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Abstract

Drones are becoming an increasingly common presence in the skies, used for
purposes ranging from recreational activities to commercial deliveries and
surveillance. While they offer many benefits, drones also pose significant
challenges, particularly regarding safety, security, and privacy. With the
growing prevalence of drones, there is a critical need for effective methods to
detect and track them to ensure airspace security and to respond promptly
to potential threats.

This work introduces a novel method for detecting drones using a LiDAR
sensor mounted on a robotic turret. The turret can rotate and scan the sky,
providing continuous monitoring of the airspace. Upon detecting a drone, the
system dynamically adjusts the turret’s motion pattern to orient the sensor
toward the detected drone. This adaptive approach helps gather more data
and improves tracking accuracy by increasing the number of detections.

Different motion patterns for the turret are also investigated, with a com-
parison of their effectiveness in real-world conditions. These patterns are
tested with the LiDAR-turret system to determine the most effective strate-
gies for maintaining a reliable and accurate lock on drones as they move
through the airspace.

Overall, the LIDAR-turret system offers a robust solution for drone detec-
tion and tracking, combining real-time adaptability with enhanced surveil-
lance capabilities. This research contributes to the development of advanced
technologies aimed at managing increasingly crowded airspace and ensuring
the safe and responsible use of drones.
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1 Introduction

1.1 Context and Motivation

Drones in recent years have been protagonists of a proliferation phenomenon,
to such an extent that nowadays it is common to see civilians of many coun-
tries using them for various purposes, ranging from recreational activities
to professional applications. The user-friendly design, the possibility to be
carried everywhere due to the small size of certain models, the versatility
of usage, and the continuous improvements in its technology (such as bat-
tery life, camera quality, and stability during flight) are the key factors that
contributed to their widespread adoption. This can be summarized as a
transformation from military hardware to a civilian gadget: a testament to
the rapid pace of technological evolution.

The deployment of drones has become remarkably straightforward. For
instance, using a drone for aerial footage can be easily achieved, which in-
troduces the potential for privacy violations. The private outdoor spaces of
one’s home can be spied upon from the sky, directly leading to privacy in-
vasions! 2 3. The very low noise level emitted by drones during takeoff and
flight, combined with the difficulty of locating the operator, who can control
the drone from a distance far away from where it is spying, makes the sit-
uation worse: a crime can be committed without the victim ever realizing
it

In recent years, there have been cases of more dangerous drone usage. For
instance, drones have been used to destroy facilities, impacting the global

Thttps://www.forbes.com/sites/stephenricel /2019/02/04 /eyes-in-the-sky-the-public-
has-privacy-concerns-about-drones/Eyes in the Sky: The Public Has Privacy Concerns
About Drones

https://www.privacyend.com/privacy-drones-invasion-skies/Privacy and Drones: An
Invasion From the Skies Unveiled

3https://www.judges.org/news-and-info/drones-latest-threat-right-privacy /Drones:
The Latest Threat to the Right to Privacy

4https://www.nytimes.com/2019/11/03 /us/drones-crime.htmlDrones Used in Crime
Fly Under the Law’s Radar



economy®, and even to carry out targeted killings® 7 8

, or attempting to do
so”. To address these problems, malicious drones should first be detected

and then neutralized. This work focuses on the first step, which is detection.

1.2 Objectives

The main objective of this thesis is to enhance the accuracy and robustness
of drone detection and tracking by leveraging a LiDAR sensor mounted on
a robotic turret. To achieve this, several tasks were carried out. A LiDAR-
based detection system with advanced motion strategies was implemented,
which includes sweeping, swinging, stopping, and slowing down, allowing
for a higher number of frames to capture the drone and thus improving
tracking precision. C++ nodes were developed within the Robot Operating
System (ROS) to control the movement of the turret based on the data
received from the LiDAR. Additionally, machine learning algorithms, such
as convolutional neural networks (CNNs), were employed to analyze LiDAR
point cloud data, enhancing the system’s ability to differentiate between
drones and other objects. Moreover, sensor fusion techniques were applied
by combining LiDAR data with inputs from other sensors, such as cameras
and acoustic sensors, further improving detection accuracy and adaptability
in diverse environmental conditions.

1.3 Contributions

This thesis offers several contributions to the field of drone detection and
tracking. It presents a novel approach to improving drone tracking accuracy
by employing a LiDAR sensor mounted on a robotic turret, which dynam-
ically adjusts its motion strategies to capture more frames of the drone in
flight. The development of a real-time control system within ROS enables

Shttps://www.nytimes.com/2019/09/14/world /middleeast /saudi-arabia-refineries-
drone-attack.htmlTwo Major Saudi Oil Installations Hit by Drone Strike

Shttps://www.nytimes.com/2023/12/12/world/africa/nigeria-military-air-
strikes.htmlErrant Airstrikes by Nigeria’s Military Have Killed Worshipers, Herders
and Refugees

Thttps://edition.cnn.com/2022/01/18 /middleeast /uae-abu-dhabi-houthi-yemen-
explainer-intl/index.htmlA drone attack in Abu Dhabi could mark a dangerous turning
point for the Middle East

8https://www.amnesty.org/en/latest /news/2024/03 /civilians-seeking-shelter-were-
killed-by-drone-strike-in-town-in-gao-region/Mali: ~ Drone strikes killed 13 civilians
including seven children in Amasrakad

9https://www.nytimes.com/2018/08/10/world /americas/venezuela-video-
analysis.htmlA Closer Look at the Drone Attack on Maduro in Venezuela



dynamic turret movement based on LiDAR data, enhancing drone detection
capabilities. Furthermore, the integration of machine learning techniques,
particularly convolutional neural networks, significantly improves the sys-
tem’s ability to classify drones by processing LiDAR-generated point cloud
data. Sensor fusion techniques are also introduced, combining LiDAR with
camera and acoustic sensor data, resulting in a more robust and reliable de-
tection system. A conference paper detailing these findings has been submit-
ted, and the research was conducted as part of an Erasmus grant, supporting
international collaboration in this field.



1.4 Document Structure

The structure of this thesis is as follows:

e Related Work: This section reviews various drone detection methods,
including the use of acoustic signals, CW radar with GMM background
modeling, and LiDAR sensors, focusing on solid-state LiDAR and its
applications in UAV tracking.

e Background: This section discusses the main components of the sys-
tem, specifically focusing on the LiDAR sensor and detection techniques
used in the implementation.

e Method: The method section details the implementation of the pro-
posed system, explaining the different nodes (such as the filter, con-
troller, and Extended Kalman Filter) that are used within the ROS
environment to control the drone detection and tracking system.

e Validation of Methods and Systems: This section describes the
step-by-step process used to validate the system through simulations
and various motion pattern tests, such as straight and square motion.

e Experimental Setup: In this section, the hardware and software
configurations used in real-world testing are described in detail.

e Results and Discussions: The results from the tests, including man-
ual and automated drone control experiments, are presented, along
with an analytical comparison of the motion patterns.

e Conclusion: The final section summarizes the key contributions of
the thesis, proposes future research directions, and discusses potential
methods for drone neutralization.



2 Related Work

2.1 Drone Detection Using Acoustic Signals

Acoustic signals provide a reliable method for detecting drones by capturing
the unique sound features they emit, such as Short Time Energy, Tempo-
ral Centroid, Zero Crossing Rate, and Mel-Frequency Cepstral Coefficients
(MFCC). These features are analyzed using a one-class SVM, which distin-
guishes drone sounds from background noise to minimize false positives and
enhance detection accuracy [15].

2.2 Drone Detection Using CW Radar and GMM

CW radar has been employed for drone detection by continuously emitting
waves and capturing reflections from both fixed and moving objects. A Gaus-
sian Mixture Model (GMM) is applied to model the background environment
and filter out non-relevant objects, improving detection of drones based on
pixel inconsistencies in the radar data [11].

2.3 Drone Detection Using LiDAR Sensors

LiDAR sensors are increasingly used for drone detection due to their ability to
provide accurate 3D spatial data. Drones with high reflectivity and smoother
surfaces are more easily detected, making LiDAR particularly effective under
varying environmental conditions. Additionally, its performance in real-time
tracking has been validated in several studies [1, 16, 4]. The integration of
LiDAR with other sensors, such as thermal cameras and acoustic sensors,
enhances detection reliability, making it a robust solution for UAV tracking.

2.4 Solid-State LiDAR for UAV Tracking in GNSS-
Denied Environments

Solid-state LiDAR is a promising technology for tracking UAVs in GNSS-
denied environments due to its lack of moving parts, making it more reliable
for fast-moving objects like drones. By adjusting the LiDAR’s frame integra-
tion time and using a dual-frequency scan approach, this system significantly
improves tracking accuracy and prevents image blur [1]. Data fusion tech-
niques, such as Inverse Covariance Intersection (ICI) and Kalman filters, are
applied to enhance overall system accuracy in complex tracking scenarios.



2.5 Drone Detection Using Ku-Band Battlefield Radar

Ku-band battlefield radar, operating at 12-18 GHz, is effective in detecting
drones at short ranges. The detection probability is heavily influenced by
the drone’s Radar Cross Section (RCS) and the Signal-to-Noise Ratio (SNR)
[tayarani2019battlefield]. Studies show that larger drones, with higher
RCS, are easier to detect, making Ku-band radar a suitable tool for moni-
toring restricted areas.

2.6 Passive Radar Technology for Drone Detection

Passive radar systems detect drones by analyzing disturbances in existing
electromagnetic signals from sources like Wi-Fi, cellular networks, and satel-
lite communications. This cost-effective and stealthy method is advantageous
for detecting small drones, particularly in urban or densely populated areas.
By leveraging ambient signals, passive radars provide a scalable and econom-
ical surveillance solution [griffiths2017passive].

10



3 Background

3.1 LiDAR Sensor

LiDAR (Light Detection and Ranging) is a sophisticated sensing technology
used for 3D mapping and measuring distances to objects in an environment.
It works by emitting pulses of laser light and measuring the time it takes
for the pulses to return after bouncing off objects. This process allows the
LiDAR system to create detailed 3D representations of the surroundings.

The basic principle of LIDAR involves the emission of rapid pulses of laser
light, which can vary significantly in wavelength. Ultraviolet, visible, and
near-infrared light are all commonly used in different LiDAR applications.
When a laser pulse encounters an obstacle, it reflects back to the LiDAR
sensor, provided the object’s geometry facilitates the reflection. The system
then measures the time taken for the pulse to return. Since the speed of light
is a known constant (approximately 299,792 km/s in a vacuum), the LIDAR
system can calculate the distance to the target using the formula:

(speed of light x time delay)
2

distance =

(1)

The division by 2 accounts for the round trip of the light pulse — it travels
to the target and then back to the LiDAR sensor. Without this division, the
computed distance would be twice the actual distance [5].

LiDAR systems emit thousands to millions of pulses per second, enabling
them to measure distances to multiple points simultaneously. This capa-
bility generates a point cloud that maps out the shape and features of the
surrounding environment. Each point in the cloud has its own set of coor-
dinates, representing a small portion of the scanned object’s surface. The
point cloud data can then be processed for various applications, including
analysis, 3D reconstructions, and modeling.

11



3.1.1 Pros of LiDAR sensor

LiDAR technology offers several inherent advantages that make it an in-
valuable tool across numerous applications. One of the primary benefits of
LiDAR is its high accuracy. By precisely measuring the time it takes for
laser pulses to return to the sensor, LIDAR systems can determine distances
with great precision, often within a few centimeters. This high level of ac-
curacy is crucial for applications requiring detailed spatial information, such
as autonomous vehicle navigation, topographic mapping, and infrastructure
development.

Another significant advantage of LiDAR is its wide detection range. Li-
DAR sensors can detect objects at varying distances, from just a few meters
to several hundred meters away, depending on the power of the laser and the
reflectivity of the target objects. This wide range allows LiDAR to be used in
diverse environments, from dense urban areas to open landscapes, providing
comprehensive spatial data across large areas.

LiDAR’s ability to operate in various lighting conditions is another key
benefit. Unlike cameras, which rely on ambient light, LIiDAR systems use
laser pulses to illuminate their targets. This means that LIDAR can function
effectively in complete darkness, as well as in bright sunlight. This capability
ensures consistent data acquisition regardless of the time of day or lighting
conditions, making LiDAR ideal for applications such as night-time navi-
gation for autonomous vehicles, 24/7 monitoring of construction sites, and
emergency response operations in low-visibility conditions.

The rapid emission and detection of laser pulses are essential for fast data
acquisition. LiDAR systems can emit millions of laser pulses per second,
allowing them to capture detailed 3D information about the environment
in real time. This high-speed data collection is particularly beneficial in
dynamic environments where conditions change rapidly. For example, in
autonomous driving, real-time LiDAR data enables vehicles to detect and
respond to obstacles and changes in the road environment instantly, ensuring
safe and efficient navigation.

Furthermore, the high-density point clouds generated by LiDAR provide
a rich dataset for analysis and modeling. Each point in a LiDAR point
cloud represents a precise location on the surface of an object, allowing for
detailed 3D reconstructions and simulations. This level of detail is invaluable
for applications such as virtual reality, digital twins in smart cities, and
archaeological site mapping, where accurate 3D models are necessary for
analysis and visualization.

LiDAR technology is also versatile and adaptable. Different types of
LiDAR systems, such as airborne, terrestrial, and mobile LiDAR, can be

12



tailored to specific applications and environments. Airborne LiDAR is com-
monly used for large-scale topographic surveys, while terrestrial LiDAR is
used for detailed mapping of buildings and infrastructure. Mobile LiDAR,
mounted on vehicles, is used for rapid data collection along transportation
corridors. This adaptability ensures that LiDAR can meet the needs of a
wide range of industries and applications.

In addition to its technical advantages, LIDAR technology is continuously
evolving. Advances in laser technology, sensor miniaturization, and data pro-
cessing algorithms are enhancing the capabilities of LIDAR systems, making
them more efficient, accurate, and accessible. As a result, LiDAR is becom-
ing more integrated into various fields, driving innovation and enabling new
applications.

3.1.2 Fields of Application

LiDAR technology has a wide range of applications across various industries,
leveraging its ability to provide precise spatial information and detailed 3D
representations.

In the field of autonomous vehicles, LiDAR is a critical component for
navigation and obstacle detection. Autonomous vehicles rely on LiDAR sen-
sors to create real-time 3D maps of their surroundings, enabling them to
detect and avoid obstacles, navigate complex environments, and make in-
formed driving decisions. The high accuracy and rapid data acquisition of
LiDAR are essential for the safety and efficiency of autonomous systems.

Topographic mapping is another significant application of LiDAR. It is
used to create high-resolution topographic maps and digital elevation models
(DEMs). These maps are crucial for various purposes, including land sur-
veying, urban planning, and infrastructure development. LiDAR’s ability to
penetrate vegetation and provide accurate ground measurements makes it
particularly useful in forested and difficult-to-access areas.

In environmental monitoring, LiDAR is employed to study and man-
age natural resources. It can be used to monitor forest structure, measure
biomass, and assess changes in vegetation over time. LiDAR data helps in
understanding the impacts of climate change, managing wildlife habitats,
and monitoring natural disasters such as floods and landslides.

Archaeology has also benefited from LiDAR technology. Archaeologists
use LiDAR to discover and map ancient structures and landscapes that are
often hidden under dense vegetation. The high-resolution data provided by
LiDAR can reveal subtle features of the terrain, helping archaeologists to
identify sites of interest and plan excavations with greater accuracy.

In urban planning and infrastructure, LiDAR is used to create detailed

13



3D models of cities and structures. These models assist in the design and
construction of buildings, roads, and utilities. LIDAR data helps in assessing
the condition of existing infrastructure, planning new developments, and
optimizing the use of space in urban areas.

Agriculture is another sector where LiDAR is making an impact. Preci-
sion agriculture relies on LiDAR data to monitor crop health, plan irrigation,
and manage fields more efficiently. By providing detailed information on the
terrain and vegetation, LIDAR helps farmers to optimize their practices and
improve yields.

The mining industry uses LiDAR for mapping and monitoring mining
sites. LIDAR provides accurate data on the topography and geology of min-
ing areas, helping to plan and execute operations more effectively. It is used
to monitor the progress of excavation, assess the stability of slopes, and man-
age resources.

In coastal and marine applications, LiDAR is used for mapping coastal
zones and seabeds. Bathymetric LIDAR systems can measure the depth of
water and map underwater features, supporting navigation, coastal manage-
ment, and marine conservation efforts.

3.1.3 VLP-16 model, from Velodyne

The VLP-16 model from Velodyne is a highly versatile LIDAR sensor em-
ployed in the project presented in this paper. This sensor utilizes 16 laser
beams and detectors to measure distances across a wide field of view. It op-
erates with a unique spinning mechanism housed in a rugged, weatherproof
casing, which allows it to continuously scan the surrounding environment.
The VLP-16 achieves this by firing each of its lasers at an impressive rate
of 18,000 times per second. Consequently, it generates detailed and accurate
3D point cloud data in real-time.

To understand the operation of the VLP-16 in greater detail, the firing
sequence of its lasers is crucial. Each of the 16 lasers is activated and then
recharged every 55.296 microseconds. Within this time frame, each laser fires
sequentially, with a precise interval of 2.304 microseconds between successive
firings. Following the completion of all 16 laser firings, there is a brief idle
period of 18.43 microseconds before the next cycle begins. This pattern
results in a complete cycle time of 55.296 microseconds for the lasers to fire,
recharge, and repeat, ensuring a continuous and consistent data acquisition
process.

The lasers employed in the VLP-16 are semiconductor laser diodes. These
diodes are created by applying a current through a series of stacked p-n
junctions, which stimulates photon emission. These photons are then focused

14
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Figure 1: Firing Sequence Timing

into a narrow, coherent laser beam. The VLP-16 lasers are classified as Class
1 lasers, which adhere to strict safety standards. This classification ensures
that even with direct exposure to the human eye, the lasers do not pose a
significant risk, making them safe for use in a variety of environments and
applications [2].

In addition to their safety, the design and operational characteristics
of the VLP-16 make it suitable for a wide range of applications, from au-
tonomous vehicles to robotics and surveying. The precise timing and firing
mechanism contribute to the sensor’s ability to provide high-resolution and
accurate 3D mapping, which is essential for tasks requiring detailed environ-
mental understanding. The robust construction ensures reliable performance
under various environmental conditions, further enhancing its utility in both
research and practical implementations.
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3.1.4 Application of LiDAR sensor in a sensing system

INS/GPS (optional)

IP Address:
192.168.1.77

Factory set IP Address:
s 192.168.1.201

Ethernet

5

Power Supply
(9V to 18V)

Figure 2: 3D Sensing System Components

Fig.2 can be useful to better understand how a sensing system that utilizes
LiDAR technology is organized, showcasing the integration of multiple com-
ponents to facilitate the acquisition and processing of 3D spatial data. This
system is often used in applications such as autonomous vehicles, robotics,
and environmental mapping, where precise spatial awareness is crucial.

The starting component is the laptop computer (labeled as 1 in the fig-
ure), which serves as the central processing hub. The laptop is configured
with a specific IP address that allows it to communicate seamlessly with the
Velodyne interface box, which is another critical component in the system.
The IP address configuration is crucial; it ensures that the laptop and the
interface box are on the same network subnet, enabling efficient data transfer
and control of the LiDAR sensor. The laptop is equipped with specialized
software, often provided by the LiDAR manufacturer, that is responsible for
interfacing with the LiDAR, visualizing the data in real-time, and storing it
for further analysis.

The Velodyne interface box (3 in the figure) acts as a bridge between the
laptop and the LiDAR sensor. This device is essential for the communication
and data transfer processes. It is connected to the laptop via an Ethernet
cable, which allows the high-bandwidth data stream generated by the Li-
DAR sensor to be transmitted to the laptop for processing. The interface
box also receives power through a DC power supply cable, ensuring that it
operates continuously and reliably. Additionally, it is directly connected to

16



the LiDAR sensor, typically through a specialized cable. This connection
not only facilitates data transfer but, depending on the system’s design, may
also provide power to the LiDAR sensor itself.

Furthermore, the interface box can be connected to an optional INS/GPS
antenna and interface (2 in the figure). The inclusion of an INS (Inertial
Navigation System) and GPS is particularly important in applications where
precise positioning and orientation data are required. This setup is crucial
for scenarios where the spatial data needs to be georeferenced, or where
the movement of the system must be tracked accurately in real-time. The
INS/GPS integration allows the system to maintain spatial awareness even
when GPS signals are weak or unavailable, such as in urban canyons or indoor
environments.

The LiDAR sensor (4 in the figure) is the core component of the system.
LiDAR, which stands for Light Detection and Ranging, operates by emitting
laser pulses and measuring the time it takes for these pulses to return after
hitting objects in the environment. By analyzing the time of flight for each
pulse, the sensor can calculate the distance to the object, thereby creating
a 3D point cloud that represents the surrounding environment. This point
cloud data is rich in detail and is essential for applications that require precise
environmental mapping and object detection. The LiDAR sensor is capable
of scanning in a 360-degree field of view, depending on the model, capturing
comprehensive spatial data in real-time.

The process begins when the LiDAR sensor, powered either directly or
through the interface box, emits its laser beams. As these beams hit objects,
the reflected pulses are captured by the sensor. The data is then transmit-
ted to the Velodyne interface box, which processes the signals and sends the
relevant information to the laptop computer. The software on the laptop pro-
cesses this incoming data, allowing for real-time visualization and analysis. If
an INS/GPS system is integrated, the spatial data is also synchronized with
positional information, ensuring that the point cloud is accurately referenced
in space.
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3.1.5 Laser Return Modes

The VLP-16 LiDAR sensor offers advanced capabilities through its laser re-
turn modes, which are crucial for interpreting data, particularly in environ-
ments with multiple reflective surfaces. The sensor supports three return
modes: Strongest, Last, and Dual, each designed to cater to different appli-
cation needs by selecting specific reflections from the laser pulses.

When a laser pulse is emitted from the VLP-16, it diverges gradually,
increasing the likelihood of interacting with multiple objects along its path.
For example, a pulse might hit a tree branch and the ground behind it,
resulting in multiple returns. The sensor’s return modes allow users to specify
which of these reflections to record.

The Strongest Return Mode is designed to capture the reflection with
the highest intensity, typically from the most reflective surface. This mode
is particularly useful in scenarios where accurate detection of bright or retro-
reflective surfaces is crucial. For instance, in urban mapping, the strongest
return could help in accurately identifying traffic signs or license plates, which
are designed to reflect more light back to the sensor.

In contrast, the Last Return Mode captures the final reflection in a se-
quence, which usually corresponds to the farthest object along the laser
pulse’s path. This mode is valuable in applications where the goal is to
measure the distance to a surface that is behind an obstacle, such as the
ground beneath vegetation. By recording the last return, the sensor can pro-
vide data that represents the farthest object, which is often critical in aerial
surveys or forestry applications where ground elevation needs to be mapped
even when there is an overlying canopy.

The Dual Return Mode offers an even more sophisticated approach by
capturing both the strongest and the last returns, provided the two reflec-
tions are separated by at least one meter. This mode is especially useful in
complex environments where multiple layers of objects are present, such as in
forested areas where a pulse might first hit the upper canopy before reaching
the ground. Dual returns enable the sensor to provide detailed information
about both the canopy and the terrain beneath it, which can be essential for
accurate tree height measurement or biomass estimation.

An important aspect of understanding these return modes is recognizing
the relationship between laser power, reflectivity, and distance. Reflectivity
is a measure of how much light is reflected back to the sensor, and it varies
with the material and surface characteristics of the object. The VLP-16’s
calibrated reflectivity values, ranging from 0 to 255, allow the sensor to dis-
tinguish between diffuse reflectors like tree trunks (which scatter light) and
retro-reflectors like road signs (which reflect light back directly). This differ-
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entiation is vital for interpreting the data accurately, as it influences which
return mode might be most appropriate for a given application.

In scenarios where multiple returns are possible, the choice of return
mode directly impacts the data’s interpretation. For instance, in Dual Re-
turn Mode, if the strongest return is also the last one, the sensor defaults
to reporting the second-strongest return, ensuring that meaningful data is
captured, even in complex reflective environments.

The flexibility of the VLP-16’s return modes, combined with its calibrated
reflectivity measurements, makes it a powerful tool for a wide range of appli-
cations, from urban mapping to environmental monitoring. Understanding
and utilizing these modes effectively can significantly enhance the quality and
accuracy of LIDAR data, providing deeper insights into the physical world.

To better understand the concepts listed above, Fig.3 4 5 are reported.

Figure 3: Single Return: Last and Strongest Returns

Fig.3 presents the case in which the laser pulses hit only one obstacle,
and as consequence the related return is the strongest and last one.

Fig.4 shows a laser pulse hitting the near wall with most of its energy
while the rest reaches the far wall, the Dualreturn mode allows to capture
measurements from both surfaces. However, the sensor only records both
returns if the two objects are separated by at least one meter.
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Figure 4: Dual Return: Last and Strongest Returns
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Figure 5: Dual Return with Far Retro-Reflector

In Fig.5 is possible to see that most of the beam hits the far wall, making
it the strongest return. However, it’s also possible that the far wall is distant
enough that, despite reflecting most of the beam, the near wall still produces
the strongest return.
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3.2 Detection

The term ’detection’ refers to the ability of the LiDAR sensor to collect at
least one data point from a flying drone. It’s crucial to highlight the condi-
tions that must be met for a detection to occur and to ease the understanding
of this concept, some figures can be helpful. For the sake of clarity, Fig.6 and
Fig.7 show the physical meaning of two angles that are going to be mentioned
many times in the current subsection:

e 0, which represents the rotation of the turret around the z-axis (pan
motion of the PTU)

e ¢, which refers to the spin motion internal to the LiDAR

Figure 7: The PTU, the drone, and
the corresponding world coordinates.

Figure 6: PTU pan angle and Li-
DAR’s internal spin motion angle
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3.2.1 Extraction and Processing of Recorded Data

ArduPilot is an open-source autopilot system that provides comprehensive
flight control for a wide range of unmanned vehicles, including drones, planes,
cars and boats. It is widely utilized in both hobbyist and professional set-
tings due to its flexibility, robustness, and extensive feature set. The system
is designed to manage and automate the navigation and operation of these
vehicles, enabling them to perform complex tasks with minimal human in-
tervention. When an ArduPilot-controlled drone is in operation, it generates
a wealth of data related to its flight performance and environmental inter-
actions. This data includes information such as altitude, speed, orientation,
GPS position, battery status, and sensor readings. The data is recorded by
the flight controller in real-time and stored in log files. These logs are crucial
for analyzing the vehicle’s performance, diagnosing issues, and improving fu-
ture operations. The recording process is accomplished through the flight
controller’s onboard logging system. As the drone flies, the flight controller
continuously monitors and records various parameters from its sensors and
systems. This data is then written to a log file stored on a memory card
within the flight controller or transmitted to a ground station for real-time
monitoring and logging.

To extract and analyze this data, the log files are downloaded from
the flight controller to the computer, then loaded into MATLAB using the
Ardupilog function, which reads the binary log data from the specified file
path. This function creates a MATLAB object or structure containing all
the recorded data from the drone’s flight controller.

With the log file successfully loaded, the processing part starts by extract-
ing arrays for longitude, latitude, and altitude from the GPS data within the
log. These arrays provide crucial geographic and elevation information nec-
essary for analyzing the drone’s trajectory and performance. Additionally,
the code calculates the precise timestamps for each GPS data point.

22



3.2.2 Outputs of the Processing Part

The outputs of the processing part are presented from Fig.8 to Fig.12. Fig.8
illustrates the evolution over time of both the PTU pan angle and the drone
yaw angle: the red path is taken from the ArduPilot logs from the drone
itself, while the blue saw tooth plot represents the Sweeping motion during
a field test, in which the PTU speed was constant, as shown by the slopes of
the lines that maintain the same value, only changing in sign.
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Figure 8: PTU Pan Angle and Drone Yaw over Time

We are particularly interested in the intersections between the blue and
red plots, as these points represent the instances when the PTU, and thus
the LiDAR mounted on top of it, is oriented towards the drone. Let’s focus
on one of these intersections, as shown in Fig.9, and let’s consider the one
that, as highlighted by the label in figure, occurs after 231.683 seconds from
the beginning of the test.
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Figure 9: PTU Pan Angle and Drone Yaw over Time, zoom in

However, it is important to note that this is not sufficient to consider the
highlighted point a detection. For a detection to occur, the angle covered by
the internal spin motion of the LiDAR, related to the consecutive firing of
the 16 laser pulses, must also match the drone’s pitch angle. If this condition
is not met, the situation would be the following: even if the PTU orients the
LiDAR in the correct direction to see the drone at that precise time instant,
if the LiDAR is not firing the laser beam at the right angle, it will not be
possible to collect any data. Focusing on Fig.10, it shows the behavior over
time of both the drone’s pitch angle and the LiDAR’s internal rotation angle.
Notably, at the corresponding time of the intersection in Fig.9, there is also
an intersection in Fig.11.
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Figure 10: LiDAR Internal Spin Motion Angle and Drone Pitch over Time,

zoom out
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Figure 11: LiDAR Internal Spin Motion Angle and Drone Pitch over Time,

zoom in
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The red path, representing the drone pitch, appears flat both in Fig.10
and Fig.11 because it displays a very short time period, about 0.02 seconds.

At this point, it is still too early to conclude that a detection has occurred.
One final step is needed: we must ensure that a laser pulse was fired and
active at that specific time instant to confirm the drone’s detection. This
concept has been previously highlighted in Fig.1.

Otherwise, the PTU would orient the LiDAR in the exact direction, the
internal spin motion of the sensor allows the laser pulse to hit the flying
drone if fired, but if the beam is not fired at that instant, no data will be
collected. In the case took in analysis, looking at Fig.12 we can conclude
that a detection verifies at 231.683 seconds, since a laser pulse was indeed
fired at that time.
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Figure 12: LiDAR laser pulses firings, zoom in
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3.3 Gaps between successive measurements

Trying to visualize with an infrared camera how the fired lasers look like on
an object surface, they appear as a pattern of spots, where each spot is a
small rectangular area composed of three smaller bands of light, as shown in
Fig.13. At the sensor’s ring lens, these laser spots measure 9.5 mm tall by
12.7 mm wide: the more the object is far from the sensor, the longer will be
the distance that the laser pulses have to cover and, due to their divergence,
the measures of the laser spots will be larger.

Inside the VLP-16 sensor it’s noticeable the presence of a vertical array
of lasers that produce multiple laser scans, where each scan line, that can be
seen as adjacent laser scans, consists of multiple laser spots.

Figure 13: Laser Spots on a wall

The gap between these scan lines enlarges by increasing the distance of
the target from the sensor and can be calculated using the formula:

gap = distance x tan (vertical angle between scan lines) (2)
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To better understand how the LiDAR emits lasers and how the gaps in
the data emerge, refer to Fig.14. This figure presents a top view of the Li-
DAR, where the red beams indicate the laser emissions as the sensor rotates.
Additionally, a comparison with Fig.16 reveals that a 3D LiDAR scans its en-
vironment along both vertical and horizontal axes, resulting in much denser
measurements along the latter. Fig.15 is attached to make the gaps between

the red beams of Fig.14 more visible.
I

e

.

Figure 14: View of the top of Figure 15: Partial view of the top
the LiDAR, with red showing the of the LiDAR, with red showing
beams as the sensor inside the Li- the beams as the sensor inside the
DAR rotates LiDAR rotates

Figure 16: Side view of the LiDAR showing the 16 vertical beams in different
planes
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The issue of the presence of gaps between successive measurements, makes
it more challenging to detect small targets at larger distances'®. As conse-
quence, detection and accurate tracking of a drone that is flying far away from
the LiDAR becomes probabilistic, since the target potentially (and probably)
can hide in the gaps.

To address this issue, the system that will be utilized aims at improving
the number of detections by temporarily focusing the scanning action of the
LiDAR on the target. This focusing can be seen as SlowingDown, Swinging
around or Stopping to the heading of the target. These types of motion
will be carried out thanks to the turret PTU-E46 Pan-Tilt Unit from FLIR
Systems, though only the pan motion will be utilized in this case. The
LiDAR mounted on the top of the turret is set to rotate around the z-axis
(pan motion), accordingly to the selected type of motion of the turret: in
this way, the expected goal is to gather a sufficient amount of data and, as
consequence, to reduce the uncertainty that affects the drone position. To
enhance the performance of the system is crucial to improve the detection
probability: to achieve this, the key is to analyze how detection rates change
by varying system parameters during simulations. Having concluded that
part, field testing will be indispensable for validating these enhancements in
a real-world scenario.

Ohttps://docs.clearpathrobotics.com /assets/files/clearpath,.oboticsg23729 — TDS2 —
2¢7454¢f9f317beb3cel938dca7ddef4.pdf LiDARV LP — 16U ser M anual(63 — 9243 Rev. E)
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4 Method

To achieve our goal, the first stage revolves around the detection of the target
of interest. This step is followed by tracking process, meant as the continu-
ous estimation of the target’s position, that will be optimized by dynamically
modifying the type of motion to which the LiDAR is subjected, aimed at max-
imizing the number of times the drone remains inside the field of view of the
LiDAR, ensuring it is visible for as long as possible. The current section will
provide a detailed explanation of the working principles of each component,
with a particular focus on the interactions between them. This includes the
hardware components, ROS nodes, and the data exchanged between them.
The implementation of the detection and identification mechanisms, along-
side with the integration with the overall system, will be highlighted.

To facilitate the understanding of the components and their interactions,
a block diagram is presented in Fig.17: it illustrates the sequence and rela-
tionship between the various elements of the drone tracking system.

LiDAR

Point Cloud

Filter

Filtered Point Cloud

Controller

Motion Command Centroids

Pan-Tilt Unit Extended Kalman Filter

Figure 17: Flowchart of the LiDAR data processing system

Since the LiIDAR and PTU turret have already been clarified, in the
following subsections the exploration will delve into the ROS nodes and their
interactions, detailing their respective roles and how they communicate to
ease the system’s functionality.
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4.1 Filter

The C++ Filter node takes as input the point cloud published on the /velodyne
topic from the LiIDAR and processes it through two consecutive filtering ac-
tions:

o XY7Z filter
e 3D convex hull filter

The 3D convex hull is built within the filtered region from the first step
(once the hull is defined, the node publishes it as a marker to allow real-time
visualization in tools). The marker is populated with the points from the
convex hull, making it easy to see the boundaries being used for filtering
action. The dimensions of the hull and of the XYZ filter have been chosen
by studying the length and width of the field through Google Earth, knowing
the exact position in which the LiDAR would have been positioned. A cru-
cial aspect in the field was verifying the computations to ensure that there
were no trees, street lamps, or any other obstructions within the constructed
hull. The importance of applying the XYZ filter at first is to avoid a large
amount of computations: the working principle of the hull filter includes the
comparison of each point of the published cloud with each surface of the 3D
hull (in total 6, since it is a parallelepiped). In that way it has been possible
to speed up the filtering process. Through the CropHull function of the
Point Cloud Library (PCL) for C++, the pre-computed convex hull is used
to extract points that lie within it. The filtered points are then converted
back to a ROS message and published for further use and visualization on the
/ filteredpoints topic. Additionally, the filtered points are saved to a CSV
file, in which each point’s coordinates, timestamp, ring index, and message
sequence number are recorded, enabling analysis and tracking of the filtered
data in a second moment.
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4.2 Controller

For what regards the C++ Controller node, it’s possible to choose between
4 different types of motion for the PTU:

e Swing behavior, the PTU oscillates between two angles determined by
the initial position and predefined limits. The state transitions from
StartMotion to Motion, and it keeps track of the number of swings
in each direction. When the specified number of swings is reached, it
switches to the Sweeping state, resetting the turret to its full range of
motion

e Slow Down behavior, the PTU’s speed is reduced by a factor, and the
state transitions based on the angle difference from the start position.
Once the angle exceeds a specified threshold, it returns to the Sweeping
state with normal speed.

e Stop behavior, halts the turret motion for a predefined duration before
resuming its Sweeping rotation. It sets a low speed to stop the PTU
and uses a timer to measure the stop duration. Once the duration
elapses, it resumes normal speed and transitions to the Sweeping state.

The node processes incoming point cloud data to detect clusters and cal-
culate centroids, recording them to a CSV file. If significant movement is
detected between consecutive centroids, it triggers a state change to start
a new motion cycle. During the operation, the node records state changes,
motion types, and relevant data points to a CSV file for logging and analysis.
It’s important to highlight that for each selected way of motion, it starts to
be applied only when the received filtered point cloud from the filter node
is not empty, otherwise the PTU goes on with its usual motion which is set
to be the sweep between two angles that can be changed dynamically. This
node communicates also with the EKF node, sending to it the centroids of
the detected clusters.
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4.3 Extended Kalman Filter

The node subscribes to a topic that provides centroid positions (on which
they have been previously published by the controller node) and uses these
to update the EKF state. It initializes the filter with an initial centroid
position, and then alternates between Prediction and Update phases to refine
the estimated state. The Prediction phase uses a state transition model to
predict the next state based on the previous state and the elapsed time. In
the Update phase, the filter incorporates the latest centroid measurement
to correct the predicted state. The EKF state consists of the position and
velocity of the centroid in 3D space, represented as a 6-dimensional vector.
The node also publishes the filtered centroid positions on another topic and
writes various data, including predictions, updates, and state information,
to CSV files for further analysis. Additionally, it includes a mechanism to
handle lost detections by checking the covariance matrix and elapsed time
since the last detection. If the system detects that the object is lost, it
reinitializes the filter when a new centroid is detected.

Going deeper in the EKF working principle, it’s useful to report the
formulas implemented by this filter:

e Prediction:

x, = F - x;
T = Tp;
P,=F-P-FT+Q;
P = P,
e Update:
rcentroid
Z = | Yeentroid | ;
Zcentroid
e=z—H -z
S=H-P,-H" +R;
K=P,-H"- S
r=x,+ K -e;
P=(I—-K-H)- Py,

The state vector x carries variables representing the system’s State. The
Covariance Matrix P quantifies uncertainty in these variables.
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The State Transition Matrix F' is useful to understand how the state
evolves over time in a linear dynamic system. The Process Noise Covariance
Matrix () models uncertainty in the state transition process. The Measure-
ment Vector z contains the XYZ coordinates of the centroid obtained in the
processing phase implemented by the Controller node, and it’s used to refine
the state estimate . The Measurement Matrix H maps the state vector x to
z, establishing the relationship between state variables and measurements.
The Measurement Noise Covariance Matrix R characterizes noise in the mea-
surements z. The Identity Matrix I is employed in operations to maintain
structure and update state estimates in the EKF algorithm. The subscript
p indicates a predicted variable.

Here below the values assigned to the entries of the matrix are reported:

e State Transition Matrix F:

1 00 At 0 0
010 0 At 0
P 001 0 0 At
1000 1 0 0
000 O 1 0
000 0 0 1]
e Process Noise Covariance Matrix Q:
[0.01 0 0 0 0 0
0 001 O 0 0 0
Q= 0 0 001 O 0 0
10 0 0O 001 O 0
0 0 0 0 001 0
| 0 0 0 0 0 0.01
e Measurement Matrix H:
1 00000
H=|01 0 0 00
0010O0O0
e Measurement Noise Covariance Matrix R:
(1)2 0 0
R=10 (1)2 0
0 0 (0.2)?
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e Covariance Matrix P:

M2 0o 0 0 0 0
0 (1 0 0 0 0
p_ |0 0 (022 0 0 0
“lo 0o 0 @ 0 0
0O 0 0 0 (42 0
(0 0 0 0 0 (42

The values configured in the matrices are carefully chosen to model the
dynamics of the drone and the sensor’s characteristics. The State Transition
Matrix F' is designed to predict the next state based on the current state,
incorporating a time step At of 0.05 seconds, derived from a system frequency
of 20 Hz. This matrix includes both position and velocity states, with the
diagonal elements maintaining the state values and the off-diagonal elements
accounting for the influence of velocity on position changes.

The Process Noise Covariance Matrix () represents the uncertainty in the
system’s model, reflecting inaccuracies in predictions. It features diagonal
entries of 0.01, indicating a small, uniform variance for each state, which
suggests a relatively low level of uncertainty in the model’s predictions. This
choice implies that the system dynamics are well understood and modeled.

The Measurement Matrix H maps the state vector to the measurements
provided by the LiDAR. Since the LiDAR detects only the position of the
drone, H has ones in the positions corresponding to the position states and
zeros elsewhere. This setup ensures that the measurements directly update
the position estimates without affecting the velocity components.

The Measurement Noise Covariance Matrix R captures the noise charac-
teristics of the LiDAR measurements. It has variances of 1 for the  and y
positions and 0.2 for the z position, indicating that the LiDAR is more precise
in measuring the x and y positions compared to the z position. This reflects
potential measurement noise and uncertainty associated with the sensor.

Finally, the Initial Covariance Matrix P represents the initial uncertainty
in the state estimates. It is diagonal with variances of 1 for the position
states and 16 (4?) for the velocity states. This configuration suggests greater
initial uncertainty in the velocity compared to the position. The relatively
large initial variances for the velocity states allow the filter to accommodate
significant initial uncertainty while progressively refining the state estimates
as new measurements are obtained.

This approach ensures a robust and efficient drone tracking system with
precise performance across scenarios. By comparing results from various
motion patterns, we can identify the one yielding the highest drone detection
rate, improving position tracking and achieving our primary objective.
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5 Validation of Methods and System

In this section, the preliminary tests conducted to evaluate the performance
of the LiDAR sensor and the supporting software will be described. The
validation part was divided into three steps, each designed to assess different
aspects of the system’s functionality.

The first step 5.1 involved simulations carried out in MATLAB. Here, two
different scenarios were simulated: one where the drone moved horizontally
in front of the LiDAR sensor, and another where it moved vertically, directly
towards the sensor. These simulations were crucial for gaining an initial
understanding of the LiDAR’s detection capabilities, specifically in terms of
how the number of detections varied with the drone’s position and movement
relative to the sensor. This provided a foundational insight into the expected
behavior of the system before moving on to real-world tests.

The second part of the testing was conducted in a real-world environ-
ment, focusing on verifying the correct operation of the C++ nodes running
within the ROS (Robot Operating System) environment. During these tests,
the LiDAR sensor was kept in a fixed position, meaning it was not rotat-
ing. The active nodes included the filter, the controller, and the Extended
Kalman Filter (EKF). However, the node responsible for controlling the Pan-
Tilt Unit (PTU), which would allow the LIDAR to rotate, was not activated
at this stage. The goal of this phase was to assess the performance of the
system under straightforward, controlled conditions where the sensor’s po-
sition remained static. The testing took place on a terrace, providing an
open and controlled environment. A critical aspect of the setup was the
design of the convex hull used for filtering the LiDAR data. The convex
hull was configured to start from a specific height, which was intentionally
set to be above my own height. This setup ensured that the filter would
only consider objects within a defined 3D space that was relevant for the
system’s intended application, filtering out irrelevant detections below this
height. In the first test, I walked in a straight line towards the LiDAR and
then back again, repeating this motion several times. This setup was de-
signed to provide a basic evaluation of how effectively the EKF could track
my movement and whether the system could accurately detect and localize
my position as I moved closer to and further from the sensor. By keeping
the sensor fixed, the test isolated the performance of the EKF and the other
active nodes, allowing us to verify their functionality in a simple, controlled
scenario. The second test introduced slightly more complexity by varying
my movement paths. I walked along three different straight lines, each at a
different distance from the LiDAR. This variation in trajectory and distance
was intended to further challenge the EKF, testing its ability to maintain
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accurate tracking and localization across different paths. The fixed position
of the LiDAR ensured that any deviations in tracking accuracy could be at-
tributed to the behavior of the EKF and related nodes, rather than to any
movement of the sensor itself. To interact with the filtered 3D space defined
by the convex hull, I used a large sign that I held in my hands, allowing
me to reach into the area that the filter was designed to focus on. This
approach was essential for verifying that the filtering mechanism worked as
intended—filtering out irrelevant detections below the specified height and
only processing data from objects within the target 3D space. Additionally,
it allowed for testing the robustness of the system in distinguishing between
relevant and irrelevant data, ensuring that the EKF and associated nodes
could maintain accurate tracking and localization under these specific con-
ditions. These tests were crucial for establishing a baseline performance of
the system’s core components, ensuring that the filter, controller, and EKF
were functioning correctly before moving on to more complex scenarios. The
node responsible for the PTU motion was intentionally kept inactive during
this phase and was only activated in subsequent tests, where the complexity
of the system’s operation would be increased by introducing dynamic sensor
motion and more intricate movement patterns.

The final phase of the validation process took place in a real-world envi-
ronment but introduced a more complex scenario where the LiDAR sensor
was mounted on a dynamically rotating turret. This test differed signifi-
cantly from the previous ones because, unlike earlier scenarios where the
LiDAR was stationary, the sensor was now in constant motion. The setup
involved me walking in a square pattern around the LiDAR while the tur-
ret rotated continuously. This created a dynamic situation where both the
target (myself) and the sensor were moving simultaneously. The test aimed
to evaluate the system’s performance under realistic, challenging conditions,
focusing on how accurately the LiDAR could detect and track my position
while both the sensor and I were in motion. This was key to assessing its
ability to maintain reliable detections despite constant changes in the field
of view caused by turret rotation. In addition to tracking accuracy, this test
also provided an opportunity to observe how well the Extended Kalman Filter
(EKF) could integrate dynamically changing data. As the turret rotated and
I moved along the square path, the EKF needed to process rapidly shifting
inputs and maintain accurate localization and object detection. The con-
stantly shifting sensor perspective while tracking a moving target provided a
rigorous test for the EKF’s capabilities.

These tests, from simulations to real-world scenarios, ensured a thorough
understanding of the system and validated the performance of both the Li-
DAR and its software.
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5.1 First Step: MATLAB Drone Path Simulation
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Figure 18: DRONE moving on straight line at 3m distance along z-axis from
LiDAR, horizontal direction
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Figure 19: DRONE moving on straight line with direction towards the Li-
DAR
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In the MATLAB simulations, the way in which the drone’s trajectory
impacts the detection performance of a stationary LiDAR sensor has been
explored, as illustrated in Figs. 18 and 19.

For the horizontal trajectory shown in Fig.18, the drone moves parallel
to the LiDAR’s z-axis, maintaining a consistent distance of 3 meters from
the sensor. It starts at -20 meters along the y-axis and travels for 40 meters
in the y-direction. In this scenario, the LIDAR’s detection capability varies
depending on the drone’s position relative to its field of view. When the
drone is centrally located along its path, it is within the LiDAR’s effective
detection range, leading to a higher number of detections. However, as the
drone approaches the edges of its path, it moves out of the LiDAR’s detection
range due to the increasing distance from the sensor. Consequently, fewer
detections are recorded as the drone moves towards the start and end points
of its trajectory, where it is no longer within the sensor’s view.

In contrast, the vertical trajectory depicted in Fig.19 involves the drone
moving directly towards the LiDAR along the x-axis. The drone begins at a
distance of 20 meters from the LiDAR and travels directly towards it. In this
path, the drone remains within the LiDAR’s field of view throughout its entire
flight. This continuous presence within the sensor’s detection range results
in a significantly higher number of detections compared to the horizontal
path. The entire trajectory keeps the drone within the effective range of the
LiDAR, maximizing the number of detections.

What comes out from the simulation results is that the LIDAR detects a
greater number of drone positions when the drone’s path ensures it remains
within the sensor’s field of view for the duration of the flight. The verti-
cal trajectory, where the drone moves directly towards the sensor, yields a
higher number of detections because the drone remains continuously within
the detection range. In contrast, the horizontal trajectory results in fewer
detections due to the drone being outside the sensor’s range during the outer
portions of its path.
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Figure 20: DRONE moving on straight
line at 7m distance along z-axis from Li-
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Figure 21: DRONE moving on straight
line at 12m distance along x-axis from Li-
DAR, horizontal direction

In Figs. 20 and 21, the case of drone’s horizontal motion have been further
investigated: what comes out is that, as expected, as the distance over which
the drone moves horizontally increases, the number of detections decreases.
This occurs because the farther the drone travels from the sensor, the harder

it becomes to detect.
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The same concept has been applied to Figs.22 and 23. The result is the
same: a lower amount of detections with respect to the case showed in Fig.19.
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Figure 22: DRONE moving on straight
line with direction towards the LiDAR, 3
meters offset to the left of LIDAR
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Figure 23: DRONE moving on straight
line with direction towards the LiDAR, 7
meters offset to the left of LIDAR

It’s important to note that for motion along the y-axis, the number of
detections decreases more gradually compared to motion along the z-axis as
the distance increases. This is because, in motion along the y-axis, the drone
remains within the LiDAR’s field of view for a larger portion of its flight
path. In contrast, with motion along the x-axis, the drone quickly moves
out of the LiDAR’s field of view as it moves further away, leading to a more
rapid decline in detection rates.
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5.2 Second Step: Motion in Straight Patterns
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Figure 24: Motion of myself holding a sign, perpendicular to beams of the
LiDAR

Fig.24 illustrates the motion of objects along three lines positioned be-
tween 5 and 6 meters from the LiIDAR along the x-axis. The first line repre-
sents the furthest distance, while the other two lines are close to each other
at a distance of 5 meters.

A significant concentration of detection points, shown in cyan, can be
observed above and below the black rings in the figure. This distribution
is expected because the cyan points result from the filtering process applied
to the LiIDAR’s acquired data. If we imagine a rectangular object moving
with its largest surface facing the LIDAR throughout its trajectory, it makes
sense that the centroid of this surface should move along a straight line, as
depicted in the figure.

Another observation is the range of data acquisition by the LiDAR, which
spans approximately from -2 meters to +2 meters along the y-axis. Beyond
this range, data acquisition ceases. Consequently, during intervals without
new data, the Extended Kalman Filter (EKF) estimates the object’s position,
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which closely follows the actual path. This is evident in the estimates, which
extend to more than 4 meters to the left and approximately -5 meters to the
right at their extremes.
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Figure 25: Motion of myself holding a sign, parallel to beams of the LiDAR

Fig.25 shows off another type of motion, where the starting point was
located in the top-right corner of the image, and the endpoint was slightly
above it. During this motion, I walked towards the LiDAR, maintaining the
target within the sensor’s field of view at all times, before reversing direction
and moving away from it.

As observed, the density of detected points increases as I moved closer
to the LiDAR. This increased density is especially evident when I reversed
direction and began to move away from the sensor. This phenomenon is ex-
pected due to the LIDAR’s higher resolution and sampling rate when objects
are in closer proximity. Interestingly, the centroids of the detected points
trace a path through the center of the point cloud, which aligns with our
expectations.
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The Extended Kalman Filter (EKF) also performed well in this scenario.
The EKF effectively tracked the target’s motion, largely due to the con-
tinuous update steps that refine the estimate based on the incoming mea-
surements. Because the target remained within the LiDAR’s visible range
throughout the motion, the EKF was consistently supplied with new data,
allowing it to correct and improve the state estimates. This continuous cor-
rection is crucial, as it helps to mitigate the effects of noise and sensor inac-
curacies, ensuring that the estimated trajectory remains closely aligned with
the true path of the target.
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5.3 Third Step: Motion in Square Patterns
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Figure 26: Square Pattern: Slow Down Motion

Fig.26 shows a 3D plot illustrating the system’s response when the dy-
namic motion is set to slow down. In this scenario, when the LiDAR, followed
by the filter, identifies a cluster of points as a potential drone, the turret re-
ceives a command to reduce its rotational speed to one-quarter of its original
rate for a brief period (specifically for a 10° angular span, as set for this test).

From the 3D plot, it is evident that the Extended Kalman Filter (EKF)
occasionally estimates the position of the target with noticeable errors. This
is likely due to the nature of the dynamic motion algorithm employed. Once
the system identifies a target, it continues to move in a manner optimized for
tracking objects moving at higher speeds or with rapid positional changes.
However, in this test, the target (held in my hands) was moved at a very
low speed. The discrepancy between the system’s response and the actual
target movement suggests that this implementation may not be ideal for
scenarios involving slow-moving objects. The EKF, under these conditions,
struggles to maintain accurate tracking, leading to less precise estimations of
the target’s position. This highlights a potential area for refinement in the
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system’s motion control strategy to better accommodate targets with varying
movement characteristics.
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Figure 27: Square Pattern: Swing Motion

Fig.27 presents a 3D plot illustrating the system’s response when operat-
ing under the swing dynamic motion configuration. In this mode, once the
LiDAR and filtering process identify a cluster of points as a potential drone,
the turret begins to oscillate within a narrow angular range of 10° (5° to the
left and 5° to the right) centered towards the direction of the detected target.

The analysis of the 3D plot reveals that the Extended Kalman Filter
(EKF) occasionally estimates the target’s position with a slight margin of
error. However, in this case, the swing motion proves to be advantageous.
The oscillation towards a fixed direction allows the LiDAR to focus on and
around the identified target point, which is particularly beneficial given that
the target (which I was holding) was moved at a very slow speed. This
controlled back-and-forth motion ensures that the sensor captures the largest
possible amount of data around the target, improving the overall accuracy
of the system’s tracking ability in scenarios involving slow-moving objects.

In this context, the swing dynamic motion is highly effective. It enables
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the system to concentrate its sensing efforts on a localized area, thereby max-
imizing data acquisition and refining the EKF’s estimation process. This im-
plementation is well-suited for capturing detailed information about slowly
moving targets, ensuring that even minimal movements are accurately de-
tected and tracked.
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Figure 28: Square Pattern: Stop Motion

Fig.28 illustrates a 3D plot of the system’s behavior when utilizing the
stop dynamic motion configuration. In this mode, whenever the LiDAR and
filtering process identify a cluster of points as a potential drone, the turret
immediately halts its movement and remains stationary, pointing the LiDAR
towards the target for a fixed duration of 5 seconds before resuming motion.

The plot shows that the Extended Kalman Filter (EKF) performs with
exceptional accuracy under this configuration. The stop motion strategy is
particularly effective in this scenario, where the target (held in my hands)
was moving at a very low speed. By Stopping the turret and maintaining
the LiDAR’s focus on the identified target, the system maximizes the number
of detections and data points collected during the stationary period. This
prolonged focus allows the EKF' to process more consistent and reliable data,
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significantly improving its ability to accurately estimate the target’s position.

Compared to the other dynamic motion strategies, the stop approach
proves to be superior for tracking slow-moving targets. The turret’s station-
ary phase ensures that the LIDAR can capture the highest possible amount
of detailed information, reducing errors in target estimation. This method is
particularly well-suited for scenarios where the target is moving slowly, as it
enables the system to effectively "lock on’ to the target, providing the EKF
with the best possible data to work with.
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6 Experimental Setup

The target drone that has been used is a Sky Hero Spyder X4, presented in
Fig. 29, with a 0.85-meter carbon fiber frame. It is powered by 400 rpm/V
motors and a 6S 16000 mAh LiPo battery. The drone exhibits a Drotek
DP0601 GNSS receiver with an external GNSS antenna, a Drotek RM3100
compass and two inertial measurement units (IMUs). The total weight of
the drone is 5.5 kg, and it can operate for up to 45 minutes, allowing for
extended flights and, as consequence, for recording a large amount of data.

Figure 29: Sky Hero Spyder X4 drone

For what regards the detection system, it is made up by three components:

e PTU-E46 Pan-Tilt Unit by FLIR Systems (Fig.30), which is engineered
to deliver cost-effective, rapid, and precise positioning for cameras and
other payloads. It supports up to 4 kg payload, achieves speeds higher
than 300° per second, with a resolution of about 0.129°

e 3D printed support, designed to maintain the LiDAR in a fixed position
while the PTU is rotating, paying particular attention to not obstruct
the fired laser pulses
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e LiDAR Velodyne VLP 16 by Ouster (Fig.31), it features a measurement
range of up to 200 meters and generates approximately 600,000 points
per second, with a 360° horizontal and 40° vertical field of view

Figure 30: 3D printed LiDAR sup- Figure 31: LiDAR Velodyne VLP
port on top of Pan-Tilt Unit 16 by Ouster

In Fig.32 is possible to see the overall system that has been used to carry
on the experiment, with all the three components put together.

It’s important to underline that to compare the different motion patterns
in order to determine which one is the best to enhance the detection and
tracking performances, the drone was kept inside the convex hull during all
data collection (to make the second filtering action possible). Moreover,
the same drone path has been repeated the closer one to the other in order
to have the consistent conditions, for more accurate further analysis. In
last instance, in Fig.33 is reported the overall tracking system in action, in
particular is represented the Stopping motion approach. In this captured
frame, the sensor is resting towards the detected drone position.
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Figure 33: Tracking system in ac-
Figure 32: Tracking system tion during the tests

51



Using the instrumentation described in this section, CSV files have been
recorded for each of the proposed motion approaches based on field tests. In
particular the collected data include:

e filtered points, the ones from the original Point Cloud captured by the
LiDAR that lie within both the XYZ filtered area and the convex hull,
published by the Filter node

e centroids, the Controller node clusters the filtered points, then com-
putes the these centroids and publishes them

e state, this file recorded the time instants in which I have a change
in the state of the system, i.e. when the selected type of motion is
the Swinging, then this file records when there’s the transition from
standard Sweeping motion to the Swinging one, and the other way
round

e Extended Kalman Filtered values, filled with time instants in which a
prediction or an update occurs, saving for each one of them the current
State Vector z = [z, v, 2, &, 9, 2] and the elements on the diagonal of the
Covariance Matrix P, so [P(1,1), P(2,2), P(3,3), P(4,4), P(5,5), P(6,6)]

e ROS bag file, which allows me the recording and playing back of ROS
message data, in this case the ones coming from a whole drone flight

e ArduPilot logs, saved in a binary format, records detailed information
about the drone’s flight, such as GPS coordinates, IMU readings, bat-
tery status, altitude, speed, and flight modes

By processing all these quantities, it’s possible to carry on analysis and
to compare each approach with the others, allowing for the determination of
the motion pattern that best fits our needs, as shown in Sec.7.
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7 Results and Discussions

This section examines the various methods used for controlling the drone
and evaluates their performance across different tests. It begins with the
Initial Test, where the drone is manually flown to establish a baseline of its
behavior. Next, in the Automated Drone Control Test, the drone’s perfor-
mance is assessed using an Extended Kalman Filter (EKF) in a simulated
environment. Following this, the Automated Drone Control Test evaluates
the system’s performance in real-world conditions. Finally, the Analytical
Comparison of Motion Patterns contrasts the movement patterns between
manual and automated control, identifying the strengths and differences of
each approach.

7.1 Initial Test: Drone Controlled Manually
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Figure 34: Tracking of drone path, with Swinging motion

Fig.34 has been built up to show in a clear way how the detection and
tracking processes are going. The blue path is displaying the exact path
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followed by the drone during the flight, the data from the ArduPilot logs
have been used to trace it. This plot serves as a benchmark to evaluate
how much are close the results from the implemented approach to the actual
values. The cyan points represent all the points that are selected during
the filtering step, while the black circles figure the centroids. It’s possible
to notice that the amount of filtered points exceeds the one of black circles,
this is due to the fact that at a certain time instant the LiDAR captures n
points of the drone. These points are then processed in the Controller node,
where they are clustered and a single centroid is computed from the starting
n points. Despite this, the difference is slight, since most of the times the
captured points of the drone are few, especially when the drone reaches the
leftmost and rightmost points within its path. The magenta plot represents
the output of the Extended Kalman Filter. When detections are denser,
the EKF provides a more accurate path because a higher number of received
centroids leads to increase the frequency of update steps: each of them refines
the state estimate by including new measurements, reducing uncertainty and
improving the precision of the drone’s trajectory. As expected, with more
frequent updates, the EKF can more precisely track the drone’s motion.
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Figure 35: Tracking of drone path, with Sweeping motion
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Comparing Fig.34 with Fig.35, it’s clear the difference in the number of
detections (represented by the filtered cyan points) and in the EKF curve
accuracy with respect to the ArduPilot logs. For the Swinging scenario,
it has been possible to collect a significantly larger amount of data, thanks
to the LiDAR focusing on a limited angular section of space, around the
centroid of a previously detected cluster. Instead of continuing with stan-
dard rotation, which would waste time by rotating towards empty space, the
LiDAR concentrated on that specific area. This focus increased also the num-
ber of updates, leading to enhanced tracking accuracy of the flying drone.
The Swinging approach not only maximizes the efficiency of the LiDAR but
also demonstrates the advantage of adaptive scanning strategies in dynamic
environments.
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7.2 Automated Drone Control Test: EKF Simulation

To ensure more consistent data, the tests were repeated by changing the
method of controlling the drone’s motion from manual to automatic. This
adjustment allowed for a uniform flight path across all tests, enabling more
accurate comparisons when evaluating the results of different dynamic motion
implementations.

Before conducting these tests with automated drone motion, the behavior
of the Extended Kalman Filter (EKF) was simulated using MATLAB soft-
ware. This simulation was crucial for providing a detailed analysis of how
the Extended Kalman Filter would perform in various scenarios, ensuring
accurate estimation of the drone’s state (such as position, velocity, and ori-
entation) despite the presence of noise and other uncertainties in the system.
By thoroughly testing the Extended Kalman Filter in a controlled simula-
tion environment, its performance was validated, and the parameters were
fine-tuned before application to real-world drone flights, thus enhancing the
reliability of subsequent tests. The output of these tests are shown in Figs.36
and 37.
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Figure 36: Simulation of EKF behavior: Prediction Step
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Figure 37: Simulation of EKF behavior: Update Step

Based on the figures, the first observation is that the blue plot is identical
in both. This plot was obtained by having the drone follow a predefined path
autonomously, with the LiDAR and turret activated simultaneously. The
chosen adaptive motion strategy was a Swinging motion.

To extract and analyze this data, log files were downloaded from the flight
controller and then loaded into MATLAB using the Ardupilog function. This
function reads the binary log data from the specified file path and creates
a MATLAB object or structure containing all the recorded data from the
drone’s flight controller. This process enabled the generation of the blue
plot.

Regarding the centroids (represented by black circles), it is evident that
their distribution along the estimated path is identical in both figures. This
consistency is because the same recorded file from the field was used for both,
as indicated in the legend, which mentions a CSV file.

The key difference lies in the magenta plot, which provides insight into
how the EKF would have performed in a real-life application. To gain a
deeper understanding of the filter’s behavior, a separation was made be-

57



tween the update step and the prediction step. This separation allows for a
more detailed analysis of the EKF’s performance by distinguishing between
the ’corrected’ states (after sensor measurements are integrated) and the
‘predicted’ states (before corrections), enabling an assessment of the filter’s
accuracy and responsiveness under various conditions.

As expected, the update graph shows a path much closer to the blue
one. This is because it includes only the points representing the position of
the center of the captured drone frame (the ’corrected’ positions). In a real
application, these corrected positions would help bring the estimate closer to
the actual drone path. Moreover, this plot contains significantly fewer points
than the one shown in Fig.36, which displays a larger error compared to the
update graph.

It is also noticeable that the error is greater when the drone is flying
further from the LiDAR, while the estimate is more accurate when the drone
is closer to the LiDAR.
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7.3 Automated Drone Control Test: Final Results
7.3.1 3D Estimated Path vs Real Path

In this part, the figures illustrating the output of the three dynamic motion
strategies are reported. From these, a first analysis can be carried on.
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Figure 38: Tracking of Drone Path, Swinging Approach
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Figure 40: Tracking of Drone Path, Stop Approach
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The three figures share a common characteristic: in the spatial region
closer to the LiDAR, there is a higher density of detections and corresponding
centroids (represented by the cyan points and black circles, respectively).
However, as the distance from the LiDAR increases, particularly beyond 30
meters, the density of detected points associated with the drone diminishes
noticeably.

This trend is also evident in the dynamic motion graphs, where the de-
tections and centroids can be observed as forming distinct clusters. These
clusters are separated by segments of the drone’s path where no detections
were captured. This pattern can be attributed to the mechanics of the dy-
namic motions. Specifically, when the LiIDAR sensor captures even a single
point from the drone, it tends to concentrate its scanning within a narrow
angular range, rather than continuing its usual full rotation. This behavior
results in an increased number of detections in that localized area but causes
a reduction in the detection of points that fall outside this angular range.

Among the different dynamic motions, the Stop motion appears to pro-
duce the highest number of detections, particularly in the regions furthest
from the LiDAR, as illustrated in Fig.40. This suggests that the Stop motion
is effective at capturing more points over a larger distance.

However, when it comes to the accuracy of the Extended Kalman Filter
(EKF) estimate, the Stop motion is not the optimal choice. As depicted
in Fig.40, the EKF path (indicated by the magenta line) is less smooth,
especially in the upper part of the path where the drone is farthest from
the LiDAR sensor. Additionally, the presence of a peak on the right side of
the path suggests that the filter was diverging at that point, likely due to
insufficient updates during that period. A similar divergence is also evident
in Fig.39 for the SlowDown motion.

In contrast, the Swing motion, as shown in Fig.38, does not exhibit this
divergence. The EKF path in this case is smoother and more closely aligned
with the actual path of the drone (represented by the blue line), indicating
a more reliable estimation process.

In summary, as will be later detailed in Tab.1, the Stop motion is the
best approach if the goal is to maximize the number of detections. How-
ever, the key focus should not simply be on the number of detections but
rather on their spatial distribution and effectiveness in providing meaningful
information. If a large number of detections are concentrated in a specific
area, they may not contribute significantly to improving tracking accuracy.
This is particularly true in scenarios where the drone is closer to the LIDAR
system, as it is easier to identify and track in such areas. However, in re-
gions where the drone is farther from the LiDAR, it becomes more difficult
to detect, leading to a lower frequency of detections. These sparse detections
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are, paradoxically, the most critical, as they provide the necessary data to
accurately estimate the drone’s position when it is hardest to track.

Therefore, having a large quantity of detections concentrated in a limited
area can lead to an overestimation of tracking precision in that specific region,
while leaving gaps in other areas where the drone’s position is less certain. In
contrast, a lower number of detections, if they are well-distributed along the
drone’s flight path, can result in a more balanced and accurate overall track-
ing performance. This balanced distribution helps in creating a smoother and
more precise estimation of the drone’s trajectory, thereby reducing potential
errors and improving the reliability of the tracking system.

Moreover, it is essential to consider the overarching goal of this project,
which is to enhance the tracking capabilities of the system in a way that prior-
itizes the protection of individuals’ privacy and safety. The rationale behind
this focus is that more accurate tracking allows for better control and man-
agement of drone operations, minimizing the risk of privacy infringements
or potential harm to people. Given these objectives, the subsequent section
will delve deeper into comparing the Swinging approach with the Sweeping
method. This comparison will be conducted to assess how the Swinging ap-
proach, which has been identified as yielding superior results, improves upon
the Sweeping method across various dimensions. This includes aspects such
as detection distribution, tracking accuracy, and the overall effectiveness of
the system in meeting the project’s privacy and safety goals.
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7.3.2 Motion Along XYZ Axes: Estimated Path vs Real Path

Figs.38, 39 and 40 illustrate the evolution of the drone position in a 3D
environment, but they don’t provide information about how the position is
changing over time. In order to address this, Fig.41 and Fig.42 can be helpful
by showing how the drone’s position evolves along the XYZ coordinates with
respect to time. In particular, the Swinging approach will be compared to
the Sweeping approach. This comparison is intended to demonstrate how
adopting a dynamic motion pattern significantly improves drone tracking
across all three spatial directions (XYZ) compared to standard motion. The
Swinging approach has been chosen for this comparison because, as high-
lighted in the previous subsection, it provides the most accurate estimate of
the drone’s motion in the sky and so the most precise tracking of it among
the presented approaches.
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Figure 41: Tracking over Time, Sweeping approach
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Figure 42: Tracking over Time, Swinging approach

Starting with the first subplot of the two figures, it is immediately evident
that in the Sweeping graph, there is a significant error in the EKF (Extended
Kalman Filter) estimate of the drone’s position. This error occurs almost
exactly at the peak of the blue curve, which represents the point where
the drone is furthest from the LiDAR sensor, slightly more than 30 meters
away. At these maximum distances, the EKF performs poorly due to the
reduced number of detections. The drone, being less visible to the LiDAR
at this distance, is harder to detect, leading to fewer captured frames and,
consequently, a substantial increase in the prediction error of the filter.

In contrast, the Swinging approach shows a marked improvement. This
method involves concentrating the rotation of the LiDAR around areas where
detections are more likely, which mitigates the divergence seen in the Sweeping
case. As a result, the EKF estimate in the Swinging scenario closely aligns
with the actual path of the drone, following it with a high degree of precision
and minimizing the estimation error even at the drone’s maximum distance
from the sensor.

Additionally, it is important to highlight that tracking the drone along
the y-axis proves to be the most challenging. This axis exhibits a consis-
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tent error between the captured drone frames and the actual drone motion
pattern. This discrepancy can be attributed to the fact that the y-axis, of-
ten corresponding to lateral or side-to-side movement, is more difficult to
track accurately due to potential occlusions or variations in detection angles,
making it harder for the LIDAR to consistently capture accurate data.

Nonetheless, the advantages of the Swinging motion strategy are evident,
particularly when compared to the traditional Sweeping approach. This is
especially clear in the z-axis, which often represents the drone’s altitude or
vertical movement. In the Sweeping case, there is a noticeable error peak in
both figures, occurring roughly at the midpoint of the drone’s path—where
the distance from the LiDAR sensor is greatest. This peak represents a
significant error in the tracking system, highlighting the limitations of the
Sweeping method in handling the drone’s position when it is farthest from
the sensor.

In the Swinging scenario, however, this problematic peak is either absent
or significantly reduced. Along the y-axis, the peak disappears entirely, indi-
cating that the Swinging strategy effectively eliminates the major tracking
errors associated with the Sweeping approach. For the z-axis, the peak is re-
duced from 40 meters to 24 meters, demonstrating a substantial improvement
in tracking accuracy.

These observations underscore the superiority of the Swinging approach
over the traditional Sweeping method in various aspects of drone tracking.
The Swinging strategy’s ability to maintain a closer alignment between the
EKF estimate and the drone’s actual path, especially at maximum distances,
leads to more reliable and accurate tracking. By reducing errors along both
the y and z axes, the Swinging approach not only enhances the overall per-
formance of the tracking system but also contributes to the project’s broader
goals of improving safety and protecting privacy through more precise drone
monitoring.
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7.3.3 Covariances of z-estimate

To better understand the accuracy of the estimated position, obtained through
the implemented tracking approach, compared to the real position of the
drone, and to see how the uncertainty in the drone position estimate is re-
duced when passing from a standard Sweeping motion to the Swinging
one, the covariances of the first state variable are reported in the figures.
Physically, since first state variable corresponds to the z-coordinate of the
drone’s position, then P(1,1) indicates the uncertainty in the estimate of
x-coordinate of the drone. A higher value of P(1,1) means a greater un-
certainty in the z-position estimate, while a lower value indicates a higher
confidence in the estimate.
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Figure 43: Covariance of the x estimate, Sweeping approach
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Figure 44: Covariance of the x estimate, Swinging approach

It is clearly visible that in the Swinging case highlighted in Fig.44, there
are fewer and shorter peaks compared to the Sweeping case, presented in
Fig.43, and above all they are less dense. The frequent number of updates
deriving from focusing the motion pattern towards the drone, reduce the
uncertainty because the state is corrected more often. Both plots are char-
acterized by a similar final segment, where the curve rapidly increases. This
fast rise can be attributed to the drone landing, making it no more visible in
the filtered portion of the space and, as consequence, the uncertainty on the
estimated position increases that much in the final time instants due to the
lack of updates over a significant period.
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7.3.4 Density of Detections over Time

An analysis of detection density over time, based on how many of the 16
beams detected the drone, reveals that more beams result in greater accuracy
of the recorded and estimated data. Both graphs in Fig.45 and Fig.46 indicate
that detections are concentrated at the beginning and end of the recording
period, corresponding to the drone’s flight path. Initially, the drone was
close to the LiDAR, leading to frequent detections with many beams. As
the drone moved farther away, fewer beams detected it, resulting in lower
detection density in the middle of the recording.

In the final phase of the flight, the drone returned close to the takeoff
point for landing, increasing detections again. Comparing the two scenar-
ios, the Swinging scenario shows a higher detection density, particularly in
the middle of the flight, with more beams detecting the drone. In contrast,
the Sweeping scenario has fewer detections and beams reaching the target.
The increased detection density and beam coverage in the Swinging sce-
nario enhance position estimation accuracy, demonstrating its effectiveness
in tracking performance.
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Figure 45: Drone detections with number of beams, Sweeping
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Figure 46: Drone detections with number of beams, Swinging
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7.4 Analytical Comparison of Motion Patterns

In the previous subsections, the focus has been on comparing just two out of
the four motion patterns described in the document. Sweeping was chosen
as it represents the standard motion type and is used as a benchmark to
determine if implementing a different type of pattern has benefits or not.
It has been compared to the Swinging motion, which came out to be the
optimal choice based on graphical analysis in previous sections, for what
regards the accuracy of the Extended Kalman Filter estimate, conclusion
that is further supported by analytical data gathered in the Tab.1.

Table 1: Comparison of Motion Patterns

Sweeping | Swinging | SlowingDown | Stopping

Number of detections 2564 3182 3615 4871
Time between detections

Minimum (s) 0.0717 0.0650 0.0637 0.0665

Maximum (s) 8.21 6.95 7.29 10.6

Mean (s) 0.409 0.303 0.286 0.208
Uncertainty on position 4.0406 3.4503 3.639 4.9169
Uncertainty on speed 0.67555 0.61006 0.62332 0.58151
3D Estimate Error (m) 3.23 1.44 1.56 1.50

To clarify, the reported uncertainty values in Tab.1 pertain to the x-axis
and represent averaged values. For what regards the voice '3D Estimate Er-
ror’, it refers to the Euclidean distance computed using the following formula:

d = \/(Xgxr — Xprone)? + (Yexr — Yorone)? + (Zexr — Zprone)?

The ’EKF’ subscript refers to the points obtained from the Extended Kalman
Filter (EKF'), which includes both predictions and updates, while the ' DRONE’
subscript relates to the data from the ArduPilot logs, directly taken from the
drone’s GPS.

Going deeper in the analysis, the table provides a comparison of the four
different motion patterns evaluated based on several metrics that are crucial
for assessing the quality of tracking, particularly in estimating the drone’s
path using an Extended Kalman Filter (EKF).

e Uncertainty on Position: Swinging has the lowest uncertainty in po-
sition (3.4503), indicating that the drone’s path is most accurately
tracked when it follows a Swinging motion pattern. This low uncer-
tainty is critical for reliable tracking, making Swinging superior in terms
of position estimation accuracy.
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e 3D Estimate Error: the 3D estimate error for Swinging is only 1.44
meters, the lowest among all the motion patterns. This suggests that
the EKF is most effective at estimating the drone’s trajectory when
it follows a Swinging pattern, leading to more precise and accurate
tracking.

e Uncertainty on Speed: although the differences in speed uncertainty
are relatively minor across the patterns, Swinging still shows a slightly
better performance (0.61006) compared to other motions like Sweeping
and Slowing — Down. This further reinforces Swinging as the pattern
with more consistent and reliable speed estimates.

e Time Between Detections: Swinging has a mean time between detec-
tions of 0.303 seconds, which is reasonably short, allowing for frequent
updates and maintaining a good balance between detection frequency
and accuracy. This contributes to maintaining high-quality tracking
over time. In contrast, while Stopping and Sweeping have some met-
rics that might suggest effectiveness in certain aspects (like the number
of detections or the mean time between detections), their higher un-
certainties in position and larger 3D estimate errors (especially in the
case of Stopping) indicate that these motion patterns are less reliable
for precise path estimation.

As previously highlighted, Swinging comes out to be the best motion
pattern for ensuring high-quality tracking and accurate path estimation of
the drone by the EKF. Its lower uncertainties in both position and speed,
combined with the minimal 3D estimate error, make it the most reliable and
precise motion pattern among those compared.

71



8 Conclusion

The research presented in this document focused on the optimization of drone

tracking using LiDAR sensor, specifically exploring the efficacy of different

motion patterns: Sweeping, Swinging, Slowing — down, and Stopping.
Among the strategies tested, two provided the best results:

e Swinging: This motion pattern is most effective when focusing on the
accuracy of the estimate produced by the Extended Kalman Filter, as
shown in Tab.1.

e Stopping: This strategy works best when the priority is to maximize
the number of detections.

However, it is important to keep in mind the main goal of this project:
improving the tracking system’s capabilities while ensuring the protection of
people’s privacy and safety. The idea is that more accurate tracking allows
for better control of drone operations, which reduces the risk of invading
privacy or causing harm.

Considering this, the Swinging motion pattern is the best choice. This
pattern improves detection by focusing the LiDAR’s scanning on the area
around the drone, which leads to better tracking accuracy and less uncer-
tainty in position estimation.

The use of the PTU-E46 Pan-Tilt Unit enhances this approach by al-
lowing adaptive scanning, which is essential for keeping the drone in view
during flight. The ROS-based system manages data flow between nodes
(Filter, Controller, EKF), leading to better detection, clustering, and state
estimation from LiDAR point clouds.

A key point from this study is how the Extended Kalman Filter improves
the accuracy of drone tracking. By constantly refining position estimates
based on centroid measurements, the filter reduces uncertainty over time.
This has been confirmed through field testing, showing that the system is
both precise and reliable in real-world conditions.
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8.1 Future Research Directions

The research presented in this document lays a strong foundation for en-
hancing drone tracking capabilities using LiDAR sensors and specific motion
strategies. However, there is significant potential for further advancements
that can improve both the effectiveness and efficiency of the tracking system.

8.1.1 Adaptive Motion Strategies Based on Real-Time Environ-
mental Data

One promising direction for future research is the development of adaptive
motion strategies that can respond dynamically to real-time environmental
conditions. Unlike the static motion patterns explored in this study (Sweep-
ing, Swinging, Slowing-down, Stopping), adaptive strategies would allow the
system to adjust its scanning behavior based on factors such as the drone’s
speed, trajectory, and surrounding obstacles. For instance, if a drone is de-
tected moving rapidly in a cluttered environment, the tracking system could
dynamically switch to a Slowing-down or Stopping pattern to ensure more
precise measurements, while a Swinging or Sweeping motion might be used
in open areas with fewer obstacles. This adaptability could enhance tracking
accuracy, minimize resource consumption, and improve the system’s overall
robustness in diverse operational scenarios [6] [23].

8.1.2 Integration of Machine Learning Techniques for Predictive
Tracking

Another area ripe for exploration is the integration of machine learning tech-
niques into the tracking system. By leveraging historical data and patterns
observed in drone movements, machine learning algorithms could be em-
ployed to predict future drone trajectories, thereby allowing the system to
preemptively adjust its motion patterns and scanning focus. For example, a
predictive model could identify common evasive maneuvers used by drones
and enable the tracking system to anticipate these movements, improving the
likelihood of maintaining continuous visibility and accurate tracking. Addi-
tionally, machine learning could be used to optimize the Extended Kalman
Filter’s parameters in real-time, further enhancing the accuracy of position
estimates and reducing uncertainty [13] [21].
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8.1.3 Exploration of Swarm Intelligence for Coordinated Drone
Tracking

Future research could also explore the application of swarm intelligence to
coordinate multiple tracking units, each equipped with LiDAR sensors and
operating under a distributed control system. By leveraging principles of
swarm intelligence, these units could communicate and collaborate in real-
time, sharing data and adjusting their positions to maintain optimal coverage
of the target drone. This approach could be particularly beneficial in scenar-
ios where a single tracking unit is insufficient to maintain accurate tracking,
such as in complex environments or when multiple drones are operating si-
multaneously. Swarm-based tracking could enhance the system’s resilience,
allowing for continuous tracking even if one or more units experience failure
or signal loss [24] [14].

8.1.4 Integration of Additional Sensors to Improve Robustness

The inclusion of complementary sensors, such as thermal cameras, radar, or
acoustic sensors, could be investigated to augment the LiDAR-based tracking
system. These additional sensors could provide valuable data in conditions
where LiDAR performance is limited, such as in low visibility or adverse
weather. By fusing data from multiple sensors, the system could achieve
greater robustness and reliability, ensuring consistent performance across a
wide range of operational conditions [22].
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8.2 Drone Neutralization Methods

As drone technology continues to advance, the development of effective and
responsible neutralization methods becomes increasingly important to ad-
dress potential safety threats posed by unauthorized or malicious drone op-
erations. This section explores various neutralization techniques, as well as
their ethical and legal implications.

8.2.1 Signal Jamming

Signal jamming involves the disruption of the communication link between
the drone and its operator by emitting radio frequencies that interfere with
the control signals. While this method can effectively neutralize a drone by
causing it to lose control or return to its takeoff point, it raises significant
ethical and legal concerns. Signal jamming can potentially interfere with
legitimate communications, including emergency services, and may violate
regulations set by telecommunications authorities. Furthermore, jamming
may not be effective against drones operating autonomously or those with
advanced anti-jamming capabilities. Future research could focus on develop-
ing more targeted jamming techniques that minimize collateral interference,
as well as exploring legal frameworks that balance the need for security with
the protection of communication rights [19] [3].

8.2.2 Spoofing Techniques

Spoofing involves sending false signals to a drone, tricking it into believing
it is receiving legitimate commands from its operator. This method can be
used to redirect the drone to a safe location or cause it to land. While spoof-
ing can be highly effective, it also presents ethical challenges, particularly
regarding the potential misuse of this technology to hijack drones unlawfully.
Additionally, as drone manufacturers increasingly incorporate anti-spoofing
measures, this method may become less effective over time. Future research
could explore advanced spoofing techniques that overcome such countermea-
sures or focus on the development of regulations to govern the lawful use of
spoofing technologies [17] [12].

8.2.3 Laser Interference

Using lasers to disable a drone’s electronics or sensors is another potential
neutralization method. High-powered lasers can be directed at a drone to
damage its cameras, sensors, or communication systems, rendering it inop-
erable. However, the use of lasers poses significant safety risks, particularly
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to people and property if the beam is not accurately targeted. Additionally,
there are ethical concerns related to the potential for causing permanent dam-
age to drones that may have been operating innocuously. Legal restrictions
on the use of laser technology also vary widely across jurisdictions, compli-
cating the deployment of this method. Research in this area could focus on
developing more precise laser targeting systems, as well as studying the legal
and ethical implications of their use [20] [10].

8.2.4 Kinetic Projectiles

Physically disabling a drone using kinetic projectiles, such as firearms or net-
launching devices, is a direct and potentially effective approach to neutraliza-
tion. This method, however, carries significant risks, including the potential
for collateral damage, harm to bystanders, and unintended consequences if
the drone is carrying hazardous materials. Additionally, the use of firearms
in civilian areas is heavily regulated, and the deployment of kinetic projec-
tiles may be legally restricted or require specialized authorization. Future
research could explore safer kinetic alternatives, such as net-based systems
that capture drones without causing destruction, as well as the development
of automated targeting systems that minimize the risk of accidental harm
[18] [7].

8.2.5 Ethical and Legal Implications

The development and deployment of drone neutralization methods must be
carefully considered within the context of ethical and legal frameworks. The
potential for these technologies to be misused, either by infringing on pri-
vacy rights or by causing unnecessary harm, necessitates the establishment
of clear guidelines and regulations. Research could explore the creation of
international standards for drone neutralization, ensuring that such actions
are taken responsibly and with due consideration for human rights and pub-
lic safety. Additionally, as drone technology evolves, continuous updates to
legal frameworks will be required to address new challenges, such as the
emergence of fully autonomous drones or swarms of drones that may require
new approaches to neutralization [9] [8].
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