
POLITECNICO DI TORINO

Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Surrogate Models for Parametric PDEs

via Graph-Informed Neural Networks

Supervisors Candidate
Dott. Francesco Della Santa Susanna Olivero
Dott. Maria Strazzullo

Academic year 2023-2024

Table of Contents
Abstract 1

1 Introduction 2
1.1 Motivation . 2
1.2 Contribution . 3
1.3 Structure . 3

2 Neural Networks 5
2.1 Classic and Well-known Neural Networks 6
2.2 Graph Neural Networks . 8

2.2.1 Graph Convolutional Networks 9
2.3 Graph-Informed Neural Network . 11

2.3.1 The Graph-Informed Layers 12

3 Parameterized Partial Differential Equations 17
3.1 Partial Differential Equations . 17
3.2 Parametrized Differential Equations 21

3.2.1 Parametric Weak Formulation 22
3.2.2 Formulation of the Problem for the Test Cases 23

3.3 Solving methods for PDEs and NNs 24
3.3.1 Numerical Methods for Parametric PDEs 26
3.3.2 Neural Networks for PDEs . 27

4 Test Cases and Methodology 31
4.1 Test Cases . 31
4.2 Data Preparation . 35
4.3 Architecture Design . 37
4.4 Simulations Setup . 39
4.5 Evaluation . 40
4.6 Implementation . 42

5 Experimental Results 43
5.1 Test 1 . 43

5.1.1 Hyperparameter Analysis . 51
5.1.2 Qualitative Analysis of the Best Model 55

5.2 Test 2 . 67
5.2.1 Hyperparameter Analysis . 71
5.2.2 Additional Analysis of the Best Model 74
5.2.3 Qualitative Analysis of the Best Model 80

6 Conclusions 92

Bibliography 95

Mathematics is not about numbers,
equations, computations, or algorithms:
it is about understanding

- William Paul Thurston

Abstract
This thesis focuses on training surrogate models based on Deep Learning (DL) to
predict the solutions of parametric Partial Differential Equation (PDE) problems.
In particular, the PDE problems we consider have most of their parameters used to
characterize the boundary conditions, not only the physical properties embedded
in the differential equations. The scenarios examined involve two types of prob-
lems, one purely diffusion-based and one involving both diffusion and convection.
Several kinds of DL models are taken into account, including a novel spatial-based
graph network called Graph-Informed Neural Network (GINN). Error statistics are
computed to understand how the models’ predictions are affected by the model
architecture, the amount of training data, the hyperparameters of the network,
and the physical parameters of the problem. The experiments demonstrate the ef-
fectiveness of the GINNs as surrogate models for parametric PDEs, also compared
to more traditional DL models.

1

1 Introduction

1.1 Motivation

Parametric Partial Differential Equations (PDEs) are fundamental to modeling
a variety of physical, biological, and engineering systems, from fluid dynamics
and weather forecasting to material science and quantum mechanics. Paramet-
ric problems are those in which the system’s behavior depends on specific input
parameters, such as material properties, boundary conditions, or external forces.
As the parameters vary, the solution to the PDE changes, making these problems
essential for understanding how systems respond to different conditions.

Traditional methods for solving PDEs, such as finite element or finite difference
methods, often require a fine discretization of the spatial domain. This leads to a
computationally expensive process, especially when the dimension of the parameter
space is large or when the PDE domain is characterized by a high geometrical
complexity; therefore, finding solutions in real-time or over large parameter ranges
is a challenging task. Furthermore, in many cases, obtaining accurate solutions to
PDEs requires solving the problem iteratively, which becomes impractical due to
the enormous computational costs involved.

The difficulty of traditional approaches motivates the need for more efficient com-
putational techniques, and this is where Deep Learning (DL) models come into
play. DL models, particularly Neural Networks (NNs), have proven to be efficient
and effective because they can learn complex, non-linear relationships between in-
puts and solutions, allowing them to generalize across a wide range of conditions
[6]. Once trained, these models can provide rapid, real-time predictions without
the need for repetitive and computationally expensive calculations, making them
particularly suitable for high-dimensional and large-scale problems.
NNs offer a powerful and effective alternative to classical numerical methods, en-
abling rapid and accurate solutions to complex problems that are otherwise com-
putationally prohibitive. The idea is that a dedicated NNs can be trained to learn
the complex mappings between parameters and the corresponding PDE solutions,
bypassing the need to repeatedly solve the equation from scratch [18].

2

Introduction

1.2 Contribution
In this thesis, we specifically address two parametric problems. The first is a rel-
atively classic problem in the field of parametric PDEs, involving pure diffusion
where the parameters are mainly related to the boundary conditions (BCs). The
second is a much more complex problem that incorporates both diffusion and con-
vection, introducing additional physical parameters. Both of our problems fall
within a particularly complicated family of parametric PDEs, mainly character-
ized by parametrized BCs.
The primary objective of this work is to find an efficient way to solve these problems
using NNs. Indeed, to the best of our knowledge, this is the first time DL models
are being applied to problems where the BCs are treated with a local structure.
The surrogate model we aim to develop must be reliable, with low approximation
errors, and capable of real-time consultation, which is why we are using NNs.
To achieve this, we trained and tested various DL models, including traditional
Fully-Connected architectures, with and without residual blocks, as well as a novel
spatial-based graph network called Graph-Informed Neural Network (GINN). Dif-
ferent training regimes were applied to these models, varying the amount of train-
ing data, the network hyperparameters, and the physical parameters of the prob-
lem.
By analyzing the results, we aim to understand the behavior of the solutions as
the physical parameters of the problem, including the parametrized BCs, vary. As
mentioned earlier, the introduction of parametrized BCs is one of the most inno-
vative aspects of this work.
Given that GINNs represent an innovative NN, another contribution of this thesis
is the study of their behavior in depth to enable their most effective use in future
applications.

1.3 Structure
In this section we provide a brief overview of the entire thesis structure to offer
a roadmap into the project. Following this introductory chapter, there are five
additional chapters.
The second chapter is primarily theoretical and provides the foundations upon
which the research is built. We begin with a general introduction to the NNs, with
a particular attention on the Graph Neural Networks. We then proceed to present
and explain the novel GINN, the one that we have used for our simulations.
The third chapter introduces the theoretical problem we aim to address, specifi-
cally parametric PDE problems, with a focus on parametrized boundary conditions
(BCs). We begin with a general overview of PDEs, followed by the mathematical

3

Introduction

formulation of the parametrized problem and a detailed presentation of the theo-
retical problem we want to solve. The chapter concludes by presenting the solving
methods for PDEs, with particular attention to NNs.
The fourth chapter starts by presenting the actual physical problems that we aim
to solve and then outlines the methodology adopted in the experiments. It eluci-
dates the approach taken in conducting the research and its various phases, as data
preparation, experiments setup and evaluation. Towards the end of the chapter,
we also provide some information regarding implementation details, focusing on
the practical aspects of the research. This chapter acts as a bridge, connecting the
theoretical foundations established in the preceding chapters with the practical
development of the research.
In the fifth chapter we present the results of our experiments. For the analysis, we
mainly computed error statistics to understand how the models’ predictions are
affected by the model architecture, the amount of training data, the hyperparam-
eters of the network, and the physical parameters of the problem.
In the final chapter we sum up the content of this thesis, providing a comprehen-
sive conclusion. Additionally, we look ahead to explore possible areas for future
research and development.

4

2 Neural Networks
Neural Networks (NNs) are a class of Machine Learning (ML) models originally
inspired by the structure and functioning of the human brain. They consist of
interconnected layers of units, or neurons, each of which processes and transmits
information. These models have seen three waves of popularity over the past 80
years [35] and we present them briefly.

The first wave, Cybernetics (1940s-1960s), introduced the first artificial neuron
model and early NNs like the Perceptron [34], which laid the groundwork for mod-
ern DL, and adaline [42], which pioneered the use of gradient-based stochastic
optimization techniques. Although they demonstrated highly interesting proper-
ties, they faced important limitations such as the inability to learn simple func-
tions, such as the logic relation xor [35].
The second wave, Connectionism (1980s-1990s), revived interest in NNs with the
backpropagation algorithm and the concept of distributed representation. The
core concept of connectionism, inspired by biology, is that a multitude of simple
computational units, such as artificial neurons, can collectively mimic "intelligent
behavior" when interconnected [35]. This wave of interest in NNs research came
to an end in the mid-1990s. During this time, other areas of ML, such as kernel
machines, progressed showing favorable outcomes, while NNs did not fulfill the
expectations.
With advancements in computational power and the availability of large datasets,
it has become possible to generate deeper architectures, creating the famous ML’s
sub-field, named Deep Learning (DL). This marks the third wave, which began in
2006 and has led to models that are now a dominant force in the field of artifi-
cial intelligence. These architectures can capture intricate patterns and complex
relationships within data through the composition of highly non-linear paramet-
ric functions, resolving tasks that were previously considered challenging or even
intractable [35].

After this brief historical introduction on the evolution of NNs, we present the
structure of the chapter. In the first section, we illustrate some of the classic
and well-known architectures, including the ones used for our simulations. In the
second section we focus on Graph NNs and, in the last section, we present the novel
spatial-based graph network we have used, the Graph-Informed Neural Network
(GINN).

5

Neural Networks

2.1 Classic and Well-known Neural Networks
NNs can be categorized into various types based on their architecture and use cases
and, in this section, we introduce the most commonly used categories according
to the literature. Additionally, we will focus on the mathematical nature of these
models, presenting the characterizing layers.

Fully-Connected Neural Networks
Fully-Connected Neural Networks (FCNNs) are the simplest and oldest type of
artificial NNs, also called Multi-Layer Perceptrons (MLPs) [29].
With this architecture the information flows in one direction, forward, from the
input layer, through the hidden layers, and finally to the output layer, see Figure
2.1. Each neuron in a layer is fully connected to neurons in the previous layer; for
this reason, such kind of layers are called Fully-Connected (FC) Layers, giving the
name also to the NN model [23].

Figure 2.1: Architecture of a simple FCNN.

A FC layer (LF C) with input dimension c ∈ N and output dimension d ∈ N, defines
its action as a function LF C : Rc → Rd such that:

LF C(x) = σ
1
W T x + b

2
, ∀x ∈ Rc,

where

• x ∈ Rc is the input;

• W ∈ Rc×d is the weight matrix, where each component wi,j is the weight of
the connection between the i-th unit of the previous layer and the j-th unit
of the actual layer, for each i = 1, ..., c and j = 1, ..., d;

6

Neural Networks

• b ∈ Rd is the bias vector;

• σ is the element-wise application of the layer’s activation function σ : R → R.
FCNNs are often used for classification and regression, tasks where both the inputs
and the outputs are vectors (or are modelled as vectors). From a mathematical
point of view, FCNNs are used for learning functions F : Rn → Rm, where m ≥ 1
and n ≥ 1 or, typically, n ≫ 1.
This type of architecture has been used for some of the experiments carried out
as part of the thesis project.

Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a specialized type of NN primarily
used for processing structured grid data, such as images. They emerged during
the third wave that characterizes NNs and represent the true breakthrough behind
the great success of DL models. The key innovation of CNNs is their ability to
handle non-vectorial inputs, such as matrices or tensors (e.g., images), indeed, be-
fore CNNs, it was necessary to vectorize all inputs that were not already vectors.
An important property of this NN is the capability of reducing the number of
weights, compared to a FC layer, and so increasing the depth of the NN [14].
In general, CNNs are designed to automatically and adaptively learn spatial hi-
erarchies of features through the so called convolutional and pooling, besides the
FC layers. Convolutional layers apply filters to the input data to create what are
called feature maps or activation maps. These layers are usually followed by pool-
ing layers that down-sample the data, reducing its dimensionality while preserving
important features; the most used are max and average pooling. Typically, near
the end of the architecture, FC layers are used for learning the tasks given the
encoding of the precedent layers, see Figure 2.2.

Figure 2.2: Schema of a simple CNN [1].

This type of NN is presented here not because it was actually used in our exper-
iments, but because the convolutional layer served as an inspiration for the novel
GINN, which we will introduce in the next section.

7

Neural Networks

Residual Neural Networks
Residual Neural Networks (ResNets) are a specific type of NN characterized by
the use of residual blocks of layers in their architecture [13].
The key feature is the so-called "residual connection", which adds the input of the
subnetwork to its output, see Figure 2.3.
From a mathematical perspective, given a residual block of m layers and an input
x, we denote the output after the m layers as F (x), and the final output of the
entire block as

y = F (x) + x,

where the sum represents the residual connection.

Figure 2.3: A residual block where the residual connection skips two layers [39].

This approach was developed to address the degradation problem (or vanishing
gradient problem), where adding more hidden layers leads to the performance of
a DL model to saturate and then declining. Residual blocks enable a deeper NN,
allowing deeper layers to learn from the residual errors of lower layers. Addition-
ally, these blocks help preserve information from earlier layers, enabling for better
feature learning and improved model performance [35].
ResNet has proven effective in many real-world applications, such as Google’s
Transformer.

The ResNet architecture was used for some of the simulations carried out as part
of the thesis project. In fact, one of the goals of our surrogate models for PDEs
is both to create a deeper network and to preserve the initial features, as the
boundary conditions and physical parameters are all established at the beginning.

2.2 Graph Neural Networks
Although DL excels at identifying hidden patterns in Euclidean data, there is a
growing range of applications where data is represented as graphs. The complexity
of graph data has posed significant challenges for existing ML algorithms since
graphs can be very irregular. With variable sizes of unordered nodes and differing

8

Neural Networks

numbers of neighbors for each node, certain key operations (such as convolutions)
straightforward in the image domain, become difficult to implement in the graph
domain. Additionally, a fundamental assumption of traditional ML algorithms is
that instances are independent of one another. This assumption does not apply
to graph data, where each instance (node) is connected to others through various
types of links.
Recently, the NN community has made significant advancements in this field,
extending DL techniques to graph-structured data through Graph Neural Networks
(GNNs).

GNNs have their origins in the late 2000s, though they were initially hindered by
high computational costs. Indeed, the first architectures fall into the category of
recurrent GNNs, where the neighbor information are propagating in an iterative
manner until a stable point is reached, generating a computational expensive pro-
cess. However, the success of CNNs led to the development of a new generation of
GNNs, which redefined the concept of convolutions for graph data and gave rise
to Graph Convolutional Networks (GCNs) [5].
In addition to recurrent and convolutional GNNs, there are other types of GNNs,
such as graph autoencoders, often used for unsupervised learning and graph re-
construction tasks, and spatial–temporal GNNs, tailored for modeling data that
varies across both spatial and temporal dimensions. If the reader is interested,
they may refer to the article [43].

2.2.1 Graph Convolutional Networks
GCNs extend the concept of convolution from grid-based data to graph-based
data. Therefore, the approach consists in generating the representation of a node
v by combining its own features xv with the features xu of its neighboring nodes
u ∈ N(v), where N(v) is the set of neighbours of v in the graph. As classified
in [43], GCNs fall into two main categories: spectral-based GCNs, which rely on
spectral graph theory, and spatial-based GCNs, which aggregate information only
from neighboring nodes [45].
Spectral-based methods are based on the mathematical principles of graph signal
processing but, currently, spatial-based GCNs are favored in many applications due
to their greater flexibility and efficiency. They are commonly used for various tasks
on graph data, including: (i) semi-supervised node regression or classification, (ii)
edge classification or link prediction, and (iii) graph classification [5]. On the
other hand, the literature suggests that spectral-based GCNs performance tends
to degrade as the number of graph convolutional layers increases [22].

Similar to the convolution operation of a traditional CNN applied to an image,
spatial-based methods define graph convolutions based on the spatial relationships

9

Neural Networks

between nodes. An image can be viewed as a specific type of graph where each
pixel acts as a node and is directly connected to its neighboring pixels, as illus-
trated in Figure 2.4(a). In this context, a filter is applied to a n×n patch by taking
the weighted average of the pixel values of the central node and its surrounding
neighbors across each channel. In a similar fashion, spatial-based graph convolu-
tions combine the representation of a central node with the representations of its
neighboring nodes to produce an updated representation for the central node, as
shown in Figure 2.4(b).

Figure 2.4: Example of a 2-D image convolution and a graph convolution [43].

The Neural Network for Graphs (NN4G) is one of the first spatial-based GCN
introduced in the literature [25]. It carries out graph convolutions by directly
summing the information from a node’s neighbors and it also utilizes residual con-
nections and skip connections to retain information across layers. More specifically,
NN4G is based on the concept of context window which is defined for each state
variable xi(v), given a vertex v. This context, C(xi(v)), refers to the collection of
all state variables that, directly or indirectly, influence the determination of xi(v)
[25]. Let N (v) be the set of the vertices adjacent to v, the context of xi(v) is
expressed as

C(xi(v)) =
i−1Û
j=1

Û
u∈N (v)

xj(u) ∪ C(xj(u));

where xj(u) represents the direct contribution and C(xj(u)) the indirect one, which
contribute to the determination of xj(u).
In the base case, i = 2, there is no contribution to the computation of C(x1(u)) so
the formula results

C(x2(v)) =
Û

u∈N (v)
xj(u) ∪ C(x1(u)) = x1N (v),

having C(x1(u)) = ∅.
The two equations just presented are also known as the message passing equations
for NNs.

10

Neural Networks

Another type of spatial-based GCN is the Diffusion Convolutional Neural Network
(DCNN) [15]. It considers graph convolutions as a diffusion process, assuming
that information is passed from one node to its neighboring nodes based on a spe-
cific transition probability. This process continues until information distribution
reaches equilibrium after multiple iterations.

Despite their effectiveness, GCNs face some challenges, notably: (i) constructing
deep architectures that maintain strong performance, and (ii) achieving scalability
for large graphs. So, even though the success of DL architectures lies in its depth,
deeper GCNs do not necessarily yield better results [43].

2.3 Graph-Informed Neural Network
In this section, we present the Graph-Informed Neural Network (GINN), a new ar-
chitecture that extends the basic formulation of spatial-based graph convolutional
networks.

This novel architecture is specifically designed for regression tasks involving graph-
structured data that are not well-suited to traditional GNNs. There are many
applications of this type in interesting fields, such as network interdiction models,
circulation with demand problems, and flux regression problems in underground
fractured media [5]. The key point is that a standard MLP or its appropriate
variants can effectively handle this regression task on graph data, as it implicitly
learns node relationships during training, but existing GCNs are not as well-suited
for this type of regression task compared to MLPs. Indeed, as mentioned in Section
2.2.1, GCNs are primarily designed for different types of tasks and often struggle
to utilize deep architectures effectively.
The aim of the authors of the GINN [5] is to build a novel Spatial GCN architecture
that is able to exploit its depth and the graph structure to enhance NN training,
if compared to an MLP. Specifically, they introduced a new Graph-Informed (GI)
layer that leverages the adjacency matrix of a given graph to determine the unit
connections within the NN. The GINN architecture, therefore, consists of a series
of these new GI layers, which will be presented in the next sub-section.
The convolution operation used for graph data in this architecture is more similar
to CNN convolutions than to those in other GCNs. There are also similarities with
DCNNs [15] and classic NN4G layers [25], in particular with the message passing
equations presented in Section 2.2.1.

Numerical experiments presented in [5] have demonstrated the effectiveness of GI
layers and their potential. Specifically, these experiments revealed that GINNs
exhibit enhanced regression capabilities compared to MLPs, largely due to their
ability to address the depth-related challenges commonly encountered in other

11

Neural Networks

GCNs.
The authors also suggest that some graph classification tasks involving vertex
labels can be addressed by simply adding a softmax layer at the end of the GINN,
thereby extending the model.

2.3.1 The Graph-Informed Layers
In this section, we present, mainly from a mathematical perspective, the GI layer
as defined in [5].

Given some graph-structured data, we have a graph G of n nodes, and we denote
by V the set of the vertices and by E the set of the edges; i.e., G = (V, E). The
adjacency matrix of G is denoted as A ∈ Rn×n and we define Â := A + In, where
In is the n × n identity matrix.
As said before, the GINN architecture is specifically designed for regression tasks,
so, let’s assume that the objective of this problem is to find the solution values
only on a subset of m nodes, V̂ ⊂ V , where V̂ ∈ Rm. In this case, a regression task
on the graph G can be described by a function F : Ω ⊂ Rn → Rm, with m ≤ n.
The function F depends on the adjacency matrix A of G.

Typically, the goal of a generic NN layer is to obtain the output feature of each
unit by summing up some input features multiplied by some weights. The basic
idea behind a GI layer (LGI) is that we consider as input features only those of the
node itself and its neighbors, each one multiplied by a weight assigned to the cor-
respondent graph node. This is in contrast to the case of a classic FC layer (LF C),
where all features are considered. As mentioned before, the idea come from the
structure of other GNNs, especially the ones that are based on the convolutional
layers.
More precisely, the LGI extends the functionality of convolutional layer filters to
graph-structured data. The aim is to capture the implicit relationships between
the features of neighboring graph nodes and to utilize the sparse interactions and
parameter-sharing characteristics that are typical of CNNs. To do so, the convo-
lution operation for the node vi is re-define as

x′
i = σ

 Ø
j∈Nin(i)∪{i}

xjwj + bi

 ,

where

• x′
i output feature of node vi;

• xj input features of node vj, j = 1, ...n;

• wj weight for node vj, j = 1, ...n;

12

Neural Networks

• Nin(i) indicates the set of nodes vj, such that there exists an incoming edge
for the node vi, (vj, vi) ∈ E;

• bi is the bias corresponding to node vi;

• σ : R → R is the layer’s activation function.

As said before, to compute x′
i the layer act only on xi and on the incoming neigh-

bors. For a better understanding, refer to Figure 2.5.

Figure 2.5: Example of the action of a filter on a graph with n = 4 nodes [5].

It is interesting to note that the LGI can be seen as a constrained LF C where the
weights are designed so that

wji =

wj, if (vj, vi) ∈ E

wi, if j = i

0, otherwise

for each i, j = 1, ..., n. See Figure 2.6.

Another characteristic of these new layers is the possibility to describe them
through a compact mathematical formulation, which not only greatly simplifies
understanding but also brings advantages in terms of implementation and compu-
tational efficiency. Moreover, the development of a compact expression enables us
to generalize the model’s process of progressively incorporating contextual infor-
mation as new state variables are added [25]. We also point out to the reader that
it is not a given that a layer of a NN can be described in a compact manner. Let
us denote the LGI ’s action as the function LGI , and we are ready to present the
LGI formula.

13

Neural Networks

Figure 2.6: Example of how an LGI can be seen as a constrained LF C on a graph
with n = 4 nodes as the one in Figure 2.5.

In the simplest case, i.e., the one with one feature per node for both input and
output, the function LGI

1 : Rn → Rn is defined as

LGI
1 (x) = f

1ãW T x + b
2

,

where

• w ∈ Rn is the weights vector associated with each vertex in V and ãW is
defined as ãW := diag(w)Â;

• b ∈ Rn is the biases vector;

• f is the element-wise application of the layer activation function f : R → R.

The next step is to generalize the input features, enabling the layers to accept
any arbitrary number K ≥ 1 of input features from each node. In this case the
function LGI

2 : Rn×K → Rn is defined as

LGI
2 (X) = f

1æW T vertcat(X) + b
2

,

where

• X ∈ Rn×K is the input matrix whose row i ∈ {1, ..., n} describes the K
features xi1, ..., xiK of node vi, and vertcat(X) ∈ RnK is the vector obtained
by concatenating the columns of X ;

• w·1, ..., w·K ∈ Rn are the weights vectors associated at the k-th input features
for each vertex in V and æW is defined as

æW :=

ãW (1)

...ãW (K)

 =

diag(w·1)Â

...
diag(w·K)Â

 ∈ RnK×n.

14

Neural Networks

As before, the bias vector is added and then the activation function is applied.
Moreover, we can notice the approach for building LGI

1 and LGI
2 is the same,

indeed:
KØ

k=1

ãW (k)T x·k = æW T vertcat(X)

It is important to highlight that the operations just described are an adaptation
of convolutional layer operations for graph-based inputs. Specifically, the input
X ∈ Rn×K can be seen as an n × 1 image with K channels, while w·k corresponds
to the section of the convolutional filter associated with the k-th channel of the
input image. Consequently, the output LGI ∈ Rn is analogous to the activation
map in convolutional layers.

The final step involves generalizing the output features as well, allowing the layers
to produce any arbitrary number F ≥ 1 of output features for each node. In this
case the function LGI

3 : Rn×K → Rn×F is defined as

LGI
3 (X) = f

3çW T vertcat(X) + B
4

,

where

• X ∈ Rn×K is the input matrix as before;

• çW ∈ RnK×F ×n is a weight tensor defined as the concatenation along the
column dimension of the matrices æW (1), ..., æW (F); these last ones are defined,
for each l = 1, ..., F , as

æW (l) :=

ãW (l,1)

...ãW (l,K)

 =

diag(w(l)

·1)Â
...

diag(w(l)
·K)Â

 ∈ RnK×n,

where w
(l)
·k ∈ Rn is the weights vector associated at the k-th input feature

and at the l-th output feature, actually it is the basic filter that describe the
contribution of that input feature to the computation of that specific output
feature;

• çW T vertcat(X) is a tensor-vector product;

• b·l is the bias vector connected to the l-th output feature and B ∈ Rn×F is
the biases matrix with b·l as columns.

For a better understanding of the construction of the tensor çW , refer to Figure
2.7.

15

Neural Networks

Figure 2.7: Tensor çW where the column are the matrices æW (1), ..., æW (F) ∈
RnK×1×n [5].

Given this general formulation, the authors in [5] also present additional properties
of the LGI , such as a modified pooling operation and the application of a mask to
the reference graph. Furthermore, in the paper by Della Santa [9], a LGI definition
is presented for sub-matrices of A, focusing on the connections between two subsets
of nodes (V1, V2) ∈ V .

To conclude we have to highlight that in a LGI , the total number of parameters is
nKF +nF , which represents the sum of the number of weights and biases. But, for
a LF C with an input size of n and an output size of M , the number of parameters
is nM + M . Therefore, when M = n and (KF + F) < (n + 1), LGI require fewer
parameters to train. This is a significant observation, especially when dealing with
very large graphs G (i.e., n ≫ 1).
It should be noted that the basic implementation of LGI is inefficient due to dense
memory allocation. However, the paper [9] presents a sparse implementation of
LGI that significantly reduces memory usage.

16

3 Parameterized Partial Differen-
tial Equations

In this chapter, we present the problem of parametrized Partial Differential Equa-
tions (PDEs), which is the central issue addressed in this thesis.
In the first section (3.1), we provide an overview of PDEs, explaining what they
are, how they are classified, and presenting some of the most well-known and prac-
tically applied equations. In the second section (3.2), we introduce parametric
PDEs, with formal mathematical formulation, followed by a detailed presentation
of the theoretical problem we aim to solve. We conclude the chapter by present-
ing the solving methods for PDEs, with particular attention to Neural Networks
(NNs) (3.3).

3.1 Partial Differential Equations
PDEs are equations that involve rates of change with respect to more than one
independent variable. In contrast to Ordinary Differential Equations (ODEs),
which deal with functions of a single variable, PDEs describe functions of mul-
tiple variables and the relationships between their partial derivatives. They are
fundamental in describing various physical, biological, and engineering processes,
including heat conduction, wave propagation, fluid flow, and quantum mechanics.

As reported in [31] and [38], a general PDE is expressed as:

F

A
x1, ..., xn, u,

∂u

∂x1
, ...,

∂u

∂xn

,
∂2u

∂x2
1
, ...,

∂2u

∂x2
n

,
∂2u

∂x1∂x2
, ...

B
= 0;

where:

• u = u(x1, x2, . . . , xn) is the unknown function of n variables x1, ..., xn;

• ∂u

∂xi

represents the first partial derivative of u with respect to xi;

• ∂2u

∂xi∂xj

represents the second partial derivative of u with respect to xi, xj.

For the ease of notation, and according to literature, from now on we will drop
the dependency of u from its variables; i.e., u := u(x1, ..., xn).

17

Parameterized Partial Differential Equations

Classification
PDEs can be classified according to several criteria, as order, linearity and nature
of the characteristic equation.
First of all, we can classify a general PDE according to the order of the highest
derivative present in the equation. If only first derivatives appear, we call it first-
order PDE

F

A
x1, ..., xn, u,

∂u

∂x1
, ...,

∂u

∂xn

B
= 0;

if also second derivatives appear, we have a second-order PDE

F

A
x1, ..., xn, u,

∂u

∂x1
, ...,

∂u

∂xn

,
∂2u

∂x2
1
, ...,

∂2u

∂x2
n

,
∂2u

∂x1∂x2
, ...

B
= 0;

Another classification criterium regards the linearity. For example, a second order
PDE (n = 2), is linear if it can be written as a linear combination of the unknown
function and its derivatives:

a(x1, x2)
∂2u

∂x2
1

+ b(x1, x2)
∂2u

∂x2
2

+ c(x1, x2)u = f(x1, x2);

and it is nonlinear if some nonlinear terms are involved, for example
∂u

∂t
+ u

∂u

∂x
= 0.

The example above is useful to introduce the typical notation adopted in PDEs
and, from now on, in this thesis. If the function u represents a time-dependent
physical phenomenon, the variable representing the time is denoted by t; all the
remaining variables are denoted by x1, ..., xn. Typically, as in the cases addressed
in this thesis, the variables x1, ..., xn denotes the spatial variables, i.e., the variables
of the physical space of the phenomenon (usually, we have n ≤ 3).

For second-order linear PDEs, we can further classify according to the nature of
the characteristic equation, determined by the discriminant[1] of the quadratic form
in the second derivatives. Below we list the three main ones, limited to the case
of n = 2 for the ease of notation.

• Elliptic PDE: the discriminant is negative, such as the Laplace’s equation in
2D

∂2u

∂x2
1

+ ∂2u

∂x2
2

= 0;

1 The discriminant of a quadratic form ax2 + bxy + cy2 is given by ∆ = b2 − 4ac, and it provides
information about the nature of the conic section represented by the quadratic form, such as
whether it is an ellipse, parabola, or hyperbola.

18

Parameterized Partial Differential Equations

• Parabolic PDE: the discriminant is zero, such as in the heat equation in 1D

∂u

∂t
= α

∂2u

∂x2 ;

• Hyperbolic PDE: the discriminant is positive, such as in the wave equation
in 1D

∂2u

∂t2 = c2 ∂2u

∂x2 .

In this thesis, we will focus specifically on stationary and linear problems.

Common Equations
PDEs are frequently used in modeling dynamic systems across various fields, from
physics and engineering to finance and biology; in this brief paragraph we present
the most well-known and practically applied ones.

Laplace’s equation is an elliptic PDE that describes steady-state phenomena, such
as electrostatics or incompressible fluid flow. In 2D space, it takes the form:

∆u = 0,

where ∆ is the Laplace operator, defined as:

∆u = ∂2u

∂x2
1

+ ∂2u

∂x2
2
.

Poisson’s Equation is a generalization of Laplace’s equation, that includes a source
term and describes potential fields affected by external charges or masses. In 2D
space, the equation becomes:

∆u = f(x1, x2),

where f(x1, x2) represents the source term (for example, a charge of density in
electrostatics).

Heat Equation is a parabolic PDE that models the distribution of heat (or diffusion
of particles) over time in a given region. In one spatial dimension, it takes the form:

∂u

∂t
= α

∂2u

∂x2 ,

where α is the thermal diffusivity and u(x, t) is the temperature distribution.

19

Parameterized Partial Differential Equations

Wave Equation is an hyperbolic PDE that governs the behavior of waves, such as
sound waves or electromagnetic waves. In one spatial dimension, the equation is:

∂2u

∂t2 = c2 ∂2u

∂x2 , (3.1)

where c is the speed of wave propagation and u(x, t) is the wave function.

Boundary and Initial Conditions
PDEs usually require additional information to determine a unique solution. This
comes in the form of Boundary Conditions (BCs) and Initial Conditions.

In mathematics, BCs can be applied both to ODEs or PDEs. The two most com-
mon types are Dirichlet conditions and Neumann conditions.
The Dirichlet boundary condition imposes the fixed values that the solution takes
along given subsets of the domain’s boundary. The problem of finding such so-
lutions is known as the Dirichlet problem, named after Peter Gustav Lejeune
Dirichlet (1805–1859) [31]. In the sciences and engineering, this type of boundary
condition may also be referred to as boundary condition of the first type or a fixed
boundary condition.
The Neumann boundary condition specifies the values of the derivatives at other
given subsets of the domain’s boundary. It is also known as a second-type bound-
ary condition and is named after Carl Neumann (1832-1925) [31].

Example

Let Ω ⊂ Rn be a domain and ∂Ω its boundary. We denote as ΓD and ΓN

two subsets of ∂Ω such that ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅, see Figure
3.1.
Given the PDE,

∆u + u = 0,

a general Dirichlet boundary condition with respect to a function f : Ω →
R is

u(x) = f(x), ∀x ∈ ΓD ⊂ ∂Ω.

On the other hand, a general Neumann boundary condition with respect
to a function g : Ω → R is

∂u

∂n(x) = g(x), ∀x ∈ ΓN ⊂ ∂Ω,

where n := n(x) typically denotes the normal to ∂Ω at x ∈ ∂Ω.

20

Parameterized Partial Differential Equations

Ω

ΓD

ΓN

Figure 3.1: Representation of a general domain Ω with Dirichlet BCs
(ΓD) in a black solid line and Neumann BCs (ΓN) in a blue dotted
line.

Initial conditions are required for time-dependent PDEs and specify the state of
the system at t = 0.
For example, given a domain Ω, an initial condition for the wave equation (3.1),
might be:

u(x, 0) = f(x), ∂u

∂t
(x, 0) = g(x);

with respect to the functions f : Ω → R and g : Ω → R.

3.2 Parametrized Differential Equations

Parametrized PDEs models are widely used across engineering and applied sci-
ences to represent both steady and unsteady phenomena such as heat and mass
transfer, solid and fluid mechanics, acoustics, electromagnetics, and financial prob-
lems. The characteristic of the parametrized problems is that these phenomena
incorporate several input parameters that determine the behavior of the physical
phenomenon. For example, these parameters may include geometric configura-
tions, BCs, physical properties, or source terms.
The model used to solve this type of problem must incorporate these input param-
eters to define the specific physic problem and its corresponding variations, and it
must also implicitly link these inputs to key outputs of interest [37].

After this brief introduction to parameterized problems, we present the problem
from a mathematical perspective. We first introduce the general formulation, fol-
lowed by the specific problem we aim to solve in this thesis.

21

Parameterized Partial Differential Equations

3.2.1 Parametric Weak Formulation
Let us introduce a physical domain Ω ⊆ Rd, where d is the spatial dimension. Let
∂Ω be the boundary, we define ΓD and ΓN as subsets of ∂Ω, over which we impose
the BCs. In particular the Dirichlet BCs on ΓD and the Neumann BCs on ΓN .
Let us also introduce the functional Hilbert spaces V,

V = V(Ω) = {v ∈ H1(Ω)| v|ΓD = 0},

where in general H1
0 (Ω) ⊂ V ⊂ H1(Ω) [2] with H1

0 (Ω) = V for ΓD = ∂Ω.
V is characterize by an inner product (w, v)V, ∀w, v ∈ V and an induced norm
||w||V =

ñ
(w, w)V, ∀w ∈ V.

Finally, we define the closed parameter domain as P ∈ RP where µ = (µ1, ..., µP) ∈
P is a parameter and v(µ) is a parametric field variable.

Now, we present the general stationary problem in its weak formulation according
to the formulation present in [37].
Let f : V×P → R be a parametrized linear form with respect to the first variable,
and let a : V × V × P → R be a parametrized bilinear form, where the bilinearity
is with respect to the first two variables.
Given a parameter µ ∈ P we are looking for u(µ) ∈ V such that

a(u(µ), v; µ) = f(v; µ), ∀v ∈ V.

The problem just presented can be greatly simplified, imposing the following two
conditions:

• f(·; µ) for all µ ∈ P is a regular L2(Ω) source term[3];

• a(·, ·; µ) is symmetric for all µ ∈ P (this is not the case of our test cases).

As mentioned before, V is an Hilbert space and is characterize by an intrinsic norm
|| · ||V. Given a fixed parameter µ̂ ∈ P , the norm induced by the bilinear form a
often coincides with the intrinsic norm:

(w, v)V = a(w, v; µ̂), ∀w, v ∈ V,

||w||V =
ñ

a(w, w; µ̂), ∀w ∈ V.

2 The space H1(Ω), also known as the Sobolev space H1 on a domain Ω ⊂ Rn, is a function space
that consists of functions which, together with their first-order derivatives, are square-integrable
[31].
3 L2(Ω) refers to a specific space of functions that are square-integrable over the domain Ω [31].

22

Parameterized Partial Differential Equations

In order to make these formulations parameter-dependent, we have to make more
assumptions in addition to the linearity of f and to the bilinearity of a. So, let
a(·, ·; µ) be coercive and continuous and f(·; µ) be continuous, both for all µ ∈ P
and with respect to the norm || · ||V.
For more mathematical details on this section, refer to the book [37].

Discretization

Given the previous parametric weak formulation, this paragraph provides an ab-
stract framework for a discrete approximation, according to the formulation present
in [37].
The aim is to seek for an approximate solution in a discrete approximation space
Vδ ⊂ V. This space can be constructed with various approaches, for example,
we can use piece-wise linear basis functions, standard Finite Elements Methods
(FEM), or Spectral Methods.
Given a parameter µ ∈ P , the discrete problem involves finding uδ(µ) ∈ Vδ such
that

a(uδ(µ), vδ; µ) = f(vδ; µ), ∀vδ ∈ Vδ.

Usually, when the error ||u(µ) − uδ(µ)||V is acceptable, the approximation uδ(µ)
is considered accurate. But, the practical problem is that the computation of the
solution can be very computational expensive. Given Nδ = dim(Vδ), the discrete
space may involve multiple degrees of freedom according to Nδ to obtain the desired
accuracy.
A surrogate model like the one proposed in this thesis can help address this issue.
Indeed, with many simulations to solve, a NN can handle a large number of them
in a significantly shorter time compared to using standard methods.

3.2.2 Formulation of the Problem for the Test Cases
In this paragraph, we provide a detailed presentation of the theoretical problem
we aim to solve, describing it in terms of a continuous problem. The formulation
we present is used to describe a parametric PDE where also the BCs are parame-
terized.
It is important to note that, even if we present the problem in its continuous form,
for each test case, simulations were performed in a discrete environment, and the
ground truth values were determined using the traditional FEM.

Before we begin, we must emphasize that the notation we use here is the one
introduced in Section 3.2.1, so we have the functional Hilbert spaces V and the
parameter domain P .

23

Parameterized Partial Differential Equations

The domain we work with, Figure 3.1, is an open, bounded, and regular spatial
domain, which we denote by Ω ⊂ R2. Given its boundary ∂Ω, we define two
subsets, ΓD and ΓN , where Dirichlet and Neumann BCs are imposed, respectively.
We also assume that ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅.

The mathematical problem we want to solve is the one presented in Section 3.2.1,
with the linear form f and the bilinear form a. The parameter we consider is
µ ∈ P and it has the following generic form µ = [µ1, .., µk, µD, µN], where

• µ1, .., µk represent the physical parameters of the problem (in some cases, they
can also be the values of the BCs);

• µD indicates where the Dirichlet BCs are applied, defining the boundary
subset ΓµD

D ;

• µN indicates where the Neumann BCs are applied, defining the boundary
subset ΓµN

N .

Moreover, we define the value of the Dirichlet and Neumann BCs with the variables
zD and zN , respectively. In this setting, we denote the duality pairing between V
and R with ⟨·, ·⟩ and so we define the forcing term as

⟨F (µ), v⟩ = ⟨f(µ), v⟩ + ⟨fN(µ), v⟩ + ⟨fD(µ), v⟩ ,

where
⟨fN(µ), v⟩ =

Ú
ΓµN

N

zNv ds and ⟨fD(µ), v⟩ =
Ú

ΓµD
D

zDv ds.

As example, Figure 3.2 shows a generic spatial domain Ω under the action of two
parameters µ1 = [µ1, µ1

N , µ1
D] and µ2 = [µ2, µ2

N , µ2
D]. The parameters define two

different regions, ΓµN
N and ΓµD

D , representing Neumann and Dirichlet BCs.

3.3 Solving methods for PDEs and NNs
There are several methods for solving PDEs, both analytically and numerically.
Among the traditional and analytically ones, we can mention Separation of Vari-
ables and Fourier transformation. The Separation of Variables method assumes
the solution can be written as the product of functions, each dependent on a sin-
gle variable, u(x, t) = X(x)T (t). Substituting into the PDE and separating the
variables often leads to simpler Ordinary Differential Equations (ODEs) to solve
[17]. It is also possible to use the Fourier series and transformations. These meth-
ods decompose a function into sinusoidal components, which are easier to handle
analytically [17].

24

Parameterized Partial Differential Equations

Ω

Γµ1
D

D

Γµ1
N

N

Ω

Γµ2
D

D

Γµ2
N

N

Figure 3.2: Representation of a general domain Ω for two values of µN and
µD, i.e., µ1

N and µ1
D (left) and µ2

N and µ2
D (right). The boundary where

Neumann is applied is denoted by a blue dotted line, while boundary where
Dirichlet is applied is denoted by a black solid line.

Unfortunately, these analytical methods have limited applicability because in most
cases, obtaining a solution in an explicit closed form is not feasible. This is why
numerical methods are more commonly used than analytical ones. The underlying
concept of numerical approaches is to determine substitute functions that approx-
imate the original unknown functions, with two properties: first, maintaining an
error acceptable for practical purposes, and second, being relatively easy to com-
pute [31]. Given u the exact solution of the PDEs a general numerical method
try to construct an approximation of u, uN , in such a way the error uN − u is
acceptable. In this setting N ≥ 1 represents the finite dimension of the numerical
problem.
As discussed in the book [31], numerical methods can be grouped into several
categories, which are outlined below.

• Finite Difference Method (FDM):
It discretize the domain into a grid and approximate the derivatives in the
governing equations with finite differences. It is often used for problems in
one-dimensional or simple geometries because it requires structured grids and
is easier to implement for regular domains.

• Finite Element Method (FEM):
It divide the domain into smaller, simpler parts called "elements" (usually tri-
angles or quadrilaterals in 2D, tetrahedra or hexahedra in 3D) and the solution
is approximated by a piecewise polynomial function over these elements. It is
highly flexible and suitable for complex geometries and unstructured meshes.
This is the method we used to generate the data for our test cases, see Section
4.2.

• Finite Volume Method (FVM):

25

Parameterized Partial Differential Equations

It divide the domain into small control volumes (cells), and the fluxes across
the cell boundaries are computed to ensure the conservation of quantities
such as mass, momentum, or energy. It is widely used in computational fluid
dynamics due to its ability to handle conservation laws and adapt well to
irregular meshes.

• Spectral Method (SM):
Unlike previous methods, such as FEM or FDM, spectral method use global
approximation, meaning the basis functions are nonzero over the entire do-
main, and the solution is approximated as a sum of global basis functions
(usually trigonometric functions like sines and cosines). It is commonly used
in problems with periodic BCs or problems where the solution is smooth over
the domain. It struggle with complex geometries or solutions with sharp
discontinuities.

• Spectral Element Method (SEM): It is a higher-order version of the FEM,
combining the geometrical flexibility of FEMs with the high accuracy of SMs.
The solution is approximated using high-degree polynomials within each ele-
ment, providing greater accuracy with fewer elements compared to FEM. It
is often used for solving problems in fluid dynamics, electromagnetism, and
other fields requiring high precision.

For more information on this numerical methods, the reader can refer to the sem-
inal book [31].

Traditional methods for solving PDEs, such as the ones just presented, often re-
quire a fine discretization of the spatial domain. This leads to a computationally
expensive process, especially when the dimension of the parameter space is large
or when the PDE domain is characterized by a high geometrical complexity; there-
fore, finding solutions in real-time or over large parameter ranges is a challenging
task. Furthermore, in many cases, obtaining accurate solutions to PDEs requires
solving the problem iteratively, which becomes impractical due to the enormous
computational costs involved.
Thus, although numerical methods work fairly well, they still present critical is-
sues, including the high computational cost and the fact that the analysis must be
repeated from scratch every time even a single parameter is changed.

3.3.1 Numerical Methods for Parametric PDEs
The numerical solution for parameterized PDEs using conventional high-fidelity
methods, such as the ones mentioned in this section’s introduction (FEM, FVM,
SEM), is often impractical in scenarios involving many queries or real-time com-
putations [28]. Indeed in these cases, it is essential to efficiently and accurately

26

Parameterized Partial Differential Equations

compute an output of interest while varying the input parameters. However, the
complexity and high computational expense of solving the full partial differential
equation for each new parameter make a direct approach impractical.As a result,
some alternative methods have been explored that allow obtaining the desired
output with minimal computational cost, without compromising the predictive
accuracy of the detailed model [37].

Reduced Order Models (ROMs) [3] offer an alternative approach that can signif-
icantly lower the computational demands (both storage and CPU time) required
for analyzing and simulating these equations. Over the past decades, ROMs have
evolved into a widely recognized set of techniques built on strong mathematical
foundations.
One of these methods, the Reduced Basis method [37], facilitates fast and accu-
rate evaluations of the solution for different parameter values. To construct the
reduced space that enables these efficient computations, techniques like Proper
Orthogonal Decomposition (POD) or the Greedy algorithm are commonly used
[28]. The POD is an SVD-based approach for identifying the principal compo-
nents, while the Greedy algorithm iteratively expands the space by adding basis
functions corresponding to the poorest approximation in the parameter space [31].
These methods separate the computations into two phases, online and offline, en-
suring a predictable and quite good accuracy during the online phase with minimal
computational cost. However, these approaches are typically linear, and their effi-
ciency tends to decrease when dealing with models that are difficult to reduce or
contain non-affine or non-linear terms [28].

Some of the limitations of the traditional approaches can be address by investi-
gating non-intrusive, fast and efficient model order reduction techniques through
a DL lens [21]. Leveraging nonlinear machine learning approaches facilitates the
discovery of a low-dimensional representation of the latent subspace and captures
feature correlations, thanks to its superior ability to learn underlying patterns.

3.3.2 Neural Networks for PDEs
In recent years, deep NNs, known for their exceptional ability to handle and pre-
dict complex systems, have been extensively applied across various domains, and
in engineering numerical simulations, NNs have been applied as direct solvers for
approximated systems, offering highly efficient solutions [18]. Due to their com-
putational efficiency and scalability, particularly on heterogeneous platforms, NNs
have emerged as a promising tool in scientific computing, even enabling real-time
PDE solving [20].

For example, in the article [28], we can find a parallelism between one of the key

27

Parameterized Partial Differential Equations

components of NNs, the autoencoder architecture, and the ROMs, introduced in
the previous paragraph. The paper shows that autoencoder results particularly
well-suited for use in ROMs, extending linear compression techniques, like POD.
The basic structure of an autoencoder consists of a nonlinear encoding and a
decoding, connected via a bottleneck. Comparing the autoencorder with ROMs,
the authors have seen this bottleneck as the latent dimension, which functions as
the reduced space, where the encoder compresses the information from the high-
order system. The decoder then "projects" this reduced representation back to the
original dimension [27].

Now, let us take a general look at the history of NNs used in this field.
While the first studies utilized FCNNs, more recent research has progressively
adopted optimized architectures that leverage spatial and temporal correlations
for more efficient training processes [27].
One architecture that has been extensively examined is CNNs, which efficient
detect and learn patterns from the spatial characteristics of the provided data.
Initially designed for image classification, CNNs have recently found widespread
applications in dynamic modeling and also parameterized PDEs [21], [24] demon-
strating quite strong performance. However, CNNs typically operate on structured
datasets that resemble images composed of pixels. While this structure is com-
mon in computer vision, it is less frequently encountered in the context of physical
problems (like those we address in this thesis).
To simulate dynamic behaviors one might use simply Cartesian meshes [26], but
irregular meshes are often necessary, as for the PDEs. Indeed, in these cases the
control equations are frequently defined on parameterized and complex domains
that require unstructured meshes [28]. A potential solution is to transform these
grids into image-like representations [12], but there is often inconsistency in the
interpretation. In fact, it is challenging to establish an efficient ordering and re-
shaping that aligns with the physical aspects of the problem [28]. Alternatively,
interpolation and level set approximations can be used to convert the data into
structured meshes. For instance, in [36], the authors suggest a preprocessing step
using k-PCA to obtain a 2D representation of the data. However, this method
necessitates dense meshes to retain information during the reshaping process, thus
increasing computational costs.
Algorithms have gradually evolved to adapt to the geometry of the domain, as the
mesh-informed NNs [11] and the continuous convolutional filters [8], [10]. These
works advocate for a rethinking of NN architectures to incorporate geometric in-
formation while maintaining a physically consistent inductive bias. Finally, it has
been observed that GNNs provide a natural framework for analyzing PDE solu-
tions defined on unstructured meshes [28].
From the literature, we can present the reader with some works in this field. We

28

Parameterized Partial Differential Equations

can start by mentioning Ray et al. [33] whose proposed a NN-based indicator to
correct irregular solutions within the discontinuous Galerkin scheme, and Chan et
al. [7] or Wang et al. [41] whose utilized NNs to address multiscale problems.

In terms of network architecture, traditional NN models suffer from network degra-
dation, making it difficult to achieve high accuracy. Increasing the network’s depth
does not necessarily improve accuracy and can even have a detrimental effect [16].
To address this issue, the residual architecture has been introduced; it includes a
short connection, called residual connection, that spans the hidden layers, ensuring
the transfer of training information to each layer (for more information see Sec-
tion 2.1). In numerical computation of PDEs, Tong et al. [30] applied ResNet to
simulate linear and nonlinear self-consistent systems. Also Jiang et al.[16] utilize
a highly efficient ResNet architecture to address the solution of PDEs. Firstly,
they incorporated the ResNet architecture into the NN model, allowing accuracy
to improve as the network depth increases, and then the NN model was integrated
with a correction iteration process, which iteratively reduces the error in the NN’s
results.

The idea of using NNs to obtain numerical solutions for PDEs also introduces
certain risks. According to the universal approximation theorem [40], a piecewise
continuous objective function is a necessary condition for reliable NN approxima-
tions. However, solutions to PDEs, particularly nonlinear ones, often do not meet
this regularity condition. As a result, direct NN predictions frequently lack suffi-
cient numerical accuracy [16].
To address this, many NN-based approaches focus on semi-analytic models rather
than direct prediction. For instance, Raissi et al.[32] introduced the physics-
informed neural network (PINN) to solve PDEs by incorporating integral forms
into the loss function. Ehsan et al. [19] developed the hp-VPINN, an enhanced
version of PINN with improved accuracy. These methods translate the original
PDEs into parametric models and design penalty functions to ensure compatibil-
ity with the original PDEs, thereby improving the accuracy of NN-based solutions.
Using NNs to solve intermediate linear equations is another promising approach
that combines the strengths of NNs with traditional numerical methods. For ex-
ample, Xiao et al.[44] introduced a NN-based solver to accelerate the FDM process
for solving the Poisson equation in fluid simulations. In this context, the network
architecture and the regularity of the linear equations play a crucial role, with
the latter typically being more manageable and easier to quantify compared to the
original PDEs or their parametric models. As a result, applying NNs to solve inter-
mediate linear equations has the potential to offer greater precision improvements
[16].

Interpretability is another significant challenge in applying NNs to PDEs. It refers

29

Parameterized Partial Differential Equations

to understanding how a specific input leads to a particular output in a NN and
what information the network learns during training. EXplainable Artificial In-
telligence (XAI) is a new frontier that addresses this problem by striving to make
AI systems transparent, interpretable, and more trustworthy, but the NNs inter-
pretability remains an issue, which limits their use in numerical computations [4].
However, NNs have been shown to be reliable as internal interpolation when the
train set is sampled uniformly enough to cover almost all possible inputs. For-
tunately, homogeneous datasets for linear equations are easy to generate [16].
Additionally, for a given algorithm, the discretization scheme of the PDE is typ-
ically unique, restricting the resulting linear equations to a narrow range. This
helps NN-based solvers for intermediate linear equations bypass the interpretabil-
ity challenge effectively [16].
We now focus on the approach taken in this thesis. As previously mentioned the
curse of dimensionality is a common challenge in numerical PDEs, particularly
when uncertainties are represented as random coefficients within the equations.
However, often the variability of physical quantities derived from a PDE can be
effectively captured using just a few features in the space of coefficient fields.
Based on this observation, the thesis will employ the GINN model discussed in
the previous Section 2.3, applying it to a parametric PDE problem where the
physical quantities of interest are treated as input coefficients. The idea is to
train the model on many solutions obtained from given parameter values, in order
to permit a fast evaluation (i.e., prediction) of the solution given new parameter
values.

30

4 Test Cases and Methodology
This chapter starts by presenting the actual physical problems that we aim to solve
and then outlines the methodology adopted in this work, providing the reader with
more information regarding the practical aspects of the research. After presenting
the two test cases, we briefly describe how the two datasets have been created
and used. Subsequently, we proceed by explaining how we designed the NNs
architectures and selected the hyperparameters. Towards the end of the chapter,
we describe the evaluation methods used for the analysis, and in the final part, we
provide details regarding the actual implementation.

4.1 Test Cases
The general mathematical formulation describing the problems addressed in this
thesis was presented in Section 3.2.2. In this section, we specifically introduce the
two test cases. As mentioned in the introduction, the physical problems we exam-
ined are two, one is purely diffusion-based, and the other involves both diffusion
and convection.
These two physical phenomenons are fundamental processes that describe the
transport of substances and energy in various physical systems, from environ-
mental processes to industrial applications.
Diffusion refers to the gradual spreading of particles from regions of high con-
centration to regions of low concentration. A common example is an oil spill on
water, where the oil slowly spreads over the surface. Another classic case is heat
diffusion, where thermal energy spreads from hotter areas to cooler ones, leading
to temperature equalization over time.
Convection, on the other hand, involves the transport of substances or heat through
the movement of a fluid. A typical example is the effect of wind blowing across
a landscape. The direction and intensity of the wind determine how air and heat
are distributed. In convection-dominated systems, the movement of the fluid plays
a more significant role than diffusion in determining how substances or heat are
transported.
To make the text clearer, from now on, we will refer to the first problem as Test
1 and the second as Test 2.

31

Test Cases and Methodology

Test 1
The physical domain of this case test is the unit square with a circular hole in the
center, i.e., Ω .= {(0, 1) × (0, 1)} \ {(x1, x2)} ∈ R2 such that (x1 − 0.5)2 + (x2 −
0.5)2 −0.32 < 0}. The physical phenomenon being discussed is diffusion, described
by the following simple equation, −∆u = 0 in Ω. In this case, heat diffuses from
the circular hole in the center, and its emission is selective, depending on the
Neumann BCs imposed on the edge of the inner circle.

Given ∂Ω the domain boundary, we can identify two portions of it, the inner
circular boundary, ∂Ωc, and the external square boundary, ∂Ωs, such that ∂Ωc ∪
∂Ωs = ∂Ω and ∂Ωc ∩ ∂Ωs = ∅.
In this setting, we apply four different kinds of BCs, as depicted in Figure 4.1:

• ΓµN
N ⊆ ∂Ωc, non-homogeneous Neumann BCs on part of the inner circular

boundary, according to parameter µN ;

• ΓµN

N ⊆ ∂Ωc, homogeneous Neumann BCs on part of the inner circular bound-
ary, according to parameter µN ;

• ΓN ⊂ ∂Ωs, homogeneous and fixed Neumann BCs on the right and left edges
of the square boundary;

• ΓD ⊂ ∂Ωs, homogeneous and fixed Dirichlet BCs on the top and bottom
edges of the square boundary;

where ∂Ωc = ΓµN
N ∪ ΓµN

N , ΓµN
N ∩ ΓµN

N = ∅, ∂Ωs = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅.
The involved parameter is µ = [µc, µN], where µN maps each node of the mesh on
the inner circle ∂Ωc, to the subsets ΓµN

N or ΓµN

N . If the node is in ΓµN
N we apply an

homogeneous Neumann condition equal to 0, while if it is in ΓµN

N we apply a non-
homogeneous Neumann condition equal to µc ∈ (0,1). Hence, these parameters
model how heat is emitted from the inner circle to the rest of the domain.

Given a generic parametric instance µ∗ = [µ∗
c , µ∗

N], the problem we want to solve
appears as follows:

−∆u = 0 in Ω,

u = 0 on ΓD,

∂u

∂n
= µ∗

c on Γµ∗
N

N ,

∂u

∂n
= 0 on ΓN ∪ Γµ∗

N
N ,

(T1)

where n is the normal outward vector to ∂Ω.

32

Test Cases and Methodology

ΓN

ΓD

Γµ∗
N

N

Γµ∗
N

N

Ω

(0,0)

(0,1) (1,1)

(1,0)

Figure 4.1: Spatial domain Ω: schematic representation for µ∗
N . The

homogeneous Dirichlet boundary is denoted by a black solid line (ΓD);
the homogeneous Neumann boundary is denoted by a blue dotted line
(ΓN and Γµ∗

N
N) and the non-homogeneous Neumann boundary is denoted

by a blue dashed line (Γµ∗
N

N).

Test 2
The physical domain of this case test is simply the unit square Ω .= {(0, 1) ×
(0, 1)}, and the physical phenomenon being discussed is a problem of diffusion and
convection. The equation that describes it, is the following

α(µ1) · ∇u − β(µ2) · ∆u = 1 in Ω,

where α(µ1)∇u is the convection term, while β(µ2)∆u is the diffusion term.
The involved parameter is µ = [µ1, µ2, µD], where µ1 ∈ (0, π) controls the con-
vection, α(µ1) = (cos(µ1), sin(µ1)), and µ2 ∈ (0,5) controls the diffusion, β(µ2) =
10−µ2 . In particular, we use µ1 to parameterize the direction of convection, as µ1
represents the angle of the convection vector, i.e., the angle in which "the wind
blows". On the other hand, we use µ2 to parameterize different diffusion or convec-
tion regimes. Specifically, if µ2 → 0, the case will be diffusion-dominated, whereas
if µ2 → 5, the case will be convection-dominated. Moreover, the behavior of
the physical phenomenon will generally be influenced by the imposed BCs, which
determine the characteristics of the domain’s boundary.

In this setting, we apply three different kinds of BCs, as depicted in Figure 4.2:

• ΓD ⊂ ∂Ω, homogeneous and fixed Dirichlet BCs on a specific portion of the
perimeter of the square domain OA ∪ OB, where O = (0,0), A = (1,0), and
B = (0, 0.25);

33

Test Cases and Methodology

• ΓµD
D ⊂ ∂Ω, homogeneous Dirichlet BCs on part of the perimeter of the square

domain, according to parameter µD;

• ΓµD
N ⊂ ∂Ω, homogeneous Neumann BCs on part of the perimeter of the square

domain, according to parameter µD;

where ∂Ω = ΓD ∪ ΓµD
D ∪ ΓµD

N , ΓD ∩ ΓµD
D = ∅, ΓD ∩ ΓµD

N = ∅ and ΓµD
D ∩ ΓµD

N = ∅.
The BCs imposed on the boundary are both Neumann and Dirichlet, creating
"holes" along the perimeter of the square, which result in different behaviors of the
diffusion-convection phenomenon.

Ω

ΓD

Γµ∗
D

D

Γµ∗
D

N

(0,0)

(0,1) (1,1)

(1,0)

Figure 4.2: Spatial domain Ω: schematic representation for µ∗
D. The ho-

mogeneous Dirichlet boundary is denoted by a black solid line, the thicker
one is where the conditions are fixed (Γµ∗

D
D and ΓD); the homogeneous Neu-

mann boundary is denoted by a blue dotted line (Γµ∗
D

N).

Given the general parameter, µ = [µ1, µ2, µD], the BCs are determined by µD,
which maps each node of the boundary to 0 if homogeneous Dirichlet conditions
apply and to 1 if the problem features homogeneous Neumann conditions.
The choice to fix a portion of the BCs (ΓD) was made to guarantee the numerical
stability of this problem in the convection-dominated case (i.e., for large values of
µ2), as these models have been simulated using piece-wise linear FEM simulations.

Given a generic parametric instance µ∗ = [µ∗
1, µ∗

2, µ∗
D], the problem we want to solve

appears as follows:

34

Test Cases and Methodology

α(µ∗

1)∇u − β(µ∗
2)∆u = 1 in Ω,

∂u

∂n
= 0 on Γµ∗

D
N ,

u = 0 on ΓD ∪ Γµ∗
D

D ,

(T2)

where n is the normal outward vector to ∂Ω.

4.2 Data Preparation
For each of our two problems, diffusion and convection-diffusion, we have a system
of PDEs, (T1) and (T2), for which, as mentioned in the introduction, it is difficult
to find analytical solutions. Among the numerical solution techniques for PDEs,
presented in Section 3.3, we used the FEM. With this method, we create a mesh
consisting of these "elements", and the solution is interpolated over each element by
linear functions, with nodes at the vertices of the elements. For our problems, we
used P1 finite element data, triangles in 2D, and since the P1 elements are uniquely
defined by the nodal values on the triangle [31], the dimension of the space equals
the number of nodal values, so the network inputs correspond to the FEM nodal
values. In the end, we created a mesh of 1141 points for the first problem and a
mesh of 3967 points for the second one.

Now, we briefly describe how we obtained the parameters that characterize our
test cases, considering both the physical and geometric ones (BCs). For the first
problem, Test 1, we have the parameter µ = [µc, µN], where µc is the physical
one and µN the geometrical one. For the second problem, Test 2, we have µ =
[µ1, µ2, µD] where µ1 and µ2 are the physical ones and µD is the geometrical one.
The physical parameters of the problems are derived from simple distributions.
For the first problem, µc ∈ (0,1) is obtained through a uniform distribution [2]
between 0 and 1, µc ∼ U(0, ...,1). For the second problem, µ1 ∈ (0,5) is given by a
beta distribution [2], µ1 ∼ B(α, β) with α = β = 0.5, while µ2 ∈ (0, π) is obtained
from a uniform distribution between 0 and π, µ2 ∼ U(0, ..., π).
The geometric parameters, on the other hand, are defined in a somewhat more
complex manner, we present the base reasoning. In the first problem, we have
the BCs fixed on the square’s boundary but not on the internal circumference,
where we have a total of M = 88 nodes. First, we define some interval centers
Nc, where the minimum number of intervals is 1 and the maximum is 5, Nc ∼
U(1, ...,5). These centers ci are uniformly sampled on the circumference for all
Nc, meaning that we randomly select a node uniformly between 1 and M , ci ∼
U(c1, ..., cM). Given Lc, the length of the circle, the length of the interval, or
arc of the circumference, is discretely sampled from one node to all nodes up to

35

Test Cases and Methodology

the maximum number of intervals considered, so it is uniformly sampled between
[Lc/M, Lc/5], li ∼ U(1, ..., Lc/5). In the second problem, the reasoning is the same,
but every time the region is exited from the Γµ∗

D
D , the interval is cut off. For better

understanding, see Figure 4.3.

Figure 4.3: Scheme for the creation of the geometric parameters characterizing the
BCs for the circular boundary of the first problems and the square boundary of
the second problem.

For both problems, 5000 simulations were created, but for the second test case,
much more complex than the first one, some simulations were discarded due to
inconsistencies. In conclusion, we used a dataset of 5000 simulations for the first
problem and a dataset of 4715 for the second problem.

As suggest in literature, both datasets are split into three distinct sets: a training
set, a validation set, and a test set. Indeed, splitting data into training, valida-
tion, and test sets helps assess the performance a DL model by training it on the
first one (training set), monitoring and regularizing the training behaviour on the
second one (validation set), and ultimately evaluating its generalization on the
independent test set. This separation ensures robustness, prevents overfitting and
enhances the model’s ability to make accurate predictions on new, unseen data.
For our experiments, we designated a fixed portion of each dataset as the test set,
while the remaining data was split into training and validation sets. To evaluate
the robustness of the architectures, we trained the models on training sets of vary-
ing sizes. For the first problem, Test 1, we have a dataset of 5000 simulations,
where 3000 are allocated as test set. The training and validation sets are initially
sized at 1024 and 512, respectively, then reduced to 512 for training and 256 for
validation, and finally to 256 for training and 128 for validation. For the second
problem, Test 2, we have a dataset of 4715 simulations, where 1500 are assigned as
test set, and in this case, we used training sets of 1024 and 512, and corresponding
validation sets of 512 and 256.

36

Test Cases and Methodology

4.3 Architecture Design
The architectures used in our experiments are essentially two: an FCNN, with and
without residual blocks, and a residual GINN. What we request as output is the
same in both cases: the value of the solution to the problem for each node of the
mesh.
Among the hyperparameters, we have some fixed in both architectures; the specific
values are listed in Table 4.1.

Hyperparameter Value
batch size 16
learning rate factor 0.5
learning rate patience 100 epochs
early stopping 750 epochs
optimizer adam with learning rate of 10−3

maximum number of epochs 10000 epochs

Table 4.1: Fixed hyperparameters for both architectures.

In the case of the FCNN, we employ a fairly standard architecture and the hy-
perparameters we focus on are the number of hidden layers, the width of these
layers, the use of batch normalization, and the type of activation function. An ad-
ditional option for this network is whether to include residual blocks as introduced
in Section 2.1. For a better understanding see Figure 4.4.

Figure 4.4: Schematized architecture of the FCNN used in our experiments.

Regarding the architecture of the GINN, see Figure 4.5, the base structure is
similar to the one just presented but, we use the GI layers, introduced in Section
2.3.1, instead of the dense fully-connected layers.

37

Test Cases and Methodology

Figure 4.5: Schematized architecture of the GINN used in our experiments.

In addition to the number of hidden layers, the activation function, and the use of
batch normalization, we test the network by varying the number of filters, i.e., the
number of output features associated with each node of the graph. Additionally,
we try with feeding the input data (i.e., all the BCs and physical parameters) again
into the network after n layers to see if this improves the network’s performance;
this technique will be referred to as "input refresh", see Figure 4.6.

Figure 4.6: Input Refresh mechanism for the GINN architecture.

One of the most important property of this architecture is that it has a multi-
features input ∈ RN×K , where N is the number of the graph nodes and K the
number of features associated to each node. The features we pass to the DL
model are the parameters of the problem, the ones regarding the BCs and the
ones regarding the physical parameters; for more details see Figure 4.7.
Another key difference between the two architectures is that the number of units
in the layers (width of the hidden layer) is a hyperparameter that we choose only
in the case of FCNNs, whereas in the case of GINNs, it is always fixed and equal

38

Test Cases and Methodology

Figure 4.7: Input multi-features of the GINN architecture.

to the number of nodes in the mesh, as presented in Section 4.2.

4.4 Simulations Setup
As discussed in Chapter 3, one of the issues with standard GCNs is that, in many
cases, they fail to outperform even a simple MLP. One of the primary goals of
the new GINN architectures is to demonstrate that they can indeed surpass the
performance of traditional MLPs. To test this, experiments are conducted using
both types of NNs on both the two test cases.

For both problems, we perform an extensive grid search for hyperparameters, test-
ing a pair of values for each hyperparameter. Specifically, we explore different
values for the number of hidden layers (nh), the type of activation function (af)
and the use of batch normalization (bn). For the FCNNs we tested also, the width
of the hidden layers (wh) and the use of residual connections (rs), while for the
GINNs, the number of filters (nf) and whether or not to refresh the input (rf).
The Table 4.2 presents the various combinations tested for both problems.

Hyperparameter
Test 1 Test 2

FCNN GINN FCNN GINN
nh [6, 8] [60, 80] [6, 8] [80, 100]

bn [True, False] [True, False] [True, False] [True, False]

wh [1024, 2048] - [2048, 4096] -

nf - [3, 5] - [5, 10]

af [mish, elu] [mish, elu] [mish, elu] [mish, elu]

rs [True, False] - [True, False] -

rf - [15, None] - [15, None]

Table 4.2: Hyperparameters grid search.

In conclusion, we have trained, for each problem, 16 basic FC architectures, 16 FC

39

Test Cases and Methodology

architectures with residual modules, and 32 residual GINNs. Each architecture
was trained across the various training and validation sets mentioned earlier. See
Figure 4.8 for an overview of all the experiments conducted.

Test 1 256
experiments

128 on GINN

128 on FCNN

32 train set = 1024

32 train set = 512

32 train set = 256

32 train set = 128

32 train set = 1024

32 train set = 512

32 train set = 256

32 train set = 128

Test 2 128
experiments

64 on GINN

64 on FCNN

32 train set = 1024

32 train set = 512

32 train set = 1024

32 train set = 512

Figure 4.8: Experiments conducted according to the architecture used and the
number of ground truth simulations used for training.

4.5 Evaluation
When tackling a regression problem, several metrics can be used to assess the
accuracy and quality of the model, each providing different insights into its per-
formance. Let us assume that n ∈ N is the number of mesh points and define
y = (y1, ..., yn) ∈ Rn as the values of actual solution and ŷ = (ŷ1, ..., ŷn) ∈ Rn as
the values of predicted solution. Let us also define the function u interpolated at
the nodes of the mesh of the actual solution and the function û interpolated at the
nodes of the mesh of the predicted solution
It is common to evaluate the results by comparing the actual value yi with the
predicted value ŷi. Nonetheless, since our task is the regression of PDE solutions,
we take into account more specific performance measures; e.g., errors based on the
L2 norm and H1 semi-norm of the functions defined on the domain of the problem,
u and û.
Below is a brief overview of some key metrics that we used in our analysis.

1. Mean Absolute Error (MAE):
MAE measures the average magnitude of the errors in a set of predictions,
without considering their direction. It is the average over the test sample

40

Test Cases and Methodology

of the absolute differences between prediction and actual observation where
all individual differences have equal weight. MAE is intuitive and easy to
interpret, providing a clear idea of the average error in the same units as the
target variable. The formula is:

MAE(y, ŷ) = 1
n

nØ
i=1

|yi − ŷi|.

2. Mean Relative Range Error (MRRE):
This metric assesses the error in relation to the range of the actual values. It
is particularly useful for evaluating models where the range of values is large
and can help understand how errors scale with the data’s variability. The
formula is:

MRRE(y, ŷ) = 1
n

qn
i=1 |yi − ŷi|

ymax − ymin
,

where ymax and ymin are the maximum and minimum values of the actual
solution, respectively.

3. L2-norm Error (L2E):
L2E is the error related to the Hilbert space L2(Ω) and it is defined by the
norm in L2(Ω) of the difference between the solutions as functions. The
formula is:

L2E(u, û) = ∥u − û∥L2(Ω),

where
∥u − û∥L2(Ω) =

óÚ
Ω

(u − û)2 dΩ.

4. L2-norm Relative Error (L2RE):
L2RE provides a normalized measure of the L2 error by dividing it by the
norm of the actual values. The formula is:

L2RE(u, û) = ∥u − û∥L2(Ω)

∥u∥L2(Ω)
.

5. H1-norm Error (H1E):
H1E is the error related to the Hilbert space H1(Ω) and it is defined by the
semi-norm in H1(Ω) of the difference between the solutions as functions. This
error take into account the difference in terms of the derivatives of the func-
tions considered. So, this norm not only measures the error in the function

41

Test Cases and Methodology

values but also incorporates the error in the gradient, thus providing a more
comprehensive assessment of the approximation quality. The formula is:

H1E(u, û) = |u − û|H1(Ω) = ∥∇u − ∇û∥L2(Ω).

6. H1-norm Relative Error (H1RE):
H1RE provides a normalized measure of the H1 error by dividing it by the
semi-norm of the actual values. The formula is:

H1RE(u, û) = |u − û|H1(Ω)

|u|H1(Ω)
.

Each of these metrics provides different perspectives on model performance, and,
depending on the context, we might choose one or a combination of these metrics
to get a comprehensive view of our model’s effectiveness.

4.6 Implementation
The programming language employed for this thesis is Python, which is currently
the most widely used in DL application. Python has a rich ecosystem of libraries
and frameworks specifically designed for DL, such as TensorFlow and Keras, which
are the ones we have used. These libraries provide high-level APIs that make it
easier to build, train, and deploy DL models.
To execute the simulations, the primary platform utilized is hpc@disma. It is
an academic computing center that provides computational resources and techni-
cal support for research activities for academic and didactic purposes. The hpc
project is officially managed by Professor Matteo Cicuttin of the Department of
Mathematical Sciences (DISMA).
The results of the experiments have been analyzed using some simple Jupyter
notebooks on the widely used platform, Visual Studio Code.

42

5 Experimental Results

In this chapter, we present the outcomes of our experiments, which are divided
based on the two problems addressed, Test 1 and Test 2. As described in detail in
Section 4.1, both problems are characterized by a specific set of parameters that
determine their physical and geometric properties. The first is a fairly standard
PDEs problem, while the second is purposely designed to be more complex in order
to test the GINN on more difficult and challenging PDEs problems.
The analyses were conducted using all the errors described in Section 4.5; however,
for the sake of clarity, we will focus mainly on the Mean Absolute Error (MAE)
and, at times, on the Mean Relative Range Error (MRRE). This choice is due to
the fact that, although the associated values change, the qualitative behavior of
the various errors remains very similar.

5.1 Test 1
To begin, we present the general results of the experiments comparing FCNNs
with GINNs for the first problem, Test 1. Figure 5.1 shows the average MAE and
the average MRRE on the test set for both the architectures, divided according
to the number of ground-truth simulations used for the training. We can observe
that the GINNs consistently outperform the FCNNs; in fact, looking at the Figure
5.1, we notice that the average error of the GINNs is always lower than that of
the FCNNs. As expected, performance improves for both the architectures as the
number of training simulations increases, except for the FCNNs with a train set
of 1024 elements. In particular, GINN architecture prove to be robust, as there is
not a significant difference between the simulations with 1024 training data points
and those with 512. The performance only visibly decreases when the training
data is very limited, that is, below 256 examples.

For completeness, we also provide summary tables of all the experiments conducted
on the first problem. Specifically, in Tables 5.1, 5.2, 5.3 and 5.4, we present the
experiments performed on the FCNNs, while in Tables 5.5, 5.6, 5.7 and 5.8, those
conducted on the GINNs. The tables are organized based on the number of ground
truth simulations used during training and validation (the number of simulations
used for testing the model is fixed at 3000). In these tables, we report the number
of parameters used for training (n_params) along with some of the errors defined

43

Experimental Results

Figure 5.1: Comparison between FCNNs and GINNs on MAE and MRRE.

in Section 4.5, in particular, MAE, MRRE, L2E, and H1E. The data are sorted in
ascending order of MAE.

n_params MAE MRRE L2E H1E
1 9657461 0.000353 0.004464 0.000360 0.031195
2 9657461 0.000847 0.025055 0.000806 0.064044
3 6508661 0.000904 0.013598 0.000964 0.080452
4 36090997 0.000912 0.027108 0.000845 0.074520
5 27698293 0.000984 0.038724 0.000868 0.076634
6 23501941 0.001037 0.021556 0.001091 0.091334
7 36090997 0.001063 0.019882 0.001091 0.088824
8 27698293 0.001072 0.020457 0.001045 0.080284
9 36115573 0.001458 0.034632 0.001483 0.110416
10 8607861 0.001528 0.024064 0.001602 0.134670
11 27714677 0.001580 0.030059 0.001575 0.108891
12 6508661 0.001775 0.048296 0.001769 0.144299
13 7566453 0.002120 0.070653 0.002030 0.135667
14 31894645 0.002445 0.040154 0.002479 0.210579
15 23501941 0.002524 0.061392 0.002504 0.189663
16 8607861 0.002609 0.052935 0.002595 0.216571
17 23534709 0.002921 0.103319 0.002956 0.222262
18 31943797 0.002940 0.119633 0.002906 0.230998
19 8632437 0.003032 0.205583 0.002963 0.210080
20 31894645 0.003037 0.088809 0.002937 0.269264
21 36115573 0.003131 0.087219 0.002940 0.227294
22 23534709 0.003207 0.133682 0.003009 0.242691
23 6525045 0.003208 0.093924 0.003174 0.230806
24 6525045 0.003284 0.073073 0.003094 0.244204
25 8632437 0.003672 0.145309 0.003695 0.271125
26 27714677 0.004777 0.168495 0.004432 0.360344
27 31943797 0.012181 0.153907 0.012018 0.688410

Continued on next page

44

Experimental Results

n_params MAE MRRE L2E H1E
28 9669749 0.050202 0.184287 0.049540 2.418116
29 7558261 0.102527 0.351533 0.094817 3.769222
30 7558261 0.252794 0.870350 0.237960 9.618701
31 9669749 1.095436 5.782240 1.025747 41.282606
32 7566453 2.754935 9.609385 2.587270 107.597768

Table 5.1: Test 1 : Experiments executed on FCNN with 1024 training data and
512 validation data.

n_params MAE MRRE L2E H1E
1 27698293 0.000426 0.004615 0.000424 0.036083
2 36090997 0.000536 0.009791 0.000525 0.044062
3 9657461 0.000598 0.010086 0.000577 0.047575
4 7566453 0.001058 0.018321 0.001048 0.074543
5 23501941 0.001510 0.024923 0.001583 0.122557
6 9669749 0.001539 0.027580 0.001538 0.109290
7 27698293 0.001565 0.037887 0.001534 0.130583
8 9669749 0.001609 0.037064 0.001578 0.117807
9 27714677 0.001727 0.045959 0.001748 0.127743
10 36115573 0.001751 0.051480 0.001756 0.134820
11 6508661 0.001774 0.052174 0.001771 0.136862
12 9657461 0.002117 0.052961 0.002022 0.156980
13 8607861 0.002144 0.043105 0.002135 0.175621
14 36090997 0.002228 0.041818 0.002197 0.172878
15 8607861 0.002447 0.036736 0.002482 0.224850
16 31894645 0.002624 0.046412 0.002629 0.235299
17 6508661 0.002629 0.062408 0.002581 0.206788
18 23501941 0.002640 0.061312 0.002599 0.222776
19 23534709 0.003138 0.092587 0.003151 0.239347
20 31943797 0.003949 0.108069 0.003989 0.319406
21 6525045 0.004079 0.110325 0.003986 0.299401
22 36115573 0.004135 0.139319 0.003803 0.308549
23 6525045 0.004151 0.096216 0.003990 0.318911
24 27714677 0.004418 0.161096 0.004059 0.318956
25 23534709 0.004493 0.102318 0.004354 0.328214
26 8632437 0.004557 0.158580 0.004530 0.361685
27 31943797 0.004802 0.128117 0.004549 0.384061
28 8632437 0.004865 0.144902 0.004574 0.381902
29 7566453 0.005241 0.117824 0.004981 0.295314
30 7558261 0.005494 0.047610 0.005144 0.261375
31 31894645 0.007424 0.105121 0.007009 0.639236
32 7558261 6.410047 21.882278 5.322680 490.244137

Table 5.2: Test 1 : Experiments executed on FCNN with 512 training data and
256 validation data.

45

Experimental Results

n_params MAE MRRE L2E H1E
1 36090997 0.001548 0.022322 0.001509 0.118035
2 27698293 0.001958 0.027626 0.001907 0.127263
3 9657461 0.002341 0.039028 0.002286 0.154796
4 36115573 0.002803 0.061388 0.002759 0.221864
5 7558261 0.002848 0.082009 0.002740 0.196922
6 27714677 0.002929 0.059857 0.002863 0.231201
7 27698293 0.003127 0.094833 0.002901 0.228529
8 9669749 0.003148 0.060190 0.003071 0.242108
9 36090997 0.003201 0.088187 0.003117 0.248485
10 9657461 0.003334 0.075111 0.003233 0.187533
11 7566453 0.003337 0.068569 0.003302 0.245866
12 23501941 0.003629 0.075580 0.003552 0.292401
13 8607861 0.003664 0.058376 0.003654 0.286742
14 8607861 0.003774 0.056412 0.003706 0.301643
15 31894645 0.003849 0.064528 0.003731 0.291688
16 6508661 0.004133 0.102438 0.003997 0.311314
17 6508661 0.004218 0.109621 0.004060 0.266928
18 6525045 0.004592 0.097066 0.004331 0.343083
19 23501941 0.004692 0.110206 0.004525 0.306705
20 7566453 0.004711 0.165899 0.004424 0.294435
21 9669749 0.004751 0.163286 0.004357 0.342339
22 23534709 0.004890 0.134111 0.004829 0.369405
23 31943797 0.004983 0.116206 0.004996 0.407653
24 8632437 0.005031 0.078316 0.004987 0.402799
25 27714677 0.005190 0.147721 0.004786 0.375521
26 31943797 0.005338 0.150122 0.005210 0.422175
27 6525045 0.005403 0.145673 0.005040 0.392047
28 8632437 0.005885 0.151241 0.005620 0.451230
29 36115573 0.005935 0.197160 0.005624 0.408313
30 23534709 0.006387 0.181371 0.005986 0.476715
31 31894645 0.008084 0.181578 0.007325 0.663728
32 7558261 0.012746 0.446227 0.011683 0.850779

Table 5.3: Test 1 : Experiments executed on FCNN with 256 training data and
128 validation data.

n_params MAE MRRE L2E H1E
1 36115573 0.004348 0.065199 0.004122 0.329426
2 27698293 0.004496 0.072811 0.004343 0.254427
3 27714677 0.004583 0.073597 0.004389 0.359078
4 9657461 0.004636 0.090978 0.004519 0.294440
5 36090997 0.004818 0.081713 0.004661 0.315815
6 6508661 0.004907 0.044822 0.004834 0.287990
7 9669749 0.005136 0.114453 0.004706 0.383426
8 7566453 0.005204 0.091724 0.004721 0.391601
9 7558261 0.005225 0.104568 0.004918 0.307289

Continued on next page

46

Experimental Results

n_params MAE MRRE L2E H1E
10 7558261 0.005305 0.118322 0.005113 0.331271
11 6525045 0.005643 0.109577 0.005395 0.422717
12 9657461 0.005697 0.155536 0.005351 0.341094
13 7566453 0.005713 0.218801 0.005325 0.421031
14 6525045 0.005850 0.135141 0.005597 0.416060
15 36090997 0.005963 0.130321 0.005460 0.442856
16 23501941 0.005999 0.142622 0.005781 0.380374
17 8632437 0.006077 0.093102 0.006042 0.460152
18 31943797 0.006166 0.139514 0.006071 0.492704
19 8632437 0.006310 0.136386 0.006235 0.485498
20 9669749 0.006385 0.154918 0.005978 0.461333
21 23534709 0.006464 0.091446 0.006342 0.479647
22 8607861 0.006524 0.114655 0.006427 0.423542
23 36115573 0.006692 0.147320 0.006315 0.481226
24 27698293 0.007086 0.110521 0.006858 0.462353
25 27714677 0.007264 0.259223 0.006839 0.493661
26 31894645 0.007269 0.085655 0.007157 0.554968
27 23534709 0.007413 0.226558 0.006969 0.555864
28 31894645 0.007694 0.113763 0.007369 0.603823
29 31943797 0.007888 0.254340 0.007369 0.586037
30 23501941 0.008715 0.124320 0.008194 0.654441
31 8607861 0.013126 0.195184 0.013055 0.873833
32 6508661 0.024480 0.435707 0.022556 1.470933

Table 5.4: Test 1 : Experiments executed on FCNN with 128 training data and 64
validation data.

n_params MAE MRRE L2E H1E
1 1900389 0.000323 0.007260 0.000297 0.023334
2 1423291 0.000385 0.009877 0.000356 0.027344
3 1888979 0.000393 0.010905 0.000363 0.028533
4 1434701 0.000403 0.010672 0.000368 0.028382
5 1866159 0.000427 0.011111 0.000397 0.030980
6 1888355 0.000467 0.011721 0.000435 0.033213
7 1900389 0.000468 0.010848 0.000435 0.035298
8 1877569 0.000490 0.013754 0.000456 0.035396
9 1888979 0.000491 0.011179 0.000452 0.036232
10 1421009 0.000496 0.013217 0.000460 0.035350
11 1434237 0.000540 0.013752 0.000504 0.038420
12 1865535 0.000585 0.015044 0.000549 0.042052
13 1876945 0.000596 0.015871 0.000551 0.042474
14 1899765 0.000606 0.015267 0.000560 0.043452
15 1888355 0.000630 0.017703 0.000583 0.045149
16 1899765 0.000636 0.017754 0.000590 0.046527
17 1420545 0.000641 0.017218 0.000590 0.046211
18 1409599 0.000642 0.018917 0.000606 0.048363

Continued on next page

47

Experimental Results

n_params MAE MRRE L2E H1E
19 1409135 0.000712 0.019846 0.000665 0.051553
20 1877569 0.000733 0.019278 0.000692 0.054574
21 1434701 0.000737 0.022681 0.000706 0.057423
22 1422827 0.000740 0.019772 0.000681 0.053675
23 1409599 0.000760 0.016750 0.000728 0.054947
24 1865535 0.000810 0.019528 0.000763 0.059614
25 1420545 0.000840 0.018622 0.000802 0.060907
26 1876945 0.000849 0.018708 0.000817 0.062791
27 1866159 0.000859 0.018328 0.000842 0.066333
28 1423291 0.000879 0.021180 0.000835 0.063756
29 1422827 0.000884 0.022889 0.000839 0.063361
30 1421009 0.001037 0.026862 0.000997 0.078055
31 1409135 0.001049 0.025267 0.000998 0.077119
32 1434237 0.001148 0.034136 0.001101 0.087169

Table 5.5: Test 1 : Experiments executed on GINN with 1024 training data and
512 validation data.

n_params MAE MRRE L2E H1E
1 1900389 0.000681 0.017136 0.000635 0.047507
2 1888979 0.000732 0.017801 0.000685 0.052597
3 1888979 0.000811 0.020328 0.000758 0.059217
4 1421009 0.000818 0.021429 0.000764 0.059828
5 1434701 0.000818 0.019977 0.000770 0.059097
6 1423291 0.000826 0.017219 0.000787 0.059537
7 1900389 0.000837 0.021913 0.000795 0.061000
8 1866159 0.000903 0.024284 0.000836 0.063851
9 1409599 0.000912 0.021599 0.000881 0.067159
10 1877569 0.000948 0.026571 0.000897 0.070415
11 1899765 0.001000 0.022937 0.000945 0.070916
12 1420545 0.001067 0.029323 0.001017 0.079418
13 1434701 0.001068 0.027064 0.001011 0.077754
14 1865535 0.001069 0.029930 0.001021 0.078755
15 1888355 0.001115 0.031987 0.001049 0.082933
16 1409135 0.001118 0.034527 0.001040 0.082340
17 1422827 0.001138 0.033941 0.001071 0.083159
18 1899765 0.001139 0.031274 0.001073 0.085321
19 1888355 0.001189 0.036782 0.001127 0.088070
20 1876945 0.001201 0.033401 0.001115 0.087410
21 1865535 0.001303 0.029938 0.001235 0.096768
22 1434237 0.001344 0.038058 0.001255 0.100653
23 1421009 0.001405 0.028519 0.001383 0.106758
24 1866159 0.001408 0.031416 0.001375 0.108064
25 1423291 0.001446 0.036917 0.001415 0.108479
26 1409599 0.001473 0.034953 0.001421 0.108566
27 1876945 0.001491 0.034196 0.001448 0.113935

Continued on next page

48

Experimental Results

n_params MAE MRRE L2E H1E
28 1420545 0.001499 0.031528 0.001455 0.113281
29 1434237 0.001529 0.042972 0.001449 0.111805
30 1877569 0.001535 0.030288 0.001504 0.115284
31 1409135 0.001725 0.055586 0.001636 0.130589
32 1422827 0.001841 0.057302 0.001725 0.136434

Table 5.6: Test 1 : Experiments executed on GINN with 512 training data and 256
validation data.

n_params MAE MRRE L2E H1E
1 1900389 0.001549 0.034815 0.001473 0.113485
2 1434701 0.001605 0.035520 0.001516 0.117943
3 1888979 0.001631 0.042344 0.001560 0.120869
4 1866159 0.001637 0.036129 0.001588 0.121808
5 1888979 0.001649 0.041155 0.001568 0.125152
6 1421009 0.001829 0.043416 0.001761 0.137393
7 1899765 0.001841 0.045662 0.001753 0.136887
8 1865535 0.001853 0.047784 0.001763 0.141284
9 1900389 0.001897 0.045824 0.001850 0.142326
10 1876945 0.001897 0.044875 0.001791 0.138943
11 1899765 0.001901 0.046314 0.001795 0.142622
12 1423291 0.001904 0.048306 0.001788 0.139115
13 1888355 0.001909 0.042616 0.001841 0.140623
14 1422827 0.001921 0.052957 0.001822 0.142111
15 1434701 0.001961 0.055181 0.001857 0.149980
16 1877569 0.001965 0.046949 0.001845 0.144631
17 1409599 0.001967 0.045896 0.001869 0.143936
18 1420545 0.002029 0.057573 0.001894 0.150602
19 1888355 0.002031 0.052244 0.001926 0.152512
20 1434237 0.002039 0.057794 0.001907 0.150670
21 1423291 0.002163 0.059020 0.002059 0.164629
22 1409135 0.002190 0.060213 0.002058 0.163844
23 1421009 0.002222 0.057150 0.002113 0.169588
24 1865535 0.002572 0.078188 0.002413 0.194958
25 1409135 0.002597 0.076085 0.002451 0.195244
26 1434237 0.002717 0.075796 0.002553 0.207480
27 1422827 0.002732 0.078424 0.002592 0.208113
28 1876945 0.002749 0.070116 0.002617 0.211843
29 1866159 0.002791 0.072355 0.002686 0.217131
30 1420545 0.002945 0.076912 0.002773 0.223159
31 1877569 0.003044 0.068784 0.002976 0.243568
32 1409599 0.003851 0.104589 0.003713 0.310127

Table 5.7: Test 1 : Experiments executed on GINN with 256 training data and 128
validation data.

49

Experimental Results

n_params MAE MRRE L2E H1E
1 1900389 0.002441 0.060848 0.002388 0.185966
2 1866159 0.002561 0.053482 0.002493 0.193338
3 1900389 0.002612 0.055455 0.002506 0.195830
4 1888979 0.002616 0.052937 0.002534 0.198230
5 1888979 0.002705 0.074787 0.002599 0.198698
6 1434701 0.002789 0.062193 0.002692 0.208865
7 1877569 0.002837 0.070943 0.002723 0.214547
8 1423291 0.003007 0.076848 0.002858 0.223904
9 1423291 0.003050 0.078783 0.002900 0.227096
10 1421009 0.003060 0.072202 0.002932 0.234422
11 1409599 0.003205 0.074762 0.003068 0.242995
12 1876945 0.003237 0.087109 0.003051 0.241565
13 1434701 0.003263 0.084893 0.003055 0.251136
14 1888355 0.003268 0.099716 0.003105 0.246290
15 1409135 0.003393 0.082421 0.003277 0.260308
16 1899765 0.003504 0.097361 0.003329 0.266251
17 1865535 0.003526 0.090750 0.003410 0.269221
18 1434237 0.003601 0.103887 0.003394 0.270545
19 1888355 0.003648 0.098100 0.003528 0.275070
20 1422827 0.003648 0.102458 0.003473 0.279828
21 1421009 0.003664 0.091444 0.003557 0.280545
22 1420545 0.003803 0.109323 0.003606 0.289851
23 1865535 0.003822 0.120056 0.003574 0.283405
24 1899765 0.003840 0.111305 0.003652 0.288444
25 1420545 0.003988 0.112221 0.003776 0.302259
26 1434237 0.004016 0.120256 0.003788 0.303152
27 1409135 0.004034 0.130822 0.003766 0.306300
28 1422827 0.004168 0.128064 0.003953 0.319402
29 1409599 0.004290 0.141558 0.004072 0.318944
30 1876945 0.004411 0.117619 0.004231 0.342679
31 1866159 0.004953 0.154559 0.004686 0.371741
32 1877569 0.005209 0.162763 0.004987 0.400427

Table 5.8: Test 1 : Experiments executed on GINN with 128 training data and 64
validation data.

We would like to again point out to the reader that the GINNs are much lighter
networks, as they require a significantly lower number of training parameters com-
pared to the FCNNs. For the first problem, we observe an average of 18951285
parameters for training the FCNNs and an average of 1652440 parameters for
training the GINNs, i.e., less than 9% compared to the average for the FCNNs.

50

Experimental Results

5.1.1 Hyperparameter Analysis
As described in Section 4.4, an extensive grid search for hyperparameters has
been performed, testing various values for both the FCNNs and the GINNs, as
illustrated in Table 4.2. Each hyperparameter have a pair of values to test for
each network architecture and the goal is to find, in general, the combination of
hyperparameters that works best, so each pair of hyperparameters is analyzed
individually. The results are presented below.

• Number of Hidden Layers (nh)
This hyperparameter is used in both the FCNNs and the GINNs, and the
qualitative results are shown in Figure 5.2. In the case of FCNNs, nh = 8
performs slightly better than nh = 6 and in the case of GINNs, nh = 80
outperforms nh = 60 but, in both cases, the difference does not appear to be
of substantial significance.

Figure 5.2: Number of Hidden Layers (nh).

• Use of Residual connections (rs)
This hyperparameter was used exclusively for the FCNNs, and the qualitative
results are shown in Figure 5.3. The use of residual blocks seems to help in
cases with small training sets (256, 128), but appears to worsen the situation
when a larger training set (1024, 512) is used.

• Using Batch Normalization (bn)
This hyperparameter is used in both the FCNNs and the GINNs, and the
qualitative results are shown in Figure 5.4. In the case of FCNNs, there is no
clear predominance in the use or non-use of batch normalization. Instead, in
the case of GINNs, the use of batch normalization always seems to improve
the model’s performance.

51

Experimental Results

Figure 5.3: Use of Residual connections (rs).

Figure 5.4: Using Batch Normalization (bn).

• Activation Function (af)
This hyperparameter is used in both the FCNNs and the GINNs, and the
qualitative results are shown in Figure 5.5. In the case of FCNNs, the mish
activation function almost always performs better. Instead, in the case of
GINNs, the elu activation function performs always better.

• Width of Hidden Layers (wh)
This hyperparameter was used exclusively for the FCNNs, and the qualitative
results are shown in Figure 5.6. It seems that a layer with a width of 2048
performs better than the other, but the difference is not significant.

• Number of Filters (nf)
This hyperparameter was used exclusively for the GINNs, and the qualitative
results are shown in Figure 5.7. It seems that a layer with 5 filters performs

52

Experimental Results

Figure 5.5: Activation Function (af).

Figure 5.6: Width of Hidden Layers (wh).

better than the one with 3 but, even in this case, the difference is not signifi-
cant.

• Input Refresh (rf)
This hyperparameter was used exclusively for the GINNs, and the qualitative
results are shown in Figure 5.8. This hyperparameter proves to be one of the
most significant, as the benefit of refreshing the inputs is visually noticeable.

To conclude the analysis of the hyperparameters, we search for the ideal combi-
nations for each type of network. We observed that FCNNs do not have an ideal
configuration of hyperparameters, because no one results to be always more effec-
tive than its counterpart; nonetheless, we select as ideal parameters the following:
the use of batch normalization, the width of the hidden layers of 2048, and the
use of the mish activation function. GINNs, instead, show more consistent results,

53

Experimental Results

Figure 5.7: Number of Filters (nf).

Figure 5.8: Input Refresh (rf).

with certain hyperparameters almost always performing better. Specifically, the
following hyperparameters were identified as optimal: the use of batch normaliza-
tion, the practice of refreshing the inputs every n layers (in our case, n = 15), and
the use of the elu activation function.
In Figure 5.9 and Figure 5.10, all the MAEs related to the different configurations
for both GINNs and FCNNs are shown, with emphasis on those related to the
configurations that contain the hyperparameters combination we identified as the
"best". We can see that for each case, there are multiple points highlighted as ideal.
This is due to the fact that, out of the 5 hyperparameters we analyzed, only 3 were
selected as determining parameters. From the previous study, we observed that
some hyperparameters have very little influence, so the quality of the prediction
is minimally or not at all affected by changes in these hyperparameters. However,

54

Experimental Results

looking at the figures overall, we point out to the reader that for GINNs, the con-
figurations highlighted as ideal are indeed among the models with the lowest error.
This is not the case for FCNNs, which therefore appear to be less consistent.

Figure 5.9: Best combination for FCNNs: use of batch normalization = True,
width of hidden layers = 2048, activation function = mish.

Figure 5.10: Best combination for GINNs: use of batch normalization = True,
refresh input = True, activation function = elu.

5.1.2 Qualitative Analysis of the Best Model
About Test 1, the best-performing GINN configuration according to MAE is the
one with: number of hidden layers = 80, use of batch normalization = True,

55

Experimental Results

number of filters = 5, activation function = elu and input’s refresh = True.
Let us conclude the section with a qualitative analysis by showing some cases
from this configuration, comparing our model’s predictions with the ground truth
solutions. In particular, the two best cases, Figures 5.11 and 5.12, and two worst
cases, Figures 5.17 and 5.18, with respect to MAE and the two best cases, Figures
5.13 and 5.14, and two worst cases, Figures 5.19 and 5.20, with respect the MRRE.
In addition in Figures 5.15 and 5.16 we report the predictions from two random
test cases.
By observing the figures, we can make some considerations. First of all, regarding
the MRRE, we can say that the best predictions are those that show on the inner
circle a single window where the Neumann condition has an high value (µc → 1) on
either the right or left side of the circle. On the contrary, the worst predictions seem
to be those in which we have a diffusion that is almost completely homogeneous
and close to zero. As for the MAE, we identify the best predictions as those where
the entire circumference has a very low Neumann value (µc → 0). Conversely, we
identify the worst predictions as those that have a significant portion of the circle,
more than half, where µc → 1. Among the "random" cases, we have one that shows
two arcs of the circumference where µc → 1 on opposite sides of the circle, and
another that presents only a couple of points where Neumann has a high value.

56

Experimental Results

Figure 5.11: Best prediction with respect to MAE, MAE = 5.6068e − 05 and
MRRE = 0.01223.

57

Experimental Results

Figure 5.12: Second best prediction with respect to MAE, MAE = 5.6155e − 05
and MRRE = 0.00592.

58

Experimental Results

Figure 5.13: Best prediction with respect to MRRE, MAE = 0.000168 and
MRRE = 0.00105.

59

Experimental Results

Figure 5.14: Second best prediction with respect to MRRE, MAE = 0.00021 and
MRRE = 0.00107.

60

Experimental Results

Figure 5.15: A random prediction, MAE = 0.00028 and MRRE = 0.00178.

61

Experimental Results

Figure 5.16: A second random prediction, MAE = 0.00041 and MRRE =
0.01080.

62

Experimental Results

Figure 5.17: Worst prediction with respect to MAE, MAE = 0.00300 and
MRRE = 0.01133.

63

Experimental Results

Figure 5.18: Second worst prediction with respect to MAE, MAE = 0.00268 and
MRRE = 0.00942.

64

Experimental Results

Figure 5.19: Worst prediction with respect to MRRE, MAE = 0.00014 and
MRRE = 5.07227.

65

Experimental Results

Figure 5.20: Second worst prediction with respect to MRRE, MAE = 0.00014
and MRRE = 1.39954.

66

Experimental Results

5.2 Test 2
As for the first problem, we begin by presenting the general results of the exper-
iments comparing FCNNs with GINNs for the second problem, Test 2. Figure
5.21 shows the average MAE and the average MRRE on the test set for both the
architectures, divided according to the number of ground-truth simulations used
for the training. We can observe that the GINNs consistently outperforms the
FCNNs; in fact, looking at the Figure 5.21, we notice that the average error of the
GINNs is always lower than that of the FCNNs. The architectures appear to be
robust, as there is not a significant difference between the simulations with 1024
training data points and those with 512.

Figure 5.21: Comparison between FCNNs and GINNs on MAE and MRRE.

For completeness, we also provide summary tables of all the experiments con-
ducted on the second problem. Specifically, in Tables 5.9 and 5.10, we present
the experiments performed on the FCNNs, while in Tables 5.11 and 5.12, those
conducted on the GINNs. The tables are organized based on the number of ground
truth simulations used during training and validation (the number of simulations
used for testing the model is fixed at 1500). In these tables, we report the number
of parameters used for training (n_params) along with some of the errors defined
in Section 4.5, in particular, MAE, MRRE, L2E, and H1E. The data are sorted in
ascending order of MAE.

n_params MAE MRRE L2E H1E
1 33959807 0.075988 0.076851 0.086225 10.866670
2 38156159 0.086432 0.088946 0.097805 12.583630
3 38205311 0.093141 0.090850 0.105703 12.789157
4 135126911 0.093726 0.092467 0.105801 12.938055

Continued on next page

67

Experimental Results

n_params MAE MRRE L2E H1E
5 38205311 0.100123 0.103325 0.109535 13.675308
6 101531519 0.102337 0.106536 0.111941 13.641345
7 101531519 0.105128 0.114846 0.117758 13.556540
8 29796223 0.106323 0.120400 0.115787 13.906145
9 29763455 0.107889 0.109876 0.117488 15.289824
10 135126911 0.108690 0.114502 0.118461 14.422343
11 29796223 0.109150 0.121490 0.121530 13.801449
12 151859071 0.120740 0.132620 0.132802 15.616593
13 33976191 0.122616 0.131634 0.134003 14.990111
14 118280063 0.123674 0.128490 0.133129 15.476903
15 42377087 0.124882 0.119398 0.135311 15.393478
16 151809919 0.128348 0.140382 0.134432 17.484791
17 33976191 0.133292 0.150747 0.144687 16.120885
18 42377087 0.141713 0.156252 0.151861 17.370806
19 29763455 0.143996 0.216869 0.151635 18.281931
20 151859071 0.146972 0.177555 0.158206 18.002559
21 118280063 0.151400 0.215425 0.163001 18.253939
22 101465983 0.152076 0.272121 0.159462 21.115543
23 33959807 0.163842 0.163081 0.177435 19.191855
24 151809919 0.169418 0.167193 0.183496 20.678195
25 118247295 0.170075 0.184253 0.180587 21.007894
26 101465983 0.171203 0.153781 0.181695 20.792956
27 135028607 0.177234 0.167017 0.189383 20.761473
28 42352511 0.200703 0.255371 0.212715 22.719108
29 42352511 0.231882 0.431978 0.247850 24.993835
30 135028607 0.238346 0.472643 0.256928 25.039884
31 118247295 0.238502 0.470023 0.256874 25.021957
32 38156159 0.238724 0.477767 0.257441 25.072597

Table 5.9: Test 2 : Experiments executed on FCNN with 1024 training data and
512 validation data.

n_params MAE MRRE L2E H1E
1 33959807 0.085989 0.082663 0.098335 12.345798
2 38156159 0.088853 0.085926 0.102059 12.792202
3 42352511 0.090082 0.088943 0.099927 12.662187
4 118247295 0.093321 0.094328 0.103626 13.073547
5 29763455 0.097432 0.096338 0.109672 13.259286
6 29763455 0.102658 0.120030 0.112300 13.953442
7 38205311 0.119248 0.128178 0.131069 15.747518
8 38205311 0.119912 0.133658 0.134136 15.073346
9 29796223 0.121669 0.128095 0.135081 14.892812
10 101531519 0.124289 0.130350 0.136420 15.393205
11 151809919 0.128218 0.138631 0.137166 18.006221
12 135126911 0.130706 0.162498 0.142990 16.906062
13 101531519 0.131534 0.161568 0.143037 16.355733

Continued on next page

68

Experimental Results

n_params MAE MRRE L2E H1E
14 29796223 0.132043 0.140906 0.142889 16.756880
15 135126911 0.137591 0.161496 0.148414 17.648015
16 151809919 0.145014 0.148716 0.158007 18.073982
17 42377087 0.146037 0.167100 0.160307 16.922287
18 151859071 0.146201 0.169963 0.158948 17.367668
19 42377087 0.147104 0.198210 0.161191 17.807039
20 33976191 0.153807 0.203566 0.168885 17.602801
21 33976191 0.161920 0.189015 0.174318 19.080601
22 118280063 0.164669 0.221874 0.178965 19.450996
23 118280063 0.167118 0.208582 0.183809 18.887331
24 135028607 0.175669 0.192828 0.185455 20.508727
25 118247295 0.177235 0.183867 0.191272 20.937997
26 101465983 0.181341 0.186741 0.196476 21.656276
27 135028607 0.183366 0.197452 0.197691 20.862528
28 33959807 0.183630 0.190908 0.196121 21.561967
29 151859071 0.188242 0.244341 0.198822 21.984333
30 42352511 0.229910 0.403972 0.247823 24.673764
31 101465983 0.236849 0.466503 0.254190 25.022207
32 38156159 0.239778 0.495001 0.259648 25.565102

Table 5.10: Test 2 : Experiments executed on FCNN with 512 training data and
256 validation data.

n_params MAE MRRE L2E H1E
1 6541583 0.081277 0.081663 0.099370 13.231994
2 6542207 0.082591 0.083319 0.104016 13.212254
3 8128383 0.085487 0.085502 0.109074 14.077067
4 6700887 0.085824 0.086479 0.107757 13.618085
5 8129167 0.086562 0.084925 0.106641 13.597468
6 8418758 0.090768 0.093357 0.110488 13.823480
7 8228342 0.091331 0.095796 0.109444 13.645281
8 6800062 0.092988 0.098448 0.112913 13.887477
9 6640758 0.093117 0.093988 0.114654 14.625740
10 6799438 0.093755 0.096501 0.115501 14.483825
11 6641382 0.095548 0.100732 0.113679 13.938235
12 8227558 0.096746 0.098854 0.115462 14.640278
13 8319583 0.096948 0.101619 0.113874 13.883945
14 6799438 0.097462 0.103489 0.116908 14.412815
15 6541583 0.097542 0.099333 0.117353 14.784137
16 8417974 0.097815 0.102319 0.115905 14.380196
17 6640758 0.098209 0.115575 0.115158 15.345822
18 6700263 0.098331 0.097349 0.118261 14.678742
19 8129167 0.099059 0.110046 0.119083 14.440806
20 8318799 0.099591 0.103904 0.117984 14.522970
21 6700263 0.100132 0.103192 0.123244 15.247715
22 6700887 0.100946 0.104842 0.122384 14.731367

Continued on next page

69

Experimental Results

n_params MAE MRRE L2E H1E
23 6800062 0.101429 0.101964 0.122153 14.770999
24 6542207 0.107186 0.114678 0.125746 15.350445
25 8318799 0.107980 0.112798 0.128113 15.421922
26 6641382 0.108563 0.120653 0.129795 15.789471
27 8418758 0.108781 0.112037 0.128269 15.401448
28 8228342 0.108853 0.112968 0.127756 15.631648
29 8319583 0.109898 0.114940 0.128635 15.430408
30 8417974 0.110988 0.114898 0.129630 15.638453
31 8227558 0.238244 0.471265 0.256628 25.009660
32 8128383 0.238323 0.471305 0.256676 25.011890

Table 5.11: Test 2 : Experiments executed on GINN with 1024 training data and
512 validation data.

n_params MAE MRRE L2E H1E
1 8228342 0.087901 0.083003 0.110174 13.866183
2 8129167 0.090787 0.101272 0.112003 13.996825
3 6542207 0.092082 0.094081 0.112940 14.190089
4 6800062 0.093158 0.095256 0.114754 14.270198
5 8128383 0.093621 0.088796 0.118643 15.131455
6 8227558 0.093977 0.094896 0.118581 15.082644
7 6641382 0.094375 0.092954 0.117294 14.659817
8 6700887 0.095644 0.096370 0.116597 14.467736
9 6700263 0.096479 0.098979 0.120315 15.217095
10 8319583 0.098024 0.098986 0.117233 14.747481
11 6799438 0.098653 0.095579 0.121054 15.004499
12 6541583 0.098987 0.096785 0.122496 15.688028
13 8418758 0.102933 0.103693 0.122805 15.257653
14 8318799 0.103104 0.102834 0.124203 15.534390
15 8228342 0.103145 0.105726 0.124395 15.615664
16 6640758 0.103907 0.112124 0.123357 15.520058
17 8417974 0.105728 0.109075 0.127383 16.017211
18 8129167 0.105947 0.107655 0.131614 16.508599
19 6700263 0.106009 0.113137 0.127541 15.731552
20 6641382 0.106101 0.113261 0.128478 15.818724
21 6541583 0.106539 0.111541 0.123929 16.173154
22 6542207 0.106831 0.111762 0.129386 15.942627
23 6700887 0.107257 0.108942 0.129260 15.821867
24 8417974 0.110204 0.113539 0.132077 16.353993
25 6799438 0.110485 0.114074 0.131099 16.043866
26 6800062 0.111412 0.115665 0.133690 16.219284
27 8318799 0.111725 0.112824 0.136621 17.059014
28 8319583 0.112419 0.115052 0.132746 16.129693
29 8418758 0.113802 0.119962 0.135531 16.390391
30 6640758 0.119583 0.153584 0.137452 17.745088
31 8128383 0.239779 0.490835 0.258188 25.178331

Continued on next page

70

Experimental Results

n_params MAE MRRE L2E H1E
32 8227558 0.240262 0.493193 0.258782 25.276054

Table 5.12: Test 2 : Experiments executed on GINN with 512 training data and
256 validation data.

We would like to again point out to the reader that the GINNs are much lighter
networks, as they require a significantly lower number of training parameters com-
pared to the FCNNs. For the first problem, we observe an average of 81371007
parameters for training the FCNNs and an average of 7472196.5 parameters for
training the GINNs, i.e., approximately 9% compared to the average for the FC-
NNs.

5.2.1 Hyperparameter Analysis
Even for this problem, an extensive grid search for hyperparameters has been per-
formed, testing various values for both the FCNNs and the GINNs, as illustrated
in Table 4.2. Each hyperparameter have a pair of values to test for each architec-
ture and the goal is to find, in general, the combination of hyperparameters that
works best, so each pair of hyperparameters is analyzed individually. The results
are presented below.

• Number of Hidden Layers (nh)
This hyperparameter is used in both the FCNNs and the GINNs, and the
qualitative results are shown in Figure 5.22. In the case of FCNNs, nh = 6
performs slightly better than nh = 8, i.e., the opposite with respect the
first problem. This result confirm that this parameter is not characterizing.
Instead, in the case of GINNs, nh = 80 outperforms the other option as for
the first problem.

• Use of Residual connections (rs)
This hyperparameter was used exclusively for the FCNNs, and the qualitative
results are shown in Figure 5.23. The use of residual blocks appears to worsen
the situation.

• Using Batch Normalization (bn)
This hyperparameter is used in both the FCNNs and the GINNs, and the
qualitative results are shown in Figure 5.24. In both cases, the use of batch
normalization seems to improve the model’s performance.

• Activation Function (af)
This hyperparameter is used in both the FCNNs and the GINNs, and the

71

Experimental Results

Figure 5.22: Number of Hidden Layers (nh).

Figure 5.23: Use of Residual connections (rs).

qualitative results are shown in Figure 5.25. In both cases, the difference
is clear, for FCNNs, the mish activation function performs better, while for
GINNs, the elu activation function is the one which performs better.

• Width of Hidden Layers (wh)
This hyperparameter was used exclusively for the FCNNs, and the qualitative
results are shown in Figure 5.26. As for the first problem, it seems that a
layer with a width of 2048 performs better than the other, but the difference
is still not significant.

• Number of Filters (nf)
This hyperparameter was used exclusively for the GINNs, and the qualitative
results are shown in Figure 5.27. It seems that a layer with 5 filters per-
forms better than the one with 10 but, even in this case, the difference is not

72

Experimental Results

Figure 5.24: Using Batch Normalization (bn).

Figure 5.25: Activation Function (af).

significant.

• Input Refresh (rf)
This hyperparameter was used exclusively for the GINNs, and the qualitative
results are shown in Figure 5.28. As for the first problem, this hyperparameter
proves to be one of the most significant, as the benefit of refreshing the inputs
is visually noticeable.

To conclude the analysis of the hyperparameters, we search for the ideal combi-
nation for each type of network. The selected combinations are the same as those
for the first problem for both the architectures. The observation remains that, the
GINNs are more robust in their results, showing a clear combination of ideal hyper-
parameters, unlike the FCNNs, where no results seem to be always more effective
than its counterpart. In Figure 5.29 and Figure 5.30, all the MAEs related to the

73

Experimental Results

Figure 5.26: Width of Hidden Layers (wh).

Figure 5.27: Number of Filters (nf).

different configurations for both GINNs and FCNNs are shown, with emphasis on
those related to the configurations that contain the hyperparameter combination
we identified as the "best". As for the first problem, looking at the figures overall,
we can observe that the configurations highlighted as ideal are among the models
with the lowest error only for the GINN models and not for FCNN ones. So even
in this second problem the FCNNs appear to be less consistent.

5.2.2 Additional Analysis of the Best Model
As shown by the results displayed in Figures 5.1 and 5.21, for Test 1, GINNs
achieve a very low average error, MAE less than 0.001 and MRRE of about 0.01,
while for Test 2, despite outperforming the FCNNs, they achieve a MAE of about
0.11 and a MRRE of about 0.12, which are much higher compared to the first

74

Experimental Results

Figure 5.28: Input Refresh (rf).

Figure 5.29: Best combination for FCNNs: use of batch normalization = True,
width of hidden layers = 2048, activation function = mish.

problem. For this reason, we chose to conduct additional analyses regarding the
second problem.
We want to analyze whether there are relations between the prediction perfor-
mances and the parameters, both the physical ones, diffusion and convection, and
the geometric ones (BCs). To do this, we select and analyze only one GINN model,
the best-performing one according to MAE, which is the model with: number of
hidden layers = 80, use of batch normalization = True, number of filters = 5,
activation function = mish and input’s refresh = True. We decided to conduct
these additional analyses considering only the MRRE.

The first thing we investigate is whether the physical parameters of the problem
somehow influence the predictions. We recall that in this case, the parameter that

75

Experimental Results

Figure 5.30: Best combination for GINNs: use of batch normalization = True,
refresh input = True, activation function = elu.

characterizes this specific problem is µ = [µ1, µ2, µD], where µ1 ∈ (0,5) controls
the diffusion intensity and µ2 ∈ (0, π) controls the direction of the convection; we
call Pµ the parametric space defined by (µ1, µ2).
From an initial simple analysis, see Figure 5.31, it is noticeable that there are
performances visibly worse than the average for fairly identifiable values of µ1
and µ2. Specifically, it appears that the performance deteriorates as µ2 → 0 and
µ1 → 0 or µ1 → π.

Figure 5.31: MRRE with respect to physical parameters µ1 and µ2.

76

Experimental Results

For a more accurate study, we created a function with variables (ϵ1, ϵ2) that mea-
sures the average prediction error on the test set within the parameter range
(µ1, µ2) in [0 + ϵ1, π − ϵ1] × [ϵ2, 5], with ϵ1 ∈ [0, π/2] and ϵ2 ∈ [0, 5]. The 3D plot of
the surface created by this function, see Figure 5.32, identifies areas from which it
can be observed that there is a region corresponding to a specific interval (ϵ1, ϵ2)
where the average error is lower.

Figure 5.32: MRRE with respect to variables (ϵ1, ϵ2).

To represent the variability of the error, we create two additional surfaces: one
where we plot the minimum error and the other where we plot the maximum error,
both with respect to the variables (ϵ1, ϵ2). In Figure 5.33, we see that as we move
away from the intervals already identified as the worst, µ2 → 0 and µ1 → 0 or
µ1 → π, the error range decreases.
To determine specific parameters (ϵ∗

1, ϵ∗
2) where the prediction mean error on the

test set is the lowest and most consistent, we examine the surface that identifies
the maximum error, Figure 5.33. We note that by removing only certain values of
the variables (ϵ1, ϵ2), it is possible to eliminate the "blocks" of the highest errors.
We selected ϵ∗

1 = 0.34 and ϵ∗
2 = 0.28 and the resulting surfaces are illustrated in

Figure 5.34.
With the selected values, we have a new parametric space P̂µ ⊂ Pµ, where µ1 ∈
(ϵ∗

1, π − ϵ∗
1) and µ2 ∈ (ϵ∗

2, 5). The average error over the entire test set, where the
physical parameters belong to Pµ, is 0.082. However, if we select only the test set

77

Experimental Results

Figure 5.33: Comparison of the minimum, mean and maximum relative range error
with respect to variables (ϵ1, ϵ2).

Figure 5.34: Maximum and mean relative range error with respect to the variables
(ϵ1, ϵ2), with specific threshold values (ϵ∗

1, ϵ∗
2).

where the physical parameters belong to P̂µ, we obtain an average error of just
0.047. Thus, by reducing the parametric space by approximately 13.6% of the

78

Experimental Results

values, we decrease the average MRRE by 42.4%.

The last analysis regard the influence of the geometric parameters, i.e., the BCs.
To see if there is any correlation between the different configurations of BCs and
the predictions made by the model, we plot the BCs corresponding to the best and
worst nine predictions, see Figures 5.35 and 5.36. In these figures, we have also
included the physical parameters to seek further correlations.

Figure 5.35: Geometrical and physical parameters related to the best predictions.

A very first observation we can draw from these graphs is that the parameters
(µ1, µ2) of all the cases concerning the best predictions belong to the parametric
space P̂µ, while the parameters of all the cases describing the worst predictions
belong to the parametric space Pµ \ P̂µ.
For the sake of knowledge, we report in Figure 5.37 the worst predictions, consid-
ering only the test cases having (µ1, µ2) ∈ P̂µ. Comparing Figures 5.35 and 5.37,

79

Experimental Results

Figure 5.36: Geometrical and physical parameters related to the worst predictions.

we can focus solely on the BCs and no longer on the physical parameters, as we
have already eliminated the extreme cases. However, it is not possible to identify
a clear geometrical pattern within this data.

5.2.3 Qualitative Analysis of the Best Model
About Test 2, the best-performing GINN configuration according to MAE is the
one with: number of hidden layers = 80, use of batch normalization = True,
number of filters = 5, activation function = mish and input’s refresh = True. We
note that the best configuration for Test 2 is very similar to that found for Test
1 ; only one hyperparameter, the activation function, differs.
Let us conclude the section with a qualitative analysis by showing some cases
from this configuration, comparing our model’s predictions with the ground truth

80

Experimental Results

Figure 5.37: Geometrical and physical parameters related to the worst predictions,
considering only the test cases having (µ1, µ2) ∈ P̂µ.

solutions. In particular, the two best cases, Figures 5.38 and 5.39, and two worst
cases, Figures 5.44 and 5.45, with respect to MAE and the two best cases, Figures
5.40 and 5.41, and two worst cases, Figures 5.46 and 5.47, with respect to MRRE.
In addition in Figures 5.42 and 5.43 we report the predictions from two random
test cases.
By observing the figures, we can make some considerations. First of all, regarding
the MAE, we can observe that the best predictions are those where the square
boundary is almost entirely under a Neumann BC of zero value, except for a single
window on the top side where Dirichlet condition is imposed to 0. In general, both
for MRRE and MAE, we see the best predictions among the problems where the
angle identifying the direction of the convection vector is close to π/2, i.e., pointing
towards the top side of the square (µ1 → π/2), and the value of µ2 is quite high (at

81

Experimental Results

least µ2 > 2.5). Among the worst predictions, we highlight as a common feature
the convection vector being directed almost horizontally, i.e., pointing towards the
left or right side of the square (µ1 → 0 or µ1 → π).

Figure 5.38: Best prediction with respect to MAE, MAE = 5.6068e−05 and
MRRE = 0.01223.

82

Experimental Results

Figure 5.39: Second best prediction with respect to MAE, MAE = 5.6155e−05

and MRRE = 0.00592.

83

Experimental Results

Figure 5.40: Best prediction with respect to MRRE, MAE = 0.000168 and
MRRE = 0.00105.

84

Experimental Results

Figure 5.41: Second best prediction with respect to MRRE, MAE = 0.00021 and
MRRE = 0.00107.

85

Experimental Results

Figure 5.42: A random prediction, MAE = 0.00028 and MRRE = 0.00178.

86

Experimental Results

Figure 5.43: A second random prediction, MAE = 0.00041 and MRRE =
0.01080.

87

Experimental Results

Figure 5.44: Worst prediction with respect to MAE, MAE = 0.00300 and
MRRE = 0.01133.

88

Experimental Results

Figure 5.45: Second worst prediction with respect to MAE, MAE = 0.00268 and
MRRE = 0.00942.

89

Experimental Results

Figure 5.46: Worst prediction with respect to MRRE, MAE = 0.00014 and
MRRE = 5.07227.

90

Experimental Results

Figure 5.47: Second worst prediction with respect to MRRE, MAE = 0.00014
and MRRE = 1.39954.

91

6 Conclusions
This is the concluding chapter, where we present an overview of the results of the
entire thesis project and offer some ideas for future research and applications.
The focus of this work is on training surrogate Deep Learning (DL) models to pre-
dict solutions to parametric Partial Differential Equation (PDE) problems with
a specific focus on parametrized boundary conditions (BCs). The test cases we
have prepared are based on graph-structured data originated from the mesh of
the numerical solver used for simulating the ground truth data. What makes this
approach innovative is the fact that most the parameters are based on the nodes
of the graph structure to describe the parametrized BCs, not just to describe the
physical properties.
To better exploit the graph structure of our data, we used the Graph-Informed
Neural Network (GINN), a new architecture that extends the basic formulation of
spatial-based Graph Convolutional Networks (GCN). This architecture was specif-
ically designed for regression tasks like ours, and furthermore, the distinguishing
layer (the GI layer) leverages the adjacency matrix of the given graph to determine
the unit connections within the network.
As discussed several times, one of the main issues with standard GCNs is that, in
many cases, they fail to outperform even a simple Fully Connected Neural Network
(FCNN), and one of the key goals of GINNs, is to show that they can indeed ex-
ceed the performance of traditional Neural Networks (NNs). The most significant
result we found is the confirmation that GINNs outperform FCNNs; in both test
cases we have analyzed, the mean errors for the GINNs is consistently lower than
that of the FCNNs.

The GINNs have demonstrated many qualities, including robustness, reliability,
and efficiency. To proceed in order, we observed that GINNs appear to be robust,
as in both problems, there is no significant difference in performance between
simulations with 1,024 training data points and those with 512 (half the amount).
Furthermore, the reliability of GINNs is proven by the fact that they have an
ideal configuration of hyperparameters, which is consistently more effective than
its counterparts. In contrast, FCNNs lack an optimal configuration, making their
results more random compared to those from GINNs. Finally, GINNs also have the
significant advantage of a smaller dimension with far fewer weights compared to
FCNNs, making them efficient models that require less memory without sacrificing
approximation quality.

92

Conclusions

Going into more detail, the first problem addressed is a classic PDEs problem
of diffusion, and GINNs demonstrate their ability to handle it remarkably well,
as the errors obtained are very low. For this reason, we decided to test the new
network on a much more complex problem that involves two physical phenomena,
diffusion and convection. In addition to the geometric parameters related to the
BCs, there are also physical parameters, which we found to significantly affect the
model performance.
For this second test case, we conducted additional analyses, particularly to guide
future developments related to this specific problem. We discovered a range of
physical parameters where the network’s performance is significantly lower than
average. Fortunately, this range of parameters turned out to be quite clear and
defined, making it easier to address and eliminate them. This allows us to conduct
further analyses without the results being influenced by the physical parameters
already identified as "detrimental", achieving lower average errors for this problem
as well.
Among these analyses, we focused on studying the BCs. We examined how the
geometric parameters of the problem might influence the network’s predictions,
but we did not find a clear pattern. This suggests that the field (the quantity
we want to predict) has very complex characteristics when there is a transition
between Neumann and Dirichlet BCs. So, for this problem, we can conclude that
the solution is mainly influenced by regime changes, diffusion-convection, and by
the extreme angles of the direction of the convection vector; while it seems that it
is not evidently influenced by the geometry of the BCs.

In conclusion, this thesis demonstrates that GINNs are a promising surrogate
model for efficiently solving parametric PDEs with low computational costs. The
GINN, with its graph-based design, allows for the efficient handling of complex
parametric spaces, offering more accurate predictions than those achieved with
traditional DL models.

Future Works

In this thesis project, we tackled both a simple and a highly complex case of PDEs,
demonstrating that GINNs can adapt to different types of problems. In the fu-
ture, additional cases of varying difficulty and complexity could be explored, for
example, Navier-Stokes problem.
Moreover, further variability in the geometry could be explored, such as introduc-
ing a hole that moves or changes in size, in Test 1 or introducing some parts of the
boundary where the BCs are non-homogeneous in Test 2. This added complexity
would allow us to assess the robustness and adaptability of the model when faced
with dynamic geometric features. By testing how the network responds to these

93

Conclusions

variations, we could better understand its potential for handling more complex
and realistic physical scenarios. This would also offer valuable insights into how
well GINNs generalize across different geometric configurations.
Another one promising direction for this work lies in the field of Optimal Con-
trol applications. NNs, due to their speed and differentiability, can be leveraged
to determine the parameters, both physical and geometrical (BCs), of a problem
that generate solutions satisfying specific desired characteristics. By using the
efficiency of NNs to quickly explore a wide range of parameter spaces, we can
optimize control strategies and identify configurations that yield the most suit-
able or optimal solutions for complex systems governed by PDEs. This approach
could be especially valuable in common scenarios where traditional methods are
computationally expensive or impractical.

94

Bibliography
[1] Afshine Amidi and Shervine Amidi. Convolutional Neural Networks cheat-

sheet. Stanford Univeristy, 2019.

[2] Benjamin Anderson. Distribuzione di Probabilità. Statorials, 2023.

[3] P. Benner, S. Grivet Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L.M.
Silveira. Model Order Reduction. De Gruyter, 2020.

[4] S. Berrone, F. Della Santa, A. Mastropietro, S. Pieraccini, and F. Vaccarino.
Layer-wise relevance propagation for backbone identification in discrete frac-
ture networks. Journal of Computational Science, 2021.

[5] S. Berrone, F. Della Santa, A. Mastropietro, S. Pieraccini, and F. Vaccarino.
Graph-Informed Neural Networks for Regressions on Graph-Structured Data.
In Mathematics, 2022.

[6] Manomita Chakraborty. Explainable Neural Networks: Achieving Inter-
pretability in Neural Models. Archives of Computational Methods in Engi-
neering, 2024.

[7] Shing Chan and Ahmed H.Elsheikh. A machine learning approach for effi-
cient uncertainty quantification using multiscale methods. Journal of Com-
putational Physics, 2018.

[8] D. Coscia, L. Meneghetti, N. Demo, G. Stabile, and G. Rozza. A contin-
uous convolutional trainable filter for modelling unstructured data. arXiv,
Computer Science, 2022.

[9] Francesco Della Santa. Sparse Implementation of Versatile Graph-Informed
Layers. ArXiv, Computer Science, 2024.

[10] K. Doherty, C. Simpson, S. Becker, and A. Doostan. QuadConv: Quadrature-
Based Convolutions with Applications to Non-Uniform PDE Data Compres-
sion. arXiv, Computer Science, 2023.

[11] N.R. Franco, A. Manzoni, and P. Zunino. Learning Operators with Mesh-
Informed Neural Networks. arXiv, Computer Science, 2022.

95

BIBLIOGRAPHY

[12] S. Fresca, L. Dede, and A. Manzoni. A comprehensive deep learning-based ap-
proach to reduced order modeling of nonlinear time-dependent parametrized
pdes. Journal of Computational Science, 2021.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2016.

[14] I.Goodfellow, Y.Bengio, and A.Courville. Deep Learning. MIT Press, 2016.

[15] Atwood J. and Towsley D. Diffusion-Convolutional Neural Networks. In
Advances in Neural Information Processing Systems; Curran Associates, 29,
2016.

[16] Zichao Jiang, Junyang Jiang, Qinghe Yao, and Gengchao Yang. A neural
network-based PDE solving algorithm with high precision. Scientific Reports,
2023.

[17] Steven G. Johnson. Notes on Separation of Variables. MIT OpenCourseWare,
2012.

[18] Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric PDE prob-
lems with Artificial Neural Networks. European Journal of Applied Mathe-
matics, 2017.

[19] Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. hp-VPINNs: Variational
physics-informed neural networks with domain decomposition. Computer
Methods in Applied Mechanics and Engineering, 2021.

[20] I. E. Lagaris, A. Likas, and Fotiadis. Artifcial neural networks for solving
ordinary and partial diferential equations. IEEE Transactions on Neural Net-
works, 1998.

[21] K. Lee and K.T. Carlberg. Model reduction of dynamical systems on nonlinear
manifolds using deep convolutional autoencoders. Journal of Computational
Physics, 2020.

[22] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper Insights into Graph Con-
volutional Networks for Semi-Supervised Learning. ArXiv, Computer Science,
2018.

[23] Wei Ma and Jun Lu. An Equivalence of Fully Connected Layer and Convo-
lutional layer. Technical Report, 2017.

96

BIBLIOGRAPHY

[24] R. Maulik, B. Lusch, and P. Balaprakash. Reduced-order modeling of
advection-dominated systems with recurrent neural networks and convolu-
tional autoencoders. Physics & Fluids, 2021.

[25] A. Micheli. Neural Network for Graphs: A Contextual Constructive Approach.
IEEE Transactions on Neural Networks, 20, 2009.

[26] M. Morimoto, K. Fukami, K. Zhang, A.G. Nair, and K. Fukagata. Convolu-
tional neural networks for fluid flow analysis: toward effective metamodeling
and low dimensionalization. Theoretical and Computational Fluid Dynamics,
2021.

[27] F. Pichi, F. Ballarin, G. Rozza, and J.S. Hesthaven. An artificial neural
network approach to bifurcating phenomena in computational fluid dynamics.
Computers & Fluids, 2023.

[28] Federico Pichi, Beatriz Moya, and Jan S.Hesthaven. A graph convolutional au-
toencoder approach to model order reduction for parametrized PDEs. Journal
of Computational Physics, 2024.

[29] Allan Pinkus. Approximation theory of the MLP model in neural networks.
Acta Numerica, 1999.

[30] Tong Qin, Kailiang Wu, and Dongbin Xiu. Data driven governing equations
approximation using deep neural networks. Journal of Computational Physics,
2019.

[31] Alfio Quarteroni. Numerical Methods for Differential Problems. Springer,
2012.

[32] Maziar Raissi and George Em.Karniadakis. Machine Learning of Linear Differ-
ential Equations using Gaussian Processes. Journal of Computational Physics,
2017.

[33] Deep Ray and Jan S. Hesthaven. An artificial neural network as a troubled-cell
indicator. Journal of Computational Physics, 2018.

[34] F. Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Review, 1958.

[35] Francesco Della Santa. Data-Driven Deep Learning Methods for Physically-
Based Simulations. PhD thesis, Univesità degli Studi di Torino, 2021.

[36] A. Sharma, E. Vans, D. Shigemizu, K.A. Boroevich, and T. Tsunoda. Deepin-
sight: A methodology to transform a non-image data to an image for convo-
lution neural network architecture. Scientific Reports, 2019.

97

BIBLIOGRAPHY

[37] Jan S.Hesthaven, Gianluigi Rozza, and Benjamin Stamm. Certified Reduced
Basis Methods for Parametrized Partial Differential Equations. Springer In-
ternational Publishing, 2016.

[38] Jared Speck. Introduction to PDEs. MIT OpenCourseWare, 2011.

[39] Wikipedia the Free Encyclopedia. Residual Neural Network, 2024.

[40] Wei Wang and Qing Li. Universal Approximation Theory: The Basic Theory
for Deep Learning-Based Computer Vision Models. eprint arXiv, Computer
Science, 2024.

[41] Yating Wang, Siu Wun Cheung, Eric T. Chung, Yalchin Efendiev, and Min
Wang. Deep multiscale model learning. Journal of Computational Physics,
2020.

[42] Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. IRE
WESCON Convention Record 4, 1960.

[43] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and Philip S. Yu. A Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems, 32, 2021.

[44] Xiangyun Xiao, Yanqing Zhou, Hui Wang, and Xubo Yang. A Novel CNN-
Based Poisson Solver for Fluid Simulation. IEEE Transactions on Visualiza-
tion and Computer Graphics, 26, 2020.

[45] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convo-
lutional networks: a comprehensive review. Computational Social Networks,
2019.

98

	Abstract
	Introduction
	Motivation
	Contribution
	Structure

	Neural Networks
	Classic and Well-known Neural Networks
	Graph Neural Networks
	Graph Convolutional Networks

	Graph-Informed Neural Network
	The Graph-Informed Layers

	Parameterized Partial Differential Equations
	Partial Differential Equations
	Parametrized Differential Equations
	Parametric Weak Formulation
	Formulation of the Problem for the Test Cases

	Solving methods for PDEs and NNs
	Numerical Methods for Parametric PDEs
	Neural Networks for PDEs

	Test Cases and Methodology
	Test Cases
	Data Preparation
	Architecture Design
	Simulations Setup
	Evaluation
	Implementation

	Experimental Results
	Test 1
	Hyperparameter Analysis
	Qualitative Analysis of the Best Model

	Test 2
	Hyperparameter Analysis
	Additional Analysis of the Best Model
	Qualitative Analysis of the Best Model

	Conclusions
	Bibliography

