POLITECNICO DI TORINO

Master’s Degree in MECHATRONIC ENGINEERING

Master’s Degree Thesis

DEVELOPMENT OF AN AUTOPILOT
SYSTEM FOR FLIGHT SIMULATION
IN A PREPAR3D SIMULATION

ENVIRONMENT
Supervisors Candidate
Prof. ELISA CAPELLO ALESSANDRO MERLINO

Dr. STEFANO PRIMATESTA
Ing. MARIO NIGRA

OCTOBER 2024

Summary

The aim of this thesis is to develop a general-purpose flight simulation station,
implement a data acquisition system to collect information from the simulator, and
design an autopilot capable of performing aircraft takeoff, executing a standard
turn to align with a specified point based on latitude and longitude coordinates,
and maintaining a desired altitude. This study is part of a larger project that also
involves the creation of a wearable device providing haptic and visual feedback
to the simulator user, making the experience more realistic. The project is a
collaboration between the Politecnico di Torino and Sipal SPA.

The simulation station consists of a configurable seat equipped with various
hardware attachments, including a joystick, pedals, and throttle. For visual display,
an ultra-short throw projector and two touchscreens were selected to display the
cockpit and onboard instruments, and to allow interaction with them. The software
used is Prepar3D, a professional license product by Lockheed Martin. C++ code
was implemented to develop the data acquisition and autopilot modules, facilitating
interaction with the software. Several communication protocols were utilized for
the data acquisition system: SimConnect, a TCP /IP-based protocol developed by
the simulator manufacturer, was used to extract data directly from Prepar3D; and
MQTT, also TCP/IP-based, was employed to forward data to another module that
controls the actuators for sensory feedback. The application is configurable via a
configuration file that allows the selection of data to be extracted. The autopilot
was designed for use with the Lockheed Martin F-35. The system comprises several
units: the takeoff system, which enables the aircraft to take off; the controller that
manages the standard turn maneuver; and the controller that maintains the desired
altitude. For the turn maneuver, a controller was developed to execute a standard
turn, a turn at a constant angular rate. After setting the bank angle between 30°
and 45° using a PID controller, control actions are applied to the angular velocity
relative to the aircraft’s z-axis, with control executed by the aircraft’s elevators.
For altitude control, a PID controller was implemented, which adjusts altitude
through the aerodynamic surfaces, specifically the elevators. Overall, the system

provides faster and more precise performance compared to the autopilot offered by
Prepar3D.

11

II1

Acknowledgements

Giunto alla fine di questo percorso, ¢ doveroso rivolgere un sincero ringraziamento
a tutte le persone che, con il loro sostegno, mi hanno accompagnato fino a questo
traguardo.

Innanzitutto, desidero esprimere la mia profonda gratitudine alla mia relatrice,
la Prof.ssa Elisa Capello, per la sua guida, i suoi preziosi consigli e per essere stata
presente fin dall’inizio di questo lavoro. La sua disponibilita e competenza sono
state fondamentali per la buona riuscita di questa tesi.

Un ringraziamento speciale va anche al corelatore, il Dr. Stefano Primatesta, per
il suo supporto, la disponibilita e i suggerimenti che hanno arricchito il progetto.

Desidero inoltre ringraziare il mio tutor aziendale, I'Ing. Mario Nigra, per
I’assistenza costante e per avermi dato I'opportunita di lavorare in un ambiente
stimolante e professionale, contribuendo alla mia crescita personale e professionale.

Il mio pensiero va poi ai miei genitori, a mio fratello, a Duca e Isotta, che con
amore e pazienza mi hanno sempre sostenuto, credendo in me anche nei momenti
piu difficili. Senza il loro incoraggiamento, non avrei mai potuto raggiungere questo
importante obiettivo.

Ringrazio tutta la mia famiglia, i miei nonni, i miei zii e i miei cugini che hanno
sempre avuto fiducia nelle mie capacita e mi hanno offerto il calore e il supporto
necessari per affrontare questo cammino con serenita.

Grazie Simone, per la tua amicizia, per aver reso piacevole le lezioni e lo studio
per gli esami e per avermi fatto compagnia in questi anni.

Grazie a tutti gli amici e colleghi conosciuti a Torino per aver reso piu semplice

v

il mio trasferimento e per i momenti passati insieme

Grazie a tutti gli amici conosciuti agli scout, per essermi sati vicini e per non
essersi allontanati in questi anni, nonostante vivessi lontano.

Grazie anche a Matteo, Carmelo e Matteo. Grazie per essere venuti a farmi
visita fino a Torino, per la vostra presenza, per avermi accompagnato e sostenuto,
regalandomi momenti di allegria e spensieratezza.

Un pensiero particolare va alla mia fidanzata, Rebecca, per la sua pazienza, il
supporto e per essere stata al mio fianco, anche se non fisicamente vicino a me.

Infine, un grazie lo dedico a me stesso, perche alla fine, li esami li hai fattu iu.

“Non é nelle stelle che ¢é scritto il nostro destino, ma in noi stessi: uomini forti,
destini forti; womini deboli, destini deboli. Non c’¢ altra strada.”
William Shakespeare

Table of Contents

List of Tables IX
List of Figures X
1 Introduction 1
1.1 Objective of the Thesis 1
1.2 Thesis structure 2
1.3 Context and state of theart 3
1.3.1 Simulator 4

1.3.2 Software simulator 7

2 Simulation environment and wearable system 23
2.1 Prepardd and Simconnect 23
2.2 Hardware components 25
2.3 Werable system 29

3 Autopilot architecture 35
3.1 Controllers in aeronautic field 35

3.2 Regulatory Standards for Controllers Used in the Aeronautical Field 40
3.2.1 MIL-STD 810F: Environmental Engineering Considerations

and Laboratory Testing 40
3.2.2 MIL-STD 461F: Electromagnetic Interference Control 41
3.2.3 STANAG 4586: Standard Interfaces for NATO UAV Inter-

operabilityo 42

3.2.4 FAA AC 25.1329-1C: Approval of Flight Guidance Systems . 44
3.3 Specifications and Dynamics of Aircraft Models with Focus on the

F-35 46
3.3.1 General Aircraft Dynamics 46
3.3.2 Mathematical Modeling of Aircraft 48
3.3.3 F-35 Lightning II Technology Overview 50
3.4 Development of the Autopilot System 53

VII

3.4.1 Data Acquisition and Transmission
3.4.2 Development of Stabilization Controllers
3.4.3 Development of More Complex Control Systems
3.5 Complete system

4 Simulation Results

4.1 Data collection
4.2 Data analysis
4.2.1 Test of Stabilization Controllers

4.2.2 Test of take off system

4.2.3 Test of altitude controller
4.2.4 Test of the turn maneuver

4.2.5 Test of the complete system

5 Conclusions and future developments
5.1 Conclusions
5.2 Future Developments

A Data acquisition module
B Bank and Pitch controllers

C Navigation algorithm

VIII

62
63
64
65
71
72
74
76

7
7
7

79

84

90

List of Tables

4.1 Collected Data and Corresponding Units

IX

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

FNTP Simulator 5
FTD Simulator 6
FFS Simulator. 6
Flight Simulator logo oL 8
Prepar3D logo 11
XPlane 12 logo 14
Arofly logo 18
FlightGear logo 20
Laboratory’s layout 27
Commands 28
Seat . . . 28
Setup 29
Actuators 32
Comunication 33
Config.txt file 34
Simplified SAS 36
Simplified CAS 37
Simplified FBWo 38
Roll attitude control system, 39
Altitude hold control system 39
Speed hold control system L. 40
MIL-STD 461F Logo 42
UCS Functional Architecture 44
Dynamical model for aircraft motion 47
Propulsion Systemo 52
Simplified controller schematic 54
Bank controller schematic %)
Pitch controller schematic, 55
Turn Maneuver controller o7

3.15

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37

Standard Turn Maneuver controller 57
SIL schematic 62
Bank P controller 65
Bank PI controller 65
Bank PID controller 66
Pitch P controller 67
Pitch PI controller 67
Pitch PID controller 67
Bank PID controller 68
Pitch PID controller 68
Autopilot bank o 68
Autopilot pitch 68
Bank PID controller 200 knts 69
Pitch PID controller 200 knts 69
Bank PID controller 600 knts 69
Pitch PID controller 600 knts 69
Bank PID controller 800 knts 69
Pitch PID controller 800 knts 69
Bank severe turbolence with controller 70
Pitch severe turbolence with controller 70
Bank severe turbolence without controller 70
Bank severe turbolence without controller 70
Bank angleo 71
Pitch angle 71
Altitude 71
Airspeed 71
Detail on the oscillation of the altitude 72
Altitude 11000 ft 73
Pitch 11000 ft 73
Altitude 3000 £t 73
Pitch 3000 ft 73
Altitude turn maneuver 75
Trajectory turn maneuver 75
Altitude standard turn maneuver bank=30° 75
Altitude standard turn maneuver bank=35° 75
Altitude standard turn maneuver bank=40° 75
Altitude standard turn maneuver bank=45° 75
QR code of the autopilot system video 76

XI

Chapter 1

Introduction

1.1 Objective of the Thesis

The primary objective of this thesis is to develop an autopilot system for an aircraft
that can navigate to a given set of geographical coordinates and a desired altitude.
This ambitious project has been conducted in close collaboration with Sipal SPA,
which provided the application context, essential support, and invaluable industry
insights throughout the research process.

This research aims to address the critical need for optimized aircraft control
by focusing on the design and implementation of a sophisticated controller that
ensures superior performance in terms of stability, responsiveness, and robustness.
The primary goal is to integrate advanced control techniques and algorithms to
develop an autopilot system capable of operating effectively under a wide range
of conditions, thereby enhancing the reliability and efficiency of modern aviation
technology.

For the purposes of this thesis, the highly advanced F-35 model by Lockheed
Martin was utilized as the primary test platform. A comprehensive flight simulation
laboratory was established and developed, featuring two simulation stations: one
primary and one secondary. These stations were equipped with Prepar3D, a state-
of-the-art simulation software developed by Lockheed Martin, which provided a
realistic and robust environment for testing and development.

In addition to the simulation setup, a configurable data acquisition module
was developed to extract and analyze data during the simulation runs. This
capability was crucial for refining the autopilot system and ensuring it met the
desired performance criteria. This part of the research also extended into a broader
project that involved the creation of a wearable device designed to provide haptic
and visual feedback to pilots during simulated flights. This device aimed to enhance
the immersive experience of flight simulation, thereby offering pilots a more realistic

1

Introduction

training environment.

The expected outcomes of this research are significant. By improving the
performance of autonomous vehicles, the developed controller is anticipated to
contribute greatly to operational safety and efficiency. The implementation of this
autopilot system has potential applications across various sectors, including both
terrestrial and aerial transportation. It represents a substantial advancement in
autonomous driving technologies, promising to foster progress and innovation in
multiple fields.

This project exemplifies the synergy between academic research and industrial
collaboration, highlighting the importance of leveraging industry expertise to
address complex engineering challenges. The partnership with Sipal SPA has
been instrumental in providing the necessary application context and technical
support, ensuring that the research is grounded in practical, real-world requirements.
Through this collaborative effort, the thesis aims to advance the field of autonomous
aviation, fostering innovation and progress in multiple related areas.

1.2 Thesis structure

This thesis is organized into several chapters, each addressing a specific aspect of
the research. Now, we will examine the content of the various chapters:

1. Introduction: The initial chapter provides an introduction and a detailed
overview of the current state of the art in flight simulation and the related
softwares. This includes a discussion on existing technologies, methodologies,
and relevant literature in the field. This part will be discussed in the following

pages.

2. Description of the Simulation System and the Wearable System: In this
chapter, the focus will be on the components and architecture of the simulation
laboratory and wearable systems. The subtopics covered will include:

e Prepar3D and SimConnect: An overview of the Prepar3D flight simulation
software and the SimConnect API used for interfacing with the simulation
environment, and the reason that led me to chose this software.

o Hardware Components: A detailed description of the hardware utilized in
the simulation setup.

o Wearable System: An in-depth look at the wearable system, its architec-
ture, and the tests conducted to evaluate its performance.

3. Autopilot Architecture: This chapter will delve into the design and implemen-
tation of the autopilot system. The topics covered will include:

2

Introduction

¢ Introduction to Controllers in Aviation: A discussion on the role and
importance of controllers in aviation.

o Regulations on Controllers: An overview of the regulations and standards
governing the use of controllers in the aviation industry.

o Dynamic Specifications of Aircraft: A detailed examination of the dynamic
specifications the aircrafts, with a particular focus on the F-35 due to its
known model in Prepar3D.

e Implementation of the Autopilot: A comprehensive explanation of how
the autopilot system was implemented in the simulation.

4. Test: This chapter will cover the testing phase of the research, including:

« Data Collection: Methods and processes used for collecting data during
the simulation.

o Graphical Representation: Techniques for visualizing the collected data.

o Data Analysis: Analysis of the data to evaluate the performance and
effectiveness of the simulation and autopilot systems.

5. Conclusion: The final chapter will present the conclusions drawn from the
research, including the discussion of main findings, a summary and discussion
of the key findings from the research, and future developments: potential
future developments and improvements based on the results and insights
gained from this study.

Each chapter aims to provide a comprehensive understanding of the various compo-
nents and aspects involved in the development and evaluation of flight simulation
and wearable systems. This structured approach ensures a thorough exploration of
the research topic and facilitates a clear presentation of the findings and conclusions.

1.3 Context and state of the art

The advancement of autonomous systems in aviation has become a pivotal focus
in modern engineering, driven by the necessity for enhanced safety, operational
efficiency, and technological reliability. The development of autopilot systems,
capable of precise navigation and control, is a key area of research, aimed at
addressing these critical needs. In this context, the collaboration with Sipal
SPA has provided invaluable industry insights and essential support, shaping the
direction and execution of this research project.

Simulators are especially suited for training situations which are impractical,
difficult, dangerous or expensive to reproduce in a live environment. There are

3

Introduction

many potentially dangerous situations that aircrew may only encounter infrequently.
If these situations are encountered they need to be dealt with efficiently to avoid
serious consequences. Simulators can be used to present trainees with such unusual
scenarios in a repeatable and controllable manner without presenting risk to the
crew, the aircraft, other operators or to the environment. In the subsequent
paragraphs, a comprehensive analysis will be conducted on the various types
of simulators and simulation software currently available in the market. This
examination will encompass an in-depth review of their functionalities, applications,
and the technological advancements that distinguish them.

1.3.1 Simulator

Flight Simulation Training Devices (FSTDs) play a crucial role in modern aviation
training, offering a safe, controlled, and cost-effective environment for aircrew
training and testing. These devices are particularly valuable for scenarios that
are impractical, dangerous, or expensive to reproduce in a live setting, such as
emergency procedures, system failures, and adverse weather conditions. By enabling
the repetition of complex and critical maneuvers, FSTDs help ensure that aircrew
are well-prepared to handle rare but high-risk situations efficiently and safely.

There are several types of FSTDs, each with varying levels of complexity and
capability:

1. Flight Navigation Procedure Trainer (FNPT): This fixed-base generic system
is used primarily for initial and refresher training, including basic and safety
procedures, emergencies, navigation, instrument rating (IR), and multi-crew
cooperation (MCC). It provides a foundational platform for aircrew to develop
essential skills.

2. Flight Training Device (FTD): Also a fixed-base system, the FTD is type-
specific, simulating a particular model of aircraft. It builds on the capabilities
of the FNPT, designed for type rating training. However, it does not include
motion or vibration systems, which limits its use for certain testing purposes.

3. Full Flight Simulator (FFS): The FFS is the most advanced type of FSTD,
featuring a motion-base system that provides realistic motion and vibration
cues. This high level of technical complexity makes it suitable for proficiency
checks and skill tests, offering a comprehensive training experience that closely
replicates real flight conditions.

In addition to these primary categories, other training devices exist that, while not
regulated by official standards, still provide significant training benefits:

4

Introduction

Figure 1.1: FNTP Simulator

o Computer Based Trainer (CBT): Used during initial training, CBTs are
effective for self-learning via desktop computers. These trainers are interactive,
allowing trainees to engage with touchscreen or video interfaces to learn about
human-machine interface (HMI) instruments and displays.

» Basic Instrument Training Device (BITD): Designed for instrument familiar-
ization and training, BITDs replicate the behavior of aircraft instruments
using software, providing a practical and accessible tool for initial training
phases.

o Part Task Trainer (PTT), Cockpit Part Task Trainer (CPT), Virtual Inter-
active Procedure Trainer (VIPT): These devices focus on basic procedure
training, such as pre-flight checklists and engine start procedures. They

5

Introduction

Figure 1.3: FFS Simulator

Introduction

are typically fixed-base replicas of cockpits without visual systems, used to
familiarize aircrew with cockpit instruments and procedures.

« Helicopter Mission Trainer (HMT): Specifically designed for collective mission
training, HMTs involve multiple crew members or several aircraft in a coordi-
nated exercise. These trainers enhance skills in communication, coordination,
navigation, and mission rehearsal, simulating real-life scenarios like search and
rescue or law enforcement operations.

Overall, the structured use of FSTDs ensures comprehensive and effective training
for aircrew, enhancing their ability to manage a wide range of scenarios. This
approach not only improves operational safety but also provides a cost-effective
and efficient means of maintaining and advancing aircrew proficiency.

1.3.2 Software simulator

In this section, we will delve into flight simulation software, analyzing them based
on several key categories. These categories will help us understand the capabilities
and limitations of different simulation platforms. The aspects we will cover include:

» Programmability: We will examine the software development kits (SDKs)
availability, the programming community, supported languages, and the extent
to which the software can be programmed or customized, including the creation
of new aircraft models.

o Multi-domain: This will cover the software’s ability to simulate various types
of scenarios, as well as the range of vehicles that can be simulated.

o Multi-user: We will look into the software’s capability to simulate multiple
objects that interact within the simulation environment.

o Multi-screen: This involves the software’s support for separate screens for
different purposes, such as scenario display and instrumentation, as well as
compatibility with touch screens.

o Compatibility with VR and AR: We will assess how well the software integrates
with virtual reality (VR) and augmented reality (AR) technologies.

o Multi-server: This examines the software’s ability to distribute the simulation
workload across multiple servers, such as having one server simulate the
scenario and another simulate the aircraft.

o Hardware and Software Requirements: We will identify the necessary hardware
and software specifications required to run the simulation software efficiently.

7

Introduction

o Offline Functionality: We will consider whether the software can operate
without an internet connection.

o Licensing: Finally, we will analyze the licensing options available, including
whether the software is available for personal and commercial use, and the
associated costs.

By evaluating these categories, we aim to provide a comprehensive overview of the
capabilities and suitability of various flight simulation software options.

Flight Simulator

Flight Simulator is a flight simulator developed by Microsoft, offering a wide range
of aircraft, airports, and detailed scenarios worldwide. It was first released in 1982
and has had many iterations over the years, with the latest version, Microsoft Flight
Simulator 2020, released in 2020. This latest version is particularly notable for its
graphics and attention to detail, using real-world data to create a highly realistic
flight experience. It is popular among aviation enthusiasts and flight simulator
fans.

Figure 1.4: Flight Simulator logo

Programmability: Flight simulation software offers a robust Software Develop-
ment Kit (SDK) allowing developers to create custom content such as:

1. Aircraft: Detailed aircraft with interactive cockpits, accurate modeling, and
realistic flight behaviors.

2. Scenarios: Detailed airport, city, and famous landmark scenarios using ad-
vanced modeling and texturing tools.

3. Instruments: Custom navigation instruments, control panels, and additional
displays.

Introduction

4. Effects: Special effects like lighting, smoke, and fire to enhance realism

The SDK is typically designed to be flexible and powerful, enabling the development
of a wide range of custom content. For example, the SDK for Microsoft Flight
Simulator (MFS) is written in C++ and supports a large developer community,
offering extensive 3D modeling tools.

Multi-Domain: Flight Simulator software often includes a variety of aircraft
models by default, primarily civilian. However, additional model are also available
online, allowing for diverse simulation scenarios. Websites like Simviation and
FlightSim offer extensive resources for adding new aircraft to simulators.

Multi-User: Flight simulators support multiple user interactions through several
features:

1. Standard Multiplayer: Allows multiple players to fly in the same environment,
each with their own aircraft. Players can see and follow each other but with
limited direct interaction.

2. Organized Events and Races: The community often organizes multiplayer
events and races with predetermined routes or specific challenges.

3. Third-Party Software: Some third-party applications provide advanced multi-
player functionalities, including shared cockpits, voice communication, and
coordinated missions.

Multi-Screen: Flight Simulator software supports multi-screen configurations,
enhancing the immersive experience:

1. Monitor Configuration: Users can connect multiple monitors to extend the
desktop and use each as part of the flight simulation experience.

2. Display Settings: The simulator allows for adjusting resolution and display
settings to fit multiple screens.

3. View Customization: Users can customize the view layout, setting different
views (e.g., cockpit view on one screen, external view on another).

Touch screens are also supported, allowing users to interact with the simulator in-
terface directly, adjusting settings, navigating menus, and interacting with onboard
instruments.

Introduction

Compatibility with VR and AR: Flight simulator support VR headsets,
providing an immersive, panoramic, and three-dimensional flight experience. Al-
though direct AR support within the simulator is limited, external AR applications
can enhance the experience by providing additional information on aircraft and
surroundings.

Multi-Server: While native multi-server support is generally not available, third-
party software can offer advanced networking features to distribute workloads
across multiple servers. For example, JoinF'S or VATSIM can create a distributed
network for users to connect and fly together on remote servers.

Hardware and Software Requirements: To run flight simulation software
efficiently, certain hardware and software specifications are necessary:

o Operating System: Windows 10 (v. 1909) or later.

e Processor: Intel i5-4460, Ryzen 3 1200, or equivalent.

o« GPU: NVIDIA GTX 770, Radeon RX 570, or equivalent.
e Memory: 8 GB RAM, 2 GB VRAM.

o Storage: 150 GB of free space.

e DirectX: Version 11 or higher.

o Internet Connection: Required for initial activation, updates, and additional
content downloads.

Offline Functionality: Flight simulation software can function offline, allowing
users to fly freely and use downloaded aircraft and scenarios. However, some
features, such as multiplayer, real-time weather, and traffic data, require an active
internet connection.

Licensing and Costs: Flight simulation software is available in various editions
with different pricing:
1. Standard Edition: Typically priced between 59.99and69.99 USD.

2. Deluxe Edition: Includes additional aircraft and airports, priced between
89.99and99.99 USD.

3. Premium Deluxe Edition: The most comprehensive edition, priced between
119.99and129.99 USD.

10

Introduction

Commercial licenses are available for flight schools, airlines, and content devel-
opers, offering specialized features and rights for training, content creation, and
distribution.

Prepar3D

Prepar3D is a flight simulator based on the game engine of Microsoft Flight
Simulator X, developed by Lockheed Martin. Prepar3D is primarily oriented
towards professional use, such as pilot training, research, and development. It offers
a wide range of features, including aircraft, scenarios, and development tools to
customize and enhance the simulation experience. It is known for its robustness
and flexibility.

Figure 1.5: Prepar3D logo

Programmability: The Prepar3D Software Development Kit (SDK), which
provides developers with the necessary tools and resources to create custom add-
ons, extend the simulator’s functionalities, and develop additional scenarios and
content for Prepar3D (P3D). The Prepar3D SDK includes a wide range of resources
and documentation for developers, including:

1. Creation of New Aircraft and Aircraft Models: Developers can utilize the
tools provided in the SDK to create new aircraft models, including 3D models,
textures, special effects, and cockpit instruments.

2. Development of Custom Scenarios: Using the scenario development tools
included in the SDK; it is possible to create custom scenarios that encompass
new airports, terrains, scenario objects, and environmental details.

3. Implementation of Custom Functionalities: Developers can enhance Prepar3D’s
capabilities by creating add-ons that introduce new functionalities and avionics
systems, new flight controls, air traffic control systems, and more.

11

Introduction

4. Development of Custom Cockpit Instruments: Developers can create custom
cockpit instruments, control panels, and user interfaces to add functionalities
and additional information within the simulator.

5. Integration with Other Systems: Prepar3D offers various integration options
with other systems and technologies, such as real-time navigation systems, air
traffic management systems, pilot assessment systems, and more.

The SDK supports programming languages such as C++ and C# and offers 3D
modeling tools. The community is highly developed, facilitating collaboration and
knowledge sharing among developers.

Multi-Domain: Prepar3D offers extensive multi-domain simulation capabilities,
providing more variety compared to other simulators. It includes a range of aircraft,
from commercial airliners to military jets, and supports various add-ons. The
multi-domain capabilities include:

1. Aircraft: Commercial, military, historical, and more.
2. Helicopters: Civilian and military models.

3. Ground Vehicles: Cars, trucks, buses, trains, and more through third-party
addons.

4. Boats and Ships: Navigation on rivers, lakes, seas, and oceans.
5. Drones: Simulation of UAVs with dedicated addons.

6. Ground Equipment and Airport Infrastructure: Service vehicles, ground
support equipment, and more.

Multi-User: Prepar3d supports Multi-user functionality, however it is necessary
to have multiple licenses and to host the session having a professional plus license
is required.

Multi-Screen: Prepar3D provides robust multi-screen support, enhancing the
simulation experience through:

1. Monitor Configuration: Set up multiple monitors for different views, such as
the main flight environment and cockpit instrumentation.

2. Window Management: Open, drag, and resize multiple windows for customized
information display across monitors.

12

Introduction

3. Touchscreen Compatibility: Supports touchscreen interaction for controlling
the simulator, selecting commands, and moving the camera.

4. Advanced Configuration: Utilize third-party tools for advanced multi-screen
setups, managing windows, distributing views, and integrating with external
hardware and software.

VR and AR compatibility: Prepar3D supports virtual reality (VR) natively,
enhancing the immersive experience of flight simulation. It supports devices like
Oculus Rift, HTC Vive, and Valve Index, although is required a professional plus
license in order to use VR functionalties. While augmented reality (AR) is not
natively integrated, it can be explored using third-party solutions and compatible
tracking technologies.

Multi-Server: Is possible to use a multi-server architecture by using third-party
software. Native multi-server architecture is not supported.

Hardware and Software Requirements: Prepar3D has specific hardware and
software requirements to ensure optimal performance:

o Hardware:
— CPU: Quad-core or higher with at least 3.0 GHz; multi-core processors
with higher clock speeds are ideal.

— RAM: 16 GB recommended, 32 GB or more ideal for complex scenarios
and heavy addons.

— GPU: Dedicated graphics card with at least 4 GB of video memory; 6-8
GB or more for optimal performance and high-resolution graphics.

— Storage: SSD for the operating system and Prepar3D installation; addi-
tional SSD or HDD for simulation data and addons.

— Network: Internet connection for updates and addons; high-speed connec-
tion for online resources and multiplayer support.

o Software:

— Operating System: Windows 10 (64-bit) is recommended.
— DirectX: Version 11 or later.

— Additional Software: Updated drivers for hardware components, and
antivirus software that does not interfere with Prepar3D.

13

Introduction

Offline Functionality: Prepar3D can be used offline without needing additional
downloads, making it suitable for environments with limited internet access.

Licensing: Prepar3D offers various licensing options tailored to different user
needs:

e Academic License: For students, educators, and academic institutions for
non-commercial teaching and research.

o Professional License: For commercial use by aviation professionals, simulation
companies, and software developers.

o Developer License: For addon developers, including the ability to distribute
commercial addons and access to the SDK.

o Enterprise License: For organizations with specific simulation and training
requirements, offering advanced and customized features.

For commercial use, the Professional License is required, costing $350. The Pro-
fessional Plus License, costing $2,750, includes additional functionalities such as
multi-user and VR functionalities.

XPlane 12

X-Plane 12 is a popular flight simulator that offers a realistic flying experience.
Developed by Laminar Research, X-Plane is known for its fidelity to physical flight
dynamics and its flexibility. It is available on multiple platforms including Windows,
macOS, and Linux. It is utilized by aviation enthusiasts and industry professionals
alike for various purposes, including pilot training, aircraft design, and research.

YPLANET2

Figure 1.6: XPlane 12 logo

14

Introduction

Programmability: X-Plane 12 features a robust Software Development Kit
(SDK) that empowers developers to create plugins and additional modules for
the simulator. The SDK includes documentation, code examples, libraries, and
development tools necessary for building plugins in C/C++, along with APIs to
interact with the simulator. This toolkit allows developers to extend X-Plane’s
capabilities or create new tools, aircraft, scenarios, and more. The SDK facilitates
the development of various add-ons:

1.

2.

3.

4.

Aircraft Plugins: Developers can create new aircraft models, including custom
flight physics, graphics, and sounds.

Navigation Tools: Advanced navigation instruments such as GPS, VOR, ADF,
HSI can be developed to enhance user navigation experiences.

Cockpit Components: Custom instruments, control panels, or user interfaces
can be created to improve the in-cockpit experience.

Custom Scenarios: New or enhanced scenarios with detailed buildings, terrain,
vegetation, and 3D objects can be developed.

Multi-Domain: X-Plane 12 supports a wide range of aircraft, including both
military and civilian models. This includes:

1.

Civilian Aircraft: Simulations of commercial airliners like the Airbus A320,
Boeing 737, and recreational aircraft like the Cessna 172 and Piper PA-28.

Cargo Aircraft: Simulations of cargo planes such as the Boeing 747 Freighter,
Antonov An-124, and Lockheed C-130 Hercules.

Historic Aircraft: Simulations of historic planes like the Boeing 707, Douglas
DC-3, and Lockheed Constellation, enabling users to relive aviation history.

Helicopters: A variety of helicopters, from light models like the Eurocopter
EC135 to larger ones like the Sikorsky UH-60 Black Hawk, are available for
simulation.

Military Aircraft: Simulations of military aircraft such as fighters, bombers,
transports, and combat helicopters, including models like the F-16 Fighting
Falcon, F/A-18 Hornet, and military C-130 Hercules.

Experimental Aircraft: Simulations of experimental, prototype, and futuristic
aircraft, allowing exploration of advanced aviation concepts.

15

Introduction

Multi-User: X-Plane 12 includes extensive multi-user capabilities: uers can fly
together in the same airspace, connecting via local networks or the Internet for
real-time interaction, structured multiplayer events or casual flight sessions can be
hosted on dedicated servers or by individual users.

Multi-Screen: For multi-screen setups, X-Plane 12 supports:

1. Monitor Configuration: Users can configure additional monitors to display the
main cockpit, additional instrumentation, or external views.

2. View Customization: Views on each monitor can be customized, allowing
users to decide which instruments and views to display.

3. Touch Screen Compatibility: X-Plane 12 is compatible with touch screens,
allowing interaction with the user interface through touch gestures. This is
particularly useful for instrumentation or other interactive cockpit functions.

VR and AR compatibility: X-Plane 12 supports both virtual reality (VR) and
augmented reality (AR), enhancing the immersive experience.It is compatible with
a variety of VR devices, including Oculus Rift, HTC Vive, and Valve Index. VR
mode can be enabled within the X-Plane settings, allowing users to fully immerse
themselves in the flight environment, interact with cockpit instruments, and enjoy
panoramic views in a 3D setting. AR mode can be used with third-party solutions
to create AR experiences. AR can provide additional flight information, such
as navigation data, points of interest, or weather data, overlaid on the real view
through the device’s camera.

Multi-Server: The configuration can be complex, and while multi-server support
is not native to X-Plane, there are methods to achieve this through networking
and additional software.

Hardware and Software Requirements:

1. CPU: A modern multi-core processor with a frequency of at least 3 GHz is
required. High-end CPUs are recommended for optimal performance, especially
when using detailed scenarios or additional plugins.

2. RAM: At least 8 GB of RAM is required, but 16 GB is recommended for
a better experience, particularly with high-resolution scenarios or detailed
textures.

3. GPU: A dedicated graphics card with at least 2 GB of VRAM is necessary.
16

Introduction

4. Storage: A minimum of 150 GB of free disk space is required for installation,
including additional content such as scenarios and aircraft.

5. Input Devices: A range of input devices, including joysticks, flight controllers,
pedals, and keyboards, can be used. Reliable and well-configured input devices
are essential for an optimal flight experience.

6. Operating System: X-Plane 12 is compatible with Windows, macOS, and Linux.
An updated and supported operating system is necessary for compatibility
and optimal performance.

7. DirectX / OpenGL: X-Plane uses DirectX on Windows and OpenGL on
macOS and Linux for graphics and 3D rendering. Ensure the latest graphics
drivers and support for DirectX or OpenGL are installed.

Offline Functionality: X-Plane 12 can be used offline by downloading all relevant
scenario data beforehand.

Licensing: X-Plane 12 offers several licensing options:

1. Personal License: Priced around $80, or $100 for the DVD version, suitable
for individual users.

2. Academic License: Available for educational purposes.

3. Professional License: Priced at $1,000 for the online version and $1,250 for the
USB dongle version, suitable for software development and commercial use.

These comprehensive features and capabilities make X-Plane 12 a powerful tool for
both casual users and professional developers in the aviation simulation community.

AeroFly

Aerofly is a flight simulator available on various platforms, including PC, macOS,
mobile devices, and VR. Developed by IPACS (Interactive Panorama Aircraft
Cockpit Systems), it offers a highly detailed flying experience with a focus on
high-quality graphics and user-friendliness. However, it may not provide the
same complexity or depth of simulation as some other simulators like X-Plane or
Prepar3D.

17

Introduction

IPACS

~~ AEROFLYFS2_

FLIGHT SIMULATOR

Figure 1.7: Arofly logo

Programmability: Aerofly provides developers with a Software Development
Kit (SDK) that enables the creation of customized content for the flight simulator.
This SDK offers a variety of tools and resources useful for developing additional
aircraft, detailed scenarios, custom functionalities, and more. Developers can use
the SDK to integrate their work with Aerofly and enhance the user experience.
Typical features of the Aerofly SDK include:

o 3D Modeling Tools: Allow the creation of 3D models of aircraft and scenery.

o Aircraft and Scenery Importing: Facilitates the integration of new content
into the simulator.

o Flight System Programming: Enables modification of existing flight systems
or creation of new custom systems.

Multi-Domain: Aerofly supports a wide range of aircraft, including:
o Helicopters: Various types of helicopters for complex flight operations.
o Airliners: Models of commercial aircraft for airline flight simulations.
o Business Jets: Aircraft for private and corporate flights.

o Historical Aircraft: Historical models to relive the aviation of the past.

Multi-User: Aerofly does not natively support multi-user functionality, limiting
the possibility of multiplayer flights.

Multi-Screen: Although Aerofly does not natively support multi-screen configu-
rations, solutions depending on the hardware used do exist. Additionally, Aerofly
supports the use of touch screens for interacting with the simulator.

18

Introduction

VR and AR compatibility: Currently, Aerofly supports Virtual Reality (VR)
on some platforms, offering users an immersive flight experience with a sense of
presence and realism. VR availability depends on the specific version of Aerofly
and the platform on which the simulator is run. For example, Aerofly FS 2 is
known for its VR support on platforms like Oculus Rift, HTC Vive, and Windows
Mixed Reality.

Multi-Server: Similar to other simulators, Aerofly can be configured to support
multi-server setups, although this is not a native feature. Such configurations
require multiple simulator licenses.

Hardware and Software Requirements:

» Processor (CPU): A quad-core processor or higher is recommended for an
optimal experience. Aerofly benefits from powerful CPUs to handle flight
simulation and physics calculations.

o Memory (RAM): At least 8 GB of RAM is recommended to avoid lags and
long loading times.

o Graphics Card (GPU): A dedicated graphics card with at least 2 GB of VRAM
is required. A mid-range or higher-end graphics card is preferable for smoother
and more detailed graphics.

« Disk Space: It is advisable to have at least 20-30 GB of disk space for installing
the simulator and additional content.

o Operating System: Aerofly is available for various platforms, including Win-
dows and macOS. Ensure that the operating system is compatible with the
simulator.

o DirectX / OpenGL: Aerofly requires DirectX on Windows and OpenGL on
macOS for graphics. The appropriate versions of these libraries must be
installed on the system.

Offline Functionality: Aerofly can be used offline, provided all relevant data is
downloaded beforehand.

Licensing: Aerofly is available for personal use. For commercial licensing, it is
advisable to contact IPACS directly, as there is no standard commercial option
available on the official website.

19

Introduction

FlightGear

FlightGear is an open-source and free flight simulator developed by a community of
enthusiasts and programmers from around the world. FlightGear offers a realistic
flight simulation experience, with a strong emphasis on physical realism and fidelity
to details. However, since it is developed by a community of volunteers, it lacks
corporate resources behind it like some other commercial flight simulators, so it
may not have the same amount of pre-packaged content.

Figure 1.8: FlightGear logo

Programmability: FlightGear offers a development toolkit known as the "Flight-
Gear Development Kit" (FGSDK), which provides developers with the necessary
tools and resources to create customized content. This SDK includes various fea-
tures that allow for the creation and integration of new aircraft, scenarios, cockpit
instruments, and more. Key components of the FGSDK include:

1. 3D Modeling Tools: The FGSDK includes tools for creating and modifying
3D models for aircraft and scenery objects. These tools enable developers to
create detailed models that can be integrated into the simulator.

2. Animation Tools: These tools allow developers to add animations to 3D
models, such as aircraft control movements, retractable wheels, opening doors,
and more.

3. Documentation and Tutorials: The FGSDK provides comprehensive docu-
mentation and tutorials to help developers familiarize themselves with the
development process and utilize the SDK resources effectively.

4. Code Examples: The FGSDK offers code examples and reference materials to
assist developers in understanding how to integrate their creations into the
simulator.

20

Introduction

Multi-Domain: FlightGear supports a wide range of aircraft and aviation types,
including:

1. Civil Aircraft: A variety of civil aircraft can be simulated, from small training
planes to airliners and commercial jets, including single-engine, twin-engine,
jet, and turboprop aircraft such as the Cessna 172, Boeing 737, and Airbus
A320.

2. Historical Aircraft: FlightGear offers a selection of historical aircraft from
various eras, including World War II planes and aircraft from the 1950s and
1960s. Notable examples include the Supermarine Spitfire, Messerschmitt Bf
109, and North American P-51 Mustang.

3. Military Aircraft: A variety of military aircraft are available for simulation,
including fighters, bombers, transport planes, and helicopters. Modern aircraft
such as the F-16 Fighting Falcon, F/A-18 Hornet, and Sukhoi Su-27 are
included, as well as historical aircraft like the B-17 Flying Fortress and P-38
Lightning.

4. Helicopters: Both civil and military helicopters can be simulated, such as the
Bell 206 JetRanger, Eurocopter AS350 Ecureuil, and Boeing AH-64 Apache.

5. Gliders and Hang Gliders: FlightGear also supports the simulation of glid-
ers and hang gliders, allowing users to experience motorless flight and take
advantage of thermals and updrafts for long-distance travel.

Multi-User: FlightGear supports multiplayer mode, enabling multiple users to
participate in the same flight session and interact with each other and the virtual
environment.

Multi-Screen: FlightGear allows for multi-screen configurations, which can be
set up using various camera view windows. Although not natively supported, there
are community-driven solutions available for setting up multi-screen displays.

VR and AR compatibility: FlightGear has experimental support for virtual
reality (VR). Although not natively integrated, there are ongoing community efforts
to implement VR functionality.

Multi-Server: FlightGear supports multi-server configurations, allowing for
distributed computing to enhance performance and capabilities. Although not a
native feature, experimental setups can be found through community resources.

21

Introduction

Hardware and Software Requirements:

1. Processor: A modern processor with at least two cores is recommended. More
processing power will result in better performance.

2. Memory (RAM): At least 4 GB of RAM is recommended, though 8 GB or
more is preferable for an optimal experience.

3. Graphics Card: A dedicated graphics card with at least 1 GB of video memory
is recommended for optimal performance, especially for high graphical settings.
Mid-range or high-end graphics cards are preferred.

4. Disk Space: FlightGear requires at least 10 GB of disk space for installation
and additional files, but more space is recommended for custom scenarios and
aircraft.

5. Operating System: FlightGear is compatible with Windows, macOS, and
Linux, and is also available for other less common platforms.

6. FlightGear Version: Use the latest stable version of FlightGear for the best
performance and stability.

Offline Functionality: FlightGear can be used offline, and it is distributed
under the GNU General Public License (GPL), an open-source license. This means
the source code is available for free, and users have the freedom to use, modify, and
distribute the software under the terms of the GPL.

Licensing: The GPL is a copyleft license, which requires that any derivative
works or software using FlightGear code be distributed under the same open-source
license, with the source code made available to users. This ensures that FlightGear
remains an open-source project, benefiting all users. FlightGear can be used
freely and without restrictions for personal and commercial purposes. However,
modifications or distributions of the software must comply with the GPL terms,
including providing the license text with the work.

22

Chapter 2

Simulation environment and
wearable system

In this chapter, we will analyze the reasons behind choosing Prepar3D as our
simulation platform, providing a detailed examination of SimConnect, an application
programming interface (API) that allows external applications to interact with the
simulation environment, enabling a wide range of functionalities and extensions.
This capability is crucial for our project as it facilitates seamless integration with
the wearable system we are developing.

We will describe the simulation environment in detail, outlining the architecture
of the wearable system and how it interfaces with Prepar3D. This includes an
in-depth look at both the hardware and software components that constitute the
system, as well as the communication protocols employed.

Furthermore, we will highlight my contributions to this part of the project,
specifically focusing on the development and integration efforts that were necessary
to bring the simulation environment and the wearable system together.

By the end of this chapter, readers will have a comprehensive understanding of
the simulation environment, the wearable system architecture, and the rationale
behind the choice of Prepar3D, supported by a detailed comparison with alternative
solutions.

2.1 Prepar3d and Simconnect

As previously mentioned, we will analyze the motivations that led to the selection of
Prepar3D as the software for the simulation environment. This analysis will begin
with a comparison of the advantages and disadvantages of the software discussed
in the previous chapter.

Starting with Aerofly, several key disadvantages led to its exclusion as a viable

23

Simulation environment and wearable system

option. Firstly, Aerofly does not support multi-user mode, which is a significant
limitation for collaborative simulation environments where multiple users need to
interact simultaneously. Secondly, it lacks native support for multiple monitors. In
complex simulation setups, the ability to manage multiple monitors is crucial for
creating an immersive and comprehensive simulation experience. Lastly, Aerofly
does not offer a commercial license. This absence is a critical factor, as a commercial
license is essential for professional and business applications to ensure compliance
with legal and operational standards. These limitations collectively render Aerofly
an impractical choice for our specific requirements.

A similar evaluation applies to Microsoft Flight Simulator. While this software
boasts a large and active community of developers, which ensures continuous
updates and a wide range of add-ons, it also falls short in several critical areas.
Despite its extensive feature set that aligns well with many of our requirements,
the lack of a commercial license is a substantial drawback. Without the availability
of a commercial license, Microsoft Flight Simulator cannot be legally used in a
professional or corporate setting, which makes it unsuitable for our purposes.

Let’s proceed with our analysis focusing on FlightGear. One of its primary
advantages lies in its open-source nature, which provides a cost-free license suitable
for corporate environments. Moreover, FlightGear has a notable history of involve-
ment in significant past projects. However, a notable drawback is its lack of recent
updates, resulting in a decline in current usage. Therefore, despite FlightGear’s
advantageous open-source license, its stagnation in updates led to its exclusion
from consideration.

Moving forward, the more prominent contenders include X-Plane 12 and Prepar3D|
Both platforms deliver exceptional simulation performance and realism by offering:
high-fidelity graphics, realistic physics, and a comprehensive suite of simulation
tools that are essential for creating a realistic training environment. Moreover they
are bolstered by active developer communities and robust SDKs facilitating module
and application integration within simulations. These attributes make them viable
choices.

In the selection process, Prepar3D was preferred over X-Plane 12 for several
reasons. The Prepar3D community is notably aligned with professional applications,
offering tailored solutions and support that cater specifically to corporate and
industry needs. In contrast, X-Plane 12 is often more associated with academic
and educational settings, although it also offers strong simulation capabilities.

This analysis underscores Prepar3D as the optimal choice for our simulation
environment, aligning closely with the professional requirements outlined in this
thesis.

Let’s conclude this section by discussing the specific features of Prepar3D’s SDK
and SimConnect.

Prepar3D stands out due to its comprehensive SDK (Software Development Kit)

24

Simulation environment and wearable system

and the integration capabilities offered by SimConnect. The SDK provides develop-
ers with a robust framework to extend and customize the simulation environment
according to specific project requirements. It includes tools for creating aircraft
models, scenery, and customizing the behavior of various simulation elements.

SimConnect, a fundamental component of Prepar3D, facilitates real-time com-
munication between external applications and the simulation platform. It enables
seamless integration of third-party software, allowing the development of complex
simulations that can interact with external databases, control systems, or even
other instances of Prepar3D running concurrently.

This combination of a powerful SDK and SimConnect’s versatility makes
Prepar3D a preferred choice for professional and enterprise-level simulations. These
tools not only enhance the realism and functionality of the simulations but also
enable the development of tailored solutions that meet specific industry needs.

In summary, the robust SDK and the integration capabilities provided by Sim-
Connect reinforce Prepar3D’s suitability for our simulation environment, aligning
perfectly with the requirements discussed in this thesis.

2.2 Hardware components

We will now analyze the structure of the simulation environment, focusing on the
hardware components that were acquired for the simulation setup and how they
were integrated into the laboratory.

Starting with the central computer, we utilized an existing company-owned
machine equipped with a 7th generation Intel Core i7 processor and two Nvidia
T1000 graphics cards. The decision to use two graphics cards was made to provide
additional DisplayPort inputs for connecting multiple screens and to distribute the
GPU load across multiple cards, ensuring better overall performance.

The first graphics card is connected to a projector, providing a large, high-
resolution display essential for immersive simulation experiences. The second
graphics card is connected to three monitors, which are used to provide additional
viewing angles and control interfaces. This setup allows for a comprehensive and
interactive simulation environment.

While it may appear that a single graphics card, with its four available inputs,
would suffice, opting for two cards offers several significant advantages. Firstly,
it provides the flexibility to add more screens in the future without the need for
additional hardware upgrades. This scalability is crucial for adapting to evolving
simulation requirements.

Secondly, and more importantly, distributing the GPU load across two cards
enhances performance. Initially, when using only one card, the GPU load was
consistently high, averaging around 80% and sometimes peaking at 90%. This high

25

Simulation environment and wearable system

load resulted in a less fluid and optimal simulation experience, with noticeable
performance drops during intensive simulation tasks. By using two graphics cards,
we effectively balance the load, ensuring that each card operates within an optimal
range, thus delivering a smoother and more reliable simulation experience.

This thoughtful integration of hardware components not only maximizes cur-
rent performance but also provides a robust foundation for future expansion and
enhancement of the simulation environment. The choice of utilizing two Nvidia
T1000 graphics cards exemplifies our commitment to achieving high performance
and scalability in our simulation setup.

Regarding the projection management, we selected an ultra-short throw projector:
the Epson EH-LS650B. This decision was driven by several factors. The laboratory
environment did not permit the installation of ceiling-mounted projectors, and
placing the projector at the front of the setup avoids casting shadows over the
seating area. This placement enhances the overall visual experience by ensuring
that the projected images are unobstructed.

The projector, with its ultra-short throw capability, allows for a large, high-
quality display even in limited space. This feature is particularly advantageous in
our setup, where space optimization is crucial. The Epson EH-LS650B also offers
excellent brightness and color accuracy, which are essential for creating a realistic
and immersive simulation environment.

In addition to the projector, we have integrated multiple screens into the
simulation setup. We acquired a 24-inch touchscreen monitor (DELL P2424HT)
and a 14-inch touchscreen monitor (Verbatim PMT-14). These screens are used
to display additional aircraft controls, enhancing the interactivity and realism of
the simulation. Specifically, the 24-inch screen is used to show the multifunctional
display of the F-35, providing crucial flight information and system status. The
14-inch screen displays the GPS, allowing easy navigation and situational awareness
during the simulation.

Furthermore, a dedicated monitor serves as the console for managing the simu-
lation. This console monitor allows to a second operator to control various aspects
of the simulation, monitor performance, and make adjustments in real-time. The
presence of this console is vital for ensuring smooth operation and providing the
flexibility to modify simulation parameters as needed.

Overall, the careful selection and integration of these hardware components
significantly enhance the functionality and realism of our simulation environment.
The ultra-short throw projector and the strategically placed touchscreens work in
tandem to create an engaging and immersive experience for users.

26

Simulation environment and wearable system

Figure 2.1: Laboratory’s layout

27

Simulation environment and wearable system

To conclude, we also acquired various controls and a seat to enhance the
immersive experience of the simulation. The controls purchased are equipped with
multiple configurable buttons, as shown in Figure 2.2. These controls provide users
with the ability to interact with the simulation in a highly detailed and realistic
manner, mimicking the actual cockpit environment of an aircraft.

Figure 2.2: Commands

The seat chosen for the setup is the Next Level Racing Flight Simulator: Boeing
Military Edition. This seat is designed to offer a high level of comfort and realism,
essential for extended simulation sessions. It is fully adjustable and can be configured
with various attachments and platforms to accommodate additional controls and
tablets. This flexibility ensures that the seat can be tailored to the specific needs
of different simulation scenarios and users.

Figure 2.3: Seat

28

Simulation environment and wearable system

These additions significantly contribute to the overall immersive experience,
making the simulation environment more realistic and engaging. The combination
of high-quality controls and a versatile, comfortable seat ensures that users can
interact with the simulation in a manner that closely replicates real-world conditions.

Figure 2.4: Setup

2.3 Werable system

As previously mentioned, the objective of this thesis is not only to develop an
autopilot capable of reaching a desired point given specific coordinates and altitude,
but also to contribute to a broader project. This collaborative project, undertaken
with a colleague, involves the development of an advanced wearable system. This
system is equipped with a variety of actuators, including vibrational actuators,

29

Simulation environment and wearable system

heating plates, and other components that will be detailed further in the course of
this thesis.

The primary goal of developing this wearable system is to significantly enhance
the immersive experience of flight simulation. By integrating various actuators, the
system is able to provide real-time haptic feedback to the user based on the events
and conditions occurring during the simulation. For instance, vibrational feedback
can simulate turbulence, while heating elements can mimic changes in temperature,
thereby creating a more realistic and engaging environment for the pilot.

This approach not only aims to improve the sensory experience of simulation
but also offers substantial economic benefits. Traditional Full Flight Simulators
(FFS) are highly sophisticated and expensive pieces of equipment that require
considerable financial investment for their acquisition, maintenance, and operation.
In contrast, the wearable system developed in this project provides a cost-effective
alternative without compromising on the quality of training. It enables more
accessible and widespread use of advanced simulation technologies, potentially
transforming training practices in the aviation industry.

Moreover, the modular nature of the wearable system allows for easy updates
and customization, catering to specific training needs and scenarios. This flexibility
ensures that the system can be adapted to various aircraft models and training
requirements, offering a versatile tool for pilot education and skill development.

The system is composed of several actuators designed to enhance the immersive
experience of the simulation. These actuators include:

o LED lights

Vibrational actuators

Peltier cells

Heating plates
o LED matrix
o LED strip

These actuators are directly controlled by a Raspberry Pi microcontroller through
a series of relays. The activation of these actuators is contingent upon the detection
of errors generated during the simulation process. These errors are identified based
on data extracted from Prepar3D through SimConnect.

Each type of actuator is associated with specific simulation conditions:

1. LED Lights: These are activated when the landing gear is either not extended
or not retracted at appropriate times during the takeoff or landing phases.
This visual cue serves as a critical reminder to the pilot to manage the landing
gear correctly, thus enhancing procedural training.

30

Simulation environment and wearable system

2. Vibrational Actuators: These are triggered when the aircraft encounters a
stall condition. The tactile feedback provided by these actuators simulates
the physical sensation of stall warning systems found in real aircraft, thereby
training the pilot to recognize and respond to stall situations promptly.

3. Peltier Cells: These cells are engaged to simulate the presence of ice on the
aircraft’s fuselage. The cooling effect created by the Peltier cells provides a
realistic sensation of ice formation, emphasizing the importance of monitoring
and managing in-flight icing conditions.

4. Heating Plates: These are activated when the aircraft’s engine overheats. The
heat generated by these plates mimics the increase in temperature experienced
during engine overheating, providing an additional layer of realism and urgency
to the simulation.

5. LED Matrix: This component is used to display the direction of the wind. By
providing a visual representation of wind direction, the LED matrix helps the
pilot understand and react to wind conditions during flight operations.

6. LED Strip: This strip is controlled based on the aircraft’s bank angle. The
LED strip offers visual feedback regarding the aircraft’s attitude, which is
particularly useful in low-visibility conditions where external visual references
such as the horizon are not available. This assists the pilot in maintaining
spatial orientation and ensures safe maneuvering of the aircraft.

The data variables extracted from Prepar3D that trigger these actuators are detailed
in Figure 2.5.

These variables are critical for ensuring that the actuators provide accurate and
timely feedback based on the simulation’s real-time conditions.

By integrating these actuators, the system not only enhances the sensory feedback
available to the pilot but also ensures that the simulation experience is as close to
real flight conditions as possible. This innovative approach bridges the gap between
virtual training and actual flight experience, offering a cost-effective and highly
immersive training solution compared to traditional Full Flight Simulators (FFS).

Regarding the communication architecture, Figure 2.6 illustrates the communica-
tion schema in detail. Starting from the left, the necessary variables for generating
errors are extracted from Prepar3D using SimConnect. These variables are then
forwarded via the MQTT protocol on the local host to a module responsible for
managing the error generation logic.

MQTT (Message Queuing Telemetry Transport) is a lightweight messaging
protocol designed for efficient data communication between devices, especially in
environments with limited bandwidth and high latency. MQTT operates on the

31

Simulation environment and wearable system

PLANE ALTITUDE
AIRSPEED TRUE ‘ Led
GEAR POSITION - 0 U

‘/ Vibrational \‘

STALL WARNING Actuators

I

STRUCTURAL ICE PCT } Peltierre cells ‘

RECIP ENG
CYLINDER HEAD .
TEMPERATURE ‘ Heating plates

AIRCRAFT WIND X @
AIRCRAFT WIND Y

Led Matrix ‘

PLANE BANK
DEGREES

|

Led Stripe ‘

Figure 2.5: Actuators

client-server model and is commonly used in Internet of Things (IoT) applications
to facilitate real-time data exchange.
The MQTT protocol involves three main components:

1. Broker: The central server in the MQTT architecture that manages and routes
messages between clients. The broker ensures that messages are delivered to
the appropriate subscribers based on their subscriptions. It maintains the
state of all connected clients and manages message delivery.

2. Publisher: A client that sends messages to a specific topic on the broker.
Publishers are responsible for generating and transmitting data to the broker,
which then distributes this data to any clients that have expressed interest in
that topic.

3. Subscriber: A client that receives messages from the broker by subscribing
to specific topics. Subscribers express their interest in certain topics, and
the broker delivers relevant messages to them. Subscribers can react to these
messages in real time, enabling dynamic and responsive interactions.

MQTT’s publish-subscribe model decouples the producers and consumers of data,
allowing for scalable and flexible communication. Publishers and subscribers do
not need to be aware of each other’s existence, as all interactions occur through
the broker. This model is particularly advantageous in scenarios where network

32

Simulation environment and wearable system

——>| Error forwarding Actuators

Figure 2.6: Comunication

conditions are variable or where a large number of devices need to communicate
efficiently.

The error management module processes the incoming data to determine if any
errors have occurred based on predefined conditions. Once errors are detected,
this module forwards them, again using the MQTT protocol, to the Raspberry Pi
microcontroller. The Raspberry Pi, in turn, controls the relays that switch the
actuators on and off. This architecture ensures a robust and efficient communication
flow between the simulation software and the hardware components.

My contribution to this part of the thesis project, which involved collaboration
with a colleague, was the implementation of the module that interfaces with
Prepar3D for data extraction. This module also handles the forwarding of data
to the error logic management module. The implementation was done in C++,
leveraging the language’s performance and efficiency to handle real-time data
processing and communication tasks. Is possible to see the specific code used for
this implementation at the appendix A of the thesis.

The extraction of variables from Prepar3D is fully configurable through a
text file. This configuration file requires the user to enter the key of the vari-
able and its unit of measure, separated by a comma. This allows flexibility and
customization based on the simulation requirements. An example of this con-
figuration is shown in Figure 2.7. The complete list of variables available from
Prepar3D can be consulted at the following link: https://www.prepar3d.com/
SDKv3/LearningCenter/utilities/variables/simulation_variables.html.

Once the variables are extracted, they are managed dynamically within the

33

https://www.prepar3d.com/SDKv3/LearningCenter/utilities/variables/simulation_variables.html
https://www.prepar3d.com/SDKv3/LearningCenter/utilities/variables/simulation_variables.html

Simulation environment and wearable system

PLANE ALTITUDE,feet
AIRSPEED TRUE,knots
STALL WARNING,Bool
GEAR POSITION, Enum

AMBIENT WIND VELOCITY,Feet per second
STRUCTURAL ICE PCT,Percent over 100

RECIP ENG CYLINDER HEAD TEMPERATURE,Celsius
AMBIENT WIND DIRECTION,Degrees

YOKE X POSITION,Position

Figure 2.7: Config.txt file

system. This dynamic management ensures that the system can adapt to different
simulation scenarios and conditions, providing accurate and timely feedback to the
pilot.

For communication with the error logic management module, the MQTT pro-
tocol is used. We utilized an existing open-source project, Mosquitto (https:
//mosquitto.org/), for implementing the communication. In the implemented
module, a batch file is created that runs the Mosquitto publisher with the extracted
variable as the payload. This setup allows for efficient and reliable data transmission
between the modules.

The batch file is updated and executed in each cycle, with a separate batch
file for each variable. The latency of these operations was measured to ensure
system performance. On average, it takes 120-130 milliseconds to extract and
forward all variables per cycle. An additional 50 milliseconds delay is introduced
to prevent flooding the MQTT broker with packets, ensuring smooth and stable
communication.

Regarding the testing phase, the individual modules were rigorously tested
to verify their functionality and performance. After successful individual tests,
the modules were gradually integrated. This step-by-step integration approach
ensured that any issues could be identified and resolved early, resulting in a stable
and well-functioning system. The integrated system was then tested as a whole,
ensuring that all components worked seamlessly together and provided the desired
simulation experience.

34

https://mosquitto.org/
https://mosquitto.org/

Chapter 3

Autopilot architecture

As previously mentioned in the introduction of this thesis, this chapter will discuss
the architecture of the implemented autopilot in detail. Initially, an overview of the
types of controllers commonly used in the aeronautical field will be provided. This
will include a discussion of the principles behind these controllers, their various
applications, and the regulatory standards that govern their use. Subsequently,
specific details about the F-35 model will be presented, highlighting its relevance
and suitability as a reference for the controller design. The F-35 model, available
through the Prepar3D simulation platform, serves as an ideal basis for this study
due to its advanced technological features and comprehensive data availability.
This combination of theoretical background and practical application will provide
a thorough understanding of the autopilot’s architecture and its implementation.

3.1 Controllers in aeronautic field

In the field of aeronautics, several types of control systems are employed to enhance
the stability, control, and overall performance of aircraft. These systems are crucial
for ensuring safe and efficient flight operations, as they help manage the complex
dynamics of aircraft behavior under various conditions. The main categories of
these control systems include Stability Augmentation Systems (SAS), Control
Augmentation Systems (CAS), fly by wire systems (FBW), and Autopilot Systems.
SAS, CAS, and FBW can be grouped in a wider type of control systems called:
Inner-loop feedback control systems, while Autopilot Systems are also called: Outer-
loop systems. Each of these systems has specific functions and applications that
contribute to the overall handling and performance of the aircraft.

35

Autopilot architecture

Stability Augmentation Systems (SAS)

Stability Augmentation Systems (SAS) are used to enhance the stability of aircraft
that exhibit undesirable flying characteristics. These systems provide artificial
stability by adjusting control surfaces to improve the aircraft’s dynamic response.
SAS are particularly useful for aircraft that operate over a wide range of flight
conditions, where natural stability can vary due to changes in configuration or flight
parameters such as Mach and Reynolds numbers. SAS can include devices such
as pitch rate dampers, which use feedback from rate gyros to provide additional
damping and improve handling qualities . The Stability Augmentation System
(SAS) needed to be integrated with the aircraft’s primary mechanical control system,
which includes the stick, pushrods, cables, and bellcranks leading to the control
surface or the hydraulic actuator that activates the control surface. The control
authority of SAS, defined as the percentage of full surface deflection available, was
typically limited to about 10%. One of the challenges associated with SAS was that
the feedback loop provided commands that opposed pilot control inputs, making
the aircraft less responsive to stick inputs. To address this issue, a washout filter
was often added to the feedback loop to attenuate the feedback signal for constant
values of the aircraft motion parameter. Another concern was the limited authority
of the SAS actuator, necessitated by safety-of-flight requirements. Additionally,
SAS sensors and computers were usually non-redundant or only dual redundant,
which did not match the reliability of the mechanical flight control system. Despite
these challenges, SAS was effective in improving the flying qualities of the aircraft.

Aircraft

Motion SAS Computer
Sensors

~| Control Stick

e

SAS Actuator Control Surface

Control Surface

Actuator

Figure 3.1: Simplified SAS

36

Autopilot architecture

Control Augmentation Systems (CAS)

The next step in the evolution of aircraft feedback control systems was the develop-
ment of Control Augmentation Systems (CAS). With a CAS, a pilot’s stick input is
processed in two ways: through the mechanical system and through the CAS electri-
cal path. The design of CAS effectively eliminated the issue present in SAS where
pilot inputs were opposed by the feedback loop. Control Augmentation Systems
(CAS) are designed to improve the handling qualities and performance of aircraft
by augmenting pilot inputs. These systems use a variety of sensors and actuators
to adjust control surfaces dynamically, thereby enhancing maneuverability and
stability. CAS can compensate for factors such as adverse yaw or control surface
inefficiencies, ensuring more precise and responsive control during different phases
of flight. Additional reliability was incorporated into CAS, allowing for an increase
in control authority to approximately 50%. With CAS, the aircraft’s dynamic
response is typically well-damped, and control response is adjusted with the system
gains to maintain desirable characteristics throughout the flight envelope. CAS
provided significant improvements in aircraft handling qualities, enabling both
dynamic stability and control response characteristics to be tailored and optimized
according to the aircraft’s mission.

Aircraft Motion
Feedback Sensor

Control
Input

CAS Computer

~ Control Stick

[T
CAS Actuator Control Surface
Actuator

Control Surface

Figure 3.2: Simplified CAS

Fly by wire Systems (FBW)

Building on the excellent handling qualities achieved with Control Augmentation
Systems (CAS), the next logical step in the development of feedback control systems
was to eliminate the mechanical control system entirely, giving CAS full authority.

37

Autopilot architecture

These systems are known as fly-by-wire (FBW) systems. A major advantage of
using FBW systems is their enhanced reliability, achieved through the use of triple
and quadruple redundancy components along with self-testing software. The full
authority provided by FBW systems allows for significant customization of stability
and control characteristics. This capability has led to the development of FBW
systems with multiple feedback parameters and the weighting of feedback gains
based on flight conditions and other parameters. Consequently, block diagrams for
FBW systems can become quite complex due to the numerous feedback sensors
involved.

Aircraft Motion

Feedback Sensor
Control
— Ion © FBW Computer
nput
Control Stick

P,

FBW Actuator Control Surface
Actuator

Control Surface

Figure 3.3: Simplified FBW

Autopilot Systems

Autopilots are a type of automatic control system used to reduce pilot workload by
maintaining the aircraft’s attitude, altitude, and speed. The evolution of autopilots
began with simple displacement systems that could maintain pitch, roll, and heading
angles. Modern autopilots integrate more advanced control laws and sensors to
perform complex tasks such as automatic landing and maintaining a glide path
during descent.

1. Displacement Autopilot: This type of autopilot maintains specific angular
orientations (e.g., pitch, roll) by comparing the current attitude with a desired
set point and adjusting control surfaces to minimize the error. It uses gyros to
sense deviations and actuates the elevator or rudder to correct the aircraft’s
orientation .

38

Autopilot architecture

Error

b signal Aileron By Roll b
actuator dynamics

Attitude
ayro

-

Figure 3.4: Roll attitude control system

2. Altitude Hold Autopilot: This system maintains the aircraft at a specified
altitude by controlling the pitch attitude and thrust. It uses sensors to measure
altitude deviations and adjusts the elevator and throttle to maintain the desired
flight level. An altitude hold autopilot simplifies pilot tasks during cruise by
keeping the aircraft stable at a set altitude without continuous manual input .

Prer Compensator Elevator | Aircraft h
P Servo dynamics
Altitude
sensor

Figure 3.5: Altitude hold control system

3. Speed Control Autopilot: This system maintains a constant airspeed by
adjusting the throttle. It uses feedback from airspeed sensors to regulate
engine power, ensuring the aircraft remains at a desired speed. This type of
autopilot is crucial for maintaining optimal flight conditions and fuel efficiency
during different phases of flight .

4. Advanced Autopilots: Modern autopilot systems integrate multiple control
functions, including lateral and longitudinal stability, automatic landing ca-
pabilities, and complex navigation tasks. These systems use state feedback
control and optimal control theory to ensure precise and reliable aircraft
performance under various conditions .

39

Autopilot architecture

":lurei . Enai au
Forward ngme Engine Aircraft R
— path thrnttle lag dynesmics
compensator control

[Feedback]
elements |

Figure 3.6: Speed hold control system

In summary, SAS, CAS, FBW, and autopilot systems collectively enhance the sta-
bility, control, and performance of aircraft, reducing pilot workload and improving
safety across a wide range of flight operations.

3.2 Regulatory Standards for Controllers Used
in the Aeronautical Field

The aviation industry, both military and civil, relies on stringent regulatory stan-
dards to ensure the safety, reliability, and interoperability of equipment used
in aircraft, including autopilot and other flight control systems. Among these
standards, the United States Military Standards (MIL-STD), Federal Aviation
Administration (FAA) Advisory Circulars (ACs), and NATO Standardization Agree-
ments (STANAG) play crucial roles in setting the criteria for performance, testing,
and interoperability of these systems. This chapter will discuss the key regulatory
standards relevant to the controllers used in aeronautical applications, focusing on
MIL-STD 810F, MIL-STD 461F, STANAG 4586, and FAA AC 25.1329-1C.

3.2.1 MIL-STD 810F: Environmental Engineering Consid-
erations and Laboratory Testing

Overview

MIL-STD 810F, established by the U.S. Department of Defense, provides a compre-
hensive set of environmental test conditions and laboratory testing methodologies
designed to ensure that military equipment can withstand the rigors of various
environmental stresses throughout its service life. These tests cover a wide range
of environmental factors, including vibration, acceleration, humidity, rain, and
temperature extremes.

40

Autopilot architecture

Purpose and Application

The primary goal of MIL-STD 810F is to simulate the environmental conditions that
military equipment is likely to encounter during its operational life. By doing so, it
ensures that the equipment remains functional and reliable under these conditions.
The standard is not limited to military applications; non-defense organizations and
industries also adopt it to demonstrate that their products meet similar rigorous
criteria.

Testing Methodologies

MIL-STD 810F outlines specific test procedures, durations, and cycles to replicate
the environmental stresses on equipment. These include:

o Vibration Testing: Ensures that equipment can withstand mechanical vibra-
tions encountered during transportation and operation.

o Acceleration Testing: Verifies that equipment can endure forces encountered
during rapid acceleration or deceleration.

o Humidity Testing: Assesses the equipment’s resistance to prolonged exposure
to high humidity levels.

o Temperature Testing: Evaluates the equipment’s performance across a range
of temperatures, including extreme heat and cold.

The results of these tests are analyzed to identify any design deficiencies or defects,
which must be addressed to meet the standard’s requirements. In the case of the
UAV Navigation VECTOR autopilot, no redesign was necessary, validating the
robustness of its design and quality control processes.

3.2.2 MIL-STD 461F: Electromagnetic Interference Control
Overview

MIL-STD 461F specifies the requirements for controlling the electromagnetic
interference (EMI) characteristics of electronic, electrical, and electromechanical
equipment and subsystems. This standard ensures that military equipment can
operate without causing or being affected by EMI, which is critical for maintaining
the integrity and performance of sensitive electronic systems.

41

Autopilot architecture

MIL-STD

Figure 3.7: MIL-STD 461F Logo

Purpose and Application

The standard aims to guarantee electromagnetic compatibility (EMC) among
various subsystems and equipment used in military operations. It applies to
equipment with electronic enclosures, discrete electrical interconnections, wiring
harnesses, and power inputs derived from primary power sources.

Testing Methodologies

MIL-STD 461F includes several tests to evaluate the EMI characteristics of equip-
ment:

» Radiated Emissions Testing: Measures the electromagnetic energy emitted by
the equipment to ensure it does not interfere with other electronic systems.

o Conducted Susceptibility Testing: Assesses the equipment’s ability to with-
stand EMI from external sources without performance degradation.

The UAV Navigation VECTOR autopilot successfully passed these tests, demon-
strating its compliance with MIL-STD 461F and its ability to function effectively
in environments with potential electromagnetic interference.

3.2.3 STANAG 4586: Standard Interfaces for NATO UAV
Interoperability

Overview

STANAG 4586, developed by NATO, specifies the standard interfaces for Unmanned
Aerial Vehicle (UAV) Control Systems (UCS) to ensure interoperability among
different UAV systems used by NATO member countries. This standard addresses

42

Autopilot architecture

the need for a common framework to enable seamless integration and operation of
UAVs from various manufacturers.

Purpose and Application

The objective of STANAG 4586 is to define the interfaces required to achieve the
necessary Level of Interoperability (LOI) for UAV systems, ensuring that they can
be used interchangeably and cooperatively across different NATO operations. This
standard is vital for joint missions, where multiple UAVs from different countries
must operate together efficiently.

Functional Architecture and Interfaces

STANAG 4586 establishes a functional architecture for UCS, comprising several
key elements:

« Air Vehicle (AV)

« Vehicle Specific Module (VSM)

« Data Link Interface (DLI)

» Core UCS (CUCS)

o Command and Control Interface (CCI)
o Human Computer Interface (HCI)

« Command and Control Interface Specific Module (CCISM)

These components and interfaces facilitate the communication and control of UAVs
and their payloads, ensuring interoperability and efficient operation.

Levels of Interoperability (LOI)

STANAG 4586 identifies five LOIs to accommodate different operational require-
ments:

1. LOI 1: Indirect receipt and/or transmission of sensor product and metadata.
2. LOI 2: Direct receipt of sensor product data and metadata.
3. LOI 3: Control and monitoring of the UAV payload.

4. LOI 4: Control and monitoring of the UAV, excluding launch and recovery.
43

Autopilot architecture

AV

LAUNCH &
RECOVERY

UCS e T e

I
|
DL l
|

CORE o OPERATOR
ucs I
ccl ccl
CCISM
cal cal
SYSTEM SYSTEM

Figure 3.8: UCS Functional Architecture

5. LOI 5: Full control and monitoring, including launch and recovery.

By implementing these levels, NATO ensures that UAV systems can be tailored to
specific mission needs while maintaining interoperability.

3.2.4 FAA AC 25.1329-1C: Approval of Flight Guidance
Systems

Overview

FAA Advisory Circular (AC) 25.1329-1C provides guidance on the approval of
flight guidance systems (FGS), which include autopilot functions, flight directors,
and automatic thrust control functions. This AC is crucial for ensuring that these
systems meet the airworthiness standards required for transport category airplanes.

Purpose and Application

The primary purpose of AC 25.1329-1C is to outline acceptable means for demon-
strating compliance with the requirements of Title 14, Code of Federal Regulations

44

Autopilot architecture

(CFR) 25.1329. This includes the design, testing, and certification of FGS to en-
sure they provide safe and reliable operation throughout the aircraft’s operational
envelope.

Key Aspects of Compliance

AC 25.1329-1C details various aspects of compliance, including;:

o Autopilot Engagement and Disengagement: The criteria for safe engagement
and disengagement of the autopilot, including the provision of appropriate
alerts to the flight crew .

e Performance in Normal and Rare Conditions: The performance standards
for FGS under normal and rare conditions, such as severe turbulence and
significant wind gradients .

e Human Factors Evaluation: The importance of evaluating the human-machine
interface to ensure that FGS operations are intuitive and do not impose
excessive workload on the flight crew .

o Failure Conditions and Safety Assessment: Guidance on assessing the impact
of potential failure conditions on the FGS and the aircraft, including pilot
recognition and recovery from such conditions .

Testing Methodologies

The AC outlines specific testing methodologies for demonstrating compliance, which
may include both flight tests and simulator evaluations. These tests are designed
to validate the FGS’s performance across a range of operational scenarios and
configurations, ensuring that the system can safely handle both typical and adverse
conditions .

The regulatory standards discussed in this chapter—MIL-STD 810F, MIL-STD
461F, STANAG 4586, and FAA AC 25.1329-1C—play essential roles in ensuring the
reliability, safety, and interoperability of controllers used in aeronautical applications.
These standards provide comprehensive guidelines for testing and evaluation,
addressing both environmental and electromagnetic considerations, as well as
the need for interoperable UAV control systems and robust flight guidance systems.
Adherence to these standards is crucial for the successful deployment and operation
of UAVs and other aeronautical systems in both military and civil contexts.

45

Autopilot architecture

3.3 Specifications and Dynamics of Aircraft Mod-
els with Focus on the F-35

The study of aircraft models involves understanding their aerodynamic properties,
structural dynamics, and control mechanisms. This chapter provides an in-depth
analysis of various aircraft models with a special focus on the F-35 Lightning II.
Using three key documents, we will explore the general aircraft dynamics, the
specific technologies employed in the F-35, and mathematical models to simulate
aircraft behavior under various conditions.

3.3.1 General Aircraft Dynamics
Equations of Motion

The dynamics of an aircraft can be described using the rigid body equations
derived from Newton’s laws. These equations account for forces (F) and moments
(M) acting on the aircraft as it maneuvers through the atmosphere. The general
equations of motion in the body axes reference frame are given by:

F, =X —Wsinf = m(i+ quw — rv) (3.1)
F,=Y +Wcosfsin¢ = m(v + ru — pw) (3.2)
F, =7+ W cosfcosp =m(w+ pv — qu) (3.3)
M, =1L=1Lp+ (I, —I)qr — L.(+ + pq) (3.4)
My=M=1,G+ (I, — I.)rp — [:cz(pz - TQ) (3.5)
M. =N =Li+ (I, — I.)pq — L,.(p — rq) (3.6)

These equations assume the aircraft is a rigid body, its mass distribution is
symmetric, and the Earth’s rotation and curvature are negligible.

Aerodynamic Forces and Moments

Aerodynamic forces and moments are crucial in determining aircraft behavior. For
the Airbus A340-300, the lift (L), drag (D), and pitch moment (M) are expressed
as follows:

M = CyqSc (3.8)
N = CNC]S (39)

46

Autopilot architecture

where ¢ is the dynamic pressure, S is the wing area, and c is the chord length.
The coefficients C', Cy, and C); vary with the angle of attack, control surface
deflections, and other factors.

The dynamics of an aircraft are often divided into longitudinal and lateral-
directional components for analysis.

Figure 3.9: Dynamical model for aircraft motion

Longitudinal Dynamics Longitudinal dynamics involve the motion in the plane
defined by the aircraft’s forward velocity and vertical motion. For a simplified
analysis using small perturbation theory, the equations of motion are linearized
around an equilibrium state:

AF, =m (4 + que,) (3.10)
AF, = m (W — queg) (3.11)
AM, = I,j (3.12)

These equations are useful in studying the stability and control of aircraft during
flight.

Lateral-Directional Dynamics Lateral-directional dynamics describe the mo-
tion involving side-to-side and rotational movements about the vertical axis. The
linearized equations for these dynamics are:

47

Autopilot architecture

AF, =m (0 + e — pWeg) (3.13)
AM, = Ip — L7 (3.14)
AM, = Li — L.p (3.15)

These equations help in analyzing yaw and roll stability of the aircraft.

3.3.2 Mathematical Modeling of Aircraft
Basic Assumptions

The mathematical modeling of aircraft dynamics relies on several fundamental
assumptions to simplify the complex reality of flight:

1. Constant Mass: The mass of the aircraft remains constant during the consid-
ered time interval.

2. Rigid Body: The aircraft is treated as a rigid body with no deformation.

3. Symmetric Mass Distribution: The mass distribution is symmetric relative to
the aircraft’s center line.

4. Neglect of Earth’s Rotation and Curvature: The Earth’s rotation and curvature
are considered negligible for the time scales involved in flight dynamics.
Linearized Equations of Motion

For small perturbations around an equilibrium flight condition, the equations of
motion can be linearized. This simplifies the analysis and control design. The
linearized longitudinal equations are:

Au = T}”L (—mgsin by + X, Au + X,Aw + X,Aq + X5, Ad.) (3.16)
Ay = ; <ZuAu ¥ ZuAw + (Zq + mUO) Ag+ 25€A56> (3.17)
Aj = Ily (MyAu + MyAw + M,Aq + M;,AS,) (3.18)
A = Aq (3.19)

where:

o Au, Aw, Ag, and A# are perturbations in forward velocity, vertical velocity,
pitch rate, and pitch angle, respectively

48

Autopilot architecture

m is the mass of the aircraft

g is the acceleration due to gravity
o 0y is the equilibrium pitch angle
o Up is the equilibrium forward velocity

e X, Z, and M and their subscripts denote stability derivatives, which are
partial derivatives of aerodynamic forces and moments with respect to the
state variables

e 0. is the elevator deflection.

Stability Derivatives

Stability derivatives are essential in understanding how changes in flight conditions
affect aerodynamic forces and moments. They are typically obtained through a
combination of analytical methods, wind tunnel tests, and flight experiments. For
example:

X, = %)u(, (3.20)
X, = gfj, (3.21)
X, = 8(9);’ (3.22)
X, = g‘;i, (3.23)
7z, = gi, (3.24)
Zy = gi, (3.25)
Z, = %j, (3.26)
Zs, = géze, (3.27)

Autopilot architecture

W= ‘?\f, (3.28)
o ‘Zj‘u{, (3.29)
.= ‘?j, (3.30)
Ms, = %i\sf? (3.31)

where X, Z, and M represent aerodynamic forces and moments, and u, w, ¢,
and ¢, are the perturbations in forward velocity, vertical velocity, pitch rate, and
elevator deflection, respectively.

These derivatives allow for the construction of linearized models suitable for
control system design and stability analysis.

3.3.3 F-35 Lightning II Technology Overview

General Characteristics

The F-35 Lightning II, developed by Lockheed Martin, is a fifth-generation multirole
fighter designed to meet the needs of modern warfare. The F-35 is built in
three variants: F-35A for conventional takeoff and landing (CTOL), F-35B for
short takeoff/vertical landing (STOVL), and F-35C for aircraft carrier operations
(CATOBAR). Each variant is equipped with advanced technologies and capabilities
that ensure superior performance in diverse mission profiles. The F-35 features a
blended wing body design that enhances its aerodynamic efficiency and stealth
characteristics. Its airframe is constructed using advanced composite materials that
reduce weight while maintaining structural integrity. The aircraft’s internal weapons
bays further enhance its stealth capabilities by minimizing radar cross-section.

1. Stealth Capabilities

The F-35’s stealth design incorporates a variety of technologies aimed at
reducing its radar cross-section and infrared signature. The aircraft’s shape,
materials, and coatings are optimized to deflect radar waves and absorb radar
energy, making it difficult for enemy radars to detect and track.

Radar-Absorbing Materials The F-35 is coated with radar-absorbing
materials (RAM) that significantly reduce its radar signature. These materials
are applied to critical surfaces and edges, where radar reflections are most

50

Autopilot architecture

likely to occur. The use of RAM, combined with the aircraft’s stealthy shape,
ensures a low observable profile.

Infrared Signature Management To manage its infrared signature, the
F-35 utilizes an advanced cooling system that minimizes the heat emitted
by its engine and other components. The engine exhaust is also designed to
disperse heat quickly, reducing the aircraft’s vulnerability to infrared-guided
missiles.

. Advanced Avionics and Sensor Fusion

The F-35 is equipped with a state-of-the-art avionics suite that provides pilots
with unparalleled situational awareness. The avionics system integrates data
from multiple sensors, including radar, infrared, and electronic warfare systems,
to create a comprehensive picture of the battlefield.

AN/APG-81 AESA Radar The F-35’s AN/APG-81 Active Electronically
Scanned Array (AESA) radar offers superior detection and tracking capabilities.
It can perform multiple functions simultaneously, such as air-to-air and air-to-
ground targeting, electronic warfare, and intelligence gathering. The radar’s
advanced signal processing ensures high-resolution imagery and precise target
identification.

Distributed Aperture System (DAS) The Distributed Aperture System
(DAS) provides the F-35 with 360-degree situational awareness. It consists
of multiple infrared cameras mounted around the aircraft, which detect and
track incoming threats, such as missiles and aircraft. The DAS feeds real-
time imagery to the pilot’s helmet-mounted display, allowing for rapid threat
identification and response.

Electro-Optical Targeting System (EOTS) The Electro-Optical Tar-
geting System (EOTS) combines forward-looking infrared (FLIR) and laser
targeting capabilities into a single sensor. The EOTS enables the F-35 to
perform precision targeting and tracking of ground and airborne targets. It
provides high-resolution imagery and accurate targeting data, enhancing the
aircraft’s effectiveness in both offensive and defensive operations.

51

Autopilot architecture

3. Propulsion and Performance

Powered by the Pratt & Whitney F135 engine, the F-35 achieves supersonic
speeds and exceptional agility. The F135 is the most powerful fighter engine
in the world, providing the F-35 with unmatched thrust and efficiency.

Engine Fan Duct
Heat Exchanger

Integrated Engine

Starter/Generator Advanced

Axisymmetric
Nozzle

Shaft-Driven LiftFan® ‘-]
(STOVL Variant) _—
o — d -] 3-Bearing
) - f - Swivel
Duct
(STOVL
Variant)

Diverterless

Supersonic Inlet Electro-

Hydrostatic
Actuation

Integrally Stiffened System

Composite Duct Integrated Power

Package

Figure 3.10: Propulsion System

Pratt & Whitney F135 Engine The F135 engine is a two-stage turbofan
with an afterburner, capable of generating up to 43,000 pounds of thrust.
Its advanced design includes features such as a three-stage fan, a six-stage
compressor, and a low-emission combustor. The engine’s high thrust-to-weight
ratio and fuel efficiency contribute to the F-35’s superior performance.

Short Takeoff/Vertical Landing (STOVL) The F-35B variant features a
unique LiftFan system that enables short takeoff and vertical landing (STOVL)
capabilities. The LiftFan, developed by Rolls-Royce, works in conjunction with
the F'135 engine to provide vertical thrust. This capability allows the F-35B
to operate from short runways and amphibious assault ships, significantly
enhancing its operational flexibility.

Range and Endurance The F-35 has an impressive range of over 1,200
nautical miles without external fuel tanks. Its internal fuel capacity and
efficient engine design allow for extended missions without the need for aerial

52

Autopilot architecture

refueling. The aircraft’s endurance is further enhanced by its ability to carry
a variety of mission-specific external fuel tanks and sensors.

Understanding the specifications and dynamics of aircraft, particularly advanced
models like the F-35, is crucial for both design and operational efficiency. Through
rigorous modeling and simulation, engineers can predict aircraft behavior, optimize
performance, and ensure safety. This chapter highlighted the foundational principles
and specific technological advancements that define modern aviation.

3.4 Development of the Autopilot System

This chapter provides an in-depth analysis of the development process of the
autopilot system, which forms the cornerstone of my master’s thesis. The chapter
meticulously delineates the various stages undertaken to achieve the final outcome:
a sophisticated controller designed to autonomously navigate an aircraft to a
specified target point identified by coordinates (latitude and longitude) and a
predetermined altitude, all the three variable are settable in a configuration file.
The system enables the aircraft to execute a seamless takeoff, perform a precise
turning maneuver to align with the designated point, and subsequently stabilize
at the desired altitude, all within strict operational tolerances that ensure high
accuracy.

The development of the controller was executed using the C++ programming
language. The integration with the simulation environment was achieved by
interfacing with Prepar3D, a widely used flight simulation software. Input control
variables were extracted from Prepar3D, and the resultant output control variables
were communicated back to Prepar3D, utilizing SimConnect as the communication
interface. This setup allowed for a robust feedback loop, where the simulated
aircraft within Prepar3D served as the plant for the controller’s development and
fine-tuning. Figure 3.11 illustrates a simplified example of the structure of the
developed controller.

3.4.1 Data Acquisition and Transmission

The first step undertaken was to acquire data from Prepar3D using SimConnect and
to transmit data back to Prepar3D through the same interface. The data acquisition
component had already been implemented in the data acquisition module used for
the wearable item project, discussed in detail in Chapter 2.3. This module was
modified to capture the data relevant to the control variables of interest, which
will be analyzed in detail later in this chapter.

To transmit data to Prepar3D, instead of using simulation variables directly,
specific "events' were utilized to modify the positions of the aircraft’s control

53

Autopilot architecture

9

Controller -
Simconnect

Simconnect
Figure 3.11: Simplified controller schematic

surfaces, such as ailerons and elevators. This approach provided a more flexible
control mechanism, ensuring precise adjustments based on the controller’s outputs.
The variables and events used for controlling the aircraft will be specified and
described in detail in the subsequent sections of this chapter.

This setup of data acquisition and transmission established a robust communi-
cation loop between the controller and the simulation environment, essential for
the development of an effective autopilot system.

3.4.2 Development of Stabilization Controllers

The next step involved developing controllers to stabilize the aircraft’s lateral
and longitudinal attitudes, using bank and pitch as the control variables. This
intermediate step was crucial for ensuring the aircraft could maintain a stable
flight configuration before executing more complex maneuvers. Stabilizing the
aircraft’s orientation was essential for providing a solid foundation upon which
more advanced control algorithms could be built, and for ensuring safe and reliable
operation during various phases of flight.

To stabilize the bank and pitch, the aircraft’s bank and pitch angles were used as
the input variables for the controllers. The ailerons and elevator were manipulated
to control these variables. The desired bank and pitch angles for stabilization were
set to 0°, indicating level flight. The type of controller developed for this purpose
was a PID controller.

For tuning the PID parameters, the Ziegler-Nichols method was initially em-
ployed. However, the results obtained were not satisfactory, leading to manual
tuning. The manual tuning process involves first adjusting the proportional (P)
gain to achieve a response with a steady oscillation. Next, the integral (I) gain is
adjusted to eliminate any residual steady-state error, and finally, the derivative (D)
gain is fine-tuned to dampen the oscillations and improve stability. This sequential

o4

Autopilot architecture

tuning approach helps to systematically address different aspects of the controller’s
performance, ensuring a balanced and responsive control system.

In practice, two separate controllers were developed: one for stabilizing the bank
and another for stabilizing the pitch, each with distinct gain values. As previously
mentioned, bank and pitch were used as input variables. Additionally, to achieve
more accurate performance for the PID controller, the angular rates of bank and
pitch were used. The derivative gain utilized these measurements directly rather
than deriving them from the bank and pitch angles.

As previously mentioned, bank and pitch were used as input variables, and the
output was a numerical value to actuate the ailerons (for bank control) and the
elevator (for pitch control). To manipulate the ailerons and elevator, SimConnect
events were used. Both control surfaces accept values ranging from -16383 to
+16383, where the minimum value corresponds to the maximum deflection in one
direction, and the maximum value corresponds to the maximum deflection in the
opposite direction (£25° for the ailerons and +30° for the elevator). Figure 3.12
and Figure 3.13 illustrates the control schema of the implemented controllers.

)

PID Controller

Roll rate

Bank angle

Figure 3.12: Bank controller schematic

PID Controller)
Elevator angle A y

Pitch rate

Pitch angle

Figure 3.13: Pitch controller schematic

59

Autopilot architecture

The complete code for these controllers is available in Appendix B of this thesis.

3.4.3 Development of More Complex Control Systems

The subsequent step involved developing more complex control systems that, when
integrated, would form the final autopilot system. Specifically, these steps facilitated
the implementation of the takeoff system, the controller for executing turns to
align with the desired point, and the controller for achieving and maintaining the
desired altitude. We will examine each of these systems in detail, analyzing their
functionality and underlying principles.

Takeoff System

The takeoff system is relatively simple. In real-world applications, such systems do
not exist; takeoff operations are still manually performed by pilots during flights.
However, these operations follow standard procedures, and the takeoff system
automates these operations. The operations performed by the system are:

o Disengage the parking brake

o Set the throttle lever to full throttle

o Once the aircraft reaches 200 knots, pitch up to achieve a 15° pitch angle
e Retract the landing gear

The automation of these steps ensures a smooth and consistent takeoff process.
By following these standard procedures, the system replicates the actions a pilot
would take, ensuring the aircraft achieves a stable climb after takeoff. Disengaging
the parking brake allows the aircraft to begin its takeoff roll. Setting the throttle
to full power ensures that the aircraft has sufficient thrust to accelerate down the
runway. Pitching up at 200 knots ensures that the aircraft lifts off the ground at
the appropriate speed, and achieving a 15° pitch angle helps establish a safe climb
rate. Retracting the landing gear reduces drag and allows the aircraft to continue
climbing efficiently.

In practice, this automated takeoff system can greatly assist in scenarios where
precise control is needed, such as in unmanned aerial vehicles (UAVs) or in testing
environments where consistent takeoff performance is crucial. By automating the
takeoff process, the system can ensure that each takeoff is executed with the same
precision and adherence to standard operating procedures, thus improving overall
safety and reliability.

This foundational takeoff system serves as a critical building block for the overall
autopilot system, enabling subsequent phases of flight control to be executed more
effectively.

56

Autopilot architecture

Turn Maneuver

To align the aircraft with the desired point, a controller was developed to enable
the aircraft to execute a turn maneuver. Turning is a complex operation in
aviation, requiring precise control and coordination. Specifically, two controllers
were developed for this purpose to facilitate a comparative analysis between two
different approaches. The first controller uses the difference between the azimuth
of the target point and the aircraft’s heading relative to true north as a reference.
The second controller executes a standard turn. The control schemes for these
controllers are illustrated in Figures 3.14 and 3.15. It can be seen from the control
diagrams that both include a filter on the heading angle to determine when the
controller should cease operation, with a tolerance of +£0.005 radians.

PID Controller

Elevator angle

Yaw rate

Yaw angle

Figure 3.14: Turn Maneuver controller

PID Controller Elevator angle

Angular velocity relative to the Z axis

Figure 3.15: Standard Turn Maneuver controller

The first controller sets the bank angle to 40°, either to the right or left depending
on the location of the target point, utilizing the previously developed bank controller
but setting the reference angle to 40° instead of 0°. This adjustment allows the
aircraft to achieve the necessary roll to initiate the turn. To execute the turn, a
PID controller was developed, with the aircraft’s heading and the yaw rate as the
control variables. The derivative component of the controller uses the yaw rate

57

Autopilot architecture

directly, enhancing the responsiveness and accuracy of the control action. The
reference angle, which is the angle between the target point, the aircraft, and true
north, is calculated using the azimuth formula:

Azimuth = arctan 2 (sin(AM\) - cos(¢2), cos(¢1) - sin(¢pa) — sin(py) - cos(pa) - cos(AN))|

where ¢, e ¢y are the latitudes, and AN\ is the difference the longitude between
the two points.

The actuators used to control the yaw are the elevators. The control system
continuously adjusts the elevators to maintain the desired yaw rate and align the
heading with the calculated azimuth. Additionally, a filter is implemented to stop
the control action once the aircraft is aligned with the desired point. This filter
ensures that minor deviations do not cause unnecessary adjustments, maintaining
stability during the maneuver.

The tuning of the controller was performed using the same approach as de-
scribed for the bank and pitch controllers in the previous section. The tuning was
specifically adjusted to ensure a slow control action to avoid any overshoot, which
is critical in this application to maintain stability and precision. By fine-tuning
the proportional, integral, and derivative gains, the controller achieves a balance
between responsiveness and smoothness, essential for a coordinated and stable
turn.

Once the aircraft is aligned with the desired point, it returns to a horizontal
attitude. This is accomplished by changing the bank controller’s reference angle
from 40° back to 0°. This adjustment gradually rolls the aircraft back to level
flight, ensuring a smooth transition and preventing abrupt changes in attitude.
The system’s ability to manage these transitions seamlessly enhances the overall
reliability and effectiveness of the autopilot.

With regard to the standard turn, the angular velocity about the aircraft’s
vertical axis is used as the control variable. Consequently, the aircraft performs a
turn at a constant angular velocity of 3 degrees per second. The control scheme is
similar to the one previously analyzed. A PID controller has been developed, and
the tuning was performed in the same manner. Additionally, a filter is applied to
the yaw angle to interrupt the control action. Let us now analyze in more detail
what constitutes a standard turn.

A standard turn is a fundamental maneuver in aviation where the aircraft is
flown through a curved flight path while maintaining balanced forces. This ensures
that the aircraft does not slip or skid, resulting in a smooth and efficient turn.
The standard turn is achieved by banking the aircraft, which requires a balance
between the lift generated by the wings and the centripetal force needed to follow
the curved trajectory.

58

Autopilot architecture

The physics of a standard turn involve several key parameters and equations.
The primary forces acting on the aircraft during a turn include the lift L, weight
W, and centripetal force F,.. For a turn to be coordinated, the resultant lift must
be inclined to provide the necessary centripetal force.

Vertical Force Equilibrium The lift L is inclined at a bank angle ¢. The
vertical component of the lift must equal the weight of the aircraft:

Lcosp =W

cos ¢ = T

Horizontal Force Equilibrium The horizontal component of the lift provides
the centripetal force required for the turn:

Lsing = F,
Given the centripetal force F, = mTYQ, where m is the mass of the aircraft, V is

the velocity, and R is the radius of the turn, we have:

mV?

Lsing = 7

Load Factor (n) The load factor n is defined as the ratio of the lift to the

weight:
L
n=-—
W
Combining the above equations, we get:
ncosgp =1
1
n =
coS @

This implies that as the bank angle ¢ increases, the load factor n also increases.
The load factor impacts the radius of the turn and the stall speed of the aircraft.

Turn Radius and Rate The radius R of the turn can be derived from the
centripetal force equation:
V2
B gtan ¢
59

Autopilot architecture

The rate of turn w (angular velocity) is given by:

Y gtan ¢
SV

Thus, the turn radius and rate depend on the bank angle ¢ and the velocity V'
of the aircraft.

Higher bank angles increase the load factor, which in turn increases the stall
speed. For example, if an aircraft stalls at 50 m/s in level flight, in a 60° bank (n
= 2), the stall speed increases to:

Vitaltyurn = Vatauyv/n = 50V2 ~ 70.7 m/s

To achieve the minimum turn radius and maximum turn rate, it is advantageous
to fly at the lowest possible speed for the given load factor. However, the structural
limits of the aircraft (maximum load factor n,,.,) must be considered.

As the load factor increases, the drag increases, requiring more thrust to maintain
speed. The available thrust must be sufficient to counteract the increased drag,
especially at higher load factors and bank angles.

The standard turn is a complex maneuver requiring precise control of bank
angle, speed, and power. Understanding the underlying physics and performing
accurate calculations are essential for ensuring safe and efficient turns in various
flight conditions.

Altitude control

To achieve and maintain a desired altitude, an algorithm has been developed to
precisely control the aircraft’s altitude. This approach reutilizes the previously
implemented pitch control algorithm, making necessary adjustments to the reference
input in order to effectively reach the target altitude. Specifically, the pitch
controller’s reference is dynamically modified based on the aircraft’s current altitude
during the ascent phase. As the aircraft gradually approaches the desired altitude,
the reference input is smoothly decreased to ensure a stable and safe ascent,
minimizing abrupt changes that could affect the aircraft’s performance.

Similarly, if the target altitude is lower than the current altitude, the reference
is adjusted accordingly to facilitate a controlled and stable descent. This gradual
adjustment mechanism helps in maintaining the aircraft’s stability and ensures
passenger comfort by avoiding sudden altitude changes.

The developed controller demonstrates excellent performance, maintaining the
desired altitude within a tolerance range of approximately £10 feet. Such precision
in altitude control is crucial for various flight phases, including cruising, where
maintaining a consistent altitude ensures optimal fuel efficiency and flight safety.

60

Autopilot architecture

3.5 Complete System

The complete system represents an integrated solution combining the components
discussed in Chapter 3.4.3. The system operates as follows: during takeoff, it
employs the previously described implementation to manage the initial phase of
flight. Once the aircraft has reached an altitude of 7,000 feet and a speed of at
least 400 knots, it transitions to a stabilized flight phase. At this point, the system
activates the turn maneuver controller to manage any necessary directional changes.

Subsequently, the altitude control algorithm takes over to ensure the aircraft
reaches and maintains the desired altitude with precision. This step involves
dynamically adjusting the pitch control reference to achieve a stable ascent or
descent, as required. The combined operation of these controllers ensures smooth
transitions and maintains the aircraft’s performance within specified tolerances.

The code implementing these systems is detailed in Appendix C of the thesis.
This code has been designed with configurability in mind, allowing users to set
parameters such as desired coordinates and target altitude through a configuration
file. This feature provides flexibility and adaptability, making it possible to tailor
the system’s behavior to different flight scenarios and requirements.

Overall, this integrated approach demonstrates a robust solution for manag-
ing complex flight operations, combining several control mechanisms to enhance
stability, precision, and adaptability in various flight phases.

61

Chapter 4
Simulation Results

In this chapter, the tests that were conducted will be presented, detailing how
they were performed, how the data were collected, the results of the tests, and
considerations regarding the obtained results. Multiple tests were carried out
for each component and module of the final system, which were subsequently
integrated and tested gradually. The strategy used to conduct the tests is the
Software-in-the-Loop (SIL) strategy.

Control System

variable(s) ~\

i Output(s)
» >

‘\ — P

. = = - i y

Contfol System:
Discrete Computer
Simulation

Y

System Model:
Computer Simulation

Figure 4.1: SIL schematic

Software-in-the-Loop (SIL) testing is a method where the software components
of a system are tested within a simulated environment. This approach allows for
the validation of the software’s functionality and performance under controlled
conditions, prior to integration with the actual hardware. SIL testing provides
several advantages that are critical in the development of complex systems.

Firstly, SIL enables early detection of software issues. By simulating the op-
erational environment, developers can identify and address bugs, performance
bottlenecks, and integration problems at an early stage. This early intervention
reduces the risk of encountering critical issues during later stages of development,
which can be more costly and time-consuming to resolve.

Secondly, SIL testing supports iterative development. As software components

62

Simulation Results

are developed and refined, they can be repeatedly tested within the simulated
environment. This iterative process allows developers to continuously improve
the software, ensuring that each iteration brings the system closer to the desired
performance and reliability standards.

Moreover, SIL testing allows for comprehensive testing scenarios that might be
impractical or impossible to replicate with actual hardware. For instance, extreme
conditions, rare edge cases, and failure modes can be simulated to assess how the
software handles such situations. This thorough testing ensures that the software is
robust and capable of maintaining functionality under a wide range of conditions.

Additionally, SIL provides a safe testing environment. Testing in a simulated
environment mitigates the risk of damaging physical hardware or causing unsafe
conditions. This is particularly important for systems that interact with critical or
hazardous environments, where testing failures could have severe consequences.

Finally, SIL testing facilitates better resource management. By leveraging
simulation, developers can conduct extensive testing without the need for multiple
physical prototypes, reducing costs and development time. This efficiency allows
for more frequent testing cycles, leading to faster development and higher-quality
software.

In conclusion, SIL testing is a powerful tool in the software development process,
offering early issue detection, iterative improvement, comprehensive scenario testing,
safety, and resource efficiency. By employing SIL testing, developers can ensure a
more reliable and robust final product.

4.1 Data collection

To evaluate the performance of the various control units, an extensive series of
tests was conducted. These tests aimed to verify the correct functionality of
each controller and to ensure that the control units operated within the expected
parameters. The collected data was essential for analyzing the behavior of each
unit under different conditions and for conducting comparative analyses.

The data acquisition process was carried out using Simconnect. The data was
sampled at a frequency of 10 Hz, resulting in the collection of one data point every
100 milliseconds. This sampling rate was chosen to provide a detailed temporal
resolution that captures the dynamic responses of the control units effectively.

Once collected, the data was stored in files with a .csv extension. This format was
selected for its versatility and ease of use, allowing for straightforward manipulation
and analysis using various data processing tools. The .csv format also facilitated the
generation of graphs and visual representations, which are crucial for interpreting
the performance metrics and identifying trends or anomalies.

The specific data points gathered during the tests varied depending on the

63

Simulation Results

control unit being evaluated. However, the core parameters typically included the
following;:

Table 4.1: Collected Data and Corresponding Units

Parameter Unit of Measure
Bank Radians
Pitch Radians
Heading Radians
Desired Heading Radians
Plane Latitude Radians
Plane Longitude Radians
Altitude Feet (ft)
Airspeed Knots (kts)
Angular Velocity | Radians per second (1/s)

Each of these parameters provided insights into different aspects of the control
unit’s performance, such as its ability to maintain stability, accuracy in following a
desired trajectory, and responsiveness to control inputs.

Overall, the systematic collection and analysis of this data were fundamental
to understanding the capabilities and limitations of each control unit, enabling
informed decisions to be made regarding their potential deployment in real-world
applications.

4.2 Data analysis

The data collected during the testing of the various control modules will now be
analyzed. The data will be presented in the same order as outlined in Chapter
3.4. The testing environment was consistently maintained; each time a test was
conducted, the simulation was reset to ensure uniform conditions.

The specific environment in which the control modules were tested is as follows:

o Latitude: 47.64210°
e Longitude: -122.13010°
e Pitch: 0.0°
e Bank: 0.0°
e Heading: 0.0°
o Initial speed: 550 knots
64

Simulation Results

o Altitude: 7000 feet

« Throttle position: 60%

In some tests, certain parameters may differ due to practical testing requirements.
Throughout the analysis, any modifications to these parameters will be explicitly
specified when necessary to execute specific tests.

4.2.1 Test of Stabilization Controllers

In this section, we will analyze the tests conducted for the stabilization controllers of
the bank and pitch, presenting relevant graphs and providing detailed considerations.
We will begin with the tuning of the controllers, which was performed using a
systematic approach. Specifically, the PID controller tuning was executed by
sequentially adjusting the proportional (P), integral (I), and derivative (D) gains.
The process began by tuning the proportional gain to achieve a satisfactory level of
responsiveness. Once an appropriate P value was established, the integral gain was
adjusted to eliminate steady-state error. Finally, the derivative gain was fine-tuned
to minimize overshoot and improve the stability of the system, ensuring a balanced
and robust control performance. The tests for the bank and pitch controllers
were conducted separately. For the bank, the initial condition was set to 30°,
while for the pitch, the initial condition was set to -20°. This approach allowed
for precise tuning and evaluation of each controller’s performance under specific
starting conditions.

30

w
o

N

@
N
o

N

o
n
=]

o

Bank degree
=
Bank degree
5

o
&)

Time Time

Figure 4.2: Bank P controller Figure 4.3: Bank PI controller

65

Simulation Results

w
o

Bank degree
P - N N
o «@ o o

(3}

Time

Figure 4.4: Bank PID controller

Additionally, it is useful to compare the developed controller with the existing
system on the aircraft under the same initial conditions, specifically with a bank
angle of 30° and a pitch angle of -20°.

It can be observed that the developed controller not only reaches the desired
bank and pitch angles more quickly, but it also demonstrates a higher level of
precision. This enhanced performance is particularly evident in its ability to
achieve the target angles without experiencing significant overshoot. The absence
of excessive overshoot indicates that the controller is more stable and reliable,
effectively reducing the potential for oscillations or deviations from the desired
trajectory. Consequently, the developed controller ensures smoother and more
accurate control, which is critical in maintaining optimal aircraft performance and
safety.

Further tests were conducted using varying initial speeds to thoroughly assess the
behavior of the controller under different flight conditions. The results indicate that
as the speed increases, there is a corresponding increase in overshoot. However, it is
important to note that this increase in overshoot remains within acceptable limits
and does not compromise the stability of the system. The controller effectively
manages this behavior, ensuring that the overshoot is controlled and does not
become excessive, even when operating at supersonic speeds. This demonstrates
the robustness of the controller in handling high-speed scenarios, maintaining
reliable performance across a wide range of operating conditions.

Finally, the last series of tests were conducted under adverse weather conditions.
These tests included scenarios with wind coming from the left side of the aircraft, as
well as the presence of turbulence. Multiple tests were carried out to evaluate the
controller’s performance under varying levels of turbulence, ranging from moderate
to severe. The results demonstrate that the developed controller plays a crucial role
in maintaining the stability of the aircraft during flight. Despite the challenging

66

Simulation Results

0 — — 5
| 0
st J
f st
g 0] | 8 ||
g | g ol
5 | 5 |
T 151 x |
:‘ 51
|
20} 1 |
—ZOIT
-25 -25
0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 40
Time Time
Figure 4.5: Pitch P controller Figure 4.6: Pitch PI controller
5
0 ——
5|
8
2
S -10
5
15|
—20“7“
-25
0 5 10 15 20 25 30

Time

Figure 4.7: Pitch PID controller

conditions, the controller effectively contributes to keeping the aircraft stable and
well-controlled, highlighting its robustness and effectiveness in managing adverse
environmental factors. In Figures 4.18, 4.19, 4.20 and 4.21, it can be observed how
the controller aids in maintaining the aircraft’s bank and pitch angles close to 0°.
This is evident from the fact that the average bank and pitch angles are 0.04° and
-0.04°, respectively, when the controller is active. In contrast, with the controller
deactivated, the average bank and pitch angles are 11.9° and 3.9°, respectively.

67

Simulation Results

30 -

= N N
3 o 3
L L L

Bank degree
>

Time
Figure 4.8: Bank PID controller

35 T T T T T

30 M 1

Bank degree
o o Y
o o (4] o

o

0 10 20 30 40 50 60 70
Time

Figure 4.10: Autopilot bank

68

Pitch degree

Pitch degree
=

20 {f

-25

0 5 10 15 20 25
Time

Figure 4.9: Pitch PID controller

30

20 —

-25

0 10 20 30 40 50 60
Time

Figure 4.11: Autopilot pitch

Simulation Results

Bank degree
@

0 10 20 30 40 50 60
Time

Figure 4.12: Bank PID controller
200 knts

30

Bank degree
= - [N) N
o v o v
—

5

S}

0 5 10 15 20 25 30 35 40 45
Time

Figure 4.14: Bank PID controller
600 knts

35

30

Bank degree
o

0 5 10 15 20 25 30 35
Time

Figure 4.16: Bank PID controller
800 knts

69

Pitch degree
5

20

-25
0 10 20 30 40 50 60

Time

Figure 4.13: Pitch PID controller
200 knts

Pitch degree
3

20

-25
0 5 10 15 20 25 30 35 40 45

Time

Figure 4.15: Pitch PID controller
600 knts

Pitch degree
>

20

-25
0 5 10 15 20 25 30 35

Time

Figure 4.17: Pitch PID controller
800 knts

Simulation Results

4
3t I
|
H ‘M
I | I
2 |
m Ay R R
g r | \”\ ﬁ\H il | \U‘
g i | “U /“‘ Il |
=W N oy M
| | | ' \
8 I e \‘“ [M\M \" M m“
I UV e
0 HH ! . I
i T AT s \
\H L) | i
l VO Y
all WA ‘VI N ‘H‘W 1
|| Il I LH\ iy
I I | \/
i ' ! [I
2
0 5 10 15 20 25 30 35 40 45
Time

Figure 4.18: Bank severe turbolence
with controller

25

20
‘/f \/\/\,\
/ \

Bank degree
o

/
-
~

o

/ W

Time

Figure 4.20: Bank severe turbolence
without controller

70

05

04

o
]

Pitch degree
o

-0.1 *\/

-0.2

Time

Figure 4.19: Pitch severe turbolence
with controller

Pitch degree
N
v

Time

Figure 4.21: Bank severe turbolence
without controller

Simulation Results

4.2.2 Test of take off system

Subsequently, tests were conducted on the individual components of the complete
autopilot system to evaluate their performance in isolation. Specifically, for the
takeoff system, a series of tests were carried out to assess its functionality and
effectiveness. During these tests, detailed graphs were generated to visualize key
parameters, including the bank angle, pitch angle, altitude, and airspeed. These
graphs provide valuable insights into the system’s behavior during takeoff, allowing
for a comprehensive analysis of how each component contributes to the overall
performance of the autopilot system. The test was conducted at Washington Dulles
International Airport.

0.02 ‘ ‘ . . ‘ 2
)
0.015 E 0r |
\
0.01 2 |
\
4l |
o 0005 |
ng') g 6 |
-6 1
3 Y FE NN DU NI SN S ——— 53 |
3 © |
s S 8 |
® 0,005 x |
|
-0 |
-0.01 1 “
20 ‘
-0.015 1 |
14+ \
0.02 I e —
0 10 20 30 40 50 60 70 -16 : . : . :
Time 0 10 20 30 40 50 60 70

Time

Figure 4.22: Bank angle Figure 4.23: Pitch angle

8000 ; ; ; ; ; ; 700

7000 600 -

6000 ,// 1 7

/ 500 - e

5000 | 1 o ///
= / £ 400} //
3 4000 / g yd
2 / # 300} /

3000 1 < /

o
2000 / 1 2007 / -
1000 - 7 g 4 100 /
,f'/
P
- /
0 o~
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Time Time
Figure 4.24: Altitude Figure 4.25: Airspeed

71

Simulation Results

4.2.3 Test of altitude controller

Regarding the altitude control system, a series of tests were conducted to evaluate
its performance in both altitude increase and decrease scenarios. These tests were
performed under the same conditions outlined at the beginning of the chapter,
which involved an altitude change of 4,000 feet. Specifically, the tests assessed the
system’s ability to transition from an initial altitude of 7,000 feet to either 11,000
feet or 3,000 feet.

The results of these tests indicate that the altitude is achieved with a margin of
+5 feet, and the system maintains the altitude within this range at steady state.
This performance is consistent with the reference value, with oscillations limited
to £5 feet. This behavior is also observable in the pitch angle graph, where the
pitch angle shows oscillations around the steady-state value, reflecting the system’s
fine-tuning capability in altitude control. The results are documented and can be
reviewed in the subsequent figures, which provide a detailed visualization of the
system’s behavior and effectiveness in managing the desired altitude adjustments
during both climb and descent phases.

% 10%

1.1008 |- 1

1.1006 .

1.1004 .

1.1002 7

11

1.0998 1

Altitude ft

1.0996 - 1

1.0994 - 2

1.0992 1

1.099 |- 2

1.0988 - 1

1 1 | | 1 1 1 1 | |
56.5 57 575 58 585 59 595 60 60.5 61
Time

Figure 4.26: Detail on the oscillation of the altitude

72

Simulation Results

Altitude ft

Altitude ft

12000

11000 —
10000 /
9000

8000 /

7000 1 /

6000
0 10 20 30 40 50 60

Time

Figure 4.27: Altitude 11000 ft

70

7000
6500 |
6000 [\
5500 |
5000 |
4500 |
4000 |

3500

3000 — =

2500

2000
0 10 20 30 40 50

Time

Figure 4.29: Altitude 3000 ft

60

73

Pitch degree

Pitch degree

U Uy

0 10 20 30 40 50 60 70
Time

Figure 4.28: Pitch 11000 ft

20

20 30 40 50 60
Time

Figure 4.30: Pitch 3000 ft

Simulation Results

4.2.4 Test of the turn maneuver

The next system tested was related to the maneuvering of turns. As previously
mentioned in Section 3.4.3, two systems were developed to facilitate the execution
of turn maneuvers. In this section, we will analyze the results of the tests con-
ducted and provide a detailed comparison between the two methodologies. This
comparative analysis will focus on evaluating the performance and effectiveness of
each system in executing turn maneuvers, highlighting their respective strengths
and weaknesses based on the test outcomes. The tests were conducted under the
same initial conditions outlined at the beginning of the chapter. The target point
for the maneuvers was specified with coordinates of latitude 47.64210° N, longitude
145.13012° W, and an altitude of 11,000 feet. The tests were terminated before
the aircraft reached the exact target point, as achieving this would have required
an extended duration. However, the tests were concluded only after the aircraft
had aligned with the desired point and reached the target altitude. This approach
ensured that the maneuvers were conducted effectively and provided meaningful
insights into the system’s performance without necessitating the completion of the
full trajectory. Regarding the tests conducted for the turn maneuver, it can be
observed that during the execution of the turn, the aircraft experiences a gradual
loss of altitude, descending to approximately 4,500 feet. This loss of altitude occurs
as the aircraft maneuvers, but the altitude is subsequently regained once the aircraft
has aligned with the desired point and the altitude control system is reactivated.
This behavior highlights a temporary instability during the turn, which could be a
concern in certain flight scenarios. In contrast, this phenomenon does not occur
with the standard turn, where the aircraft maintains its altitude more consistently
throughout the maneuver. As a result, the standard turn emerges as the more
reliable and safer option, offering a more stable and predictable performance in
maintaining the desired flight parameters during the turn. Regarding the standard
turn, multiple tests were conducted with different bank angles, specifically at 30°,
35°,40°, and 45°. The results of these tests indicate that as the bank angle increases,
the altitude gained during the maneuver decreases. This behavior can be attributed
to the fact that at lower bank angles, the aerodynamic surfaces of the elevators are
more effective in generating the necessary lift to increase the aircraft’s altitude. In
contrast, as the bank angle increases, the lift component acting vertically is reduced,
limiting the aircraft’s ability to gain altitude during the turn. This phenomenon is
a direct consequence of the redistribution of lift forces as the aircraft banks more
steeply, thereby reducing the efficiency of the elevators in contributing to altitude
gain.

74

Simulation Results

11000

10000

9000

8000

Altitude ft

7000 |
6000 N\ /

5000 NS

4000
0 20 40 60 80 100 120 140

Time

Figure 4.31: Altitude turn maneu-
ver

13000

12000 /-)

11000 / N

10000 /

Altitude ft
©
8
3
~
~

8000 A

7000 ——

6000
0 20 40 60 80 100 120 140

Time

Figure 4.33: Altitude standard
turn maneuver bank=30°

11500

11000 e
10500
10000 /

9500 /

9000 /

Altitude ft

8500 7/
8000 /
7500 |/

7000 [/

6500
0 20 40 60 80 100 120 140

Time

Figure 4.35: Altitude standard
turn maneuver bank=40°

75

47.78 |

4776 ——

4774 1 \

Latitude
IS
X
3
N

&
N
3

47.68

47.66

4764 : . : :
1226 1225 1224 1223 1222 1221

Longitude

Figure 4.32: Trajectory turn ma-
neuver

12000

11000 /

10000 - /
9000 - /

8000 [/

7000 ¢/

Altitude ft

6000
0 20 40 60 80 100 120 140

Time

Figure 4.34: Altitude standard
turn maneuver bank=35°

11500

11000 | e
10500 |-
10000 |-
9500 - “f‘

9000 J

Altitude ft

8500 - /
8000f
7500+ /

7000

6500
0 20 40 60 80 100 120 140

Time

Figure 4.36: Altitude standard
turn maneuver bank=45°

Simulation Results

4.2.5 Test of the complete system

Finally, the complete autopilot system was subjected to comprehensive testing.
The individual systems, including the takeoff control, altitude control, and turn
maneuver systems, were integrated into a cohesive unit and tested together to
evaluate their collective performance. The behavior of the fully integrated autopilot
system proved to be consistent with the results observed during the tests of the
individual components, demonstrating that the system functions reliably when
all subsystems are combined. This consistency reinforces the robustness and
effectiveness of the overall design. The performance of the complete autopilot
system can be observed in a video, which is accessible via the provided link:
https://youtu.be/zFX-xf54RzQ or by scanning the QR code displayed in Figure
4.37. The video specifically demonstrates the operation of the complete system,
including takeoff, a turn maneuver, and altitude setting. The departure airport,
as in previous tests, is Washington D.C. airport. The video shows that once the
aircraft reaches 200 knots, it begins to pitch up, setting an angle of attack of 15°.
Upon reaching 7000 feet, it initiates a turn maneuver to align with the geographical
coordinates: latitude 47.6421 and longitude -145.13010. After completing the turn,
the aircraft return to horizontal position and reach the target altitude of 11000
feet.

ol

Figure 4.37: QR code of the autopilot system video

76

https://youtu.be/zFX-xf54RzQ

Chapter 5

Conclusions and future
developments

5.1 Conclusions

The project described in this thesis led to the development of an advanced autopilot
system capable of flying an F-35 aircraft to predefined geographical coordinates and
maintaining a specific altitude. A key contribution of this work was the significant
improvement of the aircraft stabilization controller compared to the existing one.
The new developed controller demonstrated superior effectiveness in managing
the aircraft’s dynamics, providing a quicker and more stable response to various
external disturbances, thereby enhancing flight safety and reliability.

In parallel, the development of a wearable system integrating haptic and visual
feedback improved the simulation experience, offering an innovative and cheaper
solution compared to traditional flight simulators. This system has proven to
significantly enhance immersion and realism during simulation sessions, opening
new perspectives for training and education.

5.2 Future Developments

Despite the results achieved, there are multiple directions that could be explored to
further improve the system. One of the primary areas for development involves the
adoption of more advanced control techniques, such as adaptive control or robust
control, which could further increase the efficiency and reliability of the autopilot
system, particularly under complex or unexpected operating conditions.
Additionally, expanding the wearable system to include more sensors and ac-
tuators could further enhance the user experience, providing even more detailed

7

Conclusions and future developments

and realistic feedback. It could also be beneficial to explore the integration of the
system with advanced artificial intelligence technologies, improving the system’s
ability to adapt in real-time to variable flight conditions.

Another promising direction is the scalability of the simulation system, with the
goal of integrating it into distributed simulation environments. This would allow
collaboration between multiple simulators, improving training in joint missions or
complex scenarios. Finally, the principles developed in this project could be ex-
tended to other sectors, such as the automotive or naval industries, where advanced
control systems could significantly improve safety and operational efficiency.

78

-

w

0

Appendix A

Data acquisition module

#include <windows.h>
#include <tchar.h>
#include <stdio.h>
#include "SimConnect.h'
#include <strsafe.h>
#include <string>

7|#include <vector>

#include <fstream>
#include <sstream>
#include <iostream>
#include <unordered_map>

2|#include <algorithm>

#include <thread>
#include <atomic>
#include <chrono>

using namespace std;

HANDLE hSimConnect = NULL;
atomic_bool keepRunning(true);

// Struttura per memorizzare le informazioni sui parametri
struct ParameterInfo {
string key;
string unit;
b
// Definizione degli identificatori per dati e richieste

enum DATA DEFINE ID {
DEFINITION_ 1,
b

79

ot

66
67
68

69

NS BEES TE |
N

a

Data acquisition module

enum DATA REQUEST ID {

}s

REQUEST 1,

'l // Funzione per rimuovere spazi da una stringa

string removeSpaces(const string& str) {

}

string result = str;
result . erase (remove(result.begin(), result.end(), ’ 7)), result.
end());

return result;

// Funzione per leggere il file di configurazione
vector<ParameterInfo> readConfigFile (const charx filename) {

}

vector<ParameterInfo> params;
ifstream file (filename);

it (!file.is_open()) {
cerr << "Errore durante |’ ’apertura del file di configurazione

An';

return params;

string line;

while (getline(file , line)) {
istringstream iss(line);
string key, unit;

if (getline(iss, key, ',’) && getline (iss, unit)) {
params.push_back({ key, unit });
}

}

file.close ();
return params;

// Funzione per stampare i dati sulla console
void printData(const unordered map<string , double>& dataMap, const

vector<ParameterInfo>& params) {
for (const auto& param : params) {
auto it = dataMap. find (param.key) ;
if (it != dataMap.end()) {
printf("%—30s: %.2f %s\n", param.key.c_str(), it—>second,
param. unit.c_str());

}

else {

80

Data acquisition module

76 printf("%—30s: Dato non disponibile\n", param.key.c_str()

s1| // Funzione per aggiornare e eseguire il file batch
s2| void updateAndExecuteBatchFile (const unordered_map<string , double>&
dataMap, const ParameterInfo& param) {

83 string sanitizedKey = removeSpaces(param.key);

84 ofstream batchFile("batch file/" + sanitizedKey + ".bat");

85

86 if (batchFile.is _open()) {

87 batchFile << "\"C:\\Program Files\\mosquitto\\mosquitto_pub.
exe\" —t data/"

88 << sanitizedKey << " —m " << dataMap.at (param.key) ;

89 batchFile. close () ;

90

o1 // Esegui il file batch

92 string batchFileName = "batch file\\" 4+ sanitizedKey + ".bat"'

93 system (batchFileName.c_str());
94
95 else {

96 cerr << "Errore durante la creazione del file batch per " <<
param.key << ".\n";

97 }

98 }
99
10| // Funzione di callback per gestire i dati ricevuti da SimConnect
01| void CALLBACK MyDispatchProcRD (SIMCONNECT RECVx+ pData, DWORD cbData ,
void* pContext) {

102 static vector<ParameterInfo>x params = (vector<ParameterInfo >x)
pContext ;

103 static unordered_map<string , double> dataMap;

104

105 switch (pData—>dwID) {

106 case SIMCONNECT RECV ID SIMOBJECT DATA BYTYPE: {
107 SIMCONNECT _RECV_SIMOBJECT DATA_BYTYPEx pObjData = (
SIMCONNECT RECV_SIMOBJECT DATA_BYTYPEx)pData;

108

109 switch (pObjData—>dwRequestID) {

110 case REQUEST 1: {

111 charx data = (char*)&pObjData—>dwData;

112

113 // Pulisci la mappa dei dati prima di popolarla con i

nuovi valori
114 dataMap . clear () ;

115

81

Data acquisition module

116 // Popola la mappa dei dati con i valori ricevuti
117 for (const auto& param : xparams) {
118 double value = x((doublex)(data + sizeof(double) * (&

param — & (xparams) [0])));
119 dataMap [param . key| = value;

120 }

121
122 // Aggiorna e esegui il file batch per ogni parametro

123 for (const auto& param : *params) {
\ updateAndExecuteBatchFile (dataMap, param);
125 }

126

127 // Stampare i dati sulla console
128 printData (dataMap, *params) ;

129 break;

130 }

131

132 default :

133 break;

134 }

135 break;

136 }

137

138 case SIMCONNECT RECV_ID_QUIT: {

139 printf("\nDisconnesso da Prepar3D.\n");
140 keepRunning = false;

141 break;

142 }

143

144 default :

145 printf("\nReceived:%d", pData—>dwID) ;
146 break;

147 }

148 }

149

150| // Funzione per configurare SimConnect e iniziare la richiesta di

dati

51| void setupSimConnectAndRequestData () {

152 HRESULT hr;

153

154 // Connessione a SimConnect

155 if (SUCCEEDED(SimConnect_Open(&hSimConnect, "Request Data'", NULL,
0, 0, 0))) {

156 printf("\nConnesso a Prepar3D!\n");

157

158 // Leggi il file di configurazione

159 vector<ParameterInfo> params = readConfigFile (" config.txt");

82

Data acquisition module

161 // Definisci i dati da richiedere in base ai parametri
specificati nel file di configurazione

162 for (const auto& param : params) {

163 hr = SimConnect_ AddToDataDefinition (hSimConnect ,

DEFINITION_1, param.key.c_str(), param.unit.c_str());
164 }

165

166 // Richiedi i dati ogni secondo

167 while (keepRunning) {

168 //auto start = std::chrono::high resolution_clock ::now();

169

170 hr = SimConnect_RequestDataOnSimObjectType (hSimConnect ,
REQUEST 1, DEFINITION 1, 0, SIMCONNECT SIMOBJECT TYPE USER) ;

171 SimConnect_ CallDispatch (hSimConnect , MyDispatchProcRD, &
params) ;

172 Sleep (50) ;

173

174 /*auto end = std::chrono::high_resolution_clock ::now();

175 std ::chrono:: duration<double> elapsed = end — start;

176

177 std ::cout << "Tempo ciclo: " << elapsed.count() << '

secondi" << std::endl;x/

178 }

179

180 // Chiudi la connessione a SimConnect

181 hr = SimConnect_ Close (hSimConnect) ;

182 }

183 else {

184 cerr << "Errore mnella connessione a Prepar3D.\n";

185 }
186 }
187
1ss| // Funzione principale

1so| int ____cdec] _tmain(int arge, _TCHARx argv[]) {

190 setupSimConnectAndRequestData () ;
191 return 0;

192 }

193

194 }

83

Appendix B

Bank and Pitch controllers

#include <windows.h>
#include <tchar.h>
#include <stdio.h>
#include "SimConnect.h"
#include <strsafe.h>

AW N =

w

-~

HANDLE hSimConnect = NULL;
s| FILEx pFile = NULL; // CSV file

ol struct FlightData

1
2 double bank;

3 double pitch;

i }s

6 struct AngularVelocityData
17 {

18 double rollRate;

double pitchRate;

}s

struct PIDController

I

NONON NN N NN NN
St

3| {

| double kp;

5 double ki;

6 double kd;

7 double integral;

8 double previous_error;
o 1

PIDController aileronPID;

pointer

84

Bank and Pitch controllers

PIDController elevatorPID ;

enum EVENT ID {
AILERON_SET,
ELEVATOR_SET

}s

enum DATA DEFINE ID {
DEFINITION_ 1,
DEFINITION 2

}s

enum DATA REQUEST ID {
REQUEST 1,

}s

// Scale PID output to match the control surface set event’s accepted
values

int scaleOutputToControlSurfaceSet (double output, double
max__deflection)

{
// Convert degrees to the —16383 to 16383 range
int scaledOutput = static_cast<int >((output / max_ deflection) x
16383) ;
// Clamp the output to the range of —16383 to 16383
if (scaledOutput > 16383) scaledOutput = 16383;
if (scaledOutput < —16383) scaledOutput = —16383;
return scaledOutput ;
}

// Callback function to handle received data
void CALLBACK MyDispatchProcRD (SIMCONNECT RECVx* pData, DWORD cbData ,
void* pContext)
{
HRESULT hr;
switch (pData—>dwID)
case SIMCONNECT RECV_ID_SIMOBJECT DATA_BYTYPE:

SIMCONNECT _RECV_SIMOBJECT _DATA BYTYPEx pObjData = (
SIMCONNECT RECV_SIMOBJECT DATA BYTYPEx)pData;

if (pObjData—>dwRequestID =— REQUEST 1)
FlightDatax pS = (FlightDatax)&pObjData—>dwData;

AngularVelocityDatax pV = (AngularVelocityDatax)&pObjData
—>dwData;

85

76

78
79
80
81
82

83

84

85

86

88

89

90
91
92
93
94

95

96

97
98

99

100

101
102

103

104
105

106

107

108

Bank and Pitch controllers

// Calculate the error between the current bank angle and
the desired bank angle (zero)

double bankError = 0.0 — pS—bank;

double pitchError = 0.0 — pS—>pitch;

// Use angular velocity for the derivative action
double aileronDerivative = —pV—>rollRate;
double elevatorDerivative = —pV—>pitchRate;

// Apply the PID control to calculate the aileron
adjustment

aileronPID .integral += bankError;

double aileronOutput = aileronPID .kp % bankError +
aileronPID . ki * aileronPID.integral 4+ aileronPID .kd =
aileronDerivative;

// Apply the PID control to calculate the elevator
adjustment

elevatorPID .integral 4+= pitchError;

double elevatorOutput = elevatorPID .kp % pitchError +
elevatorPID . ki * elevatorPID.integral + elevatorPID .kd x
elevatorDerivative;

aileronPID . previous__error = bankError;
elevatorPID . previous_error = pitchError;

// Scale the PID outputs to the control surface set range

int aileronValue = scaleOutputToControlSurfaceSet (
aileronOutput , 25.0);
int elevatorValue = scaleOutputToControlSurfaceSet (

elevatorOutput, 30.0);

// Print to the terminal

printf("Bank Angle: %f, Aileron Output: %f, Aileron Set
Value: %d\n", pS—>bank, aileronOutput, aileronValue);

printf("Pitch Angle: %f, Elevator Output: %f, Elevator
Set Value: %d\n", pS—>pitch, elevatorOutput, elevatorValue);

// Set the ailerons based on the PID output

hr = SimConnect_ TransmitClientEvent (hSimConnect ,
SIMCONNECT OBJECT ID_USER, AILERON_ SET, aileronValue,
SIMCONNECT GROUP_PRIORITY HIGHEST,
SIMCONNECT EVENT FLAG GROUPID IS PRIORITY) ;

if (FAILED(hr))

{

error\n");

}

printf (" TransmitClientEvent for setting aileron —

86

109
110

111
112
113

114
115
116
117
118
119
120
121
122
123
124

125

Bank and Pitch controllers

// Set the elevators based on the PID output

/* hr = SimConnect__TransmitClientEvent (hSimConnect ,
SIMCONNECT OBJECT ID_USER, ELEVATOR, SET, elevatorValue ,
SIMCONNECT GROUP_PRIORITY HIGHEST,
SIMCONNECT EVENT FLAG GROUPID IS PRIORITY) ;

if (FAILED(hr))

{

printf (' TransmitClientEvent for setting elevator —

case SIMCONNECT RECV_ID QUIT:
{

printf("\nExiting...");
break ;
}
default :
printf("\nReceived:%d", pData—>dwID);
break ;

}

void InitializePIDControllers ()
{
aileronPID .kp = 30; // Proportional coefficient for ailerons
aileronPID . ki = 0.1; // Integral coefficient for ailerons
aileronPID .kd = 20; // Derivative coefficient for ailerons
aileronPID .integral = 0.0;
aileronPID . previous_error = 0.0;

elevatorPID . kp 15; // Proportional coefficient for elevators
elevatorPID . ki = 0.2; // Integral coefficient for elevators
elevatorPID .kd 1.0; // Derivative coefficient for elevators
elevatorPID .integral = 0.0;

elevatorPID . previous_error = 0.0;

}

void testDataRequest ()
HRESULT hr;

if (SUCCEEDED(SimConnect_Open(&hSimConnect, "PID Controller"
NULL, 0, 0, 0)))

printf("\nConnected to Flight Simulator!");

87

153
154

155

156

157
158

159

160

161
162

163

164

165

166
167
168

169

170

172
173
174
175
176

177

179

180

181

182

183

184

185
186

187

Bank and Pitch controllers

// Set up the data definition for bank and pitch angles

hr = SimConnect_ AddToDataDefinition (hSimConnect , DEFINITION_ 1
, "PLANE BANK DEGREES", "radians");

hr = SimConnect_ AddToDataDefinition (hSimConnect , DEFINITION_ 1
, "PLANE PITCH DEGREES", "radians");

// Set up the data definition for angular velocities

hr = SimConnect_ AddToDataDefinition (hSimConnect , DEFINITION_ 2
, "ROTATION VELOCITY BODY X", "radians per second");

hr = SimConnect_ AddToDataDefinition (hSimConnect , DEFINITION_ 2
, "ROTATION VELOCITY BODY Y", "radians per second');

// Map events
hr = SimConnect_MapClientEventToSimEvent (hSimConnect ,
AILERON_SET, "AILERON_ SET");
if (FAILED(hr)) {
printf("Errore nella mappatura di AILERON_SET — error\n")

SimConnect_ Close (hSimConnect) ;

}

hr = SimConnect_MapClientEventToSimEvent (hSimConnect ,
ELEVATOR,_SET, '"ELEVATOR_SET");
if (FAILED(hr)) {
printf("Errore nella mappatura di ELEVATOR SET — error\n'

)
SimConnect__Close (hSimConnect) ;
}
while (1)
{
// Request data on the user aircraft for bank and pitch
angles

hr = SimConnect_RequestDataOnSimObjectType (hSimConnect ,
REQUEST 1, DEFINITION 1, 0, SIMCONNECT SIMOBJECT TYPE USER) ;

// Request data on the user aircraft for angular
velocities

hr = SimConnect_RequestDataOnSimObjectType (hSimConnect ,
REQUEST 1, DEFINITION_2, 0, SIMCONNECT SIMOBJECT TYPE USER) ;

// Call the dispatch function to handle received data
SimConnect_ CallDispatch (hSimConnect, MyDispatchProcRD ,
NULL) ;

// Sleep for 100 milliseconds (0.1 second)
Sleep (100) ;

88

189
190
191
192
193
194
195
196
197
198

199

Bank and Pitch controllers

}

hr = SimConnect__Close (hSimConnect) ;

int _tmain(int argec, _TCHARx argv|[])

{

InitializePIDControllers () ;
testDataRequest () ;
return 0;

89

AW N =

-~

© ™

N = O

W ON N NN NN NN NN
S © ® N O U s W 0

Appendix C

Navigation algorithm

#include <windows.h>
#include <tchar.h>
#include <stdio.h>
#include "SimConnect.h'

s|#include <strsafe .h>
i|#include <cmath>

#include <iostream>
#include <fstream>
#include <string>
#include <map>

HANDLE hSimConnect = NULL;

double

7| double

double
double
double
double
double

;| double

double

5| double

double
double

s| FILEx pFile = NULL; // CSV file pointer

5| //desired angle

desired__bank;
desired__heading;

desired_ pitch;

desired altitude = 11000;
desired_latitude = 47.64210;
desired_longitude = —145.13010;
headingError;

bankError;

pitchError;

flag = 0;

pitch_flag = 0;

takeoff flag = 0;

int elevatorValue;

double

pi = 3.141592;

90

Navigation algorithm

struct FlightData

{
double bank;
double pitch;
double heading;
double plane_lat;
double plane_long;
double altitude;
double airspeed;

double angular_velocity;

}s

5| enum GROUP_ID {

GROUP_INIT,
}s
enum INPUT_ID {
INPUT INIT,
b

struct PIDController
{
double kp;
double ki;
double kd;
double integral;
double previous_error;

}s

PIDController aileronPID;
PIDController elevatorPID;
PIDController headingPID ;

enum EVENT ID {
EVENT SIM START,
EVENT _INIT,
EVENT SET ELEVATOR,
EVENT SET AILERON,
EVENT SET THROTTLE,
EVENT TOGLE GEAR

N .
o)

7s|enum DATA_ DEFINE _ID {

DEFINITION INIT,
DEFINITION GEAR,
DEFINITION 1,

}s

91

8

82
83
84

85

90

92

99
100

101

102
103
104
105
106
107
108
109
110

111

112
113
114
115
116
117
118
119
120

121

Navigation algorithm

enum DATA REQUEST ID {
REQUEST 1,
i

// Scale PID output to match the control surface set event’s accepted
values

5/ int scaleOutputToControlSurfaceSet (double output, double

iR

max_ deflection)

// Convert degrees to the —16383 to 16383 range

int scaledOutput = static_cast<int >((output / max_deflection) =x*
16383) ;

// Clamp the output to the range of —16383 to 16383

if (scaledOutput > 16383) scaledOutput = 16383;

if (scaledOutput < —16383) scaledOutput = —16383;

return scaledOutput;

}

void writeDataToCSV (double bank, double pitch, double heading, double
desired__heading , double lat, double lon, double altitude , double
airspeed , double angularvelocity) {
// Apri il file CSV in modalita append
FILEx pFile = fopen("test_disturbed.csv", "a");
if (pFile) {
// Scrivi i valori di bank e pitch nel file CSV
fprintf (pFile, "%, %, %1, %, %, %, %1,%f, % f\n" , bank, pitch,
heading , desired_heading, lat, lon, altitude, airspeed,
angularvelocity);
// Chiudi il file
fclose (pFile);
}
else {
printf("Errore nell apertura del file CSV\n');
}

}

// Function to calculate initial azimuth in radians

double calculate_initial_azimuth (double latl, double lonl, double
lat2 , double lon2) {
// Convert latitudes and longitudes from degrees to radians
double latl_rad = latl;
double lonl_rad = lonl;
double lat2_rad = lat2 x pi / 180.0;
double lon2_rad = lon2 x pi / 180.0;

// Calculate difference in longitude
double delta_lon = lon2_rad — lonl_rad;

// Calculate initial azimuth

92

Navigation algorithm

122 double y = sin(delta_lon) x cos(lat2_rad);

123 double x = cos(latl_rad) x sin(lat2_rad) — sin(latl_rad) * cos(
lat2_rad) * cos(delta_lon);

124 double initial azimuth_rad = atan2(y, x);

125

126 // Normalize azimuth between 0 and 2x*pi

127 double azimuth_rad = fmod (initial_azimuth_rad, 2 % pi);

128 if (azimuth_rad < 0) {

129 azimuth_rad += 2 % pi; // Ensure azimuth is positive

130 }

131

132 return azimuth_rad;

133 }

134

35| // Callback function to handle received data

136| void CALLBACK MyDispatchProcRD (SIMCONNECT RECVx pData, DWORD cbData ,
void* pContext)

137 {

138 HRESULT hr;
139
140 switch (pData—>dwID)

141

142 case SIMCONNECT RECV_ID SIMOBJECT DATA BYTYPE:
143 {
144 SIMCONNECT _RECV_SIMOBJECT _DATA BYTYPEx pObjData = (

SIMCONNECT RECV_SIMOBJECT DATA BYTYPE«)pData;
145

146 if (pObjData—>dwRequestID =— REQUEST _1)

148 FlightDatax pS = (FlightDatax)&pObjData—>dwData;

149

150 if (takeoff flag — 0 && pS—airspeed > 150)

151

152 // Calculate the error between the current bank angle
and the desired bank angle (zero)

153 double bankError = 0.0 — pS—bank;

154 double pitchError = —15 % pi / 180 — pS—>pitch;

155
156 // Apply the PID control to calculate the aileron
adjustment

157 aileronPID .integral += bankError;

158 double aileronDerivative = bankError — aileronPID.
previous_ error;

159 double aileronOutput = aileronPID .kp % bankError +
aileronPID . ki % aileronPID.integral + aileronPID .kd =*
aileronDerivative;

160 aileronPID . previous_error = bankError;

161

93

162

163

164

165

166
167

168

169

170

175
176

178
179

180

181
182

183

184

185

186

188
189

190

191

192

Navigation algorithm

// Apply the PID control to calculate the elevator
adjustment

elevatorPID .integral 4= pitchError;

double elevatorDerivative = pitchError — elevatorPID.
previous_ error;

double elevatorOutput = elevatorPID .kp % pitchError +
elevatorPID . ki % elevatorPID.integral + elevatorPID .kd =x
elevatorDerivative;

elevatorPID . previous_error = pitchError;

// Scale the PID outputs to the control surface set

range
int aileronValue = scaleOutputToControlSurfaceSet (
aileronOutput , 25.0);
int elevatorValue = scaleOutputToControlSurfaceSet (

elevatorOutput, 30.0);

// Print to the terminal

printf("Bank Angle: %f, Aileron Output: %f, Aileron
Set Value: %d\n", pS—>bank, aileronOutput, aileronValue);

printf("Pitch Angle: %f, Elevator Output: %f,
Elevator Set Value: %d\n', pS—>pitch, elevatorOutput,
elevatorValue) ;

// Secrivi i dati di bank e pitch nel file CSV

writeDataToCSV (pS—>bank, pS—>pitch, pS—heading,
desired__heading , pS—>plane_lat, pS—>plane_long, pS—altitude , pS—
airspeed , pS—angular_velocity);

// Set the ailerons based on the PID output

hr = SimConnect_MapClientEventToSimEvent (hSimConnect ,
EVENT SET AILERON, "AILERON SET");

if (FAILED(hr))

printf("MapClientEventToSimEvent for AILERON_SET
— error\n");
SimConnect_ Close (hSimConnect) ;

}

hr = SimConnect_ TransmitClientEvent (hSimConnect ,
SIMCONNECT OBJECT ID USER, EVENT SET AILERON, aileronValue ,
SIMCONNECT GROUP_PRIORITY HIGHEST,

SIMCONNECT EVENT FLAG GROUPID IS PRIORITY) ;
if (FAILED(hr))

printf (" TransmitClientEvent for setting aileron —
error\n");

94

Navigation algorithm

103 // Set the elevators based on the PID output

194 hr = SimConnect_MapClientEventToSimEvent (hSimConnect ,
EVENT SET ELEVATOR, "ELEVATOR SET");

195 if (FAILED(hr))

196
197 printf("MapClientEventToSimEvent for ELEVATOR SET
— error\n");

198 SimConnect_ Close (hSimConnect) ;

199 }

200

201 hr = SimConnect_ TransmitClientEvent (hSimConnect ,

SIMCONNECT OBJECT ID_ USER, EVENT SET ELEVATOR, elevatorValue,
SIMCONNECT _GROUP_PRIORITY_HIGHEST,

SIMCONNECT _EVENT FLAG_GROUPID_IS PRIORITY) ;

202 if (FAILED(hr))

203
204 printf (" TransmitClientEvent for setting elevator
— error\n'");

205
206 if (pS—airspeed > 550 && pS—altitude > 7000)
207
208 int throttlePct = 11468; // 70% of 16383

200 hr = SimConnect_MapClientEventToSimEvent (
hSimConnect , EVENT SET THROTTLE, 'THROTTLE SET");

210 hr = SimConnect_ TransmitClientEvent (hSimConnect ,
SIMCONNECT OBJECT ID_USER, EVENT SET THROTTLE, throttlePct ,
SIMCONNECT _GROUP_PRIORITY HIGHEST,

SIMCONNECT _EVENT_FLAG_GROUPID_IS_PRIORITY) ;

211 takeoff_ flag = 1;

212 }

213 }

214

215 if (takeoff flag = 1) {

216

217 desired__heading = calculate_initial_azimuth (pS—>
plane_lat , pS—>plane long, desired latitude, desired_ longitude);

218

219 headingError = desired__heading — pS—heading;

220 if (flag = 0 && (headingError > pi || (headingError
< 0 && headingError > —pi)))

221 {

222 desired _bank = 40 x pi / 180;

223 flag = 1;

224 }

225 else if (flag = 0)

226 {

227 desired__bank = —40 x pi / 180;

228 flag = 1;

229 }

95

246

249

NN N NN
C IS e oo
B L 0 o~ O

SR

Navigation algorithm

bankError = desired__bank — pS—bank;

if (headingError > —0.005 && headingError < 0.005) {
desired__bank = 0;
desired__heading = pS—>heading;
pitch_flag = 1;

}

// Apply the PID control to calculate the aileron
adjustment

aileronPID .integral += bankError;

double aileronDerivative = bankError — aileronPID.
previous_ error;

double aileronOutput = aileronPID .kp % bankError +
aileronPID . ki x aileronPID.integral + aileronPID .kd x
aileronDerivative;

aileronPID . previous__error = bankError;

// Apply the PID control to calculate the elevator
adjustment

double angularError = —3 * pi / 180 — pS—
angular_velocity;

headingPID .integral += angularError;

double headingDerivative = angularError — headingPID.
previous_ error;

double headingOutput = headingPID.kp * angularError +
headingPID . ki * headingPID.integral + headingPID .kd =
headingDerivative;

headingPID . previous__error = angularError;

if (pitch_ flag = 1)

double altitudeError = desired_altitude — pS—>

altitude ;
if (altitudeError > 1000) {
desired__pitch = —15 % pi / 180;
}
else if (altitudeError < 1000 && altitudeError >
500) {
desired__pitch = —10 = pi / 180;
}
else if (altitudeError < 500 && altitudeError >
200) {

desired _pitch = =5 x pi / 180;
}

else if (altitudeError < 200 && altitudeError >

10) {
desired__pitch = —3 % pi / 180;

96

Navigation algorithm

266 }

267 else if (altitudeError < 10 && altitudeError >
—10) {
268 desired__pitch = —2 % pi / 180;
269 }
else if (altitudeError < —3000) {
desired _pitch = 15 % pi / 180;
}

else if (altitudeError > —3000 && altitudeError <

|

NN NN
3
D

3

—1000) {

274
275 }
27

76 else if (altitudeError > —1000 && altitudeError <

desired__pitch = 10 * pi / 180;

—500) {

277 desired__pitch = 5 % pi / 180;

278 }

279 else if (altitudeError > —500 && altitudeError <
~10) {

280 desired__pitch = 3 % pi / 180;

281 }

282 pitchError = desired__pitch — pS—>pitch;

283

284 // Apply the PID control to calculate the
elevator adjustment

285 elevatorPID .integral 4= pitchError;

286 double elevatorDerivative = pitchError —
elevatorPID . previous_error;

287 double elevatorOutput = elevatorPID .kp =

pitchError + elevatorPID . ki x elevatorPID.integral + elevatorPID.
kd x elevatorDerivative;

288 elevatorPID . previous_error = pitchError;

289 int elevatorValue =
scaleOutputToControlSurfaceSet (elevatorOutput, 30.0);

290 printf("Pitch Angle: %f, Elevator Output: %f,

Elevator Set Value: %d\n', pS—>pitch, elevatorOutput,
elevatorValue) ;

291 printf("altitude: %f\n", pS—altitude);

292

293 // Set the elevators based on the PID output

294 hr = SimConnect_ MapClientEventToSimEvent (
hSimConnect , EVENT SET ELEVATOR, "ELEVATOR, SET");

295 if (FAILED(hr))

296

297 printf("MapClientEventToSimEvent for
ELEVATOR_SET — error\n");

298 SimConnect_ Close (hSimConnect) ;

299 }

300

97

301

302
303

304

305
306
307

308

309

310
311

312

314

315
316

317

318
319

320

328
329
330
331

332

Navigation algorithm

hr = SimConnect_TransmitClientEvent (hSimConnect ,
SIMCONNECT OBJECT ID_USER, EVENT SET ELEVATOR, elevatorValue,
SIMCONNECT _GROUP_PRIORITY HIGHEST,
SIMCONNECT _EVENT FLAG_GROUPID_IS PRIORITY) ;

if (FAILED(hr))

printf (' TransmitClientEvent for setting
elevator — error\n");

}
}

// Scale the PID outputs to the control surface set
range

int aileronValue = scaleOutputToControlSurfaceSet (
aileronOutput , 25.0);

it (pitch_ flag = 0)

int elevatorValue =
scaleOutputToControlSurfaceSet (headingOutput, 30.0);
printf("Heading Angle: %f, Heading Error: %f,
Elevator Set Value: %d\n", pS—heading, headingError,
elevatorValue) ;
printf("angular velocity: %f, Angular error: %f\n
", pS—angular_velocity , angularError);
// Set the elevators based on the PID output
hr = SimConnect_MapClientEventToSimEvent (
hSimConnect, EVENT_SET ELEVATOR, "'ELEVATOR_SET");
if (FAILED(hr))

printf("MapClientEventToSimEvent for
ELEVATOR SET — error\n");
SimConnect__Close (hSimConnect) ;
}

hr = SimConnect_TransmitClientEvent (hSimConnect ,
SIMCONNECT OBJECT ID USER, EVENT SET ELEVATOR, elevatorValue,
SIMCONNECT _GROUP_PRIORITY HIGHEST,

SIMCONNECT _EVENT_FLAG_GROUPID_IS_PRIORITY) ;
if (FAILED(hr))

{
printf (" TransmitClientEvent for setting
elevator — error\n");

}
}
// Print to the terminal

98

333

334
335

336

337
338

339

340
341
342

343
344
345

346

347
348

349

350
351

352
353
354
355
356
357
358
359
360
361

362
363
364
365
366
367
368
369

370

Navigation algorithm

std :

printf("Bank Angle: %f, Aileron Output: %f, Aileron
Set Value: %d\n", pS—>bank, aileronOutput, aileronValue):;

// Scrivi i dati di bank e pitch nel file CSV

writeDataToCSV (pS—>bank, pS—>pitch, pS—heading,
desired__heading , pS—>plane_lat, pS—>plane_long, pS—altitude , pS—
airspeed , pS—angular_velocity);

// Set the ailerons based on the PID output

hr = SimConnect_MapClientEventToSimEvent (hSimConnect ,
EVENT SET AILERON, "AILERON SET");

if (FAILED(hr))

printf("MapClientEventToSimEvent for AILERON_ SET
— error\n");
SimConnect_ Close (hSimConnect) ;

}

hr = SimConnect_ TransmitClientEvent (hSimConnect ,
SIMCONNECT OBJECT ID USER, EVENT SET AILERON, aileronValue,
SIMCONNECT _GROUP_PRIORITY_HIGHEST,

SIMCONNECT _EVENT_FLAG_GROUPID_IS_PRIORITY) ;
if (FAILED(hr))

printf (" TransmitClientEvent for setting aileron —
error\n");

}
}
break ;

}

}

case SIMCONNECT RECV_ID QUIT:
{

printf("\nExiting...");
break;
}
default :
printf("\nReceived:%d" , pData—>dwID) ;
break;

:map<std ::string , double> readConfigFile (const charx filename) {
std::ifstream infile (filename);

std ::map<std ::string , double> configValues;

std::string line;

99

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

396

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

413

414

415

416
417

418

Navigation algorithm

while (std:: getline(infile, line)) {
size_t delimiterPos = line.find (’=");
if (delimiterPos != std::string::npos) {
std::string key = line.substr(0, delimiterPos);
double value = std::stod(line.substr(delimiterPos + 1));
configValues [key] = value;

}

return configValues;

void InitializePIDControllers ()
{
aileronPID .kp = 20; // Proportional coefficient for ailerons
aileronPID . ki = 0.03; // Integral coefficient for ailerons
aileronPID .kd = 0.01; // Derivative coefficient for ailerons
aileronPID .integral = 0.0;
aileronPID . previous_error = 0.0;

elevatorPID .kp = 500; // Proportional coefficient for elevators
elevatorPID . ki = 0.5; // Integral coefficient for elevators //
CON 10 E’ VELOCE MA ALTA SOVRAEONGAZIONE

elevatorPID .kd = 0.1; // Derivative coefficient for elevators
elevatorPID .integral = 0.0;
elevatorPID . previous_error = 0.0;

headingPID .kp = 30; // Proportional coefficient for heading
headingPID.ki = 0.03; // Integral coefficient for heading
headingPID .kd = 0.01; // Derivative coefficient for heading
headingPID .integral = 0.0;

headingPID . previous__error = 0.0;

}

void testDataRequest ()

HRESULT hr;

// Read the configuration file
std ::map<std ::string , double> configValues
config.txt");

readConfigFile ("

// Initialize the global variables with the values from the
configuration file

desired__altitude = configValues|["desired altitude"];
desired_latitude = configValues|["desired latitude"];
desired__longitude = configValues|["desired longitude"'];

100

419

420

421

422

423

424

425

426

429

430

431

432

433

434
435

436
437

438

439

440

441

442

443

446

447

448

Navigation algorithm

if (SUCCEEDED(SimConnect_Open(&hSimConnect, "PID Controller",
NULL, 0, 0, 0)))
{

printf("\nConnected to Flight Simulator!");

// Set up the data definition

hr = SimConnect__AddToDataDefinition (hSimConnect , DEFINITION_1

, "PLANE BANK DEGREES', "radians');

hr = SimConnect_ AddToDataDefinition (hSimConnect , DEFINITION_ 1

, "PLANE PITCH DEGREES", "radians");

hr = SimConnect_ AddToDataDefinition (hSimConnect , DEFINITION_ 1

, "PLANE HEADING DEGREES TRUE", "radians');

hr = SimConnect_ AddToDataDefinition (hSimConnect , DEFINITION_ 1

, "PLANE LATITUDE', 'radians');

hr = SimConnect_ AddToDataDefinition (hSimConnect , DEFINITION_ 1

, "PLANE LONGITUDE" , "radians");

hr = SimConnect_ AddToDataDefinition (hSimConnect , DEFINITION_ 1

, "PLANE ALTITUDE"', 'feet");

hr = SimConnect_ AddToDataDefinition (hSimConnect , DEFINITION_ 1

, "AIRSPEED TRUE', "knots"):

hr = SimConnect_ AddToDataDefinition (hSimConnect , DEFINITION_ 1

, "ROTATION VELOCITY BODY Z", "Radians per second');

/* // Set up a data definition for positioning data
hr = SimConnect_ AddToDataDefinition (hSimConnect ,
DEFINITION_INIT, "INITIAL POSITION", NULL,
SIMCONNECT DATATYPE INITPOSITION) ;

// Set up a data definition for the gear position
hr = SimConnect_ AddToDataDefinition (hSimConnect ,
DEFINITION GEAR, "GEAR POSITION", "index',
SIMCONNECT DATATYPE_ FLOAT64) ;

// Set the user aircraft to a new position immediately

SIMCONNECT DATA INITPOSITION Init ;

Init . Altitude = 7000.0; // Set the altitude to 5000
feet

Init.Latitude = 47.64210; // Set the latitude to
47.64210

Init.Longitude = —122.13010; // Set the longitude to
—122.13010

Init.Pitch = —10.0; // Set the pitch to 0
degrees

Init.Bank = 0.0; // Set the bank to 0 degrees

Init . Heading = 0.0; // Set the heading to 180
degrees

Init .OnGround = 0; // Aircraft is in flight

101

151
452
453
454

155

156
457

458

160

461

462

163

164

465

166

167
468
469

470

172
173
474
A75

476

Navigation algorithm

Init.Airspeed = 550; // Set the airspeed to 60
knots

hr = SimConnect_ SetDataOnSimObject (hSimConnect ,
DEFINITION_INIT, SIMCONNECT OBJECT ID USER, 0, 0, sizeof(Init), &
Init);

printf("\ nInitial position data sent");

/

// Set the elevator , aileron, and throttle positions
int elevatorPosition = 0;

int aileronPosition = 0;

int throttlePosition = 16383; // 100% of 16383

hr = SimConnect_MapClientEventToSimEvent (hSimConnect ,
EVENT SET ELEVATOR, "ELEVATOR, SET");

hr = SimConnect_MapClientEventToSimEvent (hSimConnect ,
EVENT SET AILERON, "AILERON SET");

hr = SimConnect_MapClientEventToSimEvent (hSimConnect ,
EVENT SET THROTTLE, "THROTTLE SET");

hr = SimConnect_MapClientEventToSimEvent (hSimConnect ,
EVENT TOGLE GEAR, "GEAR, SET");

hr = SimConnect_TransmitClientEvent (hSimConnect ,
SIMCONNECT _OBJECT ID_ USER, EVENT SET ELEVATOR, elevatorPosition ,
SIMCONNECT _GROUP_PRIORITY_HIGHEST,
SIMCONNECT _EVENT FLAG_GROUPID_IS PRIORITY) ;

hr = SimConnect_TransmitClientEvent (hSimConnect ,
SIMCONNECT OBJECT ID_USER, EVENT SET AILERON, aileronPosition ,
SIMCONNECT _GROUP_PRIORITY_HIGHEST,
SIMCONNECT _EVENT FLAG_GROUPID_IS PRIORITY) ;

hr = SimConnect_TransmitClientEvent (hSimConnect ,
SIMCONNECT OBJECT ID_USER, EVENT SET THROTTLE, throttlePosition ,
SIMCONNECT GROUP_PRIORITY_HIGHEST,
SIMCONNECT _EVENT_FLAG_GROUPID_IS_PRIORITY) ;

hr = SimConnect_TransmitClientEvent (hSimConnect ,
SIMCONNECT _OBJECT_ID_USER, EVENT TOGLE GEAR, 0,
SIMCONNECT _GROUP_PRIORITY_HIGHEST,
SIMCONNECT _EVENT FLAG_GROUPID_IS PRIORITY) ;

printf("\nElevator, aileron, and throttle positions set");

// Request a simulation start event

hr = SimConnect_ SubscribeToSystemEvent (hSimConnect ,
EVENT SIM_START, '"SimStart");

Sleep (1000) ;

while (1)
{

// Request data on the user aircraft

102

Navigation algorithm

177 hr = SimConnect_RequestDataOnSimObjectType (hSimConnect ,
REQUEST_1, DEFINITION_1, 0, SIMCONNECT_ SIMOBJECT TYPE_USER) ;

478

479 // Call the dispatch function to handle received data

180 SimConnect_ CallDispatch (hSimConnect , MyDispatchProcRD ,
NULL) ;

181

482 // Sleep for 100 milliseconds (0.1 second)

483 Sleep (100) ;

184 }

186 hr = SimConnect_ Close (hSimConnect) ;

1)}
189

wo| int __tmain(int argc, _TCHARx argv|[])

191 {

192 InitializePIDControllers () ;
493 testDataRequest () ;
494 return 0;

195 }

103

Bibliography

Teaching and Testing in Flight Simulation Training Devices (FSTD). Tech. rep.
Cologne, Germany: EHEST, 2015. URL: https://www. easa . europa.eu/
en/document - library/general -publications/ehest-leaflet-he-10-
teaching-and-testing-flight-simulation.

Flight Guidance Systems. Tech. rep. AC55,329 — 1C'. Washington, D.C.: U.S.
Department of Transportation Federal Aviation Administration, 2014. URL:
https://www . faa.gov/regulations policies/advisory _ circulars/
index.cfm/go/document.information/documentid/1026174.

AUTO FLIGHT GUIDANCE SYSTEMS. Tech. rep. AC;2047. Washington,
D.C.: U.S. Department of Transportation Federal Aviation Administration,
1997. URL: https://www . faa.gov/regulations_policies/advisory _
circulars/index.cfm/go/document.list/?statusID=3&appliedFacets=
%7B%220ff1icenumber’22%3A%22AFS-4007%227,7D.

Mario Monteiro Marques. «<STANAG 4586—Standard interfaces of UAV control
system (UCS) for NATO UAV interoperability». In: NATO Standardization
Agency 14 (2012).

F-35 Air Vehicle Technology Overview. Tech. rep. Atlanta, Georgia: Lockheed
Martin, 2018. URL: https://www . lockheedmartin . com/ content /dam/
lockheed-martin/eo/documents/webt/F-35_Air Vehicle_ Technology _
Overview.pdf.

R.C. Nelson. Flight Stability and Automatic Control. McGraw-Hill Aerospace
Science & Technology Series. McGraw-Hill Education, 1998. 1SBN: 9780070462731}
URL: https://books.google.it/books?id=Z41TAAAAMAAJ.

Umberto Salsi. Le virate standard. 2018. URL: https://www.icosaedro.it/
acm/virate.html#cosegraveunaviratastandard.

104

https://www.easa.europa.eu/en/document-library/general-publications/ehest-leaflet-he-10-teaching-and-testing-flight-simulation
https://www.easa.europa.eu/en/document-library/general-publications/ehest-leaflet-he-10-teaching-and-testing-flight-simulation
https://www.easa.europa.eu/en/document-library/general-publications/ehest-leaflet-he-10-teaching-and-testing-flight-simulation
https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentid/1026174
https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentid/1026174
https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.list/?statusID=3&appliedFacets=%7B%22officenumber%22%3A%22AFS-400%22%7D
https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.list/?statusID=3&appliedFacets=%7B%22officenumber%22%3A%22AFS-400%22%7D
https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.list/?statusID=3&appliedFacets=%7B%22officenumber%22%3A%22AFS-400%22%7D
https://www.lockheedmartin.com/content/dam/lockheed-martin/eo/documents/webt/F-35_Air_Vehicle_Technology_Overview.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/eo/documents/webt/F-35_Air_Vehicle_Technology_Overview.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/eo/documents/webt/F-35_Air_Vehicle_Technology_Overview.pdf
https://books.google.it/books?id=Z4lTAAAAMAAJ
https://www.icosaedro.it/acm/virate.html#cosegraveunaviratastandard
https://www.icosaedro.it/acm/virate.html#cosegraveunaviratastandard

	List of Tables
	List of Figures
	Introduction
	Objective of the Thesis
	Thesis structure
	Context and state of the art
	Simulator
	Software simulator

	Simulation environment and wearable system
	Prepar3d and Simconnect
	Hardware components
	Werable system

	Autopilot architecture
	Controllers in aeronautic field
	Regulatory Standards for Controllers Used in the Aeronautical Field
	MIL-STD 810F: Environmental Engineering Considerations and Laboratory Testing
	MIL-STD 461F: Electromagnetic Interference Control
	STANAG 4586: Standard Interfaces for NATO UAV Interoperability
	FAA AC 25.1329-1C: Approval of Flight Guidance Systems

	Specifications and Dynamics of Aircraft Models with Focus on the F-35
	General Aircraft Dynamics
	Mathematical Modeling of Aircraft
	F-35 Lightning II Technology Overview

	Development of the Autopilot System
	Data Acquisition and Transmission
	Development of Stabilization Controllers
	Development of More Complex Control Systems

	Complete system

	Simulation Results
	Data collection
	Data analysis
	Test of Stabilization Controllers
	Test of take off system
	Test of altitude controller
	Test of the turn maneuver
	Test of the complete system

	Conclusions and future developments
	Conclusions
	Future Developments

	Data acquisition module
	Bank and Pitch controllers
	Navigation algorithm

