
Mechatronic Engineering

Perception algorithms analysis for
autonomous drive application in

simulated environment

Candidate:

Niccolò Mariani

Supervisor(s):
Prof. Massimo Violante

Ing. Luigi Spasiano

Politecnico di Torino

October 2024

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Niccolò Mariani
October 2024

I would like to dedicate this thesis to my loving parents

Abstract

Over the last period, the advancement of autonomous driving technology has made
huge steps forward with regard to perception algorithms, i.e. the tools capable
of translating sensory data into understandable data. This thesis project aims to
delve into the different perception techniques present on the autonomous driving
market. In particular, to achieve this goal, CARLA, a cutting-edge open source
system for this topic, was used: the main focus is therefore to develop a perception
algorithm, obtaining the best possible results in terms of performance within a
simulated environment as similar as possible to a complex real-life condition.

Understanding and being able to interpret the surrounding environment in real
time is one of the most important aspects of autonomous driving, because all the
subsequent choices made by the machine itself and consequently the success of
the algorithm depend on it. With regard to this in particular, the CARLA platform
was chosen because it is able to provide a world within which to make your own
simulations that is totally customizable, and therefore can be made as realistic as
possible. The fundamental library of this project is OpenCV, because, through
various image manipulation tools, it allows you to process with great accuracy and
precision the different frames captured during the experiments, and consequently
allow a detection of obstacles or surrounding objects.

The project was divided into different parts, each functional to the next and in
general to the success of the whole, starting from the study of the interface features
through which it was possible to simulate everything, i.e. the CARLA application
programming interface (API), then moving on to the feasibility and in what terms of
the OpenCV library, analyzing the different possibilities such as the possibility of
using pre-existing techniques such as object edge detection or visual understanding
functions, all tools of fundamental importance in the selected field.

v

In addition to the pure development of a perception algorithm aimed at recogniz-
ing road lanes, one of the aspects that have been carried out in parallel is the desire
to learn aspects that seem peripheral in software development, but that in reality play
a fundamental role in the success of the project and above all in its understanding
in the eyes of an outsider: in particular, the use of a correct version control system
of the program via Git has been examined, as well as the search for maintaining
excellent documentation and therefore in a broader sense the ability to apply the
right methodologies for managing a project.

The modularity and maintainability of the code were the prerogatives of the entire
project, in order to make it reusable for future projects. In this sense, automatic testing
methods were used to make everything even more professional, thus integrating a
code that is both functional and functional, but also scalable for other projects or
situations.

In conclusion, the results of the thesis give the possibility to explore new sce-
narios within the implementation of perception algorithms for Lane Detection, thus
promoting the development of different technologies compatible with this. Through
the use of simulation tools and modern and advanced libraries, this project aims
to set the limit beyond the current "normality", exploring new concepts regarding
autonomous driving, thus promoting new improvements in this field.

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Contextualization of the problem 1

1.2 Advanced driver - assistance system 3

1.3 Part of the testing relating to autonomous driving: road tests and
simulations . 5

1.4 CARLA: an open-source autonomous driving simulator 7

1.5 Correlation and motivation of the thesis 9

2 Theoretical and Technological Foundations 10

2.1 Description of the CARLA simulator 10

2.1.1 Main features of CARLA 12

2.1.2 Architecture by CARLA 14

2.2 Introduction to OpenCV . 16

2.2.1 History and development of OpenCV 16

2.2.2 Main Features and Applications 17

2.2.3 Integration of OpenCV with Python and Other Libraries . . 19

2.2.4 Using OpenCV in Autonomous Driving Applications 20

Contents vii

3 Objective and phases of the project 21

3.1 Description of General Objectives 21

3.2 Kickoff and hardware setup . 23

3.3 Individual studying . 25

3.4 Development phase . 28

3.4.1 Camera autopilot integration 28

3.4.2 Development and Implementation of Image Thresholding
Modules: The Case of frame_threshold.py 31

3.4.3 Development and Implementation of Perspective Transfor-
mation Modules: The Case of eye_perspective.py 37

4 Analysis of Implementation Strategies for Lane Detection 44

4.1 Introduction to the attempts made 44

4.2 First Attempt: Lane Detection Using Horizontal Segmentation . . . 45

4.3 Second attempt: Lane Detection using the continuity of the white
pixels . 49

4.4 Ultimate Choice for Lane Detection 50

4.4.1 Implementing of the camera_callback() function 52

5 Client Code Implementation and Description 59

5.1 Introduction to ‘client.py‘ . 59

5.2 General structure of the code . 60

5.3 Accurate description of the behavior of the ‘main()‘ function 63

6 Evaluation of results and development prospects 70

6.1 Results achieved . 70

6.2 Conclusions . 74

References 82

viii Contents

Appendix A Threshold_code 83

Appendix B Perspective_Transform_code 86

Appendix C Camera_callback 96

Appendix D client.py 99

List of Figures

1.1 Example of a scenario in CARLA 8

2.1 Example of a maps in CARLA . 12

3.1 Mercedes coupè 2020, the chosen vehicle 30

3.2 Test in CARLA with the semantic segmentation camera 30

3.3 Camera frame at the chosen position 31

3.4 Before (left) and after (right) the application of the threshold, test
image . 35

3.5 Threshold applied in the CARLA simulation environment 36

3.6 Original image (left, input) and transformed image (right, output) of
the perspective transformation . 39

3.7 Result of the view from above . 43

4.1 Detection result by scanning horizontal lines 46

4.2 Interpolation with the curve . 48

4.3 Interpolation with the polygon . 48

4.4 Interpolation with the new method 50

4.5 Results of the ‘camera_callback‘ function: the final image on the
left, the functional polygons on the right 57

6.1 Highway view, first attempt . 71

x List of Figures

6.2 Linear urban context frame . 72

6.3 Situation on a curve in an urban context 73

6.4 Situation on a curve in an urban context with no data for Lane Detection 76

List of Tables

3.1 Description of different towns . 29

3.2 Code metrics for the frame_threshold.py file 35

3.3 Code metrics for the eye_perspective.py file 42

5.1 Code metrics for the client.py file 68

Chapter 1

Introduction

1.1 Contextualization of the problem

Autonomous driving currently represents one of the biggest challenges in both the
industrial and academic fields. The reasons are many: the possibility of driving
without human intervention could potentially revolutionize the concept of mobility
as we understand it today.

The benefits are of different types, starting from safety, as a machine will always
be more reliable, if the necessary studies are carried out, compared to the possibility
of human error. Furthermore, the hope is that with the introduction of autonomous
driving, traffic efficiency can be significantly improved thanks to the possibility of
communication between the different elements that compose it.

The last fundamental aspect to take into consideration is certainly the environ-
mental one. The ambition to drastically reduce the circulation of combustion cars by
2030 (across Europe, more than 65 percent of new cars sold are expected to be fully
electric by 2030), makes the transition in car production an issue of fundamental
importance.

The systems for detecting the environment surrounding the car for autonomous
driving must be able to respond and understand numerous circumstances and situa-
tions, starting from the detection and recognition of obstacles, the prediction of the
behavior of other cars and more, the driving in more complex environments than
normal, even when operating in climatic conditions that are not always standard.

2 Introduction

All these variables must be studied, both in their individuality, but above all in
their collective nature, as each of the above-mentioned situations depends on and
influences the others.

1.2 Advanced driver - assistance system 3

1.2 Advanced driver - assistance system

These tasks require the integration of different technologies, including computer
vision and everything related to Advanced driver-assistance systems (ADAS), which
are the hardware and software components that automate a driver’s responsibilities.

These tasks require the integration of several technologies, including computer
vision and everything related to advanced driver assistance systems (ADAS), which
are the hardware and software components that automate the driver’s responsibilities.
ADAS systems play a crucial role in the attempt to transition towards full driving
autonomy, improving vehicle safety and facilitating the gradual transition from
human-driven to self-driving cars.

(Quote Evaluation of ADAS systems) ADAS technologies can be organized,
based on their operation, into 6 main categories:

• stability system: the aim is to prevent loss of control or similar phenomena

• longitudinal Dynamics Control: pursuit of longitudinal safety, i.e. avoiding
rear-end collisions or similar;

• lateral Dynamics Control: pursuit of lateral safety and therefore preventing
any situations of skidding from the lane;

• warning System: these are systems that warn the driver in a timely manner to
send an alarm signal to stimulate a reaction from the driver;

• driver Status Monitoring: such as drowsiness or distraction detection systems
to identify any anomalous driver behaviour;

• V2V: all ADAS whose operation is based on the exchange of information
between vehicles.

By providing real-time data and automated responses to various driving scenarios,
ADAS helps mitigate the risks associated with human error, which is a leading
cause of road accidents. Furthermore, the data collected by ADAS can be used to
further enhance machine learning algorithms and improve the overall performance
of autonomous driving systems.

4 Introduction

As the automotive industry moves towards the goal of fully autonomous vehicles,
the role of ADAS becomes increasingly important. These systems not only serve as
building blocks for autonomous technology, but also prepare public and regulatory
bodies for the eventual adoption of self-driving cars.

The main studies regarding ADAS systems refer to the following categories:

• Reduction of road collisions: the objective is to estimate the effectiveness
regarding the reduction of collisions;

• Benefit/Cost Analysis: estimate of the relationship or important indications on
the economic advantage that could arise from the use of these systems;

• Performance: studies regarding the performance of the systems and the possi-
ble benefits they can bring to road safety;

• Acceptance: studies whose objective is to know the acceptance or in general
the perception of those who drive vehicles regarding ADAS technologies.

1.3 Part of the testing relating to autonomous driving: road tests and simulations 5

1.3 Part of the testing relating to autonomous driving:
road tests and simulations

Despite the concrete tests regarding autonomous driving, the limitations regarding
road tests are numerous: first of all the high cost as testing autonomous driving
vehicles (AV) on public city roads means requiring and obtaining huge investments
financial both in vehicles but also and above all in all secondary but fundamentally
important infrastructures. These expenses can include the other accessory test
vehicles, the qualified personnel necessary to supervise the tests and the possibility
of having normally public places reserved for this situation.

Furthermore, precisely because these are tests aimed at improving functional-
ity and avoiding any future damage, the possibility of error is certainly high and
consequently the possibility of causing harm to personnel and agents external to
the simulation. These errors can be caused by sudden climate changes, irregular
behavior of the vehicle or users. These events can in many cases cause physical
damage to the people involved but not only that, but also the loss of large sums of
money to repair the damage caused.

Then considering the multitude of tests necessary to cover the entire breadth of
possible cases, it makes road tests even longer and often unfeasible.

Taking into consideration all these different problems and above all slowdowns
that may exist in the testing phase, driving simulators have become increasingly
popular, becoming more and more similar to reality but with an enormous possibility
of addressing the problems mentioned above. They allow you to recreate complex
driving conditions, investigating a multitude of different situations without leaving
your desk and above all giving you the possibility of recreating high-risk situations
without danger to anyone, while still obtaining reliable results.

Above all, simulated systems allow the speed in changing something that is not
correct, viewing the data in real time and monitoring the changes made, making
adjustments where necessary. The data generated by the simulations can then easily
be fed to machine learning models in order to further refine the algorithms.

In conclusion, although on-road testing remains an essential component of the
development of autonomous vehicles, the limitations associated with it highlight
the importance of using simulators. These tools provide a safe, convenient and

6 Introduction

efficient means of testing, ultimately accelerating progress towards achieving fully
autonomous driving.

1.4 CARLA: an open-source autonomous driving simulator 7

1.4 CARLA: an open-source autonomous driving sim-
ulator

To deal with the challenges and limitations of road tests that we talked about before,
advanced driving simulators have been created and one in particular fully reflects
the needs for testing autonomous driving cars: CARLA (Car Learning to Act) is an
open source simulator whose purpose is the development, training and validation
of autonomous driving systems. In particular, it offers a simulated environment
with a large variety of variables capable of making each simulation personal, from
atmospheric conditions to the most disparate road situations to the choice of vehicle
on which to carry out the tests: it is undoubtedly a possibility to drastically reduce
costs regarding certain specific tests.

The replica of the simulated environment is a faithful reconstruction of the
real world. The situations in which tests can be carried out are of various types,
starting simply from the possibility of varying the weather conditions: this is the
peculiarity of the simulated systems and in particular of CARLA, as it allows rapid
but substantial changes to be made.

The complexity of simulation situations can be addressed quickly and safely, as
a circumstance such as a pedestrian crossing, if it were not simulated, would entail
high and above all unnecessary risks as they are easy to replicate in systems such
as the one we are talking about . This capability allows for extensive testing and
validation of perception algorithms, ensuring that autonomous vehicles can detect
and respond to potential hazards accurately and in a timely manner.

Another aspect of fundamental importance is the variety of sensors commonly
used on self-driving vehicles, starting from standard cameras, up to LIDAR and
radar with high accuracy and high performance in correlation with the real world. By
providing realistic data from sensors, CARLA allows developers to quickly, cheaply
and safely refine the performance of object perception and detection algorithms.

A factor of fundamental importance regarding CARLA specifically, being a
totally open source platform, allows for strong collaboration between the develop-
ers who decide to use it, allowing the community to share information and their
experience completely free of charge.

8 Introduction

Finally, unlike standard tests carried out on the road or in real situations, the use
of CARLA allows you to significantly reduce costs, requiring only relatively low and
accessible computing power: it is from the cost - effectiveness ratio that the power
of the simulators and in particular in this case, by CARLA.

In conclusion, CARLA represents a powerful tool for overcoming the limits
of road tests. By providing a safe, realistic and cost-effective simulation environ-
ment, CARLA enables the comprehensive testing and development of perception
algorithms essential for autonomous driving. Its accessibility and flexibility make
it an invaluable resource to advance the field and bring us closer to the mass use of
autonomous vehicles.

Fig. 1.1 Example of a scenario in CARLA

1.5 Correlation and motivation of the thesis 9

1.5 Correlation and motivation of the thesis

Taking into consideration all the aspects mentioned and the aim of the thesis project,
namely that of pursuing and obtaining the perception algorithm to assess its perfor-
mance and suitability for autonomous driving tasks, CARLA acts as a fundamental
tool for analyzing and evaluating the different possible and feasible algorithms for
autonomous driving systems. The thesis aims to evaluate these road lane recognition
algorithms in the simulation environment, trying to find techniques that allow greater
performance in different scenarios.

The possibility of a variety of situations but at the same time the simplicity with
which even substantial changes can be made are the main reasons that led to the
choice of this simulator.

Through comprehensive experimentation in CARLA, the thesis attempts to
provide insights into the strengths and limitations of different perception algorithms.
By comparing their performance parameters, including detection rates, false positives
and computational efficiency, the study aims to highlight which techniques are best
suited to achieve reliable and safe autonomous driving capabilities.

The possibility of simulating scenarios that are even very distant and otherwise
difficult to reach allows you to further evaluate the robustness and resilience of the
algorithms in unexpected situations.

Ultimately, using CARLA as the primary testing platform, this thesis seeks to
provide valuable findings and recommendations to advance the development of
perception algorithms in autonomous driving systems.

Chapter 2

Theoretical and Technological
Foundations

2.1 Description of the CARLA simulator

The CARLA simulator has been taken into strong consideration in particular since, in
2018, the Toyota Research Institute decided to donate one hundred thousand dollars
to accelerate the development of the Car Learning to Act simulator: a simulator for
autonomous driving that makes open source its distinctive feature, where all those
who want to give their contribution to research can do so completely remotely and
free of charge.

This is a project integrated with the Github platform, developed primarily by the
CVC - Computer Vision Center - of the Universitat Autonoma de Barcellona (UAB),
in Spain. As Toyota explains, the project is focused on "the development, training
and validation of autonomous driving systems in urban centers" and is designed to
"ensure the reliability of autonomous vehicles in a myriad of situations that are not
always testable in the real world" , or at least, not with the same simplicity.

The CARLA project was created mainly to make research in this field ’demo-
cratic’.

Since its creation, CARLA has been continuously improved and updated thanks
to the contribution of a large community of researchers and developers from around

2.1 Description of the CARLA simulator 11

the world. Its growing popularity and use have made it one of the main tools for
simulating and testing autonomous driving systems.

The main purposes of the simulator are each aimed at the advancement of
autonomous driving technology, and in particular they are the following:

• Facilitating Research and Development: system aimed at supporting research
in the development and validation of algorithms aimed exclusively at au-
tonomous driving: the environment is realistic and controlled, efficiency is the
most important distinguishing factor;

• Realistic and Detailed Simulation: the similarity between the simulated world
and the real world is such thanks to the possibility of choosing dozens of
variables within the simulator: urban and rural scenarios, different weather
conditions and above all different traffic conditions. The robustness and
adaptability of the results is a consequence;

• Safety and Risk Reduction: The testing phases have always been the most
expensive phase in the development of a project: with CARLA a solution to
this problem was found, allowing the simulation of dangerous circumstances
or circumstances that are difficult to replicate in real life. The risk of accidents
is therefore reduced to almost zero;

• Reduced Costs: researchers can conduct extensive testing without the high
costs associated with real-world testing, allowing resources to be allocated
more efficiently;

• Collaboration and Sharing: given the open - source nature of the simulator, the
great strength of CARLA is inherent in its idea when it was created: collabora-
tion between academic institutions, companies and independent developers.
Sharing becomes the discriminating factor when choosing which tool to use;

• Training and Education: CARLA is also used as an educational tool to train
the next generation of engineers and researchers in the field of autonomous
driving. By providing an accessible and versatile simulation environment,
the simulator allows students to acquire practical and theoretical skills in a
realistic context.

12 Theoretical and Technological Foundations

2.1.1 Main features of CARLA

The strong point of CARLA is certainly the possibility of having a highly detailed
and realistic simulation and above all the possibility of making your simulation
extremely personal and unique. The main features of the simulation environment
are:

• Maps: CARLA provides a multitude of predefined maps that give the possibil-
ity to vary between different urban, rural or even highway scenarios. Urban
maps in particular are designed to represent complex situations such as traffic
intersections, traffic lights, horizontal and vertical signs, and different types of
buildings.

The most interesting feature, however, is the possibility of creating customized
maps for even more specific scenarios using the tools provided by CARLA for
their creation.

Fig. 2.1 Example of a maps in CARLA

• Weather: CARLA allows you to modify the weather conditions both in a
standard way, before running your application, and in real time, including sun,
rain, fog, snow and different brightness levels: although it may seem only for
context, it is a feature of fundamental importance to be able to manage every
scenario of daily and non-daily life;

2.1 Description of the CARLA simulator 13

Furthermore, CARLA provides the opportunity to choose between a large variety
of vehicles and secondly allows you to also include the presence of pedestrians along
the roads, in order to make the simulation even more truthful:

• Vehicles: the possibility of choice regarding vehicles leaves total freedom to
the user to adapt the simulation to their needs; Each vehicle can be customized
in terms of driving dynamics and physical characteristics, allowing algorithms
to be tested on different types of vehicles and configurations;

• Pedestrians: CARLA has pedestrian models with different movement and
behavior characteristics. Pedestrians can walk, run and cross streets realisti-
cally, providing complex scenarios to test the ability of autonomous vehicles
to detect and react to pedestrians.

A factor of fundamental importance is certainly the accuracy of the replicas of
the sensors for self-driving cars: these instruments can be configured and positioned
on the vehicles in a totally customizable way to collect the data necessary for the
perception and navigation algorithms:

• cameras: the cameras that can be chosen are for example the RGB one, or
depth camera and infrared cameras: they can be positioned anywhere on the
machine, according to needs;

• LIDAR: they are sensors that emit laser pulses to detect objects and measure
distances: the data provided by LIDARs can be fundamental for the creation
of maps and above all for the precise detection of obstacles;

• GPS: thanks to this tool, localization data can be collected in a precise and
simple way: the data is very important for control systems;

• Radar: RADAR systems are of fundamental importance with regard to the
real-time recognition of moving objects, such as other vehicles, but not only,
and for measuring their relative speed;

• Depth sensors and semantic segmentation: they can be considered as some
sort of cameras capable of providing detailed information on the environment,
in particular regarding the depth of objects and the semantic classification of
the scene, providing fundamental data for the distance between the different
agents that animate the simulation.

14 Theoretical and Technological Foundations

2.1.2 Architecture by CARLA

The CARLA (Car Learning to Act) architecture is conceived and designed to be
flexible but above all modular, i.e. composed of units that can be added, eliminated
or modified without having repercussions on the rest of the system, in order to allow
developers to use realistic systems. The structure of the software architecture is
based on multiple specific levels aimed at collaborating for an accurate simulation.

The physics of the simulated world is managed entirely by the core of the archi-
tecture, i.e. by the simulation engine that uses Unreal Engine for three-dimensional
environments.

Above this level there are other modules to manage other simulation logic.

The key levels or modules of CARLA are as follows:

• Simulation Engine: module entirely based, as previously mentioned, on Un-
real Engine and is the component that manages the graphics and interaction
between objects in the simulated world. It is also responsible for vehicle
dynamics;

• Server Carla: communication management module between the simulation
engine and external clients of all types; in this sense it is solely responsible
for the synchronization of data between the different factors that make up the
system and for the management of client requests;

• Client Python API: interface to interact with the CARLA server. Users can use
Python scripts to control vehicles, configure sensors, and collect data from the
simulation. This API is essential for integration with other machine learning
and data processing tools;

• Vehicle Modules: fundamental for the realism of the simulation as they are
responsible for the vehicle dynamics models, controllers for autonomous
driving and above all artificial intelligence models with which to simulate
different situations.

The main programming languages that can be used with CARLA are Python and
C++: the first of the two is the one mainly used for interaction with CARLA, as
the Client is written in this language. The choice of Python is due to its simplicity

2.1 Description of the CARLA simulator 15

combined with immense power in data processing, as well as the enormous breadth
of tool libraries for example for machine learning or artificial intelligence. As regards
the most critical and complex parts of the simulation engine and CARLA server, C++
is used as it guarantees excellent performance and is useful for the precise control
it offers over system resources, essential in particular for the management of 3D
graphics and especially real-time physics. In summary, CARLA’s architecture is
designed to be highly modular and scalable, allowing developers to customize and
extend the platform according to their specific needs. The combined use of Python
and C++ provides a balance between ease of use and high performance.

16 Theoretical and Technological Foundations

2.2 Introduction to OpenCV

OpenCV (Open Source Computer Vision Library) is an open-source library for
computer vision and not only that, but also for machine learning. The purpose
for which it was designed is to provide a common structure for computer vision
applications and in particular to speed up the use of technologies based on artificial
intelligence or similar. OpenCV is classified as one of the most complete and well-
stocked libraries in this specific field and for this reason one of the most used, thanks
to the enormous possibility of different functionalities and the simplicity with which
it can integrate with other technologies in the field in question.

2.2.1 History and development of OpenCV

OpenCV was initially created by Intel (designs, manufactures and sells computer
components and related products for business and consumer markets) in 1999 as
part of a research project related to image processing and in particular regarding
computer vision; the primary objective was to be able to have a standard library for
everyone for artificial vision purposes and which could be used both in the industrial
sector, by Intel itself, but also in the academic sector, in order to broaden the segment
of people to turn to: the choice to make the project totally open - source has further
facilitated these two issues mentioned above, facilitating the use of this library in
different contexts and above all continuously improving its functionality and its
robustness, thanks especially to the developers of Worldwide.

Immediately experiencing great success and great approval, OpenCV received
important and fundamental contributions from large companies, one above all WIl-
low Garage (robotics research lab and technology incubator devoted to developing
hardware and open source software for personal robotics applications), one of main
offices where, among others, the ROS project, Robot Operating System, open-source
robotics middleware suite, was developed. Although ROS is not an operating system
but a set of software frameworks for robot software development: this step was
fundamental in the growth of the project because it helped integrate OpenCV into
robotic applications.

Since 2012, the administration was then handed over to OpenCV.org, an orga-
nization aimed at improving and developing the library. Since its first release, in

2.2 Introduction to OpenCV 17

2000, OpenCV has had regular updates and substantial improvements over time, so
much so that in 2012 it exceeded 2 million downloads, an incredible number for
those years: to date, an estimated 200 million downloads, with a which is around
500 thousand per month.

Furthermore, after 2012, given the great trust it found both among professionals
and among ordinary sporadic users, it obtained the support of huge companies such
as Microsoft and Google, maintaining its finances solid and the possibility of further
expanding its features.

2.2.2 Main Features and Applications

OpenCV presents itself on the IT market as one of the most used but above all
appreciated libraries with regards to artificial vision and image processing: the main
objective has always been to provide a common structure for these applications in
order to accelerate the use of perceptions based on machine learning in research but
also in the development of commercial products.

The vastness of application possibilities and the potential of OpenCV represent
some of the distinctive characteristics of this infrastructure. This library allows for
quick and intuitive manipulation of images, allowing developers and others to read
and work on images with extreme ease.

One of the prominent operations of this library is the conversion of images
between different color spaces, such as RGB, which is an additive color model in
which the red, green and blue primary colors of light are added together in various
ways to reproduce a broad array of colors, grayscale and HSV, cylindrical-coordinate
representations of points in an RGB color model.

Another fundamental aspect that makes OpenCV even more useful is its ease and
robustness regarding the image filtering system. Filters can be useful for different
purposes, starting from noise reduction which can make an image better, sharper but
above all easier to work with, or for example to extract other characteristics of the
same.

An example of fundamental importance is certainly the Gaussian filter which
is often used for noise reduction before tackling further analyzes of any kind. An-
other important feature, especially in the field of object and obstacle recognition in

18 Theoretical and Technological Foundations

autonomous driving, is the recognition of their edges, implemented thanks to the
Canny algorithm; this technique is also of fundamental importance for robotics.

Geometric transformations are one of the peculiarities of OpenCV as the library
offers tools to resize, rotate or deform images, including more complex tools for re-
constructing an artificial image thanks to transforms, such as for the Eye Perspective
View.

OpenCV also includes powerful tools for object detection. Using machine learn-
ing and deep learning techniques, OpenCV can be trained to recognize and localize
specific objects within an image or video. This ability is critical in applications such
as facial recognition, surveillance and autonomous driving systems.

The detection of lines and geometric shapes represents once again a strong point
in favor of OpenCV, as, through the Hough transform, an extraction technique used in
the field of digital image processing. In its classic form it is based on the recognition
of the lines of an image, but it has also been extended to the recognition of other
arbitrarily defined shapes, the library is able to recognize straight and or curved
lines with extreme precision: this aspect is of fundamental importance regarding the
analysis of road images.

The integrations with libraries and external functions are then very simple and
intuitive and make it possible to further expand the capabilities available to the
developer.

The OpenCV architecture is generally based on modules, each of which has its
own main functionality but can be used both individually and with other modules.

• Core Module: main module of OpenCV, responsible for both the basic data
structures and the main image processing functions: it also includes the neces-
sary mathematical operations and functions for the image input/output process;

• Image Processing module: responsible for the functions aimed at manipulating
and analyzing images, such as filtering, geometric transformation or other
types we talked about above;

• Video Module: similarly to the Image Processing Module, it is responsible for
video processing, including algorithms for compression and decompression,
object detection and other functions aimed at stabilizing images in real time;

2.2 Introduction to OpenCV 19

• Object Detection Module: exploiting techniques such as machine learning or
deep learning, it allows the use of very complex and advanced algorithms for
object detection;

• Calibration and RD Reconstruction Module: provide methods for calibrating
images coming from cameras and others, with the possibility of correcting
errors but above all it allows the reconstruction and therefore the use of two-
dimensional images, but translating them in order to obtain three-dimensional
images;

• Machine Learning Module: tools for training and predicting machine learning
algorithms, to facilitate the process of using them;

• Contrib Module: it is a module within which contributions from the community
that uses OpenCV are collected, where algorithms or similar are collected
which however are not yet part of the core of the library.

In summary, OpenCV is an extremely versatile and powerful library that offers a
wide range of features for image processing and computer vision.

2.2.3 Integration of OpenCV with Python and Other Libraries

The integration of OpenCV with Python represents one of the most prolific and
versatile combinations in the field of computer vision and image processing; Python
is a programming language widely used in web applications, software development,
data science, and machine learning (ML). Developers use Python because it is
efficient and easy to learn and can run on different platforms. Thanks to the presence
of numerous external Python libraries, it is possible to integrate OpenCV with them
in order to further expand the already vast capabilities.

An example could be the use of libraries such as TensorFlow and PyTorch with
regards to machine learning, where the documentation and specific wrappers make
the integration between the different parts even easier.

Another example is the use of the NumPy library, an open source library for
the Python programming language, which adds support for large multidimensional
matrices and arrays along with a vast collection of high-level mathematical func-
tions to be able to operate efficiently on these data structures: this cohesion made

20 Theoretical and Technological Foundations

simple and intuitive allows you to perform complex operations on images or videos,
significantly improving the performance and scalability of applications.

2.2.4 Using OpenCV in Autonomous Driving Applications

Autonomous driving is undoubtedly one of the greatest challenges for humans in the
next decade, and in this sense OpenCV could play a crucial role in its success.

The image processing capacity of the library and the possibility of developing
and implementing visual perception algorithms, of fundamental importance for the
functioning of the technologies necessary for autonomous driving.

This library certainly allows us to tackle the problem of road lane detection in
a modular and systematic way: the algorithms are multiple and use in particular
the Hough Transform which allows us to identify and trace the lanes on the road;
furthermore, OpenCV allows us to apply filters to improve the quality of image
perception and above all to reduce noise, significantly improving performance.

Another very important aspect concerns object detection through the use of
convolutional neural networks (CNN), a type of feed-forward artificial neural network
in which the connectivity pattern between neurons is inspired by the organization of
the animal visual cortex, whose individual neurons are arranged in such a way as
to respond to the overlapping regions that tile the visual field. Additional libraries,
such as TensorFlow or PyTorch, certainly help in this aspect.

This information is very important for the correct navigation of vehicles.

Another aspect of fundamental importance is the management of sensors and the
data that these tools return; OpenCV greatly facilitates these operations, allowing
you to align and superimpose data from different sources to obtain a 360-degree
view of the situation.

In conclusion, the library allows you to manage and process many features
necessary for the success of autonomous driving.

Chapter 3

Objective and phases of the project

3.1 Description of General Objectives

The underlying theme of this master’s thesis is the analysis and subsequent imple-
mentation of perception algorithms in order to be used for autonomous driving, all
tested in simulated environments. In particular, the project is committed to using
a road scenario that is as true to life as possible and similar to reality. CARLA,
the simulator to which it refers, allows an in-depth analysis of the performance of
algorithms but in safe and replicable contexts.

Another aspect of great importance for the project is being able to acquire
technical but above all methodological skills for software development and project
management. For this purpose, the Python programming language was used, versatile
and with exponential growth during learning. Some versioning tools such as Bit-
Bucket and Git were also explored, as well as the practice of software documentation
and design techniques.

At the end of the project, in order to be able to evaluate the performance of the
perception algorithms used, it was necessary to measure and analyze the performance
through specific indicators; the use of Key Performance Indicators (KPIs) allows
you to obtain a specific value for different factors on a scale of goodness that allows
even a less experienced reader to appreciate the precision of the code.

Finally, the project of these months also includes familiarization with develop-
ment environments and tools such as the Linux operating system, the necessary

22 Objective and phases of the project

practice with bash commands and scripting to manage some of its activities and the
use of external tools such as Confluence for the step-by-step management of the
code drafting and more.

Within the thesis project, in line with what was also defined by the host company,
a specific strategy was adopted to divide the work into very distinct phases, each
of which with a precise purpose: this approach allows the work to be conducted in
systematically, ensuring that each of the five phases is completed. In particular, the
first phase, that of the "Kick off and hardware setup", involves the initial organization,
specifically of the laptop provided, followed by a fairly long period of individual
study, coinciding with the second phase of the project, of fundamental importance to
familiarize with the work tools. The third phase is aimed at the development of the
actual project, with a specific focus on the code level. The fourth phase is dedicated
to finalizing the project, both in terms of documentation and reporting of results. The
last phase instead focuses on writing the thesis and preparing the final discussion.

The division of the project into small tasks, in this project but also in many others,
allows all those who work there to monitor the progress step by step, giving the
possibility of solving problems before they become too large.

3.2 Kickoff and hardware setup 23

3.2 Kickoff and hardware setup

This section has the task of describing the first tasks carried out during the initial
setup phase: the goal is to be able to provide a 360-degree view of the processes
followed and the choices made.

In particular, the Kickoff phase included the definition of the work tools to be
used, such as the company laptop, the choice of the computer language to be used,
the planning of the activities to be followed and the objectives to be achieved in the
medium and long term.

The hardware was immediately set up thanks to the help of the internal IT of the
Luxoft company, configuring the laptop according to the needs of the project.

The phase to which the most time was dedicated was the one relating to the
creation of the team behind the project, starting from the main tutor, the engineer
Luigi Spasiano and the technical and experienced support of Nicola Sabino. Working
closely from the very beginning with these two prominent figures of the company
made it possible to achieve the objectives of the project. The weekly and some-
times daily meetings greatly facilitated communication and the smooth step-by-step
progression of the work.

The work methodology used throughout the duration of the project within the
company follows the directives of the employees themselves, thus identifying as such.
The AGILE methodology represents a project management method, particularly
related to the IT environment, which tends to enhance flexibility, collaboration
between the different parts of the team and above all the free communication of
ideas and proposals between them, in order to free up change aimed at improvement.
Initially it was designed solely for the software sector, but in recent years it has
gained more ground also in environments such as design but also research and
development, as it allows to respond effectively to the speed of current innovation
[1].

The AGILE Manifesto, drawn up in 2001, represents a turning point in the
idea of software development and project management. This document defines the
fundamental values and principles that guide this working methodology, which is
designed to respond effectively and rapidly to transformations and to improve the
final product. This Manifesto is composed of twelve key principles:

24 Objective and phases of the project

1. Customer Satisfaction: satisfy the customer by delivering valuable soft-
ware early and continuously;

2. Welcoming Changes: accept changes in requirements even during the project,
using these changes to improve the product and meet customer needs;

3. Frequent Delivery of Working Software: delivery of a product peri-
odically in a short time to obtain rapid feedback and over a short period of
work, in order to avoid incurring major development errors;

4. Daily Collaboration: step-by-step group work so that each participant is
always kept up to date with the project’s developments and news;

5. Projects Based on Motivated Individuals: motivation and trust are
the pillars for a successful project;

6. Face-to-Face Communication: conversation and direct dialogue between
team members to avoid misunderstandings;

7. Measuring Progress: a functioning product is the main measure on which
to calibrate the success of the project;

8. Sustainable Development: This method allows for continuous develop-
ment at a constant pace;

9. Technical Excellence and Good Design: attention to the refinement of
the project;

10. Simplicity: linearity in order to make the work of the different components
feasible;

11. Self-Organizing Architectures: the aim is to find the best method
within the working group itself, without any necessary external impositions;

12. Reflection and Adaptation: adjustments to working methods periodi-
cally, in order to change if necessary for improvement.

The use of these principles within the project at Luxoft made it possible to have
a balanced work period in terms of workload but also emotional state, influencing
the ways of planning the work. These decisions improved the overall quality of the
final result [1].

3.3 Individual studying 25

3.3 Individual studying

The purpose of this second phase was to obtain a solid theoretical and practical basis
to be able to tackle the project, from different points of view, both with regard to the
programming language and the CARLA environment. If it was necessary to gain
confidence with the simulation software, it was also necessary to dedicate the right
amount of effort to be able to become familiar with this method with regard to the
management and use of the company’s AGILE system. The ability to plan the work
and objectives with the team, the ability to carefully choose what to focus on and
what it was not necessary to waste too much time on and above all to understand
where the critical issues to be thinned out were, were some of the fundamental points
of this phase.

Initially, it was thought that it would be possible to tackle a study of the C++
language first, in order to be able to delve into the aspects of the development of the
software in question with high accuracy, being able to go into depth: this language
would have given the possibility of having control over the low-level details of the
algorithm. However, despite the numerous advantages that C++ gives, the language
was found to be rather difficult with regard to syntax and memory management.
The reasoning that led to the change of direction towards Python is mainly due to
its exponential learning curve since, especially in terms of timing, it guarantees
better performance. Python allows the use of a decidedly simpler and more intuitive
syntax, streamlining the code and relieving the developer of some issues not strictly
connected to the project in question. Another aspect of fundamental importance that
tipped the scales in the direction of Python is undoubtedly its ease of accessibility
with external libraries such as OpenCV and NumPy, suitable for image processing
and consequently for the implementation of perception algorithms.

This choice proved to be a winning one, as it gave the possibility of concentrating
energies on the development of the algorithm without having to deal with the critical
issues related to the complexity of the C++ language.

Within this phase it was of fundamental importance to also address other tech-
nical and theoretical aspects in order to obtain a good result of the project: three
main environments required greater attention, namely the CARLA API, the Linux
environment and the study of the modern situation of lane detection, useful for taking
stock of what is already present in terms of technologies and approaches in this area.

26 Objective and phases of the project

An API (Application Programming Interface) is a cluster of rules and details that
together allow different software to communicate with each other effectively. APIs
therefore specify the methods and formats through which communication between
applications and software is possible.

APIs can be divided based on their use and their level of access:

• system API: interface between the operating system and individual applica-
tions such as the Windows API which allow applications to be related to the
OS features;

• library API: communication interface to use predefined software libraries,
for specific functions, methods or procedures called by developers without the
need to work directly;

• web API: communication between application systems and network-based
services, such as the Internet;

• third-party APIs: equipped directly by external services in order to give
the possibility of using the required functions without having to worry about
how to create them from scratch, but only about how to integrate them.

Thanks to APIs, modularity becomes of fundamental importance, i.e. the principle
of software design and organization in which a complex system is divided into
smaller and well-defined parts called "modules", making systems simple that would
otherwise be much more complex [2]. The CARLA API in this sense can be included
within the Web API category as it is capable of relating a network to the simulator in
real time: similarly, however, it can be understood as capable of providing methods
and classes that can be used exactly as libraries thanks to programming languages
such as Python, and consequently consider these features as a library API. In any case,
the study of this API was fundamental as it gave the possibility of understanding how
to interact advantageously with the simulated world and exploit all its possibilities.
The CARLA API [3] also provides a multitude of examples from which to draw
inspiration and above all some very useful clients if you do not want to mess with
those aspects and use other people’s scripts that work correctly, as has been done for
some aspects of the project such as that of guidance within the world.

The second aspect of great importance in the initial period was the basic learning
of the Linux operating system and its features. Most of the development tools and

3.3 Individual studying 27

especially the libraries used during project development are optimized for Unix -
like environments. Among other things, tools such as the basic and advanced bash
commands for managing files and in particular directories were carefully analyzed
and secondly an important amount of time was dedicated to versioning thanks to
Git and Docker. Linux gave the possibility to keep the project within a stable
environment which allowed the perception algorithms to be implemented and tested
extremely efficiently.

Finally, the last phase was dedicated to collecting information and documents
relating to the Lane Detection project, considering the current situation available
online, looking for the strengths and weaknesses of pre-existing projects. In this
sense, in fact, this particular function refers to one of the main functions to which an
autonomously driving machine must be able to respond, both in standard cases, so
to speak, but also in more complicated cases such as in the presence of traffic, low
light or bad road markings. By studying and observing the methodologies and study
circumstances currently present, it has been possible to define the critical issues
and strengths, while also identifying some shortcomings: currently online it is very
easy to find Lane Detection systems that are perfectly functional and also relatively
simple. to be implemented but mainly dedicated to driving on the motorway, a
decidedly restricted research environment both in terms of the speeds and possible
situations that must be faced, but also for a matter of curvatures which, unlike the
city environment, are much lighter and easy to detect. Due to this lack, the desire to
create an algorithm capable of detecting road lanes in a more chaotic and complex
environment such as that of the city was decided at this stage.

28 Objective and phases of the project

3.4 Development phase

The third phase of the project, called Development phase, lasting approximately
three months, is the central part and the heart of the project as it was the period in
which previous theoretical knowledge, literature studies up to that moment and the
practical development skills, implemented and tested in order to obtain efficient and
functioning perception algorithms within the CARLA simulator. The transposition
of the design specifications into a functioning software solution was therefore the
greatest challenge, not only at a purely computer language level, but also purely at a
geometric - mathematical level.

This phase was divided into different sub-phases such as the design of the system,
the writing of the code itself and the consequent need to integrate these parts within
the simulator and finally the testing and validation phase, which is also complicated
but extremely necessary .

During the Development Phase, particular attention was paid to the use of best
practices in terms of code management, documentation, and versioning, thus ensuring
that the project met the required quality standards.

In the following subchapters, the design choices that have been made will be
explained and analysed, also including natural errors and second thoughts in these
development phases, also going against the current with theoretical choices made
previously, as during the development phase problems and critical issues not analyzed
before, or on the contrary recognizing potential not previously considered.

3.4.1 Camera autopilot integration

Starting the development phase, the first fundamental part was the choice of the setup
in its most specific parts, necessary to establish starting points from which to then
begin to specifically develop the perception algorithm. First of all, it was necessary
to define the world to rely on: this was important and crucial because the realism and
repeatability of the project depends on it. The CARLA simulator allows you to use
different worlds, each of which has its own specific characteristics useful in certain
situations [4].

After an analysis of already existing perception algorithms, which mainly focus
on specific driving situations such as driving on the motorway where you are almost

3.4 Development phase 29

Town Summary
Town 01 A small, simple town with a river and several bridges.
Town 02 A small simple town with a mixture of residential and

commercial buildings.
Town 03 A larger, urban map with a roundabout and large junctions.
Town 04 A small town embedded in the mountains with a special

infinite highway.
Town 05 Squared-grid town with cross junctions and a bridge. It has

multiple lanes per direction. Useful to perform lane
changes.

Town 06 Long many lane highways with many highway entrances
and exits. It also has a Michigan left.

Town 07 A rural environment with narrow roads, corn, barns and
hardly any traffic lights.

Town 08 Secret "unseen" town used for the Leaderboard challenge.
Town 09 Secret "unseen" town used for the Leaderboard challenge.
Town 10 A downtown urban environment with skyscrapers,

residential buildings and an ocean promenade.
Town 11 A Large Map that is undecorated. Serves as a proof of

concept for the Large Maps feature.
Town 12 A Large Map with numerous different regions, including

high-rise, residential and rural environments.
Table 3.1 Description of different towns

on a straight line or with short and "soft" curves, an urban world that includes signals
was chosen both horizontal and vertical roads and the presence of other cars. This
environment, despite requiring greater attention to various details, gave the oppor-
tunity to address problems which, once resolved, gave light to new and interesting
ideas, which led to the achievement of an excellent final result. Furthermore, we
tried to reproduce an environment as faithful as possible to reality and the everyday
life of an average customer.

Then the virtual car from which to use and on which to mount the camera
was then chosen. The CARLA simulation environment provides a wide range of
vehicles, each with different characteristics, once again allowing for a wide range
of choices to satisfy any developer need: even the dynamics and kinematics of the
cars themselves are taken care of detail. For this project in particular it was decided
to use a classic sedan, in order to remain as standard as possible without going into
detail regarding the heights and general measurements of the vehicle. This model,

30 Objective and phases of the project

Fig. 3.1 Mercedes coupè 2020, the chosen vehicle

intended as a common small car, was chosen for the possibility of comparing the
results obtained with other studies and research analyzed in the literature. As regards
the selection of the camera, CARLA offers various alternatives, each dedicated to
particular objectives. Initially, the Semantic Segmentation Camera was tested, which
includes an automatic classification of pixels within certain ranges, which were then
all considered equal in order to have figures with uniform colours: although this
could have significantly helped the success of the project, in the same way it differs
greatly from reality as it allows automatic detection of obstacles or other objects but
only within the simulation, differing greatly from how it is normally done for lane
detection or in general object recognition. Once this type of camera was discarded, it

Fig. 3.2 Test in CARLA with the semantic segmentation camera

3.4 Development phase 31

was decided to take inspiration from the dash cam, in particular regarding the central
position, just below the rear-view mirror, in such a way as to be able to have a broad
vision and good resolution; the only change was its inclination, slightly downwards
to point towards the road. This configuration has proven to be ideal for acquiring
images useful for detecting road lanes, as shown in figure 3.3. The last part of the

Fig. 3.3 Camera frame at the chosen position

set up was related to the integration between the server, i.e. the part relating to the
management of the CARLA simulation world, and the client, i.e. the part in which
the choices regarding the perception algorithm, with the related calculations and
decisions in order to perform Lane Detection correctly.

This part of integration is of fundamental importance as it is the basis for correctly
taking individual frames and consequently being able to process them correctly.

3.4.2 Development and Implementation of Image Thresholding
Modules: The Case of frame_threshold.py

The thresholding to be applied to images is a key step within computer vision and
in particular in image processing. This technique consists in the conversion of an
image to gray tones, i.e. each pixel of any color is converted to a very precise gray
scale so that each shade means that this pixel is more or less dark: once converted in
this sense the The grayscale image is converted into a binary image, thus defining a
threshold above which it is decided to make that pixel "active", or similarly in our

32 Objective and phases of the project

case considered as white, and below the threshold the pixel is considered as "off", or
similarly in our case considered as black.

This method is of vital importance in the recognition of objects and their contours
because it allows to "highlight" in a certain sense only the factors of importance for
the algorithm and to "delete" everything that is not needed for the purposes of a good
outcome of work.

This module, called ‘frame_threshold.py‘ therefore has the task of applying a
simple thresholding to the single frame that is processed during the running of the
application, in such a way as to obtain a black and white image with only white, or
almost, the elements of our interest.

This work was possible thanks to the implementation of OpenCV which made
this operation simple, intuitive and above all replicable. The main purposes of
this module are three: the efficiency of the module, the flexibility with which it
can be applied to different environments and frames, the ability to save the results
autonomously and without the need for external intervention.

As explained within the official OpenCV documentation, there are several possi-
bilities with this library to obtain a good result: simple, adaptive thresholding and
the Otsu method.

For the purposes of the project it was decided to use simple thresholding, i.e. the
application of a very precise fixed threshold value, decided a priori through attempts
to obtain the most useful value in the simulation in CARLA: all the pixels with
RGB value above above this threshold they are raised to the maximum level, 255, i.e.
white, while all values below the threshold value are brought back to the minimum
value, 0, i.e. black.

The use of the ‘cv2.threshold()‘ function is well supported by the OpenCV
library, giving the possibility of versatile management for different computer vision
applications. Isolating relevant elements in CARLA’s simulated environment makes
object detection easy [5].

The code of the submodule that has been developed is divided into several parts,
in particular:

• Importing libraries: this script uses some libraries such as ‘os‘, ‘logging‘
and ‘cv2‘ of OpenCV in order to correctly manage the acquisition of files and

3.4 Development phase 33

consequently of individual frames so as to be able to correctly process the
images;

• Logging setup: during the development phase of this submodule it was
necessary to carry out debugging phases, and for this reason the logging was
configured to observe the flow of the application step by step in order to
identify any errors;

• Validation of input parameters: after a first draft of the code it was
also necessary to insert an input control area so that it reflects all the necessary
parameters before the processing process is carried out, so that if the input
is not correct in some points of view, see the format or otherwise, an error is
reported even before proceeding with the rest of the application;

• Application of thresholding: the image is previously converted to grayscale
as explained previously, and then a simple thresholding is applied, setting the
threshold value to 205, a value chosen following several attempts which led to
the choice of this value for the circumstances of the simulation and the need
for required accuracy;

• Preview and save image: finally, if enabled, a series of images is made
to appear which represent the original image, the grayscale one and finally
the fully processed image with thresholding applied: once this is done, the
last image is saved within a specific path, also thanks to one of the libraries
initially mentioned.

34 Objective and phases of the project

The code used for the analysis is reported in the Appendix A.

Once the code had been developed, for this submodule and for the entire project,
it was then necessary to insert a quality control phase of the same: in particular,
within the software development, in order to ensure good quality of the code, Priority
is given to readability, maintainability and in general to overall performance. After
a careful analysis of the available tools, it was chosen to use Radon in order to
measure the different metrics of the code. Radon fits into the software development
landscape as a Python tool capable of providing quantitative and qualitative metrics
for evaluating the quality of the source code, analyzing various aspects: these metrics
make further analysis possible in order to understand the complexity of the code via
numerical values [6].

The main metrics to refer to are:

• Lines of Code (LOC): total number of lines within the code considered,
including all possible diversities, empty lines, comments and pure code;

• Logical Lines of Code (LLOC): number of lines of logical code, i.e. those
lines of code within which an action is actually performed or a decision made
within the program: empty lines and comments are therefore excluded, which
do not they are part of the logic of the algorithm in question and therefore do
not contribute to the real behavior of the program;

• Source Lines of Code (SLOC): these are the lines of source code, i.e.
those that can possibly also include lines of multiple declarations included on
the same line: this is a value similar to the LLOC;

• Comments: textual lines of code where the behavior of the code is declared
or simplified in words: a very important part of the code to make it easy to
read for an external user who needs to understand how it works quickly and
intuitively;

• Percentage of comments: total number of lines of comments compared to
lines of total code, in order to provide a value of how much such code can be
considered understandable.

The results obtained denote a code with a good density of comments aimed at
understanding it and a good percentage of lines dedicated to documentation. The
code appears compact with a good balance between lines of code and documentation.

3.4 Development phase 35

Metric Value

Lines of Code (LOC) 85
Logical Lines of Code (LLOC) 38
Source Lines of Code (SLOC) 39
Total Comments 7
Single Comments 7
Multi-line Comments 17
Blank Lines 22
C % L (Comments on LOC) 8%
C % S (Comments on SLOC) 18%
C + M % L (Comments + Multi-line on LOC) 28%
Table 3.2 Code metrics for the frame_threshold.py file

In conclusion, to validate the correct functioning of the submodule and to ensure
that the chosen threshold could work, it was tested on a test image. This step was
of fundamental importance to ensure the correct behavior of the submodule before
applying it in CARLA. Below is an image, figure 3.4, showing the initial image on
the left and the final image on the right with thresholding applied: this test highlights
how the module is able to separate the areas of interest from the background.

Fig. 3.4 Before (left) and after (right) the application of the threshold, test image

Having seen the correct behavior of the module relating to thresholding, it was
then applied in the CARLA simulation environment, obtaining an excellent result as
shown in the image 3.5:

36 Objective and phases of the project

Fig. 3.5 Threshold applied in the CARLA simulation environment

3.4 Development phase 37

3.4.3 Development and Implementation of Perspective Transfor-
mation Modules: The Case of eye_perspective.py

Following the correct use of the previous submodule, responsible for manipulating
the image pixels, it was necessary to work further on it. In particular, in the field of
autonomous driving, one of the main objectives is to have a clear and correct view of
the road, through visual sensors, cameras, LIDAR, radar and other systems in order
to obtain a way to correctly detect obstacles and interpret horizontal signs.

Nevertheless, the images that can be obtained through the cameras mounted
on cars are subject to perspective distortions, i.e. the phenomenon that occurs
when objects or figures at different distances from the camera appear with distorted
dimensions or shapes. This emerged in the early testing phases of the project: the
lines of the roadway, which are parallel, actually appear convergent or generally
distorted, making it difficult if not impossible to correctly analyze their position.

To address this problem, in every Lane Detection project, it is necessary to apply
an image manipulation technique, that is, the perspective transformation that makes it
possible to obtain a view from above, or as it is more commonly called, a "bird’s - eye
view". This technique, completely artificial and based on mathematical - geometric
principles, allows to correct perspective distortions, providing a vision free from such
problems, more uniform, as if it allowed to flatten the image, returning a realistic
view of the lines of the roadway, which return to being parallel and therefore allow a
much more precise analysis of the position.

The perspective transformation technique to obtain a top-down image starts by
identifying the key points of the starting image and their subsequent mapping onto
a new position in the transformed image space. In practice, therefore, four points
are chosen, which in the case of the project in question represent a trapezium, which
represent the vertices corresponding to the visible road area: consequently, these
points are then mapped onto a new image that represents the "artificial" top-down
view that we want to obtain, where the vertices of the previous trapezium become
the vertices of a rectangle that indicates the shape of the roadway seen without
distortions.

This allows us to obtain excellent results in the context of autonomous driving as
it allows us to solve problems such as in the case of curves or slopes, where the lines
appear to converge.

38 Objective and phases of the project

The perspective transformation in order to obtain a view from above is therefore
a first of all mathematical - geometric operation capable of taking a portion of a
frame and simulating the point of view from above. This operation requires the
use of different formulas and the knowledge of different relationships in particular
between the coordinates of the points in the starting image and the coordinates of the
"arrival" points, i.e. the image that you want to obtain.

The bird’s - eye perspective view is represented by a homographic matrix H,
i.e. a relationship between points of two spaces such that each point of a space
corresponds to one and only one point of the second space, of dimensions 3 x 3. This
matrix H represents the mapping between the coordinates of the points of the starting
image and the "transformed" image. The relationship between these coordinates
xxx = (x,y) in the original image and the corresponding coordinates xxx′′′ = (x′,y′) in the
artificially created one respects the following rule [7]:x′

y′

1

= H

x
y
1

where the matrix H is:

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

The new coordinates (x′,y′) can be expressed by the following equations ob-

tained:
x′ =

h11x+h12y+h13

h31x+h32y+h33

y′ =
h21x+h22y+h23

h31x+h32y+h33

In essence, the H matrix is obtained by computing error minimization techniques,
using numerical optimization algorithms such as singular value decomposition (SVD)
in order to ensure accuracy in the transformation.

3.4 Development phase 39

This perspective transformation can be easily visualized through the OpenCV
library: the official documentation [8] also shows some code fragments and the
related results that can be obtained, figure 3.6, clearly showing the result of the
operation. Below the specific calculation for the numbers and consequently the

Fig. 3.6 Original image (left, input) and transformed image (right, output) of the perspective
transformation

references relating to the project will be carried out, where in particular the values of
the starting trapezium are:

(x1,y1) = (851,590)

(x2,y2) = (1105,590)

(x3,y3) = (300,944)

(x4,y4) = (1690,944)

While the rectangle in the transformed image will have the following values:

(x′1,y
′
1) = (50,−100)

(x′2,y
′
2) = (1870,−100)

(x′3,y
′
3) = (50,1080)

(x′4,y
′
4) = (1870,1080)

40 Objective and phases of the project

In order to obtain the perspective transformation matrix H, the following equations
obtained from the homography are used:

x′i =
h11xi +h12yi +h13

h31xi +h32yi +h33

y′i =
h21xi +h22yi +h23

h31xi +h32yi +h33

For any pair of points corresponding to the original and transformed image, it is
possible to write two equations: consequently, for the four points we can obtain eight
equations that can be solved for the coefficients hij of the matrix H, thus writing the
resulting equations as:

x′1 y′1 1 0 0 0 −x′1x1 −x′1y1 −x′1
0 0 0 x′1 y′1 1 −y′1x1 −y′1y1 −y′1
...

...
...

...
...

...
...

...
...

x′4 y′4 1 0 0 0 −x′4x4 −x′4y4 −x′4
0 0 0 x′4 y′4 1 −y′4x4 −y′4y4 −y′4

h11

h12

h13

h21

h22

h23

h31

h32

h33

=

0
0
...
0

By solving the linear system we obtain the matrix H with which it is possible to
transform the entire starting image obtaining the desired top view.

The Python submodule ‘eye_perspective.py‘ is therefore developed in such a
way as to apply a perspective transformation of the starting image, thus obtaining a
view from above to correct the distortions due to the perspective characteristic of
frontal shots such as that of the project in question.

This operation is essential to obtain a high accuracy in the recognition of the
roadway and horizontal signs.

The code in particular is made up of different functions and classes, each with a
very specific task: the main class is called ‘PerspectiveTransformParameters‘ and is
responsible for managing the numerical parameters useful for the transformation,
such as the source points (relative to the starting image) and the destination points

3.4 Development phase 41

(relative to the output image). Furthermore, this class is responsible for saving the
points and the information relating to the radius of the circles drawn on the source
points, useful for debugging functions or visual purposes in general.

Furthermore, following several approaches attempted during the development
phase, it was necessary to implement support functions, such as ‘validate_points‘ and
‘validate_and_adjust_detection_points‘, in order to ensure that the transformation
was applied to points that lie on white pixels, that is, that with a high probability
correspond to the lines of the garage, or that on the contrary are corrected in such a
way as to satisfy certain application conditions.

The main function is then ‘apply_eye_perspective_transform‘, that is, the func-
tion that manages the perspective transformation: after having validated the points,
or if necessary moved them and saved the new positions, the function calculates the
transformation matrix that during the theoretical part was called H , and consequently
uses it to return the output image.

The submodule is presented in its entirety in the Appendix B.

Below is a more detailed explanation of the individual functions that make up
the submodule:

• PerspectiveTransformParameters: is a class that is part of the "data class"
category, functional to group the numerical parameters useful for the geometric
transformation. It includes in particular the coordinates of the source and
destination points, that is, the vertices of the trapezium of the original image
and the vertices of the rectangle of the transformed image; it also includes the
settings for drawing the circles of the source points, the adjustment limits for
the positioning of the points based on the detection of white pixels;

• is_white_pixel(frame, point): this function is responsible for checking
whether a given point, i.e., the single vertex of the trapezium, corresponds to a
white pixel: this operation is essential for detecting the roadway with precision
and then applying the transformation;

• find_nearest_white_pixel(frame, point, max_distance): placed af-
ter the is_white_pixel function when it returns "false", in order to find the
nearest white pixel along the x-axis, but within a specific range of pixels. The
source points are then corrected, where necessary;

42 Objective and phases of the project

• validate_point(...): this function first checks and then adjusts the single
point where necessary, moving for the correction so that it does not exceed the
threshold specified in the data class: it also checks that the eventual moved
point does not violate the geometric constraints defined, as happens for the
internal trapezium;

• validate_and_adjust_detection_points(frame, params): this func-
tion applies the validation and adjustment feature to all four points, i.e. the
upper and lower vertices;

• apply_eye_perspective_transform(frame, params): it is the main func-
tion of the submodule, because first of all, using the other functions mentioned
above, it validates and adjusts the source points, draws circles on these points
to help the visualization and finally applies the geometric transformation. The
final result is an image that represents the view from above, in an artificial way
but that respects the geometric rules in order to perform a correct search for
the positions of the lines.

After the development and testing phase of the ‘eye_perspective_view‘ submodule, it
was important to perform a code quality check phase, in order to further understand
whether or not this part of the project respects the practices in terms of readability,
maintainability and overall performance. Similarly to what was done for the image
thresholding module, Radon was used to measure different code metrics, in order to
provide important information on the code quality. These values therefore denote a

Metric Value

Lines of Code (LOC) 321
Logical Lines of Code (LLOC) 122
Source Lines of Code (SLOC) 156
Total Comments 24
Single-line Comments 21
Multi-line Comments 80
Blank Lines 64
C % L (Comments on LOC) 7%
C % S (Comments on SLOC) 15%
C + M % L (Comments + Multi-line on LOC) 32%
Table 3.3 Code metrics for the eye_perspective.py file

3.4 Development phase 43

moderately sized structure, with a fair amount of lines dedicated to the system logic,
while maintaining a good part dedicated to declarations or in general to structures
that do not contribute directly to the operational logic of the program.

Finally, the presence of 80 multi-line comments suggests that certain parts of the
code could be complex and that consequently it was necessary to introduce more
in-depth explanations. The 32% of LOCs that contain detailed comments indicates
a good attention to making the code understandable and maintainable, as well as
functional.

After having implemented and carefully tested the module, it was possible to
obtain a precise perspective transformation of the individual frames acquired in real
time during the execution of the application. The final result is therefore a view
from above, capable of correcting perspective distortions and making the analysis of
the roadway lines much more accurate. This transformation has proven useful for
improving the precision of the system, allowing a realistic and correct perception
of the road lane. Below, figure 3.7, is a visual example in the CARLA simulation
environment, where it is possible to notice how the roadway is faithfully represented,
with parallel and no longer converging lines.

Fig. 3.7 Result of the view from above

Chapter 4

Analysis of Implementation Strategies
for Lane Detection

4.1 Introduction to the attempts made

Lane Detection within the autonomous driving panorama represents an aspect of
fundamental importance in modern driver assistance systems (ADAS). The primary
objective is to be able to precisely recognize the lines that divide the car’s lane from
the other lanes in the opposite direction or from the end of the same road. This aspect
is therefore very important also with regard to the consequent automatic steering
maneuvers.

The right precision in lane recognition becomes more difficult in critical road
conditions, such as in the presence of curves, intersections or in cases of poorly
defined road signs. For these reasons, it is necessary to develop a robust algorithm
capable of improving vehicle safety, minimizing the risk of error.

In addition to the previous and already mentioned difficulties, other critical
situations may be poor visibility, the presence of obstacles on the road and the
natural or otherwise degradation of the lane lines, which may hinder or even prevent
correct road recognition.

After implementing the previous modules related first to the thresholding applied
to real images and then to the perspective transformation, the next step was com-
pletely dedicated to the development of the real algorithm capable of recognizing

4.2 First Attempt: Lane Detection Using Horizontal Segmentation 45

the position of the lines, as the other two modules were used as support. This
implementation was done directly inside the client, inside a very specific callback
function.

The development process encountered several problems, solved step by step
in order to obtain the best performance, but going by trial and error, as the choice
was to apply a slightly different approach compared to the pre-existing one in the
documentation. The main limits that were encountered were due to the need and
the desire to perform an algorithm capable of satisfying the performance requests
especially in ‘chaotic‘ conditions such as those of the city, and not only on the
highway where the conditions are simpler.

The preliminary attempts, however, allowed us to collect important data and
above all to develop experience and critical sense towards the problems encountered,
guiding the project towards better developments and optimizations, thus leading to
the solution then definitively adopted.

4.2 First Attempt: Lane Detection Using Horizontal
Segmentation

The focus of this first attempt was to obtain a method of lane recognition in such a
way as to identify the white pixels corresponding to the lane demarcation lines, all
starting from the image previously processed with the submodules mentioned above.

The method is mainly based on the use of horizontal scan lines, traced at non-
regular intervals, but rather increasing and increasingly dense as you go towards the
top of the image, with the aim of intersecting the lane lines.

The method, in the first phase, involves outlining a series of horizontal lines
in such a way as to compress the entire image along its height, giving particular
importance to the upper part of the same because it tends to be more critical.

Once traced, the algorithm has the aim of scanning each line from one side of
the image to the other, marking with a red circle each time it is found.

The choice behind the use of horizontal lines is dictated by the mixed simplicity
and effectiveness of this approach, aimed at reducing the complexity of the research
to a one-dimensional case only.

46 Analysis of Implementation Strategies for Lane Detection

Once all the white pixels have been collected and identified, the next step involves
saving the position of these points and consequently creating a polygon capable
of enclosing all these points and consequently identifying the lane as precisely as
possible.

Once the method described above was implemented, it was tested first in a static
situation, i.e. by giving an image as input and not a series of frames from the
simulation.

The resulting image, at first, shows a good ability to identify the points along the
lanes, making it possible to build the polygon.

The result shown in the figure 4.1 shows a good starting point for the detection of
the lines, offering a first indication of the potential effectiveness of the method. The
following image illustrates the first results obtained with this approach, highlighting
in red the points where white pixels were recognized along the green lines:

Fig. 4.1 Detection result by scanning horizontal lines

4.2 First Attempt: Lane Detection Using Horizontal Segmentation 47

Once the positions of the white pixels along the horizontal lines have been found
and marked, the next step involves first building curves capable of interpolating the
different points found and consequently finding a way to build a continuous and
geometrically correct polygon in order to identify the roadway, in such a way as to
provide a realistic and usable representation. The first attempt involved the use of
a refined interpolation technique based on the Root Mean Square Error (RMSE).
Interpolation is the calculation by which, according to a certain law, values of a
function are determined within an interval in which only some of them are known
[9]. The RMSE method is defined as a statistical measure used in order to quantify
the difference between the observed values and those instead expected. In particular,
it is defined by the following formula:

RMSE =

s
1
n

n

∑
i=1

(yi − ŷi)
2

where:

• n number of total observations;

• yi observed values;

• ŷi values predicted by the fitted curve.

In particular, the RMSE method is used to provide a measure of how accurate the
overall system of the interpolated model is, thus indicating how much the values are
distant from the real values: in this project it was used to minimize the error, so that
the interpolated curve best fits the points found.

Nevertheless, the use of the RMSE presented some problems: this method tends
to detect the error in a accumulated manner, but hides smaller and more local errors.
Unfortunately, when this behavior occurs in more complex situations, in which
perhaps a sudden change of direction must be managed, or a difficult situation of
learning the lanes, it becomes difficult to obtain good performance and therefore
obtain precise curves that are able to respect the road lanes.

In our project, therefore, the RMSE did not appear to be a method accurate
enough to be used. After trying to apply the RMSE interpolation method described
above to build the curves, the results shown in the following images were obtained:

48 Analysis of Implementation Strategies for Lane Detection

in particular, they show the interpolation of the points found starting from the image
presented in the figure 4.1, and the construction of the internal polygon.

In the first image, figure 4.2, the interpolation curves are shown, without the
internal polygon, so as to be able to identify the problems right from the starting point:
in fact, when the points recognized on the same horizontal become multiple, the
model begins to give problems, trying to make an average, but with poor performance
results.

In the second image, figure 4.3, the result is shown with the internal polygon
highlighted: this geometric figure was created by joining the ends of the interpolation
curves of the right and left lane, and only then filled inside. However, the quality of
the result was definitely below expectations.

Fig. 4.2 Interpolation with the curve

Fig. 4.3 Interpolation with the polygon

4.3 Second attempt: Lane Detection using the continuity of the white pixels 49

4.3 Second attempt: Lane Detection using the conti-
nuity of the white pixels

After having analyzed and thought about a possible solution to the problems given
by the RMSE method, we tried to explore a different approach, thinking concretely
about the proposed situation.

This new method explores the possibility of searching, similarly to before, start-
ing from the center and going to the right and left the first series of thirteen consec-
utive white pixels, followed and preceded by black pixels: the choice of thirteen
pixels was made following a visual analysis of the lines of the roadway.

The principle on which this method is based is therefore to use the presence of
continuous white pixels, in order to identify in a more robust way only the lines of
the lane and exploiting the factors that do not change during the simulation, that is,
that the camera set on the machine almost always points to the center of the lane.

Once a consecutive series of white pixels is found, the median point of the
thirteen points found is identified with a red dot.

Below, in the figure 4.4, a graphic result of what is obtained is shown: Although
the new method related to the search for thirteen pixels may seem like a good
upgrade compared to the previous method, this procedure presents the possibility of
encountering errors in the detection of the lane, as can be seen in the upper part of
the figure 4.4.

A first important aspect is that the number thirteen chosen is not always ideal: in
some parts of the detection, the lines of the roadway may not be continuous or "full",
thus hindering this search. The algorithm therefore, not correctly finding a series of
thirteen white pixels, risks selecting incorrect points.

This aspect in fact occurs in the upper part of the figure 4.4, where a segment
outside the lane is incorrectly detected, taking a part of the guard rail. Since the
resolution of the image is lower in the upper part of the image, it is a problem that
can occur several times.

These aspects presented therefore underline how the choice of a fixed number of
consecutive pixels may not be the best choice.

50 Analysis of Implementation Strategies for Lane Detection

Fig. 4.4 Interpolation with the new method

Having therefore explored two different possibilities and having thoroughly
analyzed the strengths and weaknesses of both solutions, an alternative method was
sought that could on the one hand address the critical issues that arose during the
development of the two previous versions. In particular, during this phase of the
project, an attempt was made to address with particular dedication the problems
relating to the most complex situations, such as those on curves or in situations
where horizontal signs are present.

4.4 Ultimate Choice for Lane Detection

After trying several attempts and different approaches to obtain the best results for
Lane Detection, it was decided not to continue with the development of a separate
module, as was done for the previously explained modules: the logic for lane
recognition was inserted within a function, in order to manage both the acquisition
of images and their processing, which come from the camera mounted on board the
simulated vehicle.

4.4 Ultimate Choice for Lane Detection 51

This choice was made for several reasons, both practical and technical, which
then proved to be successful for the purposes of the project.

The main reasons are:

• Code efficiency: the complexity of the code has been significantly reduced:
when complicated functions such as obtaining images and processing them
are performed separately, the complexity of the algorithm itself is added to the
complexity of the communication between the different modules.

The interfaces to maintain therefore increase significantly, making the system
more prone to bugs or errors of all kinds, such as those of synchronization or
data sharing.

The choice of opting for a single workflow within the ‘camera_callback‘
function simplifies the logic, reduces the risk of bugs and the code itself
becomes more readable and consequential.

• Resource optimization: since the perception algorithm for the Lane de-
tection is a process within a large world such as that of autonomous driving,
the demand for rapid and continuous processing of visual data is very large.

The reactivity of the program is a factor of fundamental importance, and the
more you can make it lean, the greater the performance obtained. One way to
increase the optimization of the program is precisely to manage these aspects
within the single function.

Access to specific hardware, memory management and other aspects of a total
modular approach could further weigh down the program.

The result is therefore a substantial reduction in processing times and a conse-
quent freeing up of resources that can be allocated to other applications.

• General benefits: putting the lane detection logic directly into the
camera_callback function inside the client not only improves the efficiency
and accuracy of the program, but also facilitates a greater internal structure of
the code, making it easier to control the development of the entire processing
process.

52 Analysis of Implementation Strategies for Lane Detection

4.4.1 Implementing of the camera_callback() function

The final ‘camera_callback‘ function, reported inside the Appendix C , outlines
the brain of the chosen approach: in particular it is crucial to manage the obtaining
of the images that come from the camera, first by applying the thresholding module,
then obtaining the top perspective of the same through the ‘eye_perspective‘
module, and then applying two different masks to correctly confine the areas of
interest.

The function code is made up of several parts, which are essential to obtain an
excellent result at the end of it, both in terms of performance and visual result. Below
is a flow chart representing the main steps of the ‘camera_callback‘ function:

Start

Converting the raw image to a NumPy array

Saving the image temporarily to disk

Applying thresholding

Creating an external mask

Creating and inverting the internal mask

Applying perspective transform

Drawing polygons on the transformed image

Overlaying polygons on the original image

Updating the data dictionary

End

4.4 Ultimate Choice for Lane Detection 53

The ‘camera_callback‘ function is responsible for the heart of Lane Detection.
The following is a detailed explanation of the main actions performed by this func-
tion:

• Primitive image conversion: the first step carried out by the function is
basic but fundamental, as it must convert the image taken by the camera into a
NumPy array: this step is essential as the NumPy library provides several tools
for image processing, quickly and effectively. The method used is ‘reshape‘,
capable of ordering the raw data effectively for subsequent manipulations;

• Temporary saving of images: in order to process the images in a simple
and effective way, it was necessary to save them on disk: in order not to burden
the memory too much and above all because they are not useful for the project,
the same images are then deleted once used. This process is useful and prior
to the thresholding process;

• Application of the threshold module: the next step involves using the
thresholding module, explained in the chapter 3.4.2: by separating the pixels of
interest for the project, the image is converted into a binary version, obtaining
with the black pixels the background and what is not interesting in the frame,
and in white everything that needs to be worked on;

• Definition and creation of masks: two masks are created, an external
one that limits the area of interest, reducing the noise so as to focus only on
the areas of interest, and an internal mask instead that serves to not consider
the horizontal road lane signs or to avoid disturbances during medium-radius
curves. This step serves to focus only on the areas of interest;

• Application of the top view module: the ‘eye_perspective‘ module,
explained in the chapter 3.4.3, is used in order to obtain the top view;

• Polygon representation: the function ‘draw_polygon‘ draws the poly-
gons, taking the source points of the perspective transformation as reference.
This step is used to obtain a graphical view of what is happening during the
analysis;

• Transparent polygon overlay: This part of the code is responsible for
the final result, as it creates a transparent polygon to overlay the original,

54 Analysis of Implementation Strategies for Lane Detection

colored image. The OpenCV library function ‘cv2.fillPoly‘ is used to draw the
filled polygon, and then via the same library function ‘cv2.addWeighted‘, the
union with the starting image is performed, thus creating a transparent effect
of the recognized lane;

• Image data update: As a final step, the processed images are saved in-
side a data dictionary, a particular Python structure, useful for the real-time
visualization needed later.

In order to be more clear about the creation and use of the mask during the running
of the ‘camera_callback‘ function, we divide this operation into several steps,
each of which is responsible for a specific action.

1. Defining Mask Functionality

Masks used through the OpenCV library are used in the treatment of images to
separate or highlight certain areas of interest within a frame. In a binary mask in
particular, the belonging pixels are set to a certain value, usually white, while all the
other pixels are set to another value, usually 0 to represent black.

The isolation of objects, the removal of backgrounds or as in the case of the
project to delimit the reasons of interest (ROI) for subsequent treatment. Within the
project aimed at Lane Detection two masks are used:

• External mask: this tool was used to delimit the area of interest of the
image, excluding everything that does not include the lane, therefore cars,
pedestrians or anything outside the road that could make it difficult to obtain
good results.

All pixels outside the mask are therefore set to a value equal to 0, that is, they
are black pixels that are not considered. Through this strategy, the noise of the
image is reduced and we can focus only on the roadway.

• Internal mask: this tool is used in an opposite or complementary way
to the previous one; the values inside the mask are inverted, that is, the road
lane is further isolated, making the pixels inside the mask black, so as not to
consider any horizontal road signs present.

The combination with the external mask means that the result is the activation
of the pixels present between one mask and the other, with the exclusion of
the others.

4.4 Ultimate Choice for Lane Detection 55

2. Application within the code of masks:

The main function used during these operations is taken from the OpenCV library
and is ‘cv2.bitwise_and‘:

• Applying the outer mask: bitwise AND operation between the thresh-
olded image and the created mask; this step is able to filter the image, so that
only the pixels inside the mask are kept;

• Applying the inverted inner mask: after having also created the inner
mask, inverted so as to operate with the opposite behavior, a bitwise AND is
used again in order to obtain the final image as required: the pixels inside the
inner mask are no longer considered;

• Advantages in choosing this approach: the reduction of image noise
through the use of these masks represents one of the main focuses, as it greatly
facilitates the application of the algorithm. In particular, the internal mask
becomes very important as it is able to avoid the choice of points inside the
lane, which can confuse the algorithm.

3. Choice of coordinates for masks:

The evaluation of the coordinates for the masks is the focal point of the project
since the success of the lane recognition depends on it. The ‘eye_perspective‘
module in particular also has the purpose of managing these aspects through some
functions already explained in the dedicated paragraph, which will now be slightly
revisited to explain how they were used.

In a first moment the source and destination points are defined within the trans-
formation parameters class: these points were chosen following several practical
attempts.

The ‘validate_and_adjust_detection_points‘ function verifies and ad-
justs the points thanks to the ‘is_white_pixel‘ and ‘find_nearest_white_pixel‘
functions, which make sure that the chosen points lie on white pixels, i.e. with good
probability on lane lines. If they are not on a white pixel, they are moved looking for
one.

The usefulness of this approach lies in its flexibility: the coordinates of the points
are dynamic, that is, they adapt to the conditions of the application in order to be as

56 Analysis of Implementation Strategies for Lane Detection

precise as possible. This flexibility makes the algorithm further scalable on several
different work planes.

The inclusion of some constraints such as ‘top_left_internal_trapezium‘
and ‘top_right_internal_trapezium‘ give the possibility to further elevate the
control over these points, ensuring that they are positioned in the correct place.

4. Code snippet for creating masks:

For greater clarity, the code fragment intended for creating the masks is inserted
below:

1 # Create external mask
2 external_mask = create_mask(
3 thresholded_image.shape [:2], thresholding_settings.

extern_mask_points
4)
5 masked_image = cv2.bitwise_and(
6 thresholded_image , thresholded_image , mask=

external_mask
7)
8

9 # Create internal mask
10 internal_mask = create_mask(
11 masked_image.shape [:2], thresholding_settings.

intern_mask_points
12)
13 inverted_internal_mask = cv2.bitwise_not(internal_mask)
14

15 masked_image = cv2.bitwise_and(
16 masked_image , masked_image , mask=

inverted_internal_mask
17)
18

19 # Apply the eye perspective
20 eye_perspective_image , source_points =

apply_eye_perspective_transform(
21 masked_image
22)

Listing 4.1 mask code

4.4 Ultimate Choice for Lane Detection 57

5. Results and conclusions:

In conclusion, this part of the code within the analyzed function is of fundamental
importance as it ensures that the control and analysis areas of the lane are only
those of interest: without these two masks, the algorithm would risk analyzing and
consequently considering external elements as lanes, as was noted during the use of
the previous methods that were then discarded.

Below, in figure 4.5, are some screenshots of the real-time simulation of the
application, in which the aspects described above can be visually noted.

Fig. 4.5 Results of the ‘camera_callback‘ function: the final image on the left, the
functional polygons on the right

The figure 4.5 shows the results obtained during the running of the application,
in which a frame was captured by the camera mounted on the vehicle.

On the left, the original RGB image taken from the front camera is represented,
to which no transformation or processing was applied. The only thing that was done
was to add in green the area of the polygon, which represents the lane detected during
the execution of the application. This colored region is therefore the result of the
application of the two different masks and the other functions described above.

On the right of the figure 4.5, instead, the image functional to achieving the
required result is visible: in this frame, in fact, both the application of the thresholding

58 Analysis of Implementation Strategies for Lane Detection

are clearly visible, as every detail not necessary for the Lane Detection is put in
black, while the rest is in white, and in addition the masks are visible: the external
mask is represented in red, while the internal mask is visible in blue.

In the figure on the right, there are also dynamic red points, which are the real
responsible for the Lane Detection as they are free to move along the x-axis when,
during the running of the application, they are not on white pixels, and therefore
presumably on a road lane.

In summary, the image on the right visually demonstrates how the accurate use
of masks, after an accurate choice of the points with which to form them, allows to
achieve a clear and precise vision of the roadway.

This final representation highlights how the method chosen in the end is able to
obtain good results in terms of performance.

Chapter 5

Client Code Implementation and
Description

5.1 Introduction to ‘client.py‘

The ‘client.py‘ code represents the core around which the entire perception
algorithm for Lane Detection revolves within the simulation system, as it is the
interface responsible for connecting the user with the virtual world provided and
managed by CARLA.

The code in particular governs the creation of the world, the background vehicles
and the vehicle protagonist of the project, controlling it from different points of
view, including the configuration of the camera mounted on board and the conse-
quent processing of the images obtained, in order to obtain a realistic simulation of
autonomous driving.

First of all, the client takes care of initializing the world where the simulation
will be performed, thus allowing the relationship between the different actors of the
world, such as vehicles, pedestrians and cameras/sensors.

The method in this phase is modular, in order to allow precise management of
each factor of the simulation, giving the possibility of managing and combining each
specification of each actor present during the running of the application.

Once the simulation’s peripheral aspects have been managed, the client is re-
sponsible for the proper functioning of the RGB camera mounted in the center of

60 Client Code Implementation and Description

the vehicle taken into consideration, in order to obtain images of the surrounding
environment on which it is possible to work. The image processing is done in real
time with a series of consequential operations, such as thresholding, perspective
transformation and the consequent calculations related to the algorithm itself, all
fundamental elements in order to obtain good performance for the project.

Another important aspect of client management concerns the surrounding envi-
ronment, as even the extra simulation vehicles are managed within the same code.

The vehicle protagonist of the experiment is managed via a PID controller
(acronym for Proportional Integral Derivative), capable of autonomously driving the
car by simulating its behavior in autonomous driving.

In conclusion, the ‘client.py‘ code provides the interaction interface with
CARLA, processes the images, controls the vehicle and generally simulates different
complex scenarios such as traffic: all this is done in order to obtain a representation
of reality as truthful as possible.

5.2 General structure of the code

The client code ‘client.py‘ has been structured in a modular way in order to
obtain a more linear form of the application and follows a logical structure aimed at
the good maintenance of the project itself.

The code is divided into functions and classes responsible for the success of the
project, in such a way as to divide the responsibilities on different fronts, making the
code readable and easy to manage in case of debugging needs.

The complete code is presented in the Appendix D, while a flow chart useful for
understanding its behavior at a visual level is shown below.

5.2 General structure of the code 61

Start

Initialize Client and World

Spawn Vehicle

Attach and Setup Camera

Process Images (camera_callback)

Compute Control Commands (PID)

Apply Vehicle Controls

End

1. Importing Modules and Libraries

In a first part, as is done for every code in every programming language, the first
lines of code are dedicated to importing standard and external Python modules, as
well as functional libraries for the purpose.

In this case, the modules ‘sys‘, ‘random‘, ‘time‘ and ‘tempfile‘ were important
and were used for the management of the system in general, to optimize temporary
files.

The important external modules are instead ‘carla‘, the main protagonist of the
project as it allows the relationship with the simulator of the same name; then the
module ‘cv2‘ (OpenCV) is imported, important for working on the images obtained
from the camera.

Finally, specific functions are imported from two modules built externally for
the success of the project: in particular, they are ‘apply_threshold_and_save_image‘

62 Client Code Implementation and Description

coming from the module ‘frame_threshold‘ and ‘apply_eye_perspective_transform‘
coming from the module ‘eye_perspective‘.

2. Determining Classes for the Project

Secondly, the two main classes of the project are defined, one aimed at defining
the values related to the RGB camera setting (‘CameraSettings‘), while the other
class is responsible for defining the settings related to the thresholding of the images
(‘ThresholdingSettings‘).

These classes have been introduced to facilitate the management of the values in-
side them, so that if they need to be changed or monitored they are easily identifiable:
furthermore, the use of the ‘@dataclass‘ decorator makes everything even simpler,
removing any doubts from the reader regarding some numbers that otherwise might
seem random.

3. List of main functions

The most important functions of the perception project for Lane Detection are as
follows:

• ‘initialize_client()‘: responsible for starting the relationship between
the client and the CARLA simulation server, initializing the world and retriev-
ing the blueprint of the actors in play through the CARLA API during the
running of the application;

• ‘spawn_vehicle()‘: controls the creation and precise positioning of a vehi-
cle within the newly created virtual world; checks are applied to ensure that
the car is successfully created in the desired position;

• ‘spawn_camera‘: creation and positioning of the RGB camera on the newly
created vehicle; the specifics are detailed inside the ‘CameraSettings‘ class we
talked about above;

• ‘camera_callback‘: function for managing and manipulating images com-
ing from the RGB camera where the final result of the project is processed:
this is discussed in more detail in the chapter 4.4.1;

• ‘setup_camera()‘: definition of the camera and the callback function for
image acquisition, also creating the two windows for viewing the real-time
simulation video.

5.3 Accurate description of the behavior of the ‘main()‘ function 63

4. Main Client Loop

The main loop of the ‘main()‘ function manages all the different aspects of the
simulation and is therefore responsible for the aggregation of the different modules
that are part of the project. It therefore manages, in addition to the continuous
execution of the client itself, the vehicle through a PID controller and also the
updating of the images obtained from the camera.

It also manages the cases of exceptions or code malfunctions in order to avoid
unjustified interruptions of the application.

5.3 Accurate description of the behavior of the ‘main()‘
function

1. Initialization and configuration of key elements

First, two variables are initialized: ‘actor_list‘, which is an empty list that will
be filled with the simulation protagonists, such as vehicles and the camera, and
‘ego_cam‘, which will be considered for the RGB camera attached to the vehicle.
Using the list of actors makes it easier to handle them when they will have to be
destroyed at the end of the simulation.

The simulation seed is then stopped, using the string ‘random.seed(500)‘, in order
to set the generation of random numbers. This part is of fundamental importance as
regards the need to have repeatability in the simulation for testing and debugging
phases.

The ‘initialize_client()‘ function that we talked about before is then called, which
is responsible for the connection with the CARLA server: in particular, it reports
three elements: the client for communication with the server, the simulated world
and the blueprint library because it contains the models of the actors present during
the running of the application.

After the client setup and consequently the world setup, the vehicle responsible
for the simulation is inserted through the ‘spawn_vehicle‘ function, which will be
placed inside the list we talked about above.

64 Client Code Implementation and Description

The RGB camera is created and set thanks to the ‘spawn_camera()‘ function
and then configured thanks to the ‘setup_camera()‘ function: as you can imagine
this part is fundamental for the success of the project and the simulation. With the
association with the other fundamental function, ‘camera_callback‘, the real-time
viewing windows are created. Here is this code snippet:

1 actor_list = []
2 ego_cam = None
3

4 random.seed (500)
5

6 # Initialize the client , world , and blueprint library
7 client , world , blueprint_library = initialize_client ()
8

9 # Spawn the vehicle
10 vehicle = spawn_vehicle(world , actor_list)
11

12 # Define transform
13 transform = vehicle.get_transform ()
14

15 # Spawn attached RGB camera
16 ego_cam , cam_bp = spawn_camera(world , vehicle)
17

18 # Set up the camera
19 camera_data = {}
20 setup_camera(ego_cam , cam_bp , camera_data)

Listing 5.1 mask code

2. Defining PID Controller Gains

This code snippet specifies the parameters for the PID controller, the controller
chosen to manage autonomous driving, in order to regulate the speed and direction
of the vehicle accurately.

The parameters for lateral control are as follows:

• K_P (Proportional): gain set to ‘1.0‘, i.e. a correction applied that is only
proportional: this means that if, during the simulation, the machine devi-
ates slightly from the chosen trajectory, this controller applies a proportional
correction to manage this error;

5.3 Accurate description of the behavior of the ‘main()‘ function 65

• K_I (integral): integral gain set to ‘0.0‘, i.e. this effect is not used because it is
not necessary and above all to avoid unwanted oscillations;

• K_D (derivative): similarly to the previous gain, here too it is set to ‘0.0‘, i.e.
here too it is not used, because it is not necessary to dampen the response.

As for the longitudinal gains, i.e. acceleration and deceleration, they are set in a
similar way to the previous ones, with the K_P equal to ‘1.0‘, while the other two
are set to ‘0.0‘: these values mean that the controller is pure proportional, without
integrative and derivative effects.

The controller is therefore defined as fast and reactive.

Once the gains are defined, for the purpose of software development, an instance
of the PID controller is created with the class ‘VehiclePIDController‘. The result
obtained is therefore a predefined trajectory with the speed also set a priori and
maintained.

Below is shown this part of the ‘main()‘ code:

1 # Define the proportional (K_P), integral (K_I),
2 # and derivative (K_D) gains for lateral control
3 args_lateral = {"K_P": 1.0, "K_I": 0.0, "K_D": 0.0}
4

5 # Define the proportional (K_P), integral (K_I),
6 # and derivative (K_D) gains for longitudinal control
7 args_longitudinal = {"K_P": 1.0, "K_I": 0.0, "K_D": 0.0}
8

9 # Create a PID controller instance for the vehicle
10 # using the lateral and longitudinal control gains
11 pid_controller = VehiclePIDController(vehicle , args_lateral

, args_longitudinal)

Listing 5.2 mask code

66 Client Code Implementation and Description

3. Main loop and vehicle control

A so-called infinite loop, ‘while True‘, is started, which continues the appli-
cation running until it is manually stopped. Inside this loop the entire control of
the vehicle during the simulation is managed. First inside the loop the function
‘get_target_waypoint()‘ is launched to set the next reference point for the PID con-
troller and to set the safe and practicable navigation speed. Through the function
‘run_step()‘ the PID controller establishes the proportional gains to keep the vehicle
along the correct trajectory and with the right speed, always maintaining the safety
of the machine.

Once the control command is calculated, it is applied through the function
‘apply_control()‘, which is then able to adjust the trajectory and other parameters
if necessary. During the main execution, the images inside the two windows are
updated through the function, shown thanks to the function ‘cv2.imshow()‘: this step
is fundamental as it allows the step by step vision of the success of the algorithm.
To end the application, a logic was then inserted that closes all the display windows
when the ‘q‘ key is pressed.

Finally, the exception management is the last aspect covered, in order to control
possible errors or any exceptions. Ultimately, all the actors that were created during
the simulation are destroyed in order to be able to possibly run another one later. The
code relating to this part just described is shown below.

1 try:
2

3 while True:
4

5 # Get the next waypoint and target speed for the
vehicle using the defined function

6 waypoint , target_speed = get_target_waypoint(
vehicle , world)

7

8 # Compute the control command for the vehicle based
on

9 # the target speed and waypoint using the PID
controller

10 control = pid_controller.run_step(target_speed ,
waypoint)

11

12 # Apply the computed control command to the vehicle
13 vehicle.apply_control(control)
14

5.3 Accurate description of the behavior of the ‘main()‘ function 67

15 cv2.imshow("RGB Camera", camera_data["image"])
16 cv2.imshow("Eye Perspective View", camera_data["

eye_perspective_image"])
17

18 if cv2.waitKey (1) == ord("q"): # Close windows
when press ‘q‘

19 break
20

21 cv2.destroyAllWindows ()
22

23 # Add a few more vehicles to the simulation
24 transform.location += carla.Location(x=40, y=-3.2)
25 transform.rotation.yaw = -180.0
26 for _ in range(0, 10):
27 transform.location.x += 8.0
28

29 bp = random.choice(blueprint_library.filter("
vehicle"))

30

31 # Use try_spawn_actor. If the spot is occupied by
another object ,

32 # the function will return None.
33 npc = world.try_spawn_actor(bp, transform)
34 if npc is not None:
35 actor_list.append(npc)
36 npc.set_autopilot(True)
37 logging.info("created %s", npc.type_id)
38

39 time.sleep (5)
40

41 except (carla.ServerError , carla.ClientError , carla.
RPCError) as e:

42 logging.error("Carla error occurred: %s", e)
43 except UnexpectedError as e:
44 logging.error("An unexpected error occurred: %s", e)
45

46 finally:
47 logging.info("destroying actors")
48 if ego_cam is not None:
49 ego_cam.destroy ()
50 client.apply_batch ([carla.command.DestroyActor(x) for x

in actor_list])
51 logging.info("done.")

Listing 5.3 mask code

68 Client Code Implementation and Description

4. Final analysis of the client code goodness

After the development and testing phase of the ‘client.py‘ code, it was important
to perform a code quality check phase, in order to further understand whether or not
this part of the project respects the practices in terms of readability, maintainability
and overall performance. Similarly to what was done for the image thresholding
module and for the eye_perspective module, Radon was used to measure different
code metrics, in order to provide important information on the code quality.

Metric Value

Lines of Code (LOC) 455
Logical Lines of Code (LLOC) 197
Source Lines of Code (SLOC) 220
Total Comments 70
Single-line Comments 64
Multi-line Comments 65
Blank Lines 106
C % L (Comments on LOC) 15%
C % S (Comments on SLOC) 32%
C + M % L (Comments + Multi-line on LOC) 30%

Table 5.1 Code metrics for the client.py file

The table 5.1 shown in describes an analysis of the client code’s quality by
providing specific metrics: by examining these values it is possible to evaluate the
code in the most objective way possible.

In particular, the ‘client.py‘ code includes a total of 455 lines of code (LOC),
a number that actually intends to contain the actual executable code, comments
and also empty lines. A relatively high value like this represents a fair amount of
complexity in the file, due to the concatenation of different functions.

The lines of logical code (LLOC) are 197 and are responsible for carrying out
logical operations in the program: comments and empty lines are therefore excluded.

The lines of source code (SLOC) are 220 and include, in addition to the actual
lines of code, also the cases in which multiple factors are declared on the same line.

Since the LLOC value is slightly higher than the one just mentioned, it is possible
to notice how in some cases in the code an approach of declaring multiple factors on
the same line has been used, in order to make the code more synthetic in some cases.

5.3 Accurate description of the behavior of the ‘main()‘ function 69

The comments in the code are 70, a number consistent with the project that
guarantees a good understanding of the logical development: the greater the number
of comments, the greater the possibility that the code can be understood by external
developers and that they can eventually get their hands on it.

The empty lines within the code, useful for being able to correctly divide the
different parts, are 106: this is a number that indicates a good organization that
once again guarantees a concrete possibility of being read and understood without
problems.

The program documentation covers 32% of the program, a significant number
that ensures the right importance to this part of the project development.

In conclusion, the ‘client.py‘ file presents a good balance between the necessary
complexity of the code and a fair level of documentation, with a clear structure that
simplifies the understanding of the logical steps and the possible maintenance of the
same.

These values collected above represent the achievement of the pre-established
project objectives, to be added to those of developing a functioning algorithm that is
suitable for the project requests.

Chapter 6

Evaluation of results and development
prospects

6.1 Results achieved

The aim of this thesis project was to develop a road lane detection algorithm using a
simulation tool, the CARLA simulated world, and a software architecture that would
allow the processing of images in real time. For this purpose, it was necessary to
introduce several modules, both external and standard, so that they all contributed
to the creation of an accurate and precise recognition system, both in a simulated
context and in the future in a real context.

This last part of the document deals with showing the results obtained through the
experiments carried out by running the client code presented before. The simulations
in particular were carried out in an environment that was structured to be as truthful
and similar to reality as possible, so that it could be replicated or reused.

The development path was not entirely linear, as several paths were taken that, for
the purpose of creating the project, served to understand the strengths but also those
that had to be the aspects to be interpreted and possibly changed, as was described
for the specific Lane Detection part.

Below, some images of different conditions during the running application will
be shown, in order to underline the system’s capabilities in tracing the detected
polygon of the road lane. The different aspects of the perception algorithm will

6.1 Results achieved 71

then be discussed, both thanks to the images that will be reported, and thanks to the
metrics presented at the end of each explanation of the different codes presented.

Finally, this final part of the paper is aimed at providing and proposing food for
thought for possible future improvements, with techniques that could be implemented
and even greater precautions for possible future iterations of the product.

In the first analysis, in figure 6.1, a simulation scene is presented in a highway
environment: this context was initially chosen because it is easier to manage than
others, such as the city, to evaluate an initial effectiveness of the detection system.

The highway as such has been taken as a starting point for each Lane Detection
system even in the past, where driving assistance was in its infancy and consequently
we started from simpler contexts. In fact, this context does not include important
horizontal signs, has well-defined lanes, does not have large obstacles to avoid in
recognition and above all does not include curves with very evident angles.

Fig. 6.1 Highway view, first attempt

This first scenario made it possible to notice the first problems and then solve
them quickly and easily, such as the position of the mask creation points, rather than
the reference points for the creation of the images from above.

From a purely technical point of view, you can already see how the view from
above is applied correctly, avoiding the annoying perspective problems.

The lanes are also immediately clearly represented, with the full polygon colored
in green clearly visible and faithfully representing the lane of the road: this aspect
therefore makes you think about how, despite the environment of the first develop-

72 Evaluation of results and development prospects

ment being simpler than the one that will actually be taken into consideration for the
final project, i.e. a city, the models used, starting from the masks, are functional.

However, these results are a starting point, as the goal is to deal with more
realistic driving conditions in reference to more everyday situations, and therefore
urban life situations.

After having supported with excellent performances the first situations in a
simplified environment such as the highway, the focus was shifted to a more realistic
but complex environment, namely the urban environment.

The image below, figure 6.2, shows a simulation made inside the standard
CARLA simulated city, characterized in this frame by a straight road with the
presence of important buildings, trees and vehicles parked on the side of the road.

Fig. 6.2 Linear urban context frame

This situation, although still linear, introduces some elements that could compli-
cate the success of the algorithm, such as the presence of sidewalks on the right and
left side of the road or horizontal signs.

Despite the increase in difficulty, the proposed Lane Detection system contin-
ued to have excellent results in terms of performance and reliability, managing to
accurately recognize the road lane. The perspective view, as can be seen on the right,
continues to work correctly, providing great support to the realization of the project.

The representation of the green polygon on the left of the image remains of
excellent workmanship, with a clear identification of the lane.

6.1 Results achieved 73

In conclusion, despite the increase in potential elements that could disturb the
success of the perception algorithm, the basis for addressing the difficulties of the
project is good and has made further improvements possible. The robustness of the
code has proven to be still able to withstand situations of greater complexity.

The last image brought into analysis, figure 6.3, represents a further increase in
the difficulty in recognizing the road lanes in the chosen simulation environment, as
the situation of an urban curve is analyzed with the consequent complications that
concern it. Differently from the previously analyzed contexts, in which the roads
were mostly straight, in this situation the program must be able to manage a context
in which there may be several complications, starting from the fact that the camera
is fixed and therefore does not always point in the direction of the curve taken.

Fig. 6.3 Situation on a curve in an urban context

Despite the increase in difficulties represented, the improved and developed
system of the Lane Detection perception algorithm continues to have excellent
results in terms of performance, highlighting once again the refinement of the project
and therefore of the developed code. The confinement masks continue to play a
crucial role in the analysis and recognition of the position of the lanes, once again
affirming that the choice to use them was correct, even in more difficult situations.

The colored filled polygon continues to correctly represent the lane in a clear and
precise way, reinforcing with another good result the chosen approach, even in urban
contexts and with curves of non-negligible angle.

74 Evaluation of results and development prospects

This result, more than the previous ones, underlines that the project is robust and
can be an excellent starting point for future applications, also because it represents a
valid alternative to the projects present online, only able to manage situations on the
highway or similar.

6.2 Conclusions

The current thesis project has had from the beginning the focus of developing and
implementing a perception algorithm for Lane Detection in a simulated environment
through the use of the CARLA simulator in an urban environment, in order to
propose a valid alternative to some technologies present online.

This work is part of the large context of autonomous driving, currently one of
the greatest challenges for the automotive sector and in general for the human race
as it could completely revolutionize even everyday life.

Through a well-organized work with iterative development phases together with
the Luxoft company, a robust recognition system has been created, capable of
recognizing road lanes with excellent accuracy: the results at the level of pure
software development have been evaluated through specific metrics demonstrating
how the algorithm is able to meet expectations.

In this last part of the treatise, some evaluations of the system performance will
be presented, some considerations regarding the problems faced during the project
and finally possible future improvements to be made will be discussed.

1. Goals achieved

The success of the project is due in particular to the CARLA simulator, the
open-source platform that made it possible to design the thesis in its entirety, creating
dynamic environments that were able to adapt to the needs of the moment.

From the very first moment of development, the goal was to propose a valid
alternative to the existing Lane Detection proposals, trying to develop a lean but
effective algorithm, capable of recognizing lanes even in difficult environments.

The techniques used, namely the submodules related to thresholding and per-
spective transformation, are only the final aspects of the project: it was necessary
to go through several failed attempts but which made us understand new aspects of

6.2 Conclusions 75

the topic. In fact, the final solution does not only involve image segmentation but
through various controls of the single frame analyzed allows us to obtain a clear
improvement with respect to the overall performance.

One of the greatest achievements of this project is undoubtedly the possibility of
running the application within a simulated urban context, an important goal that had
been set at the beginning, where driving conditions are much more complex than in
a simple road environment.

The dynamic masks introduced within the main client then made it possible to
increase the accuracy of the final program.

In addition, another aspect of fundamental importance was the modularity of
the code, capable of integrating different aspects in an easy and intuitive way, thus
easily recognizing the problems that are normally encountered and solving bugs
without affecting the integrity of the code. The choice of using a pipeline for image
processing made it possible to obtain an effective, fast and lean system.

In conclusion, the project was able to achieve all the results set at the beginning,
both from the point of view of performance and from the point of view of the
goodness of the code in terms of IT metrics.

2. Performance Evaluation

The screening of the program performance and the project as a whole focused
in particular on two aspects: the precision in recognizing the lanes, the core of the
theses, and the accuracy of the code, through a critical analysis of the metrics using
the Radon tool. The values obtained demonstrated how, despite the exponential
increase in the complexity of the program, it remains structured in the correct way,
with a good ease of understanding even for an external user and above all well
documented for any future projects: this is an important factor as it was the hope
from the very first moment of development, to be able to obtain a scalable product
for other activities. The separation between the different sections of the code and a
low cyclomatic complexity ensure an excellent logical flow.

The choice to dedicate a submodule to the two auxiliary functions, the one
dedicated to thresholding and the one dedicated to perspective transformation, proved
to be a winning choice as they allowed to keep things separate and consequently
allowed to work in a logical and simple way on the development: the integration

76 Evaluation of results and development prospects

of the same was then simple with an important gain in terms of scalability of the
project.

The computational performances were then extensively documented and com-
mented, so as not to leave anything unfinished or inadequately explained: the
management of resources was therefore able to benefit greatly, obtaining a fluid
program that can easily respond to the needs of an urban context.

Another aspect of fundamental importance and reason for great reasoning was
how to manage situations in which the lane lines are totally absent, as in the case of
large road intersections or more simply when the signs are totally absent for other
reasons: the choice fell on a probabilistic approach, that is, to keep in memory the
last polygon drawn in which the road lines were present, using the latest information
saved to project a virtual trajectory, based solely on previous data, obtaining excellent
results despite the scarcity of data in those situations. This choice therefore gave the
possibility of obtaining a trajectory calculated a priori, keeping the analysis fluid and
without interruptions, as can be seen in the figure 6.4.

Fig. 6.4 Situation on a curve in an urban context with no data for Lane Detection

In essence, the code has been designed in such a way as to achieve an ideal
balance between complexity and performance, allowing to maximize the relationship
between the resources used and the response times of the application. The choice to
save the individual polygons in memory, although it weighs a little on the resources
requested from the system, has allowed to obtain a good fluidity of use, ensuring
operational continuity even in complex situations.

6.2 Conclusions 77

3. Limits and obstacles encountered

During the development phases of the project, several problems were encountered
that presented the continuous need to question the work done in order to obtain
the best result, sometimes even different from what was intended. However, this
should not be misleading: within the great topic of software development, it is more
important to be able to have a critical thought regarding the relationship between the
results obtained and those that were intended, in such a way as to be able to possibly
compensate for shortcomings or malfunctions.

One of the aspects that was given greater weight was certainly that of being
able to perform with an algorithm in complex conditions such as those of the urban
context: the presence of obstacles, horizontal or vertical signs, more rigid curves than
the highway or the noise of the image, made the development of the project more
complicated: however, it is thanks to these difficulties that the program was able to
reach a level of accuracy that was gradually increasing throughout the development
phase, allowing in its latest version to compensate for problems that were initially
decidedly hindering. It was found that the first approaches used, although they
worked perfectly during the entire straight path, were not able to do adequately well
during the curvature phases.

Another aspect that gave some difficulty concerns the position or more generally
the use of masks for the regions of interest of the algorithm and therefore for
the filtering of the images. At first, static masks were used, where the position
was obtained experimentally but without great success, since in several cases the
algorithm was not able to distinguish the roadway from other disturbing lines or
white pixels. This approach in fact led to several false positives, a number decidedly
higher than the threshold that had been set. To get to the bottom of this problem, the
only solution that was possible to introduce was to use dynamic masks that were
able to adapt to the conditions in real - time, certainly requiring a greater effort in
terms of performance from the machine, but guaranteeing a high precision in the
recognition of the lines. The concatenation of the internal and external masks has
therefore given the possibility of isolating the regions of interest, where in particular
the internal one has allowed us to eliminate portions of images that are not useful for
our purposes.

Finally, a last aspect that has been a source of debate during the development
phases was the one related to what to show when some lines are not present in

78 Evaluation of results and development prospects

the image in order to be able to perform the Detection of the same: the decision
taken, which then turned out to be interesting and productive, was to keep the last
recognized polygon saved and to project the one in the case of absence of data. This
made it possible to maintain continuity during the process.

The aspect parallel to all this that has always been taken into consideration
has certainly been the one related to the management of the machine’s resources,
which could not be required to make an excessive effort in terms of memory and
energy. The focus was to find in any case a compromise between performance and
expenditure of energy.

4. Impact, Applications and Future Developments of the Algorithm

The project that has been carried out on Perception algorithm for Lane Detection
in a simulated urban environment has shown significant interesting ideas that can be
worked on in the future, showing a new frontier for autonomous driving, setting the
goal ever further, while ensuring high performance and ever greater safety.

Although this development has been carried out within the CARLA simulated
system, this should not lead one to think of a system in which real-life complexities
have been neglected: in fact, the primary objective has always been to provide a
world as true as possible, in such a way as to make everything scalable for possible
future integrated applications. In fact, the algorithm could be adapted with other
parallel platforms of ADAS systems. The peculiarity of the program is in fact the
ability to be able to manage the running of the application even in complicated
contexts, in which other proposals present online would not be able to do the same.
In fact, the variable conditions of the city do not present a particular problem.

A possible future application, which could undoubtedly further increase the
program’s performance, concerns the integration of a greater number of sensors,
perhaps positioned in different positions with respect to the single camera adopted
in this project, in such a way as to be able to provide different points of view of the
surrounding environment and therefore be able to refine the recognition of the lanes.
The complexity related to this approach could be linked to the method through which
to merge the different images, not encountering errors of perception between the
different shots obtained. Undoubtedly, some of these sensors should be LIDAR or
radar, in such a way as to overcome the difficulties that could be encountered in the
event of fog or difficult weather conditions.

6.2 Conclusions 79

The addition of these new data acquisition tools would not only allow to refine the
perception technique and therefore make the process even more precise, but would
give new ideas to implement other technologies; in particular, the entire project could
include functions to recognize dynamic obstacles or vertical signs, such as signs or
other types of indications.

The real turning point for this project, however, could undoubtedly be the intro-
duction of machine learning systems, such as convolutional neural networks (CNN),
which are very advanced data processing systems in order to learn from the ma-
chine’s past. The power of this application would reside above all in the exponential
learning capacity capable of improving performance very quickly and being able to
understand more and more different conditions each time [10]. A recent study has
shown how the use of machine learning systems such as CNN has given enormous
improvements in the accuracy of the results, especially where atmospheric conditions
or heavy traffic did not always allow an accurate view of the road [11].

The combined use of machine learning together with other sensors such as LI-
DAR or radar would allow the algorithm to be strengthened, obtaining a multimodal
approach, fusing the data received at a visual level with the calculated and processed
results of artificial intelligence to obtain even greater safety.

The use of supervised learning algorithms could therefore give the possibility
of integrating the current project with other ADAS systems, thus moving in the
direction of obtaining a dynamic system where lane recognition is only one of the
fundamental pieces regarding autonomous driving.

Another possible aspect of great importance could be that linked to the recogni-
tion of dynamic obstacles, such as pedestrians, bicycles or why not other vehicles
moving on the roadway [12].

In conclusion, the developed project represents a starting point from which to
launch various annexed studies aimed at autonomous driving, with enormous growth
capacity thanks to the fusion with other technologies. Such future prospects would
not only allow increasing the precision of the program, but would also allow us to
take paths that have not yet been explored regarding this great topic of autonomous
driving.

80 Evaluation of results and development prospects

5. General Conclusion

The work project developed and explained within this represents an important
point within the vast world of perception systems aimed at autonomous driving,
where in particular the aspect relating to the recognition of road lanes was analyzed,
seeking the best balance between performance and energy demand from the machine.

The CARLA platform, the simulation environment used to make everything even
more realistic without having to spend on real-time simulation, gave the possibility
of testing and simulating the algorithm with high precision and for the time necessary
to be able to ensure the success of the project. The complexity was managed in the
best possible way, gradually increasing its critical issues, starting from a motorway
environment, simpler and excellent to start with, up to the urban environment in
which the last difficulties encountered were perfected, such as the most challenging
curves or the presence of other cars.

The main objective of this work was to develop an algorithm capable of recogniz-
ing road lines with high precision, despite the disturbances that can be encountered
such as horizontal and vertical signs that sometimes create difficulties, or with more
critical atmospheric conditions: these objectives were all successfully achieved, as
demonstrated by the various testing phases carried out.

From a technical and development point of view, this thesis gave particular
importance both to the software part, fundamental for the success of the project,
but also to the hardware part, thus focusing on the feasibility and the relationship
between performance and energy and computational requirements. This result is the
core of mechatronic engineering as an overall vision is strictly necessary in order to
obtain a concrete and interesting result for future applications, but which are reliable
and realistic in the field of engineering.

The program was optimized through a pipeline for image processing, through
the OpenCV library, fundamental for the success of the project and above all to
maximize response times and management of the camera used. The response speeds
were in fact immediately a theme of fundamental importance as they were strictly
necessary to optimize the system. Another very important aspect that required a
fair amount of time to be perfected concerns the need for integration between the
different modules used, starting from the one relating to thresholding and perspective
transformation, up to the actual management of Lane Detection.

6.2 Conclusions 81

Although the entire project was tested only in simulated environments, the focus
during the entire development phase was to have the possibility in the future to
integrate this system in a real context, bringing the level of accuracy to an even
higher step. In fact, the algorithm, with the improvements and the addition of the
other techniques discussed in the previous subchapter, could represent a new frontier
for lane recognition.

Therefore, looking back at the objectives set, they have been definitely achieved
and in some specific cases exceeded, demonstrating how the work that has been done
can have significant practical repercussions. The robustness of the project and the
solidity of the results obtained are certainly excellent ideas for the future.

If we then take into consideration the impact that this study can have on mecha-
tronic engineering, we must think that at the basis of this entire project there is
undoubtedly a particular attention to the integration of different but necessarily con-
nected worlds such as mechanics, electronics and obviously IT. The control of these
three areas in fact represents the challenge carried forward by every mechatronic
project.

The future prospects for this enormous world still partially unexplored are in
fact extremely rosy, as technology is making huge steps in this direction, perfectly
understanding the risks but above all the benefits that these efforts could bring, in a
"futuristic" world to which it is right to tend.

In conclusion, it is right to underline how this project is placed in a state of the art
where research is not yet saturated, indeed, it is waiting to be explored to bring news
and give a demonstration how mechatronic engineering can give new and important
ideas for the intelligent mobility of the future.

References

[1] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, and J. Highsmith. Manifesto for agile software development,
2001.

[2] Microsoft Docs. API Definition, 2023. Available online: https://docs.microsoft.
com/.

[3] CARLA Simulator. CARLA Python API Documentation, 2024. Available
online: https://carla.readthedocs.io/en/latest/python_api/.

[4] CARLA Developers. CARLA Documentation: Core Map, 2024. Available
online: https://carla.readthedocs.io/en/0.9.15/core_map/.

[5] OpenCV Documentation. Image Thresholding, 2024. Available online: https:
//docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html.

[6] Radon Documentation. Radon Documentation, 2024. Available online: https:
//radon.readthedocs.io/en/latest/.

[7] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, 2004.

[8] OpenCV. OpenCV Documentation - Geometric Transformations of Images,
2024. Available online: https://docs.opencv.org/.

[9] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer Science
& Business Media, 2009.

[10] X. Zhou, L. Wang, X. Tang, and Z. Liu. Lane detection algorithm based on deep
learning for autonomous driving. IEEE Transactions on Intelligent Vehicles,
2020.

[11] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d object detection
network for autonomous driving. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

https://docs.microsoft.com/
https://docs.microsoft.com/
https://carla.readthedocs.io/en/latest/python_api/
https://carla.readthedocs.io/en/0.9.15/core_map/
https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html
https://radon.readthedocs.io/en/latest/
https://radon.readthedocs.io/en/latest/
https://docs.opencv.org/

Appendix A

Threshold_code

1 """
2 Threshold module
3

4 This module provides functions for thresholding images.
5 """
6

7 import logging
8 import os
9 import cv2

10

11 # Configuring logging
12 logging.basicConfig(level=logging.DEBUG)
13

14 # pylint: disable=no -member
15

16

17 def apply_threshold_and_save_image(
18 img_path="photo/road.jpg", output_path=None ,

is_preview_enable=False
19):
20 """
21 Apply_threshold_and_save_image function.
22

23 Args:
24 img_path (str): the path to the input image.
25 output_path (str , optional): the path to save the

output image.

84 Threshold_code

26 If not provided , the same directory as the input is
used.

27

28 Returns:
29 None
30 """
31

32 # Input parameter validation
33 if isinstance(img_path , str):
34 dirname = os.path.dirname(__file__)
35 img_path = os.path.join(dirname , img_path)
36 if not os.path.isfile(img_path):
37 logging.error("Invalid input image path.")
38 return None
39

40 # Output parameter validation
41 if output_path is None:
42 input_dir = os.path.dirname(img_path)
43 filename , extension = os.path.splitext(os.path.basename

(img_path))
44 output_filename = filename + "_thresholded" + extension
45 output_path = os.path.join(input_dir , output_filename)
46 elif not isinstance(output_path , str):
47 logging.warning("Invalid output image path.")
48 return None
49

50 original_frame = cv2.imread(img_path)
51

52 frame_grayscale_applied = cv2.cvtColor(original_frame , cv2.
COLOR_BGR2GRAY)

53

54 # cv2.imshow ("Gray", frame_grayscale_applied)
55

56 # Simple thresholding
57 _, frame_threshold_applied = cv2.threshold(
58 src=frame_grayscale_applied , thresh =205, maxval =255,

type=cv2.THRESH_BINARY
59)
60

61 if is_preview_enable:
62 cv2.imshow("Road", original_frame)
63 cv2.imshow("Gray", frame_grayscale_applied)

85

64 cv2.imshow("Simple thresholding",
frame_threshold_applied)

65 cv2.waitKey (0)
66 cv2.destroyAllWindows ()
67

68 # Output image saving
69 cv2.imwrite(output_path , frame_threshold_applied)
70 logging.info("Output image saved successfully at %s.",

output_path)
71 return output_path
72

73

74 def main():
75 """
76 Main function.
77

78 This function is responsible for executing the
apply_threshold_and_save_image function.

79 """
80

81 apply_threshold_and_save_image ()
82

83

84 if __name__ == "__main__":
85 main()

Listing A.1 Thresholding Code

Appendix B

Perspective_Transform_code

1 """
2 eye_perspective.py
3

4 This module provides functionality to apply a perspective
transform to an image ,

5 simulating an "eye perspective" effect. The main components
include:

6

7 1. ‘PerspectiveTransformParameters ‘:
8 A data class that holds parameters for the perspective

transformation , such as
9 source and destination points , circle drawing settings , and

constraints for
10 adjusting points based on white pixels in the image.
11

12 2. ‘is_white_pixel(frame , point)‘:
13 Checks if a given point in the frame is a white pixel.
14

15 3. ‘find_nearest_white_pixel(frame , point , max_distance)‘:
16 Finds the nearest white pixel to the given point along the x

-axis within a specified
17 maximum distance.
18

19 4. ‘validate_point(frame , point , max_distance ,
max_move_distance , internal_trapezium_point=None ,
check_right=None) ‘:

20 Validates and adjusts a single point based on specified
conditions , ensuring it is a

87

21 white pixel within an allowable move distance and optionally
within trapezium constraints.

22

23 5. ‘validate_and_adjust_detection_points(frame , params)‘:
24 Validates and adjusts the top left , top right , bottom left ,

and bottom right points
25 before applying the perspective transform to ensure they are

white pixels and within
26 allowable distances.
27

28 6. ‘apply_eye_perspective_transform(frame , params) ‘:
29 Applies the perspective transformation to the input frame

using the provided
30 parameters. It first validates and adjusts the points , then

draws circles at the
31 source points and performs the transformation.
32

33 7. ‘main() ‘:
34 The main function that reads an input image , applies the

perspective transform , and
35 displays and saves the original and transformed frames.
36 """
37

38 import logging
39 from dataclasses import dataclass
40 import cv2
41 import numpy as np
42

43 # pylint: disable=no -member
44

45 # This check is disabled because we are using an external
library OpenCv

46 # that Pylint cannot correctly analyze. We are confident that
the members we are accessing do exist.

47

48 # pylint: disable=I1101
49

50 # Configuring logging
51 logging.basicConfig(level=logging.DEBUG)
52

53

54 @dataclass
55 class PerspectiveTransformParameters:

88 Perspective_Transform_code

56 """
57 Data class for perspective transform parameters.
58 """
59

60 output_width: int = 1920
61 output_height: int = 1080
62 top_left: tuple = (851, 590)
63 bottom_left: tuple = (300, 944)
64 top_right: tuple = (1105, 590)
65 bottom_right: tuple = (1690 , 944)
66 destination_top_left: tuple = (50, -100)
67 destination_bottom_left: tuple = (50, 1080)
68 destination_top_right: tuple = (1870, -100)
69 destination_bottom_right: tuple = (1870, 1080)
70 circle_radius: int = 5
71 circle_color: tuple = (0, 0, 255)
72 circle_thickness: int = -1
73 max_distance: int = 150 # Maximum limit for searching for

white pixels
74 max_move_distance: int = (
75 150 # Maximum distance to move points from the initial

position
76)
77 top_left_internal_trapezium: tuple = (938, 570)
78 top_right_internal_trapezium: tuple = (988, 570)
79

80

81 def is_white_pixel(frame , point):
82 """
83 Check if the given point in the frame is a white pixel.
84

85 Args:
86 frame (numpy.ndarray): Input frame to be processed.
87 point (tuple): The point to check.
88

89 Returns:
90 bool: True if the point is a white pixel , False

otherwise.
91 """
92 x, y = point
93 # Check if the point is within the frame boundaries
94 if x < 0 or x >= frame.shape [1] or y < 0 or y >= frame.

shape [0]:

89

95 return False
96 # Check if the pixel is white
97 return np.array_equal(frame[y, x], [255, 255, 255])
98

99

100 def find_nearest_white_pixel(frame , point , max_distance):
101 """
102 Find the nearest white pixel to the given point along the x

-axis within the max distance.
103

104 Args:
105 frame (numpy.ndarray): Input frame to be processed.
106 point (tuple): The point to check.
107 max_distance (int): Maximum distance to search.
108

109 Returns:
110 tuple: The new point with the nearest white pixel.
111 """
112 x, y = point
113 for offset in range(1, max_distance + 1):
114 # Check pixel to the right
115 if is_white_pixel(frame , (x + offset , y)):
116 return (x + offset , y)
117 # Check pixel to the left
118 if is_white_pixel(frame , (x - offset , y)):
119 return (x - offset , y)
120 return point
121

122

123 def validate_point(
124 frame ,
125 point ,
126 max_distance ,
127 max_move_distance ,
128 internal_trapezium_point=None ,
129 check_right=None ,
130):
131 """
132 Validate and adjust a single point based on the conditions.
133

134 Args:
135 frame (numpy.ndarray): Input frame to be processed.
136 point (tuple): The point to validate and adjust.

90 Perspective_Transform_code

137 max_distance (int): Maximum distance to search for a
white pixel.

138 max_move_distance (int): Maximum allowed movement
distance.

139 internal_trapezium_point (tuple): Internal trapezium
boundary point for validation.

140 check_right (bool): If True , check if the new point is
not to the right of the internal trapezium point.

141 If False , check if the new point is
not to the left of the internal
trapezium point.

142

143 Returns:
144 tuple: The adjusted point or the original point if no

valid adjustment found.
145 """
146

147 def valid_move(new_point , point , max_move_distance):
148 return (
149 np.linalg.norm(np.array(new_point) - np.array(point

)) <= max_move_distance
150)
151

152 def within_trapezium_constraints(new_point ,
internal_trapezium_point , check_right):

153 if internal_trapezium_point is None or check_right is
None:

154 return True
155 return (check_right and new_point [0] <=

internal_trapezium_point [0]) or (
156 not check_right and new_point [0] >=

internal_trapezium_point [0]
157)
158

159 if is_white_pixel(frame , point):
160 return point
161

162 logging.info(f"Adjusting point from {point}")
163 new_point = find_nearest_white_pixel(frame , point ,

max_distance)
164

165 if new_point == point:
166 logging.info(

91

167 f"No white pixel found within {max_distance} pixels
for the point. Keeping original position."

168)
169 return point
170

171 if not valid_move(new_point , point , max_move_distance):
172 logging.info(
173 f"New point {new_point} exceeds max move distance.

Keeping original position."
174)
175 return point
176

177 if not within_trapezium_constraints(
178 new_point , internal_trapezium_point , check_right
179):
180 logging.info(
181 f"New point {new_point} is invalid based on

internal trapezium constraints. Keeping original
position."

182)
183 return point
184

185 logging.info(f"Adjusted point to {new_point}")
186 return new_point
187

188

189 def validate_and_adjust_detection_points(frame , params):
190 """
191 Validate and adjust the top left , top right , bottom left ,

and bottom right points before applying the perspective
transform.

192

193 Args:
194 frame (numpy.ndarray): Input frame to be processed.
195 params (PerspectiveTransformParameters): Parameters for

perspective transformation.
196

197 Returns:
198 PerspectiveTransformParameters: Updated parameters with

validated and adjusted points.
199 """
200 max_distance = params.max_distance
201 max_move_distance = params.max_move_distance

92 Perspective_Transform_code

202

203 # Validate and adjust top points with internal trapezium
constraints

204 params.top_left = validate_point(
205 frame ,
206 params.top_left ,
207 max_distance ,
208 max_move_distance ,
209 params.top_left_internal_trapezium ,
210 check_right=True ,
211)
212 params.top_right = validate_point(
213 frame ,
214 params.top_right ,
215 max_distance ,
216 max_move_distance ,
217 params.top_right_internal_trapezium ,
218 check_right=False ,
219)
220

221 # Validate and adjust bottom points without internal
trapezium constraints

222 params.bottom_left = validate_point(
223 frame , params.bottom_left , max_distance ,

max_move_distance
224)
225 params.bottom_right = validate_point(
226 frame , params.bottom_right , max_distance ,

max_move_distance
227)
228

229 return params
230

231

232 def apply_eye_perspective_transform(frame , params=
PerspectiveTransformParameters ()):

233 """
234 Apply eye perspective transformation function.
235

236 Args:
237 frame (numpy.ndarray): Input frame to be processed.
238 params (PerspectiveTransformParameters): Parameters for

perspective transformation.

93

239

240 Returns:
241 tuple: A tuple containing the transformed frame and the

transformation matrix.
242 """
243

244 # Validate and adjust points before applying the
transformation

245 params = validate_and_adjust_detection_points(frame , params
)

246

247 # List of source points
248 source_points = [
249 params.top_left ,
250 params.bottom_left ,
251 params.top_right ,
252 params.bottom_right ,
253]
254

255 # Draw circles on the frame at the source points
256 for point in source_points:
257 cv2.circle(
258 frame ,
259 point ,
260 params.circle_radius ,
261 params.circle_color ,
262 params.circle_thickness ,
263)
264

265 # Apply geometrical transformation
266 source_points_array = np.float32(source_points)
267

268 # Define new destination points for a higher view
269 destination_points = np.float32(
270 [
271 params.destination_top_left ,
272 params.destination_bottom_left ,
273 params.destination_top_right ,
274 params.destination_bottom_right ,
275]
276)
277

94 Perspective_Transform_code

278 matrix = cv2.getPerspectiveTransform(source_points_array ,
destination_points)

279 transformed_frame = cv2.warpPerspective(
280 frame , matrix , (params.output_width , params.

output_height)
281)
282

283 return frame , source_points_array
284

285

286 def main():
287 """
288 Main function.
289 """
290

291 # Read the input image
292 input_image_path = "input.jpg"
293 frame = cv2.imread(input_image_path)
294

295 if frame is None:
296 logging.error("Error loading image")
297 return
298

299 # Apply the perspective transform
300 params = PerspectiveTransformParameters ()
301 original_frame , transformed_frame =

apply_eye_perspective_transform(frame , params)
302

303 if transformed_frame is not None:
304 # Display the original and transformed frames
305 cv2.imshow("Original Frame", original_frame)
306 cv2.imshow("Transformed Frame", transformed_frame)
307

308 # Save the transformed frame
309 output_image_path = "transformed.jpg" # Change this to

your desired output path
310 cv2.imwrite(output_image_path , transformed_frame)
311 logging.info(f"Transformed image saved to {

output_image_path}")
312

313 # Wait for a key press and close the windows
314 cv2.waitKey (0)
315 cv2.destroyAllWindows ()

95

316 else:
317 logging.error("Transformed frame is None. Skipping

display and save.")
318

319

320 if __name__ == "__main__":
321 main()

Listing B.1 Eye Perspective View code

Appendix C

Camera_callback

1 def camera_callback(image , data_dict , thresholding_settings=
ThresholdingSettings ()):

2 """
3 Custom callback for processing camera images.
4 """
5

6 # Convert the raw image to a numpy array
7 image_array = np.array(image.raw_data)
8 image_np = image_array.reshape ((image.height , image.width ,

4))
9

10 # Save the image to a temporary file
11 with tempfile.NamedTemporaryFile(suffix=".jpg", delete=

False) as temp_file:
12 temp_image_path = temp_file.name
13 image.save_to_disk(temp_image_path)
14

15 # Apply thresholding to the image
16 thresholded_image_path = apply_threshold_and_save_image

(temp_image_path)
17

18 # Load the thresholded image back
19 thresholded_image = cv2.imread(thresholded_image_path)
20

21 # Create external mask
22 external_mask = create_mask(
23 thresholded_image.shape [:2], thresholding_settings.

extern_mask_points

97

24)
25 masked_image = cv2.bitwise_and(
26 thresholded_image , thresholded_image , mask=

external_mask
27)
28

29 # Create internal mask
30 internal_mask = create_mask(
31 masked_image.shape [:2], thresholding_settings.

intern_mask_points
32)
33 inverted_internal_mask = cv2.bitwise_not(internal_mask)
34

35 masked_image = cv2.bitwise_and(
36 masked_image , masked_image , mask=

inverted_internal_mask
37)
38

39 # Apply the eye perspective
40 eye_perspective_image , source_points =

apply_eye_perspective_transform(
41 masked_image
42)
43

44 draw_polygon(
45 eye_perspective_image ,
46 thresholding_settings.extern_mask_points ,
47 (0, 0, 255),
48 thresholding_settings.line_width ,
49)
50 draw_polygon(
51 eye_perspective_image ,
52 thresholding_settings.intern_mask_points ,
53 (255, 0, 0),
54 thresholding_settings.line_width ,
55)
56

57 # Draw the polygon using the source_points
58 source_points = np.array(
59 source_points , dtype=np.int32
60) # Ensure source_points are in correct format
61

98 Camera_callback

62 # Ensure the points are in the correct order: top_left ,
bottom_left , bottom_right , top_right

63 polygon_points = np.array(
64 [source_points [0], source_points [1], source_points

[3], source_points [2]],
65 dtype=np.int32 ,
66)
67

68 # Create an overlay image for the transparent polygon
69 overlay = image_np.copy()
70

71 # Draw the filled polygon on the overlay
72 cv2.fillPoly(overlay , [polygon_points], (0, 255, 0))
73

74 # Blend the overlay with the original image using
addWeighted

75 cv2.addWeighted(
76 overlay ,
77 thresholding_settings.alpha ,
78 image_np ,
79 1 - thresholding_settings.alpha ,
80 0,
81 image_np ,
82)
83

84 # Update the data dictionary with the result image
85 data_dict["image"] = image_np
86 data_dict["eye_perspective_image"] =

eye_perspective_image

Listing C.1 Thresholding Code

Appendix D

client.py

1 """
2 Carla Simulation with Thresholded Camera:
3

4 This script connects to a Carla simulator instance , spawns a
vehicle ,

5 and attaches an RGB camera to it.
6 Images captured by the camera are showed in a separate window

after applying a thresholding filter.
7 The script also adds additional vehicles to the simulation.
8 The thresholded camera feed is displayed in a window.
9

10 Requirements:
11 - Carla simulator installed and running
12 - Frame thresholding module (’frame_threshold.frame_threshold ’)

for image processing
13 """
14

15 import sys
16 import random
17 import time
18 import tempfile
19 from dataclasses import dataclass
20 import logging
21

22 import carla
23

24 import cv2
25 import numpy as np

100 client.py

26

27 from frame_threshold.frame_threshold import
apply_threshold_and_save_image

28 from eye_perspective_module.eye_perspective import
apply_eye_perspective_transform

29

30 from lux_ad_carla.PythonAPI.examples.controller import
VehiclePIDController

31

32 # pylint: disable=no -member
33

34 # This check is disabled because we are using an external
library OpenCv

35 # that Pylint cannot correctly analyze. We are confident that
the members we are accessing do exist.

36

37 # pylint: disable=I1101
38

39 # Configure logging
40 logging.basicConfig(
41 level=logging.DEBUG ,
42 format="%(asctime)s - %(name)s - %(levelname)s - %(message)

s",
43 handlers =[logging.FileHandler("carla_simulation.log"),

logging.StreamHandler ()],
44)
45

46

47 @dataclass
48 class CameraSettings:
49 """
50 A class to manage settings for an RGB camera in a Carla

simulation.
51 """
52

53 image_size_x: int = 1920
54 image_size_y: int = 1080
55 field_of_view: float = 120
56 sensor_tick: float = 0.0333 # 30 frames per second
57 location: carla.Location = carla.Location (1.8, 0, 1.3)
58 rotation: carla.Rotation = carla.Rotation (-10, 0, 0)
59

60

101

61 @dataclass
62 class ThresholdingSettings:
63 """
64 A class to manage settings for thresholding in the camera

callback.
65 """
66

67 extern_mask_points: list = ((180, 944), (823, 475), (1103 ,
475), (1750 , 944))

68 intern_mask_points: list = (
69 (368, 944),
70 (931, 570),
71 (988, 570),
72 (1585, 944),
73)
74 alpha: float = 0.5 # Transparency factor for blending
75 line_width: int = 3
76

77

78 def initialize_client ():
79 """
80 Initializes the client and returns the client and the world

.
81 If the connection fails , return None.
82 """
83 try:
84 # First of all , we need to create the client that will

send the requests
85 # to the simulator. Here we assume the simulator is

accepting
86 # requests at localhost port 2000
87 client = carla.Client("localhost", 2000)
88 client.set_timeout (15.0)
89

90 # Once we have a client we can retrieve the world that
is currently running

91 world = client.get_world ()
92

93 # The world contains the list of blueprints that we can
use for adding new

94 # actors into the simulation
95 blueprint_library = world.get_blueprint_library ()
96

102 client.py

97 logging.info("Client and world initialized successfully
")

98 return client , world , blueprint_library
99 except carla.ServerError as e:

100 logging.error("Server error occurred during client
initialization: %s", e)

101 sys.exit (1)
102 except carla.ClientConnectionError as e:
103 logging.error("Error connecting to the Carla server: %s

", e)
104 sys.exit (2)
105

106

107 def spawn_vehicle(world , actor_list , default_color="255, 0, 0")
:

108 """
109 Spawns a vehicle in the Carla simulation world.
110

111 Args:
112 world (carla.World): The Carla simulation world.
113 actor_list (list): A list to store the spawned actor.
114 default_color (str): The default color for the spawned

vehicle in RGB format.
115

116 Returns:
117 carla.Actor or None: The spawned vehicle actor if

successful , None otherwise.
118 """
119 # Get the blueprint library from the world
120 blueprint_library = world.get_blueprint_library ()
121

122 # Find the blueprint for the vehicle
123 bp = blueprint_library.find("vehicle.mercedes.coupe_2020")
124

125 # Set the default color attribute for the vehicle blueprint
if available

126 if bp.has_attribute("color"):
127 bp.set_attribute("color", default_color)
128

129 # Initialize vehicle as None
130 vehicle = None
131

132 # Attempt to spawn the vehicle multiple times

103

133 for _ in range (10):
134 # Select a spawn point from the map
135 transform = random.choice(world.get_map ().

get_spawn_points ())
136

137 # Try to spawn the vehicle at the selected spawn point
138 vehicle = world.try_spawn_actor(bp , transform)
139

140 # If successful , add the vehicle to the actor list and
print a success message

141 if vehicle is not None:
142 actor_list.append(vehicle)
143 logging.info("Created %s", vehicle.type_id)
144 break
145 # If unsuccessful , print a retry message
146 logging.debug("Retrying to spawn vehicle ...")
147

148 # If the vehicle is still None after multiple attempts ,
print a failure message

149 if vehicle is None:
150 logging.error("Failed to spawn vehicle after multiple

attempts.")
151 sys.exit (3)
152

153 return vehicle
154

155

156 def spawn_camera(world , vehicle , camera_settings=CameraSettings
()):

157 """
158 Spawns an RGB camera attached to the given vehicle.
159 Returns the spawned camera actor.
160 """
161 cam_bp = world.get_blueprint_library ().find("sensor.camera.

rgb")
162 cam_bp.set_attribute("image_size_x", str(camera_settings.

image_size_x))
163 cam_bp.set_attribute("image_size_y", str(camera_settings.

image_size_y))
164 cam_bp.set_attribute("fov", str(camera_settings.

field_of_view))
165 cam_bp.set_attribute("sensor_tick", str (0.0333)) # 30

frames per second

104 client.py

166 cam_transform = carla.Transform(camera_settings.location ,
camera_settings.rotation)

167 ego_cam = world.spawn_actor(
168 cam_bp ,
169 cam_transform ,
170 attach_to=vehicle ,
171 attachment_type=carla.AttachmentType.Rigid ,
172)
173

174 return ego_cam , cam_bp
175

176

177 def create_mask(image_shape , points):
178 """
179 Create a binary mask with a filled polygon.
180

181 Args:
182 image_shape (tuple): Shape of the image (height , width)

.
183 points (list of tuples): Polygon vertices as (x, y)

coordinates.
184

185 Returns:
186 numpy.ndarray: Binary mask with the polygon filled.
187 """
188

189 mask = np.zeros(image_shape , dtype=np.uint8)
190 points_array = np.array(points , dtype=np.int32)
191 cv2.fillPoly(mask , [points_array], 255)
192 return mask
193

194

195 def draw_polygon(image , points , color , line_width):
196 """
197 Draw a polygon on an image by connecting the given points.
198

199 Args:
200 image (numpy.ndarray): The image to draw on.
201 points (list of tuples): Polygon vertices as (x, y)

coordinates.
202 color (tuple): Color of the polygon in BGR format.
203 line_width (int): Thickness of the polygon edges.
204 """

105

205 num_points = len(points)
206 for i in range(num_points):
207 start_point = points[i]
208 end_point = points[
209 (i + 1) % num_points
210] # Ensures that the last point connects to the first
211 cv2.line(image , start_point , end_point , color ,

line_width)
212

213

214 def camera_callback(image , data_dict , thresholding_settings=
ThresholdingSettings ()):

215 """
216 Custom callback for processing camera images.
217 """
218

219 # Convert the raw image to a numpy array
220 image_array = np.array(image.raw_data)
221 image_np = image_array.reshape ((image.height , image.width ,

4))
222

223 # Save the image to a temporary file
224 with tempfile.NamedTemporaryFile(suffix=".jpg", delete=

False) as temp_file:
225 temp_image_path = temp_file.name
226 image.save_to_disk(temp_image_path)
227

228 # Apply thresholding to the image
229 thresholded_image_path = apply_threshold_and_save_image

(temp_image_path)
230

231 # Load the thresholded image back
232 thresholded_image = cv2.imread(thresholded_image_path)
233

234 # Create external mask
235 external_mask = create_mask(
236 thresholded_image.shape [:2], thresholding_settings.

extern_mask_points
237)
238 masked_image = cv2.bitwise_and(
239 thresholded_image , thresholded_image , mask=

external_mask
240)

106 client.py

241

242 # Create internal mask
243 internal_mask = create_mask(
244 masked_image.shape [:2], thresholding_settings.

intern_mask_points
245)
246 inverted_internal_mask = cv2.bitwise_not(internal_mask)
247

248 masked_image = cv2.bitwise_and(
249 masked_image , masked_image , mask=

inverted_internal_mask
250)
251

252 # Apply the eye perspective
253 eye_perspective_image , source_points =

apply_eye_perspective_transform(
254 masked_image
255)
256

257 draw_polygon(
258 eye_perspective_image ,
259 thresholding_settings.extern_mask_points ,
260 (0, 0, 255),
261 thresholding_settings.line_width ,
262)
263 draw_polygon(
264 eye_perspective_image ,
265 thresholding_settings.intern_mask_points ,
266 (255, 0, 0),
267 thresholding_settings.line_width ,
268)
269

270 # Draw the polygon using the source_points
271 source_points = np.array(
272 source_points , dtype=np.int32
273) # Ensure source_points are in correct format
274

275 # Ensure the points are in the correct order: top_left ,
bottom_left , bottom_right , top_right

276 polygon_points = np.array(
277 [source_points [0], source_points [1], source_points

[3], source_points [2]],
278 dtype=np.int32 ,

107

279)
280

281 # Create an overlay image for the transparent polygon
282 overlay = image_np.copy()
283

284 # Draw the filled polygon on the overlay
285 cv2.fillPoly(overlay , [polygon_points], (0, 255, 0))
286

287 # Blend the overlay with the original image using
addWeighted

288 cv2.addWeighted(
289 overlay ,
290 thresholding_settings.alpha ,
291 image_np ,
292 1 - thresholding_settings.alpha ,
293 0,
294 image_np ,
295)
296

297 # Update the data dictionary with the result image
298 data_dict["image"] = image_np
299 data_dict["eye_perspective_image"] =

eye_perspective_image
300

301

302 def setup_camera(ego_cam , cam_bp , camera_data):
303 """
304 Set up the RGB camera with the given parameters.
305 """
306 # Set the camera recording data:
307 image_w = cam_bp.get_attribute("image_size_x").as_int ()
308 image_h = cam_bp.get_attribute("image_size_y").as_int ()
309

310 camera_data["image"] = np.zeros((image_h , image_w , 4),
dtype=np.uint8)

311 camera_data["eye_perspective_image"] = np.zeros(
312 (image_h , image_w , 4), dtype=np.uint8
313)
314

315 # Define the camera callback
316 ego_cam.listen(lambda image: camera_callback(image ,

camera_data))
317

108 client.py

318 # Create named windows and display the camera feed
319 cv2.namedWindow("RGB Camera", cv2.WINDOW_NORMAL)
320 cv2.namedWindow("Eye Perspective View", cv2.WINDOW_NORMAL)
321

322 # Resize windows to occupy half the screen width
323 screen_width = int(cv2.getWindowImageRect("RGB Camera")[2])
324 screen_height = int(cv2.getWindowImageRect("RGB Camera")

[3])
325 cv2.resizeWindow("RGB Camera", screen_width // 2,

screen_height)
326 cv2.resizeWindow("Eye Perspective View", screen_width // 2,

screen_height)
327

328 # Move the window of the RGB Camera to the left side of the
screen

329 cv2.moveWindow("RGB Camera", 0, 0)
330

331 # Move the window of the Eye Perspective View to the right
side of the screen

332 cv2.moveWindow("Eye Perspective View", screen_width // 2,
0)

333

334 cv2.waitKey (1)
335

336

337 def get_target_waypoint(vehicle , world):
338 """
339 Function to get the target waypoint for the vehicle.
340 """
341

342 # Get the map from the world
343 carla_map = world.get_map ()
344

345 # Get the current location of the vehicle
346 location = vehicle.get_location ()
347

348 # Get the waypoint closest the current location
349 waypoint = carla_map.get_waypoint(location)
350

351 # Get the next waypoint at a distance of 2.0 meters ahead
352 next_waypoint = waypoint.next (2.0) [0]
353

354 # Set the target speed for the vehicle

109

355 target_speed = 20.0
356

357 # Return the next waypoint and the target speed
358 return next_waypoint , target_speed
359

360

361 def main():
362 """
363 This main function connects to a Carla simulator instance ,
364 spawns a vehicle with an attached RGB camera , and sets the

vehicle to drive in autopilot mode.
365 Images captured by the camera undergo thresholding and are

displayed in a window.
366 Additional vehicles are also spawned in the simulation.
367 """
368 actor_list = []
369 ego_cam = None
370

371 random.seed (500)
372

373 # Initialize the client , world , and blueprint library
374 client , world , blueprint_library = initialize_client ()
375

376 # Spawn the vehicle
377 vehicle = spawn_vehicle(world , actor_list)
378

379 # Define transform
380 transform = vehicle.get_transform ()
381

382 # Spawn attached RGB camera
383 ego_cam , cam_bp = spawn_camera(world , vehicle)
384

385 # Set up the camera
386 camera_data = {}
387 setup_camera(ego_cam , cam_bp , camera_data)
388

389 # Define the proportional (K_P), integral (K_I),
390 # and derivative (K_D) gains for lateral control
391 args_lateral = {"K_P": 1.0, "K_I": 0.0, "K_D": 0.0}
392

393 # Define the proportional (K_P), integral (K_I),
394 # and derivative (K_D) gains for longitudinal control
395 args_longitudinal = {"K_P": 1.0, "K_I": 0.0, "K_D": 0.0}

110 client.py

396

397 # Create a PID controller instance for the vehicle
398 # using the lateral and longitudinal control gains
399 pid_controller = VehiclePIDController(vehicle , args_lateral

, args_longitudinal)
400

401 try:
402

403 while True:
404

405 # Get the next waypoint and target speed for the
vehicle using the defined function

406 waypoint , target_speed = get_target_waypoint(
vehicle , world)

407

408 # Compute the control command for the vehicle based
on

409 # the target speed and waypoint using the PID
controller

410 control = pid_controller.run_step(target_speed ,
waypoint)

411

412 # Apply the computed control command to the vehicle
413 vehicle.apply_control(control)
414

415 cv2.imshow("RGB Camera", camera_data["image"])
416 cv2.imshow("Eye Perspective View", camera_data["

eye_perspective_image"])
417

418 if cv2.waitKey (1) == ord("q"): # Close windows
when press ‘q‘

419 break
420

421 cv2.destroyAllWindows ()
422

423 # Add a few more vehicles to the simulation
424 transform.location += carla.Location(x=40, y=-3.2)
425 transform.rotation.yaw = -180.0
426 for _ in range(0, 10):
427 transform.location.x += 8.0
428

429 bp = random.choice(blueprint_library.filter("
vehicle"))

111

430

431 # Use try_spawn_actor. If the spot is occupied by
another object ,

432 # the function will return None.
433 npc = world.try_spawn_actor(bp, transform)
434 if npc is not None:
435 actor_list.append(npc)
436 npc.set_autopilot(True)
437 logging.info("created %s", npc.type_id)
438

439 time.sleep (5)
440

441 except (carla.ServerError , carla.ClientError , carla.
RPCError) as e:

442 logging.error("Carla error occurred: %s", e)
443 except UnexpectedError as e:
444 logging.error("An unexpected error occurred: %s", e)
445

446 finally:
447 logging.info("destroying actors")
448 if ego_cam is not None:
449 ego_cam.destroy ()
450 client.apply_batch ([carla.command.DestroyActor(x) for x

in actor_list])
451 logging.info("done.")
452

453

454 if __name__ == "__main__":
455 main()

Listing D.1 Client code

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contextualization of the problem
	1.2 Advanced driver - assistance system
	1.3 Part of the testing relating to autonomous driving: road tests and simulations
	1.4 CARLA: an open-source autonomous driving simulator
	1.5 Correlation and motivation of the thesis

	2 Theoretical and Technological Foundations
	2.1 Description of the CARLA simulator
	2.1.1 Main features of CARLA
	2.1.2 Architecture by CARLA

	2.2 Introduction to OpenCV
	2.2.1 History and development of OpenCV
	2.2.2 Main Features and Applications
	2.2.3 Integration of OpenCV with Python and Other Libraries
	2.2.4 Using OpenCV in Autonomous Driving Applications

	3 Objective and phases of the project
	3.1 Description of General Objectives
	3.2 Kickoff and hardware setup
	3.3 Individual studying
	3.4 Development phase
	3.4.1 Camera autopilot integration
	3.4.2 Development and Implementation of Image Thresholding Modules: The Case of frame_threshold.py
	3.4.3 Development and Implementation of Perspective Transformation Modules: The Case of eye_perspective.py

	4 Analysis of Implementation Strategies for Lane Detection
	4.1 Introduction to the attempts made
	4.2 First Attempt: Lane Detection Using Horizontal Segmentation
	4.3 Second attempt: Lane Detection using the continuity of the white pixels
	4.4 Ultimate Choice for Lane Detection
	4.4.1 Implementing of the camera_callback() function

	5 Client Code Implementation and Description
	5.1 Introduction to `client.py`
	5.2 General structure of the code
	5.3 Accurate description of the behavior of the `main()` function

	6 Evaluation of results and development prospects
	6.1 Results achieved
	6.2 Conclusions

	References
	Appendix A Threshold_code
	Appendix B Perspective_Transform_code
	Appendix C Camera_callback
	Appendix D client.py

