, evaluating four normalization functions would
necessitate extensive testing of the normalized datasets across all combinations
of hyper-parameter settings. For practice, it was decided to experiment with the
Adam optimizer using a learning rate of 0.0001 and comparing the performance of
the primary normalization functions as in figure 5.7. The figures show the results
considering multiple partitions such as 2000, 2500, 3000, 4500 and 5000 samples,
further discussion will be conducted on the following section reasoning them.

The results indicate that both Robust normalization and Z-Score standardization
achieve the highest training accuracy. While Robust normalization shows a smoother
curve with minimal variation across epochs, both methods perform similarly well
on the testing dataset. To validate these findings, the two methods were further
compared using the RMSProp and Adam optimizers, as shown in the figures 5.8,
5.9, 5.10, 5.11 for a detailed comparison.

In conclusion, Z-Score standardization was selected based on the outcomes of
the previous analysis and discussion.

5.2.3 Data Segmentation
Dataset partitioning

This subsection addresses the next critical step required for both the Python and
Android implementations. Prior to this, it is important to note that the thesis
aims to employ FL in an environment with limited data storage. To accommodate
this constraint and support the intended analysis, the data was divided into
four partitions per dataset. The 5.6 intends to show the MS distribution after
normalization and having removed the outliters. P: partition

The 5.7 intends to show the MA distribution after normalization and having
removed the outliers.

42

Experimental results

0 2 4 6 8
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

0.28
0.32

0.35
0.37

0.41
0.46

0.51
0.54

0.59
0.63

0.28 0.30
0.32

0.35

0.42

0.50

0.56

0.61

0.67
0.72

0.28
0.30

0.33

0.40

0.46
0.49

0.53

0.58

0.64

0.70

0.28

0.34

0.47

0.58

0.67

0.76

0.83
0.86

0.88 0.89

0.29

0.37

0.53

0.62

0.71

0.79
0.84

0.86 0.88 0.892000 Samples
2500 Samples
3000 Samples
4500 Samples
5000 Samples

Configuration: Optimizer: Adam, Learning Rate: 0.0001, No PreTrained Layers, Normalization Function:
Range, Testing dataset MotionSense, Training dataset MobiAct

Figure 5.3: Impact of Range nor-
malization on model accuracy

0 2 4 6 8
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

0.28
0.30

0.33
0.36

0.39
0.43

0.49
0.54

0.58
0.62

0.28
0.30 0.32

0.35
0.40

0.46

0.51
0.56

0.62
0.67

0.28
0.30

0.33

0.40

0.46
0.51

0.55

0.61

0.68

0.73

0.29

0.34

0.46

0.57

0.64

0.72

0.79
0.84

0.87 0.88

0.29

0.36

0.52

0.61

0.70

0.76

0.82
0.85

0.87 0.89
2000 Samples
2500 Samples
3000 Samples
4500 Samples
5000 Samples

Configuration: Optimizer: Adam, Learning Rate: 0.0001, No PreTrained Layers, Normalization Function:
MinMax, Testing dataset MotionSense, Training dataset MobiAct

Figure 5.4: Impact of MinMax nor-
malization on model accuracy

0 2 4 6 8
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0.43

0.68

0.80

0.85
0.89

0.91
0.93 0.94 0.95 0.96

0.44

0.74

0.81
0.85

0.89
0.91 0.92 0.94 0.94 0.95

0.50

0.77

0.83

0.88
0.91

0.93 0.94 0.95 0.96 0.96

0.57

0.81

0.88
0.92

0.94 0.95 0.96 0.96 0.97 0.97

0.59

0.82

0.90
0.93 0.95 0.96 0.96 0.97 0.97 0.972000 Samples

2500 Samples
3000 Samples
4500 Samples
5000 Samples

Configuration: Optimizer: Adam, Learning Rate: 0.0001, No PreTrained Layers, Normalization Function:
Robust, Testing dataset MotionSense, Training dataset MobiAct

Figure 5.5: Impact of Robust nor-
malization on model accuracy

0 2 4 6 8
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

0.52

0.68

0.73
0.75

0.77 0.77 0.77 0.78 0.78 0.78

0.54

0.69

0.74
0.76 0.77 0.77 0.78 0.78 0.78 0.78

0.56

0.70

0.74
0.75 0.77 0.77 0.78 0.78 0.78 0.79

0.59

0.72
0.75 0.76 0.77 0.78 0.79 0.80 0.80 0.81

0.61

0.74
0.76

0.78 0.78 0.79 0.80 0.80 0.81 0.81

2000 Samples
2500 Samples
3000 Samples
4500 Samples
5000 Samples

Configuration: Optimizer: Adam, Learning Rate: 0.0001, No PreTrained Layers, Normalization Function:
ZScore, Testing dataset MotionSense, Training dataset MobiAct

Figure 5.6: Impact of Z-Score stan-
dardization on model accuracy

Figure 5.7: Comparison of the effects of different normalization techniques on
model accuracy over multiple samples settings.

Table 5.6: Class-wise sample counts and percentages per partition, including
overall partition totals and their percentage of the entire MS. P: partition

P JOG SIT STD WLK % of Dataset
P 1 20,709 84,693 75,804 78,388 25.00%
P 2 20,709 84,693 75,804 78,388 25.00%
P 3 20,709 84,693 75,803 78,388 25.00%
P 4 20,708 84,693 75,803 78,388 25.00%

Total 82,835 (10.22%) 338,772 (41.78%) 303,214 (37.40%) 313,552 (38.61%) 100.00%

Definition of the data segmentation

On the client side, data is accessed by partition, with a limit set on the maximum
number of rows retrieved to minimize memory usage, particularly on Android
devices. Despite this precaution, the application experienced significant memory
allocation in a short period, leading to frequent activation of the garbage collector,

43

Experimental results

0.0001 0.001 0.01
Learning Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
M

ea
n

Ac
cu

ra
cy

0.74

0.46

0.53

0.72

0.49

0.630.63

0.52
0.55

0.71 0.71
0.740.73

0.67 0.67

Samples
2000
2500
3000
4500
5000

Configuration: Optimizer: adam, No PreTrained Layers, Normalization Function: Robust, Testing dataset
MotionSense, Training dataset MobiAct

Figure 5.8: Effect of Robust normal-
ization on model accuracy with Adam
optimizer

0.0001 0.001 0.01
Learning Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
Ac

cu
ra

cy

0.70

0.54 0.54

0.67

0.49
0.52

0.60

0.41

0.54

0.71

0.64
0.67

0.71

0.65 0.65

Samples
2000
2500
3000
4500
5000

Configuration: Optimizer: rmsprop, No PreTrained Layers, Normalization Function: Robust, Testing dataset
MotionSense, Training dataset MobiAct

Figure 5.9: Effect of Robust nor-
malization on model accuracy with
RMSProp optimizer

0.0001 0.001 0.01
Learning Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
Ac

cu
ra

cy

0.66
0.62

0.68

0.60 0.62
0.65

0.61
0.56

0.67
0.70 0.69

0.61

0.73 0.74

0.59

Samples
2000
2500
3000
4500
5000

Configuration: Optimizer: adam, No PreTrained Layers, Normalization Function: ZScore, Testing dataset
MotionSense, Training dataset MobiAct

Figure 5.10: Effect of Z-Score stan-
dardization on model accuracy with
Adam optimizer

0.0001 0.001 0.01
Learning Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
Ac

cu
ra

cy

0.64 0.63 0.63
0.66

0.63 0.610.62

0.56
0.61

0.73
0.69

0.67

0.74
0.77

0.71

Samples
2000
2500
3000
4500
5000

Configuration: Optimizer: rmsprop, No PreTrained Layers, Normalization Function: ZScore, Testing dataset
MotionSense, Training dataset MobiAct

Figure 5.11: Effect of Z-Score stan-
dardization on model accuracy with
RMSProp optimizer

Figure 5.12: Comparison of the effects of different normalization techniques on
model accuracy across various sample settings and hyperparameters.

Table 5.7: Class-wise sample counts and percentages per partition, including
overall partition totals and their percentage of the entire MA. P: partition

P JOG SIT STD WLK % of Dataset
P 1 12,294 6,509 223,081 181,543 25.00%
P 2 12,293 6,509 223,081 181,543 25.00%
P 3 12,293 6,509 223,081 181,543 25.00%
P 4 12,293 6,509 223,080 181,543 25.00%

Total 49,173 (2.90%) 26,036 (1.54%) 892,323 (52.68%) 726,172 (42.87%) 100.00%

which negatively impacted performance.
Subsequently, the rows containing the attributes were combined with a Boolean

vector representing activity labels, using a one-hot encoding scheme where a true
value corresponds to the relevant row. The attributes of the time-series data were

44

Experimental results

then organized into sliding window vectors with with an overlap of 20% (a step
size of 10). This configuration created a sliding window of 50 samples (equivalent
to one second at 50 Hz) , continuing until the maximum number of sections was
retrieved and ready for input into the model. To prevent class imbalance, data
retrieval was halted once an equal number of instances from each class were stored,
despite the significant class imbalance present in the original dataset.

5.3 Model
The model chosen is a customized version of the one proposed in [51]. The model
showed in the figure 15 is a sequential CNN. The architecture consists of several
convolutional layers, max-pooling layers, dropout layers, and FC layers to process
the input data, followed by an activation function for classification. The input to
the network is a tensor of shape (9, 50), which represents a 2D input with 9 rows,
50 columns. The output layer consists of 4 neurons, corresponding to the 4 possible
classes for the classification task.

The activation function used is softmax, which converts the output into proba-
bility distributions over the classes.

The loss function applied during training is categorical cross-entropy, which
is appropriate for multi-class classification tasks. For a multi-class classification
problem, it is defined as

Loss = −
CØ

i=1
yi log(pi) (5.1)

where:

• C is the number of classes.

• yi is a binary indicator (0 or 1) representing whether class i is the correct
class.

• pi is the predicted probability of class i.

Before implementing techniques that may impact performance, it is essential to
evaluate the model’s baseline performance.

Table 5.8: Baseline performance metrics for the MA-MA and MS-MS datasets.

Dataset Accuracy Loss F1 Score Training Time (s)
MA-MA 0.9969 0.0094 0.9969 1158.82
MS-MS 0.9958 0.0150 0.9958 824.93

45

Experimental results

Table 5.10 displays the results from training the model on 80% of the total
samples, with 20% set aside for testing, thereby establishing a baseline for future
experiments.

Next, we tested a combination of the two datasets. This approach maintained
comparable results despite considering factors like outlier selection, normalization,
and methodological considerations, as shown in Table 5.11.

Table 5.9: Resulting metrics for the combination of datasets

Dataset Accuracy Loss F1 Score Training Time (s)
MA-MS 0.9964 0.0105 0.9964 1179.90
MS-MA 0.9970 0.0110 0.9970 780.88

The impact of previously discussed factors on overall performance was minimal.
A comparison of the model’s performance on the Android and Python clients
highlights the effects of model conversion and sample reduction, simulating real-
world scenarios with storage constraints.

Figure 5.13 displays performance metrics for various training and testing sample
configurations on both clients. It illustrates the impact of sample reduction on
model performance, emphasizing the trade-offs associated with limited resources.

0.0 0.5 1.0

MA-MS (Android)
MA-MS (Python)
MS-MA (Python)

MS-MA (Android)
MS-MS (Android)
MA-MA (Android)
MS-MS (Python)
MA-MA (Python)

Da
ta

se
t C

om
bi

na
tio

n
(V

er
sio

n)

0.59
0.60

0.70
0.73

0.85
0.91
0.97
0.98

0.52
0.56

0.66
0.66
0.65
0.68

0.97
0.98

60
0

sa
m

pl
es

0.0 0.5 1.0
0.56
0.57

0.64
0.89
0.93
0.97
0.97
0.99

0.54
0.49

0.61
0.67
0.69

0.97
0.71

0.99

20
00

 sa
m

pl
es

0.0 0.5 1.0
0.53
0.60

0.69
0.92
0.94
0.98
0.99
0.99

0.52
0.53

0.64
0.69
0.70
0.72

0.99
0.99

25
00

 sa
m

pl
es

0.0 0.5 1.0
0.50
0.53

0.72
0.93
0.96
0.99
0.99
1.00

0.50
0.44

0.68
0.70
0.71

0.66
0.99
1.00

45
00

 sa
m

pl
es

Accuracy
F1 Score

Figure 5.13: Comparison of model performance across different sample configura-
tions and clients (Android vs. Python).

The accuracy drop is linked to dataset combination and class imbalance, as
shown in Table 5.7. For instance, the ’SIT’ class in the MA dataset comprises only
6,509 samples, representing just 1.54% of the total. This limited representation
hinders the model’s ability to generalize effectively, as achieving a balanced test
scenario would necessitate 600 samples for each class, which is not feasible for our
experiment.

To ensure clarity, a sample size of 2,500 has been selected for further analysis.
More insights on different sample configurations can be found at [52].

46

Experimental results

Model conversion and implications

To adapt the model’s architecture for deployment on Android, it is utilized the TF
library for conversion to TFLite. This process involves splitting the model into two
distinct components: a base model and a head model. The base model comprises
frozen layers, which are kept untrainable during the conversion, while the head
model retains its trainable properties. The frozen layers are preloaded with weights
derived from a model previously trained on the MS dataset, which is substantial in
size.

A significant challenge in this migration was ensuring compatibility between
TF and TFLite during layer definition. Any incompatibility could lead to the
removal of operations from the computational graph during conversion, resulting
in unexpected behaviors or compilation errors. Therefore, meticulous attention
to layer compatibility is was essential to maintain the model’s integrity. TFLite
provides limited support for TensorFlow operations, but some operations can still be
processed by TFLite even without direct equivalents. For example, operations like
tf.identity can be removed from the graph entirely, tf.placeholder can be replaced
by tensors, and simpler operations such as tf.nn.bias_add can be fused into more
complex ones. However, even certain supported operations may sometimes be
removed during this process, necessitating close attention to layer compatibility to
ensure a smooth conversion. Another important consideration was ensuring that
the output of the base model did not require excessive storage, particularly when
using direct buffers. Direct buffers allow memory allocation outside of the Java
heap, optimizing both speed and preventing the garbage collector from managing
this memory. While Android generally discourages the use of direct buffers, they
become necessary when handling large datasets—such as during model training—to
prevent unexpected deallocation of buffer input data.

A large base model output would impose significant computational and memory
costs. For example, in the architecture described above, where the first convolutional
layer is frozen and the subsequent layers are trainable, the output of the base model
is (9, 46, 50). After generating the bottleneck (the output of the base model), this
results in approximately 80 kB of data per processed input. In a test scenario with
MAX_SAMPLE set to 4500, the device would need to store approximately 355 MB
in continuous byte allocation. Such a large memory requirement could lead to the
termination of the Android application due to excessive resource usage. To address
this issue, it was necessary to deallocate all previous data after each test, ensuring
that the minimum amount of memory was used at runtime. Even when using heap
memory to store the bottleneck data, the garbage collector would automatically
reclaim space for newly allocated data, potentially leading to inefficiencies. In
contrast, utilizing direct memory buffers significantly reduces garbage collection
overhead, thereby minimizing long pauses. This approach facilitates efficient I/O

47

Experimental results

operations by avoiding unnecessary data copies between the heap and native
memory. It also surpasses heap size limitations, allowing for the handling of larger
datasets.

For the seek of examples, it was considered for the test implementation to
convert all possible configuration of the architectures. For the seek of exploring new
concepts the converted models were further compacted by considering Post-training
quantization.

5.3.1 Post-training quantization
Quantization refers to the process of reducing the storage size required for a machine
learning model while maintaining its usability. This optimization not only minimizes
the model’s size but also enhances latency, thereby reducing computational delays
with minimal impact on accuracy [45]. In this thesis, it was analyzed two specific
quantization techniques: Dynamic Range Quantization (DRQ) and Full Integer
Quantization (FIQ). Further details can be found in section 2.3.3. The memory
usage of the quantized models is illustrated in Figure 5.14. This figure provides a
visual comparison of how different quantization methods affect model size.

NQ
DRQ
FIQ

1.1984 MB
0.3213 MB
0.3189 MB

83.33%

NQ
DRQ
FIQ

1.2049 MB
1.1493 MB
1.1493 MB

66.67%

NQ
DRQ
FIQ

1.2124 MB
1.1655 MB
1.1635 MB

50%

NQ
DRQ
FIQ

1.2206 MB
1.2013 MB
1.1998 MB

33.33%

NQ
DRQ
FIQ

1.2282 MB
1.2291 MB
1.2282 MB

16.67%

0.5 1.0 1.5 2.0
NQ

DRQ
FIQ

1.2347 MB
1.2347 MB
1.2347 MB

0%

Model Size (MB)

Figure 5.14: Effect of quantization on the model size

As illustrated in the figure 5.14, the effect of quantization is influenced by the

48

Experimental results

number of pretrained layers that are frozen. PTQ is indeed applied to the base
model being converted, as it is not the model used for training in the subsequent
phase. It is evident that a higher degree of quantization leads to a significant
reduction in overall model size. As studies have also shown, the reduction of the
overall compression size ratio tends to be lower [45] However, it is crucial to note
that pretraining the entire model does not guarantee maintaining performance
in terms of accuracy or F1-score. Adapting the model to new datasets may be
essential for optimal results. This will be further clarified in the following section,
where a detailed comparison of techniques is presented.

5.4 Classifications and Evaluations
The final stage of the HAR process involves analyzing the performance of the CNN
with various configurations. The primary metric used for comparison is accuracy,
calculated as follows:

Accuracy = TP + TN

TP + TN + FP + FN
(5.2)

where:

• TP is the number of True Positives,

• TN is the number of True Negatives,

• FP is the number of False Positives,

• FN is the number of False Negatives.

In this context, accuracy is averaged across the four classes being predicted(5.2).
Additionally, the loss, evaluated as categorical cross-entropy, is another considered
metric (5.1). Training time is measured from the start of the first epoch to the end
of the last epoch. Instead for FL, the cumulative training time is calculated as the
sum of the time from the start of the first epoch round and the worst training time
after each round. The formula for cumulative training time in FL is given by:

Cumulative Training Time = T1 +
NØ

i=1
Ti (5.3)

where:

• T1 is the worst training time for the first epoch round,

• Ti is the worst training time for the i-th round,

49

Experimental results

• N is the total number of rounds.

Tx represents the maximum training time observed among the clients participating
in round x. It is defined as:

Tx = max(Tx,1, Tx,2, . . . , Tx,n) (5.4)
where Tx,i denotes the training time of the i-th client in round x. This value

provides an upper bound on the training duration for that round. Finally, the
F1-Score is also used as a metric. It can be described as:

F1 = 2 · Precision · Recall
Precision + Recall (5.5)

where

Precision = TP

TP + FP
, Recall = TP

TP + FN
(5.6)

with:

• TP is the number of True Positives,

• FP is the number of False Positives,

• FN is the number of False Negatives.

Model analysis

Before testing any techniques that could introduce performance trade-offs, it’s cru-
cial to first assess the baseline performance of the model without any modifications.

Dataset Accuracy Loss F1 Score Training Time (s)
MA-MA 0.9969 0.0094 0.9969 1158.82
MS-MS 0.9958 0.0150 0.9958 824.93

Table 5.10: Baseline performance metrics for the MA-MA and MS-MS datasets.

Table 5.10 provides a summary of the results obtained from training the model
on 80% of the dataset, with the remaining 20% reserved for testing. These initial
results serve as an encouraging starting point for further experimentation.

Subsequently, a test was performed using a combination of the two datasets. By
altering the source of data for both training and testing, this method highlights
potential imperfections introduced by factors such as the selection of outliers, the
normalization function applied, and previous methodological considerations. This
step shown in the table 5.11 is critical for understanding the impact of these factors
on the model’s overall performance.

50

Experimental results

Table 5.11: Resulting metrics for the combination of datasets

Dataset Accuracy Loss F1 Score Training Time (s)
MA-MS 0.9964 0.0105 0.9964 1179.90
MS-MA 0.9970 0.0110 0.9970 780.88

Upon comparing the tables, it is evident that the results are comparable. The
potential loss attributed to the factors previously discussed did not significantly
impact the overall performance.

Sampling analysis

Subsequently, a comparison of the model deployed on the Android client versus
the Python client highlights the impact of model conversion and the reduction of
samples on both training and testing datasets. This aspect can be used to simulate
real-world scenarios where storage constraints limit the ability to store and load the
entire dataset for training and testing. As a result, the differences in performance
between clients under varying sample configurations become apparent.

Figure 5.13 illustrates the performance metrics (e.g., accuracy and F1-score) of
the model across different configurations of the training and testing datasets. These
configurations involve both varying the number of samples and comparing the
results from Android and Python clients. The figure highlights how reducing the
number of available samples affects model performance, emphasizing the trade-offs
involved when working with constrained resources.

The observed drop in accuracy can be attributed to the combination of datasets,
where class imbalance plays a critical role. As highlighted in Table 5.7, the class
distribution is uneven. For instance, when the MA dataset is partitioned, the
’SIT’ class contains only 6,509 samples, accounting for a mere 1.54% of the total
dataset. This class imbalance means that the model may struggle to generalize
well, especially with fewer examples from the ’SIT’ class.

To further analyze the impact of this imbalance, we calculate the number of
time windows that can be extracted from the ’SIT’ class, considering overlapping
windows. The calculation is based on the following parameters:

• Total number of samples: 6,509

• Time window size: 50 samples

• Overlap between consecutive windows: 10 samples

The first step is to determine the stride, which represents the number of samples
between the starting points of two consecutive windows. The stride is computed as:

51

Experimental results

Stride = Window Size − Overlap = 50 − 10 = 40

Next, the total number of windows can be determined using the following
formula:

Number of Windows = Total Samples − Window Size
Stride + 1

Substituting the relevant values:

Number of Windows = 6509 − 50
40 + 1 = 6459

40 + 1 ≈ 161.475 + 1 = 162

Thus, the number of time sliding windows that can be derived from the ’SIT’
class, with the specified overlap, is approximately 162.

This relatively small number of windows underscores the challenges faced by the
model in effectively learning from such a limited representation of the ’SIT’ class,
further contributing to the observed accuracy drop. For the sake of understanding,
a test scenario with the appropriate class balance has been conducted with total
samples of 600 as shown in the table 5.12

Table 5.12: Performance metrics for various dataset combinations (Samples: 600)

Dataset Combination Version Accuracy Loss F1 Score Training Time
MS-MS Python 0.977500 0.101616 0.977494 3.585166
MA-MA Python 0.968333 0.198703 0.968030 3.446056
MA-MA Android 0.905882 0.282084 0.676185 0.013107
MS-MS Android 0.853782 0.519019 0.652068 0.000000
MA-MS Python 0.702500 0.699651 0.663948 3.657154
MA-MS Android 0.733333 0.489209 0.656030 0.000000
MS-MA Python 0.587500 1.081621 0.515804 3.633167
MS-MA Android 0.599167 0.912857 0.555218 0.013107

To maintain clarity and organization, a selection of 2,500 samples has been
established. This approach facilitates the introduction of various configurations
and constraints, enabling a clearer interpretation of the subsequent results. For
further insights, testing performed across different sample configurations can be
accessed at [52].

Transfer Learning Analysis

Figures 5.15 and 5.16 illustrates the relationship between accuracy and the number
of pre-trained models for both the Android and Python versions.

52

Experimental results

0% 17% 33% 50% 67% 83%
Pretrained Layers (%)

0.0

0.2

0.4

0.6

0.8

1.0 0.98 0.98 0.98 0.98 0.98 0.97

0.72 0.72 0.72 0.72 0.72 0.72

0.53 0.50 0.52
0.50

0.54
0.67

0.52 0.50 0.51 0.50 0.53
0.62

0.94 0.91 0.91
0.72 0.72

0.91

0.70 0.68 0.68 0.65 0.65 0.68

0.92 0.91
0.95 0.98 0.98

0.93

0.69 0.68 0.70 0.71 0.71 0.69

MobiAct-MobiAct Accuracy
MobiAct-MobiAct F1 Score
MobiAct-MotionSense Accuracy
MobiAct-MotionSense F1 Score
MotionSense-MobiAct Accuracy
MotionSense-MobiAct F1 Score
MotionSense-MotionSense Accuracy
MotionSense-MotionSense F1 Score

Figure 5.15: TL: Classification metrics vs. Number of Pre-trained Models for
Android version

0% 17% 33% 50% 67% 83%
Pretrained Layers (%)

0.0

0.2

0.4

0.6

0.8

1.0 0.99 0.98 0.98 0.98 0.99 0.950.99 0.98 0.98 0.98 0.99 0.95

0.60 0.61
0.60 0.59

0.50

0.87

0.53 0.54 0.53 0.54
0.43

0.85

0.69 0.66
0.73 0.75 0.76

0.84

0.64
0.61

0.66 0.68 0.70

0.82

0.99 0.99 0.99 0.99 1.00 0.980.99 0.99 0.99 0.99 1.00 0.98

MobiAct-MobiAct Accuracy
MobiAct-MobiAct F1 Score
MobiAct-MotionSense Accuracy
MobiAct-MotionSense F1 Score
MotionSense-MobiAct Accuracy
MotionSense-MobiAct F1 Score
MotionSense-MotionSense Accuracy
MotionSense-MotionSense F1 Score

Figure 5.16: TL: Classification metrics vs. number of pre-trained models for
python version

Figure 5.17 and 5.18 show that training time decreases as the number of pre-
trained layers increases. Notably, there is a significant difference in training times
among the Python and Android models, due to distinct implementations of the TF
library and the computational limitations of Android devices.

These findings demonstrate the feasibility of training models on Android and
provide a benchmark against the Python version.

53

Experimental results

17% 33% 50% 67% 83%
Pre-trained Layers Percentage

0

20

40

60

80

100

120

140

Tr
ai

ni
ng

 T
im

e

138.42

17.28
8.42

2.58 0.22

94.17

21.23
10.87

2.56 0.20

57.49

20.75 24.36

2.60 0.20

45.77

20.32

4.24 2.59 0.19

MobiAct-MobiAct Android
MobiAct-MotionSense Android
MotionSense-MobiAct Android
MotionSense-MotionSense Android

Figure 5.17: TL: Training time vs. number of pre-trained models for Android
version

41667% 41667% 41667% 41667% 41667% 41667%
Pre-trained Layers Percentage

0

10

20

30

40

50

Tr
ai

ni
ng

 T
im

e

38.66

29.62

21.35
18.52 19.43

38.45

48.10

41.18

34.52 35.51
32.74

52.88

29.43

19.47

12.46
9.32 8.34

41.42

13.36
10.29

6.30 5.65 5.50

14.13

MobiAct-MobiAct
MobiAct-MotionSense
MotionSense-MobiAct
MotionSense-MotionSense

Figure 5.18: TL: Training time vs. number of pre-trained models for Python
version

Quantization

To further analyse these data, considering quantization could save the size, as
already seen, and training time at cost of accuracy. The bar plots in figure 5.19
shows these results.

Figure 5.21 shows that training time is affected by the quantization method.
Training time decreases exponentially with increased quantization of early layers,
while later layers exhibit similar times across methods.

54

Experimental results

16.7 33.3 50.0 66.7 83.3
Layers Percentage

0.0

0.2

0.4

0.6

0.8
Av

er
ag

e
Ac

cu
ra

cy
0.82 0.84

0.80 0.80
0.87

0.83
0.77 0.79 0.80

0.65

0.82 0.83
0.79 0.80

0.60

No Quantization
Dynamic Range Quantization
Full Integer Quantization

16.7 33.3 50.0 66.7 83.3
Layers Percentage

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Ac
cu

ra
cy

0.81 0.83 0.83 0.81

0.91

No Quantization

Figure 5.19: TL: Accuracy for quantization method averaged on dataset combi-
nations using pre-trained layers

16.7 33.3 50.0 66.7 83.3
Layers Percentage

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

F1
 S

co
re

0.65 0.65 0.65 0.65 0.68
0.65 0.63 0.64 0.65

0.57

0.64 0.65 0.65 0.65

0.55

No Quantization
Dynamic Range Quantization
Full Integer Quantization

16.7 33.3 50.0 66.7 83.3
Layers Percentage

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

F1
 S

co
re

0.78 0.79 0.80 0.78

0.90

No Quantization

Figure 5.20: TL: F1-Score for quantization method averaged on dataset combina-
tions using pre-trained layers

Though quantization generally has little effect on accuracy, results from the
83% pretrained layers model test reveal that combining it with additional datasets
can complicate generalization to unseen data, influenced by both the quantization
methods and the selection of pre-trained layers.

Federated Learning analysis

In this test benchmark, the first three dataset partitions were used for client training,
while the final one was set aside for server-side testing. Training time is replaced
by cumulative training time (see Equation 5.3) to account for FL iterations. It is
crucial to identify trainable layers and deserialize weights before loading them into
the server model for testing, as client-side training errors can affect model integrity.

The migration from local testing to FL began analyzing the Python implemen-
tation. The initial goal is to analyze the differences in training time between the
TL and FLT approaches and subsequently evaluate the model performance in
predicting human activities. Table 5.13 provides a comparative analysis of training

55

Experimental results

16.7% 33.3% 50.0% 66.7% 83.3%
Pre-trained Layers Percentage

0

10

20

30

40

50

60

70

80

Av
er

ag
e

Tr
ai

ni
ng

 T
im

e

83.96

19.90
11.97

2.58 0.20

35.94

24.32

4.06 2.56 0.20

49.94

24.77

4.03 2.56 0.19

No Quantization
Dynamic Range Quantization
Full Integer Quantization

Figure 5.21: TL: Training time for quantization method averaged on dataset
combinations using pre-trained layers for Android version.

and cumulative times for the Python implementation, emphasizing the percentage
change in training time between the two approaches across models with pre-trained
layers. This table highlights the performance of both techniques across all dataset
partitions.

The analysis considers the ratio of total training time to the number of epochs,
where, for FL, the effective epochs are calculated as # epochs × # rounds. The
results underscore that the FL approach yields significantly faster responses during
the training phase.

Table 5.13: Comparison of Training Time (TT) between No-FL and FL for
Python version.

% Layers No-FL TT (Mean) FL TT (Mean) % Change
0.00% 99.59 63.04 -36.54%
16.67% 86.88 50.85 -41.73%
33.33% 50.90 30.52 -40.00%
50.00% 37.10 22.79 -38.56%
66.67% 32.75 20.82 -36.18%
83.33% 29.45 19.51 -33.73%

It is important to emphasize that the same comparison could not be performed
when transitioning from a single partition analysis to a full dataset analysis in the
Android version. This is because loading the entire dataset into memory is not
computationally feasible on a standard smartphone.

56

Experimental results

Transitioning from a local to a Federated Learning (FL) approach not only
promotes privacy and collaboration among devices but also optimizes the utilization
of computational resources. The findings reveal that these advantages are further
enhanced by a reduction in overall training time. Performance metrics, including
accuracy and F1-score (as shown in Table 5.13), indicate that the quality of the
model remains largely unaffected.

Table 5.14: Comparison of Accuracy and F1-Score between No-FL and FL for
Python version.

% Layers Accuracy F1-Score
No-FL FL % Change No-FL FL % Change

0.00% 0.90 0.87 -3.47% 0.90 0.86 -5.23%
16.67% 0.89 0.84 -6.12% 0.88 0.81 -7.82%
33.33% 0.90 0.84 -6.37% 0.89 0.81 -8.78%
50.00% 0.90 0.85 -5.61% 0.90 0.82 -7.91%
66.67% 0.90 0.85 -5.46% 0.89 0.82 -7.63%
83.33% 0.91 0.89 -2.71% 0.90 0.88 -2.90%

Liming the samples to consider per test to 2,500, figures 5.22 and 5.23 illustrate
the impact of varying the number of pre-trained models on accuracy and F1-score
metrics in the Android and Python versions using FTL.

The plots highlight significant potential for enhancing generalization across
datasets. Given that the pre-trained layers are derived from the MS dataset, the
model demonstrates higher performance on MS-MS test sets. However, comparisons
between the Python and Android versions are limited by their performance dispar-
ity; Python employs FedAvg while Android utilizes FedAvgAndroid, additionally
different computational resources and training libraries are being used.

16.7 33.3 50.0 66.7 83.3
Layers Percentage

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Ac
cu

ra
cy

0.28

0.59 0.57 0.58

0.87

0.27

0.53
0.58 0.59

0.54

0.27

0.57 0.57 0.58
0.54

No Quantization
Dynamic Range Quantization
Full Integer Quantization

16.7 33.3 50.0 66.7 83.3
Layers Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ac
cu

ra
cy

0.89 0.92 0.93 0.93 0.96

No Quantization

Figure 5.22: FTL: Comparison of accuracy for Android and Python versions

Ultimately, the integration of these techniques with FL, resulting in FTL,
indicates a notable decline in performance metrics such as accuracy and F1-Score

57

Experimental results

16.7 33.3 50.0 66.7 83.3
Layers Percentage

0.0

0.2

0.4

0.6

0.8
Av

er
ag

e
F1

 S
co

re

0.13

0.52 0.52 0.51

0.86

0.12

0.46
0.53 0.52 0.49

0.12

0.50 0.51 0.52 0.50

No Quantization
Dynamic Range Quantization
Full Integer Quantization

16.7 33.3 50.0 66.7 83.3
Layers Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

F1
 S

co
re

0.86 0.91 0.92 0.91 0.96

No Quantization

Figure 5.23: FTL: Comparison of f1-score for Android and Python versions

(see Figures 5.22 and 5.23). This suggests that the model may not yet generalize
effectively across all dataset partitions. It’s important to highlight that the previous
analysis (Figure 5.19) focused solely on one of the four partitions, while this
evaluation considers the entire dataset. Consequently, the average difference in
F1-Score is approximately 23%, likely attributable to the initial dataset imbalance
observed during the experiment.

58

Chapter 6

Conclusions

This thesis investigates and implements ML techniques to gain a comprehensive
understanding of their application in smartphone-based systems for HAR. The
contributions of this work are outlined as follows:

• Development of PHAR: A privacy-preserving smartphone application
tailored for HAR, which integrates TL, FL, FTL, and PQT. This customized
app serves as a valuable tool for in-depth analysis, effectively addressing the
individual facets of TL, model compression, and FL.

• Exploration of Techniques: An examination of these techniques within the
context of CNN, illustrating the incremental integration of each approach and
tracking their progress and impact throughout the thesis.

• Demonstrating Gains: An analysis of the potential for privacy and training
time improvements with a corresponding minimal reduction in model perfor-
mance metrics (e.g., accuracy and F1-score) achieved through the application
of FL on edge devices.

• Addressing Deployment Challenges: A focus on overcoming the challenges
associated with deploying large-scale models on resource-constrained mobile
devices while ensuring optimal model performance and scalability within the
Flower framework.

The results indicate a possible reduction in training time of up to 41.73% when
comparing no-FL and FL pretrained models, along with a 25% decrease in model
size on mobile devices achieved through quantization, albeit at the cost of some
efficiency in performance metrics.

Future research will focus on enhancing model generalization and enabling real-
time prediction capabilities within the PHAR application. The scalable architecture

59

Conclusions

proposed in this work shows significant promise for continuous learning and live
predictions. Additionally, further exploration of FL can be conducted by integrating
alternative strategies such as FedAdagrad, FedAdam, FedSGD, and FedYogi.

This thesis contributes to the field by investigating FTL in the context of HAR
and optimizing memory usage for resource-constrained devices, all while achieving
substantial reductions in training times and model sizes.

60

Appendix

0.0 0.5 1.0
Scores

MotionSense-MobiAct (Python)

MotionSense-MobiAct (Android)

MobiAct-MotionSense (Python)

MobiAct-MotionSense (Android)

MotionSense-MotionSense (Android)

MobiAct-MobiAct (Android)

MobiAct-MobiAct (Python)

MotionSense-MotionSense (Python)

0.59

0.60

0.70

0.73

0.85

0.91

0.97

0.98

0.52

0.56

0.66

0.66

0.65

0.68

0.97

0.98

Accuracy
F1 Score

Figure 1: Performance of 600 samples configuration with no pretrained layers
before FL-TL

0.0 0.5 1.0
Scores

MobiAct-MotionSense (Android)

MobiAct-MotionSense (Python)

MotionSense-MobiAct (Python)

MotionSense-MotionSense (Android)

MotionSense-MobiAct (Android)

MobiAct-MobiAct (Python)

MobiAct-MobiAct (Android)

MotionSense-MotionSense (Python)

0.56

0.57

0.64

0.89

0.93

0.97

0.97

0.99

0.54

0.49

0.61

0.67

0.69

0.97

0.71

0.99

Accuracy
F1 Score

Figure 2: Performance of 2000 samples configuration with no pretrained layers
before FL-TL

61

Appendix

0.0 0.5 1.0
Scores

MobiAct-MotionSense (Android)

MobiAct-MotionSense (Python)

MotionSense-MobiAct (Python)

MotionSense-MotionSense (Android)

MotionSense-MobiAct (Android)

MobiAct-MobiAct (Android)

MobiAct-MobiAct (Python)

MotionSense-MotionSense (Python)

0.53

0.60

0.69

0.92

0.94

0.98

0.99

0.99

0.52

0.53

0.64

0.69

0.70

0.72

0.99

0.99

Accuracy
F1 Score

Figure 3: Performance of 2500 samples configuration with no pretrained layers
before FL-TL

0.0 0.5 1.0
Scores

MobiAct-MotionSense (Android)

MotionSense-MobiAct (Python)

MobiAct-MotionSense (Python)

MotionSense-MobiAct (Android)

MobiAct-MobiAct (Android)

MotionSense-MotionSense (Python)

MotionSense-MotionSense (Android)

MobiAct-MobiAct (Python)

0.52

0.55

0.56

0.95

0.97

0.98

0.98

0.99

0.51

0.53

0.47

0.70

0.68

0.98

0.72

0.99

Accuracy
F1 Score

Figure 4: Performance of 3000 samples configuration with no pretrained layers

62

Appendix

0.0 0.5 1.0
Scores

MobiAct-MotionSense (Android)

MobiAct-MotionSense (Python)

MotionSense-MobiAct (Python)

MotionSense-MobiAct (Android)

MotionSense-MotionSense (Android)

MobiAct-MobiAct (Android)

MotionSense-MotionSense (Python)

MobiAct-MobiAct (Python)

0.50

0.53

0.72

0.93

0.96

0.99

0.99

1.00

0.50

0.44

0.68

0.70

0.71

0.66

0.99

1.00

Accuracy
F1 Score

Figure 5: Performance of 4500 samples configuration with no pretrained layers
before FL-TL

3 2 1 0 1 2 3
Value

0

10000

20000

30000

Sa

m
pl

es

attitude.roll

Mean
Median
Min
Max

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Value

0

20000

40000

60000

80000

Sa

m
pl

es

attitude.pitch

Mean
Median
Min
Max

3 2 1 0 1 2 3
Value

0

10000

20000

Sa

m
pl

es

attitude.yaw

Mean
Median
Min
Max

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Value

0

20000

40000

Sa

m
pl

es

gravity.x

Mean
Median
Min
Max

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Value

0

100000

200000

Sa

m
pl

es

gravity.y

Mean
Median
Min
Max

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Value

0

10000

20000

30000

40000

Sa

m
pl

es

gravity.z

Mean
Median
Min
Max

15 10 5 0 5 10
Value

0

25000

50000

75000

100000

Sa

m
pl

es

rotationRate.x

Mean
Median
Min
Max

20 15 10 5 0 5 10 15
Value

0

50000

100000

150000

Sa

m
pl

es

rotationRate.y

Mean
Median
Min
Max

10 5 0 5 10
Value

0

50000

100000

150000

Sa

m
pl

es

rotationRate.z

Mean
Median
Min
Max

6 4 2 0 2 4 6
Value

0

100000

200000

Sa

m
pl

es

userAcceleration.x

Mean
Median
Min
Max

6 4 2 0 2 4 6
Value

0

50000

100000

150000

Sa

m
pl

es

userAcceleration.y

Mean
Median
Min
Max

8 6 4 2 0 2 4 6 8
Value

0

100000

200000

Sa

m
pl

es

userAcceleration.z

Mean
Median
Min
Max

Figure 6: Non normalized attributes distribution of MotionSense dataset

63

Appendix

2 1 0 1 2
Value

0

10000

20000

30000

Sa

m
pl

es

attitude.roll
Mean
Median
Min
Max

0 2 4 6 8
Value

0

20000

40000

60000

80000

Sa

m
pl

es

attitude.pitch
Mean
Median
Min
Max

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Value

0

10000

20000

Sa

m
pl

es

attitude.yaw
Mean
Median
Min
Max

3 2 1 0 1 2 3
Value

0

20000

40000

Sa

m
pl

es

gravity.x
Mean
Median
Min
Max

8 6 4 2 0
Value

0

100000

200000

Sa

m
pl

es

gravity.y
Mean
Median
Min
Max

3 2 1 0 1 2 3 4
Value

0

10000

20000

30000

40000

Sa

m
pl

es

gravity.z
Mean
Median
Min
Max

10 8 6 4 2 0 2 4 6
Value

0

25000

50000

75000

100000

Sa

m
pl

es

rotationRate.x
Mean
Median
Min
Max

10 5 0 5 10
Value

0

50000

100000

150000

Sa

m
pl

es

rotationRate.y
Mean
Median
Min
Max

10 5 0 5 10
Value

0

50000

100000

150000

Sa

m
pl

es

rotationRate.z
Mean
Median
Min
Max

15 10 5 0 5 10 15
Value

0

100000

200000

Sa

m
pl

es

userAcceleration.x
Mean
Median
Min
Max

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Value

0

50000

100000

150000

Sa

m
pl

es

userAcceleration.y
Mean
Median
Min
Max

15 10 5 0 5 10 15
Value

0

100000

200000

Sa

m
pl

es

userAcceleration.z
Mean
Median
Min
Max

Figure 7: Normalized attributes distribution of MotionSense dataset

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Value

0.00

0.25

0.50

0.75

1.00

Sa

m
pl

es

1e6
attitude.roll

Mean
Median
Min
Max

3 2 1 0 1 2 3
Value

0.0

0.5

1.0

1.5

Sa

m
pl

es

1e6
attitude.pitch

Mean
Median
Min
Max

1 0 1 2 3 4 5 6
Value

0

100000

200000

300000

Sa

m
pl

es

attitude.yaw

Mean
Median
Min
Max

20 15 10 5 0 5 10 15 20
Value

0.00

0.25

0.50

0.75

1.00

Sa

m
pl

es

1e6
gravity.x

Mean
Median
Min
Max

20 15 10 5 0 5 10 15 20
Value

0

1

2

3

Sa

m
pl

es

1e6
gravity.y

Mean
Median
Min
Max

15 10 5 0 5 10 15
Value

0.0

0.5

1.0

1.5

Sa

m
pl

es

1e6
gravity.z

Mean
Median
Min
Max

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Value

0

1

2

Sa

m
pl

es

1e6
rotationRate.x

Mean
Median
Min
Max

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Value

0

1

2

Sa

m
pl

es

1e6
rotationRate.y

Mean
Median
Min
Max

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Value

0

1

2

3

4

Sa

m
pl

es

1e6
rotationRate.z

Mean
Median
Min
Max

10 5 0 5 10
Value

0

2

4

Sa

m
pl

es

1e6
userAcceleration.x

Mean
Median
Min
Max

20 15 10 5 0 5 10 15 20
Value

0

2

4

Sa

m
pl

es

1e6
userAcceleration.y

Mean
Median
Min
Max

15 10 5 0 5 10
Value

0

1

2

3

4

Sa

m
pl

es

1e6
userAcceleration.z

Mean
Median
Min
Max

Figure 8: Non normalized attributes distribution of MobiAct dataset

64

Appendix

4 2 0 2 4
Value

0.00

0.25

0.50

0.75

1.00

Sa

m
pl

es
1e6 attitude.roll

Mean
Median
Min
Max

2 1 0 1 2 3 4
Value

0.0

0.5

1.0

1.5

Sa

m
pl

es

1e6 attitude.pitch
Mean
Median
Min
Max

2 1 0 1
Value

0

100000

200000

300000

Sa

m
pl

es

attitude.yaw
Mean
Median
Min
Max

6 4 2 0 2 4 6
Value

0.00

0.25

0.50

0.75

1.00

Sa

m
pl

es

1e6 gravity.x
Mean
Median
Min
Max

4 3 2 1 0 1 2
Value

0

1

2

3

Sa

m
pl

es

1e6 gravity.y
Mean
Median
Min
Max

6 4 2 0 2 4 6
Value

0.0

0.5

1.0

1.5

Sa

m
pl

es

1e6 gravity.z
Mean
Median
Min
Max

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Value

0

1

2

Sa

m
pl

es

1e6 rotationRate.x
Mean
Median
Min
Max

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Value

0

1

2

Sa
m

pl
es

1e6 rotationRate.y
Mean
Median
Min
Max

15 10 5 0 5 10 15
Value

0

1

2

3

4

Sa

m
pl

es

1e6 rotationRate.z
Mean
Median
Min
Max

15 10 5 0 5 10 15
Value

0

2

4

Sa

m
pl

es

1e6 userAcceleration.x
Mean
Median
Min
Max

20 10 0 10 20
Value

0

2

4

Sa

m
pl

es

1e6 userAcceleration.y
Mean
Median
Min
Max

20 15 10 5 0 5 10 15
Value

0

1

2

3

4

Sa

m
pl

es

1e6 userAcceleration.z
Mean
Median
Min
Max

Figure 9: Normalized attributes distribution of MobiAct dataset

Figure 10: The initialization file setting up the initial parameters.

65

Appendix

Figure 11: The bottleneck model.

Figure 12: The optimizer file utilized for optimization

66

Appendix

Figure 13: The inference file generating predictions.

Figure 14: The training head model

67

Appendix

Conv2D

Input shape: (None, 12, 50, 1) Output shape: (None, 12, 46, 50)

Conv2D

Input shape: (None, 12, 46, 50) Output shape: (None, 12, 46, 50)

MaxPooling2D

Input shape: (None, 12, 46, 50) Output shape: (None, 12, 23, 50)

Dropout

Input shape: (None, 12, 23, 50) Output shape: (None, 12, 23, 50)

Conv2D

Input shape: (None, 12, 23, 50) Output shape: (None, 12, 19, 40)

MaxPooling2D

Input shape: (None, 12, 19, 40) Output shape: (None, 12, 6, 40)

Dropout

Input shape: (None, 12, 6, 40) Output shape: (None, 12, 6, 40)

Conv2D

Input shape: (None, 12, 6, 40) Output shape: (None, 12, 4, 20)

Dropout

Input shape: (None, 12, 4, 20) Output shape: (None, 12, 4, 20)

Flatten

Input shape: (None, 12, 4, 20) Output shape: (None, 960)

Dense

Input shape: (None, 960) Output shape: (None, 400)

Dropout

Input shape: (None, 400) Output shape: (None, 400)

Dense

Input shape: (None, 400) Output shape: (None, 4)

Figure 15: A customized version of the model proposed in [51].

68

Bibliography

[1] T Saponas, Jonathan Lester, Jon Froehlich, James Fogarty, and James Landay.
«ilearn on the iphone: Real-time human activity classification on commodity
mobile phones». In: University of Washington CSE Tech Report UW-CSE-08-
04-02 2008 (2008) (cit. on pp. 1, 19).

[2] Jesús Fontecha, Fco Navarro, Ramón Hervás, and José Bravo. «Elderly Frailty
Detection by using Accelerometer-Enabled Smartphones and Clinical Infor-
mation Records». In: Personal and Ubiquitous Computing 17 (May 2012).
doi: 10.1007/s00779-012-0559-5 (cit. on p. 1).

[3] Jiangpeng Dai, Xiaole Bai, Zhimin Yang, Zhaohui Shen, and Dong Xuan.
«PerFallD: A Pervasive Fall Detection System Using Mobile Phones». In: Oct.
2010, pp. 292–297. doi: 10.1109/PERCOMW.2010.5470652 (cit. on p. 1).

[4] Wei Niu, Jiao Long, D. Han, and Yuanfang Wang. «Human activity detection
and recognition for video surveillance». In: July 2004, 719–722 Vol.1. doi:
10.1109/ICME.2004.1394293 (cit. on pp. 1, 3).

[5] Sharare Zehtabian, Siavash Khodadadeh, Ladislau Bölöni, and Damla Turgut.
«Privacy-preserving learning of human activity predictors in smart environ-
ments». In: IEEE INFOCOM 2021-IEEE Conference on Computer Commu-
nications. IEEE. 2021, pp. 1–10 (cit. on pp. 1, 2, 21).

[6] White House. «Consumer Data Privacy in a Networked World: A Framework
for Protecting A Privacy and Promoting Innovation in the GlobaEconom».
In: http://www. whitphi) nse pnY/siles/default/files/privac (2012) (cit. on
pp. 1, 20).

[7] Sumit Majumder and M.J. Deen. «Smartphone Sensors for Health Monitoring
and Diagnosis». In: Sensors 19 (May 2019), p. 2164. doi: 10.3390/s19092164
(cit. on pp. 1, 20).

[8] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. «Communication-efficient learning of deep networks from
decentralized data». In: Artificial intelligence and statistics. PMLR. 2017,
pp. 1273–1282 (cit. on pp. 2, 20).

69

https://doi.org/10.1007/s00779-012-0559-5
https://doi.org/10.1109/PERCOMW.2010.5470652
https://doi.org/10.1109/ICME.2004.1394293
https://doi.org/10.3390/s19092164

BIBLIOGRAPHY

[9] Oscar D Lara and Miguel A Labrador. «A survey on human activity recogni-
tion using wearable sensors». In: IEEE communications surveys & tutorials
15.3 (2012), pp. 1192–1209 (cit. on pp. 4, 19).

[10] GSMA. The Mobile Economy 2020. https://www.gsma.com/solutions-
and- impact/connectivity- for- good/mobile- economy/wp- content/
uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf (cit. on p. 5).

[11] MEMS Exchange. What is MEMS? https://www.mems-exchange.org/
MEMS/what-is.html (cit. on p. 6).

[12] Salvador García, Julián Luengo, Francisco Herrera, et al. Data preprocessing
in data mining. Vol. 72. Springer, 2015 (cit. on pp. 6, 19).

[13] Muhammad Shoaib, Hans Scholten, and Paul JM Havinga. «Towards physical
activity recognition using smartphone sensors». In: 2013 IEEE 10th interna-
tional conference on ubiquitous intelligence and computing and 2013 IEEE
10th international conference on autonomic and trusted computing. IEEE.
2013, pp. 80–87 (cit. on p. 8).

[14] Muhammad Shoaib, Stephan Bosch, Ozlem Durmaz Incel, Hans Scholten,
and Paul JM Havinga. «Fusion of smartphone motion sensors for physical
activity recognition». In: Sensors 14.6 (2014), pp. 10146–10176 (cit. on p. 8).

[15] Arturo Moncada-Torres, Kaspar Leuenberger, Roman Gonzenbach, Andreas
Luft, and Roger Gassert. «Activity classification based on inertial and baro-
metric pressure sensors at different anatomical locations». In: Physiological
measurement 35.7 (2014), p. 1245 (cit. on p. 8).

[16] Amazon Web Services. What is a Neural Network? https://aws.amazon.
com/it/what-is/neural-network/ (cit. on p. 9).

[17] IBM. Convolutional Neural Networks. https://www.ibm.com/topics/
convolutional-neural-networks (cit. on p. 10).

[18] Daniel J Beutel et al. «Flower: A friendly federated learning research frame-
work». In: arXiv preprint arXiv:2007.14390 (2020) (cit. on pp. 14, 21).

[19] NVIDIA. TensorFlow. https://www.nvidia.com/en-us/glossary/tensor
flow/ (cit. on p. 16).

[20] TensorFlow. Post-Training Quantization. https://www.tensorflow.org/
lite/performance/post_training_quantization (cit. on p. 17).

[21] Isabelle Guyon and André Elisseeff. «An introduction to variable and feature
selection». In: Journal of Machine Learning Research 3.Mar (2003), pp. 1157–
1182 (cit. on pp. 19, 20).

70

https://www.gsma.com/solutions-and-impact/connectivity-for-good/mobile-economy/wp-content/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf
https://www.gsma.com/solutions-and-impact/connectivity-for-good/mobile-economy/wp-content/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf
https://www.gsma.com/solutions-and-impact/connectivity-for-good/mobile-economy/wp-content/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf
https://www.mems-exchange.org/MEMS/what-is.html
https://www.mems-exchange.org/MEMS/what-is.html
https://aws.amazon.com/it/what-is/neural-network/
https://aws.amazon.com/it/what-is/neural-network/
https://www.ibm.com/topics/convolutional-neural-networks
https://www.ibm.com/topics/convolutional-neural-networks
https://www.nvidia.com/en-us/glossary/tensorflow/
https://www.nvidia.com/en-us/glossary/tensorflow/
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization

BIBLIOGRAPHY

[22] Seungeun Chung, Jiyoun Lim, Kyoung Ju Noh, Gague Kim, and Hyuntae
Jeong. «Sensor data acquisition and multimodal sensor fusion for human
activity recognition using deep learning». In: Sensors 19.7 (2019), p. 1716
(cit. on p. 19).

[23] Oresti Banos, Juan-Manuel Galvez, Miguel Damas, Hector Pomares, and
Ignacio Rojas. «Window size impact in human activity recognition». In:
Sensors 14.4 (2014), pp. 6474–6499 (cit. on p. 19).

[24] Muhammad Shoaib, Stephan Bosch, Ozlem Durmaz Incel, Hans Scholten, and
Paul JM Havinga. «Complex human activity recognition using smartphone
and wrist-worn motion sensors». In: Sensors 16.4 (2016) (cit. on pp. 19, 40).

[25] Wesllen Sousa, Eduardo Souto, Jonatas Rodrigres, Pedro Sadarc, Roozbeh
Jalali, and Khalil El-Khatib. «A comparative analysis of the impact of features
on human activity recognition with smartphone sensors». In: Proceedings of
the 23rd Brazillian Symposium on Multimedia and the Web. 2017, pp. 397–404
(cit. on pp. 19, 20, 39).

[26] Wesllen Sousa Lima, Eduardo Souto, Khalil El-Khatib, Roozbeh Jalali, and
Joao Gama. «Human activity recognition using inertial sensors in a smart-
phone: An overview». In: Sensors 19.14 (2019), p. 3213 (cit. on p. 19).

[27] Uwe Maurer, Asim Smailagic, Daniel P Siewiorek, and Michael Deisher.
«Activity recognition and monitoring using multiple sensors on different body
positions». In: International Workshop on Wearable and Implantable Body
Sensor Networks (BSN’06). IEEE. 2006, 4–pp (cit. on pp. 19, 40).

[28] Kun Xia, Jianguang Huang, and Hanyu Wang. «LSTM-CNN architecture
for human activity recognition». In: IEEE Access 8 (2020), pp. 56855–56866
(cit. on pp. 19, 20).

[29] Nidhi Dua, Shiva Nand Singh, and Vijay Bhaskar Semwal. «Multi-input
CNN-GRU based human activity recognition using wearable sensors». In:
Computing 103.7 (2021), pp. 1461–1478 (cit. on pp. 19, 20).

[30] Ian Goodfellow. Deep learning. 2016 (cit. on p. 20).
[31] Friedrich Foerster, Manfred Smeja, and Jochen Fahrenberg. «Detection of

posture and motion by accelerometry: a validation study in ambulatory
monitoring». In: Computers in human behavior 15.5 (1999), pp. 571–583
(cit. on p. 20).

[32] Harikrishna Narasimhan, Weiwei Pan, Purushottam Kar, Pavlos Protopapas,
and Harish G Ramaswamy. «Optimizing the multiclass F-measure via bicon-
cave programming». In: 2016 IEEE 16th international conference on data
mining (ICDM). IEEE. 2016, pp. 1101–1106 (cit. on pp. 20, 40).

71

BIBLIOGRAPHY

[33] Rinat Khusainov, Djamel Azzi, Ifeyinwa E Achumba, and Sebastian D Bersch.
«Real-time human ambulation, activity, and physiological monitoring: Tax-
onomy of issues, techniques, applications, challenges and limitations». In:
Sensors 13.10 (2013), pp. 12852–12902 (cit. on p. 20).

[34] E.T. McAdams et al. «Biomedical Sensors for Ambient Assisted Living».
In: Advances in Biomedical Sensing, Measurements, Instrumentation and
Systems. Berlin, Germany: Springer, 2010, pp. 240–262 (cit. on p. 20).

[35] Lei Gao, AK Bourke, and John Nelson. «Evaluation of accelerometer based
multi-sensor versus single-sensor activity recognition systems». In: Medical
engineering & physics 36.6 (2014), pp. 779–785 (cit. on p. 20).

[36] Shibo Zhang, Yaxuan Li, Shen Zhang, Farzad Shahabi, Stephen Xia, Yu Deng,
and Nabil Alshurafa. «Deep learning in human activity recognition with
wearable sensors: A review on advances». In: Sensors 22.4 (2022), p. 1476
(cit. on p. 20).

[37] Chang Wang and Sridhar Mahadevan. «Heterogeneous domain adaptation us-
ing manifold alignment». In: IJCAI proceedings-international joint conference
on artificial intelligence. Vol. 22. 1. Citeseer. 2011, p. 1541 (cit. on p. 20).

[38] Lixin Duan, Dong Xu, and Ivor Tsang. «Learning with augmented features
for heterogeneous domain adaptation». In: arXiv preprint arXiv:1206.4660
(2012) (cit. on p. 20).

[39] Maayan Harel and Shie Mannor. «Learning from multiple outlooks». In: arXiv
preprint arXiv:1005.0027 (2010) (cit. on p. 20).

[40] Dong Yang et al. «Federated semi-supervised learning for COVID region
segmentation in chest CT using multi-national data from China, Italy, Japan».
In: Medical image analysis 70 (2021), p. 101992 (cit. on p. 20).

[41] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-
age. «Federated learning for mobile keyboard prediction». In: arXiv preprint
arXiv:1811.03604 (2018) (cit. on p. 20).

[42] Farzaneh Shoeleh and Masoud Asadpour. «Graph based skill acquisition and
transfer learning for continuous reinforcement learning domains». In: Pattern
Recognition Letters 87 (2017), pp. 104–116 (cit. on p. 21).

[43] Mohammed Elhenawy, Huthaifa I Ashqar, Mahmoud Masoud, Mohammed
H Almannaa, Andry Rakotonirainy, and Hesham A Rakha. «Deep transfer
learning for vulnerable road users detection using smartphone sensors data».
In: Remote Sensing 12.21 (2020), p. 3508 (cit. on p. 21).

72

BIBLIOGRAPHY

[44] Jian Cheng, Jiaxiang Wu, Cong Leng, Yuhang Wang, and Qinghao Hu.
«Quantized CNN: A unified approach to accelerate and compress convolutional
networks». In: IEEE transactions on neural networks and learning systems
29.10 (2017), pp. 4730–4743 (cit. on p. 21).

[45] Ioan Lucan Orăşan, Ciprian Seiculescu, and Cătălin Daniel Caleanu. «Bench-
marking tensorflow lite quantization algorithms for deep neural networks».
In: 2022 IEEE 16th International Symposium on Applied Computational In-
telligence and Informatics (SACI). IEEE. 2022, pp. 000221–000226 (cit. on
pp. 21, 48, 49).

[46] Yiqiang Chen, Xin Qin, Jindong Wang, Chaohui Yu, and Wen Gao. «Fed-
health: A federated transfer learning framework for wearable healthcare». In:
IEEE Intelligent Systems 35.4 (2020), pp. 83–93 (cit. on p. 22).

[47] I Kevin, Kai Wang, Xiaokang Zhou, Wei Liang, Zheng Yan, and Jinhua
She. «Federated transfer learning based cross-domain prediction for smart
manufacturing». In: IEEE Transactions on Industrial Informatics 18.6 (2021),
pp. 4088–4096 (cit. on p. 22).

[48] Flower. How to Implement Strategies. https://flower.ai/docs/framework/
how-to-implement-strategies.html (cit. on p. 36).

[49] Android Developers. Sensors Overview. https://developer.android.com/
develop/sensors- and- location/sensors/sensors_overview (cit. on
p. 39).

[50] API Levels. API Levels for Android Versions. https://apilevels.com/
(cit. on p. 39).

[51] Mohammad Malekzadeh, Richard G. Clegg, Andrea Cavallaro, and Hamed
Haddadi. «Protecting Sensory Data Against Sensitive Inferences». In: Pro-
ceedings of the 1st Workshop on Privacy by Design in Distributed Systems.
W-P2DS’18. Porto, Portugal: ACM, 2018, 2:1–2:6. isbn: 978-1-4503-5654-1.
doi: 10.1145/3195258.3195260. url: http://doi.acm.org/10.1145/
3195258.3195260 (cit. on pp. 45, 68).

[52] Frirhos. PHAR Repository. Accessed: 2024-09-24. 2024. url: https://github.
com/Frirhos-he/PHAR (cit. on pp. 46, 52).

73

https://flower.ai/docs/framework/how-to-implement-strategies.html
https://flower.ai/docs/framework/how-to-implement-strategies.html
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview
https://apilevels.com/
https://doi.org/10.1145/3195258.3195260
http://doi.acm.org/10.1145/3195258.3195260
http://doi.acm.org/10.1145/3195258.3195260
https://github.com/Frirhos-he/PHAR
https://github.com/Frirhos-he/PHAR

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation
	Objective
	Thesis structure

	Background
	Human Activity Recognition
	HAR problem
	Problem definition
	Relaxed Problem Definition
	HAR process
	Data acquisition
	Data preprocessing
	Model training
	Activity Classification

	Introduction to Federated Learning
	Flower Framework
	gRPC

	Introduction to Transfer Learning
	Tensorflow
	TF Lite
	Post-Training Quantization

	Related Work
	HAR in smartphone devices:
	Federated Learning:
	Transfer Learning
	Federated Transfer Learning (FTL)

	System
	System Overview
	PHAR Android Application
	Project overview
	Real-Time Sensor Monitoring
	Test Configuration
	Local Testing
	Federated Testing
	TensorFlow Library

	Flower Learning Server Setup
	How Flower Server and Clients Collaborate

	Experimental results
	Data acquisition
	Data preprocessing
	Resampling
	Normalization
	Data Segmentation

	Model
	Post-training quantization

	Classifications and Evaluations

	Conclusions
	Appendix
	Bibliography

