
POLITECNICO DI TORINO

Master’s Thesis

Exploring the Robustness
Spectrum of Neural Networks
Through Enhanced Sampling

Methods

Author:
Matteo VOGLIOLO

Supervisors:
Alfredo BRAUNSTEIN
Alessandro INGROSSO

A thesis submitted in fulfillment of the requirements for the
Master’s degree in

Physics of Complex Systems

Academic Year 2023/2024

Abstract

Neural networks are complex systems with huge computational power whose
internal dynamics is still poorly understood. The intricate relation between the
statistical properties of supervised tasks they are trained on and the geometry of
the resulting internal representations is an open research problem. In particular,
a coarse-grained description of internal representations seems fruitful in studying
their computational and generalization capabilities.

In this work, we introduce a method to study the resilience of a network
to neuronal death by employing the Wang Landau algorithm [4, 8], a non-
markovian sampling method. While such method has been used to study coarse-
graining of macromolecules [2], it is virtually unknown to the Machine Learning
and Computational Neuroscience community.

Focusing on a simple data model that naturally induces a convolutional
structure fully connected networks trained from scratch [3], we examine re-
silience to network attacks in relation to the amount of spatial localization of
receptive fields in the fist layer. We further investigate the dynamics of the
network’s parameters and the features of the internal representations during
training.

Contents

1 Introduction 2
1.1 Multi-layer Perceptron (MLP) . 3
1.2 Stochastic Gradient Descent (SGD) 5

1.2.1 Backpropagation . 6
1.3 Monte Carlo methods . 7

2 MLPs and emergence of convolutional structure 10
2.1 Network Training . 10
2.2 Localized and oscillatory neurons 12
2.3 Network Robustness . 13
2.4 Results . 16

2.4.1 Training dynamics . 17
2.4.2 Internal representations and Outputs 20
2.4.3 Network Robustness . 25

3 Methods and Materials 33
3.1 Tasks . 33

3.1.1 NLGP . 33
3.1.2 GP . 34

3.2 Statistics of the Model . 35
3.2.1 Layers . 35
3.2.2 Internal representations 36

3.3 Wang Landau Algorithm . 36
3.3.1 Wang Landau 2D . 38

3.4 Weight vectors clustering . 40

4 Conclusion 41

A Emergence of Localized Receptive Fields: impact of training
set size and number of hidden neurons 43

1

Chapter 1

Introduction

Neural networks are typically trained on a specific task using a given dataset,
and their performance is evaluated through a measure called accuracy. In clas-
sification problems, for instance, accuracy is defined as the ratio of correct pre-
dictions to the total number of predictions.

When we refer to neuronal failure, we are describing a scenario in which,
some neurons in the network stop functioning, meaning their output becomes
zero. This phenomenon can impair the network performance and resilience to
such disruptions becomes an important aspect to study. Network robustness
can be described as the network’s ability to maintain high accuracy on the task,
even in the presence of neuronal failure.

Drawing an analogy with statistical physics, a neural network can be viewed
as a physical system where each neuron exists in one of two possible states:
“active” or “inactive.” The global state of the network is then represented by
a configuration where the activity of each neuron is specified. If the network
consists of N neurons, its state can be described by an N -dimensional binary
vector σ, with each component representing whether a neuron is active or inac-
tive. In this framework, each configuration is associated with an energy, where
low-energy configurations correspond to high-accuracy states.

One way to study network robustness is to examine the density of states
of the system described above, a quantity that indicates how configurations
are distributed across the available energy levels. A perfectly robust network
would exhibit a density of states concentrated at the energy level corresponding
to the configuration in which all neurons are active, as this would imply that
neuronal failure does not compromise the network functioning. However, this is
unrealistic; we expect the configurations to be distributed over a range of energy
values between that of the fully active state and that of the fully inactive state.
The more the distribution leans towards the former case, the more we consider
the system robust.

Obtaining the density of states for a system is a complex computational
challenge, particularly due to the need for comprehensive sampling of the config-
uration space. Traditional Monte Carlo methods, such as Metropolis-Hastings,

2

often face difficulties in efficiently exploring high-dimensional landscapes, lead-
ing to significant sampling biases and slow convergence. This can result in
inaccurate estimates of how configurations are distributed across energy levels.

In order to overcome this issue, we employ the Wang-Landau algorithm, a
sampling method specifically designed for estimating the density of states. This
algorithm seeks to achieve a ’flat’ histogram in energy, meaning it aims for a
uniform sampling of all energy levels. By doing so, it enhances the likelihood
of exploring configurations that might otherwise be neglected by conventional
methods. The Wang-Landau algorithm operates in a non-Markovian manner,
allowing updates based on the entire history of the sampling process. Despite
its non-Markovian characteristics, the Wang-Landau method preserves detailed
balance.

The present thesis is organized as follow. In this first chapter we provide a
brief introduction to some fundamental concepts related to artificial neural net-
works and offer a concise overview of Monte Carlo methods, as these topics will
recur throughout the project. The information on neural networks is primarily
sourced from [7], while the introduction to Monte Carlo methods is based on
the reference book [5].

In the second chapter, we analyze a feedforward multilayer perceptron (MLP)
with a single hidden layer, focusing on the emergence of a convolutional structure
in the weight vectors after training. We investigate the network’s robustness,
as well as the dynamics of its parameters and internal representations.

In the Methods and Materials chapter, we summarize the technical details
regarding the tasks used to train the network, the statistics we tracked, and the
functioning of the Wang-Landau algorithm, including our implementation.

The thesis concludes with a summary of our results and considerations.
Additionally, we include an appendix that explores the conditions under which
the aforementioned convolutional structure emerges.

1.1 Multi-layer Perceptron (MLP)

MLPs are a type of feedforward neural network where each layer is fully con-
nected to the next. In addition to the input and output layers, MLPs consist of
one or more intermediate layers, known as ”hidden layers.”

Each edge of the network is associated with a weight and each neuron has
a bias, the set of all the weights and biases of the network {w,b} are the
parameters of our model.

The output of a neuron is calculated as the weighted sum of the outputs of
the neurons from the previous layer, to which the bias is added, and the result
is passed through an activation function σ. Thus we can define the output of
the j-th neuron in layer l as:

alj = σ(zlj) zlj =
∑
k

wl
jka

l−1
k + blj (1.1)

Here, wl
jk represents the weight of the connection between the k-th neuron in the

3

(l−1)-th layer and the j-th neuron in the l-th layer. Similarly blj represents the

bias of the j-th neuron in the l-th layer. The term zlj is called the pre-activation
of the neuron.

We can express these equations in matrix form by defining a weight matrix
wl for each layer l with wl

jk as entries of the matrix. Similarly, for each layer l,

we define a bias vector bl and an outputs vector al. Thus we have:

al = σ(zl) zl = (wl)T · al−1 + bl (1.2)

Denoting with L the total number of layers in the network, the output layer will
then be represented as aL.

Typical choices for the activation function include the sigmoid, error function
(erf), or hyperbolic tangent (tanh), as well as the rectified linear unit (ReLU).
Although the term ”perceptron” might suggest the use of the Heaviside step
function as the activation function, this is generally avoided in practice due to
issues with learning parameter updates.

Input layer

...
...

Hidden layers
...

...

...

...

...

Output layer

...

In order to learn the parameters of our model {w,b} we define a cost function
C (also referred to as the loss function). This cost function measures how well
the model performs on the task, reflecting how closely the outputs predicted by
the model align with the true labels from the dataset. The goal of training is to
find the optimal values for w and b that minimize the cost function, ensuring
that the predictions closely match the true outputs.

An example of cost function is given by the mean squared error (MSE):

C(w,b) ≡ 1

n

∑
x

∥y(x)− aL∥2.

Where n is the total number of training inputs, and y(x) is the true output
for the input x. Naturally, the output a depends on x, w, and b, but for
simplicity, this dependence is not explicitly shown in the notation. The notation
∥v∥ denotes the standard length (or norm) of a vector v.

4

1.2 Stochastic Gradient Descent (SGD)

A classical method for learning the parameters of a neural network is stochastic
gradient descent (SGD). The goal is to minimize the cost function, and the
general approach is based on the gradient of this function.

At first order, we have:

∆C = ∇wC ·∆w +∇bC ·∆b

If we choose ∆w and ∆b appropriately, we can ensure that ∆C becomes nega-
tive, meaning the cost function decreases with each update step. The key idea
is to select these parameter updates in the opposite direction of the gradient of
the cost function.

In practice, this means that the updates are computed as:

∆w = −η∇wC and ∆b = −η∇bC

where η is the learning rate, a small positive constant that controls the step
size. By iterating these updates, SGD gradually refines the model parameters
driving the cost function towards a minimum.

The main challenge is how to compute the gradient of the cost function with
respect to the model parameters. Under the general assumption that the cost
function can be written as C = 1

n

∑
x Cx, where n is the number of inputs x,

the gradient is given by

∇C =
1

n

∑
x

∇Cx

In practice, to compute the gradient ∇C, we need to compute the gradients
∇Cx separately for each training input x, and then average them. Unfortu-
nately, when the number of training inputs is very large, this process can be
time-consuming, resulting in slow learning.

The key idea behind Stochastic Gradient Descent is to estimate the gradient
∇C by calculating ∇Cx for a small, randomly selected subset of training inputs
(hence the term ”stochastic”). By averaging over this subset, one can obtain
a good approximation of the true gradient ∇C much faster, which accelerates
gradient descent and the learning process.

To formalize this approach: SGD works by randomly selecting a small num-
ber m of training inputs, labeled x1, x2, . . . , xm, and forming what is known as
a ”mini-batch”. Provided the mini-batch size m is sufficiently large, the average
of the gradients ∇Cxj

for the mini-batch will be approximately equal to the
average over all ∇Cx, i.e.:

1

m

m∑
j=1

∇Cxj ≈
1

n

∑
x

∇Cx = ∇C

This confirms that we can estimate the overall gradient by computing gra-
dients for only the randomly selected mini-batch.

5

Once all the inputs in the dataset have been used for training, we say that
one ”epoch” has passed.

1.2.1 Backpropagation

The goal of backpropagation is to compute the partial derivatives ∂C
∂w and ∂C

∂b
of the cost function C with respect to any weight w or bias b in the network.
To make backpropagation work, we need to make two key assumptions about
the form of the cost function.

The first assumption is that the cost function can be written as an average
C = 1

n

∑
x Cx, where n is the number of training examples x and Cx is the cost

function for each individual example.
This assumption is necessary because backpropagation computes the partial

derivatives ∂Cx

∂w and ∂Cx

∂b for a single training example. We then obtain ∂C
∂w

and ∂C
∂b by averaging these partial derivatives across all examples. With this

assumption, we can simplify notation by considering a fixed training example x
and dropping the subscript x, writing the cost Cx simply as C.

The second assumption we make about the cost is that it can be written as
a function of the outputs from the neural network, namely aL.

In order to compute ∇C, we introduce an intermediate quantity, δlj , which

we call the error of the j-th neuron in the l-th layer. The error δlj is related

to the neuron’s pre-activation zlj , indeed we define the error δlj for neuron j in
layer l by:

δlj ≡
∂C

∂zlj

As per usual conventions, we use δl to denote the vector of errors for all neurons
in layer l.

Backpropagation provides a systematic way to compute the error δlj and

relate it to ∂C
∂wl

jk

and ∂C
∂blj

.

Equation for the error in the output layer, δL:

The components of δL are given by:

δLj =
∂C

∂aLj
σ′(zLj)

This expression follows directly from the chain rule, and we can observe that
∂C
∂aL

j
measures how rapidly the cost changes with respect to the j-th output.

Equation for the error δl in terms of the error in the next layer, δl+1:

Specifically, we have:

6

δl = ((wl+1)T δl+1)⊙ σ′(zl)

Here the operator ⊙ denotes the Hadamard (element-wise) product. This
equation describes how the error at layer l+1 is propagated backward to layer l.
The matrix multiplication with (wl+1)T can be intuitively thought of as moving
the error backward through the network, giving us a measure of the error at layer
l. The Hadamard product with σ′(zl) adjusts the error as it moves backward
through the activation function at layer l.

By iterating this process, starting with the error in the output layer, we can
compute the error δl for any layer in the network. Specifically, we first use the
equation for δL, and then apply the equation for δl to move backward through
the layers, one by one, until the error is computed for all layers.

Equation for the rate of change of the cost with respect to any bias
in the network:

∂C

∂blj
= δlj

Equation for the rate of change of the cost with respect to any weight
in the network:

∂C

∂wl
jk

= al−1
k δlj

This tells us how to compute the partial derivatives ∂C
∂wl

jk

in terms of the

error δl and the outputs al−1, which we already know how to compute.

1.3 Monte Carlo methods

The name ”Monte Carlo” was applied to a class of mathematical methods first
used by scientists working on the development of nuclear weapons in Los Alamos
in the 1940s. The core idea of these methods involves the creation of games of
chance, where the behavior and outcomes can be employed to study various
interesting phenomena. Although there is no inherent connection to comput-
ers, the effectiveness of numerical or simulated gambling as a serious scientific
approach is significantly enhanced by modern digital computing technology.

To illustrate what we mean by Monte Carlo calculations, consider a circle
and its circumscribed square. The ratio of the area of the circle to that of the
square is π/4. It is reasonable to hypothesize that if points are placed randomly
within the square, the fraction π/4 will also lie within the circle. If this holds
true (and we will later demonstrate that it does, in a certain sense), one could
measure π/4 by placing a round cake pan with a diameter L inside a square cake
pan with side L and collecting rainwater in both. Additionally, a computer can
be programmed to generate random pairs of Cartesian coordinates to represent

7

random points within the square and count the fraction that falls inside the
circle. Based on many experiments, this fraction should approximate π/4, and
it will be referred to as an estimate for π/4. In one million experiments, there
is a high probability (95% chance) that the number of points inside the circle
will range from 784,600 to 786,200, resulting in estimates of π/4 between 0.7846
and 0.7862, compared to the true value of 0.785398.

This example demonstrates how random sampling can be utilized to solve a
mathematical problem, specifically the evaluation of a definite integral.

I =

∫ 1

0

∫ √
1−x2

0

dx dy. (1.3)

The answers obtained by the above procedure are statistical in nature and
subject to the laws of chance. This aspect of Monte Carlo is a drawback, but not
a fatal one, since one can determine how accurate the answer is, and obtain a
more accurate answer, if needed, by conducting more experiments. Despite the
randomness, Monte Carlo can sometimes provide the most accurate result for
the amount of computer time used. For calculating the value of π, non-Monte
Carlo methods are faster and more precise. However, for problems involving
many dimensions, Monte Carlo methods are often the only practical way to
solve integrals.

A second and complementary example of a Monte Carlo calculation is the
one illustrated by Stanis law Ulam, one of the pioneers behind the development
of Monte Carlo methods, which gave him the idea of using random sampling
to solve complex problems. Consider the task of estimating the probability of
winning at solitaire, given that the deck is perfectly shuffled before the cards
are dealt. Once a specific strategy for stacking the piles of cards is selected,
the problem becomes a simple one in basic probability theory, though it can be
quite labor-intensive. Alternatively, it wouldn’t be too challenging to create a
computer program that randomizes a list representing the 52 cards in the deck,
organizes them into different piles, and simulates the game until it concludes.
By observing the outcomes over numerous iterations, one could obtain a Monte
Carlo estimate of the likelihood of winning. In fact, this approach would be the
most straightforward way to arrive at such an estimate.

Nowadays, random numbers are utilized in various applications related to
computers, such as in video games and the generation of synthetic data for
testing purposes. While these applications are certainly intriguing, they do not
fall under the category of Monte Carlo methods, as they do not yield numeri-
cal outcomes. A Monte Carlo method can be defined as one that intentionally
incorporates random numbers into a calculation structured around a stochastic
process. By stochastic process, we refer to a series of states whose progression
is influenced by random events. In computing, these random events are pro-
duced by a deterministic algorithm that generates a sequence of pseudo-random
numbers, which emulate the characteristics of genuine random numbers.

We want to revisit the question of whether Monte Carlo calculations are
genuinely worthwhile. A practical answer to this is that many individuals uti-

8

lize them, and they have become an established aspect of scientific practice
across various disciplines. The motivations for their use aren’t solely based
on computational efficiency. As illustrated in our solitaire example, the conve-
nience, simplicity, directness, and expressiveness of the method are significant
advantages, particularly as computational power becomes more affordable. Fur-
thermore, as noted in discussions about π, Monte Carlo methods can be more
computationally efficient than deterministic approaches when dealing with prob-
lems in multiple dimensions. This is one reason why they are widely employed
in operations research, radiation transport (where challenges can involve up to
seven dimensions), and particularly in statistical physics and chemistry, where
systems consisting of thousands of particles can be analyzed routinely.

9

Chapter 2

MLPs and emergence of
convolutional structure

In this chapter we analyze the behavior of a MLP with a single hidden layer in
the case where, after training, two distinctly different classes of neurons emerge:
localized neurons and oscillating neurons. In order to obtain such result we
exploited what has been shown in [3]. Then we used the Wang Landau algorithm
to test the robustness of the trained network.

2.1 Network Training

The network model we train is a MLP with two fully connected layers and
single output. We denote with D the number of input nodes and with K the
number of nodes in the hidden layer. As activation function we use tanh, while
no activation function is applied to the output layer. Thus the output of the
network to an input x is given by:

ϕ(x) =

K∑
k=1

vk tanh

(
D∑
i=1

wkixi + bk

)
+ bout (2.1)

where:

• W ∈ RK×D is the matrix of first-layer weights. We initialized W with
independent identically distributed (i.i.d.) zero-mean Gaussian entries
with variance 1/D. For each neuron k in the hidden layer we can identify
its receptive field (RF) (or equivalently its weight vector wk) as the k-th
row of W .

• V ∈ R1×K is the matrix of second-layer weights. We set vk = 1/
√
K and

we don’t train this layer unless otherwise specified; with this setting is
easier to obtain localized neurons.

10

• bk are the hidden unit biases and bout is the bias of the network output. We
set bout = 0 and we don’t train this parameter unless otherwise specified.

Given an input x, we can define the internal representation of that input as
the (K dimensional) vector h output of the hidden layer, i.e:

hk (x) = tanh

(
D∑
i=1

wkixi + bk

)
k=1,...,K (2.2)

Here is a diagram of the model:

x1

x2

...

xD

h1

h2

...

hK

y

w11

w21

wK1

v1

v2

vK

Throughout this work, we train our networks on the synthetic NLGP and GP
datasets introduced in [3], where one or two-dimensional inputs are drawn from
a stationary Gaussian process and then optionally passed through a nonlinearity
(see 3.1 for more details). Such synthetic datasets allows us to tune both the size
of the resulting receptive fields and the task difficulty, in a manner explained
in the following. We define with αtrain the ratio between the size of the train
dataset and the input dimension D (and similarly for αtest); we set D = 50
unless otherwise stated. With regards to the difficulty of the task, the more ξ−

and ξ+ are similar to each other the more the task will be difficult to solve.
The network is trained using stochastic gradient descent (SGD). We use

the mean squared error (MSE) loss function and introduce an additional L2
regularization factor λL2 in order to control the size of the weights. We set
λL2 = 0.1, unless otherwise specified. Our cost function is thus given by:

loss =
1

N

N∑
µ=1

(ϕ (xµ)− yµ)
2

+ λL2

∑
i

w2
i (2.3)

where N = αtrainD is the number of inputs in the training set;
∑
w2

i is the
sum over the square of all the weights of the network; yµ ∈ {−1, 1}, ϕ (xµ) are

11

respectively the true output and the network output to the input xµ. We set
the learning rate η = 0.1, unless otherwise specified.

Since our model is ultimately a binary classifier, an input xµ is correctly
classified if sgn(ϕ(xµ) · yµ) > 0. That means that, given a dataset D, we can
compute the accuracy of the model as:

accD =
1

|D|
∑

(xµ,yµ)∈D

Θ(ϕ(xµ) · yµ) (2.4)

with Θ the Heaviside step function.

2.2 Localized and oscillatory neurons

Training our model on an NLGP dataset, we has been able to replicate the
results obtained in [3]. More specifically, after learning the hidden neurons split
into two groups of similar size: localized and oscillating.

Localized neurons features localized RFs: they only have a few synaptic
weights whose magnitude is significantly larger than zero in a small region of
input space (Fig. 2.1). On the contrary oscillating neurons RFs show highly
oscillating patterns. (Fig. 2.2)

In order to classify a neuron as localized or oscillatory, we use a clustering
method (see 3.4) and compute the average inverse participation ratio (IPR) for
the weight vectors in each cluster. The IPR is considered a measure of how
localized a weight vector is (see 3.2.1). If, at the end of training, we observe
the emergence of two distinct clusters, and one of them exhibits a high average
IPR, we infer that this cluster likely contains localized neurons. To verify this,
we examine the plots of the neurons in each cluster.

12

Figure 2.1: Example of localized weight vector. Parameter of the network:
N = 100; K = 100; αtrain = 8000; ξ− =

√
3, ξ+ = 3; λL2 = 0.2; η = 0.1

2.3 Network Robustness

By network robustness, we refer to the network’s ability to effectively perform
its task even if some of its hidden neurons become inactive after training. De-
pending on which neurons are active or inactive, our system can exist in 2K

different configurations σ ∈ {0, 1}K . Given a dataset D, each possible state
of the system σ is associated with an energy that depends on the number of
incorrectly classified inputs:

ED(σ) =
∑

(x,y)∈D

Θ (−ϕσ(x) · y) (2.5)

where the output of the model in configuration σ for input x is defined as:

ϕσ(x) =

K∑
k=1

σkvk tanh

(
D∑
i=1

wkixi + bk

)
+ bout (2.6)

We will refer to state of the system where all the neurons are active as σ1.

13

Figure 2.2: Example of localized weight vector. Parameter of the network:
N = 100; K = 100; αtrain = 8000; ξ− =

√
3, ξ+ = 3; λL2 = 0.2; η = 0.1

14

On way to characterize the robustness of the network is thus to compute its
density of state (DOS):

g(E) =
1

Z

∑
σ

δ(E − ED(σ)) ∝
∑
σ

δ(E − ED(σ)) (2.7)

with Z a normalization factor that will be omitted from now on.
Since the number of configurations grows exponentially with K, comput-

ing g(E) exhaustively becomes computationally intractable even for moderately
large values of K. Therefore, we use the Wang-Landau algorithm to estimate
g(E) more efficiently (see 3.3).

For the sake of clarity, what we actually compute using the WL algorithm
is a numerical (discretized) approximation of the density of states g(E), where
energy values are grouped into intervals of width δE. This approximation can
be expressed as:

g(E) ∝
∑
σ

χ[E,E+δE) (ED(σ)) (2.8)

where we defined the boxcar function χ as:

χ[E,E+δE) (ED(σ)) =

{
1 if E ≤ ED(σ) < E + δE,

0 otherwise.
(2.9)

The quantity g(E) thus represents the number of configurations with energies
within the interval [E,E + δE).

We are also interested in determining whether the configurations perform
consistently on both the training set and the test set, or if there are outliers
that perform well on one set but poorly on the other. To explore this, wecan
compute the joint density of states g(Etr, Etest), which quantifies the number
of configurations with energy values within specific intervals for both sets. The
discretized form of this joint density of state is given by:

g(Etr, Etest) ∝
∑
σ

χ[Etr,Etr+δEtr) (EDtr
(σ)) · χ[Etest,Etest+δEtest) (EDtest

(σ))

(2.10)
Intuitively, we expect that configurations with more active neurons generally

perform better. To test this hypothesis, we compute the joint density of states
g(E,n), where n represents the number of active neurons. Its discretized form
is given by:

g(E,n) ∝
∑
σ

χ[E,E+δE) (ED(σ)) · δn,∑k σk
(2.11)

This allows us to compare the density of states for configurations with dif-
ferent numbers of active neurons by conditioning on n.

15

Ultimately we want to show how the fraction of localized neurons among
the active ones affect the performance of the network. If we define the set
L = {k ∈ {0, 1, . . . ,K}|wk is localized}, we can define this fraction as:

λ(σ) =

∑
k∈L σk

n
(2.12)

In particular it is useful for later results define λ1 = λ(σ1), i.e. the fraction of
localized neurons for the state where all the neurons are active σ1.

We then computed the joint density of states g(E,n, λ), whose discretized
form is given by:

g(E,n, λ) ∝
∑
σ

χ[E,E+δE) (ED(σ)) · δn,∑k σk
· χ[λ,λ+δλ) (λ(σ)) (2.13)

2.4 Results

We now present the results from a specific case study in which we can observe
the emergence of localized and oscillatory neurons.

The number of hidden neurons we use is K = 50. We generate an NLGP
dataset for training the network. The input dimension was set to D = 50, with
αtrain = 1000.0 and αtest = 30.0, resulting in a training set of Ntr = 50, 000
elements and a test set of Ntest = 1, 500 elements. Finally, we set ξ− = 1 and
ξ+ = 2. Given the network’s size, these values make the task challenging enough
to allow for the emergence of localized and oscillating RFs, while still enabling
us to achieve high accuracy both in the training and test sets.

We train the network for 2500 epochs reaching as final accuracy on the
training and on the test set respectively acctr = 0.9869 and acctest = 0.9813
(2.3).

Throughout the training, we monitor several key statistics related to the
model’s parameters and the internal representation of the inputs (3.2). This
allow us to investigate the model dynamics and gain insights into its functioning.

16

Figure 2.3: Accuracy per epoch for the training and test sets. The inset displays
the same plot with a logarithmic scale on the x-axis.

2.4.1 Training dynamics

After training, we observe that each neuron in the hidden layer can be classified
as either oscillating or localized (Fig. 2.4, Fig. 2.5).

Out of the 50 weight vectors, 28 are classified as ”localized” and the remain-
ing 22 as ”oscillating”. Therefore the localization factor of the network in case
all neurons are active is λ1 = 0.56.

17

Figure 2.4: RFs classified as ”oscillating” after training. (K = 50, αtr = 103,
ξ− = 1.0, ξ+ = 2.0)

Figure 2.5: RFs classified as ”localized” after training. (K = 50, αtr = 103,
ξ− = 1.0, ξ+ = 2.0)

By analyzing the mean and variance of the weight vectors over epochs, we
find that, as expected, oscillating neurons typically exhibit a near-zero mean and

18

high variance, while localized neurons show a non-zero mean and low variance
(Fig. 2.6).

Figure 2.6: Mean of weight vectors per epoch (Top) and variance of weight vectors
per epoch (Bottom). For each weight vector wi, we tracked the mean and variantce of
its components across epochs. The classification into ”localized” and ”oscillatory” is
performed after training. This implies that a receptive field (RF) classified as localized
at the end of training may have been classified as oscillatory, or neither, at some earlier
stage of the process. We observe that localized neurons exhibit high variance and a
near-zero mean, while oscillatory neurons display a positive or negative mean (around
±0.4) and low variance.

19

Figure 2.7: Flatten weights distribution (histogram of all the entries of W)
epoch by epoch. We can see how the regularization factor λL2 prevents the
weights from growing indefinitely in magnitude.

2.4.2 Internal representations and Outputs

Examining the internal representations, we observe that each neuron attempts
to distinguish between inputs of different classes. A localized neuron wl mainly
produces negative outputs hl. These outputs become more negative for inputs
labeled y = −1, while inputs labeled y = 1 result in outputs with lower mag-
nitude, and slightly positive outputs occur more often. Conversely, oscillating
neurons mainly generate positive outputs, which are more positive for inputs
labeled y = 1, while inputs labeled y = −1 produce outputs with lower magni-
tude, and in some cases, slightly negative outputs. (Fig. 2.8 and 2.9).

20

Figure 2.8: Training set internal representations. Each column µ is the internal
representation of the input xµ, i.e. the element at row k and column µ is given
by hk(xµ). The resulting matrix is divided in four quadrant conditioning on the
label of the inputs and the neuron type.

21

Figure 2.9: A variant of Fig. 2.8. The color map used here distinguishes internal
representations in the following way: values less than 0 are shown in light blue,
and values greater than 0 are shown in orange. Comparing the two figures, we
observe that the negative outputs of oscillating neurons have a small magnitude,
as do the positive outputs of localized neurons.

22

Figure 2.10: Mean of the internal representations (Top) and variance of the internal
representations (Bottom). For each component of h(x), at each epoch, we computed
the mean and variance across the entire training set. The classification into ”localized”
and ”oscillatory” is performed after training, meaning that a receptive field (RF)
classified as localized at the end of training might have been classified as oscillatory,
or neither, at an earlier stage. We observe that localized neurons exhibit a negative
mean, while oscillatory neurons display a positive mean. Additionally, oscillatory
neurons show higher variance compared to localized ones.

If we look at the variance of the internal representations (Fig. 2.10 (bottom))
we can notice that in general oscillating neurons shows a greater variance. This
fact is confirmed in Fig. 2.8. Indeed, we can observe how the lower quadrants
(oscillating neurons) are more different from each other compared to the upper
ones (localized neurons). This suggests that oscillating neurons generally per-
form better at distinguishing inputs with different labels, which one can confirm
by looking at the outputs of the network in different scenarios.

Consider the system state σloc, where all localized neurons are active and all
oscillating neurons are inactive. By plotting histograms of the model outputs
for each input class (see Fig. 2.11 (top)), we find that the two curves overlap

23

significantly. This overlap suggests that localized neurons are less effective at
distinguish inputs with different labels. Conversely, when we examine the mir-
ror state σosc (where oscillating neurons are active and localized neurons are
inactive), the overlap between the two histograms is markedly less.

Figure 2.11: Output distributions. In the bottom figure, we examine the case where
the system is in the state σ1, where all neurons are active. The blue curve represents
the distribution of network outputs for inputs labeled y = −1 (corresponding to ξ =
1.0), while the orange curve shows the distribution for inputs labeled y = 1 (i.e.,
ξ = 2.0). In the top figure, we perform a similar analysis but consider the states σloc,
where all localized neurons are active and all oscillatory neurons are inactive, and σosc,
where the opposite is true.

Another interesting aspect of the internal representations is their effective
dimensionality, which is a quantitative measure of how distributed the repre-

24

sentations are across different dimensions (3.2.2). We observed that during
training, this dimensionality initially decreases but then increases, ultimately
reaching a value higher than the initial one. This non-monotonic dynamic has
been observed in the training of various networks, including the work [1], and
could be a focus for further investigation. Notably, this behavior may influence
how the gradient progressively learns a task, reflecting an inductive bias that
affects the network’s ability to generalize.

Figure 2.12: Internal representations effective dimensionality

2.4.3 Network Robustness

As anticipated in section 2.3, to fully understand the network’s resilience to
neuronal failure, it is useful to consider two order parameters that capture the
network’s key features: the total number of active neurons n and the fraction
of localized neurons among the active ones λ. For this reason, it is particularly
valuable to compute the joint density of states g(E,n, λ), from which all other
density of states can be derived by marginalizing over one or more variables.

The main finding of our analysis is that the network’s performance in a
given configuration is strongly influenced by both the number of active neurons
and the difference between the system’s localization parameter and that of the
configuration where all neurons are active, λ1. Generally, configurations with
a greater number of active neurons and localization closer to λ1 exhibit better
performance. Nonetheless, it is important to emphasize that both factors are
highly significant; configurations with fewer active neurons can still outperform

25

those with more if they demonstrate better localization.
In this section, we will first present the results on the marginalized density

of states to enhance our understanding of the phenomenon. Finally, we will
illustrate the complete results obtained for the full joint density of states, aiming
to summarize the main results expressed above in a single visualization (Fig.
2.18).

Let’s begin by examining the density of states g(Etest) across different epochs
(Fig 2.13). At epoch 0, the density of states is essentially a Gaussian distribution
centered around the midpoint of the system’s possible energy range (i.e. acc =
0.5). This occurs because the network parameters are randomly initialized, and
correct labels are guessed by chance.

As the network begins to learn the task, the distribution shifts towards lower
energies (i.e. higher accuracy), as expected. We also observe that it becomes
wider with respect to the initial distribution, but we don’t observe any significant
change in the shape of the distribution through the epochs.

Figure 2.13: Density of states g(Etest) at different epochs. The bottom figure illus-
trates that at epoch 0, the density of states is concentrated around acc = 0.5. The top
figure provides a zoomed-in view of the bottom figure, allowing us to better observe
how the distribution progressively shifts toward higher accuracy during training.

26

Let us proceed to compare the density of states for the training set and the
test set. The initial comparison is presented in Fig. 2.14 (top), where we have
plotted the two distributions g(Etrain) and g(Etest) in the same figure. However,
to better understand their relationship, we computed the joint density of states
g(Etr, Etest) (Fig. 2.14 (bottom)). We observe that the distribution clusters
along the diagonal of the Etr − Etest plane, indicating that configurations that
perform well on the training set also tend to perform well on the test set, and
vice versa. This further confirms that the model generalizes effectively across
the input space.

Figure 2.14: Comparison between density of states on the training set g(Etr) and in
the test set g(Etest)

Let’s now consider the joint density of states g(Etest, n) (Fig 2.15). Intu-
itively, configurations with a higher number of active neurons should perform

27

better than those with fewer. This trend is generally observed, though, as antic-
ipated, there are configurations that outperform others despite having a higher
number of active neurons.

Another notable observation is that the distributions g(Etest|n = i) (i ∈
{1, 2, . . . ,K}) (some examples are given in Fig 2.16) exhibit a spiky profile. To
explain these phenomena, we must take into account the order parameter λ.

Figure 2.15: (Joint) density of states g(Etest, n).

28

Figure 2.16: Conditional density of states g(Etest|n) for different values of total
active neurons n.

To understand the significance of the order parameter λ, let us begin by
examining the joint density of states g(Etr, λ). By calculating this quantity, we
can observe that the configurations achieving lower energy (i.e., better accuracy)
correspond to values of λ that are closer to λ1 = 0.567 (Fig. 2.17). This
relationship becomes even more apparent when analyzing the density of states
with respect to λ and the energy of the system conditioned on the number of
active neurons, namely g(Etr, λ|n) (Fig. 2.18).

Looking at these conditioned probabilities moreover we can notice that, de-
pending on n, not all values of λ can be reached. This is due to the fact that
the number of active/inactive neurons is discrete, and the maximum number of
active localized neurons is fixed (|L| = 28 in our case).

For example, in the case of n = 6, it is clear that λ can only take values in
{0, 1/6, 1/3, 1/2, 2/3, 5/6, 1}. Conversely, with a larger number of active neurons
the discretization of possible λ values is finer (the maximum is reached for
n ∈ {22, . . . , 28}) , but the lower and upper limits are no longer 0 and 1 for
n > 22.

Generally speaking, if there are n active neurons the number of possible

29

value for the localization is given by min(n, |L|) − max(0, n − |O|). Where
|O| = K − |L| is the number of oscillating neurons. This explains the spikiness
of g(E | n = i) and accounts for the spikiness of g(E, λ) as well.

The reason why the best configuration are the ones where the fraction of
localized neurons is similar to λ1 can be understood recalling that localized
neurons show negative outputs hk(xµ) for any kind of input xµ while oscillating
neurons always shows positive outputs. Each neuron output contributes equally
to the final output since the last-layer weights are set to vk = 1/

√
K. Moreover

set the output bias bout = 0 and we did not trained it.
Consider the case where the input has a label yµ = 1. While it is true that

the magnitude of the output from a localized neuron is lower than that from
an oscillating neuron, the overall output should be positive and thus correctly
classify the input. However, if there are too many oscillating neurons relative
to the localized ones, the total output could become negative, as each neuron
contributes equally. This imbalance could lead to a misclassification.

Figure 2.17: (Joint) density of states g(Etest, λ). The configurations with higher
accuracy are those with localization λ close to λ1 = 0.567. The spikiness of
the distribution arises from the non-smooth nature of the available localization
distribution g(λ). For example, there are many configurations where half of the
neurons are localized, but none with λ in the range [0.5, 0.51].

30

Figure 2.18: Conditional (Joint) density of states g(Etr, λ|n) for different values
of total active neurons n.

We summarize the fact that the accuracy increases with the number of active
neurons and with λ closer to λ1 in Fig. 2.19.

For each tuple (Etr, n), we computed:

λ̂(Etr, n) =

∑
λ |λ− λ1|g(Etr, n, λ)∑

λ g(Etr, n, λ)
= ⟨|λ− λ1|⟩g(Etr,n,λ) (2.14)

Given a state σ with energy Etr and n active neurons, this quantity mea-
sures the average deviation of the localization of the state σ from the optimal
localization value λ1.

Examining each column reveals a gradient in the values of λ̂, which supports
our previous observations. A notable exception arises in the case where n =
2, where configurations with one localized neuron and one oscillatory neuron
perform worse than configurations in which both neurons are of the same type.

31

Another apparent exception is the case of n = 1, although in this instance,
only two values are possible for localization: λ = 0 and λ = 1. Since λ1 = 0.56,
this indicates that a single oscillating neuron outperforms a single localized
neuron. This phenomenon is illustrated more clearly in Fig. 2.9. We observe
that the majority of inputs labeled y = −1 are correctly classified by oscillating
neurons, while most inputs labeled y = 1 go unrecognized; however, a significant
portion of these are still correctly classified.

Conversely, the errors made by localized neurons on the y = −1 inputs
are comparable to those made by oscillating neurons on the y = 1 inputs.
However, the number of errors made by oscillating neurons on y = −1 inputs
is significantly higher than those made on y = 1 inputs. We hypothesize that
a similar explanation may account for the trend observed in the case of n = 2,
but further analysis is necessary.

Figure 2.19: For each possible value of energy (or equivalently accuracy) and

number of active neurons n, we display λ̂ = ⟨|λ− λ∗|⟩, representing the average
distance from the optimal localization λ∗ = λ1 = 0.567.

32

Chapter 3

Methods and Materials

3.1 Tasks

3.1.1 NLGP

This is a binary classification task presented in [3]. The dataset used in this
task is synthetically generated, allowing us to control the size of the task and
its difficulty.

A data vector of the NLGP dataset is given by:

xµ =
ψ(gzµ)

Z(g)
(3.1)

Where:

• zµ is a zero-mean Gaussian vector of length L and covariance matrix
Cµ

ij = ⟨zµi z
µ
j ⟩ = e−|i−j|/ξµ , with i, j = 1, 2, . . . , L. The covariance thus

only depends on the distance between sites i and j, given by |i − j|; we
also enforce periodic boundary conditions.

• g > 0 is a gain factor; it controls the sharpness in the images: a large gain
factor results in images with sharp edges and important non-Gaussian
statistics, while images with a small gain factor are close to Gaussians
in distribution. Throughout this work we took g = 3, unless otherwise
specified.

• Z(g) is a normalization factor chosen such that Var(x) = 1 for all values
of g.

• ψ is a non linear function; throughout this work, we took ψ to be a
symmetric saturating function ψ(z) = erf(z/

√
2), for which Z(g)2 =

2
π arcsin

(
g2

1+g2

)
.

33

For all NLGP datasets generated for this work the inputs are one dimen-
sional. They are divided in M = 2 classes, labeled y = ±1, that differ by
correlation length ξ± between pixels. The number of inputs with label y = 1 is
equal to the number of inputs with label y = −1.

In Fig. 3.1 we show some examples of NLGP inputs for different values of ξ.

3.1.2 GP

Given an NLGP dataset we can create its Gaussian clone (GP) by drawing
inputs from a Gaussian distribution with mean zero and the same covariance
as the corresponding NLGP. The covariance of the NLGP can be evaluated
analytically for ψ(z) = erf(z/

√
2) and reads

⟨κµi κ
µ
j ⟩ =

2

πZ(g)
arcsin

(
g2

1 + g2
Cµ

ij

)
(3.2)

where we have used that fact that Cii = 1. The experiments on GPs are thus
not performed on the Gaussian variables z; they are performed on Gaussian
random variables with covariance given by the equation above. In this way,
we exclude the possibility that the change in the two-point correlation function
from applying the nonlinearity ψ is responsible for the emergence of receptive
fields (RFs).

In Fig. 3.2 we show some examples of GP inputs for different values of ξ.

Figure 3.1: Each row represents a D-dimensional input displayed in grayscale
(here, D = 50). We are displaying 42 inputs for each class out of the N available
inputs in the dataset.

34

Figure 3.2: Each row represents a D-dimensional input displayed in grayscale
(here, D = 50). We are displaying 42 inputs for each class out of the N available
inputs in the dataset.

3.2 Statistics of the Model

3.2.1 Layers

Weights distribution

It’s the histogram of all entries in W . During training, the initial distribution
(∼N(0, 1

D)) gradually broadens. This widening continues until the regulariza-
tion factor in the loss function becomes significant, causing the distribution to
stabilize.

Mean and variance of weight vectors

mk =
1

D

D∑
i=1

wki σ2
k =

1

D

D∑
i=1

(wki −mk)
2

(3.3)

We keep track of them to better understand the dynamics of the model; looking
at them, indeed, we can see if the network reach a relatively steady state.

Inverse participation ratio (IPR)

IPR (wk) =

∑D
i=1 w

4
ki(∑D

i=1 w
2
ki

)2 (3.4)

As has already been done in [3], we used IPR to distinguish localized RFs by
oscillating ones. Indeed it can be viewed as an indicator of the number of non-
zero components in a vector, in particular localized weight vectors will feature
an high IPR.

35

3.2.2 Internal representations

Mean and variance

The mean and variance of the internal representations are computed over all
the reference dataset, namely:

mk =
1

N

N∑
µ=1

hk(xµ) σ2
k =

1

N

N∑
µ=1

(hk(xµ)−mk)
2

(3.5)

Dimensionality

Given a dataset D, each input xµ has an internal representation hµ that is a
point in a K-dimensional space. To estimate the effective dimensionality of these
internal representations, we employed Principal Component Analysis (PCA).
PCA allows us to identify the orthogonal dimensions that contribute most to the
variance within these internal representations. The effective dimensionality we
obtain is then a quantitative measure of how much the internal representations
are spread across the different dimensions.

We computed the covariance matrix of all the internal representations as:

Ckj = ⟨(hk − ⟨hk⟩)(hj − ⟨hj⟩)⟩ (3.6)

Where ⟨·⟩ is the average over all the input in the data set. Throughout this work,
when we refer to the effective dimensionality we always consider the internal
representations of the training set.

The eigenvalues {λ} of the covariance matrix inform us on what are the most
relevant dimension. The higher contribution to the variance will be along the
eigenvector corresponding to the higher eigenvalue and so on.

We normalized the eigenvalues (i.e. λ̂k = λk∑
k λk

) and we compute the effec-

tive dimension as the Shannon entropy of the distribution so obtained:

deff = −
∑
k

λ̂k log λ̂k (3.7)

Shannon entropy measures the uncertainty of a given distribution. For exam-
ple, a uniform distribution has high entropy, while a distribution concentrated
around a few values has low entropy. For that reason we considered this a good
measure of how well the variance is distributed along the different dimensions.

3.3 Wang Landau Algorithm

The Wang Landau (WL) algorithm is a non-markovian Monte Carlo (MC) sam-
pling method. It was introduced for the first time by Fugao Wang and D. P.
Landau in the context of condensed matter physics [8], but while such method
has been already used to study coarse-graining of macromolecules [2, 6], it is

36

virtually unknown to the Machine Learning and Computational Neuroscience
community.

More conventional MC methods (e.g. Metropolis-Hastings algorithm) are
able to sample from a canonical distribution at a given temperature (P (E) =
g(E)e−E/(KBT)). This is achieved by using a Markov process which asymptot-
ically reaches such distribution.

On the other hand the WL algorithm is non-markovian, but enable us to
estimate the whole density of state g(E). This is possible by performing a
random walk which produces a flat histogram in energy space. Please note that
this is equivalent to say that energy barriers are ”invisible” to the algorithm,
thus states that are difficult to reach by the Metropolis-Hasting algorithm can
be can be easily reached by the WL algorithm.

The main idea behind the WL algorithm is that a random walk in energy
space with a probability proportional to the reciprocal of the density of states

1
g(E) generates a flat histogram for the energy distribution. This means that

we can use the ”flatness” of the histogram generated by the random walk to
evaluate the goodness of our estimate for the density of state.

Since the density of state is a priori unknown, we initially set g(E) = 1 for
all energies E (uninformative prior). The system is set in the initial state with
corresponding energy Ei, thus we have to update the histogram H(E) and the
density of state g(E). Indeed, in general, at each iteration the following update
are made: H(Es)→ H(Es) + 1 and g(Es)→ g(Es)f , where Es is the energy of
the current state and f is the modification factor that allow us to improve the
estimate for g(E). The modification factor f will be refined while the algorithm
is running, but a typical initial choice is f0 = e. Then we start our random
walk by proposing a new state (e.g. if our system is an Ising model, that means
flipping spins randomly). The probability of accepting the proposed move is
given by:

p(Eold → Enew) = min

[
g(Eold)

g(Enew)
, 1

]
(3.8)

Recalling that the density of state and the entropy are related according to
g(E) ∝ eS(E), this probability can be equivalently written as:

p(Eold → Enew) = min
[
e−∆S , 1

]
, with: ∆S = S(Enew)− S(Eold) (3.9)

The random walk goes on until the histogram H(E) is ”flat”. Of course it’s
impossible to obtain a perfectly flat histogram, when we define an histogram as
”flat” we mean that, for all possible E, H(E) never exceed a certain percentage
distance from the average of the histogram ⟨H(E)⟩, i.e.:∣∣∣∣H(E)− ⟨H(E)⟩

⟨H(E)⟩

∣∣∣∣ < 1− pflat (3.10)

We set pflat = 0.9, except when otherwise stated.

37

Once the flatness condition is satisfied, we reduce the modification factor
according to ft+1 =

√
ft (any function that monotonically decreases to 1 will

do) and we reset the histogram H(E) = 0 for all E.
We iterate this process until the modification factor is smaller than some

final value ffinal. We set ffinal = exp(10−5), except when otherwise stated.
A pseudo-code of the algorithm is provided (Algorithm 1).

Algorithm 1 Wang-Landau

1: Initialize:
2: log g(E)← 0 ∀E
3: H(E)← 0 ∀E
4: log f ← log f0
5:

6: while log f > log ffinal do
7: C ← Initial configuration
8: E ← Compute energy of C
9: while flat histogram criterion is not met do

10: Generate a trial move C ′

11: E′ ← Compute energy of C ′

12: if log g(E)− log g(E′) > log(rand(0, 1)) then
13: Accept move: C ← C ′, E ← E′

14: else
15: Reject move
16: end if
17: log g(E)← log g(E) + log f
18: H(E)← H(E) + 1
19: end while
20: log f ← log f/2
21: H(E)← 0 ∀E
22: end while
23:

24: Output: Estimated log density of states log g(E)

3.3.1 Wang Landau 2D

Throughout our work, other then computing standard density of states g(E),
we were also interested in computing joint density of states (JDOS), such as
g(Etrain, Etest), g(E,n) and g(E,n, λ) (see section 2.3).

In order to compute these quantities we employed two different approaches.
To compute g(Etrain, Etest) we just generalized the WL algorithm to the 2D case,
this means that we now deal with a two dimensional histogram H(Etrain, Etest)
and when a configuration will be proposed we have to compute both the energy
with respect to the training test and the test set.

To compute these quantities, we employed two different approaches. For
g(Etrain, Etest), we extended the Wang-Landau algorithm to the two-dimensional

38

case. This approach involves working with an histogram H(Etrain, Etest) which
is two-dimensional. When a new configuration is proposed, we calculate the
energy with respect to both the training set and the test set, and then update
the histogram accordingly.

On the other hand, when one of the variables involved is n, we adopted a
different strategy. For each possible value of n (i.e., ∀n ∈ {1, . . . ,K}), we used
a modified version of the algorithm in which every proposed configuration has
exactly n active neurons in the hidden layer. For instance, to compute g(E,n),
we first calculate g(E|n = i) for all i ∈ {1, . . . ,K}. Then, using the fact that
g(i) =

(
k
i

)
, we can obtain g(E,n) as:

g(E,n) =

K∑
i=1

g(E|n = i)g(i) (3.11)

The main advantage of this approach is that we run multiple one-dimensional
WL algorithms in parallel, which significantly speeds up the process. Addition-
ally, when g(i) is sufficiently small, we can compute g(E|n = i) exhaustively.
In fact, there is a threshold value below which an exhaustive search for g(E) is
faster than the WL algorithm.

When computing g(E,n, λ), we tried to combined both the approaches: for
each value of n, we implemented a two-dimensional version of the WL algorithm.
Similarly to the g(E,n) case, we can reconstruct the full joint distribution as:

g(E,n, λ) =

K∑
i=1

g(E, λ|n = i) g(i) (3.12)

However, although this approach might be optimal for higher values of K,
in the specific case discussed in 2.4, we decided to reconstruct the joint density
of states g(E,n, λ) by computing the conditional density of states g(E|n, l) for
all possible values of n and l, where l is the number of localized active neurons.

In order to reconstruct the full 3-dimensional density of state we need take
into account the degeneracy factor g(n, l), i.e. how many configurations have
n active neurons and l localized neurons. This is given by: The distribution
g(n, l) is given by:

g(n, l) =

(
|L|
l

)(
K − |L|
n− l

)
(3.13)

Where |L| is the total number of localized neurons.
Ultimately we can notice that, since λ = l

n , defining a tuple (n, l) is equiva-
lent to defining a tuple (n, λ) and the introduction of l was mad just for operative
reasons. For this reason g(n, l) = g(n, λ) and g(E|n, l) = g(E|n, λ) and we can
write:

g(E,n, λ) ∝
∑
n,λ

g(E|n, λ) g(n, λ) (3.14)

39

3.4 Weight vectors clustering

In order to compare different weight vectors wk, we introduce a similarity mea-
sure that is invariant to translation, similarly to what was done in [3]. Given two
weight vectors wk and wl, we normalize them, then apply the Fourier transform
to obtain w̃k and w̃l, respectively. Their overlap is given by:

q̃kl =
1

D
|w̃k||w̃l| (3.15)

By taking the absolute value of the Fourier transform of the weight vectors, q̃kl
becomes invariant to translation, as the phase information is removed. We then
define a pairwise distance matrix of size K ×K, with entries given by:

dkl = 1− q̃kl (3.16)

Finally, we cluster the weight vectors using complete-linkage clustering. The
dendrogram is cut at half the maximum distance in the distance matrix.

40

Chapter 4

Conclusion

In this work we showed the potential of using the Wang-Landau algorithm to
explore the resilience of neural networks in case of neuronal death.

In the case under consideration, the introduction of order parameters such
as the number of active neurons n and their localization ratio λ proved useful
in describing the characteristics of configurations that best performed the task.

The results we obtained inherent the (joint) density of states of the sys-
tem are in agreement with the interpretation of the internal representation of
the network. Localized neurons primarily produce negative outputs, which be-
come more negative for inputs with short correlation length; oscillating neurons
mainly generate positive outputs, producing for inputs with longer correlation
length stronger positive responses. Since each hidden neuron’s output con-
tributes uniformly to the total output, in the event of neuronal death, main-
taining the balance between localized and oscillating neurons is important to
ensure the network can still perform the task effectively. When this balance is
disrupted, the network’s performance on the task suffers significantly.

A similar approach could be used to study another scenario involving two dif-
ferent types of neurons, such as in MLPs with a layer of excitatory/inhibitory
(E/I) neurons. Investigating the robustness of such networks would be par-
ticularly interesting, as they are more closely aligned with biological neuronal
circuits.

41

Acknowledgments

Desidero ringraziare il mio surpervisor, Alessandro Ingrosso, per tutto il sup-
porto che mi ha sempre dimostrato nel corso di questo progetto. In partico-
lar modo per le conversazioni in pausa pranzo all’ICTP durante i quali mi ha
aiutato a orientarmi meglio nel mondo della ricerca e offerto nuovi spunti di
riflessione. Darmi la possibilità di entrare in contatto con un mondo cos̀ı intel-
lettualmente stimolante ha aumentato il mio desiderio di continuare ad ampliare
le mie conoscenze.

Un ringraziamento speciale va a Camilla, la mia ragazza. Lei più di tutti
conosce la fatica e l’impegno che mi sono serviti per raggiungere questo tra-
guardo, il tuo supporto è stato fondamentale e non penso ce l’avrei fatta senza
di te. Ti amo.

Ringrazio tutta la mia famiglia che mi ha sempre voluto bene e che troppe
volte tendo a dare per scontata, grazie per tutto quello che avete sempre fatto per
me. In particolare voglio ringraziare i miei genitori e mia sorella, sono molto
felice del rapporto che abbiamo costruito negli anni, ma mi rendo conto che
difficilmente lo dimostro apertamente. Vi voglio bene, ogni tanto è importante
ricordarlo.

In fine voglio ringraziare tutti i miei amici, che in tutti questi anni mi hanno
aiutato a staccare la testa e rilassarmi con loro, ma che al tempo stesso si sono
rivelati sempre presenti nei momenti di difficoltà. Grazie a tutti (cit.).

42

Appendix A

Emergence of Localized
Receptive Fields: impact of
training set size and
number of hidden neurons

In Section 2.4, we considered a specific case where receptive fields (RFs) split
into ”localized” and ”oscillating” patterns after training. However, this behavior
is not universally applicable.

We observe that the emergence of localized and oscillating neurons is sig-
nificantly influenced by the number of neurons in the hidden layer K and the
size of the training set αtrain. To better understand the conditions under which
these patterns arise, we can train networks with varying values of K and αtrain

while keeping all other parameters fixed.
Utilizing the clustering methods described in 3.4, we can classify the RFs

into different shapes. However, it is essential to quantify how ”localized” the
weight vectors are for each class and assign an index to each trained model
indicating the level of localization of its hidden neurons—what we refer to as a
localization proxy.

We found that, under identical parameter settings and initial conditions,
training a network to solve the dual GP task results in final RFs that do not
localize in the same way as those in the NLGP case. While both tasks yield two
distinct classes of RFs, we observe what can be characterized as fast and slow
oscillations rather than a clear oscillating versus localized pattern (see Fig. A.1
and Fig. A.2).

43

Figure A.1: Weight vectors in a network trained on the GP task. K = 42,
αtrain = 500.0, ξ− = 1, ξ+ = 2

Figure A.2: Weight vectors in a network trained on the NLGP task. K = 42,
αtrain = 500.0, ξ− = 1, ξ+ = 2

To leverage this phenomenon, we train an identical network on the dual
GP task for each network trained on the NLGP task, maintaining the same
parameters and initial conditions. We then employ the difference in the average
inverse participation ratio (IPR) (3.2.1) between the NLGP and GP cases as
our localization proxy.

The observed trend indicates that networks with lower K and larger training
sets exhibit higher localization. However, localization does not appear to be

44

essential for achieving good generalization. For instance, networks with a highK
can attain high accuracy even in the absence of localized RFs. This observation
may suggest that the task was too simple, eliminating the necessity for this
feature to develop. To explore this further, we replicated the study with different
values of (ξ−, ξ+), specifically considering the cases (ξ− = 10−10, ξ+ = 2),
(ξ− = 1, ξ+ = 2), and (ξ− = 1.6, ξ+ = 2), which we categorize as ”easy,”
”medium,” and ”hard,” respectively.

Figure A.3: Accuracy on the test set w.r.t K and αtrain for a network trained
on NLGP task. ξ− = 10−10, ξ+ = 2 (”easy”)

Figure A.4: Localization proxy w.r.t K and αtrain. ξ− = 10−10, ξ+ = 2 (”easy”)

45

Figure A.5: Accuracy on the test set w.r.t K and αtrain for a network trained
on NLGP task. ξ− = 1, ξ+ = 2 (”medium”)

Figure A.6: Localization proxy w.r.t K and αtrain. ξ− = 1, ξ+ = 2 (”medium”)

46

Figure A.7: Accuracy on the test set w.r.t K and αtrain for a network trained
on NLGP task. ξ− = 1.6, ξ+ = 2 (”hard”)

Figure A.8: Localization proxy w.r.t K and αtrain. ξ− = 1.6, ξ+ = 2 (”hard”)

In conclusion, further investigation is necessary to explore a broader range
of K and αtrain, along with additional values of ξ, to gain deeper insights into
the conditions influencing the emergence of localized and oscillating neurons.
Nevertheless, the general trend indicates that localization tends to emerge when
α is sufficiently high, K is not excessively large, and the task presents the right
level of difficulty: challenging enough for the network to learn but still allowing
for good accuracy on the test set.

47

Bibliography

[1] Simone Ciceri, Lorenzo Cassani, Matteo Osella, Pietro Rotondo, Filippo
Valle, and Marco Gherardi. Inversion dynamics of class manifolds in deep
learning reveals tradeoffs underlying generalization. Nature Machine Intel-
ligence, 6(1):40–47, January 2024.

[2] Roi Holtzman, Marco Giulini, and Raffaello Potestio. Making sense of com-
plex systems through resolution, relevance, and mapping entropy. Phys. Rev.
E, 106:044101, Oct 2022.

[3] Alessandro Ingrosso and Sebastian Goldt. Data-driven emergence of convo-
lutional structure in neural networks. Proceedings of the National Academy
of Sciences, 119(40), September 2022.

[4] Christoph Junghans, Danny Perez, and Thomas Vogel. Molecular dy-
namics in the multicanonical ensemble: Equivalence of wang–landau sam-
pling, statistical temperature molecular dynamics, and metadynamics. Jour-
nal of Chemical Theory and Computation, 10(5):1843–1847, 2014. PMID:
26580515.

[5] Malvin H. Kalos and Paula A. Whitlock. Monte Carlo Methods. Wiley-VCH,
2008.

[6] Roberto Menichetti, Marco Giulini, and Raffaello Potestio. A journey
through mapping space: characterising the statistical and metric proper-
ties of reduced representations of macromolecules. Eur. Phys. J. B, 94, Oct
2021.

[7] Michael Nielsen. Neural Networks and Deep Learning. Self-published, 2015.

[8] Fugao Wang and D. P. Landau. Efficient, multiple-range random walk al-
gorithm to calculate the density of states. Phys. Rev. Lett., 86:2050–2053,
Mar 2001.

48

