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Abstract
In recent years, efforts have been made towards the integration of smart digital
technologies into traditional industrial processes, allowing for the collection of
vast amounts of data across all aspects of the manufacturing cycle, in what has
been referred to as the “Fourth Industrial Revolution”, or “Industry 4.0”. Machine
learning tools, particularly neural networks, have been playing an increasingly
relevant role within this context, thanks to their ability to handle complex multidi-
mensional data, uncover hidden relationships extrapolating patterns, predict the
future evolution of the process and thus aid decision-making, ultimately improving
efficiency.

In this work, we aim to showcase how a next-generation programmable logic
controller like the Finder OptaTM - which integrates traditional PLC features with a
powerful processor, several connectivity options and access to the Arduino language
and ecosystem - enables breakthrough applications within the “Industry 4.0”
framework, even supporting small neural networks to handle on-device classification
or regression tasks. While deploying a neural network to a resource- and memory-
constrained device poses significant challenges, it can be very advantageous as it
eliminates the need for a central cloud infrastructure, at least for simpler tasks,
with many benefits in terms of latency, security and privacy. This trend, known as
edge computing, is indeed a very active area of research.

The thesis is structured around three case studies, where we demonstrate how
to address the hardware limitations while still deploying meaningful machine
learning algorithms, and how the Arduino platform allows for straightforward
software development, facilitating the transition towards intelligent manufacturing
even for smaller entities. To lay the groundwork and explore the tools at our
disposal, the first application involves training an MLP network to classify an
input waveform and deploying such a model to the OptaTM PLC with TensorFlow
Lite for Microcontrollers. Then, we transition to a more complex convolutional
neural network to infer the rotational speed of two rolling bearings, starting
from the spectrogram of an audio recording of the test bench in operation; this
represents a preliminary study in the field of anomalous sound detection for
predictive maintenance. Shifting focus away from machine learning for the last
application, the OptaTM is tasked with controlling a wave energy converter, exploiting
its internet connection capabilities to analyze forecast data about wave height,
thereby protecting the system from damage due to excessive stress on the floating
device.
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Chapter 1

Introduction and Objectives

In an era where Artificial Intelligence (AI) and Machine Learning (ML) algorithms
are becoming ever more pervasive in essentially all areas of technology and research
[1], industrial automation and maintenance can be no exception. Recent advances
in deep learning have enabled breakthrough capabilities for the industrial sector,
such as the power to gain insight about all aspects of the manufacturing process,
recognizing intricate patterns and complex trends from seemingly unrelated sources.
Such insight can be an invaluable asset for decision-making, optimizing uptime,
efficiency and productivity [2]. Industrial maintenance can also benefit greatly
from predictive practices based on machine learning and "big data", as these can
detect a machine’s earliest signs of failure from the analysis of historic tendencies,
alongside real-time sensor data from the plant, minimizing downtime and allowing
for repairs to be carried out only when necessary [3].

Though AI has accelerated progress considerably, it can be regarded as part of a
larger "Fourth Industrial Revolution", or "Industry 4.0" [4], a trend towards the
integration of smart, digital devices and advanced data analysis practices into
traditional industrial processes. The Industry 4.0 transition was facilitated by the
dramatic reduction in costs of silicon chips, and the breakthrough of the internet,
with the associated spread of connected devices and telecommunication technologies
[5]: only a deeply interconnected network of sensing devices and actuators, managed
by a powerful central infrastructure, can handle the complexity and scale of modern
manufacturing, and allow for effective data analysis models to operate in real-time.
Contemporary Industry 4.0 practices increasingly emphasize wireless connectivity,
promoting direct access to the internet or to a shared network for each device
involved in the process. This allows for control and data collection to occur remotely,
minimizing human effort, overcoming physical limitations, and enhancing scalability.
Known as the "Internet of Things" (IoT) [6], this trend fits into the more general
framework of "Cloud Computing", where a powerful centralized infrastructure made
of one or multiple servers is in charge of resource-intensive operations [7].

3



Introduction and Objectives

While the benefits of cloud computing are undeniable, and often the only possible
choice of architecture due to the ever-growing complexity in process data, it does
present some drawbacks. Specifically, in terms of bandwidth and latency, since
data needs to be transferred from the terminal devices to the cloud and back, and
in terms of security and privacy [8].
The work presented in this thesis, which touches on all aspects mentioned thus
far, is meant to address the disadvantages of cloud computing with a change of
paradigm. Instead of relying on a central infrastructure, all computing operations
are devolved to the edge devices, emphasizing data processing closer to the source,
limiting slow transfers and reducing privacy and security concerns, in what is
referred to as "Edge Computing" [9].
Indeed, the aim of the thesis is to showcase how Deep Learning algorithms can
be deployed effectively to industrial edge devices, such as a Programmable Logic
Controllers (PLCs), enabling many of the advantages of the Industry 4.0 revolution,
including predictive maintenance and intelligent manufacturing, with on-device
solutions, despite the limited computing resources that microcontrollers can provide.
The latter is the most critical aspect to investigate, as the constraints on memory
and processing power place a strict limit on the size of ML algorithms and on their
operations [10]. Special-purpose techniques must be utilized to optimize the model
for execution on embedded platforms, which often lack most dependencies available
on desktop or mobile. The workflow and the tools to apply are introduced later in
the chapter, in section 1.2.

Employed throughout this work is a next-generation PLC device, the Finder OptaTM.
Jointly developed by Finder, a leading Italian manufacturer of electromechanical
components, and Arduino, the company behind the renowned electronic prototyping
platform, it offers a powerful Arm Cortex-M processor, alongside several connectivity
options, precisely targeting novel IoT and machine learning applications. In addition
to traditional PLC features, such as a rugged construction suitable for industrial
environments, compatibility with industrial voltages and currents, and support for
the IEC 61131-3 PLC programming languages, it is built leveraging the Arduino
ecosystem, with access to its countless pre-built libraries and services, as well as
the Arduino programming language. Not only does this guarantee a high level
of flexibility at limited costs, but also makes innovation more accessible, even
for smaller entities, perhaps with no highly specialized IT personnel. For a more
in-depth analysis of the device, refer to chapter 2.

The main content of the thesis is represented by three case studies:

• Case Study I (chapter 3)
An introductory application to explore the machine learning workflow on
the Finder OptaTM and the available tools, laying the groundwork for more
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1.1 – Hints about Deep Neural Networks

advanced implementations. The OptaTM is tasked with identifying an input
waveform among three possible options (sinusoidal, triangular, square), using
a basic neural network model trained on a dataset collected by the PLC itself.

• Case Study II (chapter 4)
A preliminary exercise in view of further research in the field of predictive
maintenance on mechanical machinery. On the basis of an audio signal of a test
bench in operation, recorded via inexpensive electret microphones, the Opta’s
role is to infer the rotational speed of the main shaft and support bearings.
This is achieved on-device thanks to advanced signal processing, involving the
FFT algorithm, and a more complex convolutional neural network architecture,
which pushes the PLC hardware to its limits. Future developments of the
case study include an expansion to anomalous sound detection, to monitor the
health of the mechanical parts, precisely with predictive maintenance in mind.

• Case Study III (chapter 5)
Shifting emphasis away from deep learning, the last application is meant to
showcase the potential of Industry 4.0 and IoT practices when the focus is on
remote control and monitoring. The target system is an offshore wave energy
generator, where the Opta’s connectivity capabilities and integration with
online services such as Arduino Cloud prove extremely useful for monitoring
an otherwise inaccessible device. In addition to ensuring efficient operations,
the OptaTM is in charge of the system’s safety, using predictive methods based
on the marine weather forecasts for the working site.

Before delving deep into the analysis of each case study, it is necessary to provide
some general hints about the machine learning algorithms to apply, specifically
deep neural networks. The following section introduces the key terminology and
concepts, and aims to provide a basic understanding of the deep learning workflow.
However, the rigorous mathematical treatment that the topic would warrant is
beyond the scope of this work.

1.1 Hints about Deep Neural Networks
Among all machine learning algorithms, deep Artificial Neural Networks (ANNs)
have experienced the most rapid surge in popularity, starting from the early 2010s,
owing to their exceptional performance in pattern and image recognition, as well as
the recent breakthroughs in natural language processing [11]. Being the archetypal
AI algorithm, ANNs are the natural choice to demonstrate the potential of machine
learning practices on industrial edge devices. Be advised that, throughout this
work, the term Machine Learning (ML) is used synonymously with Artificial Neural
Networks, as these are the only ML algorithms treated in the case studies.
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Feedforward neural networks are computational structures inspired by the human
brain, composed of multiple interconnected nodes (Fig. 1.2), that typically process
input data for classification or regression problems. Each node, or neuron, is
characterized by a value, its activation, that loosely mimics how biological cells fire
in the brain: information propagates through the network by selectively activating
certain neurons, depending on the features that each node is meant to identify.

Mathematically, they provide a means to model complex phenomena, and to
represent any arbitrary nonlinear relationship between the inputs and the outputs.
The nodes, typically organized in layers, are computational units that apply a
weighted sum to the inputs, modulated by a nonlinear activation function σ. This
is how the forward propagation of information occurs within a network.

y = σ
(︂
w⊤x + b

)︂
where x ∈ Rn is the input vector,

y ∈ R the output, w ∈ Rn a vector
of weights b ∈ R a scalar bias, and
σ : R→ R the activation function Figure 1.1: Neuron Diagram

Weights and biases are the fundamental parameters that determine how signals
travel through the network, and they are the key behind the power and generality
of ANNs. Traditionally, pattern recognition or classification algorithms required
the features to identify to be hand-crafted - with each weight and bias term selected
manually -, a time-consuming and inefficient process, that lacks scalability. In
contrast, within the framework of supervised learning, these parameters are
learned autonomously by the network in a process called training, thus overcoming
the bottleneck. Training allows for an optimal set of parameters to be found for the
task at hand, and it involves feeding the network numerous examples of the items
to classify (millions, in our "big data" era), with the aim of minimizing a relevant
error metric that measures how the model performs. In fact, neural networks and
learnable weights have existed since the 1950s [12], but hardware and software
limitations prevented the dramatic advances of the field that are seen today.

The foundational deep architecture consists of a number of fully-connected layers,
each comprising several neurons. This is referred to as a Multilayer Perceptron
(MLP), since a single neuron unit is also known as a perceptron. More hidden
intermediate layers result in "deeper" networks, characterized by a greater number
of parameters but also an increased capacity to model even complex relationships,
and detect high-level patterns within the input data.
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1.1 – Hints about Deep Neural Networks

Figure 1.2: Example of a Multilayer Perceptron Structure (2 hidden layers)

Denoting nl the number of layers, and labelling them L1, . . . , Lnl
, the parameters of

the network are (W, b), where W
(l)
ij is the weight of the connection between unit j

in layer (l) and unit i in layer (l +1), and b
(l)
i the bias associated with unit i in layer

(l + 1). If layer (l) features sl nodes, then W (l) ∈ Rsl+1,sl and b(l) ∈ Rsl+1 . Using
this notation, the activations a(l+1) can be computed with the following recursion,
a generalization of the single perceptron:

a(l+1) = σ
(︂
W (l)a(l) + b(l)

)︂

Universal Approximation and Activation Functions

Before discussing the training process, it is worth highlighting how rigorous mathe-
matical results have proven the ability of feedforward neural networks to approxi-
mate arbitrarily well wide classes of functions [13]. However, without a nonlinear
function σ modulating the activation of each perceptron, the entire network would
reduce to a linear regression [14]. Linearity would severely limit its capacity to
identify complex features, as a structure of arbitrary depth would be equivalent to
a single neuron.

A traditional activation function is the sigmoid (Fig. 1.3a), which maps the output
of the weighted sum to the interval [0, 1]. Essentially, with the sigmoid, each neuron
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applies the logistic regression [15], which is ideal for binary classification problems,
and helps prevent quantities from exploding, causing numerical instability.

(a) Sigmoid (b) Hyperbolic Tangent

Figure 1.3: Common Activation Functions

Other common choices include the hyperbolic tangent (Fig. 1.3b), which centers
the data around 0, the softmax, and the ReLU (section 3.3.2).

1.1.1 Training a Neural Network - Supervised Learning
The aim of the training process within the framework of supervised learning is
to find a set of parameters (W, b) that minimizes the error between the model’s
predictions and the known training examples, according to a given metric known
as cost function. Ultimately, the true goal is for the model to generalize effectively
to unseen inputs, preventing underfitting or overfitting of the training data.

Cost Function

Given a single training example (xi, yi), different criterions can be employed to
measure the mismatch (loss) between the expected output yi and the predicted
output ŷi = (a(nl))i, corresponding to the activations in the output layer. Examples
include the mean squared error (MSE), the mean absolute error (MAE), and
cross-entropy [14]. More details about the various options will be provided when
designing the network architecture for each case study.

Denoting this loss as L(ŷi, yi), the overall cost function to account for all of the m
examples in the training dataset can be computed as the average:

J(W, b) = 1
m

m∑︂
i=1
L(ŷi, yi)
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1.1 – Hints about Deep Neural Networks

Therefore, training a neural network translates into solving the following optimiza-
tion problem, where the optimal set of weights (W ∗, b∗) is the one minimizing the
cost function J :

(W ∗, b∗) = arg min
(W,b)

J(W, b)

Although more complex versions are routinely found in the literature, for a more ro-
bust training process (i.e. regularization terms can be included to reduce overfitting)
[16], this foundation is sufficient for the purposes of this work.

Optimization and Backpropagation

The optimization algorithms to minimize cost function J(W, b) are largely based
on gradient descent, a first-order iterative descent method [17]. At each iteration,
the algorithm updates a candidate point of minimum following a descent direction,
and terminates when the predefined exit criterion is satisfied. Typically, the path
is determined by the negative gradient of the cost function, which coincides with
the direction of steepest descent: given a cost function f0 : Rn → R, a generic
point xk ∈ domf0, and a generic direction vk ∈ Rn, the first-order Taylor expansion
states that

f0(xk + α vk) ≈ f0(xk) + α∇f0(xk)⊤vk, for α→ 0

⇒ lim
α→0

f0(xk + α vk)− f0(xk)
α

= ∇f0(xk)⊤vk

Therefore, ∇f0(xk)⊤vk is the local rate of variation of f0. From the Cauchy-Schwartz
inequality:

− ||∇f0(xk)||2||vk||2 ≤ ∇f0(xk)⊤vk ≤ ||∇f0(xk)||2||vk||2

It follows that the local rate of variation is minimized, i.e. vk is the steepest descent
direction, if vk = −∇f0(xk) / ||f0(xk)||2.

The basic steps of gradient descent are reported in algorithm 1.

Algorithm 1 Basic Gradient Descent
Require: f0 : Rn → R differentiable, x0 ∈ domf0

k ← 0
while stopping criterion is NOT met do

determine a descent direction: vk = −∇f0(xk) / ||f0(xk)||2
determine the step length α > 0
update xk+1 = xk + α vk

k ← k + 1
end while
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In the context of neural network training, one iteration of gradient descent updates
parameters W and b as follows:

W
(l)
ij ← W

(l)
ij − α

∂J(W, b)
∂W

(l)
ij

b
(l)
i ← b

(l)
i − α

∂J(W, b)
∂b

(l)
i

The step length α is also referred to as learning rate, and it represents a crucial
hyperparameter to tune for an effective training process.

What makes gradient descent very powerful is an efficient recursive algorithm,
known as backpropagation, to compute the gradient of the cost function J(W, b),
exploiting the chain rule of derivatives [18].

Figure 1.4: Neural Network with 1 input, 1 hidden neuron and 1 output

Consider a network with a single hidden layer made of one neuron (Fig. 1.4):
backpropagation starts from the output ŷ, and computes each component of the
gradient with the chain rule of derivatives, backtracking to the input. This recursive
approach is numerically efficient and scalable to a huge number of parameters [18].
Intuitively, the derivatives quantify the effect of each single weight on the final loss.

W =
[︄
w

(1)
11

w
(2)
11

]︄
→

∂J(W )
∂w

(2)
11

= ∂J(W )
∂ŷ

∂ŷ

∂w
(2)
11

∂J(W )
∂w

(1)
11

= ∂J(W )
∂ŷ

∂ŷ

∂w
(1)
11

= ∂J(W )
∂ŷ

∂ŷ

∂a
(1)
1

∂a
(1)
1

∂w
(1)
11

Figure 1.5: Backpropagation Algorithm
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1.1 – Hints about Deep Neural Networks

In neural networks, the cost J(W, b) is highly complex, since it is a nonlinear and
non-convex function of several thousands if not millions of parameters. Therefore,
finding the global minimum is typically infeasible, as non-convex gradient descent
is susceptible to local optima. Nonetheless, this approach still yields satisfactory
results in the majority of cases.

Since the cost function is defined as the average of the loss, calculated over the
entire training dataset, computing its gradient exactly at each iteration can be
extremely computationally expensive, if a large number of training examples is to
be used. Therefore, to improve performance, the gradient is often estimated over a
subset of randomly selected training examples, in what is essentially a stochastic
approximation, and thus referred to as stochastic gradient descent (SGD) [19].
Strictly speaking, stochastic gradient descent computes the gradient with a single
training example. Instead, when a subset of the data is employed (i.e. a mini-batch),
the algorithm takes the name of mini-batch stochastic gradient descent, which also
takes better advantage of the parallel computational resources offered by modern
GPUs. This is the norm for training neural networks nowadays, with the batch
size tuned as a hyperparameter to strike a balance between training speed and
accuracy [20].

Countless optimization techniques that build on these basic ideas have been pro-
posed in the literature, with different approaches suited to different problems. Some
of the more advanced algorithms, which have proven successful across a wide range
of applications, are Adam [21], Adadelta [22], Adagrad [23], and RMSProp [24]. All
of these rely on the idea of adaptive learning rates, to help convergence in complex
optimization landscapes. In particular, Adam and RMSProp will be explored in
chapter 3 and 4.

Neural network training is a complex field of research, that cannot possibly be
exhausted in just a few pages. For the sake of brevity, many important topics
have been omitted from this discussion, such as learning rate decay, regularization,
normalization of the parameters, the problem of exploding and vanishing gradients,
general hyperparameter tuning, etc.

1.1.2 Convolutional Neural Networks
Starting from the basic multilayer perceptron, more and more complex neural
network architectures have been developed over the years, to expand the range of
applicability and explore new frontiers for AI.
Nowadays, one of the most prominent fields of AI and deep learning research is
computer vision, where the aim is for a machine to recognize objects and patterns
within an image or a video [25]. However, it was discovered that fully-connected
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networks are not suited for pattern recognition, since all the input features are
treated independently, thus losing any spatial information. Moreover, as the input
images become larger and more complex, the number of parameters would grow
exponentially, resulting in huge - and inefficient - networks.
A different type of feedforward neural network, convolutional neural networks
(CNN), proposed in the 1980s by notable computer scientists like K. Fukushima
(inventor of the "neocognitron", inspired by the anatomy of the visual cortex [26])
and Y. LeCun (the first to apply backpropagation to convolutional layers [27]),
turned out to address all of the issues above, and be very effective at picking up
visual cues in an input image, extracting the most useful features.
To a computer, images are just matrices of numbers, or "pixels": the goal is for the
model to learn features with a hierarchical approach, moving from low-level details
like the edges of an object or dark spots (a few pixels), to higher-level abstractions,
making up larger portions of the image. If, for example, the problem was facial
recognition, the idea is for the model to start from the edges of the face, recognizing
darker or lighter areas, then identify features like the eyes, ears and nose, and
finally move up to the complete facial structure.

Figure 1.6: CNN
Spatial Structure

This is precisely the key idea behind CNNs, where each
neuron in the first hidden layer attends to a small patch
of the input array, using a sliding window to cover the
entire image and define the connections between layers,
preserving the spatial information.
For the neural network to extract the desired features
from these patches, weights need to be applied, just like
in a regular fully-connected layer: this can be carried out
with the mathematical operation known as convolution,
computed between the layers of the neural network and
suitably tuned weight matrices (known as filters, or
kernels). The result is a set of feature maps, indicating the presence or absence of
the patterns the filters were designed to recognize.
Whereas in traditional image recognition algorithms the filters are manually adjusted
to detect certain patterns, this is not a scalable approach nor does it provide
acceptable results for more complex features. Instead, deep learning allows for the
filters to be learned by the model during training, thanks to the backpropagation
algorithm, yielding better and far more consistent results.
There are three main components to a CNN pipeline:

- Convolutional Layers: to extract the required features from the input image
in hierarchical order, thanks to suitably tuned filters.

- Pooling Layers: to reduce the dimensionality of the layers, the deeper they
are, in a down-sampling operation meant to reduce computational overhead

12



1.1 – Hints about Deep Neural Networks

and working against overfitting.

- Fully-Connected Layers: to process the recognized features for the regres-
sion or classification problem at hand.

Figure 1.7: CNN Pipeline1

Convolution

The convolution operation is the core of a CNN as it allows constructing meaningful
feature maps from the input in an efficient manner, while maintaining spatial
information.
In analogy to how the activations of the neurons in regular fully-connected layers
are calculated, the discrete convolution operation consists in a weighted sum of the
inputs inside a patch, with the addition of a bias. For neuron (p, q) in the hidden
layer, with a n×m filter W (see Fig. 1.8):

n∑︂
i=1

m∑︂
j=1

wijxi+p,j+q + b

The final activation is then obtained by applying a nonlinear activation function.
However, it is crucial to remember that, unlike regular fully-connected layers, each
neuron is only connected to its receptive field, i.e. a specific region of the previous
layer, defining the spatial arrangement of the features.
Each convolutional layer is typically composed of several filters, giving it "depth",
allowing to recognize several sets of features. Each "slice" of this convolutional
layer correspond to a specific feature map, as illustrated by Fig. 1.7.

1Aphex34, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wiki-
media Commons
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Figure 1.8: Convolution between a 5×5 image and a 3×3 filter, designed to
recognize the "X" shape

Pooling

Pooling is a down-sampling operation, that reduces the dimensionality of hidden
layers, the deeper they are. This essentially increases the dimensionality of the
filters because they slide over a smaller array, thus enlarging the receptive fields
and enabling the detection of higher-level, more abstract, features, while reducing
the computational overhead.
Common techniques for pooling include maximum pooling, which takes the max-
imum activation over a certain window, or average pooling, which employs the
average instead of the maximum. Both exhibit a degree of spatial invariance,
making the network more robust and improving its generalization ability.

Fully-Connected Layers

The output of convolutional and pooling layers are high-level features of the input
image, which still need to be processed to solve the classification or regression
problem at hand. Therefore, they are flattened and fed to regular fully-connected
layers designed to infer the class of the input, or a continuous numerical value.

By carefully designing and stacking together many of these building blocks, it
is possible to develop CNN architectures with remarkable performance in object
recognition and computer vision. Notable examples include AlexNet (2012) [28],
that achieved state-of-the-art results in large-scale visual recognition at the time
of its publication, VGGNet (2015) [29] with a focus on simplicity, or MobileNet
(2017) [30], aiming for computational efficiency for deployment to mobile devices.
While computer vision and its exciting developments are out of the scope of this
work, convolutional neural networks were introduced because of their relevance
in audio recognition for case study II: in chapter 4, a CNN architecture will be
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employed to infer the rotational speed of a mechanical system, by extracting the
most useful features from an audio spectrogram, which is nothing more than a
visual representation (an image!) of the frequency information of a signal.

1.2 Machine Learning on Microcontrollers
The last section of this chapter is devoted to the problem of deploying machine
learning models, specifically neural networks, on resource-constrained devices such
as microcontrollers, and the tools that enable such applications.

Embedded devices are small, low-power and low-cost computers with a dedicated
function within larger electromechanical systems. They typically consist of a
microcontroller, i.e. an integrated circuit with a processing unit and memory, along
with a power supply and various I/O interfaces [31]. The exponential reduction
in costs of silicon chips has made this kind of devices more and more prevalent in
a wide range of consumer and industrial appliances, wherever there is a need to
control a process or perform some software actions in real-time [32].
While deploying machine learning algorithms to embedded systems could enable
innovative and intelligent real-time applications without relying on an internet
connection, thus reducing latency and addressing privacy and security concerns,
it is complicated by the strong constraints in terms of resources and memory of
common microcontrollers2. Deep learning models are computationally intensive and
require a large storage capacity, rendering special acceleration and optimization
techniques, such as pruning, quantization, model distillation, etc., a necessity
[32]. Energy consumption is another critical aspect: embedded sensors are often
required to operate with as little as 1 mW of power3, which is not compatible with
standard machine learning models, nor does it allow to transmit the information
over the air. However, efforts to optimize and deploy neural networks on this kind
of platforms could enable innovative data processing pipelines, and the ability to
perform real-time actions based on such data [34].

Therefore, this is a crucial area of research that has garnered a lot of interest from
both academia and industry. This work aims to explore some high-level tools and
techniques, investigate the state of the art, and showcase the practical advantages
that machine learning brings to real-world embedded applications.

2It is not unusual for microcontrollers to feature a few hundred kilobytes of RAM, similar
amounts of flash memory, and clock speeds of just tens of megahertz.

3In order for sensors to be applied to the environment, and run for a useful amount of time
without human intervention, they cannot rely on a standard power supply. Instead, they are
often battery-powered, which limits considerably their computational ability [33].
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The Finder OptaTM PLC is a suitable platform for AI applications since it is equipped
with a dual-core Cortex-M microprocessor, on the higher end of microcontroller
performance, and 2 MB of flash memory (Table 2.1). Thanks to these specifications,
it provides more flexibility when it comes to computationally intensive tasks.
Moreover, its integration with the Arduino ecosystem allows access to a pre-built
library for machine learning, TensorFlow Lite for Arduino. The library leverages
Google’s TensorFlow Lite [35] runtime, specifically developed for on-device machine
learning, providing a software framework to execute models trained with TensorFlow
on 32-bit Arduino boards.

The excellent textbook TinyML. Machine Learning with TensorFlow Lite on
Arduino and Ultra-Low Power Microcontrollers by P. Warden and D. Situnayake
[36] is used as reference on this topic throughout the thesis.

1.2.1 TensorFlow
TensorFlow is the main software library used to develop the machine learning
models in this work. Originally developed by Google, TensorFlow was released as
an open-source library in 2015, and it is currently maintained by machine learning
practitioners all over the world [37].
It focuses on training and deployment of deep learning models, and it is built with
desktop environments in mind. For this reason, it trades size and complexity for
more functionalities and performance, as computational resources are not the main
concern. The traditional interface is Python, a high-level scripting language, with
cross-platform support added more recently.
TensorFlow performs computations on multidimensional data arrays (i.e. tensors,
a generalization of vectors and matrices), expressed as «stateful dataflow graphs»
[38], exploiting the parallelization capabilities of modern GPUs.

Keras

To interface with TensorFlow, the most common high-level Python API4 is Keras
[39], which was initially developed independently, and later integrated as the default
TensorFlow API. Keras is an «approachable, highly-productive interface for solving
machine learning (ML) problems, with a focus on modern deep learning» [40],
which allows fast experimentation, while simplifying each step of the workflow.
It provides high-level implementations of all commonly used objects in machine
learning, with its core data structures being layers, which encapsulate weights

4API ("Application Programming Interface"): software interface for different components and
services to communicate, exchanging information.
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and computational units, and models, which group layers together in a trainable
network [40]. Two types of models are available: Sequential models, which are
linear stacks of layers, each with a single input and a single output, and Functional
models, which provide more flexibility. This work employs exclusively Sequential
models, as the neural networks to implement are straightforward enough.
Keras provides built-in methods for training and evaluating the model’s performance
(for example: tf.keras.Model.fit or tf.keras.Model.compile [41]), letting the
user focus on the high-level implementation.
More details about the Keras workflow and some specific methods will be provided
in chapters 3 and 4.

1.2.2 TensorFlow Lite for Microcontrollers
TensorFlow is primarily thought for desktop and cloud environments, and does not
address properly the confinements of embedded applications of machine learning.
For this reason, the TensorFlow Lite (TFLite) project was initiated in 2017,
enabling much smaller binary sizes by eliminating certain features, such as the
ability to train models directly on target devices, or dropping support for more
complex architectures [42]. This opened the door to experimentation with machine
learning on small, mobile, memory-constrained devices, bringing advanced inference
capabilities closer to the end application.
To further widen the range of target hardware capable of executing TensorFlow
Lite models, a specialized version, called TensorFlow Lite for Microcontrollers, was
introduced in 2018 [43]. The goal was to meet even more stringent requirements,
such as eliminating operating system dependencies, functioning with no dedicated
floating-point unit, or avoiding dynamic memory allocation, all common limitations
in standard embedded development. The only requirements, to maintain com-
patibility with the baseline TensorFlow Lite framework, are C++ 17 and a 32-bit
platform [44].

Since analyzing the inner workings of this library is beyond the scope of this work,
only a few hints about its main components and workflow are reported here.
The TFLite platform can be thought of as the union of two main objects: the
TensorFlow Lite Converter and the TensorFlow Lite Interpreter.
Starting from a small trained TensorFlow model, that only contains supported
operations5, the TensorFlow Lite Converter applies the FlatBuffers serialization
library [45] to obtain a space-efficient binary. It also supports additional layers of
optimization, as it will be investigated in chapter 3. The converted TFLite model
is then transformed to a C byte array, to store it in the read-only program memory

5https://ai.google.dev/edge/litert/microcontrollers
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of a microcontroller. This solution avoids relying on a filesystem, which is often
not available, as it would create an excessive code overhead.
All of these operations will be carried out with the Python language in Google Colab,
an online environment to execute Jupyter notebooks [46] on the cloud, exploiting
Google’s powerful hardware for the computationally intensive tasks above [47].
Finally, the TensorFlow Lite Interpreter is in charge of efficiently executing
the model on the target device, making use of the C++ library [44].

TensorFlow Lite for Arduino

The TensorFlow Lite for Microcontrollers framework was made available as an
Arduino library [48]. However, the official version accessible via the GitHub
repository [49] only supports the Arduino Nano 33 BLE Sense board, since its
integrated inertial sensors make it the ideal starting point for machine learning.
Nevertheless, throughout this work, it was possible to employ an older version [50]
that lacks explicit references to the Nano board peripherals, as the framework code
is compatible with most Arm Cortex M-based boards, including the Finder OptaTM.
A different, more labor-intensive option would have involved a custom porting of
the base library.

An in-depth analysis of the Arduino code architecture required by the library is
available in Chapter 3, alongside a detailed description of the workflow to develop
and deploy neural networks on the Finder OptaTM, exploiting the software tools
introduced thus far.
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Chapter 2

Finder OptaTM: a next-generation
"Programmable Logic Relay"

Figure 2.1: Finder OptaTM

The Finder OptaTM Programmable Logic Con-
troller (PLC), or "Programmable Logic Relay",
is the device of choice employed throughout
this work, both in the two machine learning
case studies (chapters 3 and 4), and in chapter
5 for a smart industrial control application.
The Finder OptaTM represents a new generation
of Programmable Logic Controllers, bringing
together the experience in electromechanical
devices of Italian manufacturer Finder, and the
open-source Arduino electronic platform. The
device is characterized by a reliable industrial-
grade form factor, with a powerful dual-core
M4 + M7 ARM chip that can be programmed
via the open-source Arduino programming lan-
guage, or via traditional PLC languages. Offer-
ing a wide range of secure connectivity options, along with high-level hardware
encryption, it is developed for intelligent industrial or home automation applications,
offering mid to high range performance at relatively low costs1.

2.1 Programmable Logic Controllers
Programmable Logic Controllers are the most widely used technology for process
control and industrial automation, having replaced almost completely traditional

1https://cdn.findernet.com/app/uploads/FOCUS-ON_Opta_EN.pdf
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hard-wired control circuits, based on relay logic. They are industrial-grade com-
puters that offer a high degree of reliability, modularity, flexibility, performance
and cost-effectiveness, eliminating the need to physically rewire the control circuit
to implement changes to the control logic [51]. Programmable logic controllers are
real-time systems, as their output depends on the input conditions in real time.
The brain of a PLC is represented by a microcontroller, that is able to implement
arithmetic, logic, timing and counting operations, according to the control program
stored in memory. They interface with external devices, like sensors and actuators,
with suitable digital or analog input/output ports, that are graded for industrial
voltages and currents.
More recent programmable logic controllers also offer advanced connectivity options,
enabling remote communication via the internet or other protocols, in the framework
of the "Industry 4.0" revolution, as later discussed in chapter 4.
The Finder OptaTM encompasses all the features of traditional programmable logic
controller, but also offers capabilities focused on the Internet of Things (IoT, see
chapter 4), machine learning, edge computing and connectivity, thanks to the
integration with the open-source Arduino ecosystem.

2.1.1 PLC Programming Languages
A PLC program is a user-developed series of instructions that dictates the actions to
execute, and what response shall correspond to any given input. A program is built
using a programming language, i.e. a series of rules to specify such instructions.
Part 3 of international standard IEC 61131, which deals with programmable logic
controllers, defines five traditional programming languages: ladder diagram (LD),
structured text (ST), function block diagram (FBD), instruction list (IL) and
sequential function chart (SFC), with the first two being the most commonly used.
Ladder diagram is a graphical language that originated from the schemes of relay
racks, employed in traditional hard-wired logic [51]. It is particularly useful in
simple but critical process control tasks, and it requires little additional training for
technicians not well versed in procedural programming languages, employed in other
domains. Instead, structured text is a lightweight high-level textual programming
language, that resembles Pascal [52].
The Arduino PLC IDE2 allows programming the OptaTM with any of the five
IEC 61131-3 syntaxes, offering a familiar experience to PLC technicians. The
software also provides configuration capabilities for all the peripherals, along with
the possibility of mixing the traditional languages with Arduino sketches, bringing
even more flexibility to the application.

2IDE: Integrated Development Environment, a program suite for software development (https:
//www.arduino.cc/pro/software-plc-ide)
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A simple example program illustrates the potentialities of the PLC IDE: the Arduino
sketch (Appendix A.1.1) employs the WiFi.h library to connect to the internet, and
sends an API GET request to a web service that offers the local time for a given
timezone3; the JSON response is then parsed to extract the digits of the minutes
from the time (Arduino_JSON.h library), and store them in a shared variable to be
accessible by both the Arduino and the PLC environments (PLCIn.inMinutes). A
short piece of PLC code, in Structured Text, turns on the built-in blue LED in case
integer PLCIn.inMinutes is even, as shown in Fig. 2.2, and turns it off otherwise.
The green LED instead gives a visual indication of the connection status.

(a) Structured Text code - Odd Time (10:55)

(b) Structured Text code - Even Time (10:56)

Figure 2.2: PLC IDE Programming Example

3http://worldtimeapi.org/
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More details on how the connection process works, or on how to send an API GET
request to a web server and parse the JSON response are available in chapter 5.
Despite the utter simplicity, this is an example of effective integration between
the Arduino sketch, geared more towards the connectivity aspect, and traditional
PLC programming, to manage the hardware peripherals and the core logic of the
application.

In addition to the Arduino PLC IDE, the OptaTM can also be programmed via the
regular Arduino IDE4, using Arduino sketches.

2.2 Arduino Ecosystem
One of the key selling points of the OptaTM - and a crucial motivation behind its
selection for this work - is the ability to take advantage of the Arduino ecosystem.
The Arduino project was born in 2005 in Ivrea, Italy, as a low-cost and rapid
electronic prototyping solution for novices. Over the years, it has rapidly grown
into a revolution for electronics, empowering hobbyists, students and professionals
all over the world by providing straightforward and inexpensive access to micro-
controller kits, a world that traditionally required strong technical skills to access
[53]. Arduino’s hardware and software products are open-source, under a CC-BY
SA5 license.
The latest developments in the Arduino world involve products for 3D printing,
wearable, embedded environments, and IoT applications, aimed at widening the
user base by addressing emerging research fields, and targeting more professional
applications [54]. The OptaTM represents an attempt in this direction, bringing the
Arduino open-source philosophy to the professional market of industrial PLCs.

Arduino boards, including the OptaTM, can be programmed with C or C++, via the
Arduino programming language API6. This brings special structures and methods
to the baseline languages, to simplify and streamline certain operations.
The already-mentioned Arduino IDE also brings special code structuring, again with
the aim of rendering the software development more straightforward. An Arduino
program, called a Sketch, only requires two basic functions: setup(), which runs
only once at the start of the program, and loop(), repeatedly executed as long as
the microcontroller is powered. These two functions, and any others in the project,
are linked with a stub main(), and converted into an executable with hexadecimal

4https://www.arduino.cc/en/software
5https://creativecommons.org/licenses/by-sa/2.0/deed.en
6https://docs.arduino.cc/programming/
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encoding, to be loaded into the firmware. A considerable flexibility is permitted in
terms of syntax: for example, a function can be defined anywhere in the project,
and does not require a prototype. This streamlined software development process
is what makes the Arduino experience very accessible, including to those without
prior programming experience.
The Arduino platform offers countless libraries, both official and third-party, to
address a wide variety of applications and issues, letting the user focus on the end
functionality. Several are explored in this work, including libraries to manage the
Wi-Fi connection and the API calls to external services (as in the example in the
previous section), to compute the FFT of audio signals, and the already-mentioned
TensorFlow Lite for Arduino, to deploy neural networks to the PLC. Carrying out
any of these tasks without pre-built libraries would require a much longer and more
complex development process.

The OptaTM is based on Arm Mbed OS, an open-source operating system and
development platform aimed at IoT and connectivity for 32-bit Cortex-M micro-
processors, developed up until July 2024 [55]. This is the core providing drivers for
all peripherals and modules. Moreover, it allows access to more advanced RTOS7

functionalities like task-scheduling, memory management, interrupt handling, etc.:
for instance, the Mbed OS multithreading feature is exploited in chapter 5 to
execute different processes ("threads") simultaneously.

In conclusion, the OptaTM stands out as a powerful and versatile platform, that
leverages the extensive resources of the Arduino community to provide an accessible
yet robust solution for sophisticated industrial applications.

2.3 Finder OptaTM - Technical Characteristics
The main technical characteristics of the Finder OptaTM are summarized in Table
2.1. The device is available in three different versions8, with this work employing
the OptaTM Wi-Fi, that offers the most connectivity options, including Wi-Fi and
Bluetooth Low-Energy.
The OptaTM features a dual-core STM32H747XI microcontroller, built around two
ARM cores, a Cortex-M7 (up to 480 MHz) and M4 (up to 240 MHz). It supports
2.4 GHz Wi-Fi, Bluetooth Low-Energy and Ethernet connectivity, and it features
a USB-C port for programming and data logging, and an RS-485 interface for

7Real-Time Operating System, an OS characterized by predictability and determinism, for
time-critical tasks in microcontrollers: unlike general-purpose operating systems, microcontrollers
often require critical tasks to be executed within tight time boundaries.

8Catalog: https://cdn.findernet.com/app/uploads/S8AEN.pdf
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communication with external industrial devices [56]. The Ethernet port supports
the TCP/IP (full-duplex) and Modbus TCP communication protocols, with Modbus
RTU available via the physical RS-485 port, without internal termination resistors.
The OptaTM is also capable of performing Over-The-Air (OTA) updates, without the
need to stop the process. Encryption capabilities are provided by the ATECC608B
chipset, that can be used to store sensitive information, protecting them from
unauthorized access, an ever-increasing concern for IoT applications [57].
Without expansion modules, eight interrupt-enabled input pins are available: they
can be used either as digital (12/24 V) or as analog inputs (0− 10 V, with 12, 14
or 16-bit resolution), depending on the software configuration. The OptaTM also
offers four normally-open relay outputs, rated at 10 A and 250 VAC.

Figure 2.3: Finder OptaTM Components9

A DIN rail mount ensures that the device can be easily fitted into standard industrial
equipment racks.

9Source: https://docs.arduino.cc/tutorials/opta/user-manual/
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Finder OptaTM - Type 8A.04-8320
Characteristics Details
Supply Voltage 12− 24 V

Inputs 8x Analog/Digital Inputs
(8.9 kW impedance)

Outputs 4x Relays Normally Open
Processor Dual-core ST STM32H747XI (Arm

Cortex-M7 core up to 480 MHz, Arm
32-bit Cortex-M4 core up to 240 MHz)

Memory 1 MB RAM, 2 MB Flash
Communication Ethernet, RS-485, Wi-Fi 2.4 GHz,

Bluetooth LE 4.2, USB-C
Security ATECC608B Crypto Microchip

Ingress Protection IP20
Temperature Range -20− 50 °C

Analog Inputs
Input Voltage 0− 10 V

Input Resolution 12− 16 bits
Input LSB Value 166 µV

Accuracy ±5% (repeatability ±2%)
Digital Inputs
Input Voltage 0− 24 V

Voltage Logic Level VILmax : 4.46 VDC
VHLmin : 6.6 VDC

Input Current 1.12 mA at 10 V
Acquisition Cycle Time 10 µs

Outputs
Max Current per Relay 10 A (peak 15 A)

Relay Rated Voltage 250 VAC (max 400 VAC)
Rated Load AC1: 2500 VA, AC15: 500 VA

Relay Response Time 0→ 1: 6 ms, 1→ 0: 4 ms

Table 2.1: Finder OptaTM - Main Technical Characteristics [56]
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Chapter 3

Case Study I: Waveform Identifica-
tion Model

The objective of the first case study is to demonstrate how a simple neural network
can be deployed on a smart PLC such as the Finder OptaTM, opening the door to
numerous applications within the "Industry 4.0" framework, especially in the field
of predictive maintenance.
The best starting point is the analysis of a basic implementation: recognize the
typology of a waveform provided as input to the PLC. Despite the objective being
of limited practical relevance, it enables a review of the available tools to acquire
familiarity with the workflow. Therefore, this chapter focuses on the fundamentals,
summarizing and consolidating what is necessary for further research in the area.

3.1 Test Bench Setup and Objectives

3.1.1 Requirements
Below are reported the requirements for the system. This case study involves quite
a trivial classification problem, so it is reasonable to expect a high accuracy.

1. Recognize the shape of the input waveform, with an accuracy of at least 90%,
among three possible choices:

(a) sinusoidal
(b) triangular
(c) square

2. The range of the input waveform is 0 − 10 V, with random amplitude and
random offset within such range; the frequency is constant and known (1 Hz)

3. Reduce as much as possible the size of the machine learning model
4. Reduce as much as possible the size of the training dataset
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3.1.2 Test Bench
The experimental setup is composed of the Finder OptaTM, the brain of the system
where the ML model is executed, a waveform generator to provide the input signal
to recognize, and three indicator lights, for a visual indication of the output.

Figure 3.1: Waveform Identification - Test Bench Schematic

Instrument Model Qty.
PLC Finder OptaTM Wi-Fi 1

Regulated DC Power Supply Voltcraft FSP1243 1
Waveform Generator Gwinstek SFG2104 1
Digital Oscilloscope Gwinstek GDS-1054B 1

24 V Indicator Lamps - 3

Table 3.1: Case Study I - List of Instruments
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The OptaTM and the output lamps are powered by +24 V DC, as shown in the
schematic of Fig. 3.1. The waveform generator is configured to provide a signal
within the range 0 − 10 V, compatible with the analog input pins of the OptaTM

(Table 2.1), with amplitude and offset to be manually adjusted.

Figure 3.2: Waveform Identification - Test Bench

3.2 Workflow Overview
This case study, and in general all machine learn-
ing applications with microcontrollers, can be
subdivided in three main tasks:

1. development of the machine learning model
2. deployment of the model to the microcon-

troller
3. validation of the entire system (hardware-

in-the-loop testing)

These steps shall always be preceded by the spec-
ification of all the requirements and objectives
of the activity (as listed in the previous section).

Development of a machine learning model
The first task in the workflow involves the cre-
ation of the machine learning model (a neural
network) to execute on the Finder OptaTM.
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Figure 3.3: Workflow

As for all ML applications, this is preceded
by the collection of a dataset to train and
validate the model: a crucial step as the fi-
nal accuracy largely depends on its size and
quality. However, collecting a large amount
of data is expensive, so it is important to find
the best trade off. Once a dataset is available,
an initial model architecture can be devised,
and tuned iteratively as different models are
trained and their performance evaluated.
All of these steps will be carried out using
TensorFlow and its API Keras, exploiting
Google Colab to write Python code.
Only when validation is successful, indicating
that the model has achieved the desired ac-
curacy, is it possible to move to the second
step, deployment.
Deployment to the Finder OptaTM As
discussed in details in chapter 1, machine
learning is a resource-intensive activity that
is quite complex to carry out within the con-
straints of a microcontroller. Therefore, the
second task of the workflow consists in con-
verting the model to a lightweight format,
with all the infrastructure to execute it on
the PLC. Moreover, it is necessary to develop
the application that samples the input waveform, runs inference with the model, and
makes sense of the output, turning on the correct indicator light. The conversion
is carried out with the TensorFlow tools, while the application is developed with
the Arduino programming language, in the Arduino IDE.
Hardware-in-the-loop Testing By running inference on a systematic test set,
employing the model deployed to the OptaTM, it is possible to verify the successful
integration of hardware and software, and evaluate the final performance.

3.3 Building a Neural Network

3.3.1 Training Data Collection
It is crucial to collect a high-quality dataset since it is the main ingredient to
improve the performance of the resulting model. The dataset shall cover the full
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range of conditions that can occur in the system, and, the larger it is, the more the
neural network is able to learn and generalize the desired input features, without
overfitting. However, collecting experimental data is time-consuming, expensive,
and often quite complex, making certain trade-offs a necessity.

In this case study, collecting a training dataset translates into sampling a number of
input signals, in the same working conditions that the model is going to experience.
To be representative, the dataset has to include waveforms of all three kinds
(sinusoidal, triangular, square), with a wide range of amplitudes and offsets.

Arduino Application

The input signal, applied to analog pin I1 (A0) (see Fig. 3.1), is characterized
by a frequency of 1 Hz: for an accurate reconstruction of its dynamics, a suitable
choice of sampling time can be 5 ms, resulting in 200 samples per period. The
analog-to-digital conversion chain on the Finder OptaTM is fast enough to sustain
this rate, as empirically observed during the data collection.
To make the inference more robust, each training example (the input of the ML
model) shall be composed of 500 samples (2.5 periods1), instead of 200 (a single
period). The last configuration element to address is the resolution of the Analog-
to-Digital Converter (ADC) on the input pin, set to the intermediate value of 14
bits (resolution of 0.6 mV).

According to the flowchart of the Arduino application in Figure 3.4, each training
example is collected by sampling the input waveform every 5 ms, converting the
readings to mV, and normalizing to obtain a value between -0.5 and +0.5 (nor-
malization reduces the norm of the parameters involved, helping with gradient
convergence and decreasing the risk of overfitting [58]).
The normalized value to log via the serial port, denoted as xnorm, can be calculated
as follows:

x = sample · 10 000 mV
214 − 1 ⇒ xnorm = x− 5 000 mV

10 000 mV

After each training example, the program stops for 5 seconds, to allow the operator
to manually modify amplitude and offset of the waveform.

Described below are the key sections of the Arduino implementation to execute on
the OptaTM (the entire code is reported in the Appendix B.3.1 for reference).

1Number of periods in a training example = 500 samples
Tperiod/Tsample

= 500
200 = 2.5
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Figure 3.4: Training Data Collection - Flowchart

The setup() function initializes serial communication for logging the data, and
configures port A0 (→ I1) as a 14-bit analog input.

void setup() {
// initialize serial communication
Serial.begin(115200);
while (!Serial); // wait until the serial port is open

/* ---- Setup the Arduino Peripherals ---- */
pinMode(A0, INPUT); // A0 -> analog input port
// set resolution to 14 bits
analogReadResolution(ANALOG_INPUT_RESOLUTION);

}

The loop() function, executed repeatedly, acquires and normalizes the samples,
before transmitting them to the serial port. The dataset is encoded with floating-
point numbers, the most straightforward choice when it comes to neural networks,
though floats are quite critical when dealing with microcontrollers as they require
complex operations, that are sensitive to numerical errors. However, the Finder
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OptaTM features a powerful Cortex-M series processor (Table 2.1), with a dedicated
floating-point unit to deal with such operations.

void loop() {

// check if the current training example is complete
// (500 samples collected)
if (samples_count >= NUM_SAMPLES) {

// if so wait 5 seconds to allow the operator to change
// the parameters of the input waveform
delay(delay_between_examples_ms);

samples_count = 0; // reset the counter for the samples
chrono = millis(); // save the time

} else if (millis() - chrono >= Ts) {
/* If a time > sample time has passed since the last sample
* -> record a new sample and transmit it to the serial port
* after conversion to millivolts and normalization */
Serial.println(digitalSampleToMillivolts(

(analogRead(A0) - 5000.0) / 10000.0));

samples_count++; // record that a new sample has been collected
chrono = millis(); // record the time

}
}

Experimental Data Collection

In general, deciding a priori how much data to collect to train an effective model is
far from straightforward. However, due to the nature of this case study, building
a dataset that is representative of all input conditions, with relatively low noise
and few outliers, is a manageable task. It is thus reasonable to expect a "small"
dataset to provide satisfactory results. Moreover, recall how the requirements in
section 3.1 mandate a limited dataset size, to reduce the "cost" of the model. The
initial choice is therefore of 100 examples per waveform type (total 300), with this
decision validated down the line.

Figure 3.5 shows a randomly selected training example (a sinusoidal waveform, with
4.23 V peak-to-peak amplitude and +4.4 V offset), composed of 500 data points
normalized between -0.5 and 0.5. In addition to validating the choice of sample time,
as the dynamics of the waveform was captured correctly, the plot demonstrates
that the Arduino application for data collection behaves as expected.
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Figure 3.5: Random Training Example

Figure 3.6: Waveform Identification - Experimental Data Collection

Data Processing

The next step in the workflow involves processing the dataset to prepare the training
of the neural network. This activity is carried out in Google Colab with the Python
programming language, exploiting the numpy2 library.

2numpy provides fundamental tools for scientific computing in Python (https://numpy.org)
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The dataset, stored in three separate .csv files (one per waveform type), is parsed
by creating a list of all the samples, which is then converted to a numpy array. This
is the "inputs" matrix, of dimension 300×500 (each row is a training example,
made of 500 measurements).
A crucial step for supervised learning is the labelling of the training data: the
neural network must be aware of what class the training examples belong to. An
"outputs" matrix is thus created by stacking vertically several one-hot encoded
row vectors, to serve as labels.
Employing a one-hot encoding for the output (i.e. for each example in the dataset,
the output is a vector with length equal to the number of classes, of all 0 entries,
except for the entry that corresponds to the index of the correct class, equal to 1;
for example, a sinusoidal waveform is represented by the vector [1 0 0]) is a choice
mandated by the loss function that is going to be selected in the next section, 3.3.2.

import numpy as np
import pandas as pd # to parse csv dataset files

# list of waveform types to recognize
WAVEFORMS = [

"sine", # -> output label [1 0 0]
"triangular", # -> output label [0 1 0]
"square" # -> output label [0 0 1]

]

SAMPLES_PER_WAVE = 500
NUM_WAVES = len(WAVEFORMS) # 3 waveforms

# create a one-hot (-> something like [1 0 0])
# encoded matrix that is used in the output
ONE_HOT_ENCODED_WAVES = np.eye(NUM_WAVES)

inputs = []
outputs = []

# read the three csv files and parse inputs and outputs
for waveform_index in range(NUM_WAVES):

waveform = WAVEFORMS[waveform_index]

output = ONE_HOT_ENCODED_WAVES[waveform_index]

df = pd.read_csv("/content/" + waveform + ".csv")
num_recordings = int(df.shape[0] / SAMPLES_PER_WAVE)

for i in range(num_recordings):
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tensor = []
for j in range(SAMPLES_PER_WAVE):

index = i * SAMPLES_PER_WAVE + j
tensor += [

(df['y'][index]).astype('float32')
]

inputs.append(tensor)
outputs.append(output)

# convert the lists to numpy matrices
inputs = np.array(inputs).astype('float32')
outputs = np.array(outputs).astype('float32')

inputs =
[[-0.2064 -0.2122 ... 0.1227 0.1257]
[ 0.1283 0.132 ... -0.2592 -0.2605]
[-0.2013 -0.2034 ... 0.2863 0.2869]
...
[-0.3918 -0.391 ... 0.0796 0.0796]
[ 0.3749 0.3748 ... -0.0814 -0.0819]
[-0.0819 -0.0819 ... -0.0818 -0.0817]]

outputs =
[[1. 0. 0.]
[1. 0. 0.]
[1. 0. 0.]
...
[0. 0. 1.]
[0. 0. 1.]
[0. 0. 1.]]

The dataset is then subdivided in three parts: a training set, to train the model, a
validation set, to compare different architectures during training, and a final test
set, to evaluate the performance of the selected architecture.
Since the number of training examples is quite limited, at least compared to modern
"big-data" applications, a traditional ratio 60% / 20% / 20% can be reasonable. The
partition is carried out randomly, to prevent the model from inferring any property
from the order in which the data was collected (for the definition of function
split_dataset() see Appendix B.3.1).

# split the dataset randomly as 60% training set,
# 20% validation set and 20% test set
outputs_train, outputs_test, outputs_validate,
inputs_train, inputs_test, inputs_validate =

split_dataset(inputs, outputs, [0.6, 0.2, 0.2])

3.3.2 Machine Learning Model Configuration
The task at hand involves a multi-class classification scenario, where the neural
network has to assign a label to an unknown input, in what is essentially a
generalization of binary classification.
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Various techniques are available to approach this problem [59], but the principal
objective in microcontroller-based applications of neural networks is to limit the
model size, and not introduce too much complexity. For this reason, a vanilla
Multi-Layer Perceptron (MLP) is the most natural choice. An MLP model (Fig.
3.7) is a feedforward neural network that consists of multiple deeply-connected
layers, with non-linear activation functions. As discussed in section 1.1, artificial
neural networks of this kind can learn any arbitrary nonlinear relationship between
the input data, assuming enough depth.

Figure 3.7: Generic MLP model with 2 hidden layers

In the most intuitive interpretation of an MLP, each neuron in the input layer
represents a quantifiable property, or feature, of the input. In this case study, the
input layer requires 500 neurons, one for each waveform sample. Such architecture
does not provide the model with any temporal information, treating the samples as
completely independent, and not as sequential data. Since the focus is on simplicity,
this is an acceptable trade-off, although there exist more complex architectures to
maintain the relationships between input features. This will be explored in the
next case study, chapter 4, where a Convolutional Neural Network is employed to
analyze audio spectrograms.
Given the goal of assigning one of three labels to the input, the output layer of the
network must comprise three neurons, with their activation value representing the
probability that the input belongs to each class.

This marks the starting point for the development of the model architecture. It is
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now necessary to delve deeper into the selection of the number of hidden layers,
hidden neurons, and corresponding activation functions, of the loss criterion to
quantify the model performance, of the optimization algorithm, and of all the other
hyperparameters in the machine learning pipeline, as outlined in section 1.1.

Loss Function

The most common choice in terms of loss criterion for a multi-class classification
problem is the cross-entropy function [60], also known as log loss. This function
assigns a score to the average difference between two probability distributions,
specifically the true probability that the training example belongs to a given class
(0 or 1), and the predicted probability. By minimizing this score, the aim is for
the predicted probability of each class (the output of the NN) to match the true
probability, thus obtaining a correct estimate [61].
For discrete distributions p and q, the cross-entropy function has the following
shape:

H (p, q) = −
∑︂

x

p (x) log(q (x))

Since the comparison of different loss functions is out of the scope of this work, the
log loss is adopted without further analysis. The choice will be validated during
model testing.
Cross-entropy for multi-class classification is available in Keras as categorical
_crossentropy. It is important to note how categorical_crossentropy requires
that the output labels (0 or 1) are one-hot encoded [62]. This could be prob-
lematic when the number of output classes is huge, as the size of the output
would explode, though it is not the case here. A suitable alternative would be
sparse_categorical_crossentropy, which only requires the index of the correct
class instead of a one-hot encoded vector [63].
Recall how the matrix outputs, to label the training examples, was encoded as
one-hot (section 3.3.1), precisely in anticipation of such choice of loss function.

As discussed in section 1.1.1, the loss function refers to a single training example:
the total cost that the optimization algorithm aims to minimize is the sum of the
log loss over all the training examples. No regularization term is introduced to
keep the process as simple as possible.

Optimization Algorithm

The most straightforward choice nowadays, when it comes to optimization algo-
rithms for neural networks, is mini-batch stochastic gradient descent (section 1.1.1).
It is implemented in Keras with the SGD class [64], which can be a good starting
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point to train the model, although better performance is expected from more
sophisticated versions, as will be investigated down the line.
The default learning rate α = 0.01 is selected initially, since no information about
how the optimizer will perform is available at this stage.

Initial Model

Developing a neural network is a highly empirical process, and little a priori
guidance is available. One can only guess the initial values of the hyperparameters,
which are then tuned in response to how the training process behaves. Keeping in
mind that simplicity is crucial, an initial MLP model made of two hidden layers, of
50 and 15 nodes respectively, seems a reasonable guess. These are followed by the
output layer, with 3 nodes (one for each class: sine, triangular and square), and
preceded by the input layer comprising 500 neurons (one for each sample).

What remains to be determined is the nonlinear activation function for each layer.
An obvious choice for the output because of the use of categorical_crossentropy,
is the softmax, i.e. a smooth approximation of the one-hot arg max function [14].
It converts a vector of real numbers into a probability distribution, applying the
exponential to each element, thus amplifying the maximum, and normalizing by the
sum. Such an activation function provides a smooth output (a requirement to be
able to compute the gradient during backpropagation), in the form of a probability
distribution, exactly what is needed to compute the cross-entropy loss.

softmax σ : Rk → (0,1)k σ(z)i = ezi∑︁k
j=1 ezj

, for i = 1, ..., k and z ∈ Rk

Figure 3.8: ReLU

Another straightforward choice, at least
initially, is the use of the rectified linear
unit ReLU as activation for the hidden
layers. The ReLU (Fig. 3.8) was empiri-
cally found to guarantee faster training
in almost all situations, given its constant
slope in the region of positive abscissa,
in contrast with the more traditional sig-
moid or hyperbolic tangent, whose slopes
tend to 0 for activations that are far from
the origin (Fig. 1.3) [65].

Table 3.2 summarizes the initial choice of hyperparameters.
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MLP Structure

Input Layer → 500 neurons [ReLU]
1st Hidden Layer → 50 neurons [ReLU]
2nd Hidden Layer → 15 neurons [ReLU]
Output Layer → 3 neurons [softmax]

Optimizer SGD (learning rate 0.01)
Loss Function categorical crossentropy

Table 3.2: Initial Choice of Hyperparameters

Everything is ready for the definition of the model in TensorFlow with the Sequential
Keras API, since the flexibility it provides is sufficient for this simple application
(each layer only features one input tensor and one output tensor). The model is
created by defining the densely-connected layers with the add method from the
Sequential class. It is then configured for training with the compile method [41].
One of the parameters to pass to compile is the list of metrics to evaluate during
training and testing. The accuracy, defined as the ratio of correct predictions
to the total number of predictions over a given set of data, is a natural metric
to evaluate a classification model3, and indeed the requirements (section 3.1) are
expressed in terms of accuracy. Instead, the mean absolute error (‘mae’), which is
also included here, is more suited to regression problems, where the output of the
model is a continuous numerical value; it is nonetheless useful as a rough indicator
of performance.
import tensorflow as tf

model = tf.keras.Sequential()
# define the model structure
model.add(tf.keras.layers.Dense(50, activation='relu')) # 1st hidden layer
model.add(tf.keras.layers.Dense(15, activation='relu')) # 2nd hidden layer
# output layer -> 3 classes = 3 neurons
model.add(tf.keras.layers.Dense(NUM_CLASSES, activation='softmax'))

model.compile(optimizer='sgd', loss='categorical_crossentropy',
metrics=['mae','accuracy'])

3.3.3 Model Training, Performance Evaluation and Tuning
The method fit [41] enables training the model for a certain number of epochs,
i.e. iterations over the complete dataset. 300 can be a reasonable starting value.

3Other common metrics for classification include precision, recall, the F1 score, the area under
the ROC curve. . . , each with a slightly different focus [66].
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Furthermore, the method allows for the specification of the number of training
examples to approximate the gradient at each step (recall mini-batch stochastic
gradient descent, discussed in Section 1.1.1). The default value is 32. As the
batch_size increases, the accuracy of the approximation increases, but so does
the computational cost: a trade-off is required to maximize training speed.

history = model.fit(inputs_train, outputs_train, epochs=300,
batch_size=32, validation_data=(inputs_validate, outputs_validate))

Figure 3.9 shows how the basic stochastic gradient descent, with a learning rate
of 0.01, takes too long to converge. One possible approach would be to increase
the number of epochs, with the associated increase in computational cost. Instead,
the more efficient solution that is now explored involves tuning the parameters
of the optimization algorithm, for example introducing momentum to accelerate
convergence, or choosing a different implementation altogether.

Figure 3.9: Training and Validation Loss - initial hyperparameters

Adam Optimizer

A very efficient algorithm for stochastic optimization is Adam: «the method
is straightforward to implement, is computationally efficient, has little memory
requirements, is invariant to diagonal rescaling of the gradients, and is well suited
for problems that are large in terms of data and/or parameters» [21]. Adam
builds upon stochastic gradient descent, with different adaptive learning rates for
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different parameters, computed on the basis of first and second order moments of
the gradient.
Basic gradient descent does not take into account its past steps, as it updates the
weights solely on the basis of the current gradient and learning rate. However,
this may lead to oscillations and slow convergence, or even divergence if the
learning rate is too large. To overcome this issue, it is convenient to update the
weights with an exponentially-scaled moving average of the gradient, computed
over the preceding steps, instead of the simple gradient. The update term becomes
xk+1 = xk + β(xk − xk−1) + α vk, where β ∈ (0,1] is the momentum constant: it
determines how much importance to give to the previous values of the gradient.
This technique is called gradient descent with momentum: the weighted
average of the gradients can be interpreted as a momentum, that pushes the
algorithm in the direction of the minimum with larger steps, while reducing the
learning rate (and thus damping out oscillations) towards other directions. Instead,
basic gradient descent features a constant learning rate, resulting in steps in the
"wrong" directions that are just as large as those towards the minimum.
Adam, which combines this approach with another adaptive algorithm, RMSProp4,
is implemented in Keras with the Adam class.

model.compile(optimizer='adam', loss='categorical_crossentropy',
metrics=['mae','accuracy'])

history = model.fit(inputs_train, outputs_train, epochs=300,
batch_size=32, validation_data=(inputs_validate, outputs_validate))

Figure 3.10 shows how the loss, calculated over both training and validation
set, now converges in a much quicker fashion, demonstrating how Adam is much
more powerful than vanilla gradient descent. Given the shape of the curves, it is
reasonable to expect low bias and low variance, with very good overall performance
of the trained model.

Table 3.3 summarizes the results of training and validation, with the two chosen
metrics. It is normal that the metrics referring to the validation set display larger
values with respect to those calculated on the training set, since the former is
made of inputs never seen by the model. This is precisely the purpose of the
validation set: evaluating the ability of the model to generalize to unknown inputs.
Considering the minimal difference in loss and mean absolute error between the
two datasets, along with the accuracy equal to 100% for both, it can be concluded

4RMSProp (Root-Mean-Square Prop) employs the square root of an exponentially-weighted
average of the squares of the derivatives to damp out undesired oscillations, instead of momentum,
while speeding up learning in the direction of the gradient [24].

42



3.3 – Building a Neural Network

that the model demonstrates strong generalization capabilities, i.e. it features a
low variance.

Figure 3.10: Training and Validation Loss - Adam optimizer

Training Set Validation Set
loss 0.00189 0.01618
mae 0.00126 0.00985

accuracy 100% 100%

Table 3.3: Training and Validation Set metrics

Adjusting the Model Structure

Judging by the metrics above, the model performs very well with both the training
set and the validation set. Since the goal is deployment to a microcontroller, it is
important to recall that size is a critical factor, that shall be reduced as much as
possible. Therefore, it is interesting to evaluate how performance is affected by the
reduction of the number of nodes in the two hidden layers.
Training was repeated for different combinations of number of neurons, with the
accuracy contour lines, measured on the validation data set, plotted in Figure 3.11
for a rough estimate of the model performance function of size.
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Figure 3.11: Validation Accuracy vs Number of Nodes

As expected, the model performance improves with size, since more nodes result
in an enhanced ability to learn the features of the input data. Note, however,
how the plot is very approximate, as it is highly sensitive to the local minima
the optimization algorithm converges to, and it can thus vary widely as training
is repeated. Nonetheless, a region of high accuracy (> 96%) can be identified
around 6/8 nodes in hidden layer 1, and 10/14 nodes in hidden layer 2. This
is an interesting area to explore as it would keep the model size limited, while
guaranteeing an accuracy that meets the 90% requirement.

model = tf.keras.Sequential()
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# redefine model structure with less neurons in the hidden layers
model.add(tf.keras.layers.Dense(8, activation='relu'))
model.add(tf.keras.layers.Dense(12, activation='relu'))
model.add(tf.keras.layers.Dense(NUM_CLASSES, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy',

metrics=['mae','accuracy'])

# train the model
history = model.fit(inputs_train, outputs_train, epochs=250,

batch_size=32, validation_data=(inputs_validate, outputs_validate))

Figure 3.12 and Table 3.4 summarize the performance of a model with 8 neurons
in layer 1, and 12 in layer 2.
While both final loss and mean absolute error are not on par with those obtained
with the previous - larger - model, the validation accuracy is still calculated at
100%. This meets the 90% requirement, at least at this stage of the workflow, while
also addressing the requirement about model size. Both final variance and bias of
the classifier are small, despite the learning curve converging in a slightly slower
fashion.

Figure 3.12: Training and Validation Loss - smaller model

Given the effectiveness of the Adam optimization algorithm, it was also decided to
reduce the number of training epochs down to 250 to reduce the training time, a
choice validated by Figure 3.12, since the loss appears to have converged.
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Training Set Validation Set
loss 0.01210 0.03055
mae 0.00791 0.01850

accuracy 100% 100%

Table 3.4: Training and Validation Sets metrics - smaller model

MLP Structure

Input Layer → 500 neurons [ReLU]
1st Hidden Layer → 8 neurons [ReLU]
2nd Hidden Layer → 12 neurons [ReLU]
Output Layer → 3 neurons [softmax]

Optimizer Adam (epochs = 250, batch size = 32)
Loss Function Categorical Crossentropy

Table 3.5: Final Choice of Hyperparameters

3.3.4 Final Model Testing

Before deploying the model to the Finder OptaTM, a final testing phase is conducted:
the model performance is evaluated with the test set, the remaining 20% of the data
collected initially. This is necessary because, when tuning the model to accurately
classify both training and validation data, it may overfit the features of those two
datasets. Without a final unbiased testing phase, this would go undetected.

predictions = model.predict(inputs_test, batch_size=32, verbose=0)

The results of the test are summarized in a confusion matrix5 (Fig. 3.13): the
correct predictions are those on the diagonal, where the predicted label matches
the true one, while any wrong prediction shows up as an off-diagonal entry. The
accuracy achieved in the test is of 98.3%, with only one wrong prediction out of
the 60 test examples. This indicates that the model is not overfit, and that it has
learned to generalize the input features.
The choice of hyperparameters is thus validated, and it is possible to move to the
deployment phase.

5See Appendix B.3.3.
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Figure 3.13: Confusion Matrix - Test Set

3.4 Model Deployment to the Finder OptaTM

After successful testing, the model is ready to be deployed to the Finder OptaTM.
The first step involves its conversion to a TensorFlow Lite model, which can be
embedded in a header file once encoded as a byte array (see section 1.2.2). This is
then followed by the development of the Arduino application to sample the input
signal, run inference with the model, and visualize the output.

3.4.1 TensorFlow Lite Conversion
Recall that the objective is to store the model as a FlatBuffer, to reduce its size
for memory-constrained devices: the TensorFlow Lite Converter’s API facilitates
this operation with high-level functions, and also supports further optimization,
such as various levels of quantization (i.e. the representation of 32-bit floating-
point numbers as integers) [67]. The model is exported both with and without
quantization to analyze the process, and investigate the advantages and drawbacks.

# convert the model to TensorFlow Lite format - NO QUANTIZATION
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
# save to a file
open("waveform_model.tflite", "wb").write(tflite_model)

Post-training dynamic-range quantization is the most straightforward choice as it
requires no representative dataset for calibration, while resulting in little perfor-
mance degradation. It can be obtained selecting the default optimization strategy,
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tf.lite.Optimize.DEFAULT6, without further converter options.
Additional hints about how quantization is implemented, and the various alterna-
tives at one’s disposal, are available in the dedicated section below.

# convert the model to TensorFlow Lite format - QUANTIZATION
converter = tf.lite.TFLiteConverter.from_keras_model(model)
# the default optimization includes quantization
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_model = converter.convert() # convert

# save to a file
open("quantized_waveform_model.tflite", "wb").write(tflite_model)

The sizes of the two converted models are calculated to be 18.7 kB and 7.06 kB,
respectively: the advantages of using FlatBuffers as a serialization library are
evident from these figures, since the models can be stored in just a few kilobytes.
The effect of quantization is also significant, as it reduces the model size to less
than half, in addition to the improvements in inference speed due to the use of
integers in place of floating-point calculations.

Hints about quantization

The growing trend of deploying machine learning models to edge devices, with the
associated constraints in terms of memory, power and connectivity, has sparked
extensive research in the field of performance optimization.
While several approaches are available, like developing the model with a focus on
efficiency from the ground up, a more straightforward technique involves lowering
the precision requirements for the representation of weights and activations. This
is called quantization, and it entails replacing the standard 32-bit floating-point
representation of all parameters with 8-bit integers.
As summarized in a white paper by Krishnamoorthi (2018) [68], the many advan-
tages of quantization include broad applicability, since already-existing floating-
point models can be quantized without the need to retrain, smaller model size (by
a factor of 4, from 32 to 8 bits) with negligible loss in accuracy, lower RAM/cache
requirements, thereby freeing up resources for other processes and increasing sta-
bility, and faster computations, as integer operations are typically more efficient
(especially when the microprocessor lacks a dedicated hardware FPU).

The TensorFlow Lite Optimization toolkit7 supports various quantization tech-
niques, as well as other optimization methods such as pruning or clustering.

6https://www.tensorflow.org/api_docs/python/tf/lite/Optimize
7https://www.tensorflow.org/model_optimization
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This work focuses on the simplest and most immediate form, post-training quanti-
zation8, where an already trained model, that can take full advantage of all the
operations supported in TensorFlow, is converted to a smaller footprint. Post-
training quantization can be implemented with different methods, depending on
the sought level of optimization, the target hardware, and the availability of a
representative dataset:

• Dynamic-Range Quantization
Often the starting point, since it requires no representative dataset to
calibrate the range of the input values to the model, it consists in the
static conversion of the weights to 8-bit integers and in the dynamic
quantization of the activations, while still representing the outputs as
floats. This results in a latency that is slightly higher - but typically very
close - to full-integer quantization, with little performance degradation.

• Full-Integer Quantization
To further improve latency and achieve compatibility with integer-only
hardware, assuming that a representative dataset can be provided to the
TFLite Converter.

• Float-16 Quantization
An intermediate solution, not capable of achieving a latency as low as
with fixed-point operations, but useful in some specific applications.

If post-training quantization leads to unacceptable accuracy losses, quantization-
aware training9 may become necessary, with the associated changes to the model
structure and training process.

In conclusion, it is best practice to explore model optimization when addressing
microcontroller applications, as the gains in terms of performance usually far
outweigh the degradation in accuracy.

Conversion to a C file

As outlined in section 1.2.2, the final step before developing the Arduino application
to run inference involves encoding the model as an array of bytes, and storing it in
an Arduino header file that can be loaded directly into memory. The Unix tool
xxd10 can be used for this conversion.

8https://www.tensorflow.org/lite/performance/post_training_quantization
9https://www.tensorflow.org/model_optimization/guide/quantization/training

10https://linux.die.net/man/1/xxd
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!echo "const unsigned char model[] = {" > /content/model.h
!cat waveform_model.tflite | xxd -i >> /content/model.h
!echo "};" >> /content/model.h

The header files generated for the regular model and its quantized version are
115.4 kB and 43.55 kB, respectively. The Finder OptaTM PLC offers sufficient mem-
ory (2 MB of Flash - Table 2.1) to store them alongside the necessary infrastructure,
which is described in the next section.

The following snippet shows an example of model encoding as a byte array:
const unsigned char model[] = {

0x1c, 0x00, 0x00, 0x00, 0x54, 0x46, 0x4c, 0x33, 0x14, 0x00, 0x20, 0x00,
0x1c, 0x00, 0x18, 0x00, 0x14, 0x00, 0x10, 0x00, 0x0c, 0x00, 0x00, 0x00,
0x08, 0x00, 0x04, 0x00, 0x14, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00,
0x84, 0x00, 0x00, 0x00, 0xdc, 0x00, 0x00, 0x00, 0x84, 0x12, 0x00, 0x00,
0x94, 0x12, 0x00, 0x00, 0xf4, 0x1a, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00,
...
0x0c, 0x00, 0x00, 0x00, 0x72, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x72

};

3.4.2 Arduino Application
The embedded application running on the OptaTM is an Arduino sketch, built upon
the example templates provided by the TensorFlow Lite library. Its core is the
interpreter, that is responsible for running inference on the input data, employing
the model encoded in the header file. For the interpreter to function correctly, a
pre- and post-processing architecture must be implemented to transform the input
into a format compatible with the model, and resolve the output to make decisions
(in this case turn on/off some indicator lights). This section only provides a brief
overview of the required software11, with a more in-depth analysis and detailed
explanations available in the TinyML book by P. Warden and D. Situnayake [69].

TensorFlow Lite for Arduino Infrastructure

After including the model (model.h) and all the relevant dependencies from the
TFLite library, it is time to set up the infrastructure for the interpreter to run.

#include "model.h"

namespace { // to avoid conflicts with variables in other files

11See Appendix B.4 for the full application code.
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tflite::MicroErrorReporter tflErrorReporter;

const tflite::Model* tflModel = nullptr;
tflite::AllOpsResolver tflOpsResolver;
tflite::MicroInterpreter* tflInterpreter = nullptr;

TfLiteTensor* tflInputTensor = nullptr;
TfLiteTensor* tflOutputTensor = nullptr;

// allocate memory for the tensors
// (constexpr to evaluate the expression at compile time)
constexpr int tensorArenaSize = 6 * 1024;
byte tensorArena[tensorArenaSize] __attribute__((aligned(16)));

}

All the required objects are declared within a namespace to avoid potential conflicts
(they are still accessible by functions in the main .ino file). These include an
instance of tflite::MicroErrorReporter, which is only needed to construct the
interpreter object, since errors will be handled directly via serial communication12,
a pointer to the tflite::Model struct to reference the model, and an instance of
the tflite::AllOpsResolver class to grant the interpreter access to the required
operations. Two pointers to the input and output tensors are also defined, along
with the allocation of the required memory for the execution of the interpreter.
This step is critical since establishing the required amount beforehand is quite
challenging, and it is important to keep memory usage as low as possible due to
the RAM limitations in microcontroller applications. Through a process of trial
and error, it was determined that 6144 (6×1024) bytes are sufficient.

As in all Arduino sketches, the function setup() is executed only once at the
start of the program, and part of it is devoted to the configuration of the machine
learning infrastructure.

void setup() {
// map model into a usable data structure
tflModel = tflite::GetModel(model);
if (tflModel->version() != TFLITE_SCHEMA_VERSION) {

// raise error if model version is incompatible
Serial.print("ERROR: Model is schema version ");

12In the official TensorFlow Lite library for Arduino, the ErrorReporter class logs data via the
serial port, with a custom implementation of micro\arduino\debug_log.cpp. However, since
this file is absent from the version employed in this work, it is preferable to bypass ErrorReporter
entirely, and print the error messages directly.
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Serial.print(tflModel->version());
Serial.print(", not equal to supported version ");
Serial.println(TFLITE_SCHEMA_VERSION);

while(1); // endless loop to stop execution
}

The model is initially mapped to the tflite::Model struct, using the GetModel()
method, to be accessible by the interpreter. An error is raised if the model version
and the library are incompatible.

// build the interpreter to run the model
static tflite::MicroInterpreter static_interpreter(tflModel,

tflOpsResolver,tensorArena,tensorArenaSize,&tflErrorReporter);

The interpreter is then built passing all the previously declared objects to its con-
structor. Recall how tflErrorReporter was declared precisely with this purpose,
since it is not used as an error logging mechanism for the rest of the code.
Finally, the memory required by the tensors is allocated, with the two pointers
declared at the start linked to the actual input and output tensors (only one
input/output tensor is present, thus the index 0).

// allocate memory for the tensors
TfLiteStatus allocate_status = tflInterpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {

// raise error if allocation fails
Serial.print("ERROR: AllocateTensors() failed.");
while(1); // endless loop to stop execution

}

// obtain pointers to input and output tensors
tflInputTensor = tflInterpreter->input(0);
tflOutputTensor = tflInterpreter->output(0);

...
}

This concludes the setup for the TFLite library. It is now possible to store data in
the input tensor, invoke the interpreter, and extract the output.

Application Flowchart

Figure 3.14 presents the flowchart of the entire application, composed of the pre-
processing flow for the input signal, the inference with the model, and the output
handling to control the relays and associated indicator lights (see section 3.1.2).
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• Input pre-processing: this section of the algorithm must precisely replicate
the logic described in section 3.3.1 to acquire each instance of the training
dataset. In particular, 500 samples of the input signal are collected with a 5 ms
period, converted to millivolts, and normalized to the range [−0.5, 0.5], before
being stored in the input tensor. It is essential that the input format matches
the structure of the training examples, since this is what the MLP model has
learned to recognize during training. Any deviations in sampling time, number
of samples, or variable range could result in meaningless outputs.

Figure 3.14: Waveform Identification Application - Flowchart
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• Inference: once the input tensor is full (500 entries), it is possible to run
inference and classify the waveform.

• Output handling: the three output values, corresponding to the activations
of the neurons in the output layer, are transmitted to the serial port for
debugging purposes. Moreover, the greatest activation causes the associated
relay and indicator light to be energized in the test bench (Fig. 3.1), providing
a visual indication of the waveform type that was detected.

These three tasks are repeated in a loop every 5 seconds.

Application Code

The description of the application code, initiated earlier with the machine learning
infrastructure, can now be resumed.

In addition to defining all required global variables and constants, a char array
- WAVEFORMS[] - is introduced to map the indexes of the output tensors to the
corresponding classes.

/* ---- Configuration ---- */
unsigned long Ts = 5; // sample time [ms]
const uint8_t ANALOG_INPUT_RESOLUTION = 14;
// no. of samples to collect to run inference
const uint16_t NUM_SAMPLES = 500;
// time [in ms] to wait before new samples are collected
// for a new inference
const uint16_t delay_between_inferences_ms = 5000;
/* ----------------------- */

// variable to store time
unsigned long chrono = 0;

// keep track of the number of samples acquired
uint16_t samples_count = 0;

// mapping of the output of the model to a waveform type
const char* WAVEFORMS[] = {

"sine",
"triangular",
"square"

};
const uint8_t NUM_WAVEFORMS = sizeof(WAVEFORMS) / sizeof(WAVEFORMS[0]);

The configuration for the peripherals is then completed inside setup().
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The function loop() implements the logic outlined in the flowchart (Fig. 3.14).

void loop() {

float sample; // to hold the current sample

// check if enough samples have been collected to run inference
// (at least 500)
if (samples_count >= NUM_SAMPLES) {

...
} else if (millis() - chrono >= Ts) { // if elapsed time since the

// last recorded sample > sample time: record a new sample,
// normalize it, and store it in the input tensor

// acquire sample and convert to mV
sample = digitalSampleToMillivolts(analogRead(A0));

// normalize sample and save it in the input tensor
tflInputTensor->data.f[samples_count] = (sample-5000.0)/10000.0;

samples_count++; // record that a new sample has been collected
chrono = millis(); // save the time

}
}

The first action is to check whether the 500 samples of the input have been fully
collected: if this is not the case, which means some samples still need acquiring
to fill the input tensor, the program does so with built-in function analogRead(),
assuming the sampling time has elapsed since the previous acquisition. Each sample
is then converted to millivolts (digitalSampleToMillivolts()), normalized, and
stored in the input tensor.
The last operation is accomplished with the variable data of the tensor structure,
which is of type TfLitePtrUnion13. The pointer .f grants access to the allocated
memory location, since the model operates with float quantities.

Instead, when the input tensor contains the full 500 samples, the program is ready
to run inference by calling the Invoke() method of the interpreter. If this fails, an
error is raised and the program halted.

13TfLitePtrUnion is declared in src\tensorflow\lite\c\common.h. As a union, it allows
storing different data types at the same location in memory, a useful feature for tensors, as they
can vary in type. The members of the union are pointers to the memory locations allocated
during the declaration of the tensor [69].
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Otherwise, the machine learning model executes correctly, filling the output tensor
with the three output activations, that correspond to the confidence (or probability)
of the network in each waveform class. These are printed to the serial port.

if (samples_count >= NUM_SAMPLES) {
// invoke the interpreter to run inference
TfLiteStatus invokeStatus = tflInterpreter->Invoke();
if (invokeStatus != kTfLiteOk) {

// raise an error if invoke fails
Serial.println("ERROR: Invoke failed.");
while (1); // endless loop to stop execution

}

The index of the greatest activation, saved in max_confidence_index, represents
the prediction of waveform type (0→ sine, 1→ triangular, 2→ square).
As with the input tensor, each element of the output can be accessed with the
variable data, of type float.

uint8_t max_confidence_index;
float max_confidence_value;

// loop through the output tensor
for (uint8_t i = 0; i < NUM_WAVEFORMS; i++) {

// print the output values (probability of each class)
Serial.print(WAVEFORMS[i]);
Serial.print(": ");
Serial.println(tflOutputTensor->data.f[i], 4);

// record the maximum confidence value and its index
if ((tflOutputTensor->data.f[i]) > max_confidence_value) {

max_confidence_value = tflOutputTensor->data.f[i];
max_confidence_index = i; // store the index

}
}
Serial.println();

The predictions cause the respective relays to energize, controlling the three lights.

// turn on/off the output relays/leds depending on
// the class with max confidence
control_output_relays(max_confidence_index);

// built-in blue LED on when OPTA is paused
digitalWrite(LED_USER, HIGH);
delay(delay_between_inferences_ms); // pause for 5 seconds
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digitalWrite(LED_USER, LOW);

// reset the counter for the number of samples
samples_count = 0;
chrono = millis(); // save the time

} else if (millis() - chrono >= Ts) {
...

}
}

During the development of the application code, no mention was made to the
quantization (or lack thereof) of the model. The reason lies behind the method
that was selected, as dynamic-range quantization converts weights and activations
to perform fixed-point calculations during inference, but still uses a floating-point
representation for inputs and outputs. No change to the application code is therefore
required if the model is quantized, except for the header file to include.

#include "model_quantized.h"

3.4.3 Preliminary Application Unit Testing
Ahead of moving to the systematic testing of the deployed model (section 3.5), it
is good practice to validate the application to ensure no software fault is present.
However, since this case study has mainly a demonstration purpose, and robustness
of the code is not a priority, it is sufficient to rapidly verify that the input processing
and the output handling perform as expected, without developing a proper test set
of all the functions and conditions.

To this end, a 1 Hz sinusoidal input signal of random amplitude and offset, within
the 0 − 10 V range, is applied to pin I1. The serial port is then monitored to
analyze the output of the model:

sine: 0.9932
triangular: 0.0068
square: 0.0000

The application appears to work as expected, given the 99.32% probability that
the input is indeed sinusoidal. The output handling flow also shows the correct
behavior, with relay D0 energized and the corresponding white indicator light
illuminated (Fig. 3.15).

As soon as inference is complete, with the output printed on the serial port, the
blue LED on the OptaTM turns on, indicating that the system has paused. After 5
seconds, as expected, the OptaTM resumes operations with another inference.
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Figure 3.15: Application Preliminary Testing - Test Bench and Serial Port

The procedure above is then repeated for a triangular and a square input, with the
model correctly identifying their types (99.66% and 91.9% confidence respectively).
Despite this testing procedure being quite superficial, it rules out the presence of
any major software fault.

3.5 Overall System Testing
Once verified that the application behaves as expected, it is possible to move to
the last stage of the workflow: testing the performance of the deployed model, both
in its regular and quantized version. A systematic test set, composed of 20 inputs
per waveform type (total 60 - to mirror the test set employed during the model
evaluation - section 3.3.4 - and be able to compare the results), is designed to cover
the voltage range 0− 10 V, with signals of different amplitudes and offsets.

Figure 3.16: Example of triangular input signal
(amplitude = 6 V, offset = 5 V)
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Table 3.6 summarizes the results of the testing activity, by reporting the confidence
of the model in the correct labels, for both versions. Green values indicate correct
predictions, whereas the red ones are incorrect.
Both the quantized and non-quantized models exhibit an accuracy of 93.3%, with
negligible differences between them in terms of probabilities (the confusion matrix
in Fig. 3.17 is the same for both). This highlights the significance of quantization,
which resulted in a 50% model size reduction and improved inference speed, without
compromising the classification performance.

Figure 3.17: Confusion Matrix
Deployed Model Evaluation

A lower accuracy with respect to
the model testing phase directly in
Google Colab (98.3%, section 3.3.4)
is to be expected because of the con-
version to the TFLite for Arduino
format. However, it is interesting
to note how wrong predictions con-
sistently occur with low-amplitude
square inputs (mistaken for trian-
gular waveforms): this is a corner
case that, most likely, the model
has trouble treating due to an in-
complete/limited training dataset,
something not related to the deploy-
ment to the microcontroller. The
implementation of a more system-
atic training data collection procedure is one of the most effective actions to
mitigate issues like this, although the focus of this work is not on maximizing accu-
racy. Recall also how, in section 3.3, the size of the MLP model was intentionally
reduced, to the detriment of its ability to learn, and thus accuracy.

Finally, it is worth noting how all the requirements defined in section 3.1 were
successfully met: the recorded accuracy of 93.3% is greater than the 90% minimum,
with the size of the model and of the training dataset limited as much as possible.
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peak-to-peak amplitude [V]
2 3 4 5 6 9 2 3 4 5 6 9

off
se

t
[V

]

+1.5 76.7 - - - - - 85.6 - - - - -

+3.0 80.3 86.1 96.0 98.9 - - 86.6 98.1 98.4 98.5 - -

+4.5 79.8 89.6 99.6 99.9 99.9 100 69.1 91.8 99.2 99.2 99.6 99.6

+6.0 83.7 86.1 97.7 96.7 - - 69.1 91.8 98.5 99.4 - -

+7.5 82.9 85.2 90.0 95.8 - - 82.6 99.1 97.4 98.0 - -

+9.0 90.2 - - - - - 78.6 - - - - -

non-quantized model quantized model
(a) Sinusoidal Input Waveform - Confidence Percentage

peak-to-peak amplitude [V]
2 3 4 5 6 9 2 3 4 5 6 9

off
se

t
[V

]

+1.5 72.5 - - - - - 69.6 - - - - -

+3.0 85.7 90.2 96.5 97.5 - - 83.6 90.1 97.3 96.3 - -

+4.5 88.7 97.0 98.8 99.5 100 100 84.4 87.1 96.1 96.1 97.7 99.2

+6.0 81.2 99.1 99.4 98.6 - - 89.8 76.3 97.5 99.3 - -

+7.5 86.9 89.2 89.1 95.8 - - 82.6 90.2 93.4 95.0 - -

+9.0 70.0 - - - - - 68.6 - - - - -

non-quantized model quantized model
(b) Triangular Input Waveform - Confidence Percentage

peak-to-peak amplitude [V]
2 3 4 5 6 9 2 3 4 5 6 9

off
se

t
[V

]

+1.5 22.0 - - - - - 3.1 - - - - -

+3.0 8.4 89.2 95.6 98.5 - - 2.7 80.3 91.8 92.0 - -

+4.5 75.6 80.3 88.9 96.8 91.9 99.7 90.2 92.1 99.6 99.6 99.6 99.6

+6.0 62.3 87.9 88.0 94.5 - - 77.3 76.3 97.5 99.3 - -

+7.5 23.5 89.2 89.1 95.8 - - 5.5 90.2 93.4 95.0 - -

+9.0 2.1 - - - - - 0.3 - - - - -

non-quantized model quantized model
(c) Square Input Waveform - Confidence Percentage

Table 3.6: Waveform Identification - Deployed Model Testing
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3.6 Conclusions
The case study analyzed in this chapter illustrates the general workflow of a machine
learning application on the Finder OptaTM, providing some insight into how a simple
model can be configured, trained, tuned and deployed on a microcontroller, thereby
enabling increasingly intelligent industrial processes.

While investigating a simple example of Arduino infrastructure to acquire the
inputs, run inference with the model and handle its outputs, it was possible to show
how reducing the model size is essential for resource-constrained devices, and how
different techniques, such as the conversion to the TFLite format or quantization,
can be put in place to enable AI applications, with small compromises in terms of
accuracy.

All the requirements and goals defined at the start were successfully met, paving the
way for more advanced machine learning implementations, that push the boundaries
of the Finder OptaTM hardware, and provide the basis for innovative research in
the field of predictive maintenance.
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Chapter 4

Case Study II: Towards Predictive
Maintenance

In recent years, efforts have been made towards the integration of traditional
industrial processes with smart, digital environments, that allow the collection of
huge amounts of data regarding all aspects of the manufacturing cycle, in what
has been referred to as "The Fourth Industrial Revolution", or "Industry 4.0" [4].
In addition to enhancing the speed of information exchange between people, as
investigated by Rauch et al. (2020) [70], the digital revolution has allowed access
to invaluable data about the process dynamics, that, once analyzed with suit-
able analytical methods, provide advantages in terms of cost and fault reduction,
smaller inventories of spare parts, lower downtime, production volume increases
and improvements in operator safety (Sezer et al., 2018 [71]; Lee et al., 2006 [72]).
One promising approach that is becoming more and more relevant, as well as
familiar and accepted by the general public due to recent successes in AI-powered
generative chatbots (Hyesun Choung and Ross, 2023 [73]; Rane, 2023 [74]), is
machine learning. Thanks to the ability to handle complex, high-dimensional
data, and extract hidden relationships from seemingly unrelated sources, machine
learning can be an extremely useful prediction tool in this context, as investigated
by Thorsten Wuest and Thoben (2016) [75].
However, as discussed at length throughout this work, machine learning is very
costly in terms of computational resources, and typically requires a dedicated
central infrastructure and powerful hardware, which makes integration with already-
existing traditional production processes difficult, without significant investments
or architectural changes.
Therefore, the possibility of deploying machine learning models (especially neural
networks), albeit limited in size, directly to terminal devices like PLCs, which
already manage process control and access to the various sensors, offers several
advantages. These include eliminating the need for big centralized cloud infrastruc-
ture, enhancing data processing speed, ensuring better privacy and reducing costs,
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in what is emerging as a new paradigm called "edge computing" [76].
This case study aims to explore a preliminary application, setting the basis for
further research in this field. In particular, a machine learning model running on
the Finder OptaTM will be employed to infer the rotational speed of two radial ball
bearings, that support a rotating shaft mounted on a test bench. The input to the
model is constituted solely by a short audio recording, collected with an inexpensive
electret microphone. While it may seem pointless to employ such a convoluted
approach for something as trivial as measuring a rotational speed, it is important to
recall that the end goal is predictive maintenance in the context of the "Industry 4.0"
framework, where anomalous sound detection is a well-known technique, subject
of a large research effort, especially with the rise of deep learning [77]. Moreover,
the type of microphone in question is extremely cheap, readily-available, and easy
to install, where traditional speed sensors may be more challenging or costly to
integrate.
The system under consideration was not originally developed for this application,
but as a test bench for bearing lubrication (further details are available in section
4.3.1): this further exemplifies how such a monitoring methodology can be easily
retrofitted into an already-existing production line, with minimal costs.

4.1 Machine Learning applied to Predictive Main-
tenance

The key idea behind the "Industry 4.0" transformation is that the «manufacturing
industry needs to turn into predictive manufacturing», published by Lee et al.
(2013) [3]: historic data combined with domain knowledge can predict trends and
patterns in behavior, so as to improve any decision-making process.
One of the most impactful areas where to apply such methodologies is maintenance,
which represents 15 to 70% of the total manufacturing cost (Thomas and Weiss,
2021) [78], since accurately predicting the Remaining Useful Life1 (RUL) of an asset,
or similar metrics, can translate into an optimal operating efficiency, minimizing
downtime and associated costs.
Predictive maintenance is based on the continuous monitoring of a process, with
the collection of a wide range of data to detect the earliest signs of failure, in
order to perform maintenance only when needed. This represents an intermediate
and optimal strategy between the two other common kinds of maintenance, in
a classification proposed by Susto et al. (2012) [79]: "Run-To-Failure" (where
maintenance is carried out only when the machine stops working, thus resulting in

1Operational lifespan before a machine requires maintenance or replacement.
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unpredictable downtime) and "Preventive Maintenance" (purely based on time and
not on the actual conditions of the machine).
In predictive maintenance, on the basis of the available data, the state of a machine
can be estimated with statistical methods, which require a strong mathematical
background, model-based methods, though it is not straightforward to build ac-
curate representations of complex physical processes, or, more recently, machine
learning and deep neural networks. As mentioned in the introduction, the lat-
ter can handle complex multidimensional chaotic information, extracting hidden
relationships and exploiting readily available labeled data, that are common in
this field, for supervised learning [75]. All of these characteristics make them an
exceptionally promising tool, and it was estimated that machine learning strate-
gies applied to predictive maintenance have the potential to achieve an overall
equipment effectiveness2 above 90% [80] [81].
In a literature review by Carvalho et al. (2019) [82], it was noted how among all
machine learning methods, artificial neural networks (ANNs) stand out as the
most common and applied strategy, as they do not require any domain-specific
knowledge, they are robust against inconsistent data or in case of outliers, and
they can work in real-time, without an architectural change for every update of
the model. However, one significant disadvantage are the training and execution
costs, both in terms of data and time, not to mention the computational resources
that are required.
Therefore, investigating how to exploit the main advantages of ANNs, while reducing
their footprint in terms of resource utilization, is a worthy endeavor to widen the
applicability of predictive maintenance practices, and this is precisely the scope of
this work.
In the literature, several applications of artificial neural networks to predictive
maintenance can be found, with different methodologies and application fields.
Some notable examples, relevant for this work, include a deep learning approach to
estimate the RUL of rotating components (gears and bearings) by Deutsch and He
(2018) [81], a hierarchical deep CNN application to bearing fault diagnosis by Guo
et al. (2016) [83] and a novel "MI-YOLO" deep architecture for crack detection of
wind turbine blades by Xiaoxun et al. (2022) [84], among others.
While all of these studies have demonstrated the feasibility of employing deep
learning and ANNs in predictive maintenance, with satisfactory results in terms of
accuracy, little focus is put on optimizing the model size for execution on resource-
constrained hardware, such as microcontrollers or PLCs. Hopefully, this case study
can represent a preliminary step in this direction.

2The overall performance of a production resource or set of resources, be they human or
technical, during the time they are available to produce.
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4.1.1 Anomalous Sound Detection
The data analyzed with machine learning techniques, such as vibration information
from accelerometers, temperature measurements, electrical signals or historic failure
rates, just to name a few examples, can belong to a wide range of different domains.
This research focuses on acoustic data, sourced from an affordable electret mi-
crophone, within an area of predictive maintenance known as anomalous sound
detection [77].
Anomalous sound detection aims at identifying whether the sound emitted by
a machine is normal or abnormal, for early detection of malfunctions. Sound is
often a telling indication of the state of a system, and skilled technicians have
traditionally been able to detect anomalies by listening to the process noise [85].
However, since this is neither scalable nor systematic, and there is an increasing
need to automate repetitive human tasks, a large research effort has concentrated
on the issue in the last two decades [77].
Artificial intelligence has been promptly identified as one of the most promising
tools in this area, especially because collecting sound data for normal and anoma-
lous operations is relatively straightforward, and so is building large datasets for
supervised learning.
For instance, Tagawa et al. (2021) [86] suggest that acoustic detection of failures
is feasible with specialized deep learning techniques, even in noisy industrial
environments, and Soni et al. (2023) [87] have successfully applied anomalous sound
detection to predictive maintenance of vertical drilling machines.
Recent studies have also started investigating unsupervised models to recognize
anomalies, without a-priori knowledge (Wu et al., 2020 [88]; Ikegami et al., 2024
[89]).
The points outlined above justify the choice of acoustic data for the inference of the
speed. At present no malfunction is included in the experimental setup, but future
developments do include anomalous sound detection for predictive maintenance.

4.2 Edge Computing and Machine Learning
The last key aspect worth emphasizing is the aim to deploy the ANN for sound
recognition to a microcontroller-based device, such as the Finder OptaTM PLC.
Recent advances of the "Internet of Things" (IoT) have driven the development of
smart devices that can sense their environment thanks to a wide range of onboard
sensors, and transmit such data to a central cloud infrastructure for analysis and
decision-making [6]. The same trend can also be observed in manufacturing [90],
as discussed in section 4.1 within the context of Industry 4.0.
However, the reliance on a cloud infrastructure comes with several disadvantages in
terms of latency and bandwidth, since huge amounts of data need to be transmitted

66



4.3 – Test Bench Setup and Objectives

over long distances, energy consumption, and data privacy and security [8].
Technological improvements of microcontrollers, and machine learning optimization
advances, are enabling new computing paradigms aimed at addressing the afore-
mentioned issues, such as edge computing, which strives to bring data processing
closer to the source. Deploying machine learning models directly to the devices that
collect data and control the industrial process like PLCs, enables new real-time
applications (for example analytics models to monitor the state of a machine,
turning it off quickly in case of anomalies, thus preventing damage), that were
made impossible by the high latency of cloud-based architectures, in addition to
more efficient resource utilization and improved security [91].
Limitations in memory and power still represent a major challenge for the develop-
ment of edge computing, especially when machine learning is involved. Many hybrid
architectures are being investigated to circumvent the issue, such as training the
model on the cloud before deploying it to the edge device, or "Federated Learning",
proposed by Google in 2016 [92], where deep learning models are trained at the
edge, with the cloud serving as model aggregator. The former approach is the most
common and straightforward, and what will be employed in this work, though it
does present some drawbacks, especially when the model needs updating, since all
of the data need to be transferred to and from the cloud.
A final aspect, but just as important, is the cost-effectiveness of a fault diagnosis
system of this nature: no expensive infrastructure is involved, making retrofitting
into existing processes straightforward. This could foster adoption rates even in
smaller plants, or where it would not make financial sense to employ high-end
solutions, because of the type of technology (i.e. pneumatic systems, that are
known for their reliability - fault detection is critical - but low overall costs).

4.3 Test Bench Setup and Objectives

4.3.1 Test Bench
The experimental test bench (Fig. 4.3), originally developed for bearing lubrication
characterization, consists of a rotating shaft actuated by an asynchronous electric
motor, and supported by two radial rolling bearings. The axial bearing under
test, located at the leftmost end of the shaft and loaded thanks to a tie-rod, is
temporarily released for it to rotate freely.
Speed management for the motor is in place thanks to an inverter controlled with
a PID feedback strategy, and remotely commanded by an HMI, which is also in
charge of the data acquisition system (several temperature and vibration sensors
are mounted on the machine, but their output is neglected for this case study).
This setup was statically and dynamically tested for speeds in the range 100 −
1500 rpm, and though it was designed for faster speeds, 1500 rpm is set as the
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upper limit in this application to avoid noisy heat dissipation fans, and focus on
the sound emitted by the mechanical components.
The test bench is retrofitted with some application-specific instruments, as depicted
in the scheme of Fig. 4.4: the Finder OptaTM PLC to manage the collection of the
acoustic data for training, and later run inference with the machine learning model,
an electret microphone to capture the sound emitted by the rolling bearings, and
an inductive speed sensor to accurately label the training data.

Figure 4.1: Electret
Microphone with
Amplifier Circuit

Electret Microphone An electret microphone was
deemed an appropriate choice for this application because
of their wide availability on the market at low prices, and
satisfactory performance.
Their working principle is based on the varying electri-
cal capacity of a diaphragm, that is permanently charged
thanks to an electret (a dielectric material exhibiting quasi-
permanent electrical polarization, in analogy to a perma-
nent magnet) [93]. A small output voltage (10− 100 mV)
is generated as sound waves deform the diaphragm, thus
changing its capacity (∆V = Q/∆C).
To obtain a usable signal, a pre-amplifier stage must be
included between the microphone and the ADC of the
OptaTM: ideally, to minimize the quantization noise, the
input signal to the ADC shall maximize its input dynamics,
and thus be amplified to cover the 0−10 V range. However,
many electret microphones on the market for prototyping
applications include built-in amplification circuits up to
5/5.5 V: despite not maximizing the input dynamics of
the OptaTM analog pin, thus reducing the sensitivity of the
measurement, this would provide some amplification, while eliminating the need to
design and prototype a custom circuit, an acceptable trade off.
The selected model (Table 4.1) features a MAX44663 operational amplifier, a
version optimized to work as microphone pre-amplifier thanks to its optimal GBW
product4 to supply current, ability to work with low voltages, large PSRR5 and
rail-to-rail operations. The circuit is supplied with low-noise 5 V DC, close to the
upper limit for Vcc: the output signal features the same range, 0− 5 V, with the

3https://www.analog.com/media/en/technical-documentation/data-sheets/
MAX4465-MAX4469.pdf

4GBW Product: Gain-Bandwidth Product
5PSRR: Power Supply Rejection Ratio
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gain set to the maximum of 125x (42 dB), and a DC bias of about 2.5 V (Vcc/2).

Figure 4.2: Inductive
Proximity Sensor mounted

on the Test Bench

Inductive Proximity Switch (Speed Sen-
sor) An inductive proximity sensor, supplied
with 24 V DC, is deployed to detect the pas-
sage of a small magnet attached to the shaft,
for a reliable measurement of the rotational
speed. This kind of sensor works by detect-
ing the disruption in its electromagnetic field
caused by the presence of a foreign magnetic
object [94].
By averaging the number of detected passages
over a certain time interval ∆t, it is possible
to derive the mean rotational speed:

navg = no. of detected passages
∆t

The measurements of the average speed are
employed as labels for the training data during
supervised learning, and as reference during
model validation.

A plexiglas enclosure protects the operator
from the rotating machinery, while also serving
as weak acoustic insulation from foreign noise. Note, however, that the test bench is
located in a busy industrial laboratory, where noise generated by other machinery,
and thus external to the system, is very prevalent. This makes it a suitable
environment to evaluate the applicability of the machine learning model to a real
industrial application.

Instrument Model Qty.
PLC Finder OptaTM Wi-Fi 1

Regulated DC Power Supply Voltcraft FSP1243 1
Adjustable DC Power Supply Voltcraft LPS1305 1

Electret Microphone ARCELI GY-MAX4466 1
Inductive Proximity Switch - 1

Table 4.1: Case Study II - List of Instruments
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Figure 4.3: Test Bench

Figure 4.4: Test Bench Schematic

4.3.2 Requirements
The general requirements and settings for this case study were outlined in the
introductory sections above. It is important, however, to quantify such requirements,
to be able to evaluate performance down the line.
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1. Infer the rotational speed of the system with a maximum average error of
±50 rpm, within the range 200− 1500 rpm.

2. Validate the robustness of the system by ensuring that the maximum inference
error does not increase beyond ±200 rpm, when disturbance noise is present.

These requirements are quite mild, with relatively large errors (compared to
traditional rotational speed sensors, whose average accuracy can vary, but it
typically ranges between 1% and 5% [95]): the focus of this case study is not on the
accuracy of the speed measurement itself, but on demonstrating the feasibility of the
method, and as a building block towards predictive maintenance on microcontrollers.

Note: this case study involves a single final testing phase (section 4.7), with the presence of
regular background noise and artificially-introduced disturbances, for validation of requirement
1. Instead, the systematic evaluation of the error due to specific disturbances of different types
and intensity will be the subject of a later study.

4.4 Workflow
The general workflow that was detailed in section 3.2 can be applied, largely
unchanged, to this case study as well, as it constitutes the backbone of any machine
learning problem. Figure 4.5 recalls the main three stages: the creation of the
neural network model in Google Colab with TensorFlow, the development of the
embedded application for the Finder OptaTM and the final testing.

Figure 4.5: Workflow Overview

It is nevertheless worth investigating some peculiarities, that are specific to this
case study, to have a clear picture of the entire architecture before moving forward.
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Training Dataset and Model Input The input to the model is a short audio
recording of the system during operations, captured via the electret microphone.
While it would be conceivable to feed the model the raw voltage signal sampled
by the PLC, extracting meaningful features would pose quite a big challenge for a
small network. Instead, a common approach in audio recognition is providing a
spectrogram as input, i.e. a 2D representation of the frequency spectrum of the
signal over time, a higher-layer abstraction with the most useful information [96].
The training data collection is thus more involved than in Case Study I, with the
need to compute the spectrogram of each training example directly on device.

Machine Learning Model Architecture A regular MLP model is not suitable
for audio or image recognition because of its inability to work with multidimensional
tensors and recognize the relationships between groups of adjacent pixels. Instead,
as covered in section 1.1.2, Convolutional Neural Networks were developed precisely
for such purpose, as they can learn how simple features of a multidimensional
tensor fit together into more complex structures, aiding in the interpretation of the
frequency information contained in the spectrogram. A CNN is therefore the most
natural choice here [96], and Section 4.5.2 goes into details about its configuration.
Another notable difference with respect to Case Study I is the type of problem that
is addressed: the output is not a class probability, as in multi-class classification,
but a continuous value representing a physical quantity, a velocity. These are
referred to as regression problems.

Robustness The final testing needs to focus not only on the nominal functionality,
but also on robustness of the inference, as foreign and unpredictable noise is to be
expected on a plant floor. One of the key advantages of neural networks is their
ability to reject outliers, but it is nonetheless important to quantitatively evaluate
this aspect, and possibly include hard-coded strategies to improve on it even more,
as will be discussed during the development of the output handling flow of the
embedded application (section 4.6.2).

4.5 Building a Neural Network

4.5.1 Training Data Collection
As introduced in section 4.4, extracting useful features from a raw audio recording
(Fig. 4.6) would be ambitious for a small neural network. A spectrogram represen-
tation is employed instead, a higher-level abstraction of the frequency information
in the audio signal.
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The training dataset must be comprised of a sufficient number of training examples
(spectrograms), covering the entire range of interest (200−1500 rpm), and collected
in different conditions (at different times of the day, and over several days, to ensure
they are representative of all working conditions of the system).
During the development process, it was found that subdividing the speed range at
increments of 50 rpm, and collecting 50 spectrogram examples for each speed label,
strikes a good balance between performance and dataset size (since larger datasets
are associated with higher costs).

Note, however, that the actual speed of each example is measured alongside the
spectrogram with the inductive proximity sensor, and thus it may differ slightly
from the nominal label.

Figure 4.6: Microphone Voltage Output

Spectrogram

A spectrogram is a 2D representation of the frequency spectrum of a signal with
respect to time. Fig 4.7 shows an example, depicted as a heatmap, with time on the
ordinate axis and the frequency bins on the abscissa. The color intensity represents
the amplitude of each frequency component at a certain time.
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Starting from the time-domain sampled signal out of the PLC ADC, the spectrogram
can be created using the discrete Fourier transform, computed on-device via the
Fast Fourier transform (FFT) algorithm [97].

Figure 4.7: Spectrogram Example

Before analyzing the application, a few
design choices regarding the sampling
frequency and the size of the spectro-
gram need to be addressed.
The hardware limitations of the OptaTM

in terms of memory are highly restric-
tive, with the CNN model that will be
developed approaching the limit of what
can be handled. The dimension of the
input spectrogram is one of the most
critical factors in this regard, since it
affects both the model size and the mem-
ory required to store the input tensor.
With a careful trial and error procedure,
it was determined that 256×32 are op-
timal dimensions, that maximize the
use of memory while resulting in mod-
els that could consistently be executed.

Figure 4.8: Spectrogram
Dimensions

These dimensions constrain the audio signal size to
256×32 = 8192 samples, with the frequency range
of interest divided into 32 frequency bins.
The sampling frequency is the last item to design,
and it determines how the audio signal is recon-
structed and its duration in time. The audible au-
dio spectrum is 20 Hz− 20 kHz, therefore, following
the Nyquist sampling theorem to avoid aliasing, the
most common audio sampling frequency is 44.1 kHz
[98]. However, such a large frequency would result
in sound recordings just 8192/44.1 kHz = 0.19 s
long, with the risk of not capturing the dynamics of
the system, since the time constant is of the order of
a few seconds. Moreover, the goal is not accurately
reconstructing the recorded audio, but capturing
the most fundamental frequencies associated to the
rotation of the bearings, so that the model can learn a correlation to the speed. This
led to the selection of a sampling rate of 5000 Hz, which yields audio recordings
that are 8192/5 kHz = 1.64 s long, and cover the fundamental frequencies of the
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bearings of the test bench6.

Arduino Application

Fig. 4.9 shows how the Arduino application employed to collect each spectrogram
is split into three main tasks.

1. Measure the speed of the shaft with the inductive proximity sensor, by av-
eraging the number of magnet detections over 10 s, to obtain a label for the
training example.

Figure 4.9: Training Data Collection - Flowchart

6Bearing Unit Dodge P2B-GTMAH-50M
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2. Record the 8192 samples of the audio signal with a sampling rate of 5000 Hz,
and convert the digital samples to millivolts.

3. Loop through recorded samples, computing the FFT over 32 samples at a
time (one row of the final spectrogram), and log the magnitudes to the serial
port, along with the raw voltage samples and the measured speed; repeat until
the spectrogram is complete (256 rows processed).

The key sections of the Arduino application deployed to the Finder OptaTM are
discussed below, with the entire code reported in the Appendix (C.5.1) for reference.
The setup() function establishes serial communication for logging, and it configures
the required input pins (A0 digital, A1 analog, 16-bit resolution). Moreover, it
associates a hardware interrupt to the falling edge of pin A0.

void setup() {

...

// configure interrupt (pin A0) for falling edge of velocity sensor
attachInterrupt(digitalPinToInterrupt(A0),

count_magnet_detections_ISR, FALLING);
}

The inductive proximity sensor is digital, with its output HIGH (24 V) when a
magnetic object is detected, and LOW otherwise: an interrupt service routine (ISR),
triggered when a falling edge of the signal is recognized (pin A0), updates a counter
to keep track of the number of magnet detections, and thus compute the average
speed. Note that the sensor signal is affected by bouncing7: a software debouncing
strategy is implemented, whereby the program waits for 50 ms before any new
update to the counter. This time period was empirically found to be sufficient for
the transient of the switch to be over.

// counter for number of magnet detections
// (volatile because updated inside ISR)
volatile uint32_t magnet_detections = 0;

/* Interrupt Service Routine (ISR) linked to falling edge of
* velocity sensor (magnetic) -> increase counter after
* debouncing */
void count_magnet_detections_ISR() {

// debouncing

7A non-ideal behavior of real switches, that results in multiple transitions out of a single input.
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if (millis() - last_detection_time > kDebounceInterval_ms) {
magnet_detections++; // update counter
last_detection_time = millis(); // record current time

}
}

The loop() function implements the three tasks outlined in the flowchart.
First, the average velocity is calculated by dividing the number of magnet detections
by the elapsed time (≈ 10 s):

// compute the average velocity [rpm]
velocity = magnet_detections*60000 / (millis()-chrono_velocity);

Then, the audio signal is sampled at 5000 Hz and converted to millivolts:

// collect kNumCols*kNumRows=8192 samples of the microphone signal
while(i < (kNumCols * kNumRows)) {

if (micros() - chrono >= kSamplingPeriod_us) {
/* If a time > sample time has passed since the last sample
* that was recorded -> record a new sample
* and store it into the tempSamples vector,
* after the conversion to millivolts */

sample = digitalSampleToMillivolts(analogRead(A1));
tempSamples[i] = sample;

i++;
chrono = micros(); // record the time

}
}

The final step involves the computation of the spectrogram with the FFT algorithm:
an Arduino library, arduinoFFT8, provides ready-to-use functions for this purpose.
The FFT is computed over 32 samples at a time: two vectors of length 32 are
defined to store the real and imaginary parts of the output. Then, these are passed
to the constructor of a ArduinoFFT object, as required by the library. All quantities
are encoded with double precision (64-bit floating point numbers) for improved
numerical accuracy in the FFT.

// spectrogram dimensions
const uint32_t kNumCols = 32; // number of columns
const uint32_t kNumRows = 256; // number of rows

8arduinoFFT library documentation: https://github.com/kosme/arduinoFFT
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// sampling rate of microphone signal
const double kSamplingFrequency_Hz = 5000.0;

double vReal[kNumCols];
double vImag[kNumCols];

// create FFT object
ArduinoFFT<double> FFT = ArduinoFFT<double>(vReal, vImag,

kNumCols, kSamplingFrequency_Hz);

Inside loop(), the FFT is repeatedly computed over the 32 audio samples that are
stored in the vector vReal, until the whole spectrogram is complete. The Hann
window function is applied to avoid spectral leakage9, since it provides good overall
performance [99]. Finally, the magnitudes of the complex output are computed to
be logged to the serial port.

// run row-wise FFT and print the output to the serial port
for (uint16_t j = 0; j < kNumRows; j++) { // loop through the rows

for (i = 0; i < kNumCols; i++) { // loop through the columns
vReal[i] = tempSamples[j*kNumCols + i];
vImag[i] = 0;
}

// run FFT
FFT.dcRemoval(); // remove offset
// Hann window function
FFT.windowing(FFTWindow::Hann, FFTDirection::Forward);
FFT.compute(FFTDirection::Forward);
FFT.complexToMagnitude(); // convert real/imag part to magnitude

...
}

}

The training dataset of 1350 spectrograms, collected with the application code
above by recording the audio of the machine in different working conditions, is
stored in 27 .csv files, one for each speed label. The double precision values are
stored with 4 decimal places.

9When the signal under analysis with the FFT is not an integer multiple of the period, the
sharp transitions at the two ends result in discontinuities and thus in high-frequency components
in the spectrum. To avoid this effect, the signal can be multiplied by a window function with an
amplitude that smoothly reaches 0 at the edges, thus preventing the sharp discontinuity.

78



4.5 – Building a Neural Network

Data Processing

Figure 4.10: Example
of csv dataset file

Following the same procedure employed for the pre-
vious case study (section 3.3.1), the dataset is pro-
cessed in Google Colab by parsing the .csv files,
and building the "inputs" and "outputs" numpy
arrays to feed to the model for training (see Ap-
pendix C.5.1).
In this application, the input to the model is a 2-
dimensional tensor, a matrix, therefore "inputs" is
a 3D tensor of dimensions 1350×256×32 (1350 train-
ing examples, each 256×32), and "outputs" a 1D
array of length 1350 containing the speed labels, this
being a regression problem and not classification.
At last, the dataset is randomly split into a training, a validation and a test set,
with a 70% / 15% / 15% ratio, as more data is available.

4.5.2 Machine Learning Model Configuration
As introduced in section 4.4, convolutional neural networks (CNNs) are the most
appropriate to handle multidimensional data like spectrograms, while maintaining
the spatial relationships between features.
Designing and tuning a neural network architecture is a highly empirical process,
especially when hard performance and memory constraints impose that the model
is not too large nor too complex, for deployment to a microcontroller-based device.
The neural network described in this section is the result of a lengthy and careful
design process, during which multiple architectures were compared, striving for the
best trade-off between performance and complexity. The goal, however, is to lay
the foundations for future research in the field of predictive maintenance, and not
to maximize accuracy.
The CNN can be constructed with the Sequential Keras API, since only a single
input and output tensor are required for each layer. The input to the model is a
two-dimensional 32×256 tensor, while the output layer comprises a single neuron,
whose activation represents the speed prediction, as this is a regression problem.
As discussed in section 3.3.2, one of the most common activation functions nowadays
is the ReLU, or rectified linear unit. This is especially true for CNNs, where its
low computational complexity and cleanly-defined gradients provide significant
advantages in terms of training speed and accuracy [100].
The ReLU is therefore the choice for all layers of the network, including the output,
where it is particularly appropriate since it leaves positive speeds unaltered (y = x,
for x ≥ 0), and brings negative predictions, which are unphysical, to zero.
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import tensorflow as tf
from tensorflow import keras

# build the model and train it
model = keras.Sequential(

[
# maintain the input dimensions, without flattening
keras.Input(shape=(NUM_ROWS, NUM_COLS, 1)),
.
.
.
keras.layers.Dense(1, activation='relu') # output layer

]
)

Three 2D convolutional layers are employed to extract the high-level features from
the spectrograms. Each layer, defined with the keras.layers.Conv2D()10 class,
is composed of 32 filters for the convolution, striding one pixel at a time. The filter
size (kernel_size) is decreased the deeper into the network for improved accuracy,
and to maintain compatible dimensions with the layers as they are downsampled
by three MaxPooling2D() operations, that halve the size of the input.
The structure is completed with two hidden fully-connected layers of 64 and 32
nodes respectively, that predict the speed on the basis of the features extracted by
the convolutional layers.

model = keras.Sequential(
[

# maintain the input dimensions, without flattening
keras.Input(shape=(NUM_ROWS, NUM_COLS, 1)),
keras.layers.Conv2D(32, kernel_size=(9,9), padding='same',

strides=1, activation='relu'),
keras.layers.MaxPooling2D(),
keras.layers.Conv2D(32, kernel_size=(5,5), padding='valid',

strides=1, activation='relu'),
keras.layers.MaxPooling2D(),
keras.layers.Conv2D(32, kernel_size=(3,3), padding='valid',

strides=1, activation='relu'),
keras.layers.MaxPooling2D(),

keras.layers.Flatten(), # flatten to 1D for the Dense layers
keras.layers.Dense(64, activation='relu'),

10Documentation for all Keras classes is available at https://keras.io/api/
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keras.layers.Dense(32, activation='relu'),
keras.layers.Dense(1, activation='relu') # output layer

]
)

Figure 4.11: CNN Model Architecture11

After the definition of its structure, the model requires compiling by selecting the
loss function for training and the optimization algorithm.

Loss Function

In the context of regression problems, the most common loss functions are the
Mean Squared Error (MSE) and the Mean Absolute Error (MAE) [102]:

MSE = 1
n

n∑︂
i=1

(yi − ŷi)2 MAE = 1
n

n∑︂
i=1
|yi − ŷi|

where n is the number of predictions, yi the true values, and ŷi the predicted ones

11The illustration was created with Gavrikov’s utility visualkeras (2020) [101].
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The former is the preferred loss under the maximum likelihood statistical framework,
when the random variable under consideration features a normal distribution.
However, this assumption rarely holds in practice, and the squaring operation
assigns more importance to larger errors, which could be the result of outliers
in the dataset: due to the nature of the application, it is reasonable to expect a
significant presence of outliers, as the microphone picks up noise external to the
machine. For this reason, the second option of loss function, the Mean Absolute
Error, is employed here, since the lack of a squaring operation makes it more robust
to values that are far from the mean.

Optimization Algorithm

The previous case study (section 3.3.2) highlighted the effectiveness of Adam [21]
for stochastic gradient descent, thus making it the default choice when selecting
the optimization algorithm for this application as well.

model.compile(loss=keras.losses.MeanAbsoluteError(),
optimizer=keras.optimizers.Adam(), metrics=['mse','mae'])

4.5.3 Model Training and Performance Evaluation
Supervised training is carried out in Google Colab with a GPU runtime, optimizing
the parameters of the CNN over the 950 randomly selected spectrograms that make
up the training set.
Since models often benefit from a reduction in learning rate when one or more
training metrics stagnate [103], the callback ReduceLROnPlateau is included. This
monitors the MAE calculated over the validation set, and reduces the learning rate
by a factor of 1.25 if no improvement is observed after five epochs, from the initial
value of 0.001.

rlronp=keras.callbacks.ReduceLROnPlateau(monitor="val_mae",factor=0.8,
patience=5, verbose=1)

history = model.fit(inputs_train, outputs_train, epochs=80,
batch_size=32, callbacks=[rlronp],
validation_data=(inputs_validate, outputs_validate))

The training and validation loss curves (Fig. 4.12) show a rapid decrease during
the first 10/20 epochs, with the error stabilizing around 30 rpm on the validation
dataset, and 10 rpm on the training set, after 60 epochs. Large oscillations can be
observed in the initial stages, because of the higher learning rate.
This figure validates the CNN design as the final accuracy is well within the
requirements set out in section 4.3 (maximum prediction error ±50 rpm), and
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the loss appears to have converged. Though no significant overfitting is present,
training was also repeated with a L2 regularization term in the cost function, which,
however, resulted in no appreciable improvement in terms of variance.

Figure 4.12: Training and Validation Loss

Figure 4.13: Learning Rate Decay

Importance of the Spectrogram Representation

To highlight the importance of encoding the audio data as a spectrogram, despite
the code overhead that this entails, training is repeated with a dataset composed of
the raw voltage recordings. The CNN needs to be modified accordingly, substituting
all Conv2D and MaxPooling2D layers with Conv1D and MaxPooling1D.
From figure 4.14 it is immediate to conclude that the generalization ability of the
resulting model is much worse, with the MAE calculated over the validation set
plateauing at 100 rpm, indicating a large variance.
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Figure 4.14: Training and Validation Loss - Raw Voltage

However, thanks to the ability of convolutional neural networks to maintain the
temporal relationships between samples, these results are not completely without
merit, and it is likely that they could be improved with a deeper network.

Final Model Testing

Moving back to the CNN trained to recognize the spectrogram of the audio signal, a
final performance evaluation phase is conducted over the test dataset, the remaining
15% of the collected spectrograms, before deployment to the Finder OptaTM.
The resulting mean absolute error of 28.7 rpm confirms the model’s ability to
generalize to unknown inputs, and ensures that no overfitting of the validation set
was inadvertently introduced when tuning the hyperparameters.

Training Set Validation Set Test Set
MAE [Loss] 10.8 rpm 30.5 rpm 28.7 rpm

MSE 208.3 rpm2 1627 rpm2 1575 rpm2

Table 4.2: Evaluation metrics

4.6 Model Deployment to the Finder OptaTM

To deploy the trained convolutional neural network to the Finder OptaTM PLC, it
requires conversion to the TensorFlow Lite format for size reduction and optimiza-
tion (section 1.2.2). Alongside this process, the embedded application to acquire
the audio samples, compute their spectrograms and run inference with the model
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needs to be designed, building on the infrastructure discussed in section 3.4.2, and
on the application for the training data collection in section 4.5.1.

4.6.1 TensorFlow Lite Conversion
Thanks to the TensorFlow Lite Converter’s Python API, the model can be encoded
as a FlatBuffer, applying post-training full-integer quantization to achieve a smaller
footprint in terms of memory and resource utilization. Unlike the model employed
for case study I, the convolutional neural network for sound recognition approaches
the limitations of the Finder OptaTM hardware, and deployment would not be
feasible without converting all floating-point quantities to fixed-point integers.

# convert the model to the TensorFlow Lite format with QUANTIZATION
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]

Full-integer quantization requires a representative dataset, to estimate the typical
range of variation of the variables involved. To this end, it is convenient to provide
the converter with the test dataset, defining function representative_dataset_
generator(), as it contains a sufficient number of examples to completely charac-
terize the input.

# provide the test set as representative dataset (15% of the data)
def representative_dataset_generator():

for example in inputs_test:
yield [np.array(example, dtype=np.float32,

ndmin=4).reshape((1,NUM_ROWS,NUM_COLS,1))]

converter.representative_dataset = representative_dataset_generator
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS,

tf.lite.OpsSet.TFLITE_BUILTINS_INT8]

Lastly, int8 (fixed-point 8-bit integer) is specified as the target datatype for all
internal quantities, while float32 are still used for the input and output tensors.
This ensures better future compatibility with traditional applications, as float32
is the most common type for tensors, and the Finder OptaTM is not limited to
integer-only operations.

# full-integer quantization: only int8
converter.target_spec.supported_types = [tf.int8]
# set both input and output tensors to float32
converter.inference_input_type = tf.float32
converter.inference_output_type = tf.float32

85



Case Study II: Towards Predictive Maintenance

The model can be finally converted with the specified optimization, and saved as a
byte array to be embedded in an Arduino header file. The resulting size is 1 029 kB,
which leaves just enough memory available for the rest of the code.

tflite_model = converter.convert() # perform conversion

# save to a file
open("model.tflite", "wb").write(tflite_model)

!echo "const unsigned char model[] = {" > /content/model.h
!cat model.tflite | xxd -i >> /content/model.h
!echo "};" >> /content/model.h

4.6.2 Arduino Application
Following the same steps taken in section 3.4.2, it is now time to develop the
embedded Arduino application to run inference with the model. As usual, it must
include the infrastructure required by the TensorFlow Lite library for the interpreter
to execute, along with the pre-processing architecture to sample the audio signal
and compute its spectrogram, and the post-processing flow to analyze the output
of the model.

TensorFlow Lite for Arduino Infrastructure

The discussion about the basic TensorFlow Lite for Arduino infrastructure is
available in section 3.4.2, and thus is not repeated here. The entire code is reported
in the Appendix C.6 for reference.
The only difference with respect to the previous case study is the amount of
memory allocated for the tensor operations. The input, in particular, takes up a
large amount of space, since it is made of 8192 floating-point values in a 2D array.
By trial and error, it was determined that 358.4 kB are sufficient, with this amount
being just short of the maximum memory available (recall how the choice of the
spectrogram size in section 4.5.1 was made with such memory limitations in mind).

constexpr int tensorArenaSize = 350 * 1024; // 358.4 kB
byte tensorArena[tensorArenaSize] __attribute__((aligned(16)));

Application Flowchart

Figure 4.15 reports the flowchart of the application, that includes the input pre-
processing flow, matching the algorithm employed in the training data collection
(Fig. 4.9), the inference with the model, and the output handling architecture.
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Figure 4.15: Arduino Application Flowchart

Input Pre-Processing: this part of the algorithm replicates exactly the proce-
dure employed in the training data collection (section 4.5.1), sampling the audio
signal and computing its spectrogram with the FFT to feed to the model. The
same sampling frequency (5000 Hz) and spectrogram dimensions (32×256) of the
training dataset are mandatory for coherent inferences.
Measuring the speed of the shaft with the magnetic sensor is no longer a part of
the "official" flowchart, since it is the model’s job to output the speed. However,
the speed sensor remains a useful tool for debugging purposes and to estimate the
final accuracy of this experiment.

Output Handling: the output tensor contains a single value, which represents
the "instantaneous" speed inference in rpm. In principle, no other operation, other
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than transmitting it to the serial port, is required. However, to improve robustness
to temporary glitches in the input data, that could be the result of foreign noise on
the plant floor, it is advantageous to calculate the average inference over a certain
time frame (10 seconds), in order to smooth out any disturbance.

Application Code

The code starts off with the same configuration of the training data collection,
since the ArduinoFFT library is employed again to compute the spectrogram.
The code to acquire the speed measurements from the inductive sensor is maintained,
to later evaluate the performance of the neural network.

/* ---- CONFIGURATION ---- */
const uint8_t kAnalogReadResolution = 16; // resolution of A1

// time interval to average the speed measurement
const unsigned long kVelocityCalculationInterval_ms = 10000;
// debouncing time of the magnetic digital speed sensor in ms
const unsigned long kDebounceInterval_ms = 50;

// spectrogram dimensions
const uint32_t kNumCols = 32; // number of columns
const uint32_t kNumRows = 256; // number of rows

// sampling time of microphone signal
const double kSamplingFrequency_Hz = 5000.0;
unsigned int kSamplingPeriod_us = 200;

/* ------------------------ */

// variables to store time
unsigned long chrono; // sample microphone signal
unsigned long chrono_velocity; // sample speed sensor signal
// for debouncing of speed sensor
unsigned long last_detection_time = 0;

// counter for number of magnet detections
// (volatile because updated inside ISR)
volatile uint32_t magnet_detections = 0;

// to perform the average of multiple inferences
double running_sum; // sum for the avg
uint32_t sum_elements_count; // number of entries for the avg

// vectors to store the raw microphone samples and the complex
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// number after FFT (real/imag parts)
double tempSamples[kNumCols * kNumRows];
double vReal[kNumCols];
double vImag[kNumCols];

// create FFT object
ArduinoFFT<double> FFT = ArduinoFFT<double>(vReal, vImag,

kNumCols, kSamplingFrequency);

As usual, the setup() function instantiates the neural network model stored as
a byte array in model.h, builds the interpreter and allocates the memory for the
tensor operations, before configuring the input pins A0 and A1, along with the
interrupt to acquire the speed measurements from the inductive sensor.

void setup() {
// initialize serial communication
Serial.begin(115200);
while(!Serial); // wait for serial port

/* ---- Setup the Machine Learning Infrastructure ---- */
// map model into a usable data structure
tflModel = tflite::GetModel(model);
if (tflModel->version() != TFLITE_SCHEMA_VERSION) {

// raise error if model version is incompatible
Serial.print("ERROR: Model is schema version ");
Serial.print(tflModel->version());
Serial.print(", not equal to supported version ");
Serial.println(TFLITE_SCHEMA_VERSION);

while(1); // endless loop to stop execution
}

// build the interpreter to run the model
static tflite::MicroInterpreter static_interpreter(tflModel,
tflOpsResolver,tensorArena,tensorArenaSize, &tflErrorReporter);
tflInterpreter = &static_interpreter;

// allocate memory for the tensors
TfLiteStatus allocate_status = tflInterpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {

// raise error if allocation fails
Serial.print("ERROR: AllocateTensors() failed.");
while(1); // endless loop to stop execution

}
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// obtain pointers to input and output tensors
tflInputTensor = tflInterpreter->input(0);
tflOutputTensor = tflInterpreter->output(0);

/* ---- Setup the Arduino Peripherals ---- */
pinMode(A0, INPUT); // A0 -> digital input port for velocity sensor
pinMode(A1, INPUT); // A1 -> analog input port for microphone signal
analogReadResolution(kAnalogReadResolution);

// configure interrupt for pin A0 to detect
// falling edge of velocity sensor
attachInterrupt(digitalPinToInterrupt(A0),

count_magnet_detections_ISR, FALLING);
}

The loop() function implements the three main tasks outlined in the flowchart:
the input pre-processing, the inference, and the output handling.
At each iteration, the function first checks whether 10 seconds have elapsed since
the last output to the serial port: if this is the case, it needs to compute a new
average, by taking the ratio of the sum of the inferences in the last 10 seconds
(running_sum) to how many of them have been output by the neural network
(sum_elements_count). To evaluate the accuracy, the average speed measured by
the inductive proximity sensor is calculated at the same time (thus also over 10 s),
and transmitted to the serial port.

void loop() {

double sample;
uint16_t speed;

uint16_t i = 0; // counter for the number of microphone samples

// if more than 10s have elapsed from last output: record the speed
// measurement from the sensor for debugging, print the average of
// the inferences over the 10s, and reset the average
if (millis() - chrono_velocity > kVelocityCalculationInterval_ms) {

// debugging: record the current speed
speed = compute_velocity();

// log actual and average predicted speed to serial port
Serial.print("Average predicted speed: ");
Serial.print(running_sum / sum_elements_count); // compute average
Serial.println(" rpm");
Serial.print("Measured speed: ");
Serial.print(speed);

90



4.6 – Model Deployment to the Finder OptaTM

Serial.println(" rpm");
Serial.println();

// initialize average
running_sum = 0;
sum_elements_count = 0;

}

The following section of code matches the input pre-processing implemented for the
training data collection (section 4.5.1), with the sampling of the audio signal, and
calculation of the FFT. However, instead of transmitting the resulting spectrogram
to the serial port, it is saved, one row at a time, to the input tensor via its data
variable, accessing the memory reserved for floating-point quantities (.f): recall
how the model was quantized to use integer values internally, but the input and
output tensor maintain a float32 representation.

// collect kNumCols*kNumRows=8192 samples of the microphone signal
while(i < (kNumCols * kNumRows)) {

if (micros() - chrono >= kSamplingPeriod_us) {
/* If a time > sample time has passed since the last sample
* that was recorded -> record a new sample
* and store it into the tempSamples vector,
* after the conversion to millivolts */
sample = digitalSampleToMillivolts(analogRead(A1));
tempSamples[i] = sample;

i++;
chrono = micros(); // record the time

}
}

// run row-wise FFT
for (uint16_t j = 0; j < kNumRows; j++) { // loop through the rows

for (i = 0; i < kNumCols; i++) { // loop through the columns
vReal[i] = tempSamples[j*kNumCols + i];
vImag[i] = 0;

}

// run FFT
FFT.dcRemoval(); // remove offset
// Hann window function
FFT.windowing(FFTWindow::Hann, FFTDirection::Forward);
FFT.compute(FFTDirection::Forward);
FFT.complexToMagnitude(); // convert real/imag part to magnitude
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for (uint16_t idx_col = 0; idx_col < kNumCols; idx_col++) {
// save magnitude out of FFT into the input tensor
tflInputTensor->data.f[j*kNumCols+idx_col] = vReal[idx_col];

}
}

As soon as the input tensor is filled with the entire spectrogram, it is possible to
invoke the interpreter to obtain a speed inference, and add it to the running sum
for the average.

// invoke the interpreter to run inference
TfLiteStatus invokeStatus = tflInterpreter->Invoke();
if (invokeStatus != kTfLiteOk) {

// raise an error if invoke fails
Serial.println("ERROR: Invoke failed.");
while (1); // endless loop to stop execution

}

// add element to running sum for the average
running_sum += tflOutputTensor->data.f[0];
sum_elements_count++; // update the entries counter

}

4.6.3 Preliminary Application Unit Testing

Figure 4.16: Test Bench Speed Control

A rapid testing procedure
for the application is imple-
mented by evaluating the
behavior of its three main
blocks - the input process-
ing, the inference and the
output handling - while the
test bench operates at 200
rpm, 500 rpm, 900 rpm and
1400 rpm. The focus is on
ruling out any major issues
in the application code, ensuring that all stages of the pipeline, from the sampling
of the audio signal and the FFT to the calculation of the average inference, perform
as expected. Instead, in the following section, 4.7, the objective will be to collect a
systematic dataset to assess the final performance of the model, in real operating
conditions.

A first high-level test involves setting the desired speeds in the control panel (Fig.
4.16), and monitoring the serial port for the average inference and the measurements
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from the inductive sensor. As illustrated in Fig. 4.17, the results are reasonable
and consistent with the selected values of speed.

(a) 200 rpm (b) 500 rpm

(c) 900 rpm (d) 1400 rpm

Figure 4.17: CNN Application Unit Testing - Serial Port

A test of the pre-processing flow is conducted next, by transmitting the content
that gets stored in the input tensor to a PC. The 256×32 = 8192 samples are
analyzed and processed with MATLAB, confirming that the tensor represents the
spectrogram of the original raw audio recording (Fig. 4.18).

Finally, the output handling architecture is evaluated by broadcasting each single
inference to the serial port, along with the average, to confirm the latter is calculated
correctly, as shown in Fig. 4.17.
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(a) 200 rpm (b) 900 rpm

Figure 4.18: CNN Application Unit Testing - Input Tensor Content

4.7 Overall System Testing and Conclusions

Figure 4.19: Test
Bench during Testing

After confirming the absence of major software
faults in the application, it is possible to move
forward with the last phase of the workflow: the
systematic evaluation of the model performance
once deployed in real operating conditions.
With the test bench running on the laboratory
floor, ten inferences are acquired for each speed
category used in the training dataset (see section
4.5.1 - totaling 270 inferences). For a representa-
tive test, the measurements are taken at different
times over several days, to ensure an average level of
background noise comparable to that encountered
during training data collection. Additionally, a ran-
dom subset of inferences is conducted with artificial
disturbances, such as human speech close to the
microphone or a siren going off in the background.
The goal is to compute the Mean Absolute Error
across the collected dataset, and verify it remains
below the 50 rpm threshold mandated by Require-
ment 1, in section 4.3. As mentioned in that section,
this does not constitute a comprehensive investi-
gation of the model’s robustness to external noise,
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which will be carried out in a future study to address Requirement 2.

Appendix C.7 reports the values of inference collected during the testing activity,
along with the measured speed from the inductive sensor for reference. It can
be observed that the predictions are consistently above the measured values (the
mean errors reported next to each speed category are all positive), suggesting the
presence of a systematic bias in the model. Finding the root cause can be the
subject of a future investigation, perhaps while expanding the training dataset to
attempt to resolve the issue.

The Mean Absolute Error (MAE) for each speed category is reported in Table 4.3.
No apparent trend can be identified here, with consistent performance across the
entire speed range 200− 1500 rpm. The overall MAE is calculated at 42.1 rpm,
below the 50 rpm requirement. This value is only 47% larger than the MAE of
28.7 rpm displayed by the original CNN model before deployment (section 4.5.3).
This demonstrates the effectiveness of the optimization techniques put in place
for execution on the OptaTM, and the ability of neural network models to reject
outliers, in particular when specific countermeasures, such as taking the average
over the outputs, are implemented.

200 rpm 56.1 650 rpm 29.5 1100 rpm 59.7
250 rpm 29.9 700 rpm 33.4 1150 rpm 42.2
300 rpm 35.8 750 rpm 36.3 1200 rpm 45.0
350 rpm 28.3 800 rpm 45.1 1250 rpm 59.1
400 rpm 53.2 850 rpm 32.2 1300 rpm 41.2
450 rpm 22.6 900 rpm 34.5 1350 rpm 42.0
500 rpm 36.1 950 rpm 62.1 1400 rpm 47.7
550 rpm 46.5 1000 rpm 36.5 1450 rpm 40.9
600 rpm 60.5 1050 rpm 44.0 1500 rpm 36.3

Overall MAE 42.1 rpm

Table 4.3: Overall System Testing - MAE [rpm] per Speed Category

This case study has successfully demonstrated the feasibility of deploying somewhat
complex neural network models to industrial edge devices like PLCs, to enable
more intelligent manufacturing and maintenance practices. Moreover, a system of
this kind is straightforward to retrofit into already existing applications, lowering
the bar to implement innovative solutions in industrial settings.

This work has illustrated extensively the effectiveness of representing the audio
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signal as a spectrogram, and how the convolutional layers are the most appropriate
to process image-like information, all with on-device tools thanks to the integration
of the OptaTM with the Arduino ecosystem.

In addition to analyzing robustness systematically, and investigating the source of
the bias on the speed predictions, future developments include steps in the field of
predictive maintenance: by collecting a dataset for anomalous sound detection, it
will be possible to monitor the rotating parts’ health, and take the most efficient
maintenance decisions with a relatively inexpensive setup.
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Chapter 5

Case Study III: Application to a
Wave Energy Generator

In addition to the novel applications in the field of machine learning and AI, the
Finder OptaTM PLC can be an interesting tool in more traditional industrial control
problems as well, given the flexibility provided by the Arduino ecosystem, its
connectivity options and relatively low cost.
This case study explores an application of the OptaTM to an offshore wave energy
generator, and the advantages it brings in terms of remote monitoring and control,
predictive operational safety (exploiting weather forecasts fetched through the
internet), and robustness to the harsh field conditions, all at a limited cost, a key
factor in the prototyping stage.

5.1 Experimental Setup
Figure 5.1 shows a basic scheme of the prototype of wave energy generator to
be controlled. What follows is a brief description of its components and working
principle, with a special focus on the tasks that are going to be carried out on the
OptaTM to understand how it fits into the final assembly, since the aim of this work
is not to describe the inner workings of the prototype device itself.
Electrical energy is generated thanks to a floating device with an optimized shape
(A), that is set in an alternating linear motion by the sea waves. A suitable
mechanism (GEAR) transforms the linear motion into a regular one-way rotary
motion, in order to actuate a 3-phase electrical generator.
During operations, the Finder OptaTM monitors the electrical power generation
by acquiring the output of a power meter, along with the position of the float
via two limit switches, a0 and a1. Because the system is designed to be deployed
in a remote environment, this information shall be displayed on a virtual HMI,
accessible via the internet. This is the first reason why the OptaTM is a suitable
choice: the flexibility that it provides in terms of connectivity and programming
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languages allows for a straightforward setup of remote communication.

Figure 5.1: Wave Energy Generator
Control Scheme

The OptaTM is also in charge of the
emergency operations: a small in-
dependent electrical motor, that
actuates a pulley system, shall be
controlled in order to raise or lower
the float as necessary. The main
threat to the device is when the en-
ergy of the sea waves exceeds the
design limitations of the float, due
to adverse sea and wind conditions.
The connectivity capabilities of the
OptaTM allow addressing such is-
sue with a predictive approach: by
connecting to the internet and pe-
riodically downloading the relevant
marine weather forecast, it is pos-
sible to automatically lift the float
when the height of the sea waves
is predicted to rise above the emer-
gency threshold, and lower it again
when sea conditions return to nor-
mal, all without manual interven-
tion, enhancing safety.
Moreover, the virtual HMI can also
be designed to monitor the emer-
gency state of the system, allowing
for manual remote control, as dis-
cussed in more details in the ded-
icated sections below.

The outlined tasks constitute the
backbone of the control logic of the device, to ensure a minimum level of operational
safety during the prototyping and testing phase. More advanced functionalities
could be incorporated in the design at a later stage, with the OptaTM Over-The-Air
(OTA) feature even allowing for remote updates without a physical cable connection,
a particularly useful capability given the working conditions of the generator.
The aim of the case study is to showcase how a smart PLC can be integrated into
an industrial application of this kind, and all the advantages it provides in terms
of connectivity and information management, improving decision-making for more
efficient operations.
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5.2 Internet Connectivity and Infrastructure
This section explores how the Finder OptaTM can connect to the internet, delving
into the libraries and code that serve as infrastructure for the rest of the application.
Throughout the case study, software development is carried out on the Arduino
IDE, exploiting the Arduino programming language. This guarantees a greater
degree of flexibility, despite the OptaTM also supporting the IEC 61131-3 languages,
more suited to technicians familiar with traditional PLCs.
As the version name suggests, the OptaTM Wi-Fi features a 2.4 GHz Wi-Fi module
(see Table 2.1), which is employed to connect to the internet. A basic example
of how this can be achieved thanks to the Arduino WiFi.h library is available in
chapter 2.
This case study involves advanced remote control and monitoring, which would
require a complex web service and backend infrastructure for communication
with the OptaTM. Instead, at least in this initial stage, it is more convenient to
exploit Arduino Cloud1, a tool in the Arduino ecosystem which offers an online
framework to remotely monitor and control IoT devices, with a built-in HMI called
Dashboard. The service provides a streamlined configuration process, taking care
of communication with the device behind the scenes, thus enabling complex cloud
solutions even for technicians with minimal coding expertise. Whereas relying on a
third-party service for a safety-critical function is not ideal, it reduces complexity,
allowing for the prototyping to move forward at a quicker pace, even when the
limitations of the Arduino Cloud platform2, which mainly targets amateur projects,
are taken into account. In the meanwhile, an in-house solution can be developed in
the background, with functional safety in mind.

5.2.1 Workflow and Requirements
Below are the main steps and requirements for the internet infrastructure.

1. Configure the Arduino Cloud "Thing" for communication.
2. Implement the code required by Arduino Cloud in an Arduino sketch.
3. Implement a parallel thread on the OptaTM to manage a LED indicator for the

connection status, exploiting the RTOS features of Mbed OS (see section 2.2):

- built-in GREEN LED steady: connected to the internet

1https://cloud.arduino.cc/how-it-works/
2Different subscription plans are available, with the free one characterized by several limitations

in terms of number of devices, dashboard size, storage space, API access, etc.
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- built-in RED LED steady: connection failed

4. Verify the connection, and perform unit testing of the application developed
up to this point.

Point 3 mandates the use of a parallel thread to manage the indicator LEDs: this is
to showcase the RTOS features that Mbed OS brings to the Finder OptaTM, albeit
not strictly necessary here.

Note how this and the following sections include snippets of the application code
on the basis of the features being discussed, and thus not necessarily in the correct
order. To avoid losing sight of the larger picture, Appendix D.1 reports the entire
application code, as deployed to the OptaTM.

5.2.2 Arduino Cloud Connection
Arduino Cloud features an online IDE, a cloud backend service to synchronize
data from the Arduino board, and a graphical dashboard tool for remote control,
accessible via desktop or mobile app.
After including the OptaTM in the list of devices on Arduino Cloud, the first item to
address is the setup of a "Thing", i.e. a virtual twin of the board with the project
configuration details. The Thing requires an associated device, and contains the
network credentials, along with all the shared variables required for communication
between the OptaTM and the cloud.

Figure 5.2: Arduino Cloud Thing
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Arduino Code
When creating a Thing, a sketch template is automatically generated with all
the libraries and functions to handle the connection to the internet and the
communication with the Arduino Cloud backend.
A function, initProperties()3, called right after the configuration of the serial
port in setup(), initializes the shared variables: these can be read-only, when they
do not need to be changed by the cloud, or read-write, if some dashboard elements
need to control their values; when a read-write variable is declared, a callback
function is automatically generated in the template, to specify what actions to
execute when its value is modified by the cloud. The update frequency shall also be
specified, choosing between ON_CHANGE and a time-based approach. More details
on the actual shared variables in this case study are available in section 5.4.
The connection to the internet and Arduino Cloud is initialized by the begin()
method of the ArduinoIoTCloud library, passing the configuration object with the
Wi-Fi network details. The update() method called inside loop() maintains and
updates the connection: it is important that update() is repeatedly called without
delay, else the timeout of a watchdog4 timer causes the connection to reset.

#include <ArduinoIoTCloud.h>
#include <Arduino_ConnectionHandler.h>

const char SSID[] = "****"; // Network SSID (name)
const char PASS[] = "****"; // Network password

void initProperties(){
ArduinoCloud.addProperty(currentMaxWaveHeight_m,READ,ON_CHANGE,NULL);
ArduinoCloud.addProperty(floatDown, READ, ON_CHANGE, NULL);
ArduinoCloud.addProperty(state, READ, ON_CHANGE, NULL);
ArduinoCloud.addProperty(emergencyStop_cloud, READWRITE, ON_CHANGE,

onEmergencyStopCloudChange);
ArduinoCloud.addProperty(resetEmergency_cloud, READWRITE, ON_CHANGE,

onResetEmergencyCloudChange);
}

WiFiConnectionHandler ArduinoIoTPreferredConnection(SSID, PASS);

3Reference for all libraries: https://www.arduino.cc/reference/en/libraries/
4A watchdog timer is a common safety mechanism in microcontrollers to monitor the software

execution and reset the processor in case of unexpected behaviors [104]. Since the OptaTM is
a Mbed OS based board, watchdog timers can be implemented leveraging the Watchdog class.
Instead, the watchdog mentioned above is automatically started by the begin() method of the
ArduinoIoTCloud library, for the purposes of monitoring the connection.
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void setup() {
// Initialize serial port and wait for it to open:
Serial.begin(115200);
delay(1500);

initProperties();

// Connect to Arduino IoT Cloud
ArduinoCloud.begin(ArduinoIoTPreferredConnection);

setDebugMessageLevel(2);
ArduinoCloud.printDebugInfo();

}

void loop() {
ArduinoCloud.update();

}

/* emergencyStop_cloud is READ_WRITE variable:
* onEmergencyStopCloudChange() is executed every time
* a new value is received from IoT Cloud. */

void onEmergencyStopCloudChange() { }

/* resetEmergency_cloud is READ_WRITE variable:
* onResetEmergencyCloudChange() is executed every time
* a new value is received from IoT Cloud. */

void onResetEmergencyCloudChange() { }

5.2.3 Mbed OS Parallel Thread - LEDs Management
The last item to address in this section, before moving to the core functionalities
of the application, is the parallel thread to manage the OptaTM LEDs.
It was decided to exploit the multithreading5 ability of Mbed OS on the powerful
dual-core Cortex-M processor to showcase this capability, and make the visual
indications completely independent of the main application code: if, for example,
the connection drops and the main loop() is stuck trying to reconnect to the
internet, it would not be reflected promptly by the LEDs, but only after a certain
amount of time, when the CPU finally frees up and executes the code responsible

5Multithreading is the ability of a CPU to run multiple parallel threads, i.e. sequences of
instructions managed independently by the scheduler of the operating system [105].
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for such changes. Instead, when the thread runs in parallel it is autonomous, and
not subject to other blocking tasks.

Figure 5.3: MbedOS Parallel Thread
LED Management Flowchart

Figure 5.3 reports the flowchart to im-
plement in the parallel thread, with a
steady green/red LED to indicate the
connection status (section 5.2.1, require-
ment 3). This thread also manages the
built-in blue LED, that serves as an in-
dicator for the emergency state, when
blinking with a 0.5 s period (listed as a
requirement in section 5.3.1, dedicated
to the emergency operations).

Arduino Code
An instance of the Thread6 class from
the RTOS API is created to allocate the
new thread to run concurrently to the
main loop(): ledsManagementThread.
This is then started inside setup()
when the OptaTM is powered on, by exe-
cuting the callback manageOptaLeds().
Its definition implements the instruc-
tions of the flowchart in an infinite loop:
function WiFiStatusLED() controls the built-in green/red LED on the basis of the
connection status, while blinkLED() actuates the blue LED when the emergency
is active (indicated by the shared variable state, see section 5.3).

#include <mbed.h> // for parallel threads
#include <rtos.h>

// allocate parallel thread - LED management
static rtos::Thread ledsManagementThread;

void setup() {

pinMode(LED_USER, OUTPUT); // blue LED, blinking when emergency active
pinMode(LEDR, OUTPUT); // red LED, on when WiFi connection failed
pinMode(LED_BUILTIN, OUTPUT); // green LED, on when connected to WiFi

6Documentation: https://os.mbed.com/docs/mbed-os/v6.16/apis/thread.html
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// Start the parallel thread
ledsManagementThread.start(manageOptaLeds);

}

/* ---------------- PARALLEL THREAD --------------- */
/* Callback to manage the built-in LEDs of the Opta */
void manageOptaLeds() {

while (1) {
/* To provide a visual indication of the Wi-Fi status:
* - steady green LED (LED_BUILTIN): Wi-Fi connected
* - steady red LED (LEDR): Wi-Fi connection failed */

WiFiStatusLED();

if (state == 1) { // if normal operations (no emergency)
digitalWrite(LED_USER, LOW); // turn off the blue LED

} else { // if emergency
// blink the emergency blue LED with a period of 500 ms
blinkLED(LED_USER, 500);

}
}

}

5.2.4 Unit Testing
It is always good practice to perform continuous testing during development, subdi-
viding the application into smaller units to promptly identify any fault, instead of a
single final testing phase. Hence, it is time to verify that the OptaTM can successfully
connect to Arduino Cloud, and that the LEDs do reflect the connection status.

Figure 5.4: Thing Connected

After compiling the code and deploying
it to the OptaTM, the device connected
to the internet right away via the Wi-Fi
network specified during configuration:
this is indicated by the green light in the
Arduino Cloud Thing page (Fig. 5.4),
and by the diagnostic messages received
through the serial port (Fig. 5.5).
As expected, the built-in green LED
signals the presence of an internet con-
nection (Fig. 5.7a). Note how the blue
LED is also on, and blinking: as described in section 5.3, the shared integer variable
state being equal to 0 denotes that the emergency is active; since no logic has been
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developed to manage state thus far, it is initialized to 0, simulating the presence
of an emergency. The blue LED, therefore, displays the intended behavior.

Figure 5.5: Arduino IDE Serial Monitor - Connection Successful

If the Wi-Fi network is disabled, the update() method in the main loop() fails
to synchronize with the cloud and gets stuck (Fig. 5.6): the watchdog thus reboots
the device repeatedly to attempt to reestablish a connection. Thanks to the parallel
thread, the LEDs are not subject to any of these operations, with the red light
promptly indicating that the connection is absent (Fig. 5.7b).

Figure 5.6: Arduino IDE Serial Monitor - No Connection
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(a) Connected - Green LED on (b) Disconnected - Red LED on

Figure 5.7: OptaTM LEDs Testing

Despite not constituting a comprehensive testing activity, with systematic verifica-
tion of all statements and conditions in the code, it is sufficient to conclude that no
major fault is present, and that the connection to the cloud functions as intended.

5.3 Emergency Operations
The core task of the OptaTM in this case study is to guarantee the system’s safety,
preventing damage due to excessive stress on the floating device. This is achieved
by actuating the emergency motor via the integrated output relays, thus lifting the
float out of the water when necessary, as illustrated in the scheme of Fig. 5.1.
The capabilities of the OptaTM in terms of internet connectivity allow adopting a
predictive approach, relying on weather forecasts to make the optimal decision
about the suspension of normal operations and the retraction of the floating device.
In particular, the PLC shall periodically download the forecasted wave height for
the operational site from a reputable web service, analyzing the data to actuate
the emergency motor when a set threshold is surpassed.
In addition to these automatic safeguard measures, manual intervention shall also
be provided for: the Arduino Cloud service proves convenient here, allowing for
remote control and monitoring of the emergency operations.

5.3.1 Requirements
Below are summarized the key requirements to implement, to provide a broad
overview before the detailed analysis of the following sections.
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1. When entering the emergency state, the OptaTM shall activate the emergency
motor by energizing relay D1, thus lifting the float.

2. A blinking BLUE LED shall indicate that the emergency is active.
3. The emergency state shall be entered if any of the following conditions is met:

- the 12-hour forecast of the wave height indicates a value above the set
threshold;

- a 12-hour forecast of the wave height is not available;
- the emergency is manually commanded by the operator (either via a

physical pushbutton or remotely).

4. Normal operations shall be resumed if all of the following conditions are met:

- the 12-hour forecast of the wave height does not indicate a value above
the set threshold;

- a 12-hour forecast of the wave height is available;
- the Reset Emergency command is issued by the operator (either via a

physical pushbutton or remotely), in case the emergency was manually
activated.

5. When the emergency is reset, the OptaTM shall reverse the emergency motor
by energizing relay D0, and lower the float back into the water.

5.3.2 Marine Weather Forecast
The internet infrastructure developed in section 5.2 allows for an easy connection
process to any web service providing marine weather forecasts: open-meteo.com is
selected among the several available options because of its high-resolution open-
source API7, which is free for non-commercial purposes. By sending periodically a
forecast request through the web service API (thus employing the HTTP8 methods),
and decoding the response, it is possible to monitor the evolution of the wave
height at the operational site.

The flowchart (Fig. 5.8) outlines the main steps in order to meet the requirements
laid out in section 5.3.1. The first item to address is the interval between two
forecast update requests: one hour is deemed appropriate because of the slow
variations that the sea wave height experiences.

7API ("Application Programming Interface"): software interface for different components and
services to communicate, exchanging information.

8"Hypertext Transfer Protocol", the foundation of the World Wide Web, a protocol for
information transfer between the networked devices [106].
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Figure 5.8: Marine Weather
Forecast Flowchart

Moreover, forecasts are downloaded for a
time horizon of three days, despite the
shorter 12-hour requirement: this provides
the operator with more advance notice of
future weather conditions, and improves ro-
bustness to temporary connection outages,
as the system can rely on previously down-
loaded data instead of entering the emer-
gency as soon as an update fails.

API Request

The HTTP method to retrieve information
from a service, without modifying it in any
way, is GET [106].
Reported below is the complete GET request
issued to the marine-api.open-meteo.com
server, following the syntax specified in the
documentation9: in this prototyping stage,
it is formulated for a generic location with
coordinates 44.3N 8.72E; these can be eas-
ily modified as soon as the operating site
is finalized. As per the design choices,
the forecast consists of the hourly wave
height (hourly=wave_height) for three days
(forecast_days=3).

GET /v1/marine/?latitude=44.3&longitude=8.72&current=wave_height&hourly
=wave_height&timezone=Europe%2FBerlin&forecast_days=3 HTTP/1.1;

Host: marine-api.open-meteo.com
Connection: close

The server returns the requested information formatted as a JSON10 object that
requires parsing: once again, the Arduino ecosystem offers an official pre-built
library to process JSON (Arduino_JSON.h), streamlining the coding process.
Below is a shortened response sample: the initial key/value pairs report some
generic information about the request; then is a JSON array with the current time
and wave height, followed by the array of height predictions (for example, it is

9https://open-meteo.com/en/docs/marine-weather-api
10"JavaScript Object Notation", an open standard to exchange information formatted in a

human-readable manner as key/value pairs, very common in web applications [107].
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forecasted that at 22:00 local time, on September 15th, 2024, the wave height at
44.25N 8.75E is going to be 0.44 m).

{
"latitude": 44.25,
"longitude": 8.75,
"generationtime_ms": 0.0929832458496094,
"utc_offset_seconds": 7200,
"timezone": "Europe/Berlin",
"timezone_abbreviation": "CEST",
"elevation": 0,
"current_units": {

"time": "iso8601",
"interval": "seconds",
"wave_height": "m" },

"current": {
"time": "2024-09-13T10:00",
"interval": 3600,
"wave_height": 0.46 },

"hourly_units": {
"time": "iso8601",
"wave_height": "m" },

"hourly": {
"time": [

"2024-09-13T00:00",
"2024-09-13T01:00",
....
"2024-09-15T22:00",
"2024-09-15T23:00"

],
"wave_height": [1.06, 1.01, ... , 0.44, 0.46] }

}

Arduino Code

The Arduino main loop calls function fetchWaveHeight() every 60 minutes to
update the weather forecasts, provided that an internet connection is present. This
function returns −1 if unsuccessful, or the API request time (in hh format) if no
errors occur. The fetched forecasts are then logged to an online Google spreadsheet
(Fig. 5.8) as part of the remote monitoring effort, with a new API request issued
by function logToSpreadsheet(), and a custom Google Apps Script to interpret
the data (see section 5.4.3 for further details).

void loop() {
// Fetch an update to the wave height forecast every
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// kWeatherUpdateInterval_min if connected to the internet
if (millis() - prevWeatherFetchAttempt > (unsigned long)

(kWeatherUpdateInterval_min*60000) && WiFi.status()==WL_CONNECTED) {

// fetch forecast and save it in max_wave_height_6h[]
fetchWeatherReturn = fetchWaveHeight(max_wave_height_6h)};

if (fetchWeatherReturn >= 0) { // if no errors (-1 if error)
fetchHour = fetchWeatherReturn; // update the fetch time (hour)
// log the forecast to Google Sheet
logToSpreadsheet(max_wave_height_6h,

(24 / kIntervalLength_h * kForecastLength_days));

// save the time of last SUCCESS in updating the forecast
prevWeatherFetchSuccess = millis();

}
// save the time of last ATTEMPT at updating the forecast
prevWeatherFetchAttempt = millis();
...

}
}

fetchWaveHeight() sends the GET request, parses the response, and saves the
height forecasts in an array, passed by reference to the function.
This array (maxWaveHeight[]) needs to contain 12 elements, as the hourly wave
height data is processed by dividing the 3-day horizon into intervals of 6 hours
(24 h×3 days

6 h = 12), and saving the maximum forecast for each 6-hour period. Such
intermediate step reduces the amount of information that needs storing - always a
worthy endeavor in memory-constrained applications - and formats the forecasts in
accordance to the requirements.

Figure 5.9: Forecast Data Processing in 6-hour Intervals

The connection to the server can be established thanks to client, an instance
of the WiFiSSLClient class. As the name suggests, this class supports the SSL
protocol, to guarantee privacy, security and message integrity, contrary to a plain
HTTP connection.
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WiFiSSLClient client; // client object to connect using SSL

int8_t fetchWaveHeight(double maxWaveHeight[]) {
// initialize return value:
// negative value -> ERROR in fetching the weather data
// positive value -> the hour the weather data was fetched
int8_t returnCurrentHour = -1;

double coordinates[2] = {44.3, 8.72}; // desired coordinates
double maxCoordinateError = 0.3;

// open-meteo API server to fetch marine weather forecasts
const char* openMeteoServer = "marine-api.open-meteo.com";
// API endpoint path and query to get required data
String path = "/v1/marine";
String queryCoordinates = "?latitude=" + (String) coordinates[0] +

"&longitude=" + (String) coordinates[1];
String queryParameters = "&current=wave_height&hourly=wave_height"

"&timezone=Europe%2FBerlin&forecast_days=3";
// connect to server (port 443: SSL)
if (client.connect(openMeteoServer, 443)) {

// send HTTP GET request if connection successful
client.print("GET " + path + queryCoordinates + queryParameters);
client.println(" HTTP/1.1");
client.print("Host: ");
client.println(openMeteoServer);
client.println("Connection: close");
client.println();

As mentioned, the Arduino_JSON.h library provides useful tools to process the
JSON response, such as the parse() method or the JSONVar class, just to name a
couple. After skipping the HTTP header, the first task is to check whether the forecast
location is reasonably close to the desired site, and return an error otherwise. Then,
the hourly forecasts are copied to a temporary array, and processed as detailed
above, by saving only the maximum value for each 6-hour interval. Finally, the
request hour is extracted from the JSON object, and returned by the function to
signal a correct execution.

// skip HTTP header
char startOfJson = '{';
client.find(startOfJson);

// parse JSON response
JSONVar doc; // JSON object to store the response
String payload = "{" + client.readStringUntil('\n');
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doc = JSON.parse(payload);

// check is parsing was successful
if (JSON.typeof(doc) == "undefined") {

Serial.println("- Parsing failed (open-meteo)!");
client.stop();

returnCurrentHour = -1; // error: return -1
return returnCurrentHour;

}

// parse latitude and logitude to check location
double latitude = doc["latitude"];
double longitude = doc["longitude"];
// check if coordinates of the fetched weather are reasonably
// close to desired location
if (abs(latitude - coordinates[0]) > maxCoordinateError ||

abs(longitude - coordinates[1]) > maxCoordinateError) {
Serial.println("- Coordinates error!");
client.stop();

returnCurrentHour = -1; // error: return -1
return returnCurrentHour;

}

// parse JSON array containing the forecast for wave height
JSONVar hourly_wave_height = doc["hourly"]["wave_height"];
// declare an array to store the forecast and initialize it to 0
double wave_height_forecast[hourly_wave_height.length()];
memset(maxWaveHeight, 0, sizeof(maxWaveHeight));

// go through the hourly forecasts in batches of 6 hours, and
// save the max for each 6h period into maxWaveHeight
for (int i = 0; i < hourly_wave_height.length()/6; i++) {

for (int j = 0; j < 6; j++) {
// go through the hourly forecasts
wave_height_forecast[i*6+j] = hourly_wave_height[i*6+j];
// if the value is > than the max stored, update it
if (wave_height_forecast[i*6+j] > maxWaveHeight[i]) {

maxWaveHeight[i] = hourly_wave_height[i*6+j];
}

}
}

// parse the current time, format "2024-05-03T15:00",
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// extracting the hour (-> "15")
JSONVar current = doc["current"];
const char* current_time = current["time"];
char current_time_only_hour[] = {current_time[11],

current_time[12],'\0'};

// convert the time string to an integer
returnCurrentHour = atoi(current_time_only_hour);

} else {
Serial.println("- Failed to connect to server (open-meteo)!");
returnCurrentHour = -1; // error: return -1

}
client.stop();

return returnCurrentHour;
}

5.3.3 State Machine
Thanks to the logic implemented thus far, the OptaTM has access to the maximum
wave height at its operational site, with a forecast horizon of three days. Based on
this information, it needs to decide when to enter or exit emergency operations,
and what actions to carry out depending on the system’s state, following the
requirements in section 5.4.1.

The system’s behavior can be modeled as a basic finite state machine [108] with two
states: NORMAL and EMERGENCY. The scheme in Fig. 5.10 reports the actions
to be performed in each state, as only one can be active at any given time. The
transition between them is governed by the wave height forecast and any manual
intervention by the operator.
Every 60 minutes, the OptaTM shall check the current time, and verify whether
a 12-hour forecast is available (for example, in Fig. 5.10, the OptaTM shall check
whether a wave height value is available for the interval 18:00 − 24:00, and for
00:00 − 06:00 the following day): if this is not the case, because of prolonged
internet outages or other faults in the connection process, the emergency state shall
be entered, as safe operations can no longer be guaranteed. Instead, if a 12-hour
forecast is available, the OptaTM shall check whether the two wave height values
are below the safety threshold - set to 1 m at this stage - and enter the emergency
otherwise. It is possible to exit the emergency at any time, provided the forecast
falls below the threshold.
All of the above is carried out automatically, every 60 minutes, without the need for
manual intervention. If, instead, user input is required, and the operator commands
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the emergency state, the OptaTM shall comply regardless of the height of the waves.
In this case, the operator manually commands the "Reset Emergency" to return to
normal operations, in addition to the forecasts indicating a safe wave height.

Figure 5.10: State Machine Scheme

Arduino Code

The integer variable state is employed to keep track of the state the system:

state = 1→ NORMAL
state = 0→ EMERGENCY

This is also an Arduino Cloud shared variable, configured as READ_ONLY, to display
the state of the system on the remote dashboard (further details on the shared
variables and the Arduino Cloud HMI are available in section 5.4).

The conditional statements to manage the value of state mainly rely on three
flags, that indicate whether a transition condition has been met. These are:
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- emergencyWaveHeight: equal to 1 when the wave height is above the threshold
in the time frame of interest, and 0 otherwise;

- emergencyPB and resetEmergencyPB: equal to 1 when the operator commands
the emergency state or the "Reset Emergency", respectively.

The code to control the last two flags is related to the remote monitoring of the
system via Arduino Cloud, thus it is described in section 5.4.

// Flags to activate or reset emergency
// (volatile because handled by Interrupt Service Routine)
volatile uint8_t emergencyPB; // user command
volatile uint8_t resetEmergencyPB; // user command
uint8_t emergencyWaveHeight;

Per the state machine scheme (Fig. 5.10), the main loop extracts the current
value of wave height and the prediction for the next 6 hours from the array
maxWaveHeight[], thanks to custom function findWaveHeight(). This process
occurs every 60 minutes, concurrently with each update attempt (note how it is
not necessary that the weather update succeeds: findWaveHeight() can rely on
previously downloaded forecasts as long as they cover the time intervals of interest).
If either value is found to be above the threshold, or the unphysical value of −1
signals the lack of a prediction, flag emergencyWaveHeight is set to 1 (true).

void loop() {
/* ------------ WAVE HEIGHT FORECAST ------------ */
// Fetch an update to the wave height forecast every
// kWeatherUpdateInterval_min if connected to the internet
if (millis() - prevWeatherFetchAttempt > (unsigned long)

(kWeatherUpdateInterval_min*60000) && WiFi.status()==WL_CONNECTED) {

...

// extract the forecast for the current 6h interval and next 6h
currentMaxWaveHeight_m = findWaveHeight(0);
next6hMaxWaveHeight_m = findWaveHeight(1);
// if wave height in current 6h period or in next 6h > threshold
// (or < 0: ERROR) --> ACTIVATE EMERGENCY */
if (currentMaxWaveHeight_m >= kEmThreshold_m ||

next6hMaxWaveHeight_m >= kEmThreshold_m ||
currentMaxWaveHeight_m < 0 || next6hMaxWaveHeight_m < 0) {

emergencyWaveHeight = true;
} else {

emergencyWaveHeight = false;
}

}
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The proper state machine actions and transitions are coded with a switch structure
inside loop(). Depending on the active state, the position of the float is controlled
by functions raiseFloat and lowerFloat, that manage the relays of the OptaTM

as necessary. Each state also features a conditional statement to transition to the
other state, if all requirements are met.

/* --- STATE MACHINE ACTIONS (EMERGENCY / NORMAL) --- */
switch(state) {

/* Normal State */
case 1:

/* Check if the float is in the working position.
* If NOT activate the relay to lower it */

lowerFloat();

/* Transition condition NORMAL -> EMERGENCY:
* if the emergency is commanded by operator or
* wave height > threshold --> ENTER EMERGENCY */

if (emergencyPB || emergencyWaveHeight) {
state = 0;

}
break;

/* Emergency State */
case 0:

/* Check if the float is in the safe position.
* If NOT activate the relay to raise it */

raiseFloat();

/* Transition condition EMERGENCY -> NORMAL:
* - if the emergency pushbutton was pressed, check it is released
* and the "Reset Emergency" command was issued;
* - check if wave height is below threshold
* The emergency can only be reset if the float is in the SAFE
* (limit switch A6 to signal if the float is raised) */

if (!emergencyWaveHeight && (!emergencyPB || resetEmergencyPB)
&& digitalRead(A6)) {

state = 1;
resetEmergencyPB = false;
emergencyPB = false;

}
break;

default:
/* If state NOT 0 or 1: enter emergency by setting it to 0 */
state = 0; // enter emergency
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break;
}

}

Any state different from 0 or 1 is invalid, and indicates a software error which
triggers the activation of the emergency.
The use of an integer and of a flexible switch structure ensures code scalability,
making the addition of new operational states quite straightforward, without
extensive code modifications.

5.3.4 Unit Testing

A testing phase must now be
conducted to verify that the
implementation of the emer-
gency logic complies with the
requirements, with no major
software fault.

Since the remote HMI has
yet to be developed, a tempo-
rary test bench is arranged to
test the state machine behav-
ior (Fig. 5.11), repurposing
the setup employed in chapter
3.1.2. Moreover, the marine
weather forecasts are trans-
mitted to the PC via serial
port for debugging purposes.

The two physical pushbuttons are used to issue the
manual commands ("Emergency Stop" or "Reset
Emergency"), while the three-way selector simulates
the limit switches of the floating device (position
1: float DOWN, position 2: float UP). To enhance
the visual feedback, the position of the float is also
indicated by two pilot lights: the green one signals
that the float is lowered into the water, in normal
operating conditions, while the red one denotes that
the float is safe, raised out of the sea. Figure 5.11: Emergency

Test Setup and I/O
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The input pins of the OptaTM are interrupt-enabled (see section 2.3), which represents
the most reliable approach to acquiring the input from the pushbuttons: by issuing a
hardware interrupt when a button press is detected, it is ensured that the associated
actions are executed, even if the Opta is busy with different operations. Such
actions are implemented in dedicated interrupt service routines (ISR) to manage
the flags for the state transitions.

void setup () {
// Initialize interrupts associated to the input pins
attachInterrupt(digitalPinToInterrupt(A0), EmergencyPB_ISR, FALLING);
attachInterrupt(digitalPinToInterrupt(A1),EmergencyResetPB_ISR,RISING);

}

/* --------- INTERRUPT SERVICE ROUTINES --------- */
/* ISR called at the FALLING EDGE of pin I1 (A0), connected to the
* physical emergency pushbutton (normally closed) */
void EmergencyPB_ISR(){
emergencyPB = true;

}

/* ISR called at the RISING EDGE of pin I2 (A1), connected to the
* physical "Reset Emergency" pushbutton (normally open) */

void EmergencyResetPB_ISR(){
// If "Reset Emergency" command from operator
// -> set the resetEmergencyPB flag IF the emergency is active,
// the wave height is below threshold, and the float is raised
if (!emergencyWaveHeight && state == 0 && digitalRead(A6)) {

resetEmergencyPB = true;
}

}

The test activity begins by powering the OptaTM, and waiting for the connection
to the internet and Arduino Cloud. Once the connection is established, an API
GET request for the wave height forecast is issued to open-meteo, followed by
the processing of the JSON response, and the printing of the 12 values (three-day
horizon, split into 6-hour intervals) to the serial port for debugging (Fig. 5.12).
Since the hour of the request is 10 AM, the wave height is reported at 0.26 m, and
it is predicted to raise to 0.34 m within the following six hours. Both values are
below the emergency threshold of 1 m, so the system operates under the NORMAL
state, with the float down into the water (Fig. 5.13a).
In order to test the state machine transitions, the emergency pushbutton is actuated,
triggering the EMERGENCY state, as indicated by the blue LED blinking (Fig.
5.13b): since the float is simulated to be in the water (selector in position 1 - green
pilot light on), relay D1 energizes to lift it out.
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Figure 5.12: Connection Established - Serial Communication

(a) Normal Operations (b) Emergency Activation

(c) Emergency Operations (d) Emergency Reset

Figure 5.13: Emergency Operations - Unit Testing
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As soon as the floating device is raised to safety (simulated by moving the three-way
selector to 2 - red pilot light on), relay D1 is de-energized, halting the emergency
motor (Fig. 5.13c). Since the EMERGENCY state was entered manually, it remains
active until the "Reset Emergency" command, regardless of wave height. When the
physical "Reset Emergency" pushbutton does get pressed, relay D0 closes to lower
the float (Fig. 5.13d): in this case, the emergency can be successfully reset because
the wave height is below the threshold.

Figure 5.14: Weather Update - Serial Monitor

The forecasts get an update every 60 minutes, as shown in Fig. 5.14 (11 AM).

To verify that the emergency state activates automatically when the wave height
forecasts indicate to, the threshold is lowered to 0.2 m. Upon the first weather
update, the system correctly transitions to the emergency without operator inter-
vention, repeating the actions described earlier (Fig. 5.13a - 5.13c).

The remaining conditions laid out in the requirements are tested in a similar manner,
verifying that the logic developed thus far behaves as expected, and allowing for
development to continue.

5.4 Human-Machine Interface
The last remaining issue to address before the conclusion of the case study is the
development of a Human-Machine Interface (HMI), leveraging Arduino Cloud and
other web services for remote control and monitoring of the system.
As already highlighted, controlling the system remotely thanks to the IoT capa-
bilities of the OptaTM platform and of the Arduino ecosystem offers a significant
advantage in applications where the physical device is normally inaccessible.

The HMI shall continuously provide the operator with operational metrics such
as the generator’s electrical output, the state of the system (NORMAL or EMER-
GENCY), the position of the floating device (raised or lowered), and the wave
height forecasts downloaded to the OptaTM. This represents the minimum level of
information to ensure safety, with more details and complexity to be included in
the future.
In addition to the monitoring function, the HMI shall also feature the "Emergency
Stop" and "Reset Emergency" remote commands, to force the system’s emergency
or to allow reentering the normal state, as discussed in section 5.3.3.
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The HMI relies on two separate services, to showcase different options:

• Arduino Cloud Dashboard: to convey the most critical pieces of information
such as the state of the system, and allow for remote control;

• Google Sheets11: an online spreadsheet service to log more detailed opera-
tional data, such as the generator output or the wave height forecasts, and
serve as a short-term database.

For redundancy purposes, especially during the prototyping phase, it is convenient
to retain the physical HMI employed in section 5.3.4 for the unit testing of the
emergency logic.

5.4.1 Requirements
1. The OptaTM shall be monitored and controlled remotely via a virtual HMI,

leveraging the Arduino Cloud infrastructure and other web services such as
Google Sheets

2. The Arduino Cloud Dashboard shall contain:
(a) an indication of the current state of the system
(b) an indication of the current position of the float
(c) the current wave height at the operational site
(d) the "Emergency Stop" command
(e) the "Reset Emergency" command

3. The Google spreadsheet shall contain:
(a) a log of the wave height forecasts
(b) a log of the power output of the generator

However, it should be noted that, at the time of writing, the three power meters
to measure the electrical output of the generator - one for each phase - are not
available due to delays in procurement. Requirement 3b will therefore be neglected
temporarily, leaving it as a future development for the project.

5.4.2 Arduino Cloud Dashboard
The Dashboard12 represents the control center integrated into Arduino Cloud, where
it is possible to visualize data coming from the physical devices with a number
of widgets, and modify the value of specific variables to control Arduino boards

11https://workspace.google.com/products/sheets/
12https://cloud.arduino.cc/features-custom-dashboard/
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remotely. Dashboards are accessible via the internet both from desktop and mobile,
ensuring high flexibility. They rely on the shared variables between the board
and the cloud, configured as part of a Thing, allowing for the monitoring of those
initialized as READ_ONLY, and for modifications to the READ_WRITE ones.

When the Thing for this application was first configured (Fig. 5.2), all the shared
variables to meet requirements 2a - 2e were included in anticipation of this section:

- state: READ_ONLY integer to visualize the state of the system, NORMAL (1)
or EMERGENCY (0);

- currentMaxWaveHeight_m: READ_ONLY float to display the wave height at the
operational site;

- floatDown: READ_ONLY boolean variable, true when the floating device is
lowered in the operating position, and false when raised during an emergency;

- emergencyStop_cloud: READ_WRITE boolean variable that can be set to true
by the operator to force the system into the emergency state;

- resetEmergency_cloud: READ_WRITE boolean variable, to reset a manually-
triggered emergency.

Figures 5.15 and 5.16 show the Dashboard on both
desktop and mobile, with all the widgets to fulfill
the requirements, including a display of the current
wave height (0.26 m and 0.16 m, respectively) and
system’s state (1 - normal - and 0 - emergency -, re-
spectively), an indication of the position of the float,
and the two pushbuttons for manual control.

Figure 5.15: Desktop Dashboard
Normal Operations

Figure 5.16: Mobile Dash-
board - Emergency Operations
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Arduino Code

The Arduino code is fairly straightforward as all READ_ONLY variables are au-
tomatically shared to the cloud after their initialization by initProperties()
(section 5.2), without the need for additional software functions. Instead, the two
READ_WRITE variables require a callback, i.e. a function to execute the desired
actions when their values is modified remotely, similarly to an interrupt service
routine. This simplicity and ease of use are precisely the main reasons behind the
choice of Arduino Cloud, at least in the initial prototyping stage.

/* emergencyStop_cloud is READ_WRITE: onEmergencyStopCloudChange()
* is executed every time a new value is received from IoT Cloud */

void onEmergencyStopCloudChange() {
if (emergencyStop_cloud) // if emergency command from Arduino Cloud

emergencyPB = true; //set the emergencyPB volatile flag
}

/* resetEmergency_cloud is READ_WRITE: onResetEmergencyCloudChange()
* is executed every time a new value is received from IoT Cloud */

void onResetEmergencyCloudChange() {
// If "Reset Emergency" command from Arduino Cloud dashboard
// -> set the resetEmergencyPB flag IF the emergency is active,
// the wave height is below threshold, and the float is raised
if (resetEmergency_cloud && state == 0 && !emergencyWaveHeight

&& digitalRead(A6))
resetEmergencyPB = true;

}

The two onChange functions manage the corresponding flags employed for the state
transitions in accordance with the requirements, mirroring the ISR implemented
for unit testing of the previous section (5.3.4). In particular, note how the "Reset
Emergency" command from the cloud only has an effect if the wave height is below
the threshold, to prevent damage to the float due to user error.

5.4.3 Data Logging to Google Sheets
The Arduino Cloud Dashboard is an effective interface to display glanceable infor-
mation and control the board remotely, but lacks a structured data management
system, such as a database or even a simple spreadsheet. Instead, it would be
useful to log the wave height figures or the power output of the generator in an
organized fashion, to monitor the operational trends of the system.

Thanks to the IoT capabilities of the OptaTM, it is advantageous to employ an
online service such as Google Sheets to address this requirement, a web-based
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spreadsheet application for easy remote access. The choice of specific service is
justified by the integration with "Apps Script"13, a JavaScript-based platform that
allows for automation routines to be embedded into Google products. Not only
does this enable the development of a web application to receive any requests from
the OptaTM and parse the data to log, but also allows formatting the spreadsheet,
and ensures seamless communication between all the parties involved.

Figure 5.17: Google Sheets - Spreadsheet to log the Wave Height Data

As illustrated in Fig. 5.17, the Google spreadsheet developed for this application
consists of two sheets: the first - titled "WaveHeight" - contains the raw figures
resulting from each weather update (i.e. the forecasts for three days, split into
intervals of six hours), while the second - "DataAnalysis" - plots the latest wave

13https://developers.google.com/apps-script
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height data, emphasizing the current value and the prediction for the following six
hours, the two figures that the OptaTM analyzes for the state transitions. A similar
approach can be adopted for the electrical output of the generator, pending the
availability of the power meters.

API Request and Google Apps Script

The wave height information is transmitted from the OptaTM to Google Sheets via
the API of the web application created with "Apps Script". Reported below is
an example of POST request - the HTTP method to send data to a server [106] -
that must be formulated by the OptaTM. The message, composed of the twelve
forecast values, is encoded as a JSON-formatted String with a single field, the
array "wave_height".

POST /macros/s/xxxxxxxxxxx/exec HTTP/1.1;
Host: script.google.com
Connection: close
Content-Type: application/json
Content-Length: 85
'{"wave_height":[0.3, 0.2, 0.16, 0.18, 0.18, 0.18, 0.18,

0.18, 0.18, 0.18, 0.1, 0.14]}'

Figure 5.18: Google Apps Script Environment

The web application script (reported in full in the Appendix D.2) executes function
doPost() every time it receives a POST request from the OptaTM. Such function
parses the twelve wave height values from the JSON object, and saves them inside
sheet WaveHeight, adding a new row at the top with the appropriate formatting.
Additionally, it prints the timestamp of the request, as shown in Fig. 5.17.
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function doPost(e) {
// JSON object with the POST request from the Opta
var cloudData = JSON.parse(e.postData.contents);

// extract the wave_height field from the JSON object
if (cloudData.hasOwnProperty("wave_height")) {

var waveHeight = cloudData.wave_height;
var waveHeightLength = cloudData.wave_height.length;

var lastRowWaves = sheetWaves.getLastRow();
// delete last row to maintain constant the total number of rows
if (lastRowWaves > MAX_ROWS + HEADER_ROW - 1) {

sheetWaves.deleteRow(lastRowWaves);
}
// insert new row after deleting the last one
sheetWaves.insertRowAfter(HEADER_ROW);

var range = sheetWaves.getRange('A3:Z3');
range.setFontColor('#000000'); // formatting options
range.setFontSize(10);
range.setFontWeight('normal');

// write values in the respective columns
for (var col=1+TIME_COL; col<=TIME_COL+waveHeightLength; col++) {

sheetWaves.getRange(HEADER_ROW+1, col).setValue(
waveHeight[col-1-TIME_COL]);

}

// write timestamp
var timestampWaves = new Date();
sheetWaves.getRange(HEADER_ROW+1, TIME_COL).setValue(

timestampWaves).setNumberFormat("yyyy-MM-dd HH:mm:ss");
}

}

Arduino Code

Shifting focus back to the Arduino code on the OptaTM, recall how function
logToSpreadsheet() was included inside loop(), in section 5.3.2, precisely to
transmit the weather data to Google Sheets, after each update to the forecasts:
void loop () {

// log the forecast to Google Sheets
logToSpreadsheet(max_wave_height_6h,

(24 / kIntervalLength_h * kForecastLength_days));
}
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The logToSpreadsheet() function processes the forecast values stored in max
_wave_height_6h[] by organizing them into a JSON array, which is then converted
to a String before sending the POST request. Library Arduino_JSON.h provides
useful pre-built functions to carry out these operations.
The API call is issued by sendPostRequest(), following the syntax detailed
previously, after establishing a connection to the script.google.com server.

uint8_t logToSpreadsheet(double variableValue[],
uint8_t numberOfEntries) {

JSONVar object; // JSON object to share
String jsonField = "wave_height"; // name of the JSON field

// copy all entries of array variableValue into the JSON object
for (uint8_t i = 0; i < numberOfEntries; i++)

object[jsonField][i] = variableValue[i];

if (JSON.typeof(object) == "undefined")
return 1; // exit if error detected

// JSON.stringify(myVar) to convert the JSONVar to a String
String jsonString = JSON.stringify(object);
if (sendPostRequest(jsonString) == 1) // send POST request

return 1; // exit if error detected

return 0;
}

5.4.4 Unit Testing
The only aspect that still requires testing is remote control, specifically the two
pushbuttons featured in the Dashboard. Instead, the monitoring functionality,
assigned to the Arduino Cloud widgets and to the Google spreadsheet, was tested
concurrently with its development yielding positive results, as demonstrated in
Figures 5.15, 5.16 and 5.17.
To evaluate the efficacy of the remote pushbuttons, the same procedure of section
5.3.4 (unit testing of the emergency logic) is repeated. After the OptaTM is powered
on and enters normal operations, the remote "Emergency Stop" pushbutton is
activated from the mobile app, with the system correctly entering the EMERGENCY
state, and replicating the behavior observed in Fig. 5.13b and 5.13c (the three-way
selector still simulates the signal from the limit switches of the float). Since the
wave height is reported below the threshold, pressing the remote "Reset Emergency"
pushbutton causes the system to exit EMERGENCY, as expected.
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Once again, it is useful to remark how this is not a systematic testing activity, as
the project is still at the implementation level, but rather a preliminary verification
that no major problems can hinder subsequent development steps.
This also marks the end of the case study, as all the tasks assigned to the OptaTM

for the prototyping phase of the energy generator were addressed successfully.

5.5 Conclusions and Future Developments
The main purpose of this last case study was to showcase how the IoT paradigm and
a smart PLC such as the Finder OptaTM can fit into more "traditional" industrial
applications, enhancing efficiency, guaranteeing a high level of operational safety,
and enabling a more robust real-time decision-making process. By employing a
predictive approach to safety, based on weather forecasts fetched from the internet,
and by developing a virtual HMI to monitor operations and control the device
remotely, this goal was successfully achieved.
Another key takeaway is that the integration with the Arduino ecosystem, which
streamlines code development and offers many pre-built libraries and services such
as Arduino Cloud, renders innovative technological solutions more accessible.

It is also worth highlighting how the application itself, the wave energy converter,
though mostly in the background in this chapter, aims to provide an innovative con-
tribution towards the increasingly relevant green energy transition. Any advances
and improvements in efficiency, driven by a deep IoT integration and machine
learning practices, can therefore have a meaningful impact on the spread and
economic viability of renewable energy technologies.

Future short-term developments for the project include the integration of the
already-mentioned power meters, enabling visualization of the instantaneous power
output, the installation of strain gauges on the floating device to measure the
input force of the waves, and be able to calculate the system’s efficiency, and the
development of an in-house solution to substitute Arduino Cloud and Google Sheets
in the remote control and monitoring of the system. Once the mechanical and
electrical design is finalized, it will be possible to construct the first scaled prototype,
and enter the validation phase with extensive integration testing in a laboratory
pool, eventually followed by deployment to the offshore site. Throughout the
process, the OptaTM will continue in its coordination role, enabling the collection
of vital operational metrics while guaranteeing safety, as demonstrated in the
preliminary analysis of this chapter.

128



Chapter 6

Conclusions

The primary aim of the work conducted in the thesis was to showcase how machine
learning and AI can be invaluable assets in an industrial setting, and how to deploy
such intelligence directly on the edge devices in charge of process control.
The Programmable Logic Controller Finder OptaTM is a fitting and versatile tool
for novel Industry 4.0 applications, thanks to the integration with the open-
source Arduino ecosystem, the powerful Arm Cortex-M processor and the several
connectivity options it features. As a cost-effective platform, it lowers the entry
barriers, both in economic and technological terms, for smaller industrial realities to
apply state-of-the-art data analysis and collection techniques, and obtain a deeper
insight and better control over all aspects of the manufacturing process.
Through three case studies, the thesis investigated various enabling tools and
technologies, such as TensorFlow with its high-level API Keras, TensorFlow Lite for
Microcontrollers, Python and Google Colab, the Arduino variant of C++, Arduino
Cloud, the FFT algorithm, etc., applying them successfully to the tasks at hand.

The main purpose of the Waveform Identification model developed in Case Study I
(chapter 3) was to explore the machine learning workflow on the Finder OptaTM.
The application began with a discussion of the data collection process, including
how to export and process such data with the Python library NumPy, before
feeding it into the neural network for training. During the design of the MultiLayer
Perceptron, exploiting some basic Keras structures, the constraints in terms of
size and complexity for deployment on an embedded device were identified and
addressed. A high-accuracy model was then successfully trained, after tuning
some key hyperparameters, such as the number of neurons and the optimization
algorithm. The model was subsequently converted to the TensorFlow Lite format,
exploring different options in terms of optimization, and stored as a byte array to be
loaded in the PLC memory. In designing the Arduino application to run inference
with the model, the main tools offered by the TensorFlow Lite for Microcontrollers
library were explored, including its data structures and memory requirements.
Achieving a final accuracy of 93.3% in the testing phase with quite a small model
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is a testament to a successful implementation, and demonstrates the potential of
machine learning in industrial tasks.

As a preliminary application in the field of predictive maintenance of mechanical
machinery, Case Study II (chapter 4) pushed the limits of the Opta’s hardware
with a somewhat complex Convolutional Neural Network model, demonstrating
how more advanced tasks can be handled by industrial edge devices, thanks to
machine learning. The goal of inferring the rotational speed of the test bench’s
rotating parts was successfully achieved with a final Mean Absolute Error of 42.1
rpm. A more systematic investigation of the model’s robustness will be the subject
of a future study, though this initial result has already been obtained with random
artificial disturbances. Because of the choice of a short audio recording as input
to the model, a more complex pre-processing pipeline needed to be implemented,
including the calculation of the FFT to extract higher-level frequency information.
Not only does this help the model abstract, as its size and complexity are still
the main concern, but also demonstrates how the OptaTM platform can integrate
different approaches for a reliable output. Future developments include training
the CNN model to recognize anomalous sounds, and predict the health of the
mechanical components. For enhanced accuracy, additional vibration and speed
sensors could also be integrated into the system.

The final case study, Case Study III (chapter 5), shifted focus from machine learning
to how the IoT integration can enhance traditional industrial applications, enabling
remote monitoring and control practices. Moreover, employing a predictive approach
to safety, based on weather forecasts, reduces the amount of human intervention
required by the system, and, consequently, the chance of human errors.

All case studies were approached at high-level, with technologies and tools from
different domains integrated together to achieve a certain goal. This system-
level perspective reflects the typical role of Mechatronic Engineers, whose broad
education allows them to identify novel multidisciplinary solutions, and liaise
effectively with specialists from different fields. Nevertheless, this work represents
a suitable baseline for further research in the fields of machine learning, predictive
maintenance, edge computing, IoT, industrial automation, etc. − all highly relevant
in today’s technological landscape.
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Appendix A

Finder OptaTM

A.1 PLC IDE Programming Example

A.1.1 Arduino Sketch
#include <WiFi.h>
#include <Arduino_JSON.h>

// Wi-Fi network information
const char* ssid = "********";
const char* password = "********";

// server address for time api
const char* server = "worldtimeapi.org";

// API endpoint for the date and time (Rome timezone)
String path = "/api/timezone/Europe/Rome";

WiFiClient client; // client instance to set up connection
JSONVar doc; // to store fetched data

void setup() {

PLCIn.inConnectionStatus = 0; // inizialize connection flag

// establish internet connection
WiFi.begin(ssid, password);
delay(2000); // wait for connection

}

void loop() {
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// if NOT connected wait and retry to establish connection
while (WiFi.status() != WL_CONNECTED) {

PLCIn.inConnectionStatus = 0;
WiFi.begin(ssid, password);
delay(2000);

}

// if connected set flag and fetch the time
PLCIn.inConnectionStatus = 1;
fetchRomeTime();

}

/**
Fetch the time for the Rome timezone from a server with a GET
request, and parse the response to obtain the minutes

*/
void fetchRomeTime() {

if (client.connect(server, 80)) {
// send HTTP GET request
client.print("GET ");
client.print(path);
client.println(" HTTP/1.1");
client.print("Host: ");
client.println(server);
client.println("Connection: close");
client.println();

client.find("\r\n\r\n"); // skip HTTP headers of the response

// read the response and parse the JSON
String response = client.readStringUntil('\n');
doc = JSON.parse(response);

// if parsing unsuccessful exit the function
if (JSON.typeof(doc) == "undefined")

return;

// extract the date and time from response
String query_datetime = doc["datetime"];

// extract the minutes as a string
query_datetime = query_datetime.substring(14,16);
// convert to int and send to PLC
PLCIn.inMinutes = query_datetime.toInt();

}
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B.3 Building a Neural Network

B.3.1 Training Data Collection

Arduino Application

/**
* Acquisition of a training dataset to develop a Neural Network
* that identifies the kind of input waveform
* Purpose: this sketch acquires a certain number of samples
* from analog input A0; these are then transmitted to the serial port
*
* @author Riccardo Mennilli
*/

/* ---- CONFIGURATION ---- */

unsigned long Ts = 5; // sample time
const uint8_t ANALOG_INPUT_RESOLUTION = 14; // resolution of A0
// no. of samples to collect for each training example
const uint16_t NUM_SAMPLES = 500;

// time to wait before a new training example is collected (5 seconds)
const uint16_t delay_between_examples_ms = 5000;

/* ----------------------- */

// to keep track of time
unsigned long chrono = 0;
// keep track of the number of samples acquired
uint16_t samples_count = 0;
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void setup() {
// initialize serial communication
Serial.begin(115200);
while (!Serial); // wait until the serial port is open

/* ---- Setup the Arduino Peripherals ---- */
pinMode(A0, INPUT); // A0 -> analog input port
// set resolution to 14 bits
analogReadResolution(ANALOG_INPUT_RESOLUTION);

}

void loop() {

// check if the current training example is complete
// (500 samples collected)
if (samples_count >= NUM_SAMPLES) {

// if so wait 5 seconds to allow the operator to change
// the parameters of the input waveform
delay(delay_between_examples_ms);

samples_count = 0; // reset the counter for the number of samples
chrono = millis(); // save the time

} else if (millis() - chrono >= Ts) {
/* If > sample time has elapsed since the last recorded sample
* -> record a new sample and transmit it to the serial port
* after conversion to millivolts and normalization */

Serial.println(digitalSampleToMillivolts(
(analogRead(A0) - 5000.0) / 10000.0));

samples_count++; // record that a new sample has been collected

chrono = millis(); // record the time
}

}

/* This function converts a digital sample into
* an analog value in millivolts, with 10V reference
* ADC_counts: digital sample read by the ADC
*/
float digitalSampleToMillivolts(unsigned short ADC_counts)

{
// voltage reference -> 10 V = 10000 mV
const unsigned long Vmax_mV = 10000;
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unsigned long value_temp; // temporary value for calculations

value_temp = ADC_counts;
value_temp = value_temp * Vmax_mV;

// divide by 2^14 by shifting right of 14 bits, then
// convert to float
return (float) (value_temp >> ANALOG_INPUT_RESOLUTION);

}

Data Processing

# This function randomizes the order of the dataset,
# and it splits it into training set, validation set and test set
# inputs: numpy matrix containing the dataset
# outputs: numpy matrix with the data labels
# ratio: vector to specify the relative size of the subsets
def split_dataset(inputs, outputs, ratio):

num_inputs = len(inputs)
random_indexes = np.arange(num_inputs)
np.random.shuffle(random_indexes)

# introduce randomized indexes
inputs = inputs[random_indexes]
outputs = outputs[random_indexes]

# split the examples (group of samples) into three sets:
# training, testing and validation
TRAIN_SPLIT = int(ratio[0] * num_inputs)
TEST_SPLIT = int(ratio[1] * num_inputs + TRAIN_SPLIT)

inputs_train, inputs_test, inputs_validate = np.split(inputs,
[TRAIN_SPLIT, TEST_SPLIT])

inputs_train = inputs_train.astype('float32')
inputs_validate = inputs_validate.astype('float32')
inputs_test = inputs_test.astype('float32')
outputs_train, outputs_test, outputs_validate = np.split(outputs,

[TRAIN_SPLIT, TEST_SPLIT])

return outputs_train, outputs_test, outputs_validate, inputs_train,
inputs_test, inputs_validate
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B.3.3 Final Model Testing
The confusion matrix was plotted with seaborn1, a high-level matplotlib2 API.

import matplotlib.pyplot as plt
import seaborn as sns # high-level matplotlib API for the heatmap
import numpy as np
import tensorflow as tf

# predictions and outputs_test are one-hot encoded arrays,
# for the confusion matrix we need a 1D vector of labels:
predictions_array = np.argmax(predictions, axis=1)
outputs_test_array = test=np.argmax(outputs_test, axis=1)
conf_matrix = tf.math.confusion_matrix(labels=outputs_test_array,

predictions=predictions_array)

# print the confusion matrix
plt.rcParams['font.family'] = "monospace"
fig, ax = plt.subplot(figsize = (4.5,3))
sns.heatmap(conf_matrix, annot = True, cmap = 'terrain_r',

xticklabels=WAVEFORMS, yticklabels=WAVEFORMS, cbar = False)
ax.set_xlabel('Predicted Labels', fontweight='bold', fontsize=10)
ax.set_ylabel('True Labels', fontweight='bold', fontsize=10)
ax.xaxis.set_label_position('top')
plt.yticks(rotation=90)
plt.show()

B.4 Model Deployment to the Finder OPTA PLC

B.4.2 Arduino Application
Reported below is the full application code, developed in the Arduino IDE:

#include <TensorFlowLite.h>
#include <tensorflow/lite/micro/all_ops_resolver.h>
#include <tensorflow/lite/micro/micro_error_reporter.h>
#include <tensorflow/lite/micro/micro_interpreter.h>
#include <tensorflow/lite/schema/schema_generated.h>
#include <tensorflow/lite/version.h>

1https://seaborn.pydata.org/
2https://matplotlib.org/
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#include "model.h"

namespace { // to avoid conflicts with variables in other files
tflite::MicroErrorReporter tflErrorReporter;

const tflite::Model* tflModel = nullptr;
tflite::AllOpsResolver tflOpsResolver;
tflite::MicroInterpreter* tflInterpreter = nullptr;

TfLiteTensor* tflInputTensor = nullptr;
TfLiteTensor* tflOutputTensor = nullptr;

// allocate memory for the tensors
// (constexpr to evaluate the expression at compile time)
constexpr int tensorArenaSize = 6 * 1024;
byte tensorArena[tensorArenaSize] __attribute__((aligned(16)));

}

/* ---- Configuration ---- */
unsigned long Ts = 5; // sample time [ms]
const uint8_t ANALOG_INPUT_RESOLUTION = 14;
const uint16_t NUM_SAMPLES = 500; // no. of input samples

// time [in ms] to wait before new samples are collected
// for a new inference
const uint16_t delay_between_inferences_ms = 5000;
/* ----------------------- */

// variable to store time
unsigned long chrono = 0;

// keep track of the number of samples acquired
uint16_t samples_count = 0;

// mapping of the output of the model to a waveform type
const char* WAVEFORMS[] = {

"sine",
"triangular",
"square"

};
const uint8_t NUM_WAVEFORMS = sizeof(WAVEFORMS)/sizeof(WAVEFORMS[0]);

// arrays to store the identifiers of the relay/led outputs
const uint8_t RELAY_PIN[] = {D0, D1, D2};
const uint8_t RELAY_LED[] = {LED_D0, LED_D1, LED_D2};
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const uint8_t NUM_OUTPUTS = sizeof(RELAY_PIN) / sizeof(RELAY_PIN[0]);

void setup() {
// initialize serial communication
Serial.begin(115200);
while (!Serial);

/* ---- Setup the Machine Learning Infrastructure ---- */
// map model into a usable data structure
tflModel = tflite::GetModel(model);
if (tflModel->version() != TFLITE_SCHEMA_VERSION) {

// raise error if model version is incompatible
Serial.print("ERROR: Model is schema version ");
Serial.print(tflModel->version());
Serial.print(", not equal to supported version ");
Serial.println(TFLITE_SCHEMA_VERSION);

while(1); // endless loop to stop execution
}

// build the interpreter to run the model
static tflite::MicroInterpreter static_interpreter(tflModel,

tflOpsResolver,tensorArena,tensorArenaSize, &tflErrorReporter);
tflInterpreter = &static_interpreter;

// allocate memory for the tensors
TfLiteStatus allocate_status = tflInterpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {

// raise error if allocation fails
Serial.print("ERROR: AllocateTensors() failed.");
while(1); // endless loop to stop execution

}

// obtain pointers to input and output tensors
tflInputTensor = tflInterpreter->input(0);
tflOutputTensor = tflInterpreter->output(0);

/* ---- Setup the Arduino Peripherals ---- */
pinMode(A0, INPUT); // A0 -> analog input port
analogReadResolution(ANALOG_INPUT_RESOLUTION); // 14 bits

// configure the output relays and related LEDs
for (uint8_t i = 0; i < NUM_OUTPUTS; i++) {

pinMode(RELAY_PIN[i], OUTPUT);
pinMode(RELAY_LED[i], OUTPUT);
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}
// configure the blue LED as output (ON when OPTA is paused)
pinMode(LED_USER, OUTPUT); // blue LED

}

void loop() {

float sample; // to hold the current sample

// check if enough samples have been collected to run inference
// (at least 500)
if (samples_count >= NUM_SAMPLES) {

// invoke the interpreter to run inference
TfLiteStatus invokeStatus = tflInterpreter->Invoke();
if (invokeStatus != kTfLiteOk) {

// raise an error if invoke fails
Serial.println("ERROR: Invoke failed.");
while (1); // endless loop to stop execution

}

// to store the index/value of the class with max confidence
uint8_t max_confidence_index;
float max_confidence_value;
// loop through the output tensor
for (uint8_t i = 0; i < NUM_WAVEFORMS; i++) {

// print the output values (probability of each class)
Serial.print(WAVEFORMS[i]);
Serial.print(": ");
Serial.println(tflOutputTensor->data.f[i], 4);
Serial.println();

// record the maximum confidence value and its index
if ((tflOutputTensor->data.f[i]) > max_confidence_value) {

max_confidence_value = tflOutputTensor->data.f[i];
max_confidence_index = i; // store the index

}
}

// turn on/off the output relays/leds depending on
// the class with max confidence
control_output_relays(max_confidence_index);

// built-in blue LED on when OPTA is paused
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digitalWrite(LED_USER, HIGH);
delay(delay_between_inferences_ms); // pause for 5 seconds
digitalWrite(LED_USER, LOW);

samples_count = 0; // reset the counter
chrono = millis(); // save the time

} else if (millis() - chrono >= Ts) {
// if elapsed time since the last recorded sample
// > sample time: record a new sample, normalize it,
// and store it in the input tensor

// acquire sample and convert to mV
sample = digitalSampleToMillivolts(analogRead(A0));

// normalize sample and save it in the input tensor
tflInputTensor->data.f[samples_count] =

(sample - 5000.0) / 10000.0;

samples_count++; // record that a new sample has been collected
chrono = millis(); // save the time

}
}

/* This function converts a digital sample into
* an analog value in millivolts, with 10V reference
* ADC_counts: digital sample read by the ADC
*/
float digitalSampleToMillivolts(unsigned short ADC_counts)
{

// voltage reference -> 10 V = 10000 mV
const unsigned long Vmax_mV = 10000;

unsigned long value_temp; // temporary value for calculations

value_temp = ADC_counts;
value_temp = value_temp * Vmax_mV;

// divide by 2^14 by shifting right of 14 bits, then
// convert to float
return (float) (value_temp >> ANALOG_INPUT_RESOLUTION);

}
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/* Control the output relays on the basis
* of the class with max confidence
* SINE -> RELAY D0 (LED_D0)
* TRIANGULAR -> RELAY D1 (LED_D1)
* SQUARE -> RELAY D2 (LED_D2)
*
* max_confidence_index: index of the predicted class
*/
void control_output_relays(uint8_t max_confidence_index) {

// turn off all relays
for (uint8_t i = 0; i < NUM_OUTPUTS; i++) {

digitalWrite(RELAY_PIN[i], LOW);
digitalWrite(RELAY_LED[i], LOW);

}

// turn on the relay/led corresponding to the
// index with max confidence
digitalWrite(RELAY_PIN[max_confidence_index], HIGH);
digitalWrite(RELAY_LED[max_confidence_index], HIGH);

}
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C.5 Building a Neural Network

C.5.1 Training Data Collection

Arduino Application

/**
* Acquisition of a training dataset to develop a Neural Network that
* identifies the rotational speed of two rolling bearings from sound
* Purpose: this sketch periodically acquires a certain number of
* samples from analog input port A1; these are processed running a
* FFT to obtain the spectrogram, then transmitted to the serial port.
*
* @author Riccardo Mennilli
*/

#include <arduinoFFT.h>

/* ---- CONFIGURATION ---- */
const uint8_t kAnalogReadResolution = 16; // resolution of A1

// time interval to average the speed measurement
const unsigned long kVelocityCalculationInterval_ms = 10000;
// debouncing time of the magnetic digital speed sensor in ms
const unsigned long kDebounceInterval_ms = 50;

// spectrogram dimensions
const uint32_t kNumCols = 32; // number of columns
const uint32_t kNumRows = 256; // number of rows

// sampling time of microphone signal
const double kSamplingFrequency_Hz = 5000.0;
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unsigned int kSamplingPeriod_us = 200;

/* ------------------------ */

// variables to store time
unsigned long chrono; // sample microphone signal
unsigned long chrono_velocity; // sample speed sensor signal
// for debouncing of speed sensor
unsigned long last_detection_time = 0;

// counter for number of magnet detections
// (volatile because updated inside ISR)
volatile uint32_t magnet_detections = 0;

// vectors to store the raw microphone samples and the complex
// number after FFT (real/imag parts)
double tempSamples[kNumCols * kNumRows];
double vReal[kNumCols];
double vImag[kNumCols];

// create FFT object
ArduinoFFT<double> FFT = ArduinoFFT<double>(vReal, vImag,

kNumCols, kSamplingFrequency_Hz);

void setup() {
// initialize serial communication
Serial.begin(115200);
while(!Serial); // wait for serial port

/* ---- Setup the Arduino Peripherals ---- */
pinMode(A0, INPUT); // A0 -> digital input port for velocity sensor
pinMode(A1, INPUT); // A1 -> analog input port for microphone signal
analogReadResolution(kAnalogReadResolution);

// configure interrupt for pin A0 to detect
// falling edge of velocity sensor
attachInterrupt(digitalPinToInterrupt(A0),

count_magnet_detections_ISR, FALLING);
}

void loop() {

double sample;
uint16_t speed;
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uint16_t i = 0; // counter for the number of microphone samples

speed = compute_velocity(); // record the current velocity

// collect kNumCols*kNumRows=8192 samples of the microphone signal
while(i < (kNumCols * kNumRows)) {

if (micros() - chrono >= kSamplingPeriod_us) {
/* If a time > sample time has passed since the last sample
* that was recorded -> record a new sample
* and store it into the tempSamples vector,
* after the conversion to millivolts */

sample = digitalSampleToMillivolts(analogRead(A1));
tempSamples[i] = sample;

i++;
chrono = micros(); // record the time

}
}

// run row-wise FFT and print the output to the serial port
for (uint16_t j = 0; j < kNumRows; j++) { // loop through the rows

for (i = 0; i < kNumCols; i++) { // loop through the columns
vReal[i] = tempSamples[j*kNumCols + i];
vImag[i] = 0;

}

// run FFT
FFT.dcRemoval(); // remove offset
// Hann window function
FFT.windowing(FFTWindow::Hann, FFTDirection::Forward);
FFT.compute(FFTDirection::Forward);
FFT.complexToMagnitude(); // convert real/imag part to magnitude

// transmit the spectrogram entry and the measured speed of this
// training example to the serial port
for (uint16_t idx_col = 0; idx_col < kNumCols; idx_col++) {

// magnitude of this specific entry of the spectrogram
Serial.print(vReal[idx_col], 4);
Serial.print(",");
// raw sample in millivolts
Serial.print(tempSamples[j*kNumCols + idx_col]);
Serial.print(",");
// measured speed
Serial.println(speed);

}
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}
}

/* This function converts a digital sample into
* an analog value in millivolts, with 10V reference
* ADC_counts: digital sample read by the ADC */

double digitalSampleToMillivolts(unsigned short ADC_counts)
{

// voltage reference -> 10 V = 10000 mV
const unsigned long Vmax_mV = 10000;

unsigned long value_temp; // temporary value for calculations

value_temp = ADC_counts;
value_temp = value_temp * Vmax_mV;

// divide by 2^16 by shifting right of 16 bits, then
// convert to double
return (double) (value_temp >> kAnalogReadResolution);

}

/* Compute the average velocity over approx. 10s, by counting the
* number of times the magnet is detected in that time period */

uint16_t compute_velocity() {

uint32_t velocity;

magnet_detections = 0; // reset counter to start average

chrono_velocity = millis(); // record current time
// hold program while speed is recorded (10s)
while (millis() - chrono_velocity < kVelocityCalculationInterval_ms);

// compute the average velocity [rpm]
velocity = magnet_detections*60000 / (millis()-chrono_velocity);

return (uint16_t) velocity;
}

/* Interrupt Service Routine (ISR) linked to falling edge of
* velocity sensor (magnetic) -> increase counter after
* debouncing */
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void count_magnet_detections_ISR() {
// debouncing
if (millis() - last_detection_time > kDebounceInterval_ms) {

magnet_detections++; // update counter
last_detection_time = millis(); // record current time

}
}

Data Processing

import numpy as np
import pandas as pd # to parse csv dataset files

# list of speed categories of the training examples
SPEED_CATEGORIES = list(range(200,1550,50))

NUM_COLS = 32 # number of columns of each spectrogram
NUM_ROWS = 256 # number of rows of each spectrogram
SAMPLES_PER_EXAMPLE = NUM_COLS * NUM_ROWS # 8192

NUM_SPEEDS = len(SPEED_CATEGORIES) # 27

inputs = []
outputs = []

# read all csv files and parse inputs and outputs
for idx in range(NUM_SPEEDS):

example = SPEED_CATEGORIES[idx]

df = pd.read_csv("/content/" + str(example) + ".csv")
num_examples = int(df.shape[0] / SAMPLES_PER_EXAMPLE)

for i in range(num_examples):
tensor = []
for j in range(SAMPLES_PER_EXAMPLE):

index = i * SAMPLES_PER_EXAMPLE + j
tensor += [

((df['power'][index]).astype('float32'))
]

tensor = np.reshape(tensor, (NUM_ROWS, NUM_COLS))
output = (df['speed'][index])

inputs.append(tensor)
outputs.append(output)
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# convert the lists to numpy matrices
inputs = np.array(inputs).astype('float32')
outputs = np.array(outputs).astype('float32')

C.6 Model Deployment to the Finder OPTA

C.6.2 Arduino Application
#include <TensorFlowLite.h>
#include <tensorflow/lite/micro/all_ops_resolver.h>
#include <tensorflow/lite/micro/micro_error_reporter.h>
#include <tensorflow/lite/micro/micro_interpreter.h>
#include <tensorflow/lite/schema/schema_generated.h>
#include <tensorflow/lite/version.h>

#include <arduinoFFT.h>

#include "model.h" // quantized model

// namespace to avoid conflicts with variables in other files
namespace {

tflite::MicroErrorReporter tflErrorReporter;

const tflite::Model* tflModel = nullptr;
tflite::AllOpsResolver tflOpsResolver;
tflite::MicroInterpreter* tflInterpreter = nullptr;

TfLiteTensor* tflInputTensor = nullptr;
TfLiteTensor* tflOutputTensor = nullptr;

// allocate memory for the tensors
// (constexpr to evaluate the expression at compile time)
constexpr int tensorArenaSize = 350 * 1024; // 358.4 kB
byte tensorArena[tensorArenaSize] __attribute__((aligned(16)));

}

/* ---- CONFIGURATION ---- */
const uint8_t kAnalogReadResolution = 16; // resolution of A1

// time interval to average the speed measurement
const unsigned long kVelocityCalculationInterval_ms = 10000;
// debouncing time of the magnetic digital speed sensor in ms
const unsigned long kDebounceInterval_ms = 50;
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// spectrogram dimensions
const uint32_t kNumCols = 32; // number of columns
const uint32_t kNumRows = 256; // number of rows

// sampling time of microphone signal
const double kSamplingFrequency_Hz = 5000.0;
unsigned int kSamplingPeriod_us = 200;

/* ------------------------ */

// variables to store time
unsigned long chrono; // sample microphone signal
unsigned long chrono_velocity; // sample speed sensor signal
// for debouncing of speed sensor
unsigned long last_detection_time = 0;

// counter for number of magnet detections
// (volatile because updated inside ISR)
volatile uint32_t magnet_detections = 0;

// to perform the average of multiple inferences
double running_sum; // sum for the avg
uint32_t sum_elements_count; // number of entries for the avg

// vectors to store the raw microphone samples and the complex
// number after FFT (real/imag parts)
double tempSamples[kNumCols * kNumRows];
double vReal[kNumCols];
double vImag[kNumCols];

// create FFT object
ArduinoFFT<double> FFT = ArduinoFFT<double>(vReal, vImag,

kNumCols, kSamplingFrequency);

void setup() {
// initialize serial communication
Serial.begin(115200);
while(!Serial); // wait for serial port

/* ---- Setup the Machine Learning Infrastructure ---- */
// map model into a usable data structure
tflModel = tflite::GetModel(model);
if (tflModel->version() != TFLITE_SCHEMA_VERSION) {

// raise error if model version is incompatible
Serial.print("ERROR: Model is schema version ");
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Serial.print(tflModel->version());
Serial.print(", not equal to supported version ");
Serial.println(TFLITE_SCHEMA_VERSION);

while(1); // endless loop to stop execution
}

// build the interpreter to run the model
static tflite::MicroInterpreter static_interpreter(tflModel,

tflOpsResolver,tensorArena,tensorArenaSize, &tflErrorReporter);
tflInterpreter = &static_interpreter;

// allocate memory for the tensors
TfLiteStatus allocate_status = tflInterpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {

// raise error if allocation fails
Serial.print("ERROR: AllocateTensors() failed.");
while(1); // endless loop to stop execution

}

// obtain pointers to input and output tensors
tflInputTensor = tflInterpreter->input(0);
tflOutputTensor = tflInterpreter->output(0);

/* ---- Setup the Arduino Peripherals ---- */
pinMode(A0, INPUT); // A0 -> digital input port for velocity sensor
pinMode(A1, INPUT); // A1 -> analog input port for microphone signal
analogReadResolution(kAnalogReadResolution);

// configure interrupt for pin A0 to detect
// falling edge of velocity sensor
attachInterrupt(digitalPinToInterrupt(A0),

count_magnet_detections_ISR, FALLING);
}

void loop() {

double sample;
uint16_t speed;

uint16_t i = 0; // counter for the number of microphone samples

// if more than 10s have elapsed from last output: record the speed
// measurement from the sensor for debugging, print the average of
// the inferences over the 10s, and reset the average
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if (millis() - chrono_velocity > kVelocityCalculationInterval_ms) {
// debugging: record the current speed
speed = compute_velocity();

// log actual and average predicted speed to serial port
Serial.print("Average predicted speed: ");
Serial.print(running_sum / sum_elements_count); // compute average
Serial.println(" rpm");
Serial.print("Measured speed: ");
Serial.print(speed);
Serial.println(" rpm");
Serial.println();

// initialize average
running_sum = 0;
sum_elements_count = 0;

}

// collect kNumCols*kNumRows=8192 samples of the microphone signal
while(i < (kNumCols * kNumRows)) {

if (micros() - chrono >= kSamplingPeriod_us) {
/* If a time > sample time has passed since the last sample
* that was recorded -> record a new sample
* and store it into the tempSamples vector,
* after the conversion to millivolts */

sample = digitalSampleToMillivolts(analogRead(A1));
tempSamples[i] = sample;

i++;
chrono = micros(); // record the time

}
}

// run row-wise FFT
for (uint16_t j = 0; j < kNumRows; j++) { // loop through the rows

for (i = 0; i < kNumCols; i++) { // loop through the columns
vReal[i] = tempSamples[j*kNumCols + i];
vImag[i] = 0;

}

// run FFT
FFT.dcRemoval(); // remove offset
// Hann window function
FFT.windowing(FFTWindow::Hann, FFTDirection::Forward);
FFT.compute(FFTDirection::Forward);
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FFT.complexToMagnitude(); // convert real/imag part to magnitude

for (uint16_t idx_col = 0; idx_col < kNumCols; idx_col++) {
// save magnitude out of FFT into the input tensor
tflInputTensor->data.f[j*kNumCols+idx_col] = vReal[idx_col];

}
}

// invoke the interpreter to run inference
TfLiteStatus invokeStatus = tflInterpreter->Invoke();
if (invokeStatus != kTfLiteOk) {

// raise an error if invoke fails
Serial.println("ERROR: Invoke failed.");
while (1); // endless loop to stop execution

}

// add element to running sum for the average
running_sum += tflOutputTensor->data.f[0];
sum_elements_count++; // update the entries counter

}

/* This function converts a digital sample into
* an analog value in millivolts, with 10V reference
* ADC_counts: digital sample read by the ADC */

double digitalSampleToMillivolts(unsigned short ADC_counts)
{

// voltage reference -> 10 V = 10000 mV
const unsigned long Vmax_mV = 10000;

unsigned long value_temp; // temporary value for calculations

value_temp = ADC_counts;
value_temp = value_temp * Vmax_mV;

// divide by 2^16 by shifting right of 16 bits, then
// convert to double
return (double) (value_temp >> kAnalogReadResolution);

}

/* Compute the average velocity, by counting the number of
* times the magnet is detected in a given time period */

uint16_t compute_velocity() {
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uint32_t velocity;

// compute the average velocity
velocity = magnet_detections*60000 / (millis()-chrono_velocity);

magnet_detections = 0; // reset counter to start average
chrono_velocity = millis(); // record current time

return (uint16_t) velocity;
}

/* Interrupt Service Routine linked to falling edge of velocity
* sensor (magnetic) -> increase counter after debouncing */

void count_magnet_detections_ISR() {
// debouncing
if (millis() - last_detection_time > kDebounceInterval_ms) {

magnet_detections++; // update counter
last_detection_time = millis(); // record current time

}
}
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C.7 Overall System Testing

200 rpm (Mean Error = +14.05 rpm)
Predicted 219.5 224.6 219.5 224.6 219.5 224.6 219.5 224.6 219.5 224.6
Measured 213.0 203.0 213.0 203.0 213.0 203.0 213.0 203.0 213.0 203.0
250 rpm (Mean Error = +23.84 rpm)
Predicted 254.3 286.3 275.4 270.8 237.7 321.4 278.3 310.9 296.1 236.2
Measured 252.0 254.0 254.0 252.0 252.0 252.0 253.0 254.0 254.0 252.0
300 rpm (Mean Error = +32.91 rpm)
Predicted 347.5 303.3 306.6 364.7 351.6 350.4 396.2 349.8 292.0 300.0
Measured 302.0 304.0 304.0 303.0 303.0 303.0 304.0 304.0 302.0 304.0
350 rpm (Mean Error = +19.01 rpm)
Predicted 365.4 406.8 436.2 355.2 387.6 343.6 345.9 337.7 339.5 405.2
Measured 352.0 352.0 354.0 354.0 353.0 352.0 353.0 355.0 353.0 355.0
400 rpm (Mean Error = +52.77 rpm)
Predicted 463.2 472.8 469.7 418.2 441.3 472.8 448.7 494.5 400.6 488.9
Measured 403.0 404.0 405.0 405.0 405.0 405.0 405.0 404.0 403.0 404.0
450 rpm (Mean Error = +15.63 rpm)
Predicted 454.0 449.6 434.4 462.7 457.6 473.0 446.1 549.8 491.6 476.5
Measured 455.0 453.0 455.0 454.0 452.0 454.0 456.0 454.0 454.0 452.0
500 rpm (Mean Error = +29.47 rpm)
Predicted 543.4 579.1 595.5 517.6 575.7 514.2 481.8 491.3 519.4 516.7
Measured 503.0 503.0 503.0 506.0 504.0 505.0 502.0 504.0 505.0 505.0
550 rpm (Mean Error = +46.54 rpm)
Predicted 585.4 638.6 576.4 602.4 597.2 631.5 564.2 609.6 602.3 608.8
Measured 552.0 552.0 554.0 556.0 556.0 556.0 554.0 557.0 557.0 557.0
600 rpm (Mean Error = +58.72 rpm)
Predicted 688.6 683.9 594.3 694.6 632.9 685.1 683.8 622.6 655.7 683.7
Measured 603.0 603.0 603.0 602.0 603.0 604.0 605.0 607.0 602.0 606.0
650 rpm (Mean Error = +26.21 rpm)
Predicted 735.1 720.9 657.6 673.1 673.6 662.1 670.5 640.4 684.2 684.6
Measured 652.0 652.0 654.0 653.0 652.0 657.0 654.0 657.0 653.0 656.0
700 rpm (Mean Error = +21.05 rpm)
Predicted 688.9 735.3 724.4 778.9 744.5 778.1 735.2 681.7 680.6 699.9
Measured 702.0 706.0 702.0 703.0 706.0 705.0 702.0 704.0 704.0 703.0
750 rpm (Mean Error = +34.29 rpm)
Predicted 836.5 777.2 811.1 760.3 844.0 805.0 754.8 743.2 797.9 762.9
Measured 754.0 757.0 753.0 754.0 757.0 754.0 754.0 753.0 755.0 759.0
800 rpm (Mean Error = +42.97 rpm)
Predicted 821.3 844.0 855.3 833.6 877.3 797.4 897.0 880.1 820.8 853.9
Measured 802.0 803.0 802.0 807.0 808.0 808.0 804.0 809.0 806.0 802.0
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850 rpm (Mean Error = +25.77 rpm)
Predicted 896.4 896.0 849.3 844.1 877.8 929.8 852.2 890.1 845.2 933.8
Measured 854.0 852.0 856.0 859.0 858.0 860.0 855.0 855.0 853.0 855.0
900 rpm (Mean Error = +29.54 rpm)
Predicted 973.1 959.4 936.4 906.4 952.3 902.1 903.7 983.4 895.1 957.5
Measured 908.0 907.0 905.0 906.0 909.0 910.0 906.0 906.0 910.0 907.0
950 rpm (Mean Error = +61.66 rpm)
Predicted 1049 1030 1025 1008 995.2 976.4 1028 1001 1023 1048
Measured 956.0 958.0 959.0 955.0 952.0 960.0 955.0 958.0 960.0 954.0
1000 rpm (Mean Error = +35.1 rpm)
Predicted 1061 1075 1061 1058 1008 1037 1092 1008 1005 1012
Measured 1009 1010 1006 1010 1005 1004 1006 1002 1010 1004
1050 rpm (Mean Error = +39.7 rpm)
Predicted 1101 1035 1081 1092 1130 1105 1060 1138 1122 1097
Measured 1060 1055 1058 1054 1052 1055 1054 1062 1062 1052
1100 rpm (Mean Error = +51.8 rpm)
Predicted 1189 1178 1145 1081 1091 1141 1194 1181 1192 1196
Measured 1111 1106 1105 1108 1102 1106 1104 1110 1109 1109
1150 rpm (Mean Error = +31.8 rpm)
Predicted 1226 1201 1141 1197 1135 1220 1209 1201 1157 1215
Measured 1156 1155 1161 1154 1163 1163 1156 1156 1160 1160
1200 rpm (Mean Error = +44.6 rpm)
Predicted 1259 1224 1222 1296 1233 1208 1303 1268 1307 1213
Measured 1210 1206 1202 1212 1211 1208 1210 1211 1205 1212
1250 rpm (Mean Error = +58.7 rpm)
Predicted 1341 1311 1322 1317 1314 1354 1261 1297 1341 1299
Measured 1262 1258 1259 1252 1259 1260 1258 1252 1258 1252
1300 rpm (Mean Error = +36.2 rpm)
Predicted 1331 1293 1398 1346 1399 1329 1372 1292 1351 1329
Measured 1311 1304 1310 1313 1304 1307 1302 1304 1310 1313
1350 rpm (Mean Error = +39.9 rpm)
Predicted 1440 1427 1353 1359 1375 1390 1403 1373 1439 1435
Measured 1356 1365 1362 1356 1360 1357 1360 1365 1360 1354
1400 rpm (Mean Error = +47.2 rpm)
Predicted 1414 1476 1488 1501 1451 1413 1462 1413 1439 1492
Measured 1405 1410 1403 1411 1406 1411 1406 1411 1407 1407
1450 rpm (Mean Error = +40.3 rpm)
Predicted 1468 1467 1482 1550 1500 1536 1482 1495 1554 1456
Measured 1458 1465 1457 1462 1460 1453 1458 1465 1452 1457
1500 rpm (Mean Error = +31.3 rpm)
Predicted 1608 1542 1531 1495 1517 1559 1562 1520 1568 1497
Measured 1503 1512 1515 1503 1511 1504 1512 1511 1502 1513

Table C.1: Deployed CNN Model - Test Results

165



166



Appendix D

Case Study III

D.1 Arduino Application Code
The application code is organized into three .ino files and one header file for
improved clarity. Recall how one of the advantages of the Arduino IDE is the
automatic merging of all project files during compilation, eliminating the need for
function prototypes and a rigorous order for the function definitions (section 2.2).

wave_energy_opta_control.ino

#include "configuration.h"

// allocate parallel thread - LED management
static rtos::Thread ledsManagementThread;

// Client object to connect using SSL, compatible with
// standard plain connections methods
WiFiSSLClient client;

// Last time a weather update was attempted (intialized so that
// the weather is fetched at the start of the program)
unsigned long prevWeatherFetchAttempt =

60000 * kWeatherUpdateInterval_min;
// Last time a successful weather update was fetched
unsigned long prevWeatherFetchSuccess;

// Last time (hh format) a successful weather update was fetched
int8_t fetchHour = -1;

// Flags to activate or reset emergency
// (volatile because handled by Interrupt Service Routine)
volatile uint8_t emergencyPB; // user command
volatile uint8_t resetEmergencyPB; // user command

167



Case Study III

uint8_t emergencyWaveHeight;

// To store the wave height forecast for the next 3 days in intervals
// of 6 hours (24h/6h = 4 intervals in a day, 4*3 DAYS = 12 elements)
double max_wave_height_6h[24 / kIntervalLength_h*kForecastLength_days];

void setup() {
// Initialize serial port and wait for it to open:
Serial.begin(115200);
delay(1500);

// Defined in configuration.h -> for Arduino Cloud variables
initProperties();

// Connect to Arduino IoT Cloud
// [second parameter = false -> disable Arduino Cloud watchdog]
ArduinoCloud.begin(ArduinoIoTPreferredConnection);

setDebugMessageLevel(2);
ArduinoCloud.printDebugInfo();

/* Configure the required DIGITAL Input/Output pins */
const uint8_t DIGITAL_INPUT_PIN[] = {A0, A1, A6, A7};
const uint8_t NUM_INPUTS_DIGITAL = 4;
for (uint8_t i = 0; i < NUM_INPUTS_DIGITAL; i++) {

pinMode(DIGITAL_INPUT_PIN[i], INPUT);
}

const uint8_t RELAY_PIN[] = {D0, D1};
const uint8_t RELAY_LED[] = {LED_D0, LED_D1};
const uint8_t NUM_OUTPUTS = 2;
for (uint8_t i = 0; i < NUM_OUTPUTS; i++) {

pinMode(RELAY_PIN[i], OUTPUT);
pinMode(RELAY_LED[i], OUTPUT);

}

pinMode(LED_USER, OUTPUT); // blue LED, blinking when emergency active
pinMode(LEDR, OUTPUT); // red LED, on when WiFi connection failed
pinMode(LED_BUILTIN, OUTPUT); // green LED, on when connected to WiFi

// Initialize interrupts associated to the input pins
attachInterrupt(digitalPinToInterrupt(A0), EmergencyPB_ISR, FALLING);
attachInterrupt(digitalPinToInterrupt(A1),EmergencyResetPB_ISR,RISING);

// Start the parallel thread
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ledsManagementThread.start(manageOptaLeds);

// Initialize the wave height forecast to -1 to prevent
// "emergency reset" when no data has been downloaded yet
for (uint8_t i = 0; i < (24 / kIntervalLength_h*kForecastLength_days);

i++) {
max_wave_height_6h[i] = -1.0;

}
// Initialize system with emergency active for safety
emergencyWaveHeight = true;

}

void loop() {

// To store the return value of function fetchWaveHeight()
// if negative -> error
// if positive -> currentHour
int8_t fetchWeatherReturn;

ArduinoCloud.update(); // maintain connection

/* ------------ WAVE HEIGHT FORECAST ------------ */
// Fetch an update to the wave height forecast every
// kWeatherUpdateInterval_min if connected to the internet
if (millis() - prevWeatherFetchAttempt > (unsigned long)

(kWeatherUpdateInterval_min*60000) && WiFi.status()==WL_CONNECTED) {

// fetch forecast and save it in max_wave_height_6h[]
fetchWeatherReturn = fetchWaveHeight(max_wave_height_6h);

if (fetchWeatherReturn >= 0) { // if no errors (-1 if error)
fetchHour = fetchWeatherReturn; // update the fetch time (hour)
// log the forecast to Google Sheets
logToSpreadsheet(max_wave_height_6h,

(24 / kIntervalLength_h * kForecastLength_days));

// save the time of last SUCCESS in updating the forecast
prevWeatherFetchSuccess = millis();

}

// save the time of last ATTEMPT at updating the forecast
prevWeatherFetchAttempt = millis();

// extract the forecast for the current 6h interval and next 6h
currentMaxWaveHeight_m = findWaveHeight(0);
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next6hMaxWaveHeight_m = findWaveHeight(1);
// if wave height in current 6h period or in next 6h > threshold
// (or < 0: ERROR) --> ACTIVATE EMERGENCY */
if (currentMaxWaveHeight_m >= kEmThreshold_m ||

next6hMaxWaveHeight_m >= kEmThreshold_m ||
currentMaxWaveHeight_m < 0 || next6hMaxWaveHeight_m < 0) {

emergencyWaveHeight = true;
} else {

emergencyWaveHeight = false;
}

}

/* --- STATE MACHINE ACTIONS (EMERGENCY / NORMAL) --- */
switch(state) {

/* Normal State */
case 1:

/* Check if the float is in the working position.
* If NOT activate the relay to lower it */

lowerFloat();

/* Transition condition NORMAL -> EMERGENCY:
* if the emergency is commanded by operator or
* wave height > threshold --> ENTER EMERGENCY */

if (emergencyPB || emergencyWaveHeight) {
state = 0;

}
break;

/* Emergency State */
case 0:

/* Check if the float is in the safe position.
* If NOT activate the relay to raise it */

raiseFloat();

/* Transition condition EMERGENCY -> NORMAL:
* - if the emergency pushbutton was pressed, check it is released
* and the "Reset Emergency" command was issued;
* - check if wave height is below threshold
* The emergency can only be reset if the float is in the SAFE
* (raised) position */

if (!emergencyWaveHeight && (!emergencyPB || resetEmergencyPB)
&& digitalRead(A6)) {

state = 1;
resetEmergencyPB = false;
emergencyPB = false;
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}
break;

default:
/* If state NOT 0 or 1: enter emergency by setting it to 0 */
state = 0; // enter emergency

break;
}

// flag to display the status of the float in the HMI
floatDown = digitalRead(A7);

}

/* ---------------- PARALLEL THREAD --------------- */
/* Callback to manage the built-in LEDs of the Opta */
void manageOptaLeds() {

while (1) {
/* To provide a visual indication of the Wi-Fi status:
* - steady green LED (LED_BUILTIN): Wi-Fi connected
* - steady red LED (LEDR): Wi-Fi connection failed */

WiFiStatusLED();

if (state == 1) { // if normal operations (no emergency)
digitalWrite(LED_USER, LOW); // turn off the blue LED

} else { // if emergency
// blink the emergency blue LED with a period of 500 ms
blinkLED(LED_USER, 500);

}
}

}

/* ------ ARDUINO CLOUD ON_CHANGE UPDATE FUNCTIONS ------ */
/* emergencyStop_cloud is READ_WRITE: onEmergencyStopCloudChange()
* is executed every time a new value is received from IoT Cloud */

void onEmergencyStopCloudChange() {
// If emergency command from Arduino Cloud dashboard
// -> set the emergencyPB volatile flag
if (emergencyStop_cloud) {

emergencyPB = true;
}

}

/* resetEmergency_cloud is READ_WRITE: onResetEmergencyCloudChange()
* is executed every time a new value is received from IoT Cloud */

void onResetEmergencyCloudChange() {

171



Case Study III

// If "Reset Emergency" command from Arduino Cloud dashboard
// -> set the resetEmergencyPB flag IF the emergency is active,
// the wave height is below threshold, and the float is raised
if (resetEmergency_cloud && state == 0 && !emergencyWaveHeight

&& digitalRead(A6)) {
resetEmergencyPB = true;

}
}

/* --------- INTERRUPT SERVICE ROUTINES --------- */
/* ISR called at the FALLING EDGE of pin I1 (A0), connected to the
* physical emergency pushbutton (normally closed) */

void EmergencyPB_ISR(){
emergencyPB = true;

}

/* ISR called at the RISING EDGE of pin I2 (A1), connected to the
* physical "Reset Emergency" pushbutton (normally open) */

void EmergencyResetPB_ISR(){
// If "Reset Emergency" command from operator
// -> set the resetEmergencyPB flag IF the emergency is active,
// the wave height is below threshold, and the float is raised
if (!emergencyWaveHeight && state == 0 && digitalRead(A6)) {

resetEmergencyPB = true;
}

}

utility.ino

/**
* Collection of utility functions for the Opta
*
* @author Riccardo Mennilli
* @version 0.3 24/05/2024
*/

// time variable to blink LEDs
unsigned long prevBlinkTime = 0;

/**
* Blink a built-in LED of the Opta with a specific period in ms.
* It can also be used to toggle any digital pin.
*
* @param LED Reference to the LED (pin in general) to toggle
* @param blinkPeriod_ms Period in ms
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*/
void blinkLED(uint8_t LED, unsigned long blinkPeriod_ms) {

if (millis()-prevBlinkTime > blinkPeriod_ms) {
// if time elapsed from previous toggle > period: toggle the pin
digitalWrite(LED, !digitalRead(LED));
prevBlinkTime = millis(); // record the time

}
}

/**
* To provide a visual indication of the Wi-Fi status:
* - steady green LED (LED_BUILTIN): WiFi connected
* - steady red LED (LEDR): Wi-Fi connection failed
*/

void WiFiStatusLED() {
if(WiFi.status() != WL_CONNECTED) { // if no WiFi connection

digitalWrite(LED_BUILTIN, LOW); // turn off the green LED
digitalWrite(LEDR, HIGH); // turn on the red LED (steady)

} else if (WiFi.status() == WL_CONNECTED) { // if WiFi is connected
digitalWrite(LEDR, LOW); // turn off the red LED
digitalWrite(LED_BUILTIN, HIGH); // turn on the green LED (steady)

}
}

/**
* Lower the float into the water by energizing relay D0
* D0 -> relay to lower the float
* LED_D0 -> associated LED, to visualize its state
* A7 -> limit switch indicating the float is DOWN
*/

void lowerFloat() {
// De-energize the relay to raise the float (D1)
digitalWrite(D1, LOW);
digitalWrite(LED_D1, LOW);

if (!digitalRead(A7)) { // if the float is NOT down
digitalWrite(D0, HIGH); // energize relay D0 to lower the float
digitalWrite(LED_D0, HIGH);

} else if (digitalRead(D0)) { // if the float is DOWN
digitalWrite(D0, LOW); // de-energize the relay
digitalWrite(LED_D0, LOW);

}
}

/**
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* Raise the float out of the water by energizing relay D1
* D1 -> relay to raise the float
* LED_D1 -> associated LED, to visualize its state
* A6 -> limit switch indicating the float is UP
*/

void raiseFloat() {
// De-energize the relay to lower the float (D0) if it is active
digitalWrite(D0, LOW);
digitalWrite(LED_D0, LOW);

if (!digitalRead(A6)) { // if the float is NOT raised
digitalWrite(D1, HIGH); // energize relay D1 to raise the float
digitalWrite(LED_D1, HIGH);

} else if (digitalRead(D1)) { // if the float is UP
digitalWrite(D1, LOW); // de-energize the relay
digitalWrite(LED_D1, LOW);

}
}

api.ino

/**
* Collection of custom functions to control the required API calls:
* GET -> from api.open-meteo.com to download wave height forecast
* POST -> to Google Sheets to log data
*
* @author Riccardo Mennilli
* @version 0.1 03/05/2024
*/

/**
* Fetches the maximum wave height forecast from open-meteo.com
* Forecast length = 3 days
* Location Coordinates: 44.3N, 8.72E
*
* @param maxWaveHeight array containing the max wave height in m,
* in intervals of 6h, for 3 days
* @return the hour the weather data was fetched
*/

int8_t fetchWaveHeight(double maxWaveHeight[]) {
// initialize return value:
// negative value -> ERROR in fetching the weather data
// positive value -> the hour the weather data was fetched
int8_t returnCurrentHour = -1;
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double coordinates[2] = {44.3, 8.72}; // desired coordinates
double maxCoordinateError = 0.3;

// open-meteo API server to fetch marine weather forecasts
const char* openMeteoServer = "marine-api.open-meteo.com";
// API endpoint path and query to get required data
String path = "/v1/marine";
String queryCoordinates = "?latitude=" + (String) coordinates[0] +

"&longitude=" + (String) coordinates[1];
String queryParameters = "&current=wave_height&hourly=wave_height"

"&timezone=Europe%2FBerlin&forecast_days=3";

// connect to server (port 443: SSL)
if (client.connect(openMeteoServer, 443)) {

// send HTTP GET request if connection successful
client.print("GET " + path + queryCoordinates + queryParameters);
client.println(" HTTP/1.1");
client.print("Host: ");
client.println(openMeteoServer);
client.println("Connection: close");
client.println();

// skip HTTP header
char startOfJson = '{';
client.find(startOfJson);

// parse JSON response
JSONVar doc; // JSON object to store the response
String payload = "{" + client.readStringUntil('\n');
doc = JSON.parse(payload);

// check is parsing was successful
if (JSON.typeof(doc) == "undefined") {

Serial.println("- Parsing failed (open-meteo)!");
client.stop();

returnCurrentHour = -1; // error: return -1
return returnCurrentHour;

}

// parse latitude and logitude to check location
double latitude = doc["latitude"];
double longitude = doc["longitude"];
// check if coordinates of the fetched weather are reasonably
// close to desired location
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if (abs(latitude - coordinates[0]) > maxCoordinateError ||
abs(longitude - coordinates[1]) > maxCoordinateError) {

Serial.println("- Coordinates error!");
client.stop();

returnCurrentHour = -1; // error: return -1
return returnCurrentHour;

}

// parse JSON array containing the forecast for wave height
JSONVar hourly_wave_height = doc["hourly"]["wave_height"];
// declare an array to store the forecast and initialize it to 0
double wave_height_forecast[hourly_wave_height.length()];
memset(maxWaveHeight, 0, sizeof(maxWaveHeight));

// go through the hourly forecasts in batches of 6 hours, and
// save the max for each 6h period into maxWaveHeight
for (int i = 0; i < hourly_wave_height.length()/6; i++) {

for (int j = 0; j < 6; j++) {
// go through the hourly forecasts
wave_height_forecast[i*6+j] = hourly_wave_height[i*6+j];
// if the value is > than the max stored, update it
if (wave_height_forecast[i*6+j] > maxWaveHeight[i]) {

maxWaveHeight[i] = hourly_wave_height[i*6+j];
}

}
}

// parse the current time, format "2024-05-03T15:00",
// extracting the hour (-> "15")
JSONVar current = doc["current"];
const char* current_time = current["time"];
char current_time_only_hour[] = {current_time[11],

current_time[12],'\0'};

// convert the time string to an integer
returnCurrentHour = atoi(current_time_only_hour);

} else {
Serial.println("- Failed to connect to server (open-meteo)!");
returnCurrentHour = -1; // error: return -1

}
client.stop();

return returnCurrentHour;

176



D.1 – Arduino Application Code

}

/**
* Sends an array to Google Sheets for logging (HTTP POST request)
*
* @param variableValue array containing the values to share
* @param numberOfEntries length of the array variableValue
*/

uint8_t logToSpreadsheet(double variableValue[],
uint8_t numberOfEntries) {

JSONVar object; // JSON object to share

String jsonField = "wave_height"; // name of the JSON field

// copy all entries of array variableValue into the JSON object
for (uint8_t i = 0; i < numberOfEntries; i++) {

object[jsonField][i] = variableValue[i];
}

if (JSON.typeof(object) == "undefined") {
return 1; // exit if error detected

}

// JSON.stringify(myVar) to convert the JSONVar to a String
String jsonString = JSON.stringify(object);

if (sendPostRequest(jsonString) == 1) { // send POST request
return 1; // exit if error detected

}

return 0;
}

/**
* Sends the HTTP POST request to log data to a Google spreadsheet
*
* @param postData String containing the information to send
*/

uint8_t sendPostRequest(String postData) {
uint8_t requestStatus; // return value

// Google Webapp url to log data to a spreadsheet
const char* googleScriptServer = "script.google.com";
String googleScriptPath = "/macros/s/";
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String googleScriptID = "*****";

// connect to server (port 443: SSL)
if (client.connect(googleScriptServer, 443)) {

// send HTTP POST request
client.print("POST " + googleScriptPath + googleScriptID);
client.println(" HTTP/1.1");
client.print("Host: ");
client.println(googleScriptServer);
client.println("Connection: close");
client.println("Content-Type: application/json");
client.print("Content-Length: ");
client.println(postData.length());
client.println();
client.println(postData);

requestStatus = 0;
} else {

Serial.println("- Failed to connect to server (Google)!");
requestStatus = 1; // error

}

client.stop();

return requestStatus;
}

/**
* To find the maximum wave height (interval of 6h)
* within an array that stores the forecasts for 3 days
*
* @param hIndex [hour index] integer to indicate the desired 6h period:
* -1 -> previous 6h
* 0 -> now
* +1 -> next 6h
* @return waveHeight_m -> the requested max wave height value in meters
* (-1.0 if error)
*/
double findWaveHeight(uint8_t hIndex) {

double waveHeight_m; // return value
// num of hours elapsed from previous successful weather download
int hoursFromPrevFetchSuccess = (millis() - prevWeatherFetchSuccess)

/ 360000;

178



D.1 – Arduino Application Code

// check for errors: time variables must be non-negative
if (fetchHour < 0 || hoursFromPrevFetchSuccess < 0) {

waveHeight_m = -1.0; // exit code -1: error
return waveHeight_m;

}

// if no forecast available for the next 6 hours: enter emergency
if ((fetchHour+hoursFromPrevFetchSuccess)/kIntervalLength_h + hIndex

> sizeof(max_wave_height_6h)/sizeof(max_wave_height_6h[0])) {
// if the desired 6h interval is outside of array bounds: error
waveHeight_m = -1.0; // exit code -1: error

} else { // forecast available
// extract the desired value from "max_wave_height_6h"
waveHeight_m = max_wave_height_6h[(fetchHour +

hoursFromPrevFetchSuccess) / kIntervalLength_h + hIndex];
}

return waveHeight_m;
}

configuration.h

#include <ArduinoIoTCloud.h>
#include <Arduino_ConnectionHandler.h>

#include <Arduino_JSON.h>

#include <mbed.h> // for parallel threads
#include <rtos.h>

/* ---------------- CONFIGURATION ---------------- */
const uint8_t kIntervalLength_h = 6; // data saved in 6-hour intervals
// forecasts are downloaded for three days
const uint8_t kForecastLength_days = 3;
// time in minutes between weather updates
const uint8_t kWeatherUpdateInterval_min = 60;
// max wave height (meters) before emergency is triggered
const double kEmThreshold_m = 1;

// network information
const char SSID[] = "****"; // SSID (name)
const char PASS[] = "****"; // password
/* -------------- END CONFIGURATION -------------- */

/* ----------- ARDUINO CLOUD VARIABLES ----------- */
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// Max wave height in current 6h interval and in the next 6h
// initialized to -1 for safety (non-physical value)
float currentMaxWaveHeight_m = -1.0;
float next6hMaxWaveHeight_m = -1.0;

// emergency command from Arduino Cloud dashboard
bool emergencyStop_cloud;
// reset emergency command from Arduino Cloud dashboard
bool resetEmergency_cloud;
// state of the float, true when float in working position (lowered)
bool floatDown;

/* State of the device:
* 1: NORMAL
* 0: EMERGENCY */

int state;

void initProperties(){
ArduinoCloud.addProperty(currentMaxWaveHeight_m,READ,ON_CHANGE,NULL);
ArduinoCloud.addProperty(floatDown, READ, ON_CHANGE, NULL);
ArduinoCloud.addProperty(state, READ, ON_CHANGE, NULL);
ArduinoCloud.addProperty(emergencyStop_cloud, READWRITE, ON_CHANGE,

onEmergencyStopCloudChange);
ArduinoCloud.addProperty(resetEmergency_cloud, READWRITE, ON_CHANGE,

onResetEmergencyCloudChange);
}

WiFiConnectionHandler ArduinoIoTPreferredConnection(SSID, PASS);

D.2 Google Apps Script
// get active spreadsheet -> ArduinoOpta_Log_Spreadsheet
const ss = SpreadsheetApp.getActiveSpreadsheet();
// get the desired sheet -> WaveHeight
const sheetWaves = ss.getSheetByName("WaveHeight");

const MAX_ROWS = 5000; // max number of rows to display
const HEADER_ROW = 2; // row index of header
const TIME_COL = 1; // column index of the timestamp column

function doPost(e) {
// JSON object with the POST request from the Opta
var cloudData = JSON.parse(e.postData.contents);
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// extract the wave_height field from the JSON object
if (cloudData.hasOwnProperty("wave_height")) {

var waveHeight = cloudData.wave_height;
var waveHeightLength = cloudData.wave_height.length;

var lastRowWaves = sheetWaves.getLastRow();
// delete last row to maintain constant the total number of rows
if (lastRowWaves > MAX_ROWS + HEADER_ROW - 1) {

sheetWaves.deleteRow(lastRowWaves);
}
// insert new row after deleting the last one
sheetWaves.insertRowAfter(HEADER_ROW);

var range = sheetWaves.getRange('A3:Z3');
range.setFontColor('#000000'); // formatting options
range.setFontSize(10);
range.setFontWeight('normal');

// write values in the respective columns
for (var col=1+TIME_COL; col<=TIME_COL+waveHeightLength; col++) {

sheetWaves.getRange(HEADER_ROW+1, col).setValue(
waveHeight[col-1-TIME_COL]);

}

// write timestamp
var timestampWaves = new Date();
sheetWaves.getRange(HEADER_ROW+1, TIME_COL).setValue(

timestampWaves).setNumberFormat("yyyy-MM-dd HH:mm:ss");
}

}
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