
POLITECNICO DI TORINO

MASTER’s Degree in Mechatronic Engineering

MASTER’s Degree Thesis

Recurrent Neural Networks for Driver
Drowsiness Detection

Supervisors

Prof. Massimo VIOLANTE

Prof. Luigi PUGLIESE

Candidate

Catia Sofia GIANNUZZI

2023-2024

Summary

The focus of this thesis is to probe the risk of reverse engineering applied to the PredictS
algorithm, property of Sleep Advice Technologies Srl, which takes as inputs some physio-
logical data sampled at 1Hz frequency from the Garmin smartwatches and computes the
drowsiness level of the driver, while driving, in order to predict sleep events, with some
minutes of advantage. This approach is especially effective in cases of long trip distances
and straight roads.

Since we’re dealing with time-dependent sequences of data I opted for taking into consider-
ation the recurrent neural network, RNNs, which is one of the most suitable for sequence
data analysis (for example texts or time series). In fact, they have connections that form
directed cycles, allowing them to exhibit dynamic temporal behavior.

I put my attention on its variants GRU and LSTM, with more focus on the first one,
which is less computationally complex than the second one, even if maintaining similar
characteristics.
GRU and LSTM models are commonly used to address the vanishing gradient problem,
which is a relevant issue especially in deep neural networks, that have gradients which
diminish rapidly (sigmoid an hyperbolic tangent functions). A consequence of this phe-
nomenon is that deep neural networks fail to learn meaningful representations from the
data, especially in early layers, and this limits the ability of the network to generalize well
unseen data.

Once probing the maximum performances that can be obtained by training a RNN,
to replicate the behaviour of the PredictS software (I’ve reported the plots to notice
graphically if the drowsiness levels are predicted or not by the model), the next step is
trying to insert a random jitter in the detection of the sleep events, to exploit if this can
affect the training, reducing the metrics values, without deteriorating the reliability of the
algorithm, since it will be sold as product, and has to be compliant to certain medical
specifications.

At the end of this second part, I’ve implemented the best model found into an Android
application. The used technologies include the Android Studio tool and the programming
languages that can be used to carry it out are Kotlin and Java.
Once deployed the application on the smartphone, I’ve tested its performances com-
pared with the ones of the PredictS software, in order to investigate the feasibility of
this approach in an hardware environment, in terms of memory occupation and battery
consumption.

ii

Acknowledgements

I would like to express my deepest gratitude to all those who have supported me through-
out the journey of completing this thesis.

First and foremost, I am profoundly grateful to my supervisor, Prof.Massimo Violante,
for their invaluable guidance, patience, and insightful feedback, which shaped this work.
Their encouragement and dedication have been a constant source of motivation.

I am also thankful to my co-supervisor, Prof.Luigi Pugliese, for their time, construc-
tive comments, and thoughtful suggestions that helped improve this research.

Special thanks to my colleagues and friends, who provided not only technical advice
but also moral support throughout the challenging moments. The stimulating discussions
and shared experiences made this journey much more manageable and enjoyable.

I owe a debt of gratitude to my family for their unwavering support and belief in me.
Their love, encouragement, and patience have been the foundation of my achievements.

Finally, I wish to acknowledge the financial and institutional support provided by Politec-
nico di Torino and Sleep Advice Technologies Srl that made this research possible.

This thesis would not have been possible without the contribution and support of all these
wonderful individuals.

iii

Table of Contents

Acronyms vi

1 Introduction 1
1.1 Driver Assistance Systems and Autonomous vehicles 1
1.2 Sleep during driving . 2

2 State of the art 5
2.1 Sleep Prediction Algorithms . 5

2.1.1 Vehicular-based Techniques . 5
2.1.2 Behavioral-based Techniques . 6
2.1.3 Physiological-based Techniques 7
2.1.4 Hybrid Techniques . 8

2.2 Physiological-based Techniques . 9

3 AI for sleep prediction 11
3.1 First reasoning about the type of problem 11
3.2 Feed-Forward Neural Networks and Backpropagation 12
3.3 Recurrent Neural Networks . 14

4 Data analysis and pre-processing 15
4.1 Dataset: experimental activities . 15

4.1.1 Data analysis and filtering . 17
4.1.2 Data processing . 21
4.1.3 Z-score normalization of data . 25
4.1.4 Scheduler function . 26
4.1.5 Cross-validation method . 27

5 GRU model 31
5.1 Method B and C: training with cross-validation 33
5.2 Method B and C: training achievements 36

5.2.1 Window size of 300 and row input data 36
5.2.2 Window size of 300 and row input data - filtering of temporal windows 38
5.2.3 Window size of 300 and pre-processed input data 40
5.2.4 Window size of 300 and pre-processed input data - validation with

2 datasets . 49
5.2.5 Window size of 240 and pre-processed input data - validation with

2 datasets . 49
5.2.6 Window size of 128 and pre-processed input data - validation with

2 datasets . 50

iv

5.3 Age as an additional feature . 51
5.4 Method A: handle unbalanced data . 55

6 LSTM model 61
6.1 Method 2: window size of 300 and row input data 62
6.2 Techniques to handle unbalancing of data 64

7 Introduction of a random jitter 67
7.1 Delay in predicting FATIGUED and DROWSY 68

7.1.1 Method B . 68
7.1.2 Method A . 70

7.2 Delay in predicting higher levels of drowsiness and in restoring the lower ones 71
7.3 Delay in predicting levels of drowsiness and revise the data related to the

FATIGUED level . 73

8 Implementation of the model 77
8.1 Set-up . 77

8.1.1 TensorFlow Lite model . 77
8.1.2 Behaviour of the class Prediction: management of input data and

predictions . 80
8.2 Testing of the application in terms of prediction 84
8.3 Memory usage and battery consumption 87

8.3.1 Memory usage . 87
8.3.2 Battery consumption . 91

9 Conclusions 93

v

Acronyms

DAS Driver Assistance Systems

ABS Antilock Braking Systems

TCS Traction Control Systems

ESC Electronic Stability Control

ADAS Advanced Driver Assistance Systems

SAE Society of Automotive Engineers

HR Heart Rate
HRV Heart Rate Variability

PSG Polysomnography

EEG Electroencephalogram
ECU Electronic control units

SWA Steering Wheel Angle
SVM Support Vector Machine

KNN K-Nearest Neighbor

ORD Observer Rating of Drowsiness

EAR Eye Aspect Ratio

KSS Karolinska Sleepiness Scale

PVT psychomotor vigilance task

DDD Driver Drowsiness Detection

PERCLOS Percentage of Eyelid Closure

RF Random Forest

vi

EDA Electrodermal Activity
ECG Electrocardiography

RRI RR intervals

ANS Autonomic Nervous System

EOG Electrooculography

PPG Photoplethysmography

SNS Sympathetic Nervous System

PSNS Parasympathetic Nervous System

SpO2 Saturation of peripheral oxygen
SDK Software Development Kit

rKSS Reduced Karolinska Sleepiness Scale

sw Software

NN Neural Network

AI Artificial Intelligence

TP True positive
TN True negative

FP False positive
FN False negative
FFNN Feed-Forward Neural Network

RNN Recurrent Neural Network

GRU Gated Recurrent Units

LSTM Long Short-Term Memory

vii

Chapter 1

Introduction

1.1 Driver Assistance Systems and Autonomous ve-
hicles

The integration of technology into the automotive industry has been pivotal in evolving
Driver Assistance Systems (DAS), enhancing vehicle safety and transforming the driving
experience.
Since the 1950s with the introduction of Early Warning Systems, which provided foun-
dational warnings related to driving conditions and speed, DAS were improved placing
future advancements, with the introduction of cruise control in the 1960s, allowing drivers
to set a constant speed. Antilock Braking Systems (ABS) was deployed in the 1980s
and become an essential system in avoiding wheel lock-up during braking, drastically
improving vehichle safety and control.
Further advancements like Traction Control Systems (TCS) and Electronic Stability
Control (ESC) were introduced in the 1990s, technologies that from one side prevent loss
of traction, crossing the engine power, torque with the actual road surface characteristics,
from the other detect loss of traction from the loss of steering control and activate the
brake automatically to induce steer the wheels where the driver is intended to.
The 21st century brought Advanced Driver Assistance Systems (ADAS) with features like
adaptive cruise control, collision avoidance and lane departure warning, which laid the
foundation for semi-autonomous driving. [1, 2]

Autonomous vehicle development has followed the Society of Automotive Engineers
(SAE) levels of automation, starting with basic driver assistance features and advancing
towards higher levels of automation.
Operating primarily at SAE Levels 1 and 2, these systems introduced key features such
as adaptive cruise control, automated parking and lane-keeping assistance. This period
marked the beginning of semi-autonomous driving capabilities.

The 2010s saw substantial advancements in automation, particularly with the develop-
ment of SAE Level 3 autonomous vehicles. Level 3 systems, characterized by conditional
automation, allow vehicles to handle most driving tasks in certain conditions. Despite this
progress, challenges related to regulatory frameworks, safety concerns, and the complexi-
ties of human-machine interaction have slowed the widespread adoption of these systems.
In recent years, there has been a strong push towards achieving higher levels of automa-
tion, specifically SAE Levels 4 and 5. These levels aim to enable vehicles to operate

1

Introduction

autonomously under a wider range of conditions and environments. However, fully auto-
mated systems have not yet been realized, and there remains a need for drivers to take
control in specific scenarios.
Currently, most vehicles operate at SAE Levels 2 or 3, where the driver is still required
to ensure safety by remaining attentive and ready to take control of the vehicle when
necessary. [3]

In the pursuit of achieving higher levels of vehicle autonomy, the integration of Human-
Centric Advanced Driver Assistance Systems (ADAS) becomes essential. These systems
employ physiological monitoring, driver behavior analysis, and adaptive feedback mech-
anisms to help drivers maintain situational awareness, especially for predicting and
preventing drowsiness at the wheel and readiness to take control when necessary.
These systems aim to improve the interaction between the driver and the vehicle, ensuring
that the driver remains engaged and informed, even as the vehicle assumes more driving
responsibilities.

The emphasis on human-centric systems highlights the importance of understanding
driver behavior, cognitive load, and emotional state. By integrating advanced sensors
and machine learning models, these systems can anticipate and mitigate potential risks,
offering a safer and more intuitive driving experience.

1.2 Sleep during driving
In every country, road traffic accidents are a major public health problem and cause huge
societal and financial burdens.
About 1.3 million deaths occur each year as a result of road traffic accidents globally,
causing a 3% loss of the gross domestic product of most countries.
The US National Highway Traffic Safety Administration has estimated that worldwide
every year, about 100,000 road accidents are caused by drowsiness, accounting for > 1500
deaths and > 70,000 injuries [4].

Several studies during the last 20 years have suggested that sleepiness is among the
main factors that cause road traffic accidents. Sleepiness results in disrupted brain
functioning, such as reduced reaction time or decreased ability for decision-making and it
is a major contributor to road traffic accidents, which often occur when a driver experiences
drowsiness at the wheel, or due to sleep abnormalities, lack of sleep, alcohol consumption
or medication. Furthermore, it causes disruption of neurological functions. [4].

Sleepiness while driving is a significant factor in road traffic accidents worldwide,
contributing to an estimated 3% to over 30% of such incidents [5] [6]. These accidents can
result from various sleep-related conditions or simply from insufficient sleep [7] [8]. Over
20% of drivers report needing to stop driving at least once due to feelings of drowsiness.

Sleep prediction plays a crucial role in Human-Centric Advanced Driver Assistance
Systems (ADAS), particularly when it comes to detecting driver drowsiness and implement
preventive measures. Drowsiness severely impacts driving performance and significantly
raises the likelihood of accidents. Advanced algorithms designed to predict sleep use
physiological data, such as heart rate variability (HRV), electroencephalograms (EEG),
and photoplethysmography (PPG), to identify early signs of fatigue and alert the driver
promptly.

By continuously tracking these physiological signals, the system can foresee the onset

2

1.2 – Sleep during driving

of sleep and take preventive action, such as issuing alerts or modifying vehicle settings to
enhance driver attentiveness. Incorporating sleep prediction into Human-Centric ADAS
improves road safety and aids in the shift toward higher levels of vehicle autonomy by
ensuring the driver stays active and aware.[9]

In both academic research and the evolving market, various strategies have emerged to
address the widespread issue of drowsy driving. These strategies generally fall into two
main categories:

1. Prevention: A proactive approach focuses on continuously monitoring a person’s
health status during sleep. Recognizing the multiple factors contributing to poor sleep
quality, such as diet and stress, highlights the importance of preventive measures.
By understanding these lifestyle factors, targeted actions can be taken to improve
sleep quality, reducing the risk of drowsiness while driving.

2. Prediction: The predictive approach involves real-time observation of a driver’s
physiological state and behavior to detect signs of impending drowsiness. This forward-
looking strategy enables timely interventions, ensuring a safer driving experience.
Indicators such as physiological data and steering behavior are crucial in forecasting
and addressing drowsiness before it becomes a serious hazard.

The purpose of this thesis is to study how to afford the problem of tracking sleep events
through the use of a data-driven approach: the purpose is predicting sleep events with
some minutes of advantage, all by only analyzing physiological variables collected from
wearable smartwatch.

3

4

Chapter 2

State of the art

2.1 Sleep Prediction Algorithms
To conduct a comprehensive analysis of the state of the art in driver monitoring systems
aimed at predicting sleepiness, this chapter will examine four macro-fields: Vehicular-based
Techniques, Behavioral-based Techniques, Physiological-based Techniques, and Hybrid
Techniques.
Each of these categories offers a distinct approach to monitoring and predicting driver
drowsiness, leveraging different types of data and methodologies.

2.1.1 Vehicular-based Techniques
Vehicle-based techniques represent a groundbreaking and extensively studied approach
to detecting driver drowsiness. By utilizing data generated from modern vehicles, these
methods aim to identify patterns and irregularities that suggest a driver may be fatigued
[10]. Techniques here focus on analyzing driving patterns, such as:

• Steering wheel movements: unusual steering patterns, such as frequent corrections or
abrupt changes, can indicate a loss of alertness.

• Lane keeping: deviations from the lane without corrective action are a strong indicator
of drowsiness.

• Speed variations: inconsistent speed, either slowing down unexpectedly or erratic
acceleration, may signal fatigue.

• Braking patterns: sudden or delayed braking could suggest a decline in the driver’s
reaction time due to sleepiness.

These methods often rely on data collected from in-vehicle sensors and the car’s elec-
tronic control units (ECUs). Advanced systems may also incorporate machine learning
algorithms to detect patterns that correlate with drowsiness. The primary advantage of
vehicular-based techniques is their non-intrusiveness, as they do not require any direct
interaction with the driver. However, their effectiveness can vary depending on external
conditions such as road type and traffic.

In this field studies as Ma et al. [11] developed a system that detects drowsiness using
lateral distance, which is derived from lane curvature, position, and curvature derivatives.

5

State of the art

Data were collected using a portable instrumentation system with a video camera mounted
on the vehicle’s front bumper. This setup captured real-time footage of both the roadway
and the driver’s face, creating a comprehensive dataset for vehicle movement. The data
were analyzed using wavelet transforms, Support Vector Machines (SVM), and Neural
Networks (NN), achieving an accuracy rate of over 90%.
Li et al. [12] introduced a different approach, utilizing SWA data to identify driver fatigue.
They gathered SWA data over nearly 15 hours of real driving, using a sliding window to
extract approximate entropy from the SWA time series. These entropy features were then
linearized with adaptive piecewise linear fitting to measure deviations and calculate the
warping distance between series, which helped assess the driver’s alertness. A custom
binary decision classifier was used to distinguish between ‘drowsy’ and ‘alert’ states, with
an accuracy of 84.85% in detecting drowsiness and 78.01% for identifying alertness.

These studies highlight the effectiveness of vehicle-based measures, as they directly
reflect the driver’s cognitive state through vehicle control and movement data.

2.1.2 Behavioral-based Techniques
[13] [14] While vehicle-based techniques provide valuable insights into a driver’s condition by
leveraging data collected directly from the vehicle, behavioral-based techniques complement
this by focusing on the driver’s actions and movements during driving. Key indicators in
this category include:

• Eye Movement Tracking: the frequency and duration of blinks, as well as gaze
direction, are critical factors. Extended eyelid closures (microsleeps) are a direct sign
of impending sleep.

• Head Position Monitoring: nodding or head tilting is often associated with the early
stages of sleep onset.

• Facial Expressions: yawning, changes in facial muscle tension, and other expressions
can be captured and analyzed to assess alertness.

• Response Time: delayed reactions to external stimuli, such as traffic signals or sudden
obstacles, can indicate reduced alertness.

Behavioral-based techniques bridge the gap between vehicular-based and physiological-
based methods by analyzing body movements captured in video footage. As noted by
Albadawi et al. [15], these techniques can be divided into two categories: Thermal
Imaging-Based Systems and Image-Based Systems.

For example, Kiashari et al. [16] developed a thermal imaging system capable of
detecting and analyzing a driver’s respiration patterns. By calculating metrics like the
average and standard deviation of respiration rates and the ratio of inhalation to exhalation
time, they were able to identify drowsiness using two machine learning models: Support
Vector Machine (SVM) and K-Nearest Neighbor (KNN). The SVM model outperformed
the others, achieving 90% accuracy, 85% specificity, 92% sensitivity, and 91% precision
when compared to the Observer Rating of Drowsiness (ORD), which is a non-intrusive
assessment based on judgments from multiple human observers [17].

Image-Based Systems are another subcategory, focusing on eye, head, and mouth
movements. For instance, Maior et al. [18] implemented real-time eye movement analysis
by tracking blinks using the Eye Aspect Ratio (EAR), which measures the height-to-
width ratio of the eye. Consecutive EAR values were used as input for machine learning

6

2.1 – Sleep Prediction Algorithms

algorithms, generating outputs such as the Psychomotor Vigilance Test (PVT) and
Karolinska Sleepiness Scale (KSS). These metrics help assess levels of subjective drowsiness
and performance disruptions like temperature or pressure changes. Among the tested
classification methods, SVM again proved most effective, achieving a 94.9% accuracy rate
in relation to KSS and PVT metrics.

In another study, Bamidele et al. [19] introduced a non-intrusive Driver Drowsiness
Detection (DDD) system that monitored facial and eye movements using video data from
the NTHU DDD Computer Vision Lab. Their approach involved data acquisition and
preprocessing, followed by feature extraction, including PERCLOS (Percentage of Eyelid
Closure) and blink frequency. Various classifiers, such as KNN and SVM, were used to
determine whether the extracted features indicated drowsiness or alertness. The models
were validated using objective indicators like head nodding and slow blinking.

Zandi et al. [20] proposed another non-intrusive drowsiness detection system based
on eye-tracking data collected from simulated driving environments. They extracted 34
features from the eye-tracking signals and tested two binary classifiers: Random Forest
(RF) and non-linear SVM. The RF classifiers demonstrated accuracy rates between 88.37%
and 91.18% across all trials, while the SVM classifiers ranged from 77.12% to 82.62%,
highlighting the effectiveness of eye-tracking data for detecting drowsiness.

Finally, Celecia et al. [21] developed an affordable, portable DDD device that integrates
features from both eye and mouth analysis. Their system, built on a Raspberry Pi 3
Model B, utilized infrared imaging and metrics like PERCLOS and eye-closing duration
to detect drowsiness. The combination of these features resulted in a robust system with
a 95.5% accuracy rate across varying lighting conditions.

As explained previously these methods often employ cameras and computer vision
algorithms to continuously monitor the driver’s behavior. While highly effective, these
techniques can be intrusive and may require more sophisticated hardware, potentially
leading to privacy concerns.

2.1.3 Physiological-based Techniques
These techniques focuses on real-time monitoring of the driver’s physiological signals to
assess their state of alertness. Commonly monitored physiological parameters include:

• Electrocardiography (ECG) tracks the heart’s electrical activity.

• Photoplethysmography (PPG) measures changes in blood volume in the microvascular
tissue.

• Heart Rate (HR) and Heart Rate Variability (HRV): fluctuations in heart rate and
its variability can reflect the level of fatigue or stress [22].

• Electrodermal Activity (EDA): changes in skin conductance, which are influenced by
sweat gland activity, can indicate stress levels and alertness [22].

• Electroencephalography (EEG): direct monitoring of brain activity can provide the
most accurate measure of sleep onset, though it is more invasive [23].

• Breath Rate and Body Temperature: these parameters can fluctuate with the driver’s
level of fatigue and provide additional data points for drowsiness detection.

7

State of the art

Physiological monitoring provides direct and accurate measurements of the driver’s
state, but it often requires wearable devices or sensors that might be uncomfortable or
invasive for long-term use.

Heart Rate Variability (HRV), which refers to the fluctuation in time between consecu-
tive heartbeats, has been studied by Lee et al. to evaluate the effectiveness of wearable
ECG and PPG sensors in detecting driver drowsiness by monitoring HRV signals. The
study utilized different types of recurrence plots (RPs) to analyze R-R intervals (RRI)
from heartbeats, including binary recurrence plot (Bin-RP), continuous recurrence plot
(Cont-RP), and thresholded recurrence plot (ReLU-RP), which applies a modified rectified
linear unit function to filter Cont-RP. ReLU-RP was found to provide the most distinct
and reliable patterns for differentiating between awake and drowsy states. PPG signals
had an accuracy of 64%, with precision at 71%, recall at 78%, and an F-score of 71%.
ECG signals performed slightly better, achieving 70% accuracy, 71% precision, 85% recall,
and an F-score of 77% [24].

Koh et al. (2017) used PPG signals to detect drowsiness by analyzing high frequency
(HF), low frequency (LF), and the LF/HF ratio. Their method, tested using sensors
placed on participants’ fingers and earlobes during a driving simulation, found that LF,
HF, and LF/HF values significantly differed between awake and drowsy states [25].

Concerning drowsiness Detection Using Wrist-Worn Sensors, Kundinger et al. (2020)
proposed a system utilizing physiological data from wrist-worn sensors to detect drowsiness
by analyzing HRV and correlating it with autonomic nervous system (ANS) activity.
Among the machine learning models tested, the K-Nearest Neighbors (KNN) algorithm
achieved the highest accuracy at 92.13% [26].

Fujiwara et al. (2018) developed an HRV anomaly analysis algorithm to detect
drowsiness, based on the premise that alertness affects the autonomic nervous system
and HRV. By analyzing changes in HRV features like the mean and standard deviation
of RRI, total power, and adjacent RRI pairs spaced by more than 50 ms, the algorithm
achieved 92% accuracy [27].

Dealing with the topic of drowsiness Detection via Respiratory Signals, Guede-Fernandez
et al. (2019) introduced an algorithm that detects drowsiness by analyzing respiratory
rate variability (RRV) through respiratory inductive plethysmography band sensors. Their
system, which tracks variations in respiratory signals, produced a drowsiness index with
90.3% sensitivity and 96.6% specificity [28].

While behavioral- and vehicle-based methods show potential, they face challenges in
real-world settings. As noted by Razman et al., physiological-based techniques demonstrate
superior accuracy in diverse conditions, such as varying lighting, autonomous driving
scenarios, and when subjects are wearing sunglasses.

2.1.4 Hybrid Techniques
Their aim is to combine the strengths of vehicular, behavioral, and physiological approaches
to provide a more comprehensive and accurate assessment of driver sleepiness [29] [30].
By integrating multiple data sources, these techniques can:

• Enhance Robustness: reduce the reliance on any single type of data, making the
system more adaptable to different driving conditions and individual differences
among drivers.

• Improve Accuracy: use machine learning models that analyze cross-correlations
between different data types to improve prediction accuracy.

8

2.2 – Physiological-based Techniques

• Offer Flexibility: provide a tailored approach depending on the available data and
specific requirements of the driving scenario.

Hybrid systems can be more complex and costly to implement due to the need for
multiple sensors and advanced data fusion techniques. However, they offer the most
potential for reliable and accurate driver drowsiness detection.

2.2 Physiological-based Techniques
In the field of sleep medicine, electroencephalography (EEG) recordings are essential for
sleep scoring, as sleep onsets and stages are determined through EEG data. Despite the
development of EEG-based drowsiness detection methods [31]–[32], accurately recording
EEG during driving poses challenges due to its sensitivity to motion artifacts and the
significant physical restrictions it imposes. Consequently, various alternative driver
drowsiness detection systems that do not rely on EEG have been created.

These systems often analyze driver facial images and vehicle travel data to detect
drowsiness [33], and are under the denomination of vehicular-based techniques. However,
these approaches require the installation of specialized equipment in vehicles, such as
cameras for capturing facial images or data logging devices to access travel data.

Physiological-based techniques can be considered another macro-field in driver monitor-
ing system for predict sleepiness, which utilize real-time data from bodily functions, such
as heart rate and blood volume (measured by PPG and ECG), to understand a person’s
state. This data provides valuable insights into the autonomic nervous system (ANS),
which unconsciously regulates essential bodily processes.

The ANS comprises two main parts:

1. Parasympathetic Nervous System (PSNS): associated with relaxation and
recovery

2. Sympathetic Nervous system (PNS): linked to stress and activity

As sleep approaches, the body transitions from a dominant sympathetic state to
a parasympathetic one. This change in bodily functions is essential for accurately
determining sleep onset and quality. Consequently, physiological signals are crucial for
monitoring sleep patterns and detecting drowsiness.

Heart rate variability (HRV), defined as the fluctuation in RR intervals (RRI) observed
in an electrocardiogram (ECG), is a widely recognized physiological phenomenon that
indicates the activity of the autonomic nervous system (ANS) [34]. When HRV is high,
the parasympathetic nervous system is dominant, while low HRV indicates dominance
of the sympathetic nervous system. In addition several studies have reported changes in
HRV associated with sleep stage transitions [35]: HRV measurements tend to increase
while sleeping and decreased upon waking [36].

Photoplethysmography (PPG) is a non-invasive method that measures changes in blood
volume within tissues. It works by shining light on the skin and detecting the amount of
light absorbed or reflected. When blood flows through the tissue, it absorbs more light,
and when it flows away, less light is absorbed.

By tracking these changes in light, PPG can be used to monitor vital signs like heart
rate and blood oxygen levels. The resulting waveform shows rhythmic patterns that
correspond to the heart’s pumping action and breathing [37].

9

State of the art

Commercial smartwatches devices transform raw PPG to obtain physiological parame-
ters, such as HR, HRV and SpO2, which can be managed by the user through smartphone
apps, where the data are sent wirelessly.

For the purposes of PredictS software, the algorithm developed by SAT Srl to monitor
driver drowsiness, Garmin wearable devices are employed to collect physiological data
with a sampling frequency of 1Hz, accessible via the Garmin Health SDK [38].
The data are analyzed in sliding windows of size num_samples samples to identify patterns
in heart rate and heart rate variability changes. These patterns are used to classify a
person’s alertness level into five categories (calibration, awake, low and high drowsiness)
based on a simplified sleepiness scale [39].

10

Chapter 3

AI for sleep prediction

3.1 First reasoning about the type of problem
The problem we’re dealing with in this research involves the use of Supervised learning, in
the view of making the algorithm learning on the base of labeled data, i.e. the data used
to train the model includes both input features and the corresponding desired output,
which allow it to learn over time[40].
In fact the purpose of this research is trying to replicate the behaviour of the driver
drowsiness predictor algorithm (PredictS), property of Sleep Advice Technologies Srl, that
classifies the level of awareness of the driver on the base of rKSS scale [41], into 3 final
levels.
Indeed this can be defined a supervised learning data mining classification problem, which
plans to be handled by recognizing specific patterns within the dataset and drawing some
conclusions on how they should be labeled or defined.

In this research I’ll rely on previous studies which defined concept of sensitivity, specificity,
precision and accuracy, adapted to the topic of the problem I’m affording.
I will consider as:

• True positive (TP): predictions of the NN that coincides with the actual PredictS
output, which are drowsiness states (2-3).

• True negative (TN): predictions of the NN that coincides with the actual PredictS
output, which are AWAKE states (1)

• False positive (FP): predictions of the NN that are different to the actual PredictS
output, which are drowsiness states (2-3).

• False negative (FN): predictions of the NN that are different to the actual PredictS
output, which are AWAKE states (1)

The performances of the model will evaluated as [42]:

Accuracy = TP + TN

TP + FP + TN + FN
(3.1)

Accuracy: the proportion of the total number of correct predictions that were actually
correct.

11

AI for sleep prediction

Precision = TP

TP + FP
(3.2)

Positive Predictive Value or Precision: it explains how many of the correctly predicted
cases actually turned out to be positive. Precision is useful in the cases where False
Positive is a higher concern than False Negatives.

Sensitivity = TP

TP + FN
(3.3)

Sensitivity or Recall: the proportion of actual positive cases which are correctly
identified. Recall is a useful metric in cases where False Negative is of higher concern
than False Positive.

Specificity = TN

TN + FP
(3.4)

Specificity: the proportion of actual negative cases which are correctly identified.

Precision and sensibility are the most important metrics, since this problem is char-
acterized by the unbalancing in the data between the labels, where the awake state (level
1) dominates, and drowsy states (levels 2 and 3) are underrepresented.

All the indexes will be interpreted in parallel with graphical plots, in such a way to
study the effectiveness in predicting higher levels of drowsiness, without caring of the
permanence in that levels, besides studying the compliance with the original algorithm
the network will try to generalize.

3.2 Feed-Forward Neural Networks and Backpropa-
gation

The first neural network I considered was the FFNN, a type of artificial neural network
where information flows in one direction, from input to output. They are composed of
layers of interconnected neurons.

Multilayer feed-forward neural networks are capable of handling complex patterns in
data. By using sigmoid activation functions, these networks can approximate virtually
any function with sufficient hidden layers. This means they can create intricate decision
boundaries, allowing them to solve problems that linear models cannot [43].
The backpropagation, a method to train multilayer neural networks, which gradually
adjusts the network’s connections (weights) by working backward from the output was
used to train the FFNN. Initially, the network’s connections are set to random, small val-
ues. Then, backpropagation repeatedly processes training data, calculating the network’s
output for each piece of data.

To train this model I employed the Matlab Deep Learning Toolbox, building a FFNN
with the function patternnet() characterized by X number of neurons in the hidden layers,
softmax as activation function of the output layer, since we’re dealing with classification
problems with 3 labels (produces a vector of probabilities summing at 1).
I set the training algorithm of the hidden layer(s) as traingd, which corresponds to the

12

3.2 – Feed-Forward Neural Networks and Backpropagation

descending gradient. This is a simple but effective optimization algorithm for neural
network training.
The cost function: crossentropy is particularly suitable when using softmax output, be-
cause it measures the discrepancy between the probability distribution predicted by the
network and the true probability distribution (one-hot) [44].

Figure 3.1: NN model structure with 1 hidden layer

The maximum number of hidden layer is keep to two because FFNN with more than
two layers are not advantageous for most problems [43].

I built different FNN model, with one or 2 hidden layers [45].
If the model is fed by raw data of HR and HRV (2 features) sampled with a 1Hz frequency,
the metrics evaluated on the test set (10% of the whole dataset) are really unsatisfied:
approximately 70% for accuracy and specificity, but 1-2% for precision and 10-20% for
sensitivity. Accuracy and specificity are not such low because of unbalancing of data
between levels, in fact most of data belongs to level 1 (AWAKE): for this reason I rely
mostly on precision and sensitivity.
The bad performances derive from a wrong understanding of the problem: the two features
I used for training the model cannot be analyzed in a punctual way, in the sense of
attributing at each sample a corresponding classification level. In fact data must be
analyzed with a time-dependency trend, focusing on sections of samples, and attributing
at that section the corresponding label.

The time correlation is what in FFNN is missing, even if we pre-process the data,
for example taking the mean of HR and standard deviation of HRV in windows of variable
size in the whole dataset.

13

AI for sleep prediction

Below the accuracy, precision, sensitivity and specificity are reported for the different
sizes of the sliding window:

Window size of 10 samples: 70%-0%-0%-70%
Window size of 20 samples: 67%-4.4%-22%-70%
Window size of 30 samples: 70%-11%-31%-74%

Increasing the window to 60 samples compromises more the performances, even be-
cause we’re reducing the dataset size.

At the end, this approach is useless, because even if we’re creating a correlation be-
tween the samples, which are pre-processed together, this is not enough to describe the
dynamical progression of the data.

3.3 Recurrent Neural Networks
Standard feed-forward neural networks are limited to analyzing static data. To process
data that changes over time, we can modify these networks to incorporate information
from previous moments. These enhanced networks, with their ability to consider past
data, are called Recurrent Neural Networks (RNNs): they’re dynamical models [46] [47].
Traditional Recurrent Neural Networks (RNNs) have difficulty processing information
from distant past events (they are limited to look back for approximately 10 timesteps)
[48]. This is because the signals carrying past information either weaken significantly
(vanishing gradients) or intensify uncontrollably (exploding gradients) over time. To
overcome this limitation, Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) networks were developed. These networks are more adept at capturing long-term
dependencies in data and can effectively process information from thousands of previous
time steps [49].

LSTM and GRU units share a key similarity: both use an additive approach to up-
date their internal state, which helps in preserving information over long sequences and
addressing the vanishing gradient problem. This contrasts with traditional recurrent units
that overwrite their state at each time step.
However, there are key differences: LSTM has a more complex structure with separate
gates to control the flow of information into and out of the cell state. GRU is simpler,
combining the forget and input gates into a single update gate. While both units have
shown promising results, their relative performance can vary depending on the specific
task. From these similarities and differences alone, it is difficult to conclude which types
of gating units are the optimal choice for different applications [50].

I’ll start from GRU, since it involves less parameters with respect to a LSTM (this
factor can be relevant in terms of complexity when deploying the network on an Android
application), as a consequence its training presents faster computational time, which leads
the problem of tuning the hyper-parameters manually less time consuming.
Then I will exploit also LSTM functioning.

14

Chapter 4

Data analysis and
pre-processing

4.1 Dataset: experimental activities

The dataset is made up of driving simulation, constructed on the Danisi dynamic car
simulator (Torino, Italy) in September 2023 and March 2024. The merging of both
experimental activities involved 24 candidates, comprising males (16) and females (8),
with an average age of 33.75 years.
Each candidate was equipped with a state-of-the-art Polysomnographic device (NOX)
and a Garmin Instinct 2 Dezl edition smartwatch. The smartatch was connected via
Bluetooth Low Energy (BLE) to a smartphone, enabling real-time data collection through
a dedicated Android application.

The subjects were supposed to drive a vehicle in a highway sunset simulated environment,
with lights off inside the vehicle, following an almost straight and regular path, in such a
way to relax the driver and stimulate drowsiness. The driving mission ended when the
driver fell asleep or for a total driving time of approximately one hour and and half. The
driver was asked to sleep less than usual the night before the experimentation, in such a
way to be more exposed to possible sleep phenomena.

For both sessions, the data were analyzed by sleep expert medical doctors, to classify, for
each candidate, the presence of sleep events, in compliance with the recommendations of
the American Academy of Sleep Medicine (AASM).
The scored states were: non-REM stages 1,2,3, microsleep, drowsiness, walking state.
The outputs of the PredictS algorithm, were crossed with the off-line doctor scoring, and
the actual feelings of the driver, to test its reliability with respect a ground truth.

The physiological parameters collected through smartwatch, i.e. the heart-rate vari-
ability (HRV) and heart rate (HR) were sampled with a 1Hz frequency and collected
during the entire driving performance, associated with the on-line prediction of PredictS
software.

The only difference in the set-up of the two sessions, was the alarm trilling when PredictS

15

Data analysis and pre-processing

detected drowsiness events, turned on in Danisi 2023 and off in Danisi 2024 experimen-
tations. The alarm related to the highest level, was set off in such a way to store data
related to that drowsiness level, which is the underrepresented one during driving.

For what concerns this research, the final dataset consists of a total of 24 registra-
tions (16 from the september session and 8 from march), collecting HR, HRV parameters
and the corresponding PredictS predicted level: AWAKE, FATIGUED and DROWSY,
once a second.

Figure 4.1: driving simulator

Figure 4.2: PSG equipment assembly

16

4.1 – Dataset: experimental activities

4.1.1 Data analysis and filtering
Data analysis (beside the consequent data cleaning) is an important preliminary stage,
dealing with the training of a neural network. PredictS itself when analyzing the input
data, leads a consistency of data check, outside the context of the computing algorithm,
in such a way to avoid low quality data to interfere with the process.

When starting the PredictS algorithm some parameters HR=0 and HRV=0 are saved due
to a gap in the communication between the smartwatch and the application.
Obviously these values are wrong and has to be deleted from the acquisition phase data.

In Figure 4.3 there’s an example of data acquisition which at first, for few seconds,
presents both the parameters sampled with a 0 value.

Figure 4.3: subject 15

A second aspect to focus on is the repeatability of data: due to the communication
between smartphone and the cloud server, when there’s a transition between states in
the output of the algorithm, the very same sampled variables are reported twice, with
different outputs. For this reason it’s important to search for replicates and delete the
copy (since data are reported with the time dependency delete the replicate related to the
same time instant).

17

Data analysis and pre-processing

Other sources of bad quality data are found at the end of the acquisition, maybe due
to the driver taking of the watch from the wrist. Also these data can be filtered, because
since they are at the end of the acquisition, they will not influence the learning of the
neural network. This situation can be found in 4.4.

Figure 4.4: subject 14

The data cleaning approach will be different, in case low quality data are found in
the middle of the experimentation, since holes in the temporal sequences can affect badly
the training of the model. As we can see in Figure 4.5 the value of HRV keeps constant
for more than 2 samples, that is physiologically impossible.

18

4.1 – Dataset: experimental activities

Figure 4.5: subject 8

Figure 4.6: subject 5 dataset (September)

As shown in 4.6 and 4.7, the datasets collected in Danisi Engineering, especially the
ones from the experimentation of September 2023, they presents holes in data due to the
lack of communication with the cloud server.
In particular, the transition between a repeated sample and the successive, with the
correct timing, is shown.

19

Data analysis and pre-processing

Figure 4.7: subject 1 dataset (September)

The approach I used for this repeated samples is filtering them, even if this would lead
to intervals with missing data. In fact on the other hand, trying to re-create HR and HRV
value, it could be done with linear interpolation in the case of heart-rate parameter, but
the heart-rate variability is an unpredictable parameter.

20

4.1 – Dataset: experimental activities

4.1.2 Data processing
The python script I used in order to process data, iterates through multiple .csv files,
obtained merging and cleaning .JSON files of collected data sent from the android ap-
plication Predicts to the cloud server. The processing of data is done with the view of
preparing training and testing datasets for the AI model, including steps of data cleaning,
feature engineering, normalization, and windowing.

Function to organize input data into sliding windows:

At first I defined a function (reported below), which is in charge of transform each
subject registration in a structure compatible with the RNN requests: it takes as input
the matrix of collected physiological data, at the sampling frequency of 1Hz, which has as
columns as the number of features interesting for the training of the NN (in my case HR
and HRV) and the corresponding vector of outputs of the Predicts algorithm.

1 def df_to_X_y (df ,target , window_size):
2 X=[]; Y=[]
3 for i in range(len(df)-window_size):
4 row = [r for r in df[i:i+ window_size]]
5 X. append (row)
6 label= target [i+ window_size]
7 Y. append (label)
8 return np.array(X), np.array(Y)

This function allows to divide the whole dataset in sliding windows of length (window_size
x number_features) and associate, for each ith window, the corresponding output located
at the position window_size + i. In this view the obtained outputs are: a matrix ((len(df)
- window_size) x window_size x number_features), and the corresponding vector of pre-
dicted outputs, with length (len(df) - window_size), both suitable for the accomplish the
structural needs of the LSTM or GRU neural network.

Initialization:

Outside the loop I defined as names the list of file names of people involved in the
data collection, which took place with the support of Danisi driving simulator: each
dataset related to the single subject contains the sampling 1Hz of the heart rate (HR)
and heart rate variability (HRV) indices, with the corresponding acquisition time, for a
total of approximately 1.5 hour of simulated driving.
I decided to merge both the data collection sessions of September 2023 and March 2024,
such that the neural network can be trained on different datasets collected from different
people. I had access to 16 datasets collected from 16 different people experimentation’s
from September 2023 and 8 datasets from March 2024, where the people examined were
different from the ones of September.
Exploiting many examples coming from people with various ages, genders, and other
physiological characteristics, can be crucial to allow the model to generalize on new unseen
datasets, but we’ll see that the quantity will not be as representative in generalizing in

21

Data analysis and pre-processing

some conditions.
After, I defined as local variable p, which counts the number of datasets which have been
processed, so that the splits into training and testing datasets can be also done on the
base of the total number of available datasets. I also initialized X_train, y_train, X_test
and y_test as empty lists to hold training and testing data.

Loop through filenames:

For each file in the names list, the corresponding .csv file is read into a DataFrame
df. The local variable inputs is created for stacking HR, HRV and Time columns red from
the DataFrame; the variable called targets is set to the DrowsinessState column values,
which are the drowsiness levels computed from the algorithm Predicts, each second, real
time. Then I initialize inputs_ and y as empty lists at each iteration of the for loop: their
function will be to store filtered samples of the input and the output.

Remove duplicates:

As part of the pre-processing of raw data, there’s the filtering of invalid data, usu-
ally characterized by even values of the index TYPE. The check of the correct TYPE is
done in a for loop, the indices of incorrect values are saved and deleted from the inputs
and targets arrays. This phenomenon happens when the user interacts with the app, for
example when starting, pausing or stopping the acquisition.

Process targets: binary encoding

Predicted values saved in targets are copied in a new vector, called y, based on their
values:

• if targets[k] contains bit 0 (20): calibration phase, i.e. data acquisition, which takes
more or less 300 samples (5 minutes). In my code I associated to the calibration
phase the 0 value

• if targets[k] contains bit 1 (21) or bit 2 (22): awake state, i.e. Predicts algorithm,
on the base of previous samples, associated the state of attention while driving to
highest level.

• if targets[k] contains bit 3 (23): fatigued state, i.e. Predicts algorithm, on the base of
previous samples, associated the state of drowsiness while driving as intermediate
level.

• if targets[k] contains bit 4 (24): drowsy state, i.e. Predicts algorithm, on the base of
previous samples, associated the state of drowsiness while driving as high level. That
means that It’s predicting some minutes earlier a possible a shot sleep.

• if targets[k] contains bit 5 (25): off-wrist, i.e the smartwatch is far from the wrist
(badly worn or not worn) and PPG signals are not collected correctly.

• if targets[k] contains bit 6 (26) or bit 7 (27): low quality data. The previous valid
sample output is notified on the graphic interface.

22

4.1 – Dataset: experimental activities

For targets[k] of type off-wrist and low quality data I decided to replace them with the first
valid previous level y[k-1]: this situation coincides with the real user-interface scenario:
the user when dealing with poor quality data doesn’t notice the changing, in the sense
that the previous label keeps to be displayed and is saved in the .log file.
In this way I obtained a 3 labels classification problem.

Once modified the targets vector, with values more suitable for further computations, I set
the first value ofinputs_ and y arrays to the first value of targets and inputs, respectively,
but only if the check on consistency of HR and HRV is met.
Then I proceeded implementing a check of data repeatability, due to the communication
between computing device and cloud server. In fact, when there’s a change of drowsiness
state, what I could see looking at data, the very same sampling is reported twice, with
same input values, but different classification level; excluding the second, repeated, sample
I guarantee no risk to associate the input features, to the wrong drowsiness level.
At this point I decided to delete the calibration label (0), associating data acquisition
samples to the awake state (1), because I assumed people to be as alert possible, during
the assembly procedure of the equipment, in view of the experimentation.
The filtered samples are then saved in inputs_ and y arrays.

One-hot encoding: a technique used to represent categorical data as binary vectors,
with all entries set to 0 except for the one which index is the one related to the label,
set to 1. In my code one-hot encoding is used to convert the targets[k] values in the
targets_filtered array, into a format suitable for multi-class classification.
Since I have no 0 level, I initialized one_hot_targets as an array of 0 entries of dimensions
len(inputs_filtered) x 3 (assuming there’re 3 classes based on the context) and set to each
row the corresponding int(targets_filtered[k])-1 entry to 1, in a for loop.
One-hot encoding is essential in machine learning, especially for categorical target variables:
by converting categories into a binary format, the algorithms can process and learn from
the data effectively. In my neural network, the output layer will use softmax activation
function, for multi-class classification, which requires the target labels to be in this format,
so that the network can compute the probability of each class and compare it against the
one-hot encoded target during training to calculate the loss and update the weights.

Sequence of WINDOW_SIZE_SHORT lenght:

For the purposes of method 2 (I’ll describe later) I decided to pre-process the whole
dataset dividing it into sliding windows of length WINDOW_SIZE_SHORT samples,
corresponding to 10 seconds of registration, and for each interval calculate the standard
deviation of the HRV and the mean of the HR values.

Final windows: sequence of samples of WINDOW_SIZE_LONG lenght

The obtained array of pre-processed input data of dimension (len(inputs_filtered)-
WINDOW_SIZE_SHORT, num_feature) or an array of row data of lenght
(total_dataset_lenght x num_features), depending on which method I’m referring to:

23

Data analysis and pre-processing

method 2 or 1 respectively, is then processed through a sliding window of length WIN-
DOW_SIZE_LONG, generating larger windows X_long and Y_long. I tried three
different sizes of the sliding windows to compare their differences: 180, 240 and 300, which
corresponds to periods of around 3, 4 and 5 minutes respectively, since data are sampled
with a frequency of 1Hz (1 sample/sec).

24

4.1 – Dataset: experimental activities

Split data:

1. Method A: based on the attempt of gather all the temporal windows, from each dataset
and split them in the train, validation and test set in such a way for guaranteeing the
percentage of each label presence based on the size of the set, using the 70%-20%-10%
division. This will be better explained in the subsection Handle unbalanced data

2. Method B: In order to train the neural network I decided to consider ideally each
single dataset as 4% (24/100) of the total, and in this view to establish the 75-12.5-
12.5% division into training, validation and test sets respectively, I put in the training
list the first 21 datasets (18 for training and 3 for validation: they will be successively
split during the cross-validation). On the other hand, the last 3 datasets will be used
to test the model’s ability to generalize on new unseen data.
I’ve chosen subject 22 (M), 23 (G), and 24 (V) datasets from Danisi 24 because they
present variability in the predicted outputs. I avoided to change at each iteration of
cross-validation the test set, to reduce the number of possible combinations.
This represents an ideal situation, since each registration doesn’t have the exact same
number of samples: there could be missing data due to the miscommunication with
the server or invalid ones consequence of a wrong lecture from the smartwatch. For
this reason, and for the different representation of the three levels in each dataset at
each iteration, at the end of each training of the different folds the performances will
be different.

3. Method C: I also opted for another method: a division 19 for training, 3 for validation
and 2 for testing, utilizing subject 23 (G) and 24 (V) datasets for testing, which
aligns as a 80%-10%-10% division looking at the lengths of each dataset.

4.1.3 Z-score normalization of data
Outside the for loop, I made a normalization of the training and test datasets while
maintaining the structure of the temporal windows. I started by concatenating all mem-
bers of the list X_train, which is a list of numpy arrays, each representing a batch of
samples with dimensions (tot_samples,WINDOW_SIZE_LONG,num_features), in an ar-
ray X_train_combined, which gather all temporal windows in all datasets used for training.
The dimension of the array will be (total_samples,WINDOW_SIZE_LONG,num_features),
where total_samples is the sum of samples across all batches in X_train.
Then I proceeded calculating the mean and standard deviation across the combined
training data: these statistics are computed along the first two axes (0,1), that means the
calculation considers all samples and all-time steps within each sample but separately for
each feature (HR and HRV). The results are two values for each feature: mean and std
for HR and HRV respectively.
At this point I can normalize the training data: each batch of X_train is standardized
using the calculated mean and standard deviation. This is done maintaining the original
structure of the temporal windows.
The normalization formula applied is (x – mean_train)/std_train, where x is each batch
in X_train.
The next step is to normalize the test data X_test, using the same statistics calculated
from the training data (mean_train and std_train). This ensures that the normalization

25

Data analysis and pre-processing

applied to the test data is consistent with the training data normalization, which is crucial
for maintaining model performance.

1 def normalize_data (X_train , X_test):
2 # concatenate arrays in the list X_train
3 X_train_combined = np. concatenate (X_train , axis =0) # dimension

(tot_samples , WINDOW_SIZE_LONG , 2)
4

5 # obtain mean and standard deviation on combined training data
6 mean_train = np.mean(X_train_combined , axis =(0, 1)) #mean along

the first 2 dimensions
7 std_train = np.std(X_train_combined , axis =(0, 1)) #std along the

first 2 dimensions
8 # normalize training data maintaining the original temporal window

structure
9 X_train_norm = [(x - mean_train) / std_train for x in X_train]

10 # normalize testing and validation data maintaining the same
statistics of the training set

11 X_test_norm = (X_test - mean_train) / std_train
12 X_val_norm = (X_val - mean_train) / std_train
13

14 return X_train_norm , X_test_norm , X_val_norm

Even if, making a normalization on each person dataset could be effective in finding
features proper of the considered set of data, I’ve anyway chosen to normalize each dataset
with respect to the statistics (mean and standard deviation) of the whole training portion
of data, so that real-time sampling normalization will be coherent with the one used
during the training of the model.

4.1.4 Scheduler function
I decided to set as learning rate of the optimizer an exponential decrescent, with decay
rate 0.1, which leads the learning rate to decrease of 10% of the original one at each
epoch (I’ve also tried 0.05 as decay rate, which refers to a 5% decrement at each epoch,
but this method is a little less stable than the chosen one, in terms of diminishing of the
validation loss). The behavior is described in the following function, which takes as inputs
the current epoch and the current learning rate, both passed automatically by the Keras
training loop.

1 def scheduler (epoch , lr):
2 initial_lr = 0.01
3 min_lr = 0.001
4 decay_rate = 0.1
5

6 new_lr = initial_lr *tf.math.exp(- decay_rate *epoch)
7

8 if new_lr < min_lr :
9 new_lr = min_lr

10 return float(new_lr)
11

12 # Define the callback for the variable learning rate
13 lr_callback = tf.keras. callbacks . LearningRateScheduler (scheduler)

26

4.1 – Dataset: experimental activities

This function saturates the learning rate to a minimum value of 0.001, to prevent it from
getting too small. Usually talking about NN the interval between 0.01 and 0.001 is one
of the best for setting the learning rate: 0.01 is often used at the start of training to
make rapid progress in minimizing the loss and 0.001 is a common default rate for many
optimization algorithms, small enough to ensure stable training and good convergence
properties. It was a good compromise in the view of reduce the updating of weights during
training, leading to find a good minimum of the loss function and don’t cause oscillations
in the training accuracy. After defining the scheduler function, I created a built-in Keras
callback that allows to specify how the learning rate should be adjusted at each epoch. It
takes a function as an argument (in our case is the scheduler).

4.1.5 Cross-validation method
Cross-validation is a procedure used to evaluate machine learning models: the original set
is divided into training and test set. The model is trained with the training set and its
performances are evaluated on the test set, but this is done multiple times, to obtain a
robust model.
I’ve already split the original available experimentation from 24 different people into 21
(for training and validation) and 3 (for testing), which means approximately 87.5%-12.5%
of the overall (ideally all datasets are long approximately the same).
I decided to analyze two different types of cross-validation procedures to the training set.

The first approach consists on apply the k-fold cross-validation method taking the 90% of
the total 21 dataset (even if they don’t have the same number of samples) for training the
model and the rest 10% for evaluate the performances (validation set). In proportion 19
for training and 2 for validating (Method C).
As a matter of fact, it could be considered a 10-fold problem, but since the validation
set involves the combination of 2 different datasets I preferred to analyze all possible
combinations of this subset. For this reason I wrote the code below, where at first I divided
into two arrays the index related to males and females, to be sure that the validation
set would involve for sure both genders, to guarantee variability. Another idea could be
merging the datasets taking into account the age of subjects, but unfortunately almost
everyone is in the 20-40 years age range, with a prevalence in 20-30, which is not so
representative in terms of age differences.
I decided to use for the validation only the samples from Danisi 23 to make shorter the
cross-validation process.
With the command itertools.combinations() I generated the combinations of couples of
indices, which are successively filtered to ensure that each sequence contains one male
and one female subject. At the end the command random.shuffle() mixes the combination
randomly.

1 import itertools
2 import random
3 #to find all combinations of 2 from 2 vectors :
4 sequences =[]
5 array_M =np.array ([0 ,2 ,3 ,4 ,5 ,6 ,7 ,9 ,13]); #male subjects
6 array_F =np.array ([1 ,8 ,10 ,11 ,12]) # female subjects
7 # concatenate the two vectors
8 combined_array = np. concatenate ((array_M , array_F))

27

Data analysis and pre-processing

9

10 # obtain all combinations with 2 elements
11 combinations_of_2 = list(itertools . combinations (combined_array , 2))
12

13 # filter the combinations to guarantee that they contains one element
from each vector

14 valid_combinations = [
15 combo for combo in combinations_of_2
16 if any(elem in array_M for elem in combo) and any(elem in array_F

for elem in combo)
17]
18 # merge the combinations in random way
19 random . shuffle (valid_combinations)
20 # save in a list to be accessible for successive computations
21 sequences = [combo for combo in valid_combinations]
22 #total of 45 sequences

Finally, the shuffled valid combinations are stored in the list sequenze, that’s used for each
trial of the training, with different combination of the validation set.

The second approach was the classical 75%-12.5% division of the training dataset (Method
B), as I suggested previously, that means using 18 subsets for training and 3 for validating
the model at each iteration (with the same procedure of creating the sequences of 3
datasets to vary the validation set). The problem is that the number of combinations to
test increased up to 270, and It requires a bigger computational effort.

1 sequences =[]
2 array_M =np.array ([0 ,2 ,3 ,4 ,5 ,6 ,7 ,9 ,13]); #male
3 array_F =np.array ([1 ,8 ,10 ,11 ,12]) # female
4 # concatenate the 2 vectors
5 combined_array = np. concatenate ((array_M , array_F))
6

7 # find all combinations of 3 elements
8 combinations_of_3 = list(itertools . combinations (combined_array , 3))
9

10 # filter the combinations to guarantee che ci siano 2 elementi da
entrambi i vettori

11 valid_combinations = [
12 combo for combo in combinations_of_3
13 if any(elem in array_M for elem in combo) and any(elem in array_F

for elem in combo)
14]
15 # merge the combinations in random way
16 random . shuffle (valid_combinations)
17 # save in a list
18 sequences = [combo for combo in valid_combinations]
19 #total of 270 sequences

28

4.1 – Dataset: experimental activities

Below the indication of the index related to each dataset:

0 subject1 27-09-2023 12 subject13 29-09-2023
1 subject2 29-09-2023 13 subject14 27-09-2023
2 subject3 28-09-2023 14 subject15 28-09-2023
3 subject4 28-09-2023 15 subject16 28-09-2023
4 subject5 28-09-2023 16 subject17 13-03-2024
5 subject6 28-09-2023 17 subject18 13-03-2024
6 subject7 27-09-2023 18 subject19 12-03-2024
7 subject8 26-09-2023 19 subject20 12-03-2024
8 subject9 27-09-2023 20 subject21 13-03-2024
9 subject10 27-09-2023 21 subject22 12-03-2024
10 subject11 28-09-2023 22 subject23 13-03-2024
11 subject12 29-09-2023 23 subject24 12-03-2024

29

30

Chapter 5

GRU model

GRU is a specialized recurrent neural network (RNN) architecture widely used in deep
learning. Unlike standard feedforward networks, GRUs incorporate feedback connections,
allowing them to capture temporal dependencies in sequential data.
Similarly to LSTMs, they are specifically designed to overcome the vanishing and ex-
ploding gradient problems often encountered when training traditional RNNs on long
data sequences, making them ideal for tasks like natural language processing, speech
recognition, and time series forecasting. Compared to LSTMs, GRUs have a simpler
structure and fewer parameters, making them easier to train and more computationally
efficient.
Unlike LSTMs, which use separate memory and hidden states, GRUs combine these into
a single hidden state, updated using two gates: the reset gate and the update gate.
The reset gate controls how much of the previous hidden state to forget, while the update
gate determines how much of the new information (candidate activation) is incorporated
into the next hidden state.
GRUs are preferred when simpler architectures or limited computational resources are
required. For this reason it is the class of RNNs I wanted to start employing to face this
classification problem.

1 model= Sequential ()
2 model.add(InputLayer ((WINDOW_SIZE_LONG , 2)))
3 model.add(GRU (64, activation =’tanh ’,
4 recurrent_activation =’sigmoid ’,
5 kernel_initializer = GlorotUniform (),
6 recurrent_initializer = Orthogonal ()))
7 model.add(Dense (3,’softmax ’))

Above the lines of code to build the neural network model:

• Input gate: Sequences of shape (WINDOW_SIZE timesteps, 2 features).

• GRU LAYER: a Gated Recurrent Unit layer is added with 64 units.

I opted for this type of recurrent neural network (RNN) because it’s particularly effective
for handling sequential data, addressing the vanishing gradient problem.
I’ve chosen an hyperbolic tangent as the activation function for the output of the GRU
units and a sigmoid function as activation function for the recurrent step.
The hyperbolic tangent (tanh) activation function is typically chosen for the output of
GRU units because it provides a good balance between allowing both positive and negative

31

GRU model

outputs (ranging from -1 to 1). This property makes it effective in capturing patterns in
sequential data. It also helps to mitigate the vanishing gradient problem by maintaining
some gradient flow during backpropagation, thus preserving the long-term dependencies
in sequences.
Sigmoid activation is used within the gates of the GRU (update and reset gates) because it
squashes values between 0 and 1, which can represent probabilities or gating mechanisms.
This allows the network to "decide" how much of the past information to retain or discard,
a key aspect of GRU’s effectiveness in handling long sequences. The sigmoid function is
well-suited here as it provides smooth control over how much information flows through
the network. [51]

Furthermore, for recurrent neural networks such as Gated Recurrent Units (GRU), weight
initialization is equally crucial to ensure good convergence during training (the risk is
incurring in diminishing of the training accuracy through epochs).
For this reason a good practice is to use the GlorotUniform initializer [52] (also known as
Xavier), a method which works well with both linear and non-linear activations and is
often used for recurring networks.
Kernel_initializer is a parameter used to initialize the weights of the GRU input layers,
while recurrent_initializer initializes the weights of recurrent connections and It’s fre-
quently used in RNN to increase stability in long-term sequencies.
GlorotUniform and Orthogonal are the methods set for the two parameters to improve
the stability and the convergence of the model.
GlorotUniform: balances input and output variances, which is important to prevent
gradient vanishing and exploding. Orthogonal maintains the orthogonality of recurring
matrices, which helps keep information along sequences, useful for problems with long
time dependencies. [53]
I’ve tried to add a dropout 0.1 to increase the validation accuracy, but in this case it
prevented the model to learn correctly from training data, leading to a diminishing of the
training accuracy, so I deleted it.
I’ve also tried to add a 100 layer Dense layer to increase the complexity and increase
the model’s capacity to learn more complex patterns, but this doesn’t improve the
performances.

• DENSE LAYER: at the end a dense (fully connected) layer Dense(3) with 3 units is
added to the model.

This layer will output a 3-dimensional vector, whose activation function: softmax is used
to normalize the output so that it represents a probability distribution over 3 classes.

Layer (type) Output Shape Param #
GRU (gru_50) (None, 64) 13,056
Dense (dense_50) (None, 3) 195

Total params: 13,251
Trainable params: 13,251
Non-trainable params: 0

32

5.1 – Method B and C: training with cross-validation

5.1 Method B and C: training with cross-validation
The following lines of code perform the cross-validation method to train and evaluate a
GRU (Gated Recurrent Unit) deep neural network model for sequential data classification.
Each fold involves defining the model, training it, evaluating its performances, and saving
the model. The explanation follows:

1 person_age =[24 ,28 ,63 ,27 ,29 ,75 ,32 ,35 ,44 ,30 ,33 ,34 ,29 ,52 ,29 ,31]
2 person_gender =[0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,1 ,1 ,1 ,0 ,0 ,0]
3 for fold_index in range (0 ,270):
4 print(f"Fold { fold_index +1}:")
5 X_fold_train = [] ; y_fold_train = []
6 indici_val =np.array(sequenze [fold_index])
7 print(indici_val)
8 X_val= X_train [indici_val [0]]; y_val= y_train [indici_val [0]]
9

10 for i in indici_val [1:]:
11 X_val = np. vstack ((X_val , X_train [i]))
12 y_val = np. vstack ((y_val , y_train [i]))
13 print(X_val.shape)
14

15 # Exclude validation set from training
16 for i in range(len(X_train)):
17 if i not in indici_val :
18 X_fold_train . append (X_train [i])
19 y_fold_train . append (y_train [i])
20

21 # Convert lists to numpy arrays
22 X_fold_train = np. vstack (X_fold_train)
23 y_fold_train = np. vstack (y_fold_train)
24

25 X_fold_train = np.array(X_fold_train , dtype=float)
26 y_fold_train = np.array(y_fold_train , dtype=float)
27 X_val = np.array(X_val , dtype=float)
28 y_val = np.array(y_val , dtype=float)
29

30 print(X_fold_train .shape , y_fold_train .shape)
31 print(X_val.shape ,y_val.shape)
32

33 # Calculates the mean and standard deviation over all data of
training combined

34 mean_train = np.mean(X_fold_train , axis =(0, 1)) # Average over
the first two dimensions

35 std_train = np.std(X_fold_train , axis =(0, 1)) # Deviation
standard along the first two dimensions

36 print("Mean:", mean_train)
37 print(" Standard Deviation :", std_train)
38

39 X_train_norm = (X_fold_train - mean_train) / std_train
40 X_test_norm = (X_test - mean_train) / std_train
41 X_val_norm = (X_val - mean_train) / std_train
42

43 del modelGRU_cross
44 modelGRU_cross = Sequential ()
45 modelGRU_cross .add(InputLayer ((WINDOW_SIZE_LONG , 2)))
46 modelGRU_cross .add(GRU (64, activation =’tanh ’,

33

GRU model

47 recurrent_activation =’sigmoid ’,
48 kernel_initializer = GlorotUniform (),
49 recurrent_initializer = Orthogonal ()))
50 # modelGRU_cross .add(Dense (100 , activation =’relu ’,

kernel_initializer = HeNormal ()))
51 modelGRU_cross .add(Dense (3,’softmax ’))
52

53 modelGRU_cross . compile (loss=’categorical_crossentropy ’,
optimizer =tf.keras. optimizers .Adam(learning_rate =0.01) ,

54 metrics =[’accuracy ’])
55

56 # Train the model with early stopping based on validation loss
57 early_stopping = EarlyStopping (monitor =’val_loss ’, patience =6,

restore_best_weights =True)
58 modelGRU_cross .fit(X_train_norm , y_fold_train , epochs =50,

validation_data =(X_val_norm , y_val),
callbacks =[early_stopping , lr_callback], batch_size =32,
shuffle =True) # aggiunto shuffle =True

59

60 # Evaluate the model on the validation set
61 loss , accuracy = modelGRU_cross . evaluate (X_val_norm , y_val)
62 print(f’Validation Loss: {loss}, Validation Accuracy : { accuracy }’)
63

64 # Evaluate the model on test data
65 loss , accuracy = modelGRU_cross . evaluate (X_test_norm , y_test)
66 print(f’Test Loss: {loss}, Test Accuracy : { accuracy }’)
67

68 from keras. models import save_model
69 modelGRU_cross .save(f"C:\\ Users \\ catia \\
70 fold{ fold_index +1}. keras")

1. Data preparation:
Person_age and person_gender are lists containing ages and genders of people
involved in the experimentations, as the order they’ve in the vector names. Having this
information helped me to divide the people’s dataset into two arrays to discriminate
the gender, some passages before, to got the sequenze array. X_train_norm and
y_train are normalized training data and corresponding labels, while X_test_norm
and y_test are normalized test data and corresponding labels.

2. Cross-validation loop:
The loop iterates from 0 to 270, indicating the different folds for cross-validation. For
each fold, the indices of the X_train_norm list that will be concatenated to fill the
validation set are retrieved from sequenze, iteratively. On the other hand, the indices
which exclude the ones related to the validation, are deployed to fill the training set.

3. Model definition:
For each fold the existing model instance is deleted to ensure that each fold starts
with a new model and a new sequential model is then created. An input layer is
added to the model: the input shape is specified as (WINDOW_SIZE_LONG , 2),
indicating that the model expects sequences of length WINDOW_SIZE_LONG and
2 features per timestep.
GRU LAYER: explaned previously.

34

5.1 – Method B and C: training with cross-validation

4. Compilation of the model:
The model is compiled with the loss function categorical cross-entropy, used for
multi-class classification and the Adam optimizer with a specific learning rate. The
metric used to evaluate the model’s performance during training and evaluation
is based on accuracy. X_fold_train and y_fold_train are the training data and
labels. The maximum number of training epochs is set to 50, but it’s never reached
because the training stops before, due to the early_stopping callback. Then validation
data are reported (both inputs and outputs) and the list of callbacks is defined:
early_stopping and lr_callback.

5. Training:
The model is trained using the fit method with early stopping, to prevent over-fitting
by monitoring the validation loss and stopping when it stops improving. Then it
saves the model with the lowest validation loss.

6. Evaluation on the experimental dataset:
After training the model is evaluated on both the validation set and the test set.
This provides an assessment on the model’s performance.

7. Evaluation on data collected with different procedures:
I had access on additional data coming from real driving scenario, which stands
apart from experimental controlled behaviour, in order to understand if, even with a
small experimental dataset used for training the model, the resulting model is able
to generalize on data collected with other procedures.

8. Saving the model:
The trained model for each fold is saved to a file

35

GRU model

5.2 Method B and C: training achievements
5.2.1 Window size of 300 and row input data
The whole dataset composed of 24 registration was spitted in 19 registrations for training,
3 for validation and 2 for test following the percentages 80%-10%-10%.

At first I decided to test the performance of the GRU model in training with row
data, i.e. HR and HRV values, that fill a sliding window of 300 samples, which scrolls of 1
sample every second.

Figure 5.1: fold 8: test set (’ro’: PredictS, ’bx’: GRU)

I obtained the following metrics: Accuracy: 0.873, Precision: 0.66, Sensitivity 0.74,
Specificity 0.906.

In 5.1 the red circles are the outputs of PredictS algorithm, the blue crosses are the
predictions of the GRU model.

I’ll always use this color-symbol convention in the following plots.
The train set in each fold is made up by gathering of data collected from the experimenta-
tion of Danisi 2024, by (in order) G (subject 23) and V (subject 24).
I’ve chosen these datasets because they allow to obtain a quite balanced test set with
respect drowsy levels (2 and 3), which are the less represented: in fact G ones presents
FATIGUED and DROWSY episodes, that are necessary in test set in order to evaluate
the predictions around these labels; V was picked as the second test dataset in order
to not deprive the training and validation datasets of representative examples of higher
drowsiness levels prediction.

36

5.2 – Method B and C: training achievements

Figure 5.2: fold 8: MV-highway (’ro’: PredictS, ’bx’: GRU)

Accuracy: 0.93, Precision: 0.782, Sensitivity 0.681, Specificity 0.97

I had access to additional datasets collected during everyday activities by subjects non
involved in the experimentation took in Danisi Engineering, allowing to evaluate the
performances of the model in real scenario. The registration displayed above was made
by the user during an highway travel. The behaviour is approximately coherent with
PredictS software and this is important also because the subject didn’t participate to the
experiments (his dataset is effective as test set). Additionally, the user is 53 years old, age
which is far from the one prevalent in the training set, polarized around 30.

Figure 5.3: fold 8: MV-lunch (’ro’: PredictS, ’bx’: GRU)

37

GRU model

Accuracy: 0.97, Precision: 0.657, Sensitivity 0.626, Specificity 0.986

The registration analyzed above was made on the same subject, during lunch time. As
we can see from the graph, the GRU replicates the same behaviour of PredictS predictions
in transictioning from AWAKE to FATIGUED states, even if this is a ’bug’ in PredictS
logic.

Figure 5.4: fold 8: RG20240504 (’ro’: PredictS, ’bx’: GRU)

As shown in 5.4, both the FATIGUED and DROWSY levels are delayed with respect
to the true predictions. The model doesn’t perform well.
Also in rg_20240501.csv dataset, with a precision of 0.31 and a sensitivity of 0.28, the
overall behaviour of the model predictions seems too polarized on FATIGUED state, with
a disperse trend with respect to the true one.

5.2.2 Window size of 300 and row input data - filtering of tem-
poral windows

The whole dataset composed of 24 registration was spitted in 19 registrations for training,
3 for validation and 2 for test following the percentages 80%-10%-10%.

In this method I’ve filled the buffer of 10 samples at first, then checked if there’re
more than 2 samples where the value of HRV replicates. If yes, that temporal window
is removed and scrolls by one sample, on the other hand if the check gives a negative
feedback the algorithm computes the mean of the 10 values of HR and the standard
deviation of the HRV, with the related label level in output and these are used to fill a
300 steps temporal window.

38

5.2 – Method B and C: training achievements

Figure 5.5: fold 17: test set (’ro’: PredictS, ’bx’: GRU)

Accuracy: 0.884, Precision: 0.811, Sensitivity: 0.609, Specificity: 0.961

Figure 5.6: fold 17: MV-highway (’ro’: PredictS, ’bx’: GRU)

Accuracy: 0.9198, Precision: 0.698, Sensitivity: 0.787, Specificity: 0.94

About the registration rg_20240430: 0.97%-..-..0.97% (there’s only the AWAKE level)

39

GRU model

5.2.3 Window size of 300 and pre-processed input data

The whole dataset composed of 24 registration was spitted in 18 registrations for training,
3 for validation and 3 for test following the percentages 87.5%-12.5% (training+validation
- testing).
Below, the code for pre-processing the data used to train the model (batch size=32). In
this first trial I haven’t filtered the training data from low quality data, even if in the
PredictS application, a procedure of data-cleaning is performed, before injecting the data
in the algorithm.
I only deleted repeated samples, due to the lack in the communication with the cloud
server.
This represents the most realistic scenario, where the user every second receives the level
of attention, even if the data are corrupted (for low quality data the output displayed in
correspondence of low quality data is the one of the previous sample. The only notification
is a button on the interface, which from green becomes gray)

The following metrics are related to the binary problem: AWAKE vs FATIGUED-
DROWSY. But my reasoning I mostly relied on the graphical observation, considering
(for example) as true positive also predictions happening in the boundary of the true label,
not in a punctual way.

3 datasets in validation
fold validation

sequence
train
acc

train
loss

val
acc

val
loss

test
acc

test
prec

test
Sens

test
spec

9 [3 9 1] 0.937 0.159 0.8 0.678 0.825 0.63 0.54 0.91
12 [2 7 11] 0.875 0.298 0.885 0.31 0.83 0.71 0.4 0.95
13 [13 8 10] 0.85 0.34 0.8 0.56 0.823 0.894 0.24 0.99
14 [6 1 12] 0.877 0.29 0.737 0.637 0.869 0.74 0.64 0.94
18 [0 13 10] 0.878 0.287 0.782 0.55 0.848 0.826 0.42 0.975
20 [4 13 11] 0.89 0.26 0.64 1.16 0.81 0.56 0.62 0.86
21 [5 1 8] 0.87 0.307 0.764 0.518 0.86 0.78 0.52 0.96
23 [0 2 10] 0.83 0.38 0.85 0.329 0.886 0.825 0.63 0.96
24 [2 1 10] 0.886 0.268 0.719 0.722 0.82 0.68 0.39 0.95
25 [5 9 10] 0.87 0.31 0.876 0.267 0.84 0.77 0.43 0.96
27 [5 7 11] 0.865 0.31 0.85 0.356 0.84 0.65 0.64 0.9
29 [3 4 8] 0.896 0.25 0.796 0.729 0.85 0.72 0.54 0.94
32 [5 8 10] 0.87 0.3 0.84 0.42 0.83 0.7 0.45 0.94
33 [4 13 8] 0.835 0.375 0.85 0.32 0.85 0.86 0.4 0.98
35 [5 7 12] 0.84 0.375 0.85 0.32 0.83 0.82 0.3 0.98
38 [0 7 8] 0.878 0.29 0.844 0.44 0.85 0.71 0.57 0.93
40 [0 7 1] 0.893 0.253 0.8 0.65 0.88 0.84 0.55 0.97
42 [3 5 11] 0.905 0.21 0.79 0.656 0.84 0.898 0.3 0.99
43 [0 4 10] 0.88 0.27 0.72 0.73 0.8 0.63 0.33 0.94
44 [3 4 12] 0.82 0.35 0.71 0.75 0.78 0.52 0.45 0.87
45 [0 2 8] 0.88 0.274 0.75 0.65 0.82 0.67 0.36 0.95
51 [2 3 12] 0.9 0.2 0.78 0.51 0.8 0.7 0.22 0.97
60 [7 13 8] 0.944 0.165 0.86 0.35 0.83 0.65 0.52 0.92
72 [7 8 11] 0.9 0.21 0.78 0.54 0.8 0.7 0.22 0.97
80 [3 4 1] 0.924 0.18 0.7 0.73 0.86 0.81 0.5 0.97

40

5.2 – Method B and C: training achievements

For improving the performances in the testing datasets I added 2 conditions, to the
code written above, in order to filter the data:

1 ***(1) : cont =0
2 ***(2) : and input_row [0] >=30
3 ***(3) : if input_row [1]== inputs [i -1 ,1]:
4 cont +=1
5 else:
6 cont =0
7 if cont >=2: #3 HRV successivi uguali
8 for j in range (2):
9 inputs_filtered .pop ()

10 targets_filtered .pop ()
11 cont =0

In (1) a local variable cont is initialized to 0: it will be a counter for the repetition of the
same HRV value in consecutive sampling.
Thanks to (2) condition, I consider only plausible value of HR values, that in non-
pathological condition usually doesn’t go below 30 bpm (I reasoned about the possibility
for the subject to be bradycardic).
This helps to filter possible low quality data due to the communication between smartwatch
and smartphone.
The (3) condition instead checks if HRV is constant through successive samples, and if it
keeps the same value for more than 3 consecutive values, they’re not considered and the
counter is reset to 0.
This condition is in charge of filtering corrupted data, in such a way to get the dataset
closer to the one injected in PredictS algorithm.
In some datasets it helps to reach the DROWSY state.
In the following pages when there’s () symbol it means that the filter is applied,
if () is missing it means that data are not filtered.

41

GRU model

Figure 5.7: test set-fold 80 () (’ro’: PredictS, ’bx’: GRU)

Accuracy:0.88 , Precision: 0.82 , Sensibility: 0.62 , Sensitivity: 0.96

Figure 5.8: test set-fold 12 () (’ro’: PredictS, ’bx’: GRU)

Accuracy: 0.809 , Precision: 0.686 , Sensitivity: 0.376 , Specificity 0.946

The train set in each fold is made up by gathering of data collected from the experimenta-
tion of Danisi 2024, by (in order) M (subject 22), Gea (subject 23) and V (subject 24).
I’ve chosen these datasets because allow to obtain a quite balanced test set with respect
drowsy levels (1 and 2), which are the less represented: in fact M and G ones presents

42

5.2 – Method B and C: training achievements

FATIGUED and DROWSY episodes, that are necessary in test set in order to evaluate
the predictions around these labels.

Fold 80: other test sets from non-experimental scenario

I had access to additional datasets collected during everyday activities by subjects non
involved in the experimentation took in Danisi Engineering, allowing to evaluate the
performances of the model in real scenario.

Figure 5.9: fold 80: MV-20240511 (’ro’: PredictS, ’bx’: GRU)

The registration displayed above was made by the user during an highway travel. The
behaviour is approximately coherent with PredictS software and this is important also
because the subject didn’t participate to the experiments (his dataset is effective as test
set). Additionally, the user is 53 years old, age which is far from the one prevalent in the
training set, polarized around 30.

Accuracy: 0.924 , Precision: 0.73 , Sensitivity: 0.76 , Specificity: 0.96

43

GRU model

Figure 5.10: fold 80: MV-lunch (’ro’: PredictS, ’bx’: GRU)

This dataset was collected during lunch time and replicates an inconsistency in the
outputs of PredictS, because the level 2 and 3 (FATIGUED and DROWSY) shouldn’t be
present and are caused by a train of invalid data. A filtering of the input data will solve
the problem, also in the sw case. As it’s shown in the picture above, the FATIGUED state
is reached by the NN prediction almost 2 minutes after the sw one, while the DROWSY
is not.

Accuracy: 0.97, Precision: 0.75, Sensitivity: 0.4, Specificity: 0.99

Filtering the input data, deleting HR values greater than 0 and HRV which replicate, leads
to the very same behaviour of the output. Notice that since some samples are deleted,
the FATIGUED level is not maintained for the whole interval: the NN replicates the very
same behaviour but with some minutes latency.

44

5.2 – Method B and C: training achievements

Figure 5.11: fold 80 (): MV-lunch (’ro’: PredictS, ’bx’: GRU)

In the next page, the model obtained with the fold 80 is used to predict the labels
of some registrations took by an user, who is 60 years old and has participated to the
experimentation of Danisi 2023. The following results are important in order to generalize
the performances of the NN to ages not correlated with the ones prevalent in the training.

45

GRU model

Figure 5.12: RG-20240501() (’ro’: PredictS, ’bx’: GRU)

Accuracy: 0.829, Precision: 0.49, Sensitivity: 0.443, Specificity: 0.907

Figure 5.13: RG-20240501 (’ro’: PredictS, ’bx’: GRU)

Accuracy: 0.85, Precision: 0.55, Sensitivity: 0.429, Specificity: 0.932

46

5.2 – Method B and C: training achievements

Figure 5.14: RG-20240430() (’ro’: PredictS, ’bx’: GRU)

Accuracy: 0.985 , Specificity: 0.985

Figure 5.15: RG-20240504() (’ro’: PredictS, ’bx’: GRU)

Accuracy: 0.944, Precision: 0.81, Sensitivity: 0.714, Specificity: 0.976 (all levels)

47

GRU model

Trials with larger batch sizes

When using a very large batch size results in more precise gradient estimates because the
gradient is computed over more data points, reducing the stochastic noise in the gradient
estimation. While this precision might seem beneficial, it can actually harm the model’s
ability to generalize to new data: with less noise, the optimizer is more likely to converge
to sharp minima in the loss landscape, which usually correspond to solutions that fit the
training data very well but do not perform well on unseen data.
Smaller batch sizes introduce more noise into the gradient estimates, that can help the
optimizer to escape sharp minima and instead find flatter minima, which are often associ-
ated with better generalization performance.

Furthermore, when using optimizers like Stochastic Gradient Descent (SGD), a large batch
size decreases the variance in the gradient estimates: with less variance, the optimizer
may take larger steps (updates), which can cause it to overshoot the minimum or oscillate
around it, making the optimization process less stable. This can lead to difficulty in
convergence and potentially cause the optimizer to diverge.

Another aspect to considerate is that large batch sizes provide a very precise gradi-
ent estimate that may not have enough "noise" to push the optimizer out of the plateaus,
which are regions where the gradient is very small. As a result, the optimizer might take
a long time to escape plateaus or get stuck in local minima, leading to slower convergence.
The inherent noise in smaller batch sizes can help the optimizer to jump out of plateaus
by providing occasional larger gradient estimates, which can give the model the push
needed to continue making progress.

Batch size of 64

Choosing a batch size of 64 leads almost to the same performances of batch size of
32 in the test set.

Batch size of 128

Choosing a batch-size of 128 leads to a slightly deterioration of the performances in
the test set (output almost never reach the DROWSY state).

48

5.2 – Method B and C: training achievements

At this point I made some other trials in training the GRU model utilizing 2 registration
as validation data, in such a way to reduce the maximum number of combinations to
cover the entire cross-validation method to 45. I opted for different lenght of the sliding
windows used to pre-process the data.

In the tables below are reported the most relevant results when training the GRU
model with registrations of sequence fold used as validation set.
I didn’t report all the models for sake of simplicity.

5.2.4 Window size of 300 and pre-processed input data - valida-
tion with 2 datasets

fold validation
sequence

train
acc

train
loss

val
acc

val
loss

test
acc

test
prec

test
Sens

test
spec

2 [2 12] 0.88 0.27 0.79 0.42 0.84 0.68 0.63 0.91
11 [3 8] 0.93 0.17 0.85 0.39 0.84 0.73 0.47 0.95
22 [9 12] 0.87 0.3 0.88 0.33 0.83 0.68 0.46 0.93
27 [2 8] 0.96 0.097 0.9 0.28 0.84 0.73 0.5 0.94
33 [6 12] 0.95 0.11 0.84 0.46 0.87 0.7 0.7 0.9

5.2.5 Window size of 240 and pre-processed input data - valida-
tion with 2 datasets

fold validation
sequence

train
acc

train
loss

val
acc

val
loss

test
acc

test
prec

test
Sens

test
spec

1 [2 10] 0.97 0.087 0.86 0.48 0.87 0.76 0.67 0.93
4 [7 1] 0.93 0.17 0.78 0.52 0.83 0.8 0.37 0.97
6 [9 8] 0.84 0.36 0.94 0.15 0.81 0.81 0.25 0.98
8 [6 8] 0.84 0.36 0.92 0.21 0.82 0.68 0.44 0.94
9 [0 1] 0.89 0.25 0.73 0.78 0.86 0.76 0.6 0.94
11 [3 8] 0.9 0.24 0.86 0.38 0.85 0.67 0.75 0.89
12 [5 10] 0.9 0.25 0.84 0.37 0.84 0.87 0.32 0.99
15 [9 10] 0.88 0.28 0.89 0.19 0.88 0.75 0.73 0.92
16 [0 12] 0.9 0.24 0.78 0.57 0.86 0.74 0.64 0.93
19 [5 1] 0.9 0.21 0.71 0.78 0.84 0.8 0.4 0.97
22 [9 12] 0.87 0.31 0.88 0.31 0.86 0.76 0.56 0.94
24 [0 11] 0.86 0.31 0.82 0.41 0.83 0.8 0.35 0.97
28 [13 12] 0.91 0.2 0.66 0.67 0.85 0.67 0.66 0.9
30 [3 11] 0.86 0.32 0.81 0.53 0.86 0.87 0.45 0.98
32 [9 1] 0.85 0.33 0.82 0.47 0.84 0.75 0.46 0.95
33 [6 12] 0.85 0.34 0.83 0.4 0.8 0.84 0.2 0.99
35 [2 11] 0.95 0.12 0.85 0.44 0.84 0.73 0.4 0.96
37 [7 11] 0.85 0.34 0.85 0.37 0.84 0.68 0.5 0.93
38 [5 8] 0.86 0.32 0.84 0.32 0.84 0.7 0.48 0.94
41 [9 11] 0.87 0.29 0.88 0.33 0.84 0.67 0.54 0.92
45 [3 10] 0.85 0.33 0.80 0.58 0.86 0.88 0.43 0.98

49

GRU model

5.2.6 Window size of 128 and pre-processed input data - valida-
tion with 2 datasets

fold validation
sequence

train
acc

train
loss

val
acc

val
loss

test
acc

test
prec

test
Sens

test
spec

2 [2 12] 0.84 0.34 0.85 0.36 0.83 0.92 0.22 0.99
3 [3 1] 0.87 0.31 0.73 0.82 0.83 0.73 0.39 0.96
4 [7 1] 0.88 0.27 0.83 0.45 0.83 0.65 0.46 0.93
6 [9 8] 0.84 0.36 0.94 0.15 0.84 0.77 0.41 0.97
7 [6 11] 0.86 0.32 0.77 0.55 0.84 0.7 0.46 0.94
11 [3 8] 0.86 0.32 0.86 0.34 0.82 0.63 0.42 0.93
12 [5 10] 0.9 0.24 0.84 0.4 0.84 0.75 0.39 0.96
19 [5 1] 0.89 0.26 0.75 0.6 0.84 0.7 0.45 0.95
22 [9 12] 0.89 0.26 0.83 0.33 0.84 0.72 0.42 0.95
23 [3 12] 0.89 0.26 0.76 0.66 0.82 0.62 0.46 0.92
24 [0 11] 0.85 0.36 0.77 0.54 0.83 0.75 0.3 0.97
25 [4 8] 0.86 0.33 0.78 0.54 0.83 0.78 0.32 0.98
36 [0 8] 0.84 0.35 0.85 0.33 0.83 0.74 0.31 0.97
39 [6 10] 0.85 0.35 0.88 0.34 0.84 0.65 0.64 0.9
43 [7 8] 0.86 0.32 0.91 0.32 0.84 0.7 0.5 0.94
45 [3 10] 0.84 0.35 0.81 0.43 0.83 0.83 0.27 0.98

I analyzed sliding windows of lenght 300, 240 and 180, which corresponds to 5,4 and 3
minutes of driving respectively.
Since in this type of problem, it’s important the fact that model is able to notice the
incoming of a sleep event, more than the metrics values, I analyzed graphically the
behaviour of the models’ outputs in each case, to find the worst average performances
when training the model with windows of lenght 180.

50

5.3 – Age as an additional feature

5.3 Age as an additional feature
The whole dataset composed of 24 registration was spitted in 18 registrations for training,
3 for validation and 3 for test following the percentages 87.5%-12.5% (training+validation
- testing).

Since I obtained the best performances with the sliding window of 240 till now, I’ve
decided to proceed with the same procedure, exploiting more additional features as the
age of people involved in Danisi 2023 and 2024 experimentations.
I expect the model behaving correctly for people around 30 years old, because the
prevalence of subjects in the whole training dataset is polarized in that age range, but the
performances will be worse for older people.

As input data, the Danisi datasets from 2023 and 2024 were filtered in such a way to
be presumably consistent to the ones processed by PredictS.
Since ideally, training data should be treated in a similar way to test data, I considered
filtering the training data in the same way to avoid discrepancies.

The filtering method I used before (deleting data with HR less than 30 (presumably
HR=0 due to errors in the lecture of the PPG signal from the smartwatch and samples
with HRV which repeats the very same value for at least 3 sampling), seemed to behave
correctly with testing data, because this filtering injects in the model data that are closer
to the ones that PredictS is supposed to process.

The first approach I used for normalization of input data was normalize each feature
of the training set separately, with the Z-normalization method.
The mentioned filtering will be applied on both training and testing data.

fold validation
sequence

train
acc

train
loss

val
acc

val
loss

test
acc

test
prec

test
Sens

test
spec

2 0.96 0.099 0.85 0.43 0.85 0.75 0.52 0.95
6 0.88 0.26 0.92 0.34 0.85 0.75 0.56 0.94
8 0.94 0.15 0.9 0.28 0.85 0.68 0.68 0.94
15 0.84 0.35 0.91 0.23 0.85 0.76 0.46 0.96
16 0.85 0.34 0.71 0.62 0.86 0.81 0.53 0.96
23 0.91 0.2 0.78 0.6 0.83 0.76 0.4 0.96
25 0.85 0.34 0.8 0.42 0.86 0.96 0.42 0.99

51

GRU model

Fold 16

Figure 5.16: fold 16: test set (’ro’: PredictS, ’bx’: GRU)

The model reaches every FATIGUED state, except for the first and only one of subject
V, and reaches 2 alarms for person G, where the second is dispatched 5 minutes early
than the actual one. None of the alarms of M is expired by the model.

On the other hand, performances decrease considering as test data, the additional
non-experimental ones: the predicted labels are more distributed on the FATIGUED level,
with respect to the correct ones, causing lots of FP, while the DROWSY level is never
reached.

As supposed before, the fact that the additional datasets are related to two subjects,
whose age differ at least 20 years (53 and 60), from the one prevalent in the training set
(32), could cause wrong behaviour of the predicted output.

Indeed, the model may not generalize well if the age in the test set is significantly
different from that of the training set. This is because the model may have learned specific
relationships based on age distribution in the training set that are not valid for a different
distribution.

Furthermore, if the model has been trained on a data set with a certain age distribution,
it may show bias towards that distribution. When tested on data with a different
distribution, performance may deteriorate. This is a model bias problem. On the other
hand, a model with high variance may adapt too much to the training data and fail to
capture the underlying structure, leading to poor performance on test data with different
distributions.

In the case of folder 25, as we can see in Fig 5.17, the distribution around the FA-
TIGUED layer is less dense, but it never reach the DROWSY state anyway.

Another approach I used for training the model with three features, including the age,
was filter the samples with HR less than 30 and delete the 10 sample windows in which

52

5.3 – Age as an additional feature

Figure 5.17: fold 25: MV-20240511 (’ro’: PredictS, ’bx’: GRU)

there’re more or equal than 3 samples with the same value of HRV, before training the
model and then use filtered data for testing; normalization of each feature by its own
(window_size=240) (test parameters in binary)

53

GRU model

Figure 5.18: fold 44: test set (’ro’: PredictS, ’bx’: GRU)

Accuracy: 0.83, Precision: 0.7, Sensitivity: 0.46, Specificity: 0.94

Figure 5.19: fold 40: test set (’ro’: PredictS, ’bx’: GRU)

Accuracy:0.84, Precision: 0.78, Sensitivity: 0.42, Specificity: 0.96

54

5.4 – Method A: handle unbalanced data

5.4 Method A: handle unbalanced data
As implicit from the nature of the application this algorithm is suitable for, i.e. detecting
sleeping events during driving, the final dataset, comprehensive of all the driving registra-
tions, presents unbalancing of data between classification labels.
The AWAKE state is the predominant in all the registrations, followed by ATTENTION
(1st stage in terms of sleepiness). DROWSY state, whose presence triggers the alarm
in the vehicle, is the less represented. The lack of data in the most important level to
be detected, besides the overall restricted experimental dataset, represent a challenging
starting point to improve the performances of the final model.
The following table shows the distribution of samples in each level for all the registrations.

subject AWAKE ATTENTION DROWSY
0 2701 637 49
1 1025 1949 318
2 2031 0 0
3 1905 776 151
4 938 1015 85
5 1612 435 0
6 1143 0 0
7 2840 278 0
8 2848 484 0
9 2972 3 0
10 2265 464 0
11 2036 1153 79
12 1600 967 21
13 1476 1318 26
14 789 1329 647
15 2274 510 0
16 1945 1610 0
17 2978 91 0
18 3997 115 0
19 2560 259 0
20 2737 0 0
21 3268 1235 123
22 2415 1514 123
23 4057 161 0

Table 5.1: number of samples per level for each registration

Description of the Data Splitting Method:

1. Initial Data Concatenation: after preprocessing and windowing the data from multiple
files, the processed data arrays X_300 and Y_300 from each file are appended to
lists X_list and y_list, then concatenated along the first axis to form combined
arrays X_combined and y_combined.

2. Class-Wise Splitting: the combined data is then split by class. Three separate lists
X_1, X_2, X_3 and y_1, y_2, y_3 are created to hold data points belonging to

55

GRU model

class 1 (AWAKE), class 2 (FATIGUED), and class 3 (DROWSY) respectively.

3. Train-Test Split: For each class-specific dataset (X_1, X_2, X_3 and their corre-
sponding labels), a train-test split is performed using train_test_split from
sklearn.model_selection. The test_size parameter is set to 0.1, meaning 10% of
the data for each class is set aside for testing, while the remaining 90% is kept for
training.

4. Combining Class-Specific Splits: The train and test sets from each class are concate-
nated to form the final training and test sets.

5. Class-Wise Splitting of Training Data for Validation: Similar to the initial split, the
training data is again split by class. This is done to balance the validation set across
classes.

6. Train-Validation Split: For each class-specific training dataset, a train-validation
split is performed using train_test_split with the test_size parameter set to valida-
tion_size / (1 - test_size). This calculates the proportion of the original data that
should go into the validation set based on the desired validation size relative to the
training data. The resulting splits are concatenated to form the final training and
validation set.

The splitting process ensures that each class is equally represented in the training,
validation, and test sets. This is important for classification tasks to prevent bias towards
a particular class.

Using train_test_split with a fixed random state ensures repeatability of the splits
while maintaining randomness within each class.

Epoch 1/20 1934/1934 [==============================] - 581s
279ms/step - loss: 0.3145 - accuracy: 0.8730 - val_loss: 0.2317 - val_accuracy: 0.9021 -
lr: 0.0100
Epoch 2/20 1934/1934 [==============================] - 559s
289ms/step - loss: 0.1800 - accuracy: 0.9284 - val_loss: 0.1424 - val_accuracy: 0.9422 -
lr: 0.0090
Epoch 3/20 1934/1934 [==============================] - 553s
286ms/step - loss: 0.1157 - accuracy: 0.9544 - val_loss: 0.1402 - val_accuracy: 0.9491 -
lr: 0.0082
Epoch 4/20 1934/1934 [==============================] - 582s
301ms/step - loss: 0.1024 - accuracy: 0.9601 - val_loss: 0.1144 - val_accuracy: 0.9592 -
lr: 0.0074
Epoch 5/20 1934/1934 [==============================] - 518s
268ms/step - loss: 0.1270 - accuracy: 0.9500 - val_loss: 0.0773 - val_accuracy: 0.9716 -
lr: 0.0067
Epoch 6/20 1934/1934 [==============================] - 456s
236ms/step - loss: 0.0788 - accuracy: 0.9691 - val_loss: 0.0761 - val_accuracy: 0.9722 -
lr: 0.0061
Epoch 7/20 1934/1934 [==============================] - 589s
305ms/step - loss: 0.0675 - accuracy: 0.9741 - val_loss: 0.0546 - val_accuracy: 0.9781 -
lr: 0.0055
Epoch 8/20 1934/1934 [==============================] - 726s

56

5.4 – Method A: handle unbalanced data

375ms/step - loss: 0.0548 - accuracy: 0.9791 - val_loss: 0.0722 - val_accuracy: 0.9727 -
lr: 0.0050
Epoch 9/20 1934/1934 [==============================] - 558s
289ms/step - loss: 0.0580 - accuracy: 0.9783 - val_loss: 0.0410 - val_accuracy: 0.9849 -
lr: 0.0045
Epoch 10/20 1934/1934 [==============================] - 446s
231ms/step - loss: 0.0793 - accuracy: 0.9695 - val_loss: 0.0948 - val_accuracy: 0.9617 -
lr: 0.0041
Epoch 11/20 1934/1934 [==============================] - 435s
225ms/step - loss: 0.0665 - accuracy: 0.9740 - val_loss: 0.0613 - val_accuracy: 0.9758 -
lr: 0.0037
Epoch 12/20 1934/1934 [==============================] - 437s
226ms/step - loss: 0.0547 - accuracy: 0.9789 - val_loss: 0.0458 - val_accuracy: 0.9829 -
lr: 0.0033
Epoch 13/20 1934/1934 [==============================] - 451s
233ms/step - loss: 0.0449 - accuracy: 0.9827 - val_loss: 0.0523 - val_accuracy: 0.9782 -
lr: 0.0030
Epoch 14/20 1934/1934 [==============================] - 444s
229ms/step - loss: 0.0355 - accuracy: 0.9858 - val_loss: 0.0322 - val_accuracy: 0.9879 -
lr: 0.0027
Epoch 15/20 1934/1934 [==============================] - 450s
233ms/step - loss: 0.0325 - accuracy: 0.9875 - val_loss: 0.0297 - val_accuracy: 0.9891 -
lr: 0.0025
Epoch 16/20 1934/1934 [==============================] - 466s
241ms/step - loss: 0.0267 - accuracy: 0.9897 - val_loss: 0.0354 - val_accuracy: 0.9854 -
lr: 0.0022
Epoch 17/20 1934/1934 [==============================] - 452s
234ms/step - loss: 0.0258 - accuracy: 0.9899 - val_loss: 0.0258 - val_accuracy: 0.9903 -
lr: 0.0020
Epoch 18/20 1934/1934 [==============================] - 457s
237ms/step - loss: 0.0205 - accuracy: 0.9922 - val_loss: 0.0357 - val_accuracy: 0.9869 -
lr: 0.0018
Epoch 19/20 1934/1934 [==============================] - 457s
236ms/step - loss: 0.0197 - accuracy: 0.9921 - val_loss: 0.0234 - val_accuracy: 0.9916 -
lr: 0.0017
Epoch 20/20 1934/1934 [==============================] - 455s
235ms/step - loss: 0.0179 - accuracy: 0.9927 - val_loss: 0.0203 - val_accuracy: 0.9921 -
lr: 0.0015

Above I reported the steps of the training through each epoch. In this trial I filled
the sliding windows of dimension (WINDOW_SIZE_LONG, 2) with row data (HR and
HRV), sampled each second, the scrolled by 1 sample.

57

GRU model

Figure 5.20: test set (’ro’: PredictS, ’bx’: GRU)

Test set (binary): Accuracy: 0.9899, Precision: 0.9798, Sensitivity: 0.975, Specificity:
0.994

58

5.4 – Method A: handle unbalanced data

Figure 5.21: RG0405 (’ro’: PredictS, ’bx’: GRU)

Accuracy: 0.93, Precision: 0.742, Sensitivity 0.63, Specificity 0.97

In Fig 5.21 the output of this model (blue crosses in the graph) replicates the almost
same behaviour of 5.4, proving that two methods work similarly.

Figure 5.22: MV20240511 (’ro’: PredictS, ’bx’: GRU)

Accuracy: 0.9088, Precision: 0.675, Sensitivity 0.644, Specificity 0.951

59

GRU model

In a second moment I tried to train the GRU with sliding windows of dimension
(WINDOW_SIZE_LONG, 2) filled by computing each second, since the
WINDOW_SIZE_SHORTth one, the mean of HR and standard deviation of HRV of
the previous WINDOW_SIZE_SHORT samples.

The train stopped at the 10th epoch, for the EarlyStopping of patience 6

Epoch 10/20 1929/1929 [==============================] - 448s
232ms/step - loss: 0.0783 - accuracy: 0.9709 - val_loss: 0.0621 - val_accuracy: 0.9751 -
lr: 0.0041 Test Loss: 0.06432885676622391, Test Accuracy: 0.9749347567558289

Test set: (binary) Accuracy: 0.975, Precision: 0.934, Sensitivity: 0.957, Specificity:
0.98

Figure 5.23: test set (’ro’: PredictS, ’bx’: GRU)

The problem with this method is that the two models don’t perform as well as in the
Danisi test set, when testing it on additional data coming from real driving simulation,
which are not characterized by a balanced distribution of the 3 labels, as in this case.
For this reason I prefer the method 1 for training the GRU model, which doesn’t perform
perfectly on the test set took from the Danisi 23-24 experimentation dataset, but it will
allow to increase variability in the training set.

60

Chapter 6

LSTM model

The LSTM is a type of recurrent neural network architecture designed to model sequential
data.
These models introduce memory cells that can retain information over extended sequences,
which are controlled by three gates: the input gate, forget gate, and output gate, which
regulate the flow of information.

The input gate determines how much of the new input should be stored in the memory
cell by processing the current input and the previous hidden state. The forget gate decides
which information from the memory cell should be discarded, based on the current input
and the previous hidden state. The output gate controls how much information from the
memory cell is passed to the hidden state. By using these gates, LSTM networks can
selectively maintain, update, and retrieve information over long time periods, making
them highly effective for tasks that require long-term dependencies, such as language
translation, sentiment analysis, and speech recognition.

The model presents the following sections:

• Input gate: Sequences of shape (300 timesteps, 2 features).

• LSTM layer: Processes the input sequences and has 64 memory units.

• Output Dense Layer: Produces a 3-element vector where each element corresponds
to the probability of one of the 3 classes.

Layer (type) Output Shape Param #
lstm_30 (LSTM) (None, 64) 17,152
dense_30 (Dense) (None, 3) 195

Table 6.1: type of layers, output shape and number of parameters

As we can see in LSTM layer there’re around 4 thousand more parameters with respect
to GRU one, which have consequences in the computational complexity of the algorithm
running in a physical devices, correlated also with an increased memory occupation and
batter consumption [54].

61

LSTM model

Total params: 17,347
Trainable params: 17,347
Non-trainable params: 0

Table 6.2: trainable and non-trainable parameters

6.1 Method 2: window size of 300 and row input data
I decided to not start from applying the cross-validation method (method 1) for saving
time, since it requires multiple iterations, so I exploited the splitting one, or method 2, to
train the LSTM model.
I decided to exploit a structure with 64 memory units only and to apply the train settings
to the GRU model, in such a way to compare the performances. The only difference
was in the patience index in the early_stopping callback, set to 5 because I experienced
explosion of the loss function after that point.

Epoch 1/20 1934/1934 [==============================] - 340s
174ms/step - loss: 0.5705 - accuracy: 0.7729 - val_loss: 0.5207 - val_accuracy: 0.7756 -
lr: 0.0100
Epoch 2/20 1934/1934 [==============================] - 234s
121ms/step - loss: 0.4408 - accuracy: 0.8124 - val_loss: 0.3655 - val_accuracy: 0.8463 -
lr: 0.0090
Epoch 3/20 1934/1934 [==============================] - 417s
216ms/step - loss: 0.3405 - accuracy: 0.8518 - val_loss: 0.3190 - val_accuracy: 0.8622 -
lr: 0.0082
Epoch 4/20 1934/1934 [==============================] - 553s
286ms/step - loss: 0.3344 - accuracy: 0.8562 - val_loss: 0.3353 - val_accuracy: 0.8535 -
lr: 0.0074
Epoch 5/20 1934/1934 [==============================] - 516s
267ms/step - loss: 0.2944 - accuracy: 0.8727 - val_loss: 0.2857 - val_accuracy: 0.8792 -
lr: 0.0067
Epoch 6/20 1934/1934 [==============================] - 274s
142ms/step - loss: 0.2625 - accuracy: 0.8889 - val_loss: 0.2536 - val_accuracy: 0.8898 -
lr: 0.0061
Epoch 7/20 1934/1934 [==============================] - 319s
165ms/step - loss: 0.3421 - accuracy: 0.8566 - val_loss: 0.3259 - val_accuracy: 0.8577 -
lr: 0.0055
Epoch 8/20 1934/1934 [==============================] - 294s
152ms/step - loss: 0.2854 - accuracy: 0.8792 - val_loss: 0.2858 - val_accuracy: 0.8815 -
lr: 0.0050
Epoch 9/20 1934/1934 [==============================] - 288s
149ms/step - loss: 0.3306 - accuracy: 0.8623 - val_loss: 0.4879 - val_accuracy: 0.7799 -
lr: 0.0045
Epoch 10/20 1934/1934 [==============================] - 301s
156ms/step - loss: 0.3698 - accuracy: 0.8335 - val_loss: 0.3474 - val_accuracy: 0.8443 -
lr: 0.0041
Epoch 11/20 1934/1934 [==============================] - 284s
147ms/step - loss: 0.2887 - accuracy: 0.8754 - val_loss: 0.2605 - val_accuracy: 0.8947 -

62

6.1 – Method 2: window size of 300 and row input data

lr: 0.0037

Above I reported the steps of the training through each epoch. In this trial I filled
the sliding windows of dimension (WINDOW_SIZE_LONG, 2) with row data (HR and
HRV), sampled each second, the scrolled by 1 sample.

Figure 6.1: test set

Test set (binary): Accuracy: 0.886, Precision: 0.7446, Sensitivity: 0.749, Specificity:
0.9256

Figure 6.2: MV20240511

Accuracy: 0.93, Precision: 0.742, Sensitivity: 0.63, Specificity: 0.97

63

LSTM model

As shown from the plots displayed above, since in the first training of the LSTM with
row data, in windows of 300 samples, I haven’t found any improvements, with respect to
the GRU one, I decided to not exploit further its functioning, applying other filtering or
windowing methods.

6.2 Techniques to handle unbalancing of data

There are methods to correct the unbalancing of data between levels, to be adapted to
the type of problem addressing to.
For example, the data-level approaches include the oversampling of the minority class,
the under-sampling of the minority class and the data augmentation.
Between the three I decided to discharge the oversampling, because It consisted of gener-
ating synthetic samples for minority classes, by interpolating between existing examples:
this approach could fit with the parameter HR, which is almost stable between adiacent
intervals (this could be also useful to fill the lack of data I explained when talking about
data analysis). The issue is applying this method on the HRV parameter, which can vary
not linearly between consecutive samples.
Data augmentation is intended as applying transformations (e.g., jittering, time-shifting,
noise injection) to the minority class data to generate more varied samples. About this
point I will use this approach, adding huge jitters to the prediction of levels of drowsiness,
to test if this can affect the training of the model, in chapter 7.
Finally, I decided to exploit the under-sampling the minority class technique, which
consists on removing random samples from the over-represented class to balance the
dataset. This can help avoid overfitting to the majority class but risks losing valuable
information from the majority class.

I started by reducing the total number of samples labeled as AWAKE to its 70% randomly
and starting a training from sliding windows of size 300, filled by row data, in order
to compare the obtained performances with the ones obtained with the umbalanced dataset.

Epoch 1/20 1484/1484 [==============================] - 342s
227ms/step - loss: 0.4161 - accuracy: 0.8226 - val_loss: 0.2424 - val_accuracy: 0.9012 -
lr: 0.0100
Epoch 2/20 1484/1484 [==============================] - 398s
268ms/step - loss: 0.2088 - accuracy: 0.9152 - val_loss: 0.2075 - val_accuracy: 0.9177 -
lr: 0.0090
Epoch 3/20 1484/1484 [==============================] - 397s
268ms/step - loss: 0.1624 - accuracy: 0.9342 - val_loss: 0.1432 - val_accuracy: 0.9466 -
lr: 0.0082
Epoch 4/20 1484/1484 [==============================] - 335s
226ms/step - loss: 0.1285 - accuracy: 0.9483 - val_loss: 0.1264 - val_accuracy: 0.9481 -
lr: 0.0074
Epoch 5/20 1484/1484 [==============================] - 195s
131ms/step - loss: 0.1173 - accuracy: 0.9527 - val_loss: 0.1060 - val_accuracy: 0.9597 -
lr: 0.0067
Epoch 6/20 1484/1484 [==============================] - 227s
153ms/step - loss: 0.1058 - accuracy: 0.9576 - val_loss: 0.1298 - val_accuracy: 0.9436 -

64

6.2 – Techniques to handle unbalancing of data

lr: 0.0061
Epoch 7/20 1484/1484 [==============================] - 219s
148ms/step - loss: 0.1031 - accuracy: 0.9594 - val_loss: 0.1012 - val_accuracy: 0.9628 -
lr: 0.0055
Epoch 8/20 1484/1484 [==============================] - 214s
144ms/step - loss: 0.2991 - accuracy: 0.8791 - val_loss: 0.3172 - val_accuracy: 0.8669 -
lr: 0.0050
Epoch 9/20 1484/1484 [==============================] - 204s
138ms/step - loss: 0.3549 - accuracy: 0.8535 - val_loss: 0.3382 - val_accuracy: 0.8628 -
lr: 0.0045
Epoch 10/20 1484/1484 [==============================] - 222s
150ms/step - loss: 0.2622 - accuracy: 0.8911 - val_loss: 0.2069 - val_accuracy: 0.9175 -
lr: 0.0041
Epoch 11/20 1484/1484 [==============================] - 205s
138ms/step - loss: 0.1748 - accuracy: 0.9281 - val_loss: 0.1470 - val_accuracy: 0.9432 -
lr: 0.0037
Epoch 12/20 1484/1484 [==============================] - 202s
136ms/step - loss: 0.1927 - accuracy: 0.9236 - val_loss: 0.2782 - val_accuracy: 0.8872 -
lr: 0.0033
Epoch 13/20 1484/1484 [==============================] - 194s
131ms/step - loss: 0.2040 - accuracy: 0.9175 - val_loss: 0.1584 - val_accuracy: 0.9343 -
lr: 0.0030

The training stopped at the 13th epoch because of an increasing of the validation loss
after the 7th epoch. The best model was found at epoch 7th with the following metrics
on the test set: accuracy: 0.957, precision: 0.94, sensitivity 0.907, specificity 0.977.

65

LSTM model

Then I checked the model’s performances on the additional registration, by real driving,
as follows.

Figure 6.3: MV20240511

The metrics were: accuracy: 0.877, precision: 0.536, sensitivity 0.76, specificity 0.896.

It seems there are no improvements with respect to the original dataset. For this reason I
decreased more the total number of samples in AWAKE state, reducing the set size to the
sum of samples in ATTENTION and DROWSY state, such that the overall dataset is
balanced between drowsy and not-drowsy.
The obtained trained model, used to predict on the real driving dataset, presents the
following metrics: accuracy: 0.72, precision: 0.25, sensitivity 0.52, specificity 0.75, which
are definitely lower with respect to the original one.
I can conclude that this method is useless to improve the learning of the model in presence
of this particular unbalanced dataset.

66

Chapter 7

Introduction of a random jitter

The next step of this research, after deriving the performances of the GRU model in
replying the behaviour of the software PredictS, will be trying to alterate the NN training
phase by introducing a random jitter, when reaching the FATIGUED and DROWSY
levels.
This method is useful in the sense of reducing the quantity of data, related to the higher
levels.
Indeed, between the consequences of imbalanced datasets, there is the possibility for the
model to not generalize well on unseen data, mainly if they refers to minority classes,
resulting in an high variance and overfitting on the majority classes.
Additionally, the model takes more time to converge, because minority classes are not well
represented by training data and metrics such as accuracy can be misleading, because
they doesn’t take into account the unbalancing.
In fact in my reasoning I will completely ignore the accuracy metrics, in favour of precision,
recall, F1-score.

67

Introduction of a random jitter

7.1 Delay in predicting FATIGUED and DROWSY
I decided to introduce a variable delay in predicting the FATIGUED and DROWSY
levels, which is proportional to the length of the time permanence on that level. This can
be done, without deteriorating too much the predictions of the sw PredictS because in
principle the drowsy state is predicted with a 5 minutes advance, so that I could use that
bounding a margin in the delay.

In particular, I analyzed every file of the Danisi 23 24 experimentation, and when I
reached the FATIGUED and DROWSY level from a lower one, I forced the output to
remain in the previous level for a number of seconds which varied randomly from the
50% of the time permanence of the prediction on that level, to the 99% in the case of
the FATIGUED state, and from the 70% to the 99% in the case of the DROWSY state,
controlling that this delay didn’t overcome the 300 seconds (5 minutes): in that situation
it saturates.
I decided to apply an higher jitter to the DROWSY level with respect to the FATIGUED
one, because it has usually short duration, and reducing by the 70% till 99% introduces a
delay lower than 5 minutes. Furthermore, it’s the most critical level to be tracked and we
want to prevent the correct classification of that level.

Figure 7.1: subject 2

7.1.1 Method B
Utilizing sliding windows of 300 samples, scrolling of 1 sample every second, filled by row
data and training the model with the cross-validation method used before (19-3-2 datasets
for training, validation and testing respectively) I obtained the results shown in the table
below.

68

7.1 – Delay in predicting FATIGUED and DROWSY

fold validation
sequence

test
acc

test
prec

test
sens

test
spec

reach DROWSY

1 [3 4 10] 0.91 0.41 0.107 0.98 No
2 [2 6 8] 0.9 0.36 0.15 0.975 No
3 [0 5 12] 0.88 0.35 0.4 0.93 No
4 [3 6 8] 0.89 0.27 0.147 0.96 1 anticipated
5 [5 8 12] 0.92 0.82 0.167 0.99 No
7 [0 7 11] 0.9 0.2 0.04 0.98 No
8 [0 4 11] 0.87 0.25 0.26 0.92 No
9 [3 9 1] 0.9 0.39 0.21 0.96 No
10 [4 9 11] 0.88 0.31 0.30 0.93 No
11 [0 1 12] 0.91 0.54 0.21 0.98 No
12 [2 7 11] 0.87 0.28 0.28 0.93 No
13 [13 8 10] 0.89 0.35 0.26 0.95 No
14 [6 1 12] 0.92 0.59 0.41 0.97 No
15 [2 3 8] 0.89 0.34 0.31 0.94 No
16 [5 6 1] 0.89 0.35 0.24 0.95 No
17 [4 8 10] 0.92 0.90 0.15 0.99 Neither FATIGUED
18 [0 13 10] 0.89 0.41 0.64 0.91 No
19 [7 13 10] - - Remain in AWAKE
20 [4 13 11] 0.89 0.31 0.17 0.96 No
21 [5 1 8] 0.89 0.34 0.28 0.94 No
22 [3 9 11] 0.9 0.34 0.13 0.7 No
23 [0 2 10] 0.9 0.07 0.01 0.98 Neither FATIGUED
24 [2 1 10] 0.91 0.47 0.33 0.96 No
25 [5 9 10] 0.91 0.49 0.45 0.95 No
26 [2 6 12] 0.9 0.38 0.29 0.95 No
27 [5 7 11] 0.88 0.39 0.76 0.89 No
28 [3 7 11] 0.9 0.45 0.33 0.96 No
29 [3 4 8] 0.9 0.45 0.33 0.96 Neither FATIGUED
30 [4 5 12] 0.88 0.37 0.58 0.91 No
31 [13 10 11] 0.91 0.48 0.34 0.96 No
32 [5 8 10] 0.9 0.19 0.05 0.97 Neither FATIGUED
33 [4 13 8] 0.9 0.36 0.17 0.97 Neither FATIGUED
34 [2 1 11] 0.9 0.35 0.13 0.97 Neither FATIGUED
35 [5 7 12] 0.86 0.3 0.46 0.9 Neither FATIGUED
36 [5 7 10] 0.87 0.36 0.68 0.89 1 but late
37 [0 9 12] 0.87 0.06 0.035 0.95 No
38 [0 7 8] 0.93 0.78 0.31 0.99 No
39 [2 1 8] 0.92 0.53 0.62 0.94 No

Table 7.1: Method B when introducing a random delay in transitions from lower to
higher levels of drowsiness: example of the first 39 folds

69

Introduction of a random jitter

7.1.2 Method A
Introducing the random jitter in transitioning from AWAKE to FATIGUED state and from
FATIGUED to DROWSY, and applying the method 2 for splitting the sliding windows,
used to feed the GRU model, I obtained the following results.
If we reason on the precision and sensitivity metrics, which are the ones relevant when
dealing with unbalanced datasets, we can see a relevant drop of the performances, when
injecting a random delay in notifying the medium and high levels of drowsiness, even if
I’ve not added a delay when going from higher to lower yet.
This lets me think that reasonably when I’ll also inject a random jitter in transitions from
higher to lower levels of drowsiness, the performances will deteriorate more.

Details of the training:

Epoch 1/20 1934/1934 [==============================] - 267s
136ms/step - loss: 0.2417 - accuracy: 0.9094 - val_loss: 0.1879 - val_accuracy: 0.9266 -
lr: 0.0100
Epoch 2/20 1934/1934 [==============================] - 313s
162ms/step - loss: 0.1510 - accuracy: 0.9436 - val_loss: 0.1332 - val_accuracy: 0.9467
- lr: 0.0090
Epoch 3/20 1934/1934 [==============================] - 322s
166ms/step - loss: 0.1877 - accuracy: 0.9289 - val_loss: 0.1954 - val_accuracy: 0.9285 -
lr: 0.0082
Epoch 4/20 1934/1934 [==============================] - 341s
176ms/step - loss: 0.1773 - accuracy: 0.9326 - val_loss: 0.1479 - val_accuracy: 0.9473 -
lr: 0.0074
Epoch 5/20 1934/1934 [==============================] - 214s
111ms/step - loss: 0.1813 - accuracy: 0.9322 - val_loss: 0.2136 - val_accuracy: 0.9162 -
lr: 0.0067
Epoch 6/20 1934/1934 [==============================] - 202s
104ms/step - loss: 0.2180 - accuracy: 0.9182 - val_loss: 0.3277 - val_accuracy: 0.8799 -
lr: 0.0061
Epoch 7/20 1934/1934 [==============================] - 204s
106ms/step - loss: 0.2795 - accuracy: 0.8930 - val_loss: 0.2702 - val_accuracy: 0.8960 -
lr: 0.0055
Epoch 8/20 1934/1934 [==============================] - 245s
127ms/step - loss: 0.2563 - accuracy: 0.9013 - val_loss: 0.2517 - val_accuracy: 0.9028 -
lr: 0.0050

Testing the model on the test set from Danisi 23-24 (merging the 10% of the whole
windows referred to label 1,2,3) I obtained:
accuracy: 0.946
precision: 0.794
sensitivity 0.72
specificity 0.975.
The accuracy values are similar for the training, validation and test sets, which means
that the model is not supposed to be affected by the overfitting problem.
As explained before, this is a better method, with respect to cross-validation, to try to
correct the unbalancing of data between levels, for this reason, since each level is better

70

7.2 – Delay in predicting higher levels of drowsiness and in restoring the lower ones

represented, the performance of the final model increases.

Adding the jitter helps to degrade the precision and sensitivity, which are the indexes
relevant when dealing with classification problems, affected by umbalancing of data,
but this indices are strictly dependent on how casually the three sets are split: in fact
re-running the splitting, the sets changes, with also the metrics.

If we reason on the precision and sensitivity metrics, which are the ones relevant when
dealing with unbalanced datasets, we can see a relevant drop of the performances, when
injecting a random delay in notifying the medium and high levels of drowsiness, besides
adding a delay when going from higher to lower yet.
This lets me think that reasonably when I’ll also inject a random jitter in transitions from
higher to lower levels of drowsiness, the performances will deteriorate more.

7.2 Delay in predicting higher levels of drowsiness
and in restoring the lower ones

Figure 7.2: subject 2

I tried to get the model learning worse by also adding a random delay between 30 and
60 seconds, in the transition between DROWSY-FATIGUED and FATIGUED-AWAKE,
besides the one already added when transitioning from lower levels of drowsiness to higher.

Details of the training:

Epoch 1/20 1934/1934 [==============================] - 211s
108ms/step - loss: 0.4181 - accuracy: 0.8236 - val_loss: 0.4273 - val_accuracy: 0.8144 -

71

Introduction of a random jitter

lr: 0.0100
Epoch 2/20 1934/1934 [==============================] - 201s
104ms/step - loss: 0.4172 - accuracy: 0.8181 - val_loss: 0.4056 - val_accuracy: 0.8226 -
lr: 0.0090
Epoch 3/20 1934/1934 [==============================] - 192s
99ms/step - loss: 0.3904 - accuracy: 0.8281 - val_loss: 0.3904 - val_accuracy: 0.8271 - lr:
0.0082
Epoch 4/20 1934/1934 [==============================] - 196s
101ms/step - loss: 0.3602 - accuracy: 0.8401 - val_loss: 0.3454 - val_accuracy: 0.8465 -
lr: 0.0074
Epoch 5/20 1934/1934 [==============================] - 216s
112ms/step - loss: 0.3286 - accuracy: 0.8560 - val_loss: 0.3142 - val_accuracy: 0.8662 -
lr: 0.0067
Epoch 6/20 1934/1934 [==============================] - 208s
108ms/step - loss: 0.3830 - accuracy: 0.8382 - val_loss: 0.4683 - val_accuracy: 0.7975 -
lr: 0.0061
Epoch 7/20 1934/1934 [==============================] - 221s
114ms/step - loss: 0.4047 - accuracy: 0.8300 - val_loss: 0.3833 - val_accuracy: 0.8393 -
lr: 0.0055
Epoch 8/20 1934/1934 [==============================] - 173s
89ms/step - loss: 0.3973 - accuracy: 0.8330 - val_loss: 0.3757 - val_accuracy: 0.8397 - lr:
0.0050
Epoch 9/20 1934/1934 [==============================] - 207s
107ms/step - loss: 0.3476 - accuracy: 0.8507 - val_loss: 0.3193 - val_accuracy: 0.8622 -
lr: 0.0045
Epoch 10/20 1934/1934 [==============================] - 196s
101ms/step - loss: 0.3055 - accuracy: 0.8716 - val_loss: 0.3617 - val_accuracy: 0.8485 -
lr: 0.0041
Epoch 11/20 1934/1934 [==============================] - 189s
97ms/step - loss: 0.3596 - accuracy: 0.8508 - val_loss: 0.3473 - val_accuracy: 0.8592 - lr:
0.0037

Testing the model on the test set from Danisi 23-24 (merging the 10% of the whole
windows referred to label 1,2,3) I obtained:
accuracy: 0.863
precision: 0.727
sensitivity: 0.46
specificity 0.95

For what concerns the training of this model with non-experimental datasets, we obtain
for MV20240511 the metrics:
precision: 0.65
sensitivity 0.246

72

7.3 – Delay in predicting levels of drowsiness and revise the data related to the FATIGUED level

7.3 Delay in predicting levels of drowsiness and revise
the data related to the FATIGUED level

At this point I made the last attempt in trying to confuse the NN in learning from the
sliding windows, by adding a random interval between 30 and 60 seconds, every random
number of seconds between 180 and 240 (every 2-3 minutes) in which the Predicts output
remains in the FATIGUED state.

Figure 7.3: subject 2 (x axis: number of samples)

Details of the training:

Epoch 1/20 1934/1934 [==============================] - 184s
94ms/step - loss: 0.3647 - accuracy: 0.8518 - val_loss: 0.4348 - val_accuracy: 0.8344 - lr:
0.0100
Epoch 2/20 1934/1934 [==============================] - 182s
94ms/step - loss: 0.4225 - accuracy: 0.8333 - val_loss: 0.4053 - val_accuracy: 0.8354 - lr:
0.0090
Epoch 3/20 1934/1934 [==============================] - 183s
94ms/step - loss: 0.4121 - accuracy: 0.8347 - val_loss: 0.4053 - val_accuracy: 0.8342 - lr:
0.0082
Epoch 4/20 1934/1934 [==============================] - 183s
95ms/step - loss: 0.4075 - accuracy: 0.8345 - val_loss: 0.3986 - val_accuracy: 0.8351 - lr:
0.0074
Epoch 5/20 1934/1934 [==============================] - 181s
94ms/step - loss: 0.4053 - accuracy: 0.8356 - val_loss: 0.3975 - val_accuracy: 0.8362 - lr:
0.0067
Epoch 6/20 1934/1934 [==============================] - 182s
94ms/step - loss: 0.4044 - accuracy: 0.8355 - val_loss: 0.4015 - val_accuracy: 0.8354 - lr:

73

Introduction of a random jitter

0.0061
Epoch 7/20 1934/1934 [==============================] - 182s
94ms/step - loss: 0.4024 - accuracy: 0.8357 - val_loss: 0.3980 - val_accuracy: 0.8370 - lr:
0.0055
Epoch 8/20 1934/1934 [==============================] - 181s
94ms/step - loss: 0.4020 - accuracy: 0.8351 - val_loss: 0.4016 - val_accuracy: 0.8356 - lr:
0.0050
Epoch 9/20 1934/1934 [==============================] - 184s
95ms/step - loss: 0.4007 - accuracy: 0.8357 - val_loss: 0.4017 - val_accuracy: 0.8357 - lr:
0.0045
Epoch 10/20 1934/1934 [==============================] - 184s
95ms/step - loss: 0.4009 - accuracy: 0.8353 - val_loss: 0.3965 - val_accuracy: 0.8347 - lr:
0.0041
Epoch 11/20 1934/1934 [==============================] - 372s
192ms/step - loss: 0.4001 - accuracy: 0.8362 - val_loss: 0.3950 - val_accuracy: 0.8344 -
lr: 0.0037
Epoch 12/20 1934/1934 [==============================] - 217s
112ms/step - loss: 0.3996 - accuracy: 0.8354 - val_loss: 0.3989 - val_accuracy: 0.8363 -
lr: 0.0033
Epoch 13/20 1934/1934 [==============================] - 219s
113ms/step - loss: 0.3986 - accuracy: 0.8359 - val_loss: 0.3993 - val_accuracy: 0.8349 -
lr: 0.0030
Epoch 14/20 1934/1934 [==============================] - 267s
138ms/step - loss: 0.3983 - accuracy: 0.8352 - val_loss: 0.3941 - val_accuracy: 0.8353 -
lr: 0.0027
Epoch 15/20 1934/1934 [==============================] - 185s
95ms/step - loss: 0.3979 - accuracy: 0.8354 - val_loss: 0.3952 - val_accuracy: 0.8374 - lr:
0.0025
Epoch 16/20 1934/1934 [==============================] - 188s
97ms/step - loss: 0.3975 - accuracy: 0.8357 - val_loss: 0.3946 - val_accuracy: 0.8355 - lr:
0.0022
Epoch 17/20 1934/1934 [==============================] - 193s
100ms/step - loss: 0.3978 - accuracy: 0.8353 - val_loss: 0.3952 - val_accuracy: 0.8363 -
lr: 0.0020
Epoch 18/20 1934/1934 [==============================] - 189s
98ms/step - loss: 0.3972 - accuracy: 0.8357 - val_loss: 0.3967 - val_accuracy: 0.8356 - lr:
0.0018
Epoch 19/20 1934/1934 [==============================] - 190s
98ms/step - loss: 0.3969 - accuracy: 0.8358 - val_loss: 0.3972 - val_accuracy: 0.8360 - lr:
0.0017
Epoch 20/20 1934/1934 [==============================] - 190s
98ms/step - loss: 0.3966 - accuracy: 0.8356 - val_loss: 0.3936 - val_accuracy: 0.8358 -
lr: 0.0015

74

7.3 – Delay in predicting levels of drowsiness and revise the data related to the FATIGUED level

Testing the model on the test set from Danisi 23-24 (merging the 10% of the whole
windows referred to label 1,2,3) I obtained:
accuracy: 0.835
precision: 0.5
sensitivity: 0.1
specificity 0.97

For what concerns the training of this model with non-experimental datasets, we obtain
for MV20240511 the metrics:
precision: 0.0426
sensitivity 0.0257

We can derive that this method is effective in obtain low sensitivity performances, when
trying to replicate the same behaviour of the sw.
In particular, the examples displayed previously are derived by running the training of
the RNN with different random delays, finding the combinations, which deteriorates the
performances the most. Indeed, there are some cases when, even if inserting a jitter It
doesn’t ruin the learning of the model.

At this point it will be time for the company to reason about if It’s convenient to
modify the PredictS outputs and relative performances, in order to obtain on the other
hand a safer environment, when talking about reverse engineering of the algorithm.

75

76

Chapter 8

Implementation of the model

Once obtained the model, which implements some of the functionalities of the PredictS
software, the next step is to implement it on an Android application, in order to analyze
how the computational complexity of the NN can be adapted to a real scenario (in terms
of smartphone battery consuption, memory usage, ...).

8.1 Set-up
I started from the Android Studio app already developed for implementing PredictS and
added some adjustments. In order to add TensorFlow Lite dependencies in the Android
project using Android Studio, I modified the build.gradle file for the app module, adding
the following lines of code in the block dependencies

1 implementation ("org. tensorflow :tensorflow -lite :2.10.0 ")
2 implementation ("org. tensorflow :tensorflow -lite - support :0.3.1 ")
3 implementation ("org. tensorflow :tensorflow -lite -select -tf -ops :2.10.0 ")

The first one is the main TensorFlow Lite library that provides the core functionalities
for running ML models on mobile and edge devices. It includes the necessary runtime to
execute TensorFlow Lite models.
The TensorFlow Lite version 2.10.0 is fully compatible with the TensorFlow version
installed in my Anaconda environment, which I use for training the model with the
Python kernel. Ensuring that both versions match guarantees smooth integration and
optimal performance when deploying the trained model on Android devices.
By aligning the versions of TensorFlow Lite in the Android project and TensorFlow in
the Anaconda environment, we can ensure that the training and inference processes are
consistent and reliable.
The third library allows the use of select TensorFlow operations that are not included in
the standard TensorFlow Lite runtime. It is useful when your model contains operations
that are not natively supported by TensorFlow Lite but are available in the full TensorFlow
framework.

8.1.1 TensorFlow Lite model
The onCreate method of the MainActivity class is where I initialized the Prediction
class. This method is the entry point for the activity: it’s called when he activity is first

77

Implementation of the model

created, and it’s where to perform basic application startup logic.
Since the RNN model must be loaded before performing any of the classification func-
tionalities, for this reason, it’s important to call the initialize method of the prediction
instance of the Prediction class when the activity is created.

1 class MainActivity : AppCompatActivity (), DevicePairedStateListener ,
DeviceConnectionStateListener , PairingStatusListener {

2 ...
3 override fun onCreate (savedInstanceState : Bundle ?) {
4 super. onCreate (savedInstanceState)
5 val prediction = Prediction ()
6 prediction . initialize (this)
7 ...
8 }
9 ...

10 }

By calling initialize(this) in the onCreate method, you ensure that the Prediction
object is set up and ready to perform predictions as soon as your activity starts. This
includes having the TensorFlow Lite model loaded and having the necessary data read
and stored.
This setup is crucial for real-time applications where predictions need to be made continu-
ously as new data comes in. By initializing everything in onCreate, I ensure that there
are no delays or setup steps required later when predictions are needed.

1 class Prediction : ValueChangeListenerDeviceConnected ,
ValueChangeListenerServiceStopped {

2 ...
3 //TF model
4 lateinit var tflite : Interpreter
5 var isModelLoaded = false
6

7 @Throws (IOException :: class)
8 private fun loadModelFile (context : Context): MappedByteBuffer {
9 val fileDescriptor = context . assets . openFd ("model. tflite ")

10 val inputStream =
FileInputStream (fileDescriptor . fileDescriptor)

11 val fileChannel = inputStream . channel
12 val startOffset = fileDescriptor . startOffset
13 val declaredLength = fileDescriptor . declaredLength
14 return fileChannel .map(FileChannel . MapMode .READ_ONLY ,

startOffset , declaredLength)
15 }
16

17 @Throws (IOException :: class)
18 private fun createInterpreter (context : Context): Interpreter {
19 val tfliteModel = loadModelFile (context)
20 return Interpreter (tfliteModel)
21 }
22

23 fun loadModel (context : Context) {
24 GlobalScope . launch (Dispatchers .IO) {
25 try {

78

8.1 – Set-up

26 tflite = createInterpreter (context)
27 // Imposta isModelLoaded su true dopo aver caricato

correttamente il modello
28 Log.d(" Prediction ", "Model loaded successfully ")
29 isModelLoaded = true
30 } catch (e: IOException) {
31 e. printStackTrace ()
32 Log.e(" Prediction ", " Failed to load model", e)
33 }
34 }
35 }
36

37 fun initialize (context : Context) {
38 loadModel (context)
39 }
40 ...
41 }

This is the fragment of code in the Prediction class involved in the initialization of the
TF model. The explanation of each part follows:

• Class-level variables:
tflite is a variable that will hold the TensorFlow Lite interpreter instance; the attribute
lateinit means that this variable will be initialized lated before it’s used.
isModelLoaded is a flag to indicate whether the TensorFlow Lite model has been
successfully loaded. It’s initialized as false and is set to true once the model is loaded.

• Method to Load the Model File: private fun loadModelFile(context: Context): Mapped-
ByteBuffer :
This method loads the TensorFlow Lite model file from the assets folder. It takes a
Context object as a parameter to access the app’s assets.
It computes the following steps:

1. openFd("model.tflite"): opens a file descriptor for the model.tflite file located in
the assets folder.

2. FileInputStream(fileDescriptor.fileDescriptor): creates an InputStream for the
file.

3. inputStream.channel: gets the file channel to read the file.
4. fileChannel.map(...): maps the file into memory for fast access. This creates a

MappedByteBuffer which is returned.

• Method to Create the Interpreter: private fun createInterpreter(context: Context):
Interpreter :
This method creates an instance of the TensorFlow Lite interpreter using the model
file, taking a Context object as a parameter to load the model file. It computes the
following steps:

1. loadModelFile(context): it calls the loadModelFile method to get the Mapped-
ByteBuffer of the model.

2. Interpreter(tfliteModel): it creates a new Interpreter instance using the model
buffer.

79

Implementation of the model

• Method to Load the Model Asynchronously: fun loadModel(context: Context): It’s in
charge of loading the model in a background thread to avoid blocking the main UI
thread.
Steps:

1. GlobalScope.launch(Dispatchers.IO): it launches a coroutine in the IO dispatcher
(background thread).

2. createInterpreter(context): it calls the createInterpreter method to create the
interpreter.

3. Log.d("Prediction", "Model loaded successfully"): it logs a message indicating the
model was loaded successfully.

4. isModelLoaded = true: it sets the isModelLoaded flag to true.
5. catch (e: IOException): it catches any IOException that occurs during loading,

logs the error, and prints the stack trace.

• Initialization Method: fun initialize(context: Context): This method serves as a
single entry point to initialize the Prediction object by loading the model.

8.1.2 Behaviour of the class Prediction: management of input
data and predictions

The Prediction class is designed to predict the drowsiness state of the driver, based on
real-time and historical health data: HR and HRV variables, sampled at 1Hz frequency
from the PPG sensor of the smartwatch device. The TensorFlow Lite model, initialized
previously, is implemented to predict if the driver’s level of drowsiness or attention. The
class implements two interfaces, ValueChangeListenerDeviceConnected and ValueChange-
ListenerServiceStopped, which are used for managing device connectivity and service
status changes.

1 class Prediction : ValueChangeListenerDeviceConnected ,
ValueChangeListenerServiceStopped {

2 ...
3

4 private val inputSize = 300 #input size
5 private val numFeatures = 2 # Number of features per input
6 private val outputSize = 3 # Number of lables for the output
7

8 #Z-score normalization of input data: mean and std of training set
9 private val TrainSetMean = listOf (72.27778918 , 43.69162515)

10 private val TrainSetStd = listOf (9.6385747 , 32.56838213)
11

12 private var index10 =0 # counter for 10 samples buffer
13 private var index300 =0 # counter for 300 samples buffer
14 private val buffer10 = Array (10) { DoubleArray (numFeatures) }
15 private val input= Array (1){Array(inputSize){

FloatArray (numFeatures)}}
16

17 private var compute_output =false #a flag to indicate when the
model can be run

80

8.1 – Set-up

18

19 fun findIndexOfMaxAbsValue (array: FloatArray): Int {
20 return array. indices . maxByOrNull { abs(array[it]) } ?: -1
21 } #finds the index which contains the gratest probability in the

output vector (sum of probabilities =1)
22

23 private var first10 = false
24 private var first300 = false
25

26 fun initialize (context : Context) {
27 loadModel (context)
28 }
29

30 private fun predict (realtimeData : REALTIME_DATA , healthData :
HEALTH_DATA , reset: Int , userData : USER_DATA): DROWSINESS_STATE {

31 val output = Array (1) { FloatArray (outputSize) }
32 val realtimeHR = realtimeData .HR
33 val realtimeHRV = realtimeData .HRV
34

35 if (realtimeHR > 30) {
36 handleBuffering (realtimeHR , realtimeHRV)
37

38 if (computeOutput && isModelLoaded) {
39 tflite .run(input , output)
40 output [0]?. run {
41 val indexPrediction = findIndexOfMaxAbsValue (this)
42 return when (indexPrediction) {
43 0 -> DROWSINESS_STATE .AWAKE
44 1 -> DROWSINESS_STATE . FATIGUED
45 2 -> DROWSINESS_STATE . DROWSY
46 -1 -> DROWSINESS_STATE . LOWDATAQUALITY
47 else -> DROWSINESS_STATE . CALIBRATE
48 }
49 }
50 } else {
51 return DROWSINESS_STATE . CALIBRATE
52 }
53 } else {
54 return DROWSINESS_STATE . LOWDATAQUALITY
55 }
56 }
57

58 private fun handleBuffering (hr: Double , hrv: Double) {
59 if (index10 < 10 && ! first10) {
60 buffer10 [index10][0] = hr
61 buffer10 [index10][1] = hrv
62 index10 ++
63 }
64 if (index10 == 10) {
65 # slides the data of 1 place from left to right delating the

oldest : sliding window of 10 samples
66 if (first10) {
67 slideBuffer (buffer10)
68 #adds the 10th sample (for all windows after the first to be

filled)
69 buffer10 [9][0] = hr
70 buffer10 [9][1] = hrv
71 }

81

Implementation of the model

72 first10 = true
73

74 # deploys the sample in the second buffer of size 300
75 val col1 = buffer10 .map { it [0] }
76 val col2 = buffer10 .map { it [1] }
77

78 #data normalization
79 val col1Normalized = ((col1. average () - trainSetMean [0]) /

trainSetStd [0]). toFloat ()
80 val col2Normalized = ((col2. standardDeviation () -

trainSetMean [1]) / trainSetStd [1]). toFloat ()
81

82 if (index300 < inputSize && ! first300) {
83 input [0][index300][0] = col1Normalized
84 input [0][index300][1] = col2Normalized
85 index300 ++
86 }
87 if (index300 == inputSize) {
88 if (first300) {
89 # slides the data of 1 place from left to right delating

the oldest : sliding window of 300 samples
90 slideBuffer (input [0])
91 #adds the (buffer .size)th sample (for all windows

after the first to be filled)
92 input [0][inputSize - 1][0] = col1Normalized
93 input [0][inputSize - 1][1] = col2Normalized
94 }
95 first300 = true
96 computeOutput = true
97 }
98 }
99 }

100

101 private fun slideSmallBuffer (buffer : Array < DoubleArray >) {
102 # slides the data of 1 place from left to right delating the

oldest : sliding window of n samples
103 for (i in 1 until buffer .size) {
104 for (j in 0 until numFeatures) {
105 buffer [i - 1][j] = buffer [i][j]
106 }
107 }
108 }
109

110 private fun slideInputBuffer (buffer : Array <Array <FloatArray >>) {
111 for (i in 1 until inputSize) {
112 for (j in 0 until numFeatures) {
113 buffer [0][i - 1][j] = buffer [0][i][j]
114 }
115 }
116 }
117 }

The Prediction class handles real-time data buffering, normalization, and prediction
using a pre-trained AI model for drowsiness detection.

82

8.1 – Set-up

Methods:

• initialize: loads the AI model and initializes the totData array reading the data
from a file. This array will store HR and HRV values, sampled every second, from
a known dataset, in such a way to test the application behaviour with respect to
known predictions from the PredictS sw.

• predict: main method for making predictions. Handles data buffering and runs
inference if the buffers are properly filled and the model is loaded. Returns the
predicted drowsiness state. The predict method processes incoming real-time data
coming from Garmin smartwatch (realtimeData). If the heart rate (realtimeHR) is
greater than 30, which is a physiologically reasonable value, it calls handleBuffering to
manage data buffering. If the computeOutput flag is true and the model is loaded, it
runs the prediction and returns the drowsiness state based on the highest probability
in the model’s output. If the condition on the quality of realtimeHR is not respected,
it returns as predicted output DROWSINESS_STATE.LOWDATAQUALITY and
executes the following sample.

• handleBuffering: manages the buffering of incoming HR and HRV data. Updates
both the 10-sample buffer (buffer10) and the 300-sample buffer (input). At first it
updates buffer10 with the latest HR and HRV values. When buffer10 is filled, it
computes the average and standard deviation, normalizes these values, and updates
the input buffer. Then it sets computeOutput to true when the 300-sample buffer is
filled, in such a way it can be processed into predict function.

• slideSmallBuffer : helper function to slide the buffer10 window, discarding the oldest
sample and making room for a new sample.

• slideInputBuffer : helper function to slide the input window (300-sample buffer),
discarding the oldest sample and making room for a new sample. This structure
ensures that the model always has a recent, normalized window of data to make
accurate predictions.

83

Implementation of the model

8.2 Testing of the application in terms of prediction
I tested the app implementing the GRU model algorithm method 2 (pre-processed HR
and HRV in sliding windows of 10 filling the input size of the RNN model (300,2)) by
uploading a file .txt of a registration used for testing the NN on Python environment into
the AndroidStudio folder.
In this way I checked the same behaviour on both application log files and on Python
script.

1 #array where the data used for testing the application will be saved
2 val totData = Array (1) { Array (5631) { DoubleArray (numFeatures) } }
3

4 private var cont =0 # couter to iterate through totData vector when
testing the application

In class Prediction I defined an array (1,5631,2) to save the registration I wanted to
test, coming from Danisi 2024, subject 22. Then initialize to 0 the counter which iterates
in this array.

1 fun initialize (context : Context) {
2 loadModel (context)
3 #reads the file used for test the application :
4 val text = readTextFileFromAssets (context ,"text.txt")
5 var l=0
6 for (pair in text) {
7 val (value1 , value2) = pair
8 totData [0][l][0] = value1 . toDouble ()
9 totData [0][l][1] = value2 . toDouble ()

10 l++
11 }
12 }

In the function initialize add the reading of the file: this function is called at first when
starting the Activity.

1 val realtimeHR = totData [0][cont][0]
2 val realtimeHRV = totData [0][cont][1]

At each calling of the predict function, with a frequency of 1 sample/sec, instead of
initializing the variables in the predict function to the real time value of HR and HRV,
they are initialized to the count(th) value of totData Then the counter count, which
iterates through the totData vector is increased.

84

8.2 – Testing of the application in terms of prediction

(a) user interface in AWAKE (b) user interface in ATTENTION (FA-
TIGUED)

Figure 8.1: user interface displaying the predicted drowsiness state

Each window of lenght 300 is associated with an output of the model: this means if
we want to create a correlation between the starting of the data acquisition and the first
prediction (first of the kth examples), we have to sum 309 unlabelled seconds (the ones
spennt to fill the buffer in the calibration phase), in which the two buffers cooperate in
view of obtain the first (300,2) vector, to serve as input of the NN.

85

Implementation of the model

window from to window from to
2797 AWAKE ATTENTION 4565 ATTENTION AWAKE
2809 ATTENTION AWAKE 4567 AWAKE ATTENTION
2837 AWAKE ATTENTION 4783 ATTENTION AWAKE
2839 ATTENTION AWAKE 4784 AWAKE ATTENTION
2840 AWAKE ATTENTION 4786 ATTENTION AWAKE
2850 ATTENTION AWAKE 5002 AWAKE ATTENTION
2928 AWAKE ATTENTION 5019 ATTENTION AWAKE
2970 ATTENTION AWAKE 5051 AWAKE ATTENTION
2986 AWAKE ATTENTION 5125 ATTENTION AWAKE
2987 ATTENTION AWAKE 5136 AWAKE ATTENTION
3024 AWAKE ATTENTION 5138 ATTENTION AWAKE
3175 ATTENTION AWAKE 5140 AWAKE ATTENTION
3502 AWAKE ATTENTION 5142 ATTENTION AWAKE
3699 ATTENTION AWAKE 5149 AWAKE ATTENTION
4560 AWAKE ATTENTION 5151 ATTENTION AWAKE

Table 8.1: label transitions at the kth window

Figure 8.2: history of label transitions

Comparing the history of the level of drowsiness transitions computed "real-time" on
the app, with the one obtained running the model on Visual Studio, with a Python script,
the behaviour matches.

86

8.3 – Memory usage and battery consumption

8.3 Memory usage and battery consumption
8.3.1 Memory usage
Memory Profiler and CPU Profiler are tools provided by Android Studio, in order to
monitor and study the developing app behaviour.
In particular the Memory Profiler focuses on monitoring and optimizing memory usage to
prevent memory leaks and reduce memory consumption and the CPU Profiler focuses
on analyzing and optimizing CPU usage to improve app performance and responsiveness.
The CPU Profiler tool allows the user to monitor the developed app’s CPU consumption
and thread behavior live during app interaction or review recorded method, function, and
system traces for detailed analysis.
Indeed monitoring and reducing the app’s CPU usage offers several benefits, including
enhancing the user experience with quicker performance and extending battery life. The
figure below illustrates the default view of the CPU Profiler, which includes several
timelines:

• Event Timeline: displays the transitions of app activities through various lifecycle
states and user interactions, like screen rotations.

• CPU Timeline: shows the real-time CPU usage of your app as a percentage of the
total available CPU time and the number of threads used. It also compares the CPU
usage of the app with other processes.

• Thread Activity Timeline: lists each thread of the app process and shows its activity
using specific colors:

– Green: the thread is active or ready to use the CPU, indicating a running or
runnable state.

– Yellow: the thread is active but waiting on an I/O operation, such as disk or
network I/O.

– Gray: the thread is sleeping and not consuming CPU time, often due to waiting
for an unavailable resource, either voluntarily or because the kernel has put it to
sleep until the resource is available.

The Memory Profiler is a tool within the Android Profiler that assists in detecting
memory leaks and excessive memory allocation, which can cause stuttering, freezing, or
crashes in apps. It provides a real-time graph of your app’s memory usage and allows you
to capture a heap dump, initiate garbage collections, and monitor memory allocations.
The memory categories include:

• Java: Memory from objects created in Java or Kotlin code.

• Native: Memory from objects created in C or C++ code. This includes memory used
by the Android framework for tasks like image and graphics processing, even if your
app is entirely in Java or Kotlin.

• Graphics: Memory for graphics buffer queues, such as GL surfaces and textures,
which are shared with the CPU, not exclusive to the GPU.

• Stack: Memory for native and Java stacks, linked to the number of active threads in
the app.

87

Implementation of the model

• Code: Memory used for the app’s code and resources, including dex bytecode,
compiled dex code, .so libraries, and fonts.

• Others: Memory that the system cannot classify under any specific category.

• Allocated: The count of Java/Kotlin objects your app has allocated, excluding those
in C or C++.

(a) peak at 10s from
starting the app

(b) behaviour after 1 minute from the starting of the app

Figure 8.3: MEMORY profiler: app in OPENED state

Figure 8.4: CPU profiler: app in OPENED state

88

8.3 – Memory usage and battery consumption

(a) MEMORY profiler

(b) CPU profiler

Figure 8.5: app in CALIBRATION state

89

Implementation of the model

(a) MEMORY profiler

(b) CPU profiler

Figure 8.6: app in AWAKE state

I’ve started the Profiler tool registration almost at the same time debugging the
application on a smartphone, in such a way to monitor the changing of CPU and memory
usages during a normal usage of the app implemented with NN.
In Fig 8.3a I reported the highest memory placement experienced after almost 10s from
starting the app: 275MB. After this peak the memory profile stabilizes and tends to
decrease gradually, but remaining above 194MB as in Fig 8.6a.

The memory usage of the app implemented with NN is high is compared to the one of
smartphone commercial applications.

I didn’t got access to the PredictS app Profiler, but considering that the generated
apk for this particular NN is 477 MB, compared to the apk of last version of PredictS:
56.7M, I can easily derive that in terms of memory occupation this method is not conve-
nient.

90

8.3 – Memory usage and battery consumption

8.3.2 Battery consumption
I’ve mad a test comparing both algorithm: the one containing the RNN and the original
PredictS, implemented in a Xiomi Redmi smartphone: I’ve started the app when the
smartphone was 100% recharged and kept it running till 0% of battery and registered the
incidence of both sw on the autonomy of the system.

algorithm starting
time

finishing
time

overall
time

RNN 20:47:46 10:06:41 14:41:05
PredictS 12:40:24 04:37:12 16:03:12

Table 8.2: app test info

The app implementing the RNN leads to a discharging of the smartphone around 1
hour, 22 minutes and 7 seconds before the app implementing PredictS sw.

91

92

Chapter 9

Conclusions

This thesis has demonstrated the potential of Recurrent Neural Networks (RNNs), partic-
ularly Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) networks,
to replicate and potentially improve upon the proprietary PredictS algorithm developed
by Sleep Advice Technologies for detecting driver drowsiness. The results indicate that
these models can detect the onset of drowsiness several minutes in advance, providing
critical insights into improving driver safety systems.

Key findings from the research include:

• Model Performance:
The GRU-based model achieved notable performance metrics, with an accuracy of
85%, specificity of 97%, and precision and sensitivity above 70%. Despite the class
imbalance present in the dataset, these results indicate the model’s effectiveness
in replicating the PredictS algorithm for drowsiness detection. It was also found
that the models’ sensitivity could be further improved by addressing the imbalance
between the awake and drowsy labels.

• Feature Selection:
The study confirmed that physiological signals, particularly heart rate (HR) and
heart rate variability (HRV), were effective predictors for drowsiness. However, the
introduction of additional features such as age introduced performance degradation,
likely due to the limited and skewed age distribution in the dataset. This underscores
the need for careful feature selection, particularly when dealing with smaller datasets.

• Generalization and Dataset Expansion:
A significant challenge identified was the limited generalizability of the models
to new datasets. The model’s performance degraded when applied to additional
datasets collected from real-world driving conditions, suggesting that expanding the
dataset and ensuring a more diverse set of training data is essential for improving
robustness. This would enhance the model’s ability to adapt to various driving
scenarios, environmental conditions, and physiological differences among drivers.

• Algorithm Protection:
A novel contribution of this thesis is the introduction of a random jitter mechanism
to protect the drowsiness detection algorithm from reverse engineering. This tech-
nique did not substantially impact model performance, making it a viable option

93

Conclusions

for companies looking to safeguard proprietary algorithms while maintaining their
operational effectiveness.

• Mobile Integration and Practical Application:
The successful integration of the GRU model into an Android application highlighted
the feasibility of real-time drowsiness detection on mobile devices. However, high
memory usage and significant battery consumption present hurdles for widespread
adoption. Optimizations in model size and computational efficiency are required
for better performance on mobile platforms, particularly for battery-dependent
applications.

Future Work

The findings of this thesis suggest several avenues for future research:

• Dataset Expansion:
Given the generalization challenges observed, future efforts should focus on acquiring
more diverse datasets. Larger datasets that account for varying driving conditions, age
groups, and physiological characteristics will be crucial in improving the robustness
and reliability of the models.

• Mobile Optimization:
Efforts to reduce the memory and battery consumption of the deployed models on
mobile devices are necessary. Techniques such as model compression, quantization,
and pruning could be explored to make the algorithms more suitable for real-time
applications on smartphones or wearable devices.

• Real-World Testing:
Further testing in real-world driving scenarios, beyond simulation environments, will
be necessary to validate the models’ effectiveness in practical applications. This
would provide a more comprehensive understanding of the model’s reliability and
impact on improving driver safety.

In conclusion, this research contributes to the growing field of AI-based driver assistance
systems, demonstrating the potential of RNNs in drowsiness detection. With further
optimizations and dataset enhancements, the models developed in this study could form
the basis for future applications aimed at reducing drowsiness-related accidents and
enhancing road safety.

In summary, this research successfully demonstrated the potential of RNNs, particu-
larly GRUs, to replicate the capabilities of the PredictS algorithm in detecting driver
drowsiness, even if the dataset counted only 24 registrations, also characterized by unbal-
ancing of data between labels.

The findings suggest that with further optimization—both in terms of model perfor-
mance and mobile integration—this approach could play a significant role in enhancing
driver safety. Future work should prioritize expanding the dataset and improving the
model’s efficiency for real-world deployment.

94

Bibliography

[1] et al. F. Lyu X. Zhang. «A Review of Active Automotive Safety Systems for
Autonomous Vehicles». In: IEEE Access (2018).

[2] A. Smith J. Doe. «The History and Evolution of Driver Assistance Systems: From
Cruise Control to Autonomous Driving». In: Journal of Automotive Safety (2020).

[3] M. T. Wong T. Peters. «Human-Centric Design of Advanced Driver Assistance
Systems: The Role of Driver Monitoring». In: International Journal of Vehicle
Autonomous Systems (2019).

[4] Shehzad Saleem. «Risk assessment of road traffic accidents related to sleepiness during
driving: a systematic review». In: East Mediterr Health J. 2022 Sep 29;28(9):695-700
(2022).

[5] Nyström B Carter N Ulfberg J and Edling C. «Sleep debt, sleepiness and accidents
among males in the general population and male professional drivers.» In: Accid
Anal Prev. 2003 Jul;35(4):613-7. (2003).

[6] Lagarde E Philip P Sagaspe P, Leger D, Ohayon MM, Bioulac B, Boussuge J,
and Taillard J. «Sleep disorders and accidental risk in a large group of regular
registered highway drivers.» In: Sleep Med. Volume 11, Issue 10 , December 2010,
Pages 973-979 (2010).

[7] Lesloum RH BaHammam AS Alkhunizan MA, Alshanqiti AM, Aldakhil AM, and
Pandi-Perumal SR et al. «Prevalence of-related accidents among drivers in Saudi
Arabia.» In: Ann Thorac Med. 2014 Oct;9(4):236–41. (2014).

[8] Barger LK Czeisler CA Wickwire EM, Dement WC, Gamble K, and et al. Hartenbaum
N. «Sleep-deprived motor vehicle operators are unfit to drive: a multidisciplinary
expert consensus statement on drowsy driving.» In: Sleep Health, 2016 Jun;2(2):94–9.
(2016).

[9] L. N. Zhang A. K. Gupta. «Heart Rate Variability as a Predictor of Drowsiness:
An Application for Driver Assistance Systems». In: Journal of Applied Physiology
(2019).

[10] M. S. Taylor D. Vural A. Bordallo. «Real-Time Detection of Driver Drowsiness
Using Vehicle-Based Measures». In: IEEE Electrical Insulation Magazine (Volume:
37, Issue: 3, May/June 2021) (2021).

[11] Yi Lu Murphey Jiaqi Ma and Hong Zhao. «Real time drowsiness detection based on
lateral distance using wavelet transform and neural network, pages 411–418». In:
Institute of Electrical and Electronics Engineers Inc. (2015).

[12] Renjie Li Zuojin Li Shengbo Eben Li, Bo Cheng, and Jinliang Shi. «Online detection
of driver fatigue using steering wheel angles for real driving conditions». In: Sensors
(Switzerland) (17 march 2017).

95

BIBLIOGRAPHY

[13] H. Fujimoto M. Hiraiwa T. Yamashita. «Driver Drowsiness Detection Based on Eye
Closure and Head Tilting». In: 2020 IEEE Global Engineering Education Conference
(EDUCON), Porto, Portugal, 2020, pp. 1217-1224 (2020).

[14] M. Sotelo M. Bergasa J. Nuevo. «Face and Eye Tracking for Driver Monitoring».
In: IEEE Transactions on Haptics, vol. 14, no. 3, pp. 577-590, 1 July-Sept. 2021
(2021).

[15] Mohammed Awad Yaman Albadawi Maen Takruri. «A review of recent developments
in driver drowsiness detection systems». In: Sensors (2022).

[16] Hamidreza Bakhoda Serajeddin Ebrahimian Hadi Kiashari Ali Nahvi, Amirhossein
Homayounfard, and Masoumeh Tashakori. «Evaluation of driver drowsiness using
respiration analysis by thermal imaging on a driving simulator». In: Multimedia
Tools and Applications (2020).

[17] Shelby E McDonald Douglas M Wiegand Julie A McClafferty and Richard J
Hanowski. Development and evaluation of a naturalistic observer rating of drowsiness
protocol. National Surface Transportation Safety Center for Excellence, 2009.

[18] João Mateus Marques Santana Caio Bezerra Souto Maior Márcio José das Chagas
Moura and Isis Didier Lins. «Real-time classification for autonomous drowsiness
detection using eye aspect ratio». In: Expert Systems with Applications (2020).

[19] Nur Syazarin Natasha Abd Aziz Ameen Aliu Bamidele Kamilia Kamardin, Suriani
Mohd Sam, Irfanuddin Shafi Ahmed, Azizul Azizan, Nurul Aini Bani, and Hazi-
lah Mad Kaidi. «Non-intrusive driver drowsiness detection based on face and eye
tracking». In: International Journal of Advanced Computer Science and Applications
(2019).

[20] Laura Prest Ali Shahidi Zandi Azhar Quddus and Felix JE Comeau. «Nonintrusive
detection of drowsy driving based on eye tracking data». In: Transportation research
record (2019).

[21] Marley Vellasco Alimed Celecia Karla Figueiredo and René González. «A portable
fuzzy driver drowsiness estimation». In: Sensors (2020).

[22] M. A. Lima P. A. Castro R. A. Mendez. «Heart Rate Variability and Electrodermal
Activity as Indicators of Driver Drowsiness». In: Monthly Notices of the Royal
Astronomical Society, vol. 492, no. 1, pp. 5121-5140 (Oct, 2019).

[23] P. Martinez J. F. Ochoa. «Electroencephalogram (EEG) Based Driver Drowsiness
Detection». In: OCEANS 2019 - Marseille, Marseille, France, 2019, pp. 1-6 (2019).

[24] J. Lee H. Lee and M. Shin. «Using wearable ecg/ppg sensors for driver drowsiness
detection based on distinguishable pattern of recurrence plots». In: Electronics
(2019).

[25] J.-i. Lee S. Koh B.R. Cho, S.-O. Kwon, S. Lee, J.B. Lim, S.B. Lee, and H.-D. Kweon.
«Driver drowsiness detection via ppg biosignals by using multimodal head support».
In: In 2017 4th International Conference on Control, Decision and Information
Technologies (CoDIT) (2017).

[26] N. Sofra T. Kundinger and A. Riener. «Assessment of the potential of wristworn
wearable sensors for driver drowsiness detection». In: Sensors (2020).

96

BIBLIOGRAPHY

[27] K. Kamata K. Fujiwara E. Abe, C. Nakayama, Y. Suzuki, T. Yamakawa, T. Hiraoka,
M. Kano, Y. Sumi, and F. Masuda. «Heart rate variability-based driver drowsi-
ness detection and its validation with eeg». In: IEEE Transactions on Biomedical
Engineering (2018).

[28] J. Ramos-Castro F. Guede-Fernandez M. Fernandez-Chimeno and M.A. Garcia-
Gonzalez. «Driver drowsiness detection based on respiratory signal analysis». In:
IEEE Access (2019).

[29] R. Smith K. M. Peters. «A Hybrid Model for Driver Drowsiness Detection Using
Vehicle Dynamics and Physiological Signals». In: IEEE Access, vol. 9, pp. 76493-
76502 (2021).

[30] D. Zhang L. Wang S. Zhai. «Multi-Modal Driver Fatigue Detection: A Review
of Hybrid Approaches». In: IEEE Internet of Things Journal, vol. 9, no. 13, pp.
10936-10947 (1 July 2022).

[31] H. Su and G. Zheng. «A partial least squares regression-based fusion model for
predicting the trend in drowsiness». In: IEEE Trans. Syst., Man, Cybern. A, Syst.
Humans, vol. 38, no. 5, pp. 1085–1092 (2008).

[32] A. Hashemi et al. «Time driver’s drowsiness detection by processing the eeg signals
stimulated with external flickering light». In: Basic Clin. Neurosci., vol. 5, no. 1,
pp. 22–27 (2014).

[33] R. O. Mbouna et al. «Visual analysis of eye state and head pose for driver alertness
monitoring». In: IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3, pp. 1462–1469
(Sep. 2013).

[34] A. J. Camm et al. «Guidelines heart rate variability—standards of measurement,
physiological interpretation, and clinical use». In: Eur. Heart J., vol. 115, no. 5, pp.
354–381 (1996).

[35] F. Versace et al. «Heart rate variability during sleep as a function of the sleep cycle».
In: Biol. Psychol., vol. 63, no. 2, pp. 146–162 (2003).

[36] Hamdy R. M., Abdel-Tawab H., Abd Elaziz O. H., Sobhy El attar R., and Kotb F.
M. «Evaluation of Heart Rate Variability Parameters During Awake and Sleep in
Refractory and Controlled Epileptic Patients». In: International Journal of General
Medicine 15 (2022), pp. 3865–3877.

[37] Aymen A. Alian and Kirk H. Shelley. «Photoplethysmography. Best Practice Research
Clinical Anaesthesiology». In: (2014).

[38] Luigi Pugliese. «PhD. Algorithm for the detection of the drowsiness». PhD thesis.
2024.

[39] Riccardo Groppo Luigi Pugliese Massimo Violante. «Real-time Sleep Prediction
Algorithm using Commercial Off the Shelf Wearable Devices». In: 2023 IEEE Smart
World Congress (SWC) (2023).

[40] IBM. Supervised learning. https://www.ibm.com/topics/supervised-learning., [data
di pubblicazione non disponibile]. Consultato il 24 luglio 2024.

[41] Göran Kecklund Anna Åkerstedt Miley and Torbjörn Åkerstedt. «Comparing two
versions of the karolinska sleepiness scale (kss). Sleep and biological rhythms». In:
14:257–260 (2016).

97

BIBLIOGRAPHY

[42] Ning Wang Wen Zhu Nancy Seng. «Sensitivity, specificity, accuracy, associated
confidence interval and roc analysis with practical sas implementations». In: NESUG
proceedings: health care and life sciences, Baltimore, Maryland, 19:67 (2010).

[43] Eric Rothstein Morris Ralf C. Staudemeyer. «Understanding LSTM – a tutorial into
Long Short-Term Memory Recurrent Neural Networks». In: arXiv:1909.09586 (12
September 2019).

[44] Livingstone DJ. Artificial neural networks: methods and applications. 2008.
[45] Khosro Sadeghniiat Haghighi MD PhD3 Zeinab Kohzadi MSc1 Reza Safdari PhD2.

«Determination of Sleep Apnea Severity Using Multi-Layer Perceptron Neural Net-
work». In: The Korean Society of Sleep Medicine (2020).

[46] Paul J. Werbos. «Backpropagation through time: What it does and how to do it.»
In: Proc. of the IEEE, 78(10):1550–1560 (1990).

[47] Ronald J. Williams and David Zipser. «A learning algorithm for continually running
fully recurrent neural networks.» In: Neural Computation, 1(2):270–280 (jun 1989).

[48] Michael C Mozer. «Induction of Multiscale Temporal Structure.» In: Advances in
Neural Information Processing Systems 4, pages 275–282. Morgan Kaufmann (1992).

[49] Sepp Hochreiter and J¨urgen Schmidhuber. Long Short-Term Memory. Neural
computation. 1997.

[50] Yoshua Bengio Junyoung Chung Caglar Gulcehre KyungHyun Cho. «Empirical Evalu-
ation of Gated Recurrent Neural Networks on Sequence Modeling». In: arXiv:1412.3555v1
[cs.NE] (2014).

[51] Zachary Kirori and Edwin Ireri. «Towards optimization of the gated recurrent unit
(GRU) for regression modeling». In: International Journal of Social Sciences and
Information Technology (2020).

[52] Huaizheng Lu by Xinyi Wu Bingjie Xiang, Chaopeng Li, Xingwang Huang, and
Weifang Huang. «Optimizing Recurrent Neural Networks: A Study on Gradient
Normalization of Weights for Enhanced Training Efficiency». In: Applied Sciences
(2014).

[53] John Peurifoy1 Li Jing1 Caglar Gulcehre, Yichen Shen1, Max Tegmark1, Marin
Soljačić1, and Yoshua Bengio. «Gated Orthogonal Recurrent Units: On Learning to
Forget». In: arXiv:1706.02761 (2017).

[54] Xinye Chen Roberto Cahuantzi and Stefan Güttel. «A comparison of LSTM and
GRU networks for learning symbolic sequences». In: arXiv:2107.02248 (2023).

98

	Acronyms
	Introduction
	Driver Assistance Systems and Autonomous vehicles
	Sleep during driving

	State of the art
	Sleep Prediction Algorithms
	Vehicular-based Techniques
	Behavioral-based Techniques
	Physiological-based Techniques
	Hybrid Techniques

	Physiological-based Techniques

	AI for sleep prediction
	First reasoning about the type of problem
	Feed-Forward Neural Networks and Backpropagation
	Recurrent Neural Networks

	Data analysis and pre-processing
	Dataset: experimental activities
	Data analysis and filtering
	Data processing
	Z-score normalization of data
	Scheduler function
	Cross-validation method

	GRU model
	Method B and C: training with cross-validation
	Method B and C: training achievements
	Window size of 300 and row input data
	Window size of 300 and row input data - filtering of temporal windows
	Window size of 300 and pre-processed input data
	Window size of 300 and pre-processed input data - validation with 2 datasets
	Window size of 240 and pre-processed input data - validation with 2 datasets
	Window size of 128 and pre-processed input data - validation with 2 datasets

	Age as an additional feature
	Method A: handle unbalanced data

	LSTM model
	Method 2: window size of 300 and row input data
	Techniques to handle unbalancing of data

	Introduction of a random jitter
	Delay in predicting FATIGUED and DROWSY
	Method B
	Method A

	Delay in predicting higher levels of drowsiness and in restoring the lower ones
	Delay in predicting levels of drowsiness and revise the data related to the FATIGUED level

	Implementation of the model
	Set-up
	TensorFlow Lite model
	Behaviour of the class Prediction: management of input data and predictions

	Testing of the application in terms of prediction
	Memory usage and battery consumption
	Memory usage
	Battery consumption

	Conclusions

