
POLYTECHNIC UNIVERSITY OF

TURIN

Master’s Degree in Microelectronics

Master’s Degree Thesis

TITLE

Supervisors

Prof. Marina MONDIN

Prof. Guido MASERA

Prof. Fereydoun DANESHGARAN

Candidate

Taus ENRICO

October 2024

Summary

The work presented in this thesis focuses on the design of a 24 GHz Frequency
Modulated Continuous Wave (FMCW) radar system for precise target detection
and localization in short to medium range distances. Realized with the ADF5901,
ADF5904, and ADF4159 chipset, the proposed system takes advantage of the merits
of FMCW radar, such as robustness against challenging environmental conditions
and the ability to measure target distance and velocity. The modification, a delay
line between the RF output and transmit antenna, finding its place in the radar
architecture introduces an artificial delay, which should create the impression of
a longer distance towards the target, proportionally raising the beat frequency,
which is necessary for a better resolution of the FFT-based demodulation process.
This approach greatly improves the system’s range precision while still allowing
the computational complexity to remain reasonable. The careful placement of the
delay line at the transmitter side avoids degradation in the SNR, which is often
experienced whenever such delays are applied at the receiving end. The thesis
also discusses strengths and weaknesses of operating at the 24 GHz frequency.
While it offers compact design with adequate range resolution, this frequency
range represents a good balance between the lower-frequency radars with poor
spatial resolution and the higher-frequency systems that are more complicated and
expensive. A very effective compromise, the 24 GHz radar remains for applications
involving short range where size and cost sensitivity are important.

Most of the work involves designing and implementing the receiver architecture.
The system realizes signal conditioning, filtering, decimation, and FFT processing
in SystemVerilog. This focuses on architectural parallelism and pipelining for peak
performance of the design. Filtering is performed using a third-order Chebyshev
filter for effective noise reduction with minimum signal compromise in integrity for
demodulation.

The FPGA implementation is selected for flexibility and parallel processing capabil-
ities, which are critical in handling high-speed streams of data emanating from the
radar. The architecture incorporates a decimation strategy in its design to reduce
computational load without sacrificing any aspects of signal fidelity. There is also
a custom-designed square root module for efficiently computing the envelope of the

ii

signal.
These involved extensive simulations and real experiments to validate the system
performance, which showed targets detectable within a few centimeters of resolution
or even less. Results that meet the designed performance, in terms of precision,
speed in processing, and efficiency as a whole, are demonstrated. This makes the
radar suitable for applications in areas such as automotive safety and industrial
automation.
This thesis, therefore, proposes a 24 GHz FMCW radar system, effectively incorpo-
rating improvements in range precision using delay line integration and efficient
signal processing based on FPGA hardware. The system is able to solve such
challenges as the balance between precision and complexity on one side, and cost
on the other, while being easily adaptable to a wide variety of real-world sensing
applications.

iii

Acknowledgements

ACKNOWLEDGMENTS

I would especially like to thank the Erasmus project for the necessary financial
support that had enabled me to engage in this research.

I am grateful to my colleagues and friends, especially Gabriele, who have never
stopped encouraging me and giving me much-needed feedback which helped me
get better both with work and as a person.

I am particularly grateful to my supervisors, Prof. Marina Mondin, Prof. Guido
Masera and Prof. Fereydoun DaneshGaran for expert guidance, constructive criti-
cism, and unfailing support. Their mentorship has been highly instrumental in my
passing through the complexities of the research at hand, and I feel really privileged
to have had them as my advisors.

I would like to express my heartiest gratitude to my family: Mom and Dad, Barbara
and Oscar, and my brother, Urio, for love, patience, and understanding throughout
this process.

Last but not least, my greatest gratitude goes to my girlfriend Zoe. Without her,
it would have been impossible to achieve this result in the same way. Her love and
support have been what gave me the strength to endure every obstacle on my way.
No words are enough to compensate for what you have done for me over these
years, but I hope you are as happy as I am with our success.

I am indeed grateful to everyone who, in any way possible, assisted in putting this
thesis together.

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xii

1 Introduction and motivation 1

1.1 Importance of Localization . 1
1.2 Trilateration . 2
1.3 FMCW RADAR . 3
1.4 Hardware Platforms and Receiver Architectures 4
1.5 Thesis Focus . 5

2 The RADAR board 6

2.1 Introduction . 6
2.2 Key Components . 7

2.2.1 ADF5901 - 24 GHz Transmitter (TX) 7
2.2.2 ADF5904 - 24 GHz Receiver (RX) 7
2.2.3 ADF4159 - PLL Frequency Synthesizer 8

2.3 IO Interfaces and Connectivity . 8
2.4 Strengths and Limitations of 24 GHz FMCW Radar 9
2.5 System Modifications: Delay Line Implementation 9

2.5.1 Delay Line Overview . 10
2.5.2 Limitations and Trade-offs 10
2.5.3 Conclusion on the Delay Line Implementation 11

3 Proposed receiver 12

3.1 Fast Fourier Transform (FFT) . 14
3.2 Architecture derivation . 14

3.2.1 Filter choice . 14
3.2.2 Architecture parallelism and discretization 16

vi

4 Microarchitecture and System Verilog implementation 21

4.1 Mixing . 21
4.2 Filter . 22

4.2.1 Final topology and pipelining 26
4.2.2 Detailed implementation and parallelism 27
4.2.3 Results and performances 29
4.2.4 System verilog implementation 30

4.3 Decimation . 31
4.4 Unsigned conversion, square and square root 32

4.4.1 Square root module . 32
4.4.2 System verilog implementation 34

4.5 FFT . 35
4.5.1 Algorithm and general architecture 35
4.5.2 Finite state machine and behaviour 36

5 Synthesis and implementation 40

6 Results and conclusions 43

A Matlab scripts 46

B HDL 65

Bibliography 90

vii

List of Tables

4.1 a and b coefficients for the base filter 23
4.2 a and b coefficients for the LKHD filter 23
4.3 Proposed time-variant look-ahead filter coefficients 25

6.1 Frequency estimate in the case of machine precision and the quan-
tized architecture . 44

6.2 Frequency estimate in the case of machine precision and the quan-
tized architecture . 44

viii

List of Figures

1.1 Example of trilateration with 3 or more satellites 2
1.2 Frequency-time diagram of the relationship between a sent signal

(in red) and the received one (in green) for a FMCW radar 3
1.3 A Spartan®-7 SP701 FPGA . 5

2.1 EV-RADAR-MMIC2 evaluation board 6
2.2 The delay line used, an SMA 27Ghz Flexible Cable 10
2.3 Here is a photo of the whole set-up in a very close distance test,

using the evaluation board and vivaldi wideband antennas, a book
keeps the delay line in place . 11

3.1 Proposed block diagram of the full receiver 12
3.2 Third order Chebishev filter frequency response 15
3.3 Extracted modulating functions . 16
3.4 Third order quantized Chebishev filter frequency response 17
3.5 Third order quantized Chebishev filter frequency response 18
3.6 Frequency estimate degradation with respect to decimation factor . 19
3.7 Frequency estimate degradation with respect to total number of

samples . 20

4.1 Direct form II filter topology . 22
4.2 Impulse response comparison . 30
4.3 Screenshot of the main signals evolution in the filter after the cosine

mixing at f1 . 31
4.4 Square root module RTL representation 34
4.5 Evolution of the signal in the module working with the f1 transponder

signals . 35
4.6 FSM diagram . 37
4.7 FFT decimation in frequency scheme (for 16 samples) 39

5.1 Implemented design . 41
5.2 Enter Caption . 42

ix

6.1 Fitting curve . 45

x

Acronyms

AI

artificial intelligence

FMCW

frequency modulated continous wave

FFT

fast fourier transform

SV

System Verilog

FPGA

field programmable gate array

FSM

finite state machine

FT

Fourier transform

xii

Chapter 1

Introduction and motivation

1.1 Importance of Localization

High-accuracy, low-cost localization has become a staple for many applications,
from AR to robotics to navigation. Many of these require robust methods for
finding the exact position of an object in any given environment, under even adverse
conditions such as heavy clutter or low visibility. In the last few years, AR has
witnessed great usage in various fields right from gaming to training personnel in
different industrial sectors. For example, a precise location in a jet engine needs
excellent localization capabilities while training a maintenance operator with AR.
It is ability needed for enhanced precision in execution and minimizing chance of
going wrong, hence safety, in the execution of such type of maintenance tasks.

Similarly, in robotics, precise localization is a prerequisite for performing indepen-
dent tasks like autonomous navigation and manipulation of dynamic environments
[1]. Precise self-localization will definitely allow robots to find their way through
challenging settings, avoid collisions, and manipulate objects with high precision.
That potential of this competency is particularly needed within applications like
warehouse automation, where the robots should move goods efficiently without
any collision, and within healthcare, where the robotic assistants have to safely
navigate through hospital corridors.

The application of this precision is highly valuable to both outdoor and indoor[2]
navigation systems, as it provides clear guidance while enhancing the user experience.
Indoor navigation can be helpful for assisting users in big buildings such as airports,
shopping malls, and hospitals. This includes GPS-type outdoor navigation systems,
applicable within vehicles and for guiding pedestrians to desired destinations.
Immediately after this process of localization becomes more accurate, such systems
will be remarkably usable and very reliable.

1

Introduction and motivation

1.2 Trilateration

Indeed, one of the most common ways of localization is trilateration, which is
based on obtaining range information from at least three radiofrequency receivers.
Trilateration basically is an algorithm for finding where something is based upon
its distance from known points. The basic system of equations for performing
trilateration in 2D space is achieved through the distance formula:

(x − x1)
2 + (y − y1)

2 = d2

1 (1.1)

(x − x2)
2 + (y − y2)

2 = d2

2 (1.2)

(x − x3)
2 + (y − y3)

2 = d2

3 (1.3)

where (x, y) is the position to be determined, (x1, y1), (x2, y2) and (x3, y3) are the
positions of the receivers, and d1, d2 and d3 are the measured distances from the
unknown position to each receiver. This can be further improved using an active
target that produces a distinct return signal and thus allows for unambiguous
identification of the target[3].
These become considerably more complex in three-dimensional space: three-
dimensional coordinates and distances. The principle is the same, though: through
the solution of a system of equations derived from the measured distances, the exact
position of the target is determined. Trilateration has many practical applications,
starting with GPS technology, whereby the satellites are the known points and
the receiver on the ground calculates its position based on its distance from these
satellites.

Figure 1.1: Example of trilateration with 3 or more satellites

2

Introduction and motivation

This technique remains pertinent, as recent publications continue to refine and
advance it [4].

1.3 FMCW RADAR

For deriving the range information, an FMCW RADAR is quite suitable. The
FMCW RADAR sends out a signal that contains a frequency chirp, a signal whose
frequency linearly increases over time. This signal is reflected from a target back
to the RADAR with a time delay proportional to the distance of the target. The
RADAR produces a beat frequency by mixing the transmitted signal with the
received signal, this frequency is directly proportional to the distance between the
RADAR and the target. The beat frequency can be defined as:

fb = 2 ×
R

c
× B × Tc (1.4)

where R is the range to the target, c denotes the light’s speed, B is the bandwidth
of the chirp and finally, Tc denotes the duration of the chirp. This linear dependence
of the beat frequency on distance allows us to calculate the range to the target,
which makes FMCW RADARs truly effective for localization tasks in almost all
possible applications.
Particularly, FMCW RADAR has a very specific advantage with respect to areas
that may render unusable optical systems, including areas that deal with bad
lighting or obscurants such as fog, smoke, or dust. Whereas optical sensors rely on
light, RADAR systems use radio waves, which can pass easily through obscurations
and return consistent data about localization. In this respect, the application
of FMCW RADAR in autonomous vehicles would be very effective, where these
sensors would complement each other to maintain safe navigation in all weather
conditions.

Figure 1.2: Frequency-time diagram of the relationship between a sent signal (in
red) and the received one (in green) for a FMCW radar

3

Introduction and motivation

1.4 Hardware Platforms and Receiver Architec-
tures

The implementation of FMCW RADAR systems can be optimized by choosing the
right hardware platform. Field Programmable Gate Arrays (FPGAs) provide several
advantages compared to microcontrollers and Application-Specific Integrated Cir-
cuits (ASICs). FPGAs are very flexible, for instance, parallel processing is possible
which gives a large speedup in computations compared to the sequential processing
of microcontrollers. This issue becomes important in real-time applications such
as in RADAR signal processing, where delays should be minimized. Besides,
FPGAs can be reprogrammed as required to provide a level of flexibility not offered
by ASICs. Whereas ASICs may offer superior performance, with lower power
consumption for particular tasks, during manufacture they become set in their
function and therefore are not the platform of choice when rapid prototyping is
required . Yet another important decision that must be made when designing the
RADAR system is whether a fully analog, fully digital, or mixed analog/digital
receiver architecture is to be used. Fully analog receiver, while potentially simpler
and more power-efficient, suffers from its lack of flexibility and vulnerability to
component variations and noise. A fully digital receiver, on the other hand, can
offer much higher flexibility and accuracy but can also be much more complex and
power-hungry, in particular for high-frequency signals whose processing calls for
fast ADCs and intensive digital signal processing. An architecture for the mixed
analog and digital receiver combines the strengths of both approaches. In particular,
the analog front-end can carry out preliminary signal conditioning, filtering and
amplification. Sparing the digital components from working at too high frequency.
At the same time, the digital back-end can execute more sophisticated processing
tasks, like demodulation and frequency analysis, very precisely with great flexibility.
Which hardware platform and which receiver architecture are optimal depends
upon the particular application. A mixed analog-digital architecture, for example,
is likely to be preferred for portable or battery-operated devices where power
consumption is a limiting factor.

4

Introduction and motivation

Figure 1.3: A Spartan®-7 SP701 FPGA

1.5 Thesis Focus

Within this general framework, this thesis focuses on the study, simulation, and
implementation of a demodulator capable of recovering the bandpass signal gener-
ated in the downconverted RADAR signal by the active target in response to the
RADAR chirp signal. The aim of the work was implementing, on an FPGA, an
algorithm for data extraction from an FMCW RADAR signal in order to position
targets with a high grade of precision. Looking from the perspective of target range,
it can be calculated by using the demodulated received signal. The estimated beat
frequency is thus obtained, and the target can then be precisely localized using
the trilateration method. Further chapters will develop in detail the theory of
this implementation, show simulation results, and explain how this system was
implemented on an FPGA, where great advantages are enlisted for such an approach
of a challenging application.

5

Chapter 2

The RADAR board

2.1 Introduction

The EV-RADAR-MMIC2 evaluation board chosen for this work is designed for
frequency-modulated continuous-wave radar at a center frequency of 24 GHz. This
evaluation board integrates an ADF5901 chip for signal generation, an ADF5904
chip for amplifying the signals, and an ADF4159 chip for further processing the
signal. Every component on this board has its specific function in enabling radar
functionality: generating, transmitting, and receiving high-frequency radar signals
in one coherent framework. The board supports several IO connections for data
communication, power supply, and external control, which makes it highly versatile
in terms of experiments and development.

Figure 2.1: EV-RADAR-MMIC2 evaluation board

6

The RADAR board

2.2 Key Components

2.2.1 ADF5901 - 24 GHz Transmitter (TX)

The AdF5901 is monolithic microwave integrated circuit able to generate high
frequency signal upto 24GHz, it serves the TX functionality of the RADAR system.
Its main components are a phased-locked loop, a voltage controlled oscillator and
some power amplifiers.

• PLL and VCO: These components are responsible for generating the 24
GHz signal, which can be modulated as needed for FMCW radar operations.
The PLL ensures that the signal is stable and locked to a reference frequency,
while the VCO allows frequency modulation;

• Power Amplifiers: These amplifiers boost the generated RF signal to a level
suitable for transmission, ensuring that the radar can cover the desired range;

TX IOs:

• RF Output: This is the primary output of the ADF5901, which delivers the
modulated 24 GHz signal to the antenna;

• Power Supply: The ADF5901 requires a low-noise power supply, typically
at 3.3 V.

• Control IO: These include SPI pins for configuring the PLL, VCO, and
amplifiers;

2.2.2 ADF5904 - 24 GHz Receiver (RX)

The ADF5904 is a highly integrated four-channel receiver (RX) used to down-
convert the incoming 24 GHz radar signals to an IF for further processing. Each
channel corresponds to a different receive antenna, thus enabling MIMO radar
configurations.

• Low Noise Amplifiers (LNA): The ADF5904 contains low-noise amplifiers
to enhance the weak received signal without introducing significant noise;

• Mixers: These are used to down-convert the high-frequency radar signal (24
GHz) to an intermediate frequency, which is easier to process in digital form;

• Analog Outputs: After down-conversion, the resulting IF signals are sent to
the analog output pins for further digitization and processing;

RX IOs:

7

The RADAR board

• RF Inputs: These are connected to the radar’s receiving antennas, capturing
the reflected radar signals;

• IF Outputs: After down-conversion, the IF signals are output here, to be
digitized by external ADCs;

• Power Supply: The ADF5904 operates on a 3.3 V power supply.

• Control IO: Similar to the ADF5901, the ADF5904 is configured via an SPI
interface.

2.2.3 ADF4159 - PLL Frequency Synthesizer

The ADF4159 is a PLL frequency synthesizer, which is basically responsible
for controlling the frequency modulation of the signal to be transmitted. Being
fractional-N, the synthesizer provides ultra-fine steps in frequency, hence suitable for
FMCW radar. It ensures that the signal being transmitted is modulated accordingly
to a linear chirp pattern necessary in FMCW range and velocity measurement
systems.
ADF4159 IOs:

• SPI Interface: Used to configure the synthesizer’s frequency, modulation
parameters, and other settings;

• Reference Input: This is the reference clock input that determines the
stability and accuracy of the PLL;

• Control Outputs: These control signals are sent to the ADF5901 and
ADF5904 to coordinate the timing and modulation of the radar signals;

2.3 IO Interfaces and Connectivity

The onboard evaluation board offers the following IO interfaces for configuration,
data output, and signal routing:

• SPI Interface: The primary interface for controlling the ADF5901, ADF5904,
and ADF4159 chips. All configuration including PLL settings and frequency
modulation parameters, is done through this serial interface:

• Power Inputs: The board typically requires 3.3 V and 5 V power supplies
to operate the different chips and components;

• Analog IF Outputs: After down-conversion by the ADF5904, the IF signals
are output through analog pins, which are then digitized by external ADCs
for further signal processing;

8

The RADAR board

• RF Connections: The board has SMA connectors for both the RF output
of the transmitter and the RF inputs of the receiver, which are connected to
the antennas;

2.4 Strengths and Limitations of 24 GHz FMCW
Radar

The 24 GHz frequency range is applied to automotive and industrial radar applica-
tions because it offers a good balance in the trade-offs between resolution, range,
and penetration. This operation provides several advantages of compact antenna
size via a relatively short wavelength of about 12.5 mm, hence providing smaller
antennas, which are favorable for compact system designs. It also does a very
good compromise between range and resolution: it allows detecting targets several
hundred meters away, while still getting the resolution needed to tell objects a few
meters apart. Additionally, 24 GHz has less atmospheric attenuation compared
with high frequency modulations like 77 GHz; this means it will perform better
in weather conditions. This does not mean that 24 GHz FMCW radar systems
have no disadvantages. These include lower range resolution compared to higher
frequencies, which might affect the ability to differentiate between closely spaced
objects. The frequency around 24 GHz is also prone to interference due to its use in
the operation of Wi-Fi and industrial devices. Lower frequencies normally translate
to reduced Doppler resolution, which may affect the accuracy of measurements
concerning velocity.
In conclusion the 24 GHz FMCW radar system presents a good compromise among
performance, complexity, and cost for short-range radar applications. It has a
compactness, good range resolution, and manageable levels of interference as its
strong suits, making it versatile; though limitations such as reduced resolution
compared to higher frequencies are manageable through careful system design.

2.5 System Modifications: Delay Line Implemen-
tation

In this case, the radar was modified for our experimentation by adding an artificial
delay line to the RF output of the transmitter. It should now introduce an artificial
delay on the transmitted signal, making the object being detected appear further
away. The main reason for this was to increase the beat frequency; that is, the
frequency difference between the transmitted and received signals. This will turn
out to improve the range resolution in our signal processing, in particular in the
demodulator using an FFT-based approach, as it will be explained later.

9

The RADAR board

Figure 2.2: The delay line used, an SMA 27Ghz Flexible Cable

2.5.1 Delay Line Overview

An RF system’s delay line is a module that introduces programmable amount of
delay in the signal passing through it. In our implementation, we have placed
this line of delay between the RF output of the transmitter (ADF5901) and the
transmit antenna. This ensures that the signal that is transmitted is delayed before
it reaches an object to mimic increased distance. Then, this time-delayed signal
interacts with the environment and the reflections are collected by the receiver.

RF Output vs. Receiver End

We carefully placed the delay line between the ADF5901 and the transmit antenna
on the RF output instead of doing it at the receiving end between the receiving
antenna and the ADF5904. This was based on the following reason, the degradation
of the received signal: in case the delay line is on the receiver side, this would
further add noise and attenuation of a signal which has undergone reflections
and scattering already. The received signal is generally weaker compared to the
transmitted signal. Therefore, addition of the delay line at this stage may further
degrade the SNR and thus dent the overall system performance.

2.5.2 Limitations and Trade-offs

While the introduction of the delay line offered significant improvements in range
precision and signal processing, there are some limitations and trade-offs associated

10

The RADAR board

with this approach:

• Noise Figure of the Delay Line: The first major concern is about the noise
figure of the delay line. Every RF element generates a certain amount of noise
and attenuation in the signal, and the delay line is no exception. Because we
only introduced it at the RF output, we minimized the impact from putting
the delay line; however, there is some degradation in the overall quality of the
signal. This can lower the effective SNR, a very critical factor for maintaining
accurate target detection, especially in low-power radar systems.

• Insertion Loss: The power of the transmitted signal is reduced by the
insertion loss originating from the delay line. This in turn reduces the effective
radar range since the strength of the transmitted signal is crucial for long
distance detection. However, in our system targeting short-range detection of
within a few meters, this insertion loss hardly impinged on the performance.

• Complexity of Calibration: Introducing a delay line also requires careful
calibration to ensure that the system operates correctly. The added delay
changes the radar’s timing and frequency characteristics, and these must be
accounted for in both the hardware setup and the signal processing algorithms.

2.5.3 Conclusion on the Delay Line Implementation

In all, the introduction of a delay line in the transmitter path brought considerable
gain in terms of increased beat frequency and, hence, range resolution in our
FFT-based demodulation system. Although there are some disadvantages, like the
noise figure and insertion loss brought in by the delay line, these were mitigated by
placing the delay line at the RF output rather than the receiver end. This system
remained highly effective for applications in short-range radar, reaching a good
balance between complexity and cost with respect to performance.

Figure 2.3: Here is a photo of the whole set-up in a very close distance test, using
the evaluation board and vivaldi wideband antennas, a book keeps the delay line
in place

11

Chapter 3

Proposed receiver

Following what has been said about the hardware and architecture choices in the
previous paragraphs, an incoherent demodulation scheme has been chosen as it’s
simpler and more cost effective with respect to a coherent solution, in Figure 3.1
it’s possible to see all the basic blocks needed to implement both the analog and
digital portions of it.

LPF ()^2

LPF ()^2

sqrt FFT max

Digital signal processing and demodulationsin(2 π f1 + φ1)

cos(2 π f1 + φ1)

fm1

LPF ()^2

LPF ()^2

sqrt FFT max

frequency
downconversion ADC

Analog front-end

Digital signal processing and demodulationsin(2 π f2 + φ1)

cos(2 π f2 + φ1)

fm2

LPF

@500kHz

@2kHz

@2kHz
DIN

DIN

sigMc

sigMs

sigMs

sigMc

sigFc

sigFs

sigFs

sigFc

sigF

sigF

Figure 3.1: Proposed block diagram of the full receiver

The scheme presents two digital paths because the objective is to use it to detect
multiple objects, each of this objects has its transponder tuned to a different
frequency which in turn modulates the FMCW radar signal, essentially the role of
the transponders is to up-convert the two signals by a given frequency to separate
the spectrum of the two mixed signals and also to separate them from the low
frequency noise clutter.
As previously explained, the signal frequency has been modulated using a triangular
wave in such a way that, if the delayed returning signal is mixed with the transmitted

12

Proposed receiver

signal, the intermediate frequency resulting from the frequency down-conversion is
proportional to the target distance. The signal is then low-pass filtered and sampled
at the frequency of 500kHz, the two transponders frequencies are f1=100kHz and
f2=200kHz.
The frequency down-conversion is done already inside the evaluation board but
there was still the need to sample the signal before going in the digital domain, to
avoid aliasing an analog low-pass filter centered at the sampling frequency must
also be present. After sampling we can digitally process the signal, the signal is
mixed with the center frequency, which is f1 or f2, and then low-pass filtered below
2kHz, this frequency has been chosen since it would result in a distance of more
than double of what we are interested in and it’s a suitable worst case.
In order to mix the signal without the need to sync to the carrier’s phase an
incoherent demodulator that makes use of sine and cosine mixing is used. Starting
from the signal DIN, it can be demonstrated that this is in the form:

DIN(t) = x1(t)cos(2πf1t + θ1) + x2(t)cos(2πf2t + θ2) (3.1)

where

x1(t) = cos(2πfm1t), x2(t) = cos(2πfm2t) (3.2)

If we now multiply for sine and cosine, following for example the upper path and
discarding x2(t)cos(2πf2t + θ0) since it will be filtered by the low-pass filter, we
obtain:

sigMc = x1(t)cos(2πf1t + θ1)cos(2πf1t + φ1) (3.3)

sigMs = x1(t)cos(2πf1t + θ1)sin(2πf1t + φ1) (3.4)

Of course φ1 is, in general, different from θ1. Then the signals are low-pass filter to
obtain

sigFc =
1

2
x1(t)cos(θ1 − φ1) (3.5)

sigFs =
1

2
x1(t)sin(θ1 − φ1) (3.6)

We can now extract |x1(t)| by summing the squares of this signals and taking the
square root:

2
√

sigFc2 + sigFs2 = |x1(t)| (3.7)

Once we have the modulus of the signal an FFT is used to decompose the signal
into its frequency components and finally the bin with the highest absolute value
is selected as modulation frequency (actually it’s going to be double the frequency
since it’s a rectified signal).

13

Proposed receiver

3.1 Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) is an efficient algorithm for computing the
Discrete Fourier Transform (DFT), reducing the computational complexity from
O(N2) to O(N log N). The DFT transforms a sequence of N time-domain samples

x(n) into the frequency domain, defined by X(k) =
∑N−1

n=0 x(n) · e−j 2πkn

N , where
X(k) represents the frequency component at index k. The Cooley-Tukey FFT
algorithm, the most commonly used, is based on a divide-and-conquer strategy
that recursively splits the DFT into smaller DFTs. When N is a power of 2,
the input sequence is divided into its even and odd indexed elements, which
are separately processed as smaller DFTs of size N/2. This yields the relation

X(k) = DFTN/2(x(2n)) + W k
N · DFTN/2(x(2n + 1)), where W k

N = e−j 2πk

N is the
twiddle factor. This recursive process continues until the DFTs are reduced to size
2, which are trivial to compute. By reusing calculations across the recursive stages,
the FFT achieves a much faster runtime of O(N log N), making it fundamental in
various applications such as signal processing, communications, and radar systems.

3.2 Architecture derivation

Just by looking at Figure 3.1 a lot of details are missing regarding each block both in
terms of algorithm choice and parallelism. The next sections will gradually explain
the whole architecture derivation starting from the main blocks and concepts but
also covering every detail.

3.2.1 Filter choice

Since the filter is the block where the architectural choices most impact on perfor-
mance and behaviour of the system, I started defining the architecture by choosing
a filter structure, considering the cutoff frequency to sample frequency ratio is
very low (2kHz

500kHz
= 0.004) this means that we need a very selective filter, so the

only options are either a very long FIR, in the hundreds of taps range, or an IIR.
The advantages of the first choice come in the form of a linear phase and a very
straightforward structure that is easy to pipeline, while the advantages of the
second choice are the greatly reduced area and complexity since a few taps are
necessary; this is ultimately the reason that made me pick the IIR over the FIR.
In order to simulate the entire receiving chain I started from high level MatLab
scripts, first the function "signal_generation.m" in Listing A.1 creates the input
signal DIN, meaning the signal after the analog portion of the receiver in Figure 3.1,
it consists of two sinusoidal signals at the frequency of 1kHz and 2kHz upconverted
respectively by 100kHz and 200kHz, with a sampling frequency of 500kHz observed

14

Proposed receiver

over the span of 5ms.
Once the input is defined I used the script "filter_design.m" in Listing A.2 to de-
scribe each block of the system, namely: signal generation, mixing, low-pass filtering
and envelope detection through the sum of the squares as previously mentioned,
throughout the script another couple of functions are called: "plot_sprectrum.m"
in Listing A.3 which performs an FFT and plot the spectrum of the signal is used
after each stage to ensure the correct frequency manipulations are performed and
"lowpass_filtering.m" is the script in which the type of filter is selected and some
of its main characteristics plotted. Through this scripts I decided for a third order
Butterworth filter, which has the advantage of the flattest in-band response[5],
which means that if the received signal has a modulation frequency with a bit of
deviation in time the gain won’t change as much as for filters with lower ripple but
less flat response like a Chebishev filter for example.
Looking at the plotted figures we are interested in the steepness of the frequency
response (in Figure 3.2) which is more than enough considering the two biggest
components we want to separate are the two signals which are 100kHz apart more
or less, the cutoff frequency and stability of the filter are taken for granted since
it’s been designed with an internal MatLab function.

0 0.5 1 1.5 2 2.5

f/Hz 105

-350

-300

-250

-200

-150

-100

-50

0

50

2
0
lo

g
(a

b
s
(H

(f
))

)

Frequncy response

(a) Whole response

0.5 1 1.5 2 2.5

f/Hz 105

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

2
0
lo

g
(a

b
s
(H

(f
))

)

Frequncy response

(b) Only above -60dB

Figure 3.2: Third order Chebishev filter frequency response

If we run the whole script at the end we can take a look at the two outputs (sigF
of Figure 3.1) which should look like rectified sinusoidal functions with frequency
equal to 1kHz and 2kHz, respectively for the 100kHz and 200kHz modulating
transponders. Here are the two outputs considering that 300 samples have been
discarded due to the filter delay:

15

Proposed receiver

1 1.5 2 2.5 3 3.5 4 4.5

t/s 10-3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
A

m
p
lit

u
d
e

sigF_100k

(a) 100kHz transponder

1 1.5 2 2.5 3 3.5 4 4.5

t/s 10-3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
m

p
lit

u
d
e

sigF_200k

(b) 200kHz transponder

Figure 3.3: Extracted modulating functions

There’s still a bit of distortion in the first peak because a trade-off between discarded
samples and kept samples has been made at around 300 to ensure there’s enough
signal to work with when the target is very close and the frequency very low,
other than that the two components are perfectly separated without the need of a
bandpass filter after the analog portion of the receiver; whether the filter adequately
suppresses white noise and clutter noise will be addressed later on with real data
from the radar.

3.2.2 Architecture parallelism and discretization

Since the filter is the only block in the receiver where the design choice highly
influences behaviour and performance, for the moment we can postpone designing
the other blocks and instead keeping them ideal but selecting the needed parallelism
and discretization for the involved signals. Using the script "discretizaztion_test.m"
in Listing A.5 four are the parameters to be chosen:

• How many bits to be used for the filter coefficients

• How many samples to throw away due to the filter delay

• How much we can decimate after lowpass filtering the signal in order to save
computation time

• How much zeros to be added at the end of the signal in order to increase
frequency resolution (padding the FFT)

Starting with the filter coefficients parallelism, using a loop I plotted the resulting
frequency response for each choice of number of bits by using a round to nearest

16

Proposed receiver

scheme and a fixed point representation with the only exception of never selecting
a coefficient to be exactly zero as that resulted in a wrong behaviour of the filter.
The lowest number of bits that gave an acceptable transfer function is 22 as it’s
possible to see in Figure 3.4.

0 0.5 1 1.5 2 2.5

105

-500

-400

-300

-200

-100

0

100

200

15 bits

16 bits

21 bits

22 bits

fp reference

(a) Whole response

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-20

-10

0

10

20

30

40

50

60

70
15 bits

16 bits

21 bits

22 bits

fp reference

(b) Low-frequency in-band response

Figure 3.4: Third order quantized Chebishev filter frequency response

By looking at this figure where the frequency response for each quantized version
of the filter is shown against the floating point reference design, it’s clear that 22 is
the minimum number of bits to be used, especially because it’s the first filter with
a good in-band slope and a unitary gain.
Moving onto the delay of the filter we can take a look at the filter impulse response
and discard all the samples in the transient, in Figure 3.5 we can see that by
choosing to discard 250 samples the transient is not over yet but it’s a good
compromise between avoiding it and discarding too much samples.

17

Proposed receiver

-2

0

2

4

6

8

10

12
 A

m
p
lit

u
d
e

10-3 Impulse Response

0 100 200 300 400 500 600 700

n (samples)

(a) Filter impulse response

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t/s 10-3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
m

p
lit

u
d
e

sigF_100k and sigF_200k

200kHz transponder

100kHz transponder

(b) Extracted modulating functions

Figure 3.5: Third order quantized Chebishev filter frequency response

Furthermore from the extracted modulating functions we cannot see a clear transient
distorting the waves, it’s interesting to notice however that even if the filter has the
flattest possible response it’s still attenuating 3dB (in addition to the 1

2
coefficient

present due to mixing as shown in Equation 3.5 and Equation 3.6) at the cutoff
frequency of 2kHz as per definition and design, which is also the frequency of the
modulating function for the 200kHz transponder, so the blue curve in the image
has more attenuation than the orange.
To asses how much we can decimate I used an auxiliary script (Listing A.6) that
uses an FFT to estimate the frequency of the functions in Figure 3.5 and measure
the error as a function of the decimation factor, the result are in Figure 3.6, the
relative error oscillates without raising too much until a decimation factor of 40 or
even 50, which is a lot considering that fs = 500kHz imples an equivalent sampling
frequency after the decimation fs,eq = 500kHz/50 = 10kHz, and the signal we
want to express has maximum frequency equal to 2kHz (4kHz when rectified) so if
we want to have around 10 samples/period we can choose a much more conservative
decimation factor of 15.

18

Proposed receiver

0 10 20 30 40 50 60

decimation factor

0

1

2

3

4

5

6

re
la

ti
v
e
 e

rr
o
r

10-3

200kHz transponder

100kHz transponder

Figure 3.6: Frequency estimate degradation with respect to decimation factor

The last parameter to set now is the FFT padding, running a similar test to the one
just described we obtain the results in Figure 3.7, which shows that a good choice
could be to have a total of 213 = 8192 samples, considering that the signal, after
being decimated, was 150 samples long this means that the signal has been padded
with 8192 − 150 = 8042 zeros; at first this might seem unreasonable since we have
a signal to padding ratio of about 150

8042
≃ 2%, this raises the question whether it

would be possible to just reduce both the decimation factor and the padding and
keep the same 8192 total samples but with an higher signal to padding ratio. That
wouldn’t work because if we take a look at the formula for the FFT frequency
resolution in Equation 3.8 we notice that the sample frequency contributes to
the resolution as much as the number of samples and we must remember that
decimating implicitly lowers the sample frequency effectively increasing also the
spacing between the zeros of the padding and making the resolution higher.

fres =
1

tobs

=
fs

#samples
(3.8)

19

Proposed receiver

8 10 12 14 16 18 20 22 24

log2(#samples)

0

0.005

0.01

0.015

0.02

0.025

re
la

ti
v
e
 e

rr
o
r

200kHz transponder

100kHz transponder

Figure 3.7: Frequency estimate degradation with respect to total number of
samples

20

Chapter 4

Microarchitecture and
System Verilog
implementation

4.1 Mixing

There are several ways to realize a mixer and in particular to produce the needed
sinusoidal signal, for example using a LUT or the cordic algorithm, for the specific
case in Figure 3.1 we have a 500kHz sampling frequency and the mixing frequencies
are f1 = 100kHz and f2 = 200kHz, that means that we have a sampling period of
2µs and the mixing periods are T1 = 10µs and T2 = 5µs so that the least common
multiple is 10µs for both cases (5 samples), in other words we only need to produce
5 different values of sine and cosine at f1 and similarly at f2. With these premises
the best idea is probably a LUT since it’s not worth it to implement a full cordic
processor for only a few values.
Since the values coming from the ADC have a 14-bit parallelism I decided that
having higher precision for the sinusoidal signals with respect to the incoming
signal didn’t make sense, then also the output of the mixers has a 14-bit parallelism
achieved by simply discarding the LSBs from the multiplication; because of its
simplicity I didn’t produce a MatLab script to check the behaviour and performance
of this module (but the overall design has been tested and will be discussed at the
end).
Four System Verilog scripts have been produced, one for each sinusoidal signal, in
Listing B.3 is reported the one for the cosine at f1, it makes use of small LUT, a
counter to address it (working as a very simple phase accumulator basically) and a
multiplier to actually mix the input signal with the cosine.

21

Microarchitecture and System Verilog implementation

In the main script (Listing B.1) that represents the whole receiver the module has
been instantiated four times, one for each mixing operation.

4.2 Filter

Before implementing the filter using SV let’s take a look at a possible topology and
it’s maximum speed with the current design choices. A common topology for an
IIR filter to avoid using two buffers is the direct form II that, for a filter of third
degree, looks like this:

x(n)

b1

a2 b2

b0
y(n)

z-1

z-1

a3 b3
z-1

a1

(a)

x(n)

b1

a2 b2

b0
y(n)

z-1

z-1

a3 b3
z-1

a1

(b) Critical loop

Figure 4.1: Direct form II filter topology

This topology has the advantage of using only one buffer but the issue is the
highlighted yellow loop, this loop sets the iteration bound of the filter at T∞ =
T m+2T a

1
, where Tm and Ta are the multiplication and addition delays respectively,

in other words no matter the universal technique that we are going to apply the
critical path delay can’t be less than T∞. If we want to implement the filter on a
FPGA where we exploit a pre-existing block for the multiplication, which is by far
the longest operation in a filter, we ideally want to be able to isolate the delay of
the multiplier in order to complete a filter operation in a single clock cycle, to reach
this goal the only way is to apply a non-universal technique such as the look-ahead,
the idea is to remove the smallest loop of the filter in order to reduce the iteration
bound down to T∞ = T m+3T a

2
which is actually less than Tm for any reasonable

assumption on Tm and Ta.
If we apply this technique in its usual formulation, starting from the coefficients in
Table 4.1, we obtain the coefficients in Table 4.2:

22

Microarchitecture and System Verilog implementation

Base topology
a coefficients 1 -2.9497 2.9007 -0.9510
b coefficients 1.9355e-06 5.8064e-06 5.8064e-06 1.9355e-06

Table 4.1: a and b coefficients for the base filter

LKHD topology
a coefficients 1 0 -5.8002 7.6054 -2.8051
b coefficients 1.9355e-06 1.1515e-0.5 2.2934e-05 1.9063e-06 5.7091e-06

Table 4.2: a and b coefficients for the LKHD filter

The objective of the algorithm is to remove the smallest loop by having the first
feedback coefficient equal to 0, to achieve this a pole and a zero are added both at
the numerator and the denominator so they cancel out each other and the same
transfer function is achieved while having a1 = 0. If we take a look at 4.2a it
seems that the transfer function is indeed the same as before but if we look at the
impulse response for this filter in 4.2b, it diverges.

0 0.5 1 1.5 2 2.5

f/Hz 105

-350

-300

-250

-200

-150

-100

-50

0

50

2
0

lo
g

(a
b

s
(H

(f
))

)

Frequncy response

(a) LKHD topology frequency response

-5.1021

4.9739

15.0498

 A
m

p
lit

u
d

e

10307 Impulse Response

0 100 200 300 400 500 600 700 800 900

n (samples)

(b) LKHD topology impulse response

This behaviour shouldn’t be a surprise however, because the added pole and zero
are computed in such a way to remove the need of the first feedback without
imposing stability, if we want more freedom we have to keep increasing the degree
of the topology until it’s stable, the only problem is that the solutions are not
unique as we increase the order by n so we need a more reliable way to tell which
is the minimum necessary order and how to compute the solution in that case.
The literature has a lot of proposed methods to address this specific problem,
for example in [6] they propose a time-variant periodic filter able to solve the

23

Microarchitecture and System Verilog implementation

problem with a fixed increase in the filter order independently from how unstable
the look-ahead topology turns out to be. Let’s consider the LKHD filter with
the coefficients in Table 4.2, if we compute the roots of the a vector or in other
words the poles of the frequency response we obtain one pole p_0=-2.9497 whose
absolute value is definitely greater than 1 and thus the filter is unstable, in the
article they demonstrate that to compensate the unstable pole we need a filter
of ceil(p_0)+1=4 degrees higher than the base form, making it of degree 7 while
the proposed time-variant periodic solution is only 3 degrees higher making it of
degree 6, as said before the method as a fixed degree increase of 3 (if we apply
the look-ahead to remove only the first feedback) making it more or less efficient
compared to simply increasing the complexity but keeping the filter time-invariant
based on how far from 1 is the absolute value of the unstable pole, the more the
pole is unstable the more convenient is the method compared to not using it.
The procedure to get the time-variant periodic filter is quite heavy from a mathe-
matical standpoint and I believe it to be of not much interest to this thesis to go
into every detail of the computation, so I will simply summarize the scripts that
were used and briefly comment what they achieve without repeating the paper’s
content:

• Listing A.7 is the main script calling all of the others and plotting results

• Listing A.8, Listing A.9, Listing A.10, Listing A.11 and Listing A.12 are used
to better highlight some of the algebraic steps to compute the intermediate
variables needed for the method

• Listing A.13 makes use of the symbolic toolbox within MatLab to place the
poles

• "my_impz.m" in Listing A.14 is a function very similar to the built in "impz"
used to show the impulse response of a filter given its coefficients and the
number of samples, with the added capability of evaluating time-variant filters

The obtained filter coefficients are in Table 4.3, this filter is a time-variant periodic
filter with period=2. To characterize it it’s possible to plot the frequency response
for both odd and even samples as in 4.2c, the two responses are superimposed
and equal to the base form; in addition I used my custom function to show that
the impulse response does indeed converge (4.2d), as its supposed to do since the
method comes up with filters that are stable by construction.

24

Microarchitecture and System Verilog implementation

for odd samples
a coefficients b coefficients

1 1.9355e-06
0 1.1515e-05

1.1007 3.6290e-05
-12.7506 5.9132e-05
17.2126 4.5778e-05
-6.5626 -1.33562e-05

0 0
for even samples

a coefficients b coefficients
1 1.9355e-06
0 1.1515e-05

-5.8002 2.2934e-05
7.3308 1.8531e-05
-1.9951 4.11461e-06
-0.7965 -1.5944e-06
0.2611 -5.3148e-07

Table 4.3: Proposed time-variant look-ahead filter coefficients

0 0.5 1 1.5 2 2.5

f/Hz 105

-500

-400

-300

-200

-100

0

100

2
0

lo
g

(a
b

s
(H

(f
))

)

Frequency response

odd samples

even samples

(c) Frequency response

0

2

4

6

8

10

A
m

p
lit

u
d

e

10-3 Impulse Response

100 200 300 400 500 600 700

n (samples)

(d) Impulse response

Similarly to what has been done for the base topology we need to quantize the
coefficients in order to be able to represent them using a fixed point representation,
using the script in Listing A.15 I plotted one last time the frequency response
(4.2e) and the impulse response (4.2f) for the filter with quantized coefficients,
namely I chose to use 14 bits for the b coefficients and 32 for the a coefficients, this

25

Microarchitecture and System Verilog implementation

is because the feedback proved to be the main source of error, moreover, to avoid
wasting bits, the two set of coefficients are both integers but with a different scale
factor since they have a very different range, as seen in Table 4.3 |an| ∈ [1, 17.2126]
while |bn| ∈ [5.3148e − 07, 5.9132e − 05] (not counting coefficients that are exactly
zero and have no issues being represented no matter what quantization is chosen).

0 0.5 1 1.5 2 2.5

f/Hz 105

-500

-400

-300

-200

-100

0

100

2
0

lo
g

(a
b

s
(H

(f
))

)

Frequency response

floating point reference

odd samples transfer function

even samples transfer function

(e) Frequency response

0

2

4

6

8

10

A
m

p
lit

u
d

e

10-3 Impulse Response

100 200 300 400 500 600 700

n (samples)

quantized design

floating point reference

(f) Impulse response

For this choice of coefficients quantization we have almost the same frequency
response with the exception of some frequencies where the attenuation was so huge
that a small loss does not matter and at the same time the impulse response is very
similar, in particular it’s stable and converges in more or less the same number of
samples.

4.2.1 Final topology and pipelining

In order to reach the maximum speed that the change in filter design enabled
we need to make use of pipelining and retiming, before doing that one important
note is that we can’t exploit the direct form II for this filter because linearity and
time-invariance are both prerequisites for that topology transformation, so we are
going to use the direct form I in 4.2g and after some pipeling and retiming we can
obtain the topology in 4.2h.

26

Microarchitecture and System Verilog implementation

x(n)

b1(n)

b2(n)

b0(n)

z-1

z-1

b3(n)
z-1

b4(n)
z-1

b5(n)
z-1

b6(n)
z-1

a2(n)
z-1

z-1

a3(n)
z-1

a4(n)
z-1

a5(n)
z-1

a6(n)
z-1

y(n)

(g) Before pipelining and retiming

x(n)

b1(n)

b2(n)

b0(n)

z-1

z-1

b3(n)
z-1

b4(n)
z-1

b5(n)
z-1

b6(n)
z-1

a2(n)
z-1

z-1

a3(n)
z-1

a4(n)
z-1

a5(n)
z-1

a6(n)
z-1

y(n)

(h) After pipelining and retiming

Of course the coefficients are a function of n since the filter is time-variant, specif-
ically they are a function of mod2(n) since the period is equal to 2. After some
retiming and pipelining we obtain Tcp = max{5Ta, Tm} which, based on my experi-
ence, should be about the same, maybe even slightly larger for the multiplication.
If this is found to be unbalanced after synthesis another possible solution is to
simply put a number of registers at the end of the block and exploit the retiming
command of the tool itself, either way we obtained a critical path delay that is
less than the initial Tinf = Tm + 3Ta and so better than any result we could have
obtained without transforming the topology.

4.2.2 Detailed implementation and parallelism

Before writing any HDL 3 steps are still necessary:

• Define the parallelism for every signal in the circuit

• Round the excess bits coming from the multipliers

• Put at least one saturation block to avoid random spikes in the signal to
deteriorate too much the filtering process result

Since I treated every number throughout the design as an integer whose scale
factor changes accordingly to it’s maximum worst case value, starting from the

27

Microarchitecture and System Verilog implementation

feed-forward path we have a 14 bits input coming from the mixing stage that gets
multiplied by 14 bits coefficients making the result of the multiplications 27 bits or
less because some of the b coefficients are below the maximum and will produce
numbers with a foreseeable sign extension that can be simplified. In Listing A.16,
from line 27 to 31, I used cumulative sums to asses the parallelism of all the signals
after the feed-forward multiplications (vector B_bits) and after the sums (vector
Bsum_bits) without removing LSBs for the moment, which makes sense since
every coefficient is already quantized down to only have useful LSBs. The resulting
parallelism from this calculations is in 4.2i, omitting the sign extension needed
when an operator has two inputs with a different parallelism.
Once the feed-forward signal has been computed I decided that after this seven
sums I could throw away some LSBs and since there’s always a FFCS possible
between the two sub-graphs that are connected with a single arrow I went for a
somewhat sophisticated rounding scheme at the expense of complexity and delay,
the latter is not a problem if the design is further pipelined as briefly mentioned,
the rounding scheme is in Listing A.17 and simply implements a round half-up.
With this module added I was able to remove 3 LSBs based on the final filter
performance that I will show later when also the feed-back sub-graph is commented,
in 4.2j it can be seen the filter including the said rounding.

x(n)

b1(n)

b2(n)

b0(n)

z-1

z-1

b3(n)
z-1

b4(n)
z-1

b5(n)
z-1

b6(n)
z-1

a2(n)
z-1

z-1

a3(n)
z-1

a4(n)
z-1

a5(n)
z-1

a6(n)
z-1

y(n)
23

25

27

27

27

25

21

25

27

28

29

29

29

(i) Feed-forward path parallelism

x(n)

b1(n)

b2(n)

b0(n)

z-1

z-1

b3(n)
z-1

b4(n)
z-1

b5(n)
z-1

b6(n)
z-1

a2(n)
z-1

z-1

a3(n)
z-1

a4(n)
z-1

a5(n)
z-1

a6(n)
z-1

y(n)
23

25

27

27

27

25

21

25

27

28

29

29

29
round half up

26

(j) Feed-forward path rounding

To asses the parallelism of the feed-back I tried to avoid sophisticated rounding
schemes and simply opted to truncate the outputs of the multipliers, but before even
doing that one problem must be addressed: the maximum value of the output is not
known a priory, so I went with a pragmatic solution which consist in observing the

28

Microarchitecture and System Verilog implementation

amplitude of the extracted modulating functions when the receiver was really close
to the transponder, in this way I can use cumulative sums as before to compute each
node parallelism, from line 35 to 41 in Listing A.16, the result of this computations
decides the number of MSBs while the LSBs are truncated based on the achieved
performance of the filter as said before for the rounding. In 4.2k every parallelism
is shown, after that in 4.2l I inserted a saturation block to ensure that, even during
spurious transients, the filter never has an output with a bigger absolute value than
the considered worst case for the output sinusoid.

x(n)

b1(n)

b2(n)

b0(n)

z-1

z-1

b3(n)
z-1

b4(n)
z-1

b5(n)
z-1

b6(n)
z-1

a2(n)
z-1

z-1

a3(n)
z-1

a4(n)
z-1

a5(n)
z-1

a6(n)
z-1

y(n)
23

25

27

27

27

25

21

25

27

28

29

29

29
round half up

26

39

41

41

40

35

21

41

42

42

(k) Feed-forward path parallelism

x(n)

b1(n)

b2(n)

b0(n)

z-1

z-1

b3(n)
z-1

b4(n)
z-1

b5(n)
z-1

b6(n)
z-1

a2(n)
z-1

z-1

a3(n)
z-1

a4(n)
z-1

a5(n)
z-1

a6(n)
z-1

y(n)
23

25

27

27

27

25

21

25

27

28

29

29

29
round half up

26

39

41

41

40

35

40

41

42

42

sat
42

37 14

(l) Feed-forward path rounding

The output is finally truncated back to 14 bits since the precision needed for the
feedback loop is not needed anymore.
A function has been written on MatLab (Listing A.18) to replicate this exact RTL
design down to every bit handling for validation purposes.

4.2.3 Results and performances

With all this considerations in mind the said script in A.16 finally plots the impulse
response to check that it is as close as possible to the reference one, the result is in
Figure 4.2.

29

Microarchitecture and System Verilog implementation

100 200 300 400 500 600 700 800 900 1000

n (samples)

0

2

4

6

8

10

A
m

p
lit

u
d
e

10-4 Impulse response

floating point reference

true to HW design

Figure 4.2: Impulse response comparison

The main difference is in the small offset apparent when the reference completely
goes to zero and the quantized design doesn’t. The main culprit for this behaviour
is the truncation after the feed-back multiplications, if this offset is a problem one
could truncate less at the expense of complexity or deploy a more robust rounding
also in the feedbcak at the expense of complexity and potentially speed, for my
intents and purposes this behaviour doesn’t influence much the "quality" of the
filtered signal as it will later be demonstrated.

4.2.4 System verilog implementation

The main script implementing the filter is the module in Listing B.2, it takes
as inputs a signal "DIN" along with its valid signal "VIN", the clock "clk", an
asynchronous active low reset "rst_n" and the filter coefficients "a_coefficients"
and "b_coefficients", since the filter has been tailored to a specific case it could
be argued that it works only with the designed coefficients but I kept them as
inputs for flexibility and generality. The filtered output is "VOUT" along its valid
signal "VOUT", using these handshake signals makes it easier to orchestrate the
whole architecture with an higher in hierarchy module that doesn’t need to give
and receive start signals itself but just connect each sub-module.
Here is a brief description of how the filter module is implemented without going
into every small module instantiated:

• (lines 22 through 37) - Two registers are instantiated for the output signal and
valid

• (lines 44 through 56) - Two shift registers are instantiade for the feed-back
and feed-forward buffers

30

Microarchitecture and System Verilog implementation

• (lines 58 through 64) - A small 1-bit counter is instantiated to keep track of the
periodicity of the filter, a "0" means even sample, a "1" means odd sample and
so the right coefficients to use in the multiplications are selected accordingly

• (lines 66 through 93) - 12 multipliers are instantiated using also a couple of
generate to handle all the multiplications

• (lines 96 through 260) - All of the additions and subtractions are made carefully
handling the excess MSBs and LSBs

• (lines 262 through 269) - A saturator is instantiated to avoid spurious temporary
out of the dynamic behaviours

The filter module is then instantiated four times (to filter the four mixed signals)
in the main system verilog module (Listing B.1) from line 16 to line 53.

Validation

Using a simple testbench it’s possible to test the functionality of this core component:
as it’s possible to see in Figure 4.3, DIN changes after a combinational delay following
the rising edge of the clock so then the output y also switches, DOUT is y sampled.
There’s only a one clock delay between VIN and VOUT as expected since the
system has no pipeline included in this testing phase.
The reset behviour looks correct as weel as the simple periodicity counter odd_even.
The values coming out of each of the four filters has been checked against the
Matlab reference and proved to be correct.

Figure 4.3: Screenshot of the main signals evolution in the filter after the cosine
mixing at f1

4.3 Decimation

As explained in detail in subsection 3.2.2, we can exploit the fact that the signal
has been low-pass filtered by decimating it by a factor of 15, from line 131 through
193 of the main receiver module (Listing B.1), first a counter is initialized in order
to send only one validation signal to the next block every 15 validation signals
coming from the filter, then 5 registers are used to store the 4 mixed signal and the

31

Microarchitecture and System Verilog implementation

slower validation signal itself, this design choice allows for reduced complexity of
the whole design both by increasing the FFT resolution as shown in Equation 3.8
and by making possible a serial implementation for the square root in which every
signal takes 15 clock cycles to be square rooted.

4.4 Unsigned conversion, square and square root

Following the block diagram in Figure 3.1 after filtering we need to square the
numbers, as I briefly mentioned before the output of the filter is 37-bit wide and gets
cut down to 14 again by removing LSBs, I decided to use an unsigned representation
from now on since after squaring it wouldn’t make a difference anyway and we are
able to save one more LSB with the same signal dynamic, in the main receiver
script (Listing B.1) from line 197 through 219 four instances of a module called
"SignedToUnsigned" are basically doing a modulus operation to convert from a
15-bits signed to a 14-bit unsigned number without losing precision, this modulus
operation does not affect the overall behaviour since we are gonna square the
numbers with simple multipliers from line 221 through 248, the results are kept at
the full 28 bits to avoid losing precision.

4.4.1 Square root module

Since we now have a 28-bits wide signal and a decimation factor of 15 that means
that we can use a fully serial algorithm to save area and consumption.
One such algorithm is for example present in [7], this article presents a way to
calculate the square root of an N-bit number in N/2+1 clock cycles which is exactly
what we need since we have a 28 bit signal and 15 clock cycles for every sample, the
big advantage is definitely in terms of complexity: there are only 5 registers, 1 adder,
1 subtractor, 3 shifters, 5 logical OR modules, 1 comparator, and 1 multiplexer.
Here is a pseudo-code of the algorithm:

• Start

• Prepare input data D (radicand), remainder R, square root Q (quotient),
partial factor F , and bit-index i.

– Initialize radicand with input data value

– Set R = 0, Q = 0, F = 0, i = n, where n is the MSB bit-index of D.

• If the radicand has an odd number of digits:

– Expand the radicand by adding a bit of “0” as MSB.

– Then proceed to the next step.

32

Microarchitecture and System Verilog implementation

Otherwise:

– Proceed to the next step.

• Divide the radicand into sub-groups, each consisting of 2 digits starting from
the integer LSB.

• Begin calculations from the MSB sub-group to the LSB sub-group.

– Treat the current sub-group as the current partial remainder.

– Rt = D[i : i − 1], where t is the time index indicator.

• Compare the current partial remainder to the current partial factor (Ft j 1)|1.

– If the current partial remainder is greater than or equal to the current
partial factor:

∗ Update Q; Qt+1 = (Qt j 1)|1

∗ Update F ; Ft+1 = ((Ft + Ft[0]) j 1)|1

– Otherwise:

∗ Update Q; Qt+1 = (Qt j 1)|0

∗ Update F ; Ft+1 = ((Ft + Ft[0]) j 1)|0

• Subtract the partial remainder by the result of the factor multiplication:

– Append the subtraction result with the next sub-group data of D in the
LSB position of the partial remainder to update R.

– Rt+1 = ((Rt − (Ft × Ft[0])) j 2)|D[i − 2 : i − 3]

• Update the current indexes for the next iteration:

– t + 1 is updated to t

– i − 2 is updated to i

– i − 3 is updated to i − 1

• If the process is not complete:

– Return to step 7 and repeat the process.

Otherwise:

– The latest Q value is the final square root.

– The latest R value is the final remainder.

• End

The method considers two bits at a time to achieve the N/2+1 speed mentioned
before and computes quotient and remainder simultaneously, the extra clock cycle
is to adjust the result similarly to a non restoring division.

33

Microarchitecture and System Verilog implementation

4.4.2 System verilog implementation

Here is a possible RTL representation of the algorithm:

FQbuff

D

Q R

<<1

<<1

<<2

OR

OR

OR

OR

OR

+

+

comparator

1 0

input

1

-

N/2+1

N/2+1

N/2+1

N/2+1

N/2+1

N/2+1

N/2+1

N/2+1

N/2+1

N/2+1N/2+1

2

N

N

N

N

ctrl

Figure 4.4: Square root module RTL representation

In Listing B.4 5 registers are instantiated according to the scheme in Figure 4.4,
while for the combinational logic like the bit-wise OR operations and the mux an
always comb block is used to manage everything at high level.

Validation

Using a simple testbench it’s possible to test the functionality of this core component:
in Figure 4.5 it’s possible to see that only one VOUT is produce every 15 clock

34

Microarchitecture and System Verilog implementation

periods as expected from the serial implementation and decimation previously
discusssed, the same applies to the start signal; If we take the last value of Q before
the second start we get 941 so that Q2 = 885481, very close to the radicand which
is D_reg after the start signal gets sampled and it’s equal to 886986.
The difference between these two numbers, equal to D_reg − Q2 = 886986 −
885481 = is cointained in the remainder register R at the end of the computation.

Figure 4.5: Evolution of the signal in the module working with the f1 transponder
signals

4.5 FFT

4.5.1 Algorithm and general architecture

In subsection 3.2.2 we decided for a 8192 samples FFT but it’s possible to exploit
the fact the we are dealing with a real-valued input signal to halve the number of
samples to 4096 at expense of a final conversion layer.
In [8], section 3.2, we can find the formulas to achieve the simplification.
First we need to halve the signal length by creating a new complex signal that
stores half the samples in the imaginary portion of the signal:

x1(n) = g(2n)

x2(n) = g(2n + 1)

x(n) = x1(n) + jx2(n)

(4.1)

Where g(n) is the original real-valued input signal and x(n) is the complex signal
half the size of the original.
Then we can get G(k) = FT{g(n)} as:

G(k) = X(k)A(k) + X∗(N − k)B(k)

where N is half the length of g and

A(k) =
1

2
(1 − jW k

2N) and B(k) =
1

2
(1 + jW k

2N)

(4.2)

As previously mentioned the problem now is to evaluate X(k) which has half the
samples so requires half the butterflies at each stage and one less stage, but there’s

35

Microarchitecture and System Verilog implementation

one more "stage" required to get back to G through Equation 4.2, so overall we
exactly halved the complexity of the operation.
Since we have to process "only" 4096 samples, with modern FPGAs reaching clock
speeds of hundred of MHz and an observation time of the signal of 5ms we can
conclude that the best approach is probably to do a fully serial architecture since
the time constraints aren’t that aggressive and we would still achieve the full FFT
operation in under the time required to capture a frame of the signal.

4.5.2 Finite state machine and behaviour

Using the MatLab script in Listing A.19 I implemented every block with a bit to
bit correspondence to the real architecture to check performance and behaviour of
the whole architecture, in particular I evaluated a minimum of 20 bits for the FFT
internal signals to have high accuracy and recover the deterioration due to the
right-shift of 2 positions for the first FFT stage and 1 position for the consecutive
ones needed to keep the same parallelism for each stage even if the range is growing.
Additionally I also observed the need for a signal conditioning block that amplifies
the signal and makes it signed again to make sure that no matter the power of the
input signal, so no matter the distance of the object, the FFT dynamic is fully
utilised and there’s no unnecessary discretization error.
The resulting FSM is the following:

36

Microarchitecture and System Verilog implementation

IDLE

VALID1

rst_n

VALID2

VIN

VIN

VIN

VIN
VIN

GAIN_EST

VIN & fill_cnt == 74

AMPLIFY FFT_cnt == 37

FFT

FFT_cnt == 37

FFT_cnt == 2047 && stage_cnt == 11

CONV

FFT_cnt == 2047 || stage_cnt == 11

conv_cnt == 4095

MAX

conv_cnt == 4095

FFT_cnt == 370
FFT_cnt == 370

Figure 4.6: FSM diagram

Here’s a summary of each state role:

• IDLE is the state the FSM is in while waiting for the first filtered sample, it’s
entered with the first global reset and exited once the first valid from the last
stage arrives

• VALID1 and VALID2 are used to group two samples together as the real
and imaginary part of a single sample as shown in Equation 4.1, in the main
module of Listing B.1, from line 273 a shift register used to store the two
samples is instantiated, then a counter called fill counter is used to count to
74 (75 including 0) to determine when all the 150 samples present after the
decimation have all been put inside the RAM instantiated at line 370, the
FSM itself is always controlling the RAM accesses and is instantiated at line

37

Microarchitecture and System Verilog implementation

324, it also enables the counter when in VALID2 state.
The module for the RAM in Listing B.5 describes a memory with 212 40-bit
locations to accommodate both the real and imaginary part of every sample
in each location, additionally it has two ports both for writing and reading
since the butterfly module operates on two inputs and gives two outputs.

• While the RAM was being filled a register and a comparator, instantiated
from line 385 of Listing B.1 where used to find the biggest sample in order
to decide the gain of the amplification, GAIN_EST is a one-cycle state that
simply counts the number of leading zeros of the biggest sample to later shift
all the samples in the RAM by that value using a module instantiated at line
413 and a register to contain the gain value

• the AMPLIFY state then reads from the RAM all the samples, amplifies them,
and puts the back into the RAM while also converting back to signed numbers
by simply subtracting half of the dynamic to the unsigned samples coming
from the square root, this state is basically the signal conditioning state

• the FFT state is where the butterfly module in Listing B.6 is used to realize a
frequency decimated cooley-tukey algorithm, this module take as input two
complex samples A and B from the RAM and one twiddle W factor from a
ROM, the two outputs are the complex-valued A′ and B′:

A′ = A + BW

B′ = A − BW
(4.3)

The result is carried out in fixed point arithmetic and then rounded using the
same half-up rounding module described previously. Then a right shift of one
or two position is used to control the growing dynamic of numbers at each
stage of the FFT, the number of right shifts is determined using the signal
first_stage which is equal to 1 only for the first stage.
An overall scheme of the whole FFT process (in the case of 16 samples) is
shown in Figure 4.7, so there’s still a problem to be faced, how to generate the
addresses of the samples to feed the butterfly (and the twiddle factor address
as well).
It’s not hard to derive this three addresses using two counters, one for the
2048 butterfly operations (half of the sample number) and one for the 12
stages: in the main script Listing B.1 this two counters are FFT_count (line
442) and FFT_stage_count (line 453), then an additional module called
ing_addr_generator (line 463, Listing B.7) performs some simple masking
and bitwise or operations on the two counters outputs to achieve the wanted
behaviour of producing the three addresses.

38

Microarchitecture and System Verilog implementation

Figure 4.7: FFT decimation in frequency scheme (for 16 samples)

Note that the last stage leaves the results out of order so in my architecture I
directly save the results of the last stage in a different memory (to avoid over-
writing locations with useful information) called auxiliary RAM, instantiated
at line 552, all of this is handled directly by the FSM from line 174 to 214.

• the CONV state simply does what I already explained in detail, namely the
operations in Equation 4.2 similarly managing the RAM and using two ROMs
for the needed constants.

• the last state MAX searches for the biggest absolute value of every frequency
sample, by simply finding the maximum between the sum of the squares of the
real and imaginary parts of every bin, there’s no need to actually implement
an absolute value module (that would then require a square root again), the
value of the bin and its number are both saved so that we have our answer on
the biggest power frequency bin, which is gonna be the one determining the
distance of the object.

39

Chapter 5

Synthesis and
implementation

Synthesis

The last step in the design is to chose an FPGA board to synthesize and implement
the design.
Using Xilinx Vivado it’s easy to create a project, add all the HDL files and hit "run
Synthesis" but I had an issue with the RAM memory since I designed it with an
asynchronous read mode that it’s possible only if distributed RAM is used on the
board, but this kind of RAM realized with LUTs even if very fast and flexible has
a big limitation in terms of how much of it is on the board so I decided to use the
more standard block RAM which there is plenty of in any modern FPGA and run
it at double the frequency of the rest of the circuit in a way to achieve two reads in
the first half of a clock cycle and two writes in the second half.
If we add a memory wrapper between this RAM and the rest of the circuit it can
be used as if the read was asynchronous and that allowed me to avoid modifying
the entire design. I chose as target board a Spartan 7 SP701 (Figure 1.3) since
it’s a the lower end of performance, price and area and it’s more suitable to my
application.

Implementation

I chose as strategy "performance with retiming" for the reasons explained in the
filter section and after some simple lines of code to set the clock constraint I got
this result:

40

Synthesis and implementation

Figure 5.1: Implemented design

basically I let the tool do the technology mapping and routing and got the result
in Figure 5.1, checking hardware utilization in Figure 5.2: I am using only 6% of
clock buffers, 15% of IO, 8% of block RAM, less than 1% of flip flop and LUT base
RAM and 8% of LUT. The only hardware component that approaches an high
utilization is the DSP block, utilized for the multipliers and adders.

41

Synthesis and implementation

Figure 5.2: Enter Caption

Since the project mainly elaborates signals it’s perfectly reasonable to achieve high
utilization on the block that can add and multiply, so I’d say the choice of the
board is right and gets utilized to its potential.
The speed achieved with this design is of about 50MHz for the memories and
25MHz for the remaining circuits, this is definitely possible to improve by a factor
of 2/3 but the main concern for me is the delay, looking at previous simulations
the computation take about 30000 clock cycles, so the delay comes out to be
D = 30000/25MHz = 1.2ms that is perfectly accetable with an observation time
of 5ms, we even have time to handle multiple radars or different kind of operation
in the remaining 4ms. The total on-chip power comes out to be about 0.2W which
is indeed a low power consumption.

42

Chapter 6

Results and conclusions

The script Listing A.20 will be used as a reference and basically follows the block
diagram in Figure 3.1 implementing everything as in the SV but without truncations,
saturations, roundings and with a floating point representation, in other words it
follows the architecture limitations in terms of decimation and padding selection but
with machine precision calculations; the output of this script will be compared to the
output of the aforementioned script in Listing A.19 which follows the architecture
bit by bit.
To asses the precision of the system we can keep the target still and measure
multiple times its distance, ideally the system should return the same value of
the distance every time, that means that the FFT shows the main peak always
at the same frequency, in Table 6.1 we can see that that’s exactly the case for
the machine precision script, the output is always 1416.02Hz, while the quantized
structure shows a small fluctuation around 1370Hz, namely we have a standard
deviation of 0Hz in the machine precision case and 7.05Hz in the other case, this
deviation is less than 1% of the mean of the values; the difference in values between
1416.02Hz and the mean of the second column which is 1371.3Hz is not necessarily
concerning if we see it as a systematic error that can be compensated with a proper
calibration.

43

Results and conclusions

Frame number Machine precision estimate Architecture estimate

1 1416.02Hz 1375.33Hz
2 1416.02Hz 1375.33Hz
3 1416.02Hz 1375.33Hz
4 1416.02Hz 1359.05Hz
5 1416.02Hz 1371.26Hz

Table 6.1: Frequency estimate in the case of machine precision and the quantized
architecture

Here is another measurement with the object at a smaller distance:

Frame number Machine precision estimate Architecture estimate

1 1106.77Hz 1070.15Hz
2 1106.77Hz 1070.15Hz
3 1106.77Hz 1070.15Hz
4 1106.77Hz 1057.94Hz
5 1106.77Hz 1070.15Hz

Table 6.2: Frequency estimate in the case of machine precision and the quantized
architecture

Again we can notice there’s a different mean value between the two measurements
and the standard deviation is 0Hz for the machine precision case while it’s a few
Hz (5.46Hz) in the quantized architecture.
Since both estimate appear to be stable but the fixed point implementation has an
offset and possibly also a gain error, it’s important to wonder if it can predict the
distance correctly by compensating the two systematic errors.
In Figure 6.1 the result with the fixed point arithmetic are plotted on the x-axis
against the results of the floating point arithmetic in order to use a linear fitting to
to compensate gain and offset errors by finding a linear relationship between the
two estimates: the fitting function is

y = 1.017x + 20.73 (6.1)

Finally we can check if the model correctly compensate the errors and can reach
high precision for future measurements that haven’t been considered in the fitting.

44

Results and conclusions

1050 1100 1150 1200 1250 1300 1350

Architecture_est

1100

1150

1200

1250

1300

1350

1400

M
a
c
h
in

e
_
p
re

c
is

io
n
_
e
s
t

Machine_precision_est vs. Architecture_est

linear fit

Figure 6.1: Fitting curve

For example, putting the target a bit closer, we obtain 878.906Hz with the floating
point reference architecture and 842.285Hz in the fixed point case, using Equa-
tion 6.1 the compensated value is compensated = uncompensated · 1.017 + 20.73 =
877.3338Hz which is within 2% of the reference value and it’s in the same order
of magnitude of the standard deviation itself, doing the same calculations with
other distances gives similar results with errors always below 2%. Alternatively,
the compensation step could be skipped altogether if we realize that the system
still needs a calibration either way, meaning that once implemented on the real
radar board, we should use a look-up table or fitting between the output frequency
and the distance itself rather than a reference output frequency, that’s because
even if they are mathematically linked with a deterministic and known formula the
real world non-linearities can’t be enclosed in a formula. In conclusion, it has been
developed a system

• able to reject clutter noise very well to the point of having 0Hz of standard
deviation between frames (with floating point arithmetic at least)

• with a standard deviation smaller than 1% of the mean value even when highly
optimized using a cheaper fixed point arithmetic and an error below 2%

• able to detect two (or more) objects at the same time

.

45

Appendix A

Matlab scripts

Listing A.1: signal_generation.m

1 f unc t i on [s i g n a l]= s i gna l_gene ra t i on (f s , t_obs)
2

3 rng (1) ;
4

5 t =0:1/ f s : t_obs ;
6

7 f_100k =1000;
8 s ignal_100k=s i n (2∗ pi ∗100∗10^3∗ t+2∗pi ∗ rand) . ∗ s i n (2∗ pi ∗ f_100k∗ t+2∗pi ∗

rand) ;
9

10 f_200k =2000;
11 s ignal_200k=s i n (2∗ pi ∗200∗10^3∗ t+2∗pi ∗ rand) . ∗ s i n (2∗ pi ∗ f_200k∗ t+2∗pi ∗

rand) ;
12

13 s i g n a l=signal_100k+signal_200k ;
14

15 end

Listing A.2: filter_design.m

1 c l c
2 c l e a r
3 c l o s e a l l
4

5 s e t (0 , ’ DefaultFigureWindowStyle ’ , ’ docked ’) ;
6

7 % Generate i d e a l s i g n a l
8 f s =500∗10^3;
9 t_obs=5∗10^−3;

10 s i g n a l=s igna l_gene ra t i on (f s , t_obs) ;
11

46

Matlab scripts

12 % Plot input s i g n a l spectrum
13 plot_spectrum (s i gna l , f s)
14

15 %% Mixing
16 % Mixing @100kHz
17 f 0 =100∗10^3;
18 t =0:1/ f s : t_obs ;
19 cosine_100k=cos (2∗ pi ∗ f 0 ∗ t) ; % c o s i n e c a r r i e r
20 sine_100k=s i n (2∗ pi ∗ f 0 ∗ t) ; % s i n e c a r r i e r
21 sigMc_100k=s i g n a l . ∗ (cosine_100k) ; % co s i n e mixing
22 sigMs_100k=s i g n a l . ∗ (sine_100k) ; % s i n e mixing
23 plot_spectrum (sigMc_100k , f s)
24 plot_spectrum (sigMs_100k , f s)
25

26 % Mixing @200kHz
27 f 0 =200∗10^3;
28 cosine_200k=cos (2∗ pi ∗ f 0 ∗ t) ; % c o s i n e c a r r i e r
29 sine_200k=s i n (2∗ pi ∗ f 0 ∗ t) ; % s i n e c a r r i e r
30 sigMc_200k=s i g n a l . ∗ (cosine_200k) ; % co s i n e mixing
31 sigMs_200k=s i g n a l . ∗ (sine_200k) ; % s i n e mixing
32 plot_spectrum (sigMc_200k , f s)
33 plot_spectrum (sigMs_200k , f s)
34

35 %% Low−pass f i l t e r i n g
36 % Low−pass f i l t e r i n g the s i g n a l @100kHz
37 f_cut =2∗10^3;
38 order =3;
39 group_delay =300;
40 sigFc_100k=l o w p a s s _ f i l t e r i n g (f_cut , f s , order , sigMc_100k) ;
41 sigFc_100k=sigFc_100k (group_delay : end) ;
42

43 sigFs_100k=l o w p a s s _ f i l t e r i n g (f_cut , f s , order , sigMs_100k) ;
44 sigFs_100k=sigFs_100k (group_delay : end) ;
45

46 % Low−pass f i l t e r i n g the s i g n a l @200kHz
47 f_cut =2∗10^3;
48 order =3;
49 sigFc_200k=l o w p a s s _ f i l t e r i n g (f_cut , f s , order , sigMc_200k) ;
50 sigFc_200k=sigFc_200k (group_delay : end) ;
51

52 sigFs_200k=l o w p a s s _ f i l t e r i n g (f_cut , f s , order , sigMs_200k) ;
53 sigFs_200k=sigFs_200k (group_delay : end) ;
54

55 %% Envelope de t e c t i on
56 % Envelope @100kHz
57 sigF_100k=s q r t (sigFc_100k .^2+ sigFs_100k .^2) ;
58 f i g u r e
59 p lo t (sigF_100k)
60

47

Matlab scripts

61 plot_spectrum (sigF_100k , f s)
62

63 % Envelope @200kHz
64 sigF_200k=s q r t (sigFc_200k .^2+ sigFs_200k .^2) ;
65 f i g u r e
66 p lo t (sigF_200k)
67

68 plot_spectrum (sigF_200k , f s)

Listing A.3: plot_spectrum.m

1 f unc t i on plot_spectrum (s i gna l , f s)
2

3 Ns=length (s i g n a l) ;
4

5 i f mod(Ns , 2) == 0
6 f_range = l i n s p a c e (−0.5∗ f s , 0 .5∗ f s −f s /Ns , Ns) ’ ;
7 e l s e
8 f_range = l i n s p a c e (−0.5∗ f s , 0 .5∗ f s , Ns) ’ ;
9 end

10

11 S igna l=f f t s h i f t (f f t (s i g n a l)) ;
12 f i g u r e
13 p lo t (f_range ,20∗ l og (abs (S i gna l))) ;
14 t i t l e (inputname (1) , ’ I n t e r p r e t e r ’ , ’ none ’) ;
15

16 end

Listing A.4: lowpass_filtering.m

1 f unc t i on [f i l t e r e d _ s i g n a l]= l o w p a s s _ f i l t e r i n g (f_cut , f s , order , s i g n a l)
2

3 %f i l t e r d e f i n i t i o n
4 [b , a]= butte r (order , f_cut /(f s /2)) ;
5

6 %[b , a]=cheby1 (order , 1 , f_cut /(f s /2)) ;
7

8 %p l o t t i n g f i l t e r c h a r a c t e r i s t i c s
9 f i g u r e ;

10 [H, f]= f r e q z (b , a , l ength (s i g n a l) , f s) ;
11 p lo t (f , 20∗ l og (abs (H)))
12 f i g u r e
13 p lo t (f , ang le (H))
14 f i g u r e
15 grpde lay (b , a , 10^4 , f s)
16

17 f i l t e r e d _ s i g n a l=f i l t e r (b , a , s i g n a l) ;
18 save (" h " , " a " , " b ")
19 end

48

Matlab scripts

Listing A.5: discretization_test.m

1 c l c
2 c l e a r
3 c l o s e a l l
4

5 s e t (0 , ’ DefaultFigureWindowStyle ’ , ’ docked ’) ;
6

7 %% F i l t e r b i t s s e l e c t i o n
8 n _ b i t _ f i l t e r =15:22; % candidate number o f b i t s
9

10

11 N=length (n _ b i t _ f i l t e r) ;
12 f s =500∗10^3;
13

14 t r an s f e r_ func t i on=f i g u r e ;
15 hold on
16 c o l o r o r d e r (c reate_co lor_grad ient (N)) ;
17

18 f o r i =1:N
19

20 f i g u r e (t r an s f e r_ func t i on)
21 e v a l u a t e _ f i l t e r (n _ b i t _ f i l t e r (i)) ; % quant i ze f i l t e r with the

g iven number o f b i t s
22 load (" qh . mat ")
23 [H, f]= f r e q z (b , a ,10^6 , f s) ;
24 p lo t (f , 20∗ l og10 (abs (H)) , LineWidth =1.5)
25

26 end
27

28 load (" h . mat ") % load f l o a t i n g po int f i l t e r des ign
29

30 f i g u r e (t r an s f e r_ func t i on)
31 [H, f]= f r e q z (b , a ,10^6 , f s) ;
32 p lo t (f , 20∗ l og10 (abs (H)) , ’−− ’ , " Color " , " red ") % p lo t f l o a t i n g po int

t r a n s f e r func t i on as r e f e r e n c e
33 l egend ("15 b i t s " , "16 b i t s " , " " , " " , " " , " " , "21 b i t s " , "22 b i t s " , "

fp r e f e r e n c e ")
34

35 n _ b i t _ f i l t e r =22; % chose by look ing at the t r a n s f e r f u n c t i o n s
36 e v a l u a t e _ f i l t e r (n _ b i t _ f i l t e r) ; % quant i ze one more time with the

s e l e c t e d number o f b i t s
37 load (" qh . mat ")
38 f i g u r e ;
39 [H, f]= f r e q z (b , a ,10^6 , f s) ;
40 p lo t (f , 20∗ l og10 (abs (H))) % p lo t t r a n s f e r func t i on o f the quant ized

f i l t e r
41 f i g u r e
42 p lo t (f , ang le (H)) % p lo t phase w. r . t f requency
43 f i g u r e

49

Matlab scripts

44 grpde lay (b , a ,10^4 , f s) %p lo t group de lay w. r . t f requency
45

46 %% Group delay s e l e c t i o n
47

48 f i g u r e
49 impz (b , a)
50 x l i n e (250 , " r ")
51

52 gd=250;
53 [sigF_100k , sigF_200k]= evaluate_gd (gd) ;
54 f i g u r e
55 hold on
56 p lo t ((251:2251+250) /(2251+250) ∗(5∗10^ −3) , sigF_200k)
57 p lo t ((251:2251+250) /(2251+250) ∗(5∗10^ −3) , sigF_100k)
58 x l a b e l (" t / s ")
59 y l a b e l (" Amplitude ")
60 t i t l e (" s igF _100k and s igF _200k ")
61 l egend ("200 kHz transponder " , "100kHz transponder ")
62 %% Decimation f a c t o r s e l e c t i o n
63 dec imat ion_factor =1 :2 : 30 ;
64

65 N=length (dec imat ion_factor) ;
66

67 f s 0=f s ;
68 sigF_200k_0=sigF_200k ;
69 sigF_100k_0=sigF_100k ;
70

71 f o r i =1:N
72 sigF_200k=sigF_200k_0 (1 : dec imat ion_factor (i) : end) ; % decimation
73 sigF_100k=sigF_100k_0 (1 : dec imat ion_factor (i) : end) ; % decimation
74

75 f s=f s 0 / dec imat ion_factor (i) ; % updating the sample f requency
acco rd ing ly

76

77 est_freq_FFT=freq_est imate (f s , 10^7 , (sigF_200k−mean(sigF_200k)) .∗
hann (1 , l ength (sigF_200k))) ; % est imate f requency with f f t

78 err_decimation_200k (i)=abs ((est_freq_FFT+2000) /2000) ;
79

80 est_freq_FFT=freq_est imate (f s , 10^7 , (sigF_100k−mean(sigF_100k)) .∗
hann (1 , l ength (sigF_100k))) ; % est imate f requency with f f t

81 err_decimation_100k (i)=abs ((est_freq_FFT+1000) /1000) ;
82 end
83

84 f i g u r e
85 hold on
86 p lo t (dec imation_factor , err_decimation_200k)
87 p lo t (dec imation_factor , err_decimation_100k)
88

89 dec imat ion_factor =15;

50

Matlab scripts

90 sigF_200k=sigF_200k_0 (1 : dec imat ion_factor : end) ;
91 sigF_100k=sigF_100k_0 (1 : dec imat ion_factor : end) ;
92 f s=f s 0 / dec imat ion_factor ;
93

94 %% Padding s e l e c t i o n
95

96 pad_start=c e i l (l og2 (l ength (sigF_200k))) ;
97 pad_stop=c e i l (l og2 (10^7)) ;
98

99 padding=pad_start : pad_stop ;
100 N=length (padding) ;
101

102 f o r i =1:N
103 est_freq_FFT=freq_est imate (f s ,2^ padding (i) , (sigF_200k−mean(

sigF_200k)) . ∗ hann (1 , l ength (sigF_200k))) ;
104 err_padding_200k (i)=abs ((est_freq_FFT+2000) /2000) ;
105

106 est_freq_FFT=freq_est imate (f s ,2^ padding (i) , (sigF_100k−mean(
sigF_100k)) . ∗ hann (1 , l ength (sigF_100k))) ;

107 err_padding_100k (i)=abs ((est_freq_FFT+1000) /1000) ;
108 end
109

110 f i g u r e
111 hold on
112 p lo t (padding , err_padding_200k)
113 p lo t (padding , err_padding_100k)
114

115 padding =13;

Listing A.6: freq_estimate.m

1 f unc t i on [fm_est]= freq_est imate (f s ,N, s i g n a l)
2 % This func t i on p l o t s the FFT of the s i g n a l " input " c a l c u l a t e d on N
3 % po int s from the f requency fmin to the f requency fmax
4

5 Xf=f f t s h i f t (f f t (s i gna l ,N)) ;
6 Xf_abs=abs (Xf) ;
7 [~ , Imax]=max(Xf_abs (1 :N/2)) ;
8

9 Ns=length (Xf_abs) ;
10 i f mod(Ns , 2) == 0
11 f_range = l i n s p a c e (−0.5∗ f s , 0 .5∗ f s −f s /Ns , Ns) ’ ;
12 e l s e
13 f_range = l i n s p a c e (−0.5∗ f s , 0 .5∗ f s , Ns) ’ ;
14 end
15

16

17 fm2=f_range (Imax) ;
18 fm_est=fm2 /2 ;

51

Matlab scripts

19 end

Listing A.7: lkhd_stabilization.m

1 c l c
2 c l e a r
3 c l o s e a l l
4

5 s e t (0 , ’ DefaultFigureWindowStyle ’ , ’ docked ’) ;
6

7 load (" . . \ . . \ h . mat ")
8 A=a ;
9 B=b ;

10

11 d=2;
12

13 F=find_F (A, d) ;
14

15 PHI=construct_PHI (F , d) ;
16 PSI=PHI^d ;
17 GAMMA=[ze ro s (d−1 ,1) ; 1] ;
18 C=[1 ze ro s (1 , d−1)] ;
19 G_bar=construct_G_bar (PHI ,GAMMA, d) ;
20

21 lambda = [0 . 9 , 0 . 9] ;
22 K=find_K (PSI ,C, lambda) ;
23

24 H_bar=G_bar^−1∗K;
25

26 F_hat=construct_F_hat (F , H_bar , d) ;
27 A_hat=construct_A_hat (F_hat ,A) ;
28 B_hat=construct_B_hat (F_hat ,B) ;
29

30 f s =500000;
31 [H, f]= f r e q z (B_hat (1 , :) ,A_hat (1 , :) ,10^6 , f s) ;
32 p lo t (f , 20∗ l og10 (abs (H)) , "−−", LineWidth =1.5)
33 hold on
34 [H, f]= f r e q z (B_hat (2 , :) ,A_hat (2 , :) ,10^6 , f s) ;
35 p lo t (f , 20∗ l og10 (abs (H)) , " : " , LineWidth =1.5)
36

37 f i g u r e
38 my_impz(B_hat , A_hat)
39

40 load (" . . \ . . \ decimated_DL . mat ")
41 s i g n a l=decimated_DL ;
42 f i g u r e
43 p lo t (my_f i l t e r (B_hat , A_hat , s i g n a l))
44

45 save (" lkhdh " , " A_hat " , " B_hat ")

52

Matlab scripts

46

47 [a_prime , b_prime]=compute_lkhd (a , b , 1)

Listing A.8: construct_PHI.m

1 f unc t i on PHI=construct_PHI (F , d)
2

3 PHI=[z e ro s (d−1 ,1) eye (d−1,d−1)] ;
4 PHI=[PHI ; [z e r o s (1 , d−(l ength (F) −1)) f l i p (−F(2 : end))]] ;
5

6 end

Listing A.9: construct_G_bar.m

1 f unc t i on G_bar=construct_G_bar (PHI ,GAMMA, d)
2

3 G_bar = [] ;
4 f o r i =1:d
5 G_bar=[G_bar PHI^(d−i) ∗GAMMA] ;
6 end
7

8 end

Listing A.10: construct_F_hat.m

1 unct ion F_hat=construct_F_hat (F , H_bar , d)
2

3 F_hat=ze ro s (d , l ength (F)+length (H_bar)) ;
4 f o r i =1:d
5 F_hat (i , f 1 : l ength (F))=F;
6 F_hat (i , l ength (F)+i)=H_bar(i) ;
7 end
8

9 end

Listing A.11: construct_A_hat.m

1 f unc t i on A_hat=construct_A_hat (F_hat ,A)
2

3 A_hat=ze ro s (s i z e (F_hat , 1) , s i z e (F_hat , 2)+s i z e (A, 2) −1) ;
4 f o r i =1: s i z e (F_hat , 1)
5 A_hat(i , :)=conv (F_hat (i , :) ,A) ;
6 end
7

8 end

Listing A.12: construct_B_hat.m

1 f unc t i on B_hat=construct_B_hat (F_hat ,B)

53

Matlab scripts

2

3 B_hat=ze ro s (s i z e (F_hat , 1) , s i z e (F_hat , 2)+s i z e (B, 2) −1) ;
4 f o r i =1: s i z e (F_hat , 1)
5 B_hat(i , :)=conv (F_hat (i , :) ,B) ;
6 end
7

8 end

Listing A.13: find_K.m

1 f unc t i on K=find_K (PSI ,C, lambda)
2

3 % Ensure that Psi and C have compatib le dimensions
4 n = s i z e (PSI , 1) ;
5

6 % Def ine the symbol ic v a r i a b l e s f o r K
7 syms K [n 1]
8

9 % Compute the c h a r a c t e r i s t i c polynomial o f (Ps i − KC)
10 char_poly=charpoly (PSI−K∗C) ;
11

12 % Def ine the d e s i r e d c h a r a c t e r i s t i c polynomial
13 desired_char_poly=poly (lambda) ;
14

15 % Create equat ions by matching the c o e f f i c i e n t s
16 equat ions = [] ;
17 f o r i =1:n+1
18 equat ions =[equat ions ; char_poly (i)==desired_char_poly (i)] ;
19 end
20

21 % Solve the equat ions f o r K
22 s o l u t i o n=s o l v e (equat ions , K) ;
23

24 % Extract the numeric va lue s o f K
25 K=[double (s t r u c t 2a r r a y (s o l u t i o n))] ’ ;
26

27 end

Listing A.14: my_impz.m

1 f unc t i on my_impz(B_hat , A_hat)
2

3 d=s i z e (A_hat , 1) ;
4 f f _ b u f f e r=ze ro s (1 , s i z e (B_hat , 2) −1) ;
5 fb_buf f e r=ze ro s (1 , s i z e (B_hat , 2) −1) ;
6

7 f o r k = 1:10^6
8 i f k == 1
9 b=B_hat (1 , :) ;

54

Matlab scripts

10 a=A_hat (1 , :) ;
11 f f=dot ([1 f f _ b u f f e r] , b) ;
12 fb=dot (fb_buf fer , a (2 : end)) ;
13 imp_resp (k)=f f −fb ;
14 e l s e
15 b=B_hat(mod(k+1,d) +1 , :) ;
16 a=A_hat(mod(k+1,d) +1 , :) ;
17 f f=dot ([0 f f _ b u f f e r] , b) ;
18 fb=dot (fb_buf fer , a (2 : end)) ;
19 imp_resp (k)=f f −fb ;
20 end
21

22 f f _ b u f f e r (2 : end)=f f _ b u f f e r (1 : end−1) ;
23 i f (k==1)
24 f f _ b u f f e r (1) =1;
25 e l s e
26 f f _ b u f f e r (1) =0;
27 end
28 fb_buf f e r (2 : end)=fb_buf f e r (1 : end−1) ;
29 fb_buf f e r (1)=imp_resp (k) ;
30 end
31

32 I=f i n d ((imp_resp/max(imp_resp)) >10^−4, 1 , ’ l a s t ’) ;
33 stem (imp_resp (1 : I) , " f i l l e d ")
34 ax i s (" t i g h t ")
35

36 end

Listing A.15: lkhd_discretization.m

1 c l c
2 c l e a r
3 c l o s e a l l
4

5 addpath ("D: \ t e s i \ t e s i 3 . 0 ")
6 load (" lkhdh . mat ")
7 f s =500∗10^3;
8

9 s e t (0 , ’ DefaultFigureWindowStyle ’ , ’ docked ’) ;
10

11 n_bit_f i l te r_a =32; % candidate number o f b i t s
12 n_bit_f i l ter_b =14;
13

14 l a r g e s t _ c o e f f=max(abs (A_hat) , [] , " a l l ") ;
15 i n t e g e r _ b i t s=c e i l (l og2 (l a r g e s t _ c o e f f)) +1;
16 A_hat=quant i ze (A_hat , n_bit_f i l ter_a , in t ege r_b i t s , t rue) ;
17

18 B_hat=B_hat . / sum(B_hat , 2) . ∗ sum(A_hat , 2) ;
19

55

Matlab scripts

20 l a r g e s t _ c o e f f=max(abs (B_hat) , [] , " a l l ") ;
21 i n t e g e r _ b i t s=c e i l (l og2 (l a r g e s t _ c o e f f)) +1;
22 B_hat=quant i ze (B_hat , n_bit_fi l ter_b , in t ege r_b i t s , t rue) ;
23

24 save (" qlkhdh . mat " , " A_hat " , " B_hat ")
25

26 f i g u r e
27 my_impz(B_hat , A_hat)
28 hold on
29 load (" lkhdh . mat ")
30 my_impz(B_hat , A_hat)
31 l egend (" quant ized des ign " , " f l o a t i n g po int r e f e r e n c e ")
32

33 f i g u r e
34 hold on
35

36 f o r j =1:2
37

38 load (" qlkhdh . mat ")
39 [H, f]= f r e q z (B_hat(j , :) ,A_hat(j , :) ,10^6 , f s) ;
40 p lo t (f , 20∗ l og10 (abs (H)) , LineWidth =1.5)
41

42 end
43 load (" lkhdh . mat ")
44 [H, f]= f r e q z (B_hat (1 , :) ,A_hat (1 , :) ,10^6 , f s) ;
45 p lo t (f , 20∗ l og10 (abs (H)) , ’−− ’) % p lo t f l o a t i n g po int t r a n s f e r

func t i on as r e f e r e n c e
46

47

48 t i t l e (" Frequency response ")
49 x l a b e l (" f /Hz ")
50 y l a b e l ("20 log (abs (H(f))) ")
51 l egend (" f l o a t i n g po int r e f e r e n c e " , " odd samples t r a n s f e r func t i on " , "

even samples t r a n s f e r func t i on ")

Listing A.16: main_physical_filter.m

1 c l c
2 c l e a r
3 c l o s e a l l
4

5 addpath ("D: \ t e s i \ t e s i 3 . 0 ")
6 s e t (0 , ’ DefaultFigureWindowStyle ’ , ’ docked ’) ;
7

8 t_obs =0.5∗10^ −3;
9 f s =500000;

10 t =0:1/ f s : t_obs ;
11

12 A=10^−3;

56

Matlab scripts

13 f =0.5∗10^3;
14 load (" decimated_DL . mat ")
15 s i g n a l=decimated_DL ;
16

17 s i g n a l=quant ize (s i gna l , 14 , 1 , f a l s e) ;
18

19 save_as_DIN (s i g n a l) ;
20

21 load (" qlkhdh . mat ")
22

23 f b _ f r a c t i o n a l _ b i t s =42;
24 f f _ f r a c t i o n a l _ b i t s =37;
25

26 %%%%%%%%%% feed−forward p a r a l l e l i s m
27 max_Bsum_out=f l i p (max(cumsum(f l i p (abs (B_hat (1 , :)))) ,cumsum(f l i p (abs (

B_hat (2 , :)))))) ;
28 Bsum_bits=40+ c e i l (l og2 (max_Bsum_out)) +1;
29

30 max_B=max(abs (B_hat (1 , :)) , abs (B_hat (2 , :))) ;
31 B_bits=40+ c e i l (l og2 (max_B)) +1;
32

33 %%%%%%%%% feed−back p a r a l l e l i s m
34

35 worst_case_amplitude =0.01;
36

37 max_Asum_out=worst_case_amplitude ∗ f l i p (max(cumsum(f l i p (abs (A_hat (1 , :)
))) ,cumsum(f l i p (abs (A_hat (2 , :)))))) ;

38 Asum_bits=f b _ f r a c t i o n a l _ b i t s+c e i l (l og2 (max_Asum_out)) +1;
39

40 max_A=worst_case_amplitude ∗max(abs (A_hat (1 , :)) , abs (A_hat (2 , :))) ;
41 A_bits=f b _ f r a c t i o n a l _ b i t s+c e i l (l og2 (max_A)) +1;
42

43

44 f i g u r e
45 p lo t (p h y s i c a l _ f i l t e r (B_hat , A_hat , [0 . 1 z e ro s (1 ,1000)] ,

f f _ f r a c t i o n a l _ b i t s , f b _ f r a c t i o n a l _ b i t s))
46 hold on
47 f b _ f r a c t i o n a l _ b i t s =100;
48 p lo t (p h y s i c a l _ f i l t e r (B_hat , A_hat , [0 . 1 z e ro s (1 ,1000)] ,

f f _ f r a c t i o n a l _ b i t s , f b _ f r a c t i o n a l _ b i t s))
49 t i t l e (" Impulse re sponse ")
50 x l a b e l (" n (samples) ")
51 y l a b e l (" Amplitude ")
52 l egend (" f l o a t i n g po int r e f e r e n c e " , " t rue to HW des ign ")
53 ax i s (" t i g h t ")

Listing A.17: round_half_up.m

1 f unc t i on rounded = round_half_up (to_be_rounded , f r a c t i o n a l _ b i t s)

57

Matlab scripts

2 % Determine the quant i za t i on step
3 quant izat ion_step = 1 / (2 ^ f r a c t i o n a l _ b i t s) ;
4

5 % Check i f the input i s complex
6 i f ~ i s r e a l (to_be_rounded)
7 % Separate r e a l and imaginary par t s
8 rea l_part = r e a l (to_be_rounded) ;
9 imag_part = imag (to_be_rounded) ;

10

11 % Apply rounding to both par t s r e c u r s i v e l y
12 rounded_real_part = round_half_up (real_part , f r a c t i o n a l _ b i t s)

;
13 rounded_imag_part = round_half_up (imag_part , f r a c t i o n a l _ b i t s)

;
14

15 % Combine the rounded r e a l and imaginary par t s
16 rounded = rounded_real_part + 1 i ∗ rounded_imag_part ;
17 e l s e
18 % Adjust the value f o r ha l f −up rounding
19 adjusted_value = to_be_rounded + quant izat ion_step / 2 ;
20

21 % Truncate the va lue s by rounding down (f l o o r)
22 rounded = f l o o r (adjusted_value / quant izat ion_step) ∗

quant izat ion_step ;
23 end
24 end

Listing A.18: physical_filter.m

1 f unc t i on f i l t e r e d _ s i g n a l=p h y s i c a l _ f i l t e r (B_hat , A_hat , s i gna l ,
f f _ f r a c t i o n a l _ b i t s , f b _ f r a c t i o n a l _ b i t s)

2

3 d=s i z e (A_hat , 1) ;
4 f f _ b u f f e r=ze ro s (1 , s i z e (B_hat , 2) −1) ;
5 fb_buf f e r=ze ro s (1 , s i z e (B_hat , 2) −1) ;
6

7 f o r k = 1 : l ength (s i g n a l)
8

9 b=B_hat(mod(k+1,d) +1 , :) ;
10 a=A_hat(mod(k+1,d) +1 , :) ;
11

12 f f =[s i g n a l (k) f f _ b u f f e r] . ∗ b ;
13 %f f ∗2^40 %compare to mult_results_b
14 f f=sum(f f) ;
15 %f f ∗2^40 %compare to sum6
16 f f=round_half_up (f f , f f _ f r a c t i o n a l _ b i t s) ;
17 %f f ∗2^37 %compare to f f
18

19

58

Matlab scripts

20 fb=fb_buf f e r .∗ a (2 : end) ;
21 fb=truncate (fb , f b _ f r a c t i o n a l _ b i t s) ;
22 %fb ∗2^42 %compare to mult_results_a
23 fb=sum(fb) ;
24 %fb ∗2^42 %compare to sum10
25

26 f i l t e r e d _ s i g n a l (k)=f f −fb ;
27 %f i l t e r e d _ s i g n a l ∗2^42 %compare to d i f f 1 1
28

29 i f (f i l t e r e d _ s i g n a l (k)>2^−6−2^−(6+f b _ f r a c t i o n a l _ b i t s))
30 f i l t e r e d _ s i g n a l (k)=2^−6;
31 end
32

33 i f (f i l t e r e d _ s i g n a l (k)<−2^−6)
34 f i l t e r e d _ s i g n a l (k)=−2^−6;
35 end
36

37 %f i l t e r e d _ s i g n a l ∗2^42 %compare to y
38

39 f f _ b u f f e r (2 : end)=f f _ b u f f e r (1 : end−1) ;
40 f f _ b u f f e r (1)=s i g n a l (k) ;
41 fb_buf f e r (2 : end)=fb_buf f e r (1 : end−1) ;
42 fb_buf f e r (1)=f i l t e r e d _ s i g n a l (k) ;
43 end
44

45 % Plot the impulse re sponse
46 % f i g u r e
47 % plo t (f i l t e r e d _ s i g n a l)
48

49 end

Listing A.19: main_physical.m

1 c l c
2 c l e a r
3 c l o s e a l l
4

5 s e t (0 , ’ DefaultFigureWindowStyle ’ , ’ docked ’) ;
6

7 dout=readtab l e (’D: \ t e s i \ implementation \ data \ dout_values . txt ’) ;
8

9 %data ([dout . Var1+1; dout . Var2 +1])=[dout . Var3+1 i ∗dout . Var4 ; dout . Var5+1 i
∗dout . Var6] ;

10 data=dout . Var1 ;
11

12 save (" data " , " data ")
13

14 addpath ("D: \ t e s i \ t e s i 3 . 0 ")
15 load (" decimated_DL . mat ")

59

Matlab scripts

16 s i g n a l=decimated_DL ;
17

18 s i g n a l=s i gna l_cond i t i on ing (s i gna l ,1−2^−13,−1) ;
19

20 s i g n a l=quant ize (s i gna l , 14 , 1 , f a l s e) ;
21 save_as_DIN (s i g n a l) ;
22

23 % I n i t i a l sample f requency
24 f s =500∗10^3;
25

26 % Plot input s i g n a l spectrum
27 plot_spectrum (s i gna l , f s)
28

29 %% Mixing
30 % Mixing @100kHz
31 f 0 =100∗10^3;
32 Ns=length (s i g n a l) ;
33 t =0:1/ f s : (Ns−1)/ f s ;
34

35 cosine_100k=cos (2∗ pi ∗ f 0 ∗ t+1) ; % c o s i n e c a r r i e r
36 cosine_100k=quant ize (cosine_100k , 14 , 1 , f a l s e) ;
37

38 sine_100k=s i n (2∗ pi ∗ f 0 ∗ t+1) ; % s i n e c a r r i e r
39 sine_100k=quant i ze (sine_100k , 14 , 1 , f a l s e) ;
40

41 sigMc_100k=s i g n a l . ∗ (cosine_100k) ; % co s i n e mixing
42 sigMc_100k=truncate (sigMc_100k , 13) ;
43

44 sigMs_100k=s i g n a l . ∗ (sine_100k) ; % s i n e mixing
45 sigMs_100k=truncate (sigMs_100k , 13) ;
46

47 plot_spectrum (sigMc_100k , f s)
48 plot_spectrum (sigMs_100k , f s)
49

50 % Mixing @200kHz
51 f 0 =200∗10^3;
52 Ns=length (s i g n a l) ;
53 t =0:1/ f s : (Ns−1)/ f s ;
54

55 cosine_200k=cos (2∗ pi ∗ f 0 ∗ t+1) ; % c o s i n e c a r r i e r
56 cosine_200k=quant ize (cosine_200k , 14 , 1 , f a l s e) ;
57

58 sine_200k=s i n (2∗ pi ∗ f 0 ∗ t+1) ; % s i n e c a r r i e r
59 sine_200k=quant i ze (sine_200k , 14 , 1 , f a l s e) ;
60

61 sigMc_200k=s i g n a l . ∗ (cosine_200k) ; % co s i n e mixing
62 sigMc_200k=truncate (sigMc_200k , 13) ;
63

64 sigMs_200k=s i g n a l . ∗ (sine_200k) ; % s i n e mixing

60

Matlab scripts

65 sigMs_200k=truncate (sigMs_200k , 13) ;
66

67 plot_spectrum (sigMc_200k , f s)
68 plot_spectrum (sigMs_200k , f s)
69

70 %% Low−pass f i l t e r i n g
71 % Low−pass f i l t e r i n g the s i g n a l @100kHz
72 load (" qlkhdh . mat ")
73

74 b i t s _ p o s t _ f i l t e r =15;
75 f b _ f r a c t i o n a l _ b i t s =42;
76 f f _ f r a c t i o n a l _ b i t s =37;
77

78 group_delay =250;
79 sigFc_100k=p h y s i c a l _ f i l t e r (B_hat , A_hat , sigMc_100k , f f _ f r a c t i o n a l _ b i t s ,

f b _ f r a c t i o n a l _ b i t s) ;
80 sigFc_100k=sigFc_100k (group_delay +1:end) ;
81 sigFc_100k=truncate (sigFc_100k , 5+b i t s _ p o s t _ f i l t e r) ;
82

83 sigFs_100k=p h y s i c a l _ f i l t e r (B_hat , A_hat , sigMs_100k , f f _ f r a c t i o n a l _ b i t s ,
f b _ f r a c t i o n a l _ b i t s) ;

84 sigFs_100k=sigFs_100k (group_delay +1:end) ;
85 sigFs_100k=truncate (sigFs_100k , 5+b i t s _ p o s t _ f i l t e r) ;
86

87 % Low−pass f i l t e r i n g the s i g n a l @200kHz
88 sigFc_200k=p h y s i c a l _ f i l t e r (B_hat , A_hat , sigMc_200k , f f _ f r a c t i o n a l _ b i t s ,

f b _ f r a c t i o n a l _ b i t s) ;
89 sigFc_200k=sigFc_200k (group_delay +1:end) ;
90 sigFc_200k=truncate (sigFc_200k , 5+b i t s _ p o s t _ f i l t e r) ;
91

92 sigFs_200k=p h y s i c a l _ f i l t e r (B_hat , A_hat , sigMs_200k , f f _ f r a c t i o n a l _ b i t s ,
f b _ f r a c t i o n a l _ b i t s) ;

93 sigFs_200k=sigFs_200k (group_delay +1:end) ;
94 sigFs_200k=truncate (sigFs_200k , 5+b i t s _ p o s t _ f i l t e r) ;
95

96 %% Envelope de t e c t i on
97 % Envelope @100kHz
98 sigF_100k=phys i ca l_sqr t (sigFc_100k .^2+ sigFs_100k .^2 , 40) ;
99 sigF_100k=sigF_100k (1 : 1 5 : end) ∗2^20;

100 f s=f s /15 ;
101 gain=2^ f l o o r (log2 (2^14/max(sigF_100k))) ;
102 sigF_100k=sigF_100k ∗2^6;
103 sigF_100k=sigF_100k∗ gain ;
104

105 sigF_100k=sigF_100k −524288; % need to be s igned to work with the FFT
106

107 f i g u r e
108 p lo t (sigF_100k)
109

61

Matlab scripts

110 sigF_100k=sigF_100k (1 : 2 : end)+sigF_100k (2 : 2 : end) ∗1 i ;
111

112 X=physical_FFT (sigF_100k) ;
113

114 N=length (X) ;
115

116 X=[X,X(1)] ;
117

118 G=phys i ca l_conver s ion (X, N) ;
119

120 G=[G, G(end −1: −1:2)] ;
121

122 Ns=2∗N;
123

124 i f mod(Ns , 2) == 0
125 f_range = l i n s p a c e (−0.5∗ f s , 0 .5∗ f s −f s /Ns , Ns) ’ ;
126 e l s e
127 f_range = l i n s p a c e (−0.5∗ f s , 0 .5∗ f s , Ns) ’ ;
128 end
129

130 f i g u r e
131 p lo t (f_range ,20∗ l og (abs (f f t s h i f t (G)))) ;
132 t i t l e ("G" , ’ I n t e r p r e t e r ’ , ’ none ’) ;

Listing A.20: main_with_data.m

1 c l c
2 c l e a r
3 c l o s e a l l
4

5 s e t (0 , ’ DefaultFigureWindowStyle ’ , ’ docked ’) ;
6 addpath ("D: \ t e s i \ t e s i 3 . 0\ Masera\ l k h d _ s t a b i l i z a t i o n ")
7 % Load measurement
8 load (’ decimated_DL . mat ’)
9 s i g n a l=decimated_DL ;

10

11 s i g n a l=s i gna l_cond i t i on ing (s i gna l ,1−2^−13,−1) ;
12

13 % I n i t i a l sample f requency
14 f s =500∗10^3;
15

16 % Plot input s i g n a l spectrum
17 plot_spectrum (s i gna l , f s)
18

19 %% Mixing
20 % Mixing @100kHz
21 f 0 =100∗10^3;
22 Ns=length (s i g n a l) ;
23 t =0:1/ f s : (Ns−1)/ f s ;

62

Matlab scripts

24 cosine_100k=cos (2∗ pi ∗ f 0 ∗ t) ; % c o s i n e c a r r i e r
25 sine_100k=s i n (2∗ pi ∗ f 0 ∗ t) ; % s i n e c a r r i e r
26 sigMc_100k=s i g n a l . ∗ (cosine_100k) ; % co s i n e mixing
27 sigMs_100k=s i g n a l . ∗ (sine_100k) ; % s i n e mixing
28 plot_spectrum (sigMc_100k , f s)
29 plot_spectrum (sigMs_100k , f s)
30

31 % Mixing @200kHz
32 f 0 =200∗10^3;
33 Ns=length (s i g n a l) ;
34 t =0:1/ f s : (Ns−1)/ f s ;
35 cosine_200k=cos (2∗ pi ∗ f 0 ∗ t) ; % c o s i n e c a r r i e r
36 sine_200k=s i n (2∗ pi ∗ f 0 ∗ t) ; % s i n e c a r r i e r
37 sigMc_200k=s i g n a l . ∗ (cosine_200k) ; % co s i n e mixing
38 sigMs_200k=s i g n a l . ∗ (sine_200k) ; % s i n e mixing
39 plot_spectrum (sigMc_200k , f s)
40 plot_spectrum (sigMs_200k , f s)
41

42 %% Low−pass f i l t e r i n g
43 % Low−pass f i l t e r i n g the s i g n a l @100kHz
44 load (" h . mat ")
45

46 group_delay =250;
47 sigFc_100k=f i l t e r (b , a , sigMc_100k) ;
48 sigFc_100k=sigFc_100k (group_delay +1:end) ;
49

50 sigFs_100k=f i l t e r (b , a , sigMs_100k) ;
51 sigFs_100k=sigFs_100k (group_delay +1:end) ;
52

53 % Low−pass f i l t e r i n g the s i g n a l @200kHz
54 f_cut =2∗10^3;
55 order =3;
56 sigFc_200k=f i l t e r (b , a , sigMc_200k) ;
57 sigFc_200k=sigFc_200k (group_delay +1:end) ;
58

59 sigFs_200k=f i l t e r (b , a , sigMs_200k) ;
60 sigFs_200k=sigFs_200k (group_delay +1:end) ;
61

62 %% Envelope de t e c t i on
63 % Envelope @100kHz
64 sigF_100k=s q r t (sigFc_100k .^2+ sigFs_100k .^2) ;
65 f i g u r e
66 p lo t (sigF_100k)
67

68 plot_spectrum (sigF_100k , f s)
69

70 % Envelope @100kHz
71 sigF_200k=s q r t (sigFc_200k .^2+ sigFs_200k .^2) ;
72 f i g u r e

63

Matlab scripts

73 p lo t (sigF_200k)
74

75 plot_spectrum (sigF_200k , f s)
76

77 % Decimation
78 sigF_100k=sigF_100k (1 : 1 5 : end) ;
79 f s=f s /15 ;
80

81 f i g u r e
82 p lo t (sigF_100k)
83

84 plot_spectrum ([sigF_100k , z e r o s (1 ,2^12 −150)] , f s)

64

Appendix B

HDL

Listing B.1: rx.sv

1 module rx (
2

3 // Inputs
4 input l o g i c s igned [1 3 : 0] DIN,
5 input l o g i c VIN ,
6 input l o g i c rst_n ,
7 input l o g i c c lk ,
8 input l o g i c s igned [1 3 : 0] b _ c o e f f i c i e n t s [1 : 0] [6 : 0] ,
9 input l o g i c s igned [3 1 : 0] a _ c o e f f i c i e n t s [1 : 0] [6 : 2] ,

10

11 // Outputs
12 output l o g i c unsigned [3 9 : 0] DOUT,
13 output l o g i c VOUT
14) ;
15

16 ////////////////////////////////////// Mixing
//////////////////////////////////////

17

18 l o g i c s igned [1 3 : 0] sigMc_100k ;
19 mixer_cosine_100k mixer_cosine_100k_inst (
20 . c l k (c l k) ,
21 . VIN(VIN) ,
22 . rst_n (rst_n) ,
23 . input_s igna l (DIN) ,
24 . mixed_signal (sigMc_100k)
25) ;
26

27 l o g i c s igned [1 3 : 0] sigMs_100k ;
28 mixer_sine_100k mixer_sine_100k_inst (
29 . c l k (c l k) ,
30 . VIN(VIN) ,

65

HDL

31 . rst_n (rst_n) ,
32 . input_s igna l (DIN) ,
33 . mixed_signal (sigMs_100k)
34) ;
35

36 l o g i c s igned [1 3 : 0] sigMc_200k ;
37 mixer_cosine_200k mixer_cosine_200k_inst (
38 . c l k (c l k) ,
39 . VIN(VIN) ,
40 . rst_n (rst_n) ,
41 . input_s igna l (DIN) ,
42 . mixed_signal (sigMc_200k)
43) ;
44

45 l o g i c s igned [1 3 : 0] sigMs_200k ;
46 mixer_sine_200k mixer_sine_200k_inst (
47 . c l k (c l k) ,
48 . VIN(VIN) ,
49 . rst_n (rst_n) ,
50 . input_s igna l (DIN) ,
51 . mixed_signal (sigMs_200k)
52) ;
53

54 ////////////////////////////////////// Low−pass f i l t e r i n g
//////////////////////////////////////

55

56 l o g i c VOUT_filters ;
57 l o g i c s igned [3 6 : 0] sigFc_100k ;
58 cheb_lpf3_lkhd f i l t e r_co s ine_100k (
59 . DIN(sigMc_100k) ,
60 . VIN(VIN) ,
61 . rst_n (rst_n) ,
62 . c l k (c l k) ,
63 . b _ c o e f f i c i e n t s (b _ c o e f f i c i e n t s) ,
64 . a _ c o e f f i c i e n t s (a _ c o e f f i c i e n t s) ,
65 .DOUT(sigFc_100k) ,
66 .VOUT(VOUT_filters)
67) ;
68

69 l o g i c s igned [3 6 : 0] sigFs_100k ;
70 cheb_lpf3_lkhd f i l t e r_s ine_100k (
71 . DIN(sigMs_100k) ,
72 . VIN(VIN) ,
73 . rst_n (rst_n) ,
74 . c l k (c l k) ,
75 . b _ c o e f f i c i e n t s (b _ c o e f f i c i e n t s) ,
76 . a _ c o e f f i c i e n t s (a _ c o e f f i c i e n t s) ,
77 .DOUT(sigFs_100k) ,
78 .VOUT()

66

HDL

79) ;
80

81 l o g i c s igned [3 6 : 0] sigFc_200k ;
82 cheb_lpf3_lkhd f i l t e r_co s ine_200k (
83 . DIN(sigMc_200k) ,
84 . VIN(VIN) ,
85 . rst_n (rst_n) ,
86 . c l k (c l k) ,
87 . b _ c o e f f i c i e n t s (b _ c o e f f i c i e n t s) ,
88 . a _ c o e f f i c i e n t s (a _ c o e f f i c i e n t s) ,
89 .DOUT(sigFc_200k) ,
90 .VOUT()
91) ;
92

93 l o g i c s igned [3 6 : 0] sigFs_200k ;
94 cheb_lpf3_lkhd f i l t e r_s ine_200k (
95 . DIN(sigMs_200k) ,
96 . VIN(VIN) ,
97 . rst_n (rst_n) ,
98 . c l k (c l k) ,
99 . b _ c o e f f i c i e n t s (b _ c o e f f i c i e n t s) ,

100 . a _ c o e f f i c i e n t s (a _ c o e f f i c i e n t s) ,
101 .DOUT(sigFs_200k) ,
102 .VOUT()
103) ;
104

105 // Ignore the f i r s t 250 r e s u l t s o f the f i l t e r i n g
106 l o g i c del_en ;
107 l o g i c [7 : 0] del_cnt ;
108

109 SR_FF del_FF (
110 . s e t (del_cnt==8’d249 && VOUT_filters) ,
111 . r e s e t (1 ’ b0) ,
112 . c l k (c l k) ,
113 . rst_n (rst_n) ,
114 . reg_en (1 ’ b1) ,
115 .Q(del_en)
116) ;
117

118

119 counter #(8 , 250) del_cnt_inst (
120 . c l k (c l k) , // Clock s i g n a l
121 . rst_n (rst_n) , // Asynchronous a c t i v e low r e s e t
122 . s r s t (1 ’ b0) , // Asynchronous r e s e t
123 . en (VOUT_filters && ! del_en) , // Enable s i g n a l
124 . count (del_cnt) // Counter output
125) ;
126

127 l o g i c VOUT_filters_del ;

67

HDL

128 a s s i gn VOUT_filters_del = VOUT_filters && del_en ;
129

130

131 /////////////////////////////// decimation
//

132

133 l o g i c [3 : 0] dec_cnt ;
134 counter #(4 , 15) dec_cnt_inst (
135 . c l k (c l k) , // Clock s i g n a l
136 . rst_n (rst_n) , // Asynchronous a c t i v e low r e s e t
137 . s r s t (1 ’ b0) , // Asynchronous r e s e t
138 . en (VOUT_filters_del) , // Enable s i g n a l
139 . count (dec_cnt) // Counter output
140) ;
141

142 l o g i c VIN_square ;
143 a s s i gn VIN_square = (dec_cnt==4’d0) && VOUT_filters_del ;
144

145 l o g i c [1 4 : 0] dec_sigFc_100k ;
146 r e g i s t e r #(15) dec_sigFc_100k_reg (
147 . data_in (sigFc_100k [3 6 : 2 2]) ,
148 . c l k (c l k) ,
149 . rst_n (rst_n) ,
150 . s r s t (1 ’ b0) ,
151 . reg_en (VIN_square) ,
152 . data_out (dec_sigFc_100k)
153) ;
154

155 l o g i c [1 4 : 0] dec_sigFs_100k ;
156 r e g i s t e r #(15) dec_sigFs_100k_reg (
157 . data_in (sigFs_100k [3 6 : 2 2]) ,
158 . c l k (c l k) ,
159 . rst_n (rst_n) ,
160 . s r s t (1 ’ b0) ,
161 . reg_en (VIN_square) ,
162 . data_out (dec_sigFs_100k)
163) ;
164

165 l o g i c [1 4 : 0] dec_sigFc_200k ;
166 r e g i s t e r #(15) dec_sigFc_200k_reg (
167 . data_in (sigFc_200k [3 6 : 2 2]) ,
168 . c l k (c l k) ,
169 . rst_n (rst_n) ,
170 . s r s t (1 ’ b0) ,
171 . reg_en (VIN_square) ,
172 . data_out (dec_sigFc_200k)
173) ;
174

175 l o g i c [1 4 : 0] dec_sigFs_200k ;

68

HDL

176 r e g i s t e r #(15) dec_sigFs_200k_reg (
177 . data_in (sigFs_200k [3 6 : 2 2]) ,
178 . c l k (c l k) ,
179 . rst_n (rst_n) ,
180 . s r s t (1 ’ b0) ,
181 . reg_en (VIN_square) ,
182 . data_out (dec_sigFs_200k)
183) ;
184

185 l o g i c VOUT_square ;
186 r e g i s t e r #(1) VOUT_square_reg (
187 . data_in (VIN_square) ,
188 . c l k (c l k) ,
189 . rst_n (rst_n) ,
190 . s r s t (1 ’ b0) ,
191 . reg_en (1 ’ b1) ,
192 . data_out (VOUT_square)
193) ;
194

195 /////////////////////////////// unsigned convers ion , square and
square root /////////////////////////

196 // unsigned conver s i on
197 l o g i c s igned [1 3 : 0] u_sigFc_100k ;
198 SignedToUnsigned #(15) sign_cosine_100k (
199 . s igned_in (dec_sigFc_100k) ,
200 . unsigned_out (u_sigFc_100k)
201) ;
202

203 l o g i c s igned [1 3 : 0] u_sigFs_100k ;
204 SignedToUnsigned #(15) sign_sine_100k (
205 . s igned_in (dec_sigFs_100k) ,
206 . unsigned_out (u_sigFs_100k)
207) ;
208

209 l o g i c s igned [1 3 : 0] u_sigFc_200k ;
210 SignedToUnsigned #(15) sign_cosine_200k (
211 . s igned_in (dec_sigFc_200k) ,
212 . unsigned_out (u_sigFc_200k)
213) ;
214

215 l o g i c s igned [1 3 : 0] u_sigFs_200k ;
216 SignedToUnsigned #(15) sign_sine_200k (
217 . s igned_in (dec_sigFs_200k) ,
218 . unsigned_out (u_sigFs_200k)
219) ;
220

221 // squar ing
222 l o g i c s igned [2 7 : 0] s_sigFc_100k ;
223 u_mult ip l i e r #(14 , 14 , 28) mult ip l i e r_cos ine_100k (

69

HDL

224 . mu l t ip l i cand (u_sigFc_100k) ,
225 . m u l t i p l i e r (u_sigFc_100k) ,
226 . product (s_sigFc_100k)
227) ;
228

229 l o g i c s igned [2 7 : 0] s_sigFs_100k ;
230 u_mult ip l i e r #(14 , 14 , 28) mult ip l i e r_s ine_100k (
231 . mu l t ip l i cand (u_sigFs_100k) ,
232 . m u l t i p l i e r (u_sigFs_100k) ,
233 . product (s_sigFs_100k)
234) ;
235

236 l o g i c s igned [2 7 : 0] s_sigFc_200k ;
237 u_mult ip l i e r #(14 , 14 , 28) mult ip l i e r_cos ine_200k (
238 . mu l t ip l i cand (u_sigFc_200k) ,
239 . m u l t i p l i e r (u_sigFc_200k) ,
240 . product (s_sigFc_200k)
241) ;
242

243 l o g i c s igned [2 7 : 0] s_sigFs_200k ;
244 u_mult ip l i e r #(14 , 14 , 28) mult ip l i e r_s ine_200k (
245 . mu l t ip l i cand (u_sigFs_200k) ,
246 . m u l t i p l i e r (u_sigFs_200k) ,
247 . product (s_sigFs_200k)
248) ;
249

250 // sq r t
251 l o g i c [1 3 : 0] sigF_100k ;
252 s q r t #(28) sqrt_100k (
253 . c l k (c l k) ,
254 . s t a r t (VOUT_square) ,
255 . rst_n (rst_n) , // Active low r e s e t
256 .D(s_sigFc_100k+s_sigFs_100k) , // Input number
257 . Q_out(sigF_100k) , // In t eg e r square root
258 . R_out () , // Remainder
259 .VOUT(VOUT_sqrt) // Output v a l i d a t i o n s i g n a l
260) ;
261

262 l o g i c [1 3 : 0] sigF_200k ;
263 s q r t #(28) sqrt_200k (
264 . c l k (c l k) ,
265 . s t a r t (VOUT_square) ,
266 . rst_n (rst_n) , // Active low r e s e t
267 .D(s_sigFc_200k+s_sigFs_200k) , // Input number
268 . Q_out(sigF_200k) , // In t eg e r square root
269 . R_out () , // Remainder
270 .VOUT() // Output v a l i d a t i o n s i g n a l
271) ;
272

70

HDL

273 // RAM i n t e r f a c e
between f i l t e r i n g and FFT /////////////////////////////////

274 l o g i c [1 3 : 0] f i l l_SR [1 : 0] ;
275

276 s h i f t _ r e g i s t e r #(14 , 2) sh i f t_reg_ in s t (
277 . data_in (sigF_100k) , // N−b i t input data to be s h i f t e d in
278 . c l k (c l k) , // Clock s i g n a l
279 . rst_n (rst_n) , // Asynchronous a c t i v e low r e s e t
280 . sh i f t_en (VOUT_sqrt) , // S h i f t enable s i g n a l
281 . data_out () , // N−b i t s h i f t r e g i s t e r output
282 . pa ra l l e l_out (f i l l_SR) // P a r a l l e l output o f a l l r e g i s t e r

contents
283) ;
284

285 l o g i c [6 : 0] f i l l _ c n t ; // must f i l l f i r s t 150/2=75 p o s i t i o n s
286 l o g i c f i l l_cnt_en ;
287 counter #(7 , 75) f i l l i n g _ c n t _ i n s t (
288 . c l k (c l k) , // Clock s i g n a l
289 . rst_n (rst_n) , // Asynchronous a c t i v e low r e s e t
290 . s r s t (1 ’ b0) , // Asynchronous r e s e t
291 . en (f i l l_cnt_en) , // Enable s i g n a l
292 . count (f i l l _ c n t) // Counter output
293) ;
294

295 l o g i c w_en_1 , w_en_2 ;
296 l o g i c aw_en_1 , aw_en_2 ;
297 l o g i c gain_reg_en ;
298

299 l o g i c [1 1 : 0] r_addr_1 , r_addr_2 , w_addr_1 , w_addr_2 ;
300 l o g i c [3 9 : 0] r_data_1 , r_data_2 , w_data_1 , w_data_2 ;
301 l o g i c [1 1 : 0] ar_addr_1 , ar_addr_2 , aw_addr_1 , aw_addr_2 ;
302 l o g i c [3 9 : 0] ar_data_1 , ar_data_2 , aw_data_1 , aw_data_2 ;
303

304 l o g i c [1 0 : 0] FFT_cnt ;
305 l o g i c FFT_cnt_en ;
306 l o g i c VOUT_FFT;
307

308 l o g i c [3 9 : 0] ampl i f ied_1 ;
309 l o g i c [3 9 : 0] ampl i f ied_2 ;
310 l o g i c s igned [3 9 : 0] s_amplif ied_1 ;
311 l o g i c s igned [3 9 : 0] s_amplif ied_2 ;
312

313 l o g i c [3 9 : 0] A_prime , B_prime ;
314 l o g i c FFT_stage_en ;
315 l o g i c [1 1 : 0] ing1_addr , ing2_addr ;
316 l o g i c [3 : 0] stage_cnt ;
317 l o g i c conv_cnt_en ;
318

319 l o g i c [1 9 : 0] Gr , Gi ;

71

HDL

320 l o g i c [3 9 : 0] G;
321 a s s i gn G = {Gr , Gi } ;
322

323 l o g i c [1 1 : 0] conv_cnt ;
324 FFT_FSM FFT_FSM_inst(
325 . c l k (c l k) , // Clock s i g n a l
326 . rst_n (rst_n) , // Reset s i g n a l
327 . VIN(VOUT_sqrt) , // Input s i g n a l to c o n t r o l s t a t e

t r a n s i t i o n s
328 . f i l l _ c n t (f i l l _ c n t) ,
329 . f i l l_SR ({ f i l l_SR [1] , f i l l_SR [0] }) ,
330

331

332 . w_addr_1(w_addr_1) ,
333 . w_data_1(w_data_1) ,
334 . w_addr_2(w_addr_2) ,
335 . w_data_2(w_data_2) ,
336 . r_addr_1 (r_addr_1) ,
337 . r_addr_2 (r_addr_2) ,
338

339 . aw_addr_1(aw_addr_1) ,
340 . aw_data_1(aw_data_1) ,
341 . aw_addr_2(aw_addr_2) ,
342 . aw_data_2(aw_data_2) ,
343 . ar_addr_1 (ar_addr_1) ,
344 . ar_addr_2 (ar_addr_2) ,
345

346 . s_amplif ied_1 (s_amplif ied_1) ,
347 . s_amplif ied_2 (s_amplif ied_2) ,
348 . w_en_1(w_en_1) ,
349 . w_en_2(w_en_2) ,
350 . aw_en_1(aw_en_1) ,
351 . aw_en_2(aw_en_2) ,
352

353 . FFT_cnt(FFT_cnt) ,
354 . FFT_cnt_en(FFT_cnt_en) ,
355 . gain_reg_en (gain_reg_en) ,
356 . f i l l_cnt_en (f i l l_cnt_en) ,
357 .VOUT_FFT(VOUT_FFT) ,
358 . FFT_cnt_srst (FFT_cnt_srst) ,
359 . FFT_stage_en (FFT_stage_en) ,
360 . A_prime(A_prime) ,
361 . B_prime(B_prime) ,
362 . ing1_addr (ing1_addr) ,
363 . ing2_addr (ing2_addr) ,
364 . stage_cnt (stage_cnt) ,
365 . conv_cnt_en (conv_cnt_en) ,
366 .G(G) ,
367 . conv_cnt (conv_cnt)

72

HDL

368) ;
369

370 dual_port_ram #(40 , 12) ram_inst (
371 . r_addr_1 (r_addr_1) ,
372 . r_addr_2 (r_addr_2) ,
373 . w_addr_1(w_addr_1) ,
374 . w_data_1(w_data_1) ,
375 . w_en_1(w_en_1) ,
376 . w_addr_2(w_addr_2) ,
377 . w_data_2(w_data_2) ,
378 . w_en_2(w_en_2) ,
379 . c l k (c l k) ,
380 . rst_n (rst_n) ,
381 . r_data_1 (r_data_1) ,
382 . r_data_2 (r_data_2)
383) ;
384

385 // s ea r ch ing b i g g e s t va lue to dec ide a v a r i a b l e gain
386 l o g i c [1 3 : 0] current_max , next_max ;
387 r e g i s t e r #(14) max_reg (
388 . data_in (next_max) ,
389 . c l k (c l k) ,
390 . rst_n (rst_n) ,
391 . s r s t (1 ’ b0) ,
392 . reg_en (VOUT_sqrt) ,
393 . data_out (current_max)
394) ;
395

396 comparator #(14) max_comparator (
397 . a (sigF_100k) ,
398 . b (current_max) ,
399 . max(next_max)
400) ;
401

402 // s e l e c t i n g the gain (as a power o f two) by count ing the l ead ing
z e ro s o f the b i g g e s t number

403 l o g i c [3 : 0] gain , l ead ing_zeros ;
404 r e g i s t e r #(4) gain_reg (
405 . data_in (l ead ing_zeros) ,
406 . c l k (c l k) ,
407 . rst_n (rst_n) ,
408 . s r s t (1 ’ b0) ,
409 . reg_en (gain_reg_en) ,
410 . data_out (gain)
411) ;
412

413 l ead ing_zeros_counter #(14) lz_counter (
414 . in_num(current_max) ,
415 . l ead ing_zeros (l ead ing_zeros)

73

HDL

416) ;
417

418 // ampl i fy ing by removing the l ead ing z e ro s
419

420

421 a m p l i f i e r #(40 , 4) PGA_1 (
422 . in_num(r_data_1) ,
423 . ga in (gain) ,
424 . shifted_num (ampl i f ied_1)
425) ;
426

427 a m p l i f i e r #(40 , 4) PGA_2 (
428 . in_num(r_data_2) ,
429 . ga in (gain) ,
430 . shifted_num (ampl i f ied_2)
431) ;
432

433 // Back to s igned
numbers //

434

435

436 a s s i gn s_amplif ied_1 = { ampl i f ied_1 [39 :20] −20 ’
b10000000000000000000 , ampl i f ied_1 [19 :0] −20 ’ b10000000000000000000
} ;

437

438 a s s i gn s_amplif ied_2 = { ampl i f ied_2 [39 :20] −20 ’
b10000000000000000000 , ampl i f ied_2 [19 :0] −20 ’ b10000000000000000000
} ;

439

440

//

441

442 counter #(11 , 2∗∗11) FFT_cnt_inst (// i t ’ s 2^13 samples
i n c l ud i ng padding , so 2^12 being the sequence r ea l , so 2^11
b u t t e r f l i e s

443 . c l k (c l k) , // Clock s i g n a l
444 . rst_n (rst_n) , // Asynchronous a c t i v e low r e s e t
445 . s r s t (FFT_cnt_srst) , // Asynchronous r e s e t
446 . en (FFT_cnt_en) , // Enable s i g n a l
447 . count (FFT_cnt) // Counter output
448) ;
449

450 /////////////////////////////////////// FFT
///////////////////////////////////

451

452

453 counter #(4 , 12) FFT_stage_cnt (// i t ’ s 2^13 samples i n c l ud i ng
padding , so 2^12 being the sequence r ea l , so 2^11 b u t t e r f l i e s

74

HDL

454 . c l k (c l k) , // Clock s i g n a l
455 . rst_n (rst_n) , // Asynchronous a c t i v e low r e s e t
456 . s r s t (1 ’ b0) , // Asynchronous r e s e t
457 . en (FFT_stage_en) , // Enable s i g n a l
458 . count (stage_cnt) // Counter output
459) ;
460

461

462 l o g i c [1 0 : 0] twiddle_addr ;
463 // I n s t a n t i a t e the ing_addr_generator module
464 ing_addr_generator ing_addr_generator_inst (
465 . FFT_cnt(FFT_cnt) ,
466 . stage_cnt (stage_cnt) ,
467 . ing1_addr (ing1_addr) ,
468 . ing2_addr (ing2_addr) ,
469 . twiddle_addr (twiddle_addr)
470) ;
471

472 l o g i c [2 7 : 0] twidd le ;
473 l o g i c [1 9 : 0] Ar_prime , Ai_prime , Br_prime , Bi_prime ;
474 l o g i c f i r s t _ s t a g e ;
475

476 a s s i gn f i r s t _ s t a g e = stage_cnt == ’ 0 ;
477 // I n s t a n t i a t e the b u t t e r f l y module
478 b u t t e r f l y #(20) butt_inst (
479 . Ar(r_data_1 [3 9 : 2 0]) ,
480 . Ai (r_data_1 [1 9 : 0]) ,
481 . Br (r_data_2 [3 9 : 2 0]) ,
482 . Bi (r_data_2 [1 9 : 0]) ,
483 .Wr({ twidd le [2 7 : 1 4] , 6 ’ b0 }) ,
484 .Wi({ twidd le [1 3 : 0] , 6 ’ b0 }) ,
485 . Ar_prime (Ar_prime) ,
486 . Ai_prime (Ai_prime) ,
487 . Br_prime (Br_prime) ,
488 . Bi_prime (Bi_prime) ,
489 . f i r s t _ s t a g e (f i r s t _ s t a g e)
490) ;
491

492 a s s i gn A_prime = {Ar_prime , Ai_prime } ;
493 a s s i gn B_prime = {Br_prime , Bi_prime } ;
494 // twidd le rom
495

496

497 twiddle_rom twiddle_rom_inst (
498 . r_addr (twiddle_addr) ,
499 . c l k (c l k) ,
500 . rst_n (rst_n) ,
501 . r_data (twidd le)
502) ;

75

HDL

503

504 //////////////////////// conver t ing to the s o l u t i o n o f the f u l l
s i g n a l ///////////

505 // k1 rom
506

507 l o g i c [2 7 : 0] k1 ;
508 l o g i c [1 1 : 0] k1_addr ;
509 a s s i gn k1_addr = conv_cnt ;
510 k1_rom k1_rom_inst (
511 . r_addr (k1_addr) ,
512 . c l k (c l k) ,
513 . rst_n (rst_n) ,
514 . r_data (k1)
515) ;
516

517 //k2 rom
518

519 l o g i c [2 7 : 0] k2 ;
520 l o g i c [1 1 : 0] k2_addr ;
521 a s s i gn k2_addr = conv_cnt ;
522 k2_rom k2_rom_inst (
523 . r_addr (k2_addr) ,
524 . c l k (c l k) ,
525 . rst_n (rst_n) ,
526 . r_data (k2)
527) ;
528

529

530 counter #(12 , 2∗∗12) conv_cnt_inst (
531 . c l k (c l k) , // Clock s i g n a l
532 . rst_n (rst_n) , // Asynchronous a c t i v e low r e s e t
533 . s r s t (1 ’ b0) , // Asynchronous r e s e t
534 . en (conv_cnt_en) , // Enable s i g n a l
535 . count (conv_cnt) // Counter output
536) ;
537

538 // I n s t a n t i a t e the conver t e r module
539 conver t e r #(20) conv_inst (
540 . X1r (ar_data_1 [3 9 : 2 0]) ,
541 . X1i (ar_data_1 [1 9 : 0]) ,
542 . X2r (ar_data_2 [3 9 : 2 0]) ,
543 . X2i (ar_data_2 [1 9 : 0]) ,
544 . k1r ({ k1 [2 7 : 1 4] , 6 ’ b0 }) ,
545 . k1 i ({ k1 [1 3 : 0] , 6 ’ b0 }) ,
546 . k2r ({ k2 [2 7 : 1 4] , 6 ’ b0 }) ,
547 . k2 i ({ k2 [1 3 : 0] , 6 ’ b0 }) ,
548 . Gr(Gr) ,
549 . Gi (Gi)
550) ;

76

HDL

551

552 dual_port_ram #(40 , 12) aux_ram_inst (
553 . r_addr_1 (ar_addr_1) ,
554 . r_addr_2 (ar_addr_2) ,
555 . w_addr_1(aw_addr_1) ,
556 . w_data_1(aw_data_1) ,
557 . w_en_1(aw_en_1) ,
558 . w_addr_2(aw_addr_2) ,
559 . w_data_2(aw_data_2) ,
560 . w_en_2(aw_en_2) ,
561 . c l k (c l k) ,
562 . rst_n (rst_n) ,
563 . r_data_1 (ar_data_1) ,
564 . r_data_2 (ar_data_2)
565) ;
566

567 a s s i gn VOUT = VOUT_FFT;
568 // a s s i gn DOUT = {aw_addr_1 , aw_addr_2 , aw_data_1 , aw_data_2 } ;
569 a s s i gn DOUT = {w_data_1 } ;
570

571 endmodule

Listing B.2: cheb_lpf3_lkhd.sv

1 module cheb_lpf3_lkhd (
2 input l o g i c s igned [1 3 : 0] DIN,
3 input l o g i c VIN ,
4 input l o g i c rst_n ,
5 input l o g i c c lk ,
6

7 input l o g i c s igned [1 3 : 0] b _ c o e f f i c i e n t s [1 : 0] [6 : 0] ,
8 input l o g i c s igned [3 1 : 0] a _ c o e f f i c i e n t s [1 : 0] [6 : 2] ,
9

10 output l o g i c s igned [3 6 : 0] DOUT,
11 output l o g i c VOUT
12) ;
13

14 l o g i c [1 3 : 0] f f _ b u f f e r [5 : 0] ;
15 l o g i c [3 6 : 0] fb_buf f e r [5 : 0] ;
16 l o g i c [3 6 : 0] y ;
17

18 l o g i c odd_evenn ;
19 l o g i c [2 6 : 0] mult_results_b [6 : 0] ;
20 l o g i c [4 1 : 0] mult_results_a [6 : 2] ;
21

22 r e g i s t e r #(1) VOUT_reg (
23 . data_in (VIN) ,
24 . c l k (c l k) ,
25 . rst_n (rst_n) ,

77

HDL

26 . s r s t (1 ’ b0) ,
27 . reg_en (1 ’ b1) ,
28 . data_out (VOUT)
29) ;
30

31 r e g i s t e r #(37) DOUT_reg (
32 . data_in (y) ,
33 . c l k (c l k) ,
34 . rst_n (rst_n) ,
35 . s r s t (1 ’ b0) ,
36 . reg_en (VIN) ,
37 . data_out (DOUT)
38) ;
39

40 s h i f t _ r e g i s t e r #(14 , 6) f f_bu f f e r_s r eg (
41 . data_in (DIN) , // N−b i t input data to be s h i f t e d in
42 . c l k (c l k) , // Clock s i g n a l
43 . rst_n (rst_n) , // Asynchronous a c t i v e low r e s e t
44 . sh i f t_en (VIN) , // S h i f t enable s i g n a l
45 . data_out () ,
46 . pa ra l l e l_out (f f _ b u f f e r)
47) ;
48

49 s h i f t _ r e g i s t e r #(37 , 6) fb_buf fer_sreg (
50 . data_in (y) , // N−b i t input data to be s h i f t e d in
51 . c l k (c l k) , // Clock s i g n a l
52 . rst_n (rst_n) , // Asynchronous a c t i v e low r e s e t
53 . sh i f t_en (VIN) , // S h i f t enable s i g n a l
54 . data_out () ,
55 . pa ra l l e l_out (fb_buf f e r)
56) ;
57

58 counter #(1 , 2) even_oddn_cnt (
59 . c l k (c l k) , // Clock s i g n a l
60 . rst_n (rst_n) , // Asynchronous a c t i v e low r e s e t
61 . s r s t (1 ’ b0) , // Asynchronous r e s e t
62 . en (VIN) , // Enable s i g n a l
63 . count (odd_evenn) // Counter output
64) ;
65

66 m u l t i p l i e r #(14 , 14 , 27) m u l t i p l i e r (
67 . mu l t ip l i cand (DIN) , // Mult ip l i cand from f f _ b u f f e r
68 . m u l t i p l i e r (b _ c o e f f i c i e n t s [odd_evenn] [0]) , // M u l t i p l i e r

from b _ c o e f f i c i e n t s
69 . product (mult_results_b [0]) // Product s to r ed in

mult_results_b
70) ;
71

72 // Perform m u l t i p l i c a t i o n o f f f _ b u f f e r e n t r i e s with b _ c o e f f i c i e n t s

78

HDL

73 genvar i ;
74 generate
75 f o r (i = 0 ; i < 6 ; i++) begin : multiply_loop_b
76 m u l t i p l i e r #(14 , 14 , 27) mul t ip l i e r_b (
77 . mu l t ip l i cand (f f _ b u f f e r [i]) , // Mult ip l i cand from

f f _ b u f f e r
78 . m u l t i p l i e r (b _ c o e f f i c i e n t s [odd_evenn] [i +1]) , //

M u l t i p l i e r from b _ c o e f f i c i e n t s
79 . product (mult_results_b [i +1]) // Product s to r ed in

mult_results_b
80) ;
81 end
82 endgenerate
83

84 genvar j ;
85 generate
86 f o r (j = 1 ; j < 6 ; j++) begin : multiply_loop_a
87 m u l t i p l i e r #(37 , 32 , 42) mul t ip l i e r_a (
88 . mu l t ip l i cand (fb_buf f e r [j]) , // Mult ip l i cand from

f f _ b u f f e r
89 . m u l t i p l i e r (a _ c o e f f i c i e n t s [odd_evenn] [j +1]) , //

M u l t i p l i e r from b _ c o e f f i c i e n t s
90 . product (mult_results_a [j +1]) // Product s to r ed in

mult_results_b
91) ;
92 end
93 endgenerate
94

95

96 // I n s t a n t i a t e the f f adders
97 l o g i c [2 4 : 0] a1 ;
98 a s s i gn a1=mult_results_b [6] [2 4 : 0] ;
99

100 l o g i c [2 4 : 0] b1 ;
101 a s s i gn b1=mult_results_b [5] [2 4 : 0] ;
102

103 l o g i c [2 4 : 0] sum1 ;
104

105 adder #(25) adder_inst1 (
106 . a (a1) , // Connect a to input a o f the adder
107 . b (b1) , // Connect b to input b o f the adder
108 . sum(sum1) // Connect sum to output sum of the adder
109) ;
110

111 l o g i c [2 6 : 0] a2 ;
112 a s s i gn a2={{2{sum1 [2 4] } } , sum1 } ;
113

114 l o g i c [2 6 : 0] b2 ;
115 a s s i gn b2=mult_results_b [4] [2 6 : 0] ;

79

HDL

116

117 l o g i c [2 6 : 0] sum2 ;
118

119 adder #(27) adder_inst2 (
120 . a (a2) , // Connect a to input a o f the adder
121 . b (b2) , // Connect b to input b o f the adder
122 . sum(sum2) // Connect sum to output sum of the adder
123) ;
124

125 l o g i c [2 7 : 0] a3 ;
126 a s s i gn a3={{1{sum2 [2 6] } } , sum2 } ;
127

128 l o g i c [2 7 : 0] b3 ;
129 a s s i gn b3={{1{mult_results_b [3] [2 6] } } , mult_results_b [3] [2 6 : 0] } ;
130

131 l o g i c [2 7 : 0] sum3 ;
132

133 adder #(28) adder_inst3 (
134 . a (a3) , // Connect a to input a o f the adder
135 . b (b3) , // Connect b to input b o f the adder
136 . sum(sum3) // Connect sum to output sum of the adder
137) ;
138

139 l o g i c [2 8 : 0] a4 ;
140 a s s i gn a4={{1{sum3 [2 7] } } , sum3 } ;
141

142 l o g i c [2 8 : 0] b4 ;
143 a s s i gn b4={{2{mult_results_b [2] [2 6] } } , mult_results_b [2] [2 6 : 0] } ;
144

145 l o g i c [2 8 : 0] sum4 ;
146

147 adder #(29) adder_inst4 (
148 . a (a4) , // Connect a to input a o f the adder
149 . b (b4) , // Connect b to input b o f the adder
150 . sum(sum4) // Connect sum to output sum of the adder
151) ;
152

153 l o g i c [2 8 : 0] a5 ;
154 a s s i gn a5=sum4 ;
155

156 l o g i c [2 8 : 0] b5 ;
157 a s s i gn b5={{2{mult_results_b [1] [2 6] } } , mult_results_b [1] [2 6 : 0] } ;
158

159 l o g i c [2 8 : 0] sum5 ;
160

161 adder #(29) adder_inst5 (
162 . a (a5) , // Connect a to input a o f the adder
163 . b (b5) , // Connect b to input b o f the adder
164 . sum(sum5) // Connect sum to output sum of the adder

80

HDL

165) ;
166

167 l o g i c [2 8 : 0] a6 ;
168 a s s i gn a6=sum5 ;
169

170 l o g i c [2 8 : 0] b6 ;
171 a s s i gn b6={{2{mult_results_b [0] [2 6] } } , mult_results_b [0] [2 6 : 0] } ;
172

173 l o g i c [2 8 : 0] sum6 ;
174

175 adder #(29) adder_inst6 (
176 . a (a6) , // Connect a to input a o f the adder
177 . b (b6) , // Connect b to input b o f the adder
178 . sum(sum6) // Connect sum to output sum of the adder
179) ;
180

181 l o g i c [2 5 : 0] f f ;
182 half_up_rounding #(29 ,3) ff_round (
183 . in (sum6) , // Or i g i na l number
184 . out (f f) // Rounded number
185) ;
186

187 // I n s t a n t i a t e the fb adders
188 l o g i c [3 9 : 0] a7 ;
189 a s s i gn a7=mult_results_a [6] [3 9 : 0] ;
190

191 l o g i c [3 9 : 0] b7 ;
192 a s s i gn b7=mult_results_a [5] [3 9 : 0] ;
193

194 l o g i c [3 9 : 0] sum7 ;
195

196 adder #(40) adder_inst7 (
197 . a (a7) , // Connect a to input a o f the adder
198 . b (b7) , // Connect b to input b o f the adder
199 . sum(sum7) // Connect sum to output sum of the adder
200) ;
201

202 l o g i c [4 0 : 0] a8 ;
203 a s s i gn a8={{1{sum7 [3 9] } } , sum7 } ;
204

205 l o g i c [4 0 : 0] b8 ;
206 a s s i gn b8=mult_results_a [4] [4 0 : 0] ;
207

208 l o g i c [4 0 : 0] sum8 ;
209

210 adder #(41) adder_inst8 (
211 . a (a8) , // Connect a to input a o f the adder
212 . b (b8) , // Connect b to input b o f the adder
213 . sum(sum8) // Connect sum to output sum of the adder

81

HDL

214) ;
215

216 l o g i c [4 1 : 0] a9 ;
217 a s s i gn a9={{1{sum8 [4 0] } } , sum8 } ;
218

219 l o g i c [4 1 : 0] b9 ;
220 a s s i gn b9={{1{mult_results_a [3] [4 0] } } , mult_results_a [3] [4 0 : 0] } ;
221

222 l o g i c [4 1 : 0] sum9 ;
223

224 adder #(42) adder_inst9 (
225 . a (a9) , // Connect a to input a o f the adder
226 . b (b9) , // Connect b to input b o f the adder
227 . sum(sum9) // Connect sum to output sum of the adder
228) ;
229

230 l o g i c [4 1 : 0] a10 ;
231 a s s i gn a10={{1{sum9 [4 0] } } , sum9 } ;
232

233 l o g i c [4 1 : 0] b10 ;
234 a s s i gn b10={{2{mult_results_a [2] [4 0] } } , mult_results_a [2] [4 0 : 0] } ;
235

236 l o g i c [4 1 : 0] sum10 ;
237

238

239 adder #(42) adder_inst10 (
240 . a (a10) , // Connect a to input a o f the adder
241 . b (b10) , // Connect b to input b o f the adder
242 . sum(sum10) // Connect sum to output sum of the adder
243) ;
244

245 // I n s t a n t i a t e the f i n a l subt rac to r
246

247 l o g i c [4 1 : 0] a11 ;
248 a s s i gn a11={{11{ f f [2 5] } } , f f , 5 ’ b00000 } ;
249

250 l o g i c [4 1 : 0] b11 ;
251 a s s i gn b11=sum10 ;
252

253 l o g i c [4 1 : 0] d i f f 1 1 ;
254

255

256 subt rac to r #(42) subt rac to r_ins t11 (
257 . a (a11) , // Connect a to input a o f the adder
258 . b (b11) , // Connect b to input b o f the adder
259 . d i f f (d i f f 1 1) // Connect sum to output sum of the adder
260) ;
261

262 // I n s t a n t i a t e the s a t u r a t i o n module

82

HDL

263 s a t u r a t i o n #(
264 . input_N (42) ,
265 . output_N (37)
266) s a tu ra t i on_ in s t (
267 . in (d i f f 1 1) , // Connect the unsaturated output
268 . out (y) // Connect the saturated output
269) ;
270

271 endmodule

Listing B.3: mixer_cosine_100k.sv

1 module mixer_cosine_100k (
2 input l o g i c c lk ,
3 input l o g i c VIN ,
4 input l o g i c rst_n ,
5 input l o g i c s igned [1 3 : 0] input_signal ,
6 output l o g i c s igned [1 3 : 0] mixed_signal
7) ;
8

9 // Sine lookup tab l e
10 const l o g i c s igned [1 3 : 0] s ine_lut [0 : 4] = ’{13 ’ d4426 ,
11 −13’d5188 ,
12 −13’d7633 ,
13 13 ’ d471 ,
14 13 ’ d7924 } ;
15

16 // Index f o r the s i n e LUT
17 l o g i c [2 : 0] index ;
18

19 counter #(3 , 5) cnt_100k (
20 . c l k (c l k) , // Clock s i g n a l
21 . rst_n (rst_n) , // Asynchronous a c t i v e low r e s e t
22 . s r s t (1 ’ b0) , // Asynchronous r e s e t
23 . en (VIN) , // Enable s i g n a l
24 . count (index) // Counter output
25) ;
26

27 // Mix the input s i g n a l with the s i n e wave
28 m u l t i p l i e r #(14 , 14 , 14) mult ip l i e r_100k (
29 . mu l t ip l i cand (input_s igna l) , // Mult ip l i cand from f f _ b u f f e r
30 . m u l t i p l i e r (s ine_lut [index]) , // M u l t i p l i e r from b _ c o e f f i c i e n t s
31 . product (mixed_signal) // Product s to r ed in mult_results_b
32) ;
33

34

35 endmodule

Listing B.4: sqrt.sv

83

HDL

1 module s q r t #(parameter i n t N = 6) (// Defau l t b i t−width parameter
2 input l o g i c c lk ,
3 input l o g i c s ta r t ,
4 input l o g i c rst_n , // Active low r e s e t
5 input l o g i c [N−1:0] D, // Input number
6 output l o g i c [N/2 −1:0] Q_out , // In t eg e r square root
7 output l o g i c [N−1:0] R_out , // Remainder
8 output l o g i c VOUT // Output v a l i d a t i o n s i g n a l
9) ;

10

11 // I n t e r n a l r e g i s t e r s
12 l o g i c [3 : 0] i ;
13 l o g i c [1 : 0] D_ctrl ;
14 l o g i c [N−1:0] D_reg ;
15 l o g i c en ;
16

17 // For a 28 b i t number , (28/2+1)=15 c l k c y c l e s are needed
18 down_counter #(4 , N/2) i_cnt (
19 . c l k (c l k) , // Clock s i g n a l
20 . rst_n (rst_n) , // Asynchronous a c t i v e low r e s e t
21 . en (en) , // Enable s i g n a l
22 . count (i) // Counter output
23) ;
24

25 SR_FF en_FF (
26 . s e t (s t a r t) ,
27 . r e s e t (VOUT) ,
28 . c l k (c l k) ,
29 . rst_n (rst_n) ,
30 . reg_en (1 ’ b1) ,
31 .Q(en)
32) ;
33

34 r e g i s t e r #(N) D_reg_inst (
35 . data_in (D) ,
36 . c l k (c l k) ,
37 . rst_n (rst_n) ,
38 . s r s t (1 ’ b0) ,
39 . reg_en (s t a r t) ,
40 . data_out (D_reg)
41) ;
42

43 l o g i c [N/ 2 : 0] F ;
44 l o g i c [N/ 2 : 0] F_reg ;
45 r e g i s t e r #(N/2+1) F_reg_inst (
46 . data_in (F) ,
47 . c l k (c l k) ,
48 . rst_n (rst_n) ,

84

HDL

49 . s r s t (VOUT) ,
50 . reg_en (en) ,
51 . data_out (F_reg)
52) ;
53

54 l o g i c [N/ 2 : 0] Q_buff ;
55 l o g i c [N/ 2 : 0] Q_buff_reg ;
56 r e g i s t e r #(N/2+1) Q_buff_reg_inst (
57 . data_in (Q_buff) ,
58 . c l k (c l k) ,
59 . rst_n (rst_n) ,
60 . s r s t (VOUT) ,
61 . reg_en (en) ,
62 . data_out (Q_buff_reg)
63) ;
64

65 l o g i c [N/ 2 : 0] Q;
66 l o g i c [N/ 2 : 0] Q_reg ;
67 r e g i s t e r #(N/2+1) Q_reg_inst (
68 . data_in (Q) ,
69 . c l k (c l k) ,
70 . rst_n (rst_n) ,
71 . s r s t (VOUT) ,
72 . reg_en (en) ,
73 . data_out (Q_reg)
74) ;
75

76 l o g i c [N−1:0] R;
77 l o g i c [N−1:0] R_reg ;
78 r e g i s t e r #(N) R_reg_inst (
79 . data_in (R) ,
80 . c l k (c l k) ,
81 . rst_n (rst_n) ,
82 . s r s t (VOUT) ,
83 . reg_en (en) ,
84 . data_out (R_reg)
85) ;
86

87 // VOUT
88 a s s i gn VOUT= (i == ’0) ;
89

90 l o g i c [N/ 2 : 0] F_cond ;
91 l o g i c [N−1:0] R_cond ;
92

93 // Combinational b lock to a s s i gn D_ctrl
94 always_comb begin
95 D_ctrl = D_reg [2∗ i + 1 −: 2] ;
96 R_cond = {R_reg [N−3 :0] , D_ctrl } ;
97 F_cond = {F_reg [N/2 −1:0] , 1 ’ b1 } ;

85

HDL

98 i f (R_cond >= F_cond) begin
99 R = R_cond−F_cond ;

100 Q = {Q_buff_reg [N/2 −1:1] , 1 ’ b1 } ;
101 Q_buff = {Q_buff_reg [N/2 −2:1] , 1 ’ b1 , 1 ’ b0 } ;
102 F={F_reg , 1 ’ b1}+1’b1 ;
103 end e l s e begin
104 R = R_cond ;
105 Q = Q_buff_reg ;
106 Q_buff = {Q_buff_reg [N/2 −2:0] , 1 ’ b0 } ;
107 F={F_reg , 1 ’ b0 } ;
108 end
109 end
110

111 a s s i gn Q_out = Q[N/2 −1 :0] ;
112 a s s i gn R_out = R;
113

114 endmodule

Listing B.5: dual_port_ram.sv

1 module dual_port_ram #(parameter i n t data_bit = 14∗2 , parameter
i n t addr_bit = 12) (

2 input l o g i c [addr_bit −1:0] r_addr_1 ,
3 input l o g i c [addr_bit −1:0] r_addr_2 ,
4 input l o g i c [addr_bit −1:0] w_addr_1 ,
5 input l o g i c [addr_bit −1:0] w_addr_2 ,
6 input l o g i c [data_bit −1:0] w_data_1 ,
7 input l o g i c [data_bit −1:0] w_data_2 ,
8 input l o g i c w_en_1 ,
9 input l o g i c w_en_2 ,

10 input l o g i c c lk ,
11 input l o g i c rst_n ,
12 output l o g i c [data_bit −1:0] r_data_1 ,
13 output l o g i c [data_bit −1:0] r_data_2
14) ;
15

16 l o g i c [data_bit −1:0] ram_matrix [(2∗∗ addr_bit) −1 :0] ;
17

18 always_ff @(posedge c l k or negedge rst_n) begin
19 // asynchronous r e s e t
20 i f (! rst_n) begin
21 // the va lue s f o r a l l r e g i s t e r s are r e s e t t e d to ’ b0

c o n s i d e r i n g a f o r statement
22 i n t e g e r rst_addr ;
23 f o r (rst_addr = 0 ; rst_addr < 2∗∗ addr_bit ; rst_addr++) begin
24 ram_matrix [$unsigned (rst_addr)] = 0 ;
25 end
26 // @ c lo ck posedge i f r e s e t i s not a c t i v e
27 end e l s e begin

86

HDL

28 // handle the wr i t e operat ion , i f the r eque s t i s f o r
addr_force_0 then i t ’ s ignored

29 i f (w_en_1) begin
30 ram_matrix [$unsigned (w_addr_1)] = w_data_1 ;
31 end
32 i f (w_en_2) begin
33 ram_matrix [$unsigned (w_addr_2)] = w_data_2 ;
34 end
35 end
36 end
37

38

39 always_comb begin
40

41 r_data_1 <= ram_matrix [$unsigned (r_addr_1)] ;
42 r_data_2 <= ram_matrix [$unsigned (r_addr_2)] ;
43

44 end
45

46 endmodule

Listing B.6: butterfly.sv

1 module b u t t e r f l y #(parameter N = 14) (
2 input l o g i c s igned [N−1:0] Ar , Ai , Br , Bi , Wr, Wi,
3 input l o g i c f i r s t _ s t a g e ,
4 output l o g i c s igned [N−1:0] Ar_prime , Ai_prime , Br_prime ,

Bi_prime
5) ;
6

7 l o g i c s igned [2∗N: 0] Ar_temp , Ai_temp , Br_temp , Bi_temp ; //
in t e rmed ia t e r e s u l t s

8 parameter N_reduced = N−1;
9

10 // Sign−extend inputs be f o r e a r i thmet i c ope ra t i on s
11 l o g i c s igned [N+1:0] Ar_ext , Ai_ext ;
12 a s s i gn Ar_ext = {{2{Ar [N−1]}} , Ar } ;
13 a s s i gn Ai_ext = {{2{Ai [N−1]}} , Ai } ;
14

15 // Perform m u l t i p l i c a t i o n s
16 l o g i c s igned [2∗N−2:0] BrWr, BiWi , BrWi , BiWr ;
17 a s s i gn BrWr = Br ∗ Wr;
18 a s s i gn BiWi = Bi ∗ Wi;
19 a s s i gn BrWi = Br ∗ Wi;
20 a s s i gn BiWr = Bi ∗ Wr;
21

22 // Sign−extend inputs be f o r e a r i thmet i c ope ra t i on s
23 l o g i c s igned [2∗N: 0] BrWr_ext , BiWi_ext , BrWi_ext , BiWr_ext ;
24 a s s i gn BrWr_ext = {{2{BrWr[2∗N−2]}} , BrWr} ;

87

HDL

25 a s s i gn BiWi_ext = {{2{BiWi [2∗N−2]}} , BiWi } ;
26 a s s i gn BrWi_ext = {{2{BrWi [2∗N−2]}} , BrWi } ;
27 a s s i gn BiWr_ext = {{2{BiWr [2∗N−2]}} , BiWr } ;
28

29 // Add m u l t i p l i c a t i o n r e s u l t s to temp v a r i a b l e s
30 a s s i gn Ar_temp = {Ar_ext , {N_reduced {1 ’ b0}}} + BrWr_ext − BiWi_ext ;
31 a s s i gn Ai_temp = {Ai_ext , {N_reduced {1 ’ b0}}} + BrWi_ext + BiWr_ext ;
32 a s s i gn Br_temp = {Ar_ext , {N_reduced {1 ’ b0}}} − BrWr_ext + BiWi_ext ;
33 a s s i gn Bi_temp = {Ai_ext , {N_reduced {1 ’ b0}}} − BrWi_ext − BiWr_ext ;
34

35 // Mux to s e l e c t proper output based on ‘ f i r s t _ s t a g e ‘
36 l o g i c s igned [2∗N: 0] Ar_mux, Ai_mux , Br_mux, Bi_mux ;
37 a s s i gn Ar_mux = f i r s t _ s t a g e ? Ar_temp : {Ar_temp [2∗N−1 :0] , 1 ’ b0 } ;
38 a s s i gn Ai_mux = f i r s t _ s t a g e ? Ai_temp : {Ai_temp [2∗N−1 :0] , 1 ’ b0 } ;
39 a s s i gn Br_mux = f i r s t _ s t a g e ? Br_temp : {Br_temp [2∗N−1 :0] , 1 ’ b0 } ;
40 a s s i gn Bi_mux = f i r s t _ s t a g e ? Bi_temp : {Bi_temp [2∗N−1 :0] , 1 ’ b0 } ;
41

42 // Rounding modules
43 half_up_rounding #(2∗N+1, N+1) Ar_round (
44 . in (Ar_mux) , // Or i g i na l number
45 . out (Ar_prime) // Rounded number
46) ;
47

48 half_up_rounding #(2∗N+1, N+1) Ai_round (
49 . in (Ai_mux) , // Or i g i na l number
50 . out (Ai_prime) // Rounded number
51) ;
52

53 half_up_rounding #(2∗N+1, N+1) Br_round (
54 . in (Br_mux) , // Or i g i na l number
55 . out (Br_prime) // Rounded number
56) ;
57

58 half_up_rounding #(2∗N+1, N+1) Bi_round (
59 . in (Bi_mux) , // Or i g i na l number
60 . out (Bi_prime) // Rounded number
61) ;
62

63 endmodule

Listing B.7: ing_addr_generator.sv

1 module ing_addr_generator (
2 input l o g i c [1 0 : 0] FFT_cnt ,
3 input l o g i c [3 : 0] stage_cnt ,
4 output l o g i c [1 1 : 0] ing1_addr ,
5 output l o g i c [1 1 : 0] ing2_addr ,
6 output l o g i c [1 0 : 0] twiddle_addr
7) ;

88

HDL

8

9 // Def ine l o c a l v a r i a b l e s
10 l o g i c [1 0 : 0] mask1 , mask1_tmp ;
11 l o g i c [1 0 : 0] mask2 ;
12 l o g i c [1 0 : 0] twiddle_temp , twiddle_temp2 ;
13

14 // Assign masks based on input ’ i ’
15 a s s i gn mask1_tmp = ((1 << stage_cnt) − 1) ; // Mask f o r the f i r s t

i e lements
16

17 always_comb begin
18 f o r (i n t i = 0 ; i < 11 ; i++) begin
19 mask1 [i] = mask1_tmp[10− i] ;
20 end
21 end
22

23 a s s i gn mask2 = ~mask1 ; // Mask f o r the l a s t e lements from i+1 to
N−1

24

25

26 // Logic to c r e a t e modified_FFT_count
27 a s s i gn ing1_addr = {(FFT_cnt & mask1) , 1 ’ b0} | (0 << 11−stage_cnt

) | {1 ’ b0 , (FFT_cnt & mask2) } ;
28 a s s i gn ing2_addr = {(FFT_cnt & mask1) , 1 ’ b0} | (1 << 11−stage_cnt

) | {1 ’ b0 , (FFT_cnt & mask2) } ;
29

30 a s s i gn twiddle_temp = (FFT_cnt & mask1) ;
31

32 always_comb begin
33 f o r (i n t i = 0 ; i < 11 ; i++) begin
34 twiddle_temp2 [i] = twiddle_temp [10− i] ;
35 end
36 end
37

38 a s s i gn twiddle_addr = (twiddle_temp2 << 11−stage_cnt) ;
39

40 endmodule

89

Bibliography

[1] S. S. Afzal, W. Chen, and F. Adib. «3D-BLUE: Backscatter Localization for
Underwater Robotics». In: IEEE Journal of Oceanic Engineering 48.1 (2023),
pp. 123–134 (cit. on p. 1).

[2] D. Koulouris, A. Menychtas, and I. Maglogiannis. «Augmented Reality for
Indoor Localization and Navigation: The Case of UNIPI AR Experience». In:
Lecture Notes in Computer Science. Vol. 14185. 2023, pp. 233–243 (cit. on
p. 1).

[3] Emanuele Grossi, Hedieh Taremizadeh, and Luca Venturino. «Radar Target
Detection and Localization Aided by an Active Reconfigurable Intelligent
Surface». In: IEEE Signal Processing Letters PP (Jan. 2023), pp. 1–5. doi:
10.1109/LSP.2023.3296372 (cit. on p. 2).

[4] Q. Luo, K. Yang, X. Yan, J. Li, C. Wang, and Z. Zhou. «An Improved
Trilateration Positioning Algorithm with Anchor Node Combination and K-
Means Clustering». In: Sensors. Vol. 22. 16. 2022, p. 6085 (cit. on p. 3).

[5] Wikipedia contributors. Butterworth filter. Accessed: 2024-09-11. Sept. 2024.
url: https://en.wikipedia.org/wiki/Butterworth_filter (cit. on p. 15).

[6] Cishen Zhang and Lihua Xie. «Periodic stabilization of look-ahead filters in
VLSI implementation». In: IEEE Transactions on Automatic Control 47.8
(2002), pp. 1362–1366. doi: 10.1109/TAC.2002.801201 (cit. on p. 23).

[7] Rachmad Vidya Wicaksana Putra. «A novel fixed-point square root algorithm
and its digital hardware design». In: International Conference on ICT for

Smart Society. 2013, pp. 1–4. doi: 10.1109/ICTSS.2013.6588110 (cit. on
p. 32).

[8] Robert Matusiak. «Implementing Fast Fourier Transform Algorithms of Real-
Valued Sequences With the TMS 320 DSP Platform». In: 2002. url: https:

//api.semanticscholar.org/CorpusID:11262963 (cit. on p. 35).

90

	List of Tables
	List of Figures
	Acronyms
	Introduction and motivation
	Importance of Localization
	Trilateration
	FMCW RADAR
	Hardware Platforms and Receiver Architectures
	Thesis Focus

	The RADAR board
	Introduction
	Key Components
	ADF5901 - 24 GHz Transmitter (TX)
	ADF5904 - 24 GHz Receiver (RX)
	ADF4159 - PLL Frequency Synthesizer

	IO Interfaces and Connectivity
	Strengths and Limitations of 24 GHz FMCW Radar
	System Modifications: Delay Line Implementation
	Delay Line Overview
	Limitations and Trade-offs
	Conclusion on the Delay Line Implementation

	Proposed receiver
	Fast Fourier Transform (FFT)
	Architecture derivation
	Filter choice
	Architecture parallelism and discretization

	Microarchitecture and System Verilog implementation
	Mixing
	Filter
	Final topology and pipelining
	Detailed implementation and parallelism
	Results and performances
	System verilog implementation

	Decimation
	Unsigned conversion, square and square root
	Square root module
	System verilog implementation

	FFT
	Algorithm and general architecture
	Finite state machine and behaviour

	Synthesis and implementation
	Results and conclusions
	Matlab scripts
	HDL

