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Abstract

Modelling the exhaust power in future Tokamak reactors remains an open issue in fusion research,
as the change in scale from ITER to power plants suggest that heat fluxes in the latter could exceed
manageable material limits on the target plates. A potential solution to the exhaust problem is the
development of so-called “alternative divertors configurations”, whose aim is to widen the plasma-
wetted area to reduce the heat load at the targets by altering the magnetic geometry in the divertor
area. This is achieved by increasing the flux expansion (X-divertor), sometimes in combination of
placing the outer strike point at a larger radial location (super-X divertor), or increasing the number
of strike points. Amongst this last class of solutions there are the so-called “Snowflake” divertors,
which provides a secondary X-point and thus two additional magnetic field legs along which the heat
flux might be dissipated. Experimental investigation of Snowflake divertors have shown a reduction
of the peak heat flux at the targets compared to conventional Single Null geometries. In particular,
it has been highlighted that the change in power distribution in the former cannot be explained
by the modification of the magnetic geometry alone, which suggests additional cross-field transport
mechanisms are at play. Numerical investigations using the Global Braginskii Solver (GBS) code
have highlighted that drift-related transport may play a significant role in determining the output
power profiles, and especially found an enhanced E × B-drift convective pattern around the X-point
of reversed field configurations . In this thesis the GBS simulation data is used to determine which
mechanisms are at play in setting the electrostatic potential (and the observed drift patterns) around
the X-point, comparing it to previous models. A description of the profile along the outer divertor leg
is found in terms of the density, and a scaling relation is recovered in terms of the parallel coordinate
in the case of simplified density profiles.
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Introduction:
A brief overview of magnetic
confinement devices

One exquisitely human ability is that of creating problems that would not be found spontaneously in
nature. One such problem would be that of flight: a fish would not look at the birds and wonder what
it would feel like to be able to follow them into the sky; rather, it would look for the best strategy to
divert their attention in order not to be captured. Another one is that of transport: a cheetah is only
interested in speed as far as capturing prey goes, but would not give any further thought to efficiency
than that of its own muscles. Humans have the rather unique ability to create new needs that would
not arise naturally, but become fundamental as a self-fulfilling prophecy built often on pure social
structures. Along with the ability to create problems humans have the proficiency in finding solutions
through imitation of nature itself: Leonardo da Vinci found inspiration for his flying machines in bird
anatomy; more recently, computer scientists found the solution to the challenge of teaching artificial
machines how to learn from experience in the structure of the human brain. As time went by, humans
got more ambitious and the problems grew in scale; accordingly, the solutions required higher leaps
of imagination. The energy problem falls within this category: the need to transition from a fossil
fuel-based energy production system to renewable sources is an entirely man-made issue as not only is
climate change largely understood to be anthropogenic, but the issue of energy consumption itself only
concerns the human kind. In an interconnected world that requires more and more energy per capita
to operate each year because of the technological advancements, the current means of production are
not enough to guarantee a safe passage from fossil fuels to renewable energies which can provide for
the demand of entire countries. One of the solutions humanity found to this matter was to raise its
eyes to the sky and try to harness the power of the stars. That is what controlled fusion is at its core:
a way to produce energy exploiting similar mechanisms to those which power celestial bodies.

Figure 1: Nuclear binding energy
Average binding energy per nucleon, as a function of the nuclear mass number. Figure taken from Ref. [1]
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The reaction that we are trying to exploit is that of nuclear fusion, which is a nuclear reaction
that causes two light atoms to combine together to form a heavier one, where a substantial amount
of energy is liberated. This energy surplus is associated to the nuclear mass defect of the product.
Nuclear reactions aim to maximise nuclear binding energy (the energy required to dissociate atoms
into its constituent particles, see Fig. 1), as it is associated to more stable atoms. For heavier atoms
the binding energy is maximised by splitting the atom into lighter ones, which is the case for uranium
in a nuclear fission reaction; in the case of hydrogen isotopes, such as deuterium (D) and tritium
(T), the gain is obtained by fusing the lighter atoms together to obtain helium (He) instead. D-T
fusion reactions have a cross-section which peaks at at approximately 100 keV, which corresponds
to 1.16 billion °C [2]: at these temperatures matter is found in a state denoted as plasma, that is
an ionised gas whose behaviour is governed by electromagnetic forces. At these temperatures, the
interatomic collisions become sufficiently violent that electrons become detached from the atoms;
however, the electromagnetic fields have a longer interaction range than elastic Coulomb collisions,
and so plasma motion is determined not only by its local state but also by these long-range forces
[3]. At macroscopic length scales, this implies that the two oppositely charged fluids, which are
strongly coupled electrostatically, tend to neutralise, as a local accumulation of charge would yield
huge electric fields that would be unfeasible to maintain in the presence of equal numbers of both
charges [4]. Plasma is thus normally considered to be quasi-neutral, and exhibits collective behaviour,
making it the perfect example of complex system.

It was mentioned earlier that this mean of producing energy is meant to imitate the stars: of course
it is a far from trivial feat to do so, as reproducing the exact conditions of pressure and gravity that
are present at the core of the Sun would be unfeasible on Earth; nevertheless, a creative solution was
to employ magnetic fields to counteract this structural impediment. This is the principle on which
are built magnetic confinement devices.

We are used to associating confinement with material walls, but at the temperatures mentioned
before any solid container would melt, if directly in contact with the fuel (which, in turn, would
recombine into the wall at the density regimes expected in these devices): that is why very strong
magnetic fields are employed to confine the plasma, as charged particles would gyrate in tight helices
around the magnetic field lines due to the Lorentz force. Having magnetic fields with purely open
topologies (that is, which intersect the material walls), however, would lead inevitably to end losses,
as the particles would still be free to move in the parallel direction (the Lorentz force has no effect
along that direction): closed geometries can help in avoiding such losses. Out of the many possible
topologies, the torus is the simplest closed 3D configuration allowing for the magnetic field B to

Figure 2: Tokamak
Schematic representation of a tokamak device. Figure taken from Ref. [5]
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remain finite at every point (hairy ball theorem [6]), a fundamental characteristic as magnetic field
nulls are associated with the loss of confinement. A strong toroidal field is thus required and is usually
obtained through the use of coils (see Fig. 2). The toroidal component alone is however not sufficient
to guarantee complete confinement, as particle drifts would arise due to the curvature of the magnetic
field in two opposite directions for the oppositely charged fluids, leading to a separation of charges
and the subsequent creation a vertical polarisation; this, in turn, would generate a secondary drift,
the E × B drift, pointing outwards for both particle species, destroying particle confinement. This
issue is resolved by generating a poloidal magnetic field, which forces the magnetic field lines to wrap
around both the major and the minor axis of the torus. In the case of tokamaks, that is axisymmetric
toroidal magnetic confinement devices, this is achieved through the induction of a current through the
plasma, which would result in nested flux surfaces, improving plasma particle and energy confinement.
To do so, a central solenoid is used and additional toroidal coils control the magnetic geometry of the
magnetic field’s poloidal component (Fig. 2).

The specific mention of poloidal magnetic field geometry is far from casual: one of the fundamental
obstacles of the feasibility of (controlled) fusion power plants is that of the plasma exhaust. Magnetic
fusion devices are open thermodynamic systems: at the steady state one expects that all the power
that is injected into the system or generated within the fusion reaction has to be expelled in some
way. The more fusion energy a reactor produces, the larger the power flux that will be exhausted and
that could potentially damage the walls of the device [6]. The plasma exhaust problem is a delicate
balance between many opposing needs: walls have to be armoured where they are in contact with
plasma discharges to protect the material surfaces, but one would wish for as much non-armoured
area as possible to be able to exploit the expelled neutrals to breed tritium, as the fuel is expected to
be produced in situ [2]; the goal is to increase fusion power by maximising the plasma volume while
exploiting the highest magnetic field strength achievable with conventional superconductors, but this
comes at the cost of high expenses and engineering challenges.

We want to focus on one of the main solutions that is presented to this conundrum, that is the
case of diverted configurations. The details of this solution will be illustrated later, but the key idea
is that they modify the magnetic poloidal field in such a way that the heat flux is directed towards
specifically armored regions called target plates, that are thus able to withstand the immense strain
discussed earlier. The most elementary of these geometries is called Single Null (Fig. 3) and will
be discussed at length in a separate chapter: what is important is that this configuration entails the
presence of two targets. Research in the field of boundary plasma physics and divertor engineering
have improved upon this elementary configuration exploiting many different mechanisms to maximise
the area in order to reduce the heat load at the target plates. Amongst these there is the creation
and activation of two additional targets, which would expand the plasma-wetted area efficiently: this
is the so-called Snowflake configuration, the one we will focus on in the present thesis. Activation
is the keyword here, as the mere existence of the new targets does not ensure that particle and
heat discharges will be able to reach them, being topologically disconnected from the upstream (i.e.,
where the turbulent plasma exhaust is expected); however, their activation has been observed both in
simulations [7] and in experiments [8], thus requires further investigation. The complex geometries in
place would require for cross-field (i.e. which extends in the direction perpendicular to the magnetic
flux surfaces) transport in order to make the new target plates accessible to the plasma, as they would
be located in a region magnetically disconnected from it, called Private Flux Region (in Fig. 3 it
would correspond to the region below the two “legs” which intersect the wall).

The simple dynamics that have so far been described in the general tokamak configurations are
not enough to explain this type of cross-field transport of heat and particles, thus one has to look
for mechanisms specific to divertors in order to explain the activation of the additional target plates.
Amidst those the one that is addressed in the present thesis is that of the convective cell, which is
theorised to be the mechanism allowing for the required cross-field transport exploiting properties of
the specific magnetic geometry. It would do so by enhancing the transport associated to E ×B drift
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in the vicinity of the null of the poloidal component of the magnetic field, denoted as X-point (the
point at the intersection of the white line in Fig. 3). One of the required conditions for this to be
allowed is that of a specific electric potential structure formation in this region.

The present thesis focuses on this very last topic, building a theoretical description of the electric
potential structure in the region of interest. It does so by starting from a general model used to
describe boundary plasma dynamics, that is the drift-reduced Braginskii equations, comparing at each
step the results to simulation data obtained using the GBS (Global Braginskii Solver) code, a first-
principles, 3D, flux-driven, turbulence simulation code. The modelling focuses on an axisymmetric,
static case for which a 2D description is sufficient, that is for which toroidally and time-averaged
profiles are taken in exam. In particular, the focus will be on a specific region defined divertor leg (it
can be thought of as the poloidal projection of the section of the magnetic flux surface associated to
the poloidal magnetic field null which connects the X-point to the wall), thus the final model will be
a one-dimensional description of the field of interest (which will be shown to be sufficient).

Figure 3: TCV simulation obtained using GBS code (Ref. [9]).

The discussion will be structured in the following way: the first two chapters will introduce the
theoretical and numerical tools required to perform the analysis, while the following three chapters
will illustrate the main results of the work. The first chapter will in particular start by going into the
details of the diverted configurations mentioned above and describe the specific mechanisms which
take place in the convective cell that allow for the activation of the additional targets; additionally, it
will rigorously illustrate the physical model, the drift-reduced Braginskii equations, which constitute
the starting point of the theory. The second chapter will then focus on the practical tools, starting
by describing the GBS code employed to obtain the simulation data; it will later go on to describe
the data itself and its main parameters to discuss the regime of interest; finally, it will briefly explain
the main notation conventions used in the discussion, and in particular define the parametrisation
of the divertor leg which will allow to account for the magnetic geometry. The third chapter will
introduce the problem at hand in detail, illustrating an important previous result in the description of
the electric potential along the divertor leg, which will represent a recurring comparison throughout
the thesis: an initial description of the potential will be obtained through an equation setting the
potential profile (generalised Ohm’s law), for which the main components will be put under scrutiny
to find a simplified description in terms of the fundamental observables of the system; a closure will be
found for one of the components, which will allow for the equation to be rewritten in terms of electron
temperature and density (and corresponding derivatives) alone. The fourth chapter will focus on the
modelling of the new fields of interest, whose evolutions will be found to be intrinsically interwoven
together in the region of interest. In particular an approximation will be introduced, the refined two-
point model, which will be an evolution of a model widely used to describe profiles along the divertor
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leg, that will allow to simplify the dynamics perpendicular to flux surfaces: this will let one recover a
unique equation describing the required profiles. The fifth and final chapter will then collect all the
approximations and the corresponding equations into a system, denoted as density-potential system,
which will fully describe the potential as a function of the density. Notably, by considering simplified
density profiles this will allow for the recovery of scaling laws for the potential along the divertor leg
using certain approximations directly comparable to previous results found in similar regimes. The
final part of the chapter is devoted to the numerical integration of the full system: at first an error
estimate is defined for the simplified density profile ansatz in terms of the current model, with the
possibility to build fixed-point iterative methods to describe the profiles for generalised cases; then the
full system is discussed, along with the numerical instabilities that could be associated to its specific
form.
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Chapter 1

The physical model

The first thing to be defined is the physical model from which we will start the discussion, as it will
constitute the background for most of the present thesis.

The aim of this chapter is to introduce the fundamental framework in the following way: first
diverted configurations will be outlined in detail (in particular the Snowflake configuration, as our
analysis will focus on this case); then the specific phenomenon we are interested in, the convective
cell, will be introduced and previous results obtained for its description will briefly illustrated; lastly,
the fundamental equations employed to describe the phenomena will be derived in the specific regime
of interest.

1.1 The Snowflake divertor

1.1.1 Diverted configurations

One of the fundamental concepts in the discussion of the plasma exhaust problem is that of the
divertor.

Given the fact that all equilibrium quantities are assumed to be axisymmetric in tokamak devices
[10], one can introduce a cylindrical coordinate system describing a tokamak device (R,φ,Z), where
R is the distance from the axis of symmetry of the torus, Z is the vertical coordinate, and φ is the
toroidal angle. Thus the magnetic field can be decomposed in its components:

B = BReR +BZeZ +Bφeφ = Bp +Bφeφ

where Bp := B = BReR+BZeZ is called the poloidal magnetic field corresponding to the specific R−Z
plane defining the poloidal cross-section of the plasma. The toroidal magnetic field, Bt := Bφeφ, is
almost completely generated by the external coils. In particular one denotes as Reversed configurations
those with a positive (in (R,φ,Z) coordinates) toroidal magnetic field at the magnetic axis and as
Forward those with a negative Bt (Fig. 1.1).

R

Z

φ

O

⊙
Bt (Forward)

⊗
Bt (Reversed)

Figure 1.1: Frame of reference and toroidal

magnetic field direction
The (R,φ,Z) coordinate system is schematically

represented, where the tokamak axis is assumed to be to the
left of the poloidal cross-section. The Bt configurations are

labelled; the reversed configuration is sometimes also
denoted as unfavourable as it is unfavourable for H-mode
access (correspondingly, the forward one is labelled as

favourable) in the case of lower Single Nulls.
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The diverted configurations (Fig. 1.2) are those characterised by the presence of a second null
in the poloidal magnetic field other than the magnetic axis, which partitions the domain into two
magnetically separated regions: one in which magnetic flux surfaces are closed, denoted as core (or
confinement zone), and one in which the flux surfaces intersect the walls of the device, the Scrape-Off
Layer (SOL). The boundary between the two regions, the Last Closed Flux Surface (LCFS), is also
called separatrix for this same reason. Lying directly against it one finds the edge, which is a thin
layer in the closed field line region where steep gradients between core and SOL form. The null of
the poloidal magnetic field is named X-point after the characteristic shape of the separatrix in its
proximity. Each separatrix creates divertor legs, channeling the SOL from the X-point to the divertor
targets, where the plasma interacts with the machine wall. The plasma exhaust is thus directed to
these targets, also called strike points, where impurities are released from the surface and plasma is
recycled. The entire region below the X-point constitutes the divertor (hence the name of the type of
magnetic geometry).

This type of structure constitutes an alternative to limited configurations, in which the separation
between the core and SOL is obtained by inserting a protruding structure called limiter (Fig. 1.2).

The SOL in diverted tokamaks is further partioned into many topological regions depending on
the shape of the magnetic flux surfaces:

• themain SOL, that is the part of the plasma that is outside the separatrix magnetically connected
to the divertor;

• the wall shadow, the region in which the flux surfaces intersect the wall rather than the divertor;

• the Private Flux Region (PFR), which is the region extending below the X-point and in between
the divertor legs, topologically separated from the rest of the SOL

where by magnetically connected we refer to the fact that the trajectories of the particles in the plasma
lie mostly along the flux surfaces, as cross-field transport is much slower than the parallel one.

Figure 1.2: Limited vs Diverted configurations
The midplane is defined as the horizontal surface that passes through the magnetic axis of the tokamak (Ref.

[6]).

The one illustrated above is, in general, the simplest type of diverted configuration one could find
and is generally denoted as Single Null to indicate the presence of a unique, first-order null of the
poloidal magnetic field, generated by the presence of a current in a poloidal field coil below the bottom
of the machine.
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The change in scale from ITER to power plants suggest that heat fluxes in the latter could exceed
manageable material limits on the target plates were we to consider this type of divertor, as heat
loads at the strike points in this case would be too large for the target plates to withstand. Amongst
the solutions to the heat load problem one that is being investigated is the employment of the so-
called Alternative Divertor Configurations (ADCs): the aim would be to improve upon the Single Null
configuration by modifying the magnetic geometry to increase the plasma-wetted area at the strike
points (either widening the area at the targets or introducing a higher number of strike points [6,
10]), thus reducing the heat flux at the plates significantly. Each of these solutions presents its unique
engineering challenges, therefore there is a delicate balance between the advantages gained in terms
of performance, and the engineering feasibility of the different configurations.

1.1.2 The Snowflake divertor

One such solution is that of the Snowflake (SF) configuration, introduced in 2007 by Ryutov [11]: the
idea is to induce a higher order null at the X-point, so that the separatrix splits the poloidal plane into
six sectors instead of four (Fig. 1.3), forming close to the null the characteristic six-branched shape
reminiscent of a snowflake (hence the name).

Figure 1.3: Snowflake vs Single Null
The shape of separatrix in the vicinity of the Bpol null for the Snowflake divertor (left) and standard divertor

(right). Shown by a bold red line is a separatrix; thin line represents an adjacent flux surface (Ref. [12]).

In order to describe this configuration let us consider a poloidal cross-section with the X-point
situated at the origin (R = Z = 0). Let a be the distance between the null and the plasma coils, set at
the R = 0 axis, and d be the distance between the symmetrically-situated divertor conductors, which
are found at a vertical distance of b below the the Z = 0 axis (Fig. 1.4). Denoting by I and Id the
currents passing in the plasma and divertor coils respectively, and neglecting the toroidicity, one finds
the following relations to be a necessary and sufficient condition to obtain a second order null at the
origin:

1. condition for the zero at the origin: Id = I
(
b+ d2

4b

)
2. condition for the second order null (null linear terms): d = 2b

√
a+b
a−b

In Fig. (1.4) one can find the visual representation of the shape of the separatrix (bold) and of two
nearby flux surfaces(lighter lines) for b = 0.3a.

One can notice immediately how pronounced the flux expansion (that is, the broadening of the
distance between adjacent flux surfaces) becomes close to the X-point due to the second order null.
In particular in this case the modulus of the poloidal magnetic field will scale as Bpol ∼ r2, where r
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Figure 1.4: Snowflake configuration
Schematic representation of the Snowflake
configurations with the full associated field
lines (Ref. [11]). The thick line represents
the separatrix; thin lines outside andinside
the separatrix represent flux surfaces whose
distance is 0.002a from the separatrix in the
equatorial plane (i.e., 1 cm for the device
with a = 5 m). At the scale of the figure,

the 1 cm of distance in the main SOL is too
small to be resolved, whereas the distance
of the outer flux surface from the null-point

is approximately 80 cm.

is the distance from the X-point, as opposed to the standard case in which Bpol ∼ r (Single Null).
Thus, the connection length is greatly increased with respect to the standard Single Null, as does the
magnetic field shearing near the null point [11]. Lastly, the existence of four strike points (Fig. 1.6)
increases the plasma-wetted area assuming uniform activation.

SF configurations are obtained experimentally by generating two first-order X-points close to each
other. When the two X-points coincide, a second-order null point is obtained. However, in practice,
the two X-points never coincide perfectly: the X-point associated with the separatrix that encloses
the plasma is denoted as primary, while the other, the secondary X-point, lays either in the private
flux region of the primary X-point or in the main SOL. The first configuration is denoted as the SF
plus (SF+), the latter as SF minus (SF−), while the configuration with the two X-points coinciding
is usually referred to as the ideal SF (Fig. 1.5). All these configurations have been experimentally
investigated in the TCV [13], NSTX [14], and DIII-D [15] tokamaks.

Figure 1.5: 2D poloidal cross-section of a rectangular tokamak vacuum vessel (TCV), demonstrating the
(a) SF+, (b) SF-LFS, (c) SF-HFS and (d) SN magnetic field configurations in the poloidal plane (Ref. [2]).

All the characteristics we have mentioned contribute to make this configuration of particular
interest for the exhaust problem, as flux expansion is theorised to have an impact on local dynamics.
Amongst the mechanisms that arise, we want to focus in our analysis on the convective cell.
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Figure 1.6: Snowflake configuration
Turbulent code simulation of a Snowflake

configuration (Ref. [7]). Contour plot of the
poloidal flux function, in the ideal SF

configuration implemented in simulations
(black dashed line). The separatrix is

shown as a solid black line. The boundary
domain is indicated by a solid green line.

The three blue circles represent the position
of the current filaments, located outside the
simulation domain, responsible of creating
the SF configuration, while the red circle

represents the center of the plasma current.

1.2 The convective cell

One of the main advantages that the Snowflake configuration introduces with respect to the Single
Null is the presence of the additional strike points, which enlarges the exposed area and thus reduces
the heat flux at the plates. Experimental measurements in TCV have shown a reduction in the peak
heat fluxes compared to similar Single Null cases [8].

As previously mentioned, though, this is conditional on the activation of the two additional strike
points: they are situated within the private flux region, and as such they would be magnetically
isolated with respect to the main SOL were there no perpendicular transport. The natural conclusion
is that one should try to investigate the mechanisms which induce the cross-field transport needed for
the activation of the secondary strike points.

Figure 1.7: The convection zone
(a) Schematic representation of a Snowflake divertor, with the separatrix indicated as a solid black line and
the four strike points labelled from 1 to 4. (b) The structure of the weak poloidal field zone near the null;

black arrows indicate the direction of the plasma flow; dashed red circle encloses the convection zone with blue
dashed arrow indicating the initial direction of rotation; solid red line inside the confinement zone shows the

boundary of a layer inside the separatrix affected by convection.
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The first solution proposed was the so-called “churning mode” ([16, 12]). It theorised the presence
of an electromagnetic instability caused by the weak Bpol zone in the vicinity of the X-point, which in
turn would cause convection to emerge in the area, driven by the toroidal curvature of the magnetic
field lines coupled with a vertical pressure gradient. This would cause a poloidal rotation (churning
motion) around the null without perturbing the toroidal field, thus allowing the plasma to flow into
the additional divertor legs. The effect would be present in first-order nulls as well, where the main
difference is the size of the convection zone, which is associated to the weak-poloidal-field zone and as
such is more larger in the Snowflake case compared to the Single Null.

The proposed model was however not sufficient, as the same effect was found in simulations which
neglected electromagnetic fluctuations. In particular it was found that in first-principles global tur-
bulent simulations run using the GBS code ([7]), where the turbulence and equilibrium cross-field
transport are evolved self-consistently, one could observe the activation of the inner legs (Fig. 1.8) for
different types of Snowflake configurations in reversed Bt configurations.

Figure 1.8: Equilibrium parallel heat flux at the target plates
Equilibrium parallel heat flux at the target plates, normalised to the reference value q0, as a function of the
distance from the separatrix, which is evaluated at the midplane and normalised to ρs0, for different types of
SF configurations (labels of the strike-points are in the same order as Fig. 1.7). For comparison equivalent SN

values are depicted at the outer legs (Ref. [7]).

The effect is found to be due to a convective cell around the poloidal field null, induced by equi-
librium E × B drift. Indeed, the area interested by this phenomenon showed enhanced cross-field
transport (Fig. 1.9), which allowed the plasma in the main SOL to be transported into the PFR and
be thus able to reach the secondary target plates SP2 and SP3 (Fig. 1.7).

Moreover, a specific type of potential structure is required to obtain such a convective motion, as
one would need a potential well to be formed at the X-point. The immediate consequence is that in
order to fully understand the convective cell one should investigate first of all what sets the potential
in the divertor area.

1.2.1 Potential structures around the X-point

The formation of a potential structure (well in reversed cases, hill in forward ones) around the X-point
has been observed both in experimental devices, such as DIII-D [17], and more recently in TCV [18],
and in simulations (XGC [19], SOLPS-ITER [20] and GBS).

It is in particular from 2D simulations run using SOLPS-ITER that Wensing et al. obtained a
simplified model describing this mechanism in [20], comparing it to TCV experimental data [18]. A
scaling relation involving the values of density, temperature and potential at the target and at the
X-point was obtained by applying some simplifying assumptions (as for example a simplified geometry
and constant flux expansion along the leg). We will go into the details of this specific model later on,
but what is vital to highlight here is that a description of the potential hill/well formation phenomenon
was proposed already for the simplest case (the Single Null). Both experimental data [8] and other
simulation data obtained with codes that better accounted for drift effects [7], however, highlighted
how the size of the convective cell was affected by flux expansion, which makes it much more prominent
in Snowflake configurations.
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Figure 1.9: The convective cell
Equilibrium E ×B heat flux in the null-point region for the ideal SF configuration. The size of the arrows is
proportional to the intensity of the heat flux. Black dashed lines indicate contour levels of the electrostatic

potential while the solid blue line indicates the separatrix.

The aim of the present thesis would be to expand on this results, by including drift and flux
expansion effects and only considering quantities measured at the target, which are easier to obtain
experimentally.

Now, before going into the details of the computational apparatus employed to obtain and analyse
the data required for our model, one needs to properly define the theoretical infrastructure to describe
it. It is a model widely employed as the physical background of turbulent code simulations: the
Drift-Reduced Braginskii Equations.

1.3 The plasma model: Drift-Reduced Braginskii equations

1.3.1 The Braginskii equations

In 1965 Braginskii derived a model to describe the dynamics of a highly collisional plasma: the
Braginskii equations [21]. He started from a full kinetic description of the different particle species of
the plasma, from which using some specific hypotheses then evolution equations for the macroscopic
observables of interest were recovered. In the original model only a single ion species and electrons
were considered, but it was later extended to include neutrals and general multi-species plasma.

One starts from a kinetic description of a single-ion species plasma, in terms of a system of
Boltzmann equations:

∂fn
∂t

+ v · ∂fn
∂x

= C(fn, fi) + C(fn, fe) (1.1)

∂fi
∂t

+ v · ∂fi
∂x

+ qi

(
E+ v ×B

mi

)
· ∂fi
∂v

= Ci (fi, fe) + C(fi, fn) (1.2)

∂fe
∂t

+ v · ∂fe
∂x

− e

(
E+ v ×B

me

)
· ∂fe
∂v

= Ce (fe, fi) + C(fe, fn) (1.3)

for fa(t,x,v), a = i, e the single particle distribution function for each species, me are the ion and
electron masses, qi is the ion charge, e is the elementary charge, and C(fa, fb) are the collision operators
for the different species.

Here the neutral model is included as they are present in the final system of equations required
for the code described in the next chapter, but we will not discuss it as it is not of interest for the
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current derivation and was not present in the original Braginskii model (refer to [9] for the details):

C(fn, fi) + C(fn, fe) = −νizfn − νcx

(
fn −

nn
ni
fi

)
+ νrecfi (1.4)

C(fi, fn) = −νcx
(
nn
ni
fi − fn

)
+ νizfn − νrecfi + si (1.5)

C(fe, fn) = νiznn

[
2Φe (Vn, Te,iz)−

fe
ne

]
− νrecfe + νennn

[
Φe (Vn, Te,en)−

fe
ne

]
+ se (1.6)

where Vn =
∫
vfndv/nn is the neutral mean velocity, Φe(v, T ) is a Maxwellian velocity distribution

function, and si and se are external sources of particles and heat. The electron/ion collisions are
described through the use of Krook operators with collision frequencies given by:

νev = ne ⟨ve,iσev (ve,i)⟩ve,i , ev ∈ {iz, cx, en}

(respectively, ionization, charge-exchange, electron-neutral elastic collision).
From these one could define the quantities of interest through the introduction of the first momenta

of the respective distribution functions:

na(t,x) =

∫
fa(t,x,v)dv (1.7)

Va(t,x) =
1

na

∫
vfa(t,x,v)dv = ⟨v⟩a (1.8)

Ta(t,x) =
1

na

∫
m

3
(v −Va)

2 fa(t,x,v)dv =
m

3

〈
(v −Va)

2
〉
a

(1.9)

for a = i, e, and by extracting the corresponding momenta of the kinetic equations (1.1 - 1.3) one
recovers the evolution equations:

∂ne
∂t

+∇ · (neVe) =nnνiz − niνrec + sn (1.10)

∂ni
∂t

+∇ · (niVi) =nnνiz − niνrec + sn (1.11)

mene
deVe

dt
=−∇pe −∇ · πe − ene (E+Ve ×B) +Re +menn (νen + 2νiz) (Vn −Ve)

(1.12)

mini
diVi

dt
=−∇pi −∇ · πi + Zeni (E+Vi ×B) +Ri +minn (νiz + νcx) (Vn −Vi)

(1.13)

3

2
ne

deTe
dt

+ pe∇ ·Ve =−∇ · qe − πe : ∇Ve +Qe + nnνiz

[
−Eiz −

3

2
Te +

3

2
meVe ·

(
Ve −

4

3
Vn

)]
− nnνenmeVe · (Vn −Ve) + nesTe (1.14)

3

2
ni

diTi
dt

+ pi∇ ·Vi =−∇ · qi − πi : ∇Vi +Qi + nisTi + nn (νiz + νcx)

[
3

2
(Tn − Ti) +

mi

2
(Vn −Vi)

2

]
(1.15)

where the ions have charge qi = Ze and:

de
dt

=
∂

∂t
+Ve · ∇

di
dt

=
∂

∂t
+Vi · ∇
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are the total time derivatives (substantial derivatives, as they are called in [21]) for the electrons and
the ions, respectively, and pe = neTe, pi = niTi are the electron and ion plasma pressures.

For each species, the following quantities are defined:

• the pressure tensor Pαβ = pαδαβ + παβ, whose entries are defined by:

p = nm
〈
v′2
〉
/3

παβ = mn
〈
v′αv

′
β − v′2/3δαβ

〉
• the change in momentum per time unit of the particles of a given species as a result of collisions
with all other species:

R =

∫
mv′C dv

• the flux density of heat carried by particles of a given species:

q = nm

〈
v′2

2
v

〉
• the heat density generated as a consequence of the collisions with the other species in the plasma:

Q =

∫
mv′2

2
C dv

In his treatment, Braginskii proceeded to make some important assumptions on the underlying
nature of the collisions in order to recover the evolution equations for such observables; in particular
he assumed that:

1. the timescale of the system τ was much longer than than the time interval between two collisions:

τ ≫ τcoll

2. the length scale of variation of the system λ was much larger than the mean free path between
any two collisions:

λ≫ λm.f.p.

which is indeed the case for highly collisional plasma. He could then employ linear response theory
to approximate the solution of (1.2, 1.3) with a perturbed Maxwellian, which in turn entailed a
proportionality relation between the quantities π,R,q, Q and the first momenta (f,V, T ) and their
gradients. The proportionality coefficients are called transport coefficients. The transport coefficients
in [21] are calculated by assuming a strongly magnetised plane, i.e. Ωaτa ≫ 1, where Ωa = qaB/ma, a ∈
{e, i} are respectively the electron/ion cyclotron frequencies and

τe =
3
√
me

4
√
2π

(4πϵ0)
2

Z2e4
T
3/2
e

nΛ

τi =
3
√
mi

4
√
2π

(4πϵ0)
2

Z4e4
T
3/2
i

nΛ

are the electron/ion collision times, with Λ the Coulomb logarithm.
In this approximation, it is shown that the momentum transfer between ions and electrons, R =

Re = −Ri, consists of two terms: the friction force, Ru, due to electron/ion collisions, and the thermal
force, RT , due to the coexistence of a temperature gradient in the presence of electron/ion collisions.
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By neglecting the friction in the direction perpendicular to the magnetic field and terms of order
1/ (Ωeτe), the friction and thermal forces become:

Ru = ene
j∥

σ∥
b (1.16)

RT = −0.71ne∇∥Te (1.17)

where b is the unit vector parallel to the magnetic field, j∥ = ene
(
V∥i − V∥e

)
is the current in the

direction parallel to b, and σ∥ is the parallel conductivity:

σ∥ = 1.96
e2neτe
me

Within the same approximations, the electron and ion heat fluxes in (1.14, 1.15) are:

qe = −0.71neTe
j∥

e
− χ∥eb∇∥Te −

5

2

neTe
eB

b×∇Te (1.18)

qi = −χ∥ib∇∥Ti +
5

2

niTi
ZeB

b×∇Ti (1.19)

where

χ∥e = 3.16
neTeτe
me

, χ∥i = 3.9
niTiτi
mi

are the parallel thermal conductivities.

The heat generation Q in (1.14, 1.15) consists of three separate components: the Joule heating due
to friction between ions and electrons, which, for the typical timescales of turbulence in the plasma
boundary, is negligible; the electron-ion heat transfer; and the term arising from the thermal force.
The heat generation for electrons is thus given by:

Qe =
0.71

e
j∥∇Te + 2

me

mi

n

τe
(Ti − Te) (1.20)

while for ions by:

Qi = 2
me

mi

n

τe
(Te − Ti) (1.21)

Finally, by taking a frame of reference in which the z axis is aligned along the magnetic field
direction, the components of the stress tensor π can be written as:

πxx = −η0
2
(Wxx +Wyy)− η3Wxy

πyy = −η0
2
(Wxx +Wyy) + η3Wxy

πxy = πyx =
η3
2
(Wxx −Wyy)

πxz = πzx = −2η3Wyz

πyz = πzy = +2η3Wyz

πzz = −η0Wzz

where the rate-of-strain tensor W is given by:

Wαβ =
∂Vα
∂xβ

+
∂Vβ
∂xα

− 2

3
δαβ∇ ·V (1.22)
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with the viscosities defined by:

η0i = 0.96niTiτi, η3i =
niTi
2Ωi

(1.23)

η0e = 0.73neTeτe, η3e = −neTe
2Ωe

(1.24)

The Braginskii equations we have just obtained describe phenomena occurring in a wide range of
time and spatial scales, ranging from the electron cyclotron frequency Ωce = eB/me ∼ 1011 s−1 up to
the energetic confinement timescale τen ∼ 1 s, and from the electron Larmor radius ρe ∼ 10−5 m, up
to typical machine size R0 ∼ 1 m. At the same time, turbulent fluctuations in the plasma boundary
occur at timescale of order 10−6 s, which is therefore much slower than the fast cyclotron motion, and
on spatial scale of the order of the ion sound Larmor radius, ρs = cs/Ωci, with cs the sound speed.
Simulating the full model would be extremely numerically challenging, hence we would need a way to
eliminate the faster timescales in order to make the model tractable from a numerical point of view.
That is precisely where a new simplification, introduced by [22], comes into play: the Drift-Reduction.

1.3.2 Drift-ordering in the Braginskii model

In systems in which the ambient scale lengths are long compared to the characteristic Larmor radii
of either ions or electrons ρe,i, instabilities driven by density or pressure gradients typically have
characteristic time/space scales which are slower than the characteristic gyro-frequencies Ωe,i and
longer than the Larmor radii. In [22] an approximation is introduced, which allows to eliminate the
cyclotron motion of the particles and thus describe only the low-frequency motion of the system. It
consists in simplifying Eqs. (1.10 - 1.15) by applying a drift ordering:

∂

∂t
∼ VE · ∇ ∼ ρ2s

L2
⊥
Ωci ≪ Ωci (1.25)

being ρs much smaller than the typical equilibrium scale length L⊥, and VE = b×∇ϕ/B the E×B
drift velocity. Moreover, since the plasma turbulence takes place on a spatial scale much larger than
the Debye length, we assume the plasma to be quasi-neutral, i.e. ni = ne ≡ n.

Within this regime the particle velocities can be decomposed into their components parallel and
perpendicular to the magnetic field. Defining the electron and ion diamagnetic drift velocities respec-
tively as:

Vde = − 1

enB
b×∇pe

Vdi =
1

ZenB
b×∇pi

one can derive the expressions for the perpendicular components of the particle velocities by performing

the drift-ordering on (1.12, 1.13) and retaining the lowest orders in ρ2s
L2
⊥
:

V⊥e = VE +Vde (1.26)

V⊥i = VE +Vdi +Vpol +Vin (1.27)

The zeroth order terms in both equations are given by the E×B and diamagnetic drift velocities, while
the lowest order corrections to the ion perpendicular velocity are the polarisation drift, Vpol, and the
drift arising from the ion-neutral friction due to charge exchange,Vin = (nn/n) (νcx/Ωci) (V⊥n −V⊥i)×
b.
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The ion polarization drift is obtained from (1.13) by neglecting parallel gradients and terms de-
pending on the collisional time in the stress tensor, so that it can be rewritten into two contributions:

• the viscous part:

πvis =

(
bb− I

3
G

)
, G = −3η0

(
∇∥V∥ − κ ·V − 1

3
∇ ·V

)
with G the stress function and κ = b · ∇b the field line curvature;

• the finite Larmor radius (FLR) part:

∇ · πFLR = −minVdi · ∇Vi + pi

(
∇× b

Ωci

)
· ∇Vi +∇⊥

(
pi

2Ωci
∇ · b×Vi

)
+ b×∇

(
pi

2Ωci
∇⊥ ·Vi

)
Finally, the ion polarization drift can then be written as:

Vpol =
b

Ωci
× d

dt
V⊥i0 +

1

nmiΩci

{
b×

[
pi

(
∇× b

Ωci

)
· ∇V⊥i0

]
+b×∇⊥

(
pi

2Ωci
∇ · b×V⊥i0

)
−∇⊥

(
pi

2Ωci
∇⊥ ·V⊥i0

)}
+

1

nmiΩci
b×

(
Gκ− ∇G

3

)
(1.28)

where in the substantial derivative we keep only the zeroth order terms after performing the drift-

ordering: d/dt = ∂/∂t +
(
VE + V∥ib

)
· ∇, being Vpol ≪ ρ2s

L2
⊥
. The diamagnetic drift cancels out the

first term of ∇ · πFLR.
The polarisation drift nevertheless appears in the convective derivative, despite being small in the

drift ordering, because of energy conservation [22], and thus will enter the continuity equation in the
form:

∇ · (nVpol) = ∇⊥ · nc

BΩci

d

dt

(
E⊥ − ∇⊥pi

en

)
+

1

3miΩci
b× κ · ∇G (1.29)

The electron polarization drift and the drift arising from the electron-neutral interaction are neg-
ligible, as they would be a factor

√
me/mi smaller than the corresponding terms coming from the ion

equation.

1.3.3 Semi-electrostatic limit

One last ingredient is needed to obtain the full system of reduced equations: the semi-electrostatic
limit. As stated earlier, one has to remove fast oscillations from the model, which in the case of
electromagnetic effects are associated to compressional Alfvén waves, as they are several orders of
magnitude faster than the typical turbulent fluctuations in the plasma boundary. Similarily to [22],
one can do so by introducing the so-called semi-electrostatic approximation, that is:

B = B0 + δB⊥

where B0 is the equilibrium magnetic field on top of which we consider small perturbations in the
perpendicular direction δB⊥. As a consequence of quasi-neutrality [23], this in turn implies that the
component of the vector potential perpendicular to the magnetic field are negligible: that is, given
B = ∇×A:

δB⊥ = −∇× (ψb0) ⇐⇒ δA∥ ∼ |δA⊥|
L∥

L⊥
≫ |δA⊥|

where b0 is the unit vector associated to the equilibrium field, ψ is a toroidally uniform scalar function
and L∥ is the chacteristic turbulent length scale for the direction parallel to the magnetic field (the
last relation holds because of the strong magnetization plane assumption).
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In the β = 2µ0(pe + pi)/B
2 ≪ 1 regime, considering Ampère’s law for the magnetic field in the

Coulomb gauge and in the absence of displacement currents, we can recover the following expression
for the fluctuations:

µ0δj = ∇× δB = ∇×∇× δA = −∇2δA+∇(∇ · δA) = −∇2δA = ∇2ψ

where δj = j − j̄ and j̄ is again the equilibrium current on top of which we consider small-scale and
small-amplitude perturbations. Within the same approximations, one also recovers the expression for
the electric field:

E = −∇ϕ+
∂ψ

∂t
b

In particular we have that the magnetic fluctuations affect the direction of the magnetic field, and
therefore the parallel gradient:

∇∥ = (b+ δb) · ∇ = b · ∇ − ∇× ψb

B
· ∇ ≃ b · ∇+

b

B
×∇⊥ψ · ∇

where the second term is the contribution to the parallel derivative due to magnetic fluctuations.

1.3.4 Conservation laws in the drift-reduction approximation

From all the aformentioned approximations, one can now recover the full system of drift-reduced
Braginskii equations.

Quasi-neutrality implies that both continuity equations (1.10, 1.11) should hold at the same time:

∂n

∂t
+∇ ·

[
n
(
VE +Vdi +Vpol + V∥ib+Vin

)]
= nnνiz − nνrec + sn (1.30)

∂n

∂t
+∇ ·

[
n
(
VE +Vde + V∥eb

)]
= nnνiz − nνrec + sn (1.31)

Thus, subtracting one from the other, one obtains the added constraint:

∇ · (nVpol) +
1

e
∇∥j∥ +∇ · [n (Vdi −Vde)] +∇ · (nVin) = 0 (1.32)

where the implicit assumption is that the modulus B of the magnetic field varies slowly along b, i.e.
∇ · fb ≃ ∇∥f . The above relation is called the vorticity equation, and corresponds to the condition
∇ · j = 0. Replacing the explicit expression obtained for the polarization drift contribution in the
equation obtains its final form:

∇⊥ ·
[

n

BΩci

d

dt

(
E⊥ − ∇⊥pi

en

)]
+

1

3miΩci
b× κ · ∇G+

1

e
∇∥j∥ +∇ · [n (Vdi −Vde)]

+
nn
n
νcx∇ ·

(
nE⊥ − 1

e
∇⊥pi

)
= 0 (1.33)

which in particular determines the time evolution of E⊥.

The ion and electron parallel momentum balance equations are recovered by projecting respectively
(1.13) and (1.12) onto the parallel direction, that is:

me

deV∥e

dt
=− 1

n
∇∥pe + e∇∥ϕ− e

∂ψ

∂t
+ e

j∥

σ∥
− 0.71∇∥Te +me

nn
n

(νen + 2νiz)
(
V∥n − V∥e

)
(1.34)

mi

dV∥i

dt
=− 1

n
∇ (pi + pe)−

2

3
∇∥Gi +mi

nn
n

(νiz + νcx)
(
V∥n − V∥i

)
(1.35)
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where again we have used the fact that the modulus B of the magnetic field varies slowly along b to
simplify the terms associated to ∇ · πe and neglected terms of order me/mi and

√
me/mi in the ion

parallel momentum equation.
Lastly, the temperature equations are derived from (1.14, 1.15) by applying the drift-ordering.

By neglecting the viscous heat losses, the frictional heating related to Ru and the electron-ion heat
transfer, we obtain:

3

2
n
deTe
dt

+
3

2
nVde · ∇Te + pe∇ ·

(
VE +Vde + V∥eb

)
− 0.71

Te
e
∇∥j∥ −∇∥

(
χ∥e∇∥Te

)
− 5e

2
∇ ·
[
pe

(
b

B
×∇Te

)]
+ 2

me

mi

n

τe
(Te − Ti) = sTe + Sn

Te (1.36)

3

2
n
dTi
dt

+
3

2
nVdi∇Ti + pi∇ ·

(
VE +Vdi +Vpol + V∥ib

)
−∇∥

(
χ∥i∇∥Ti

)
+

5e

2
∇ ·
[
pi

(
b

B
×∇Ti

)]
+ 2

me

mi

n

τe
(Ti − Te) = sTi + Sn

Ti (1.37)

where the respective source terms in the r.h.s.:

Sn
Te = nnνiz

[
−Eiz −

3

2
Te +

3

2
meVe ·

(
Ve −

4

3
Vn

)]
− nnνenmeVe · (Vn −Ve) (1.38)

Sn
Ti = nn (νiz + νcx)

[
Tn − Ti +

1

3

(
V∥n − V∥i

)2]
(1.39)

account for interactions with the neutrals. The second equation, in particular, can be rewritten by
evaluating the term ∇ ·Vpol from the ion and electron continuity equations:

n∇ ·
(
VE +Vdi +Vpol +Vin + V∥ib

)
= −Vdi · ∇n− dn

dt
(1.40)

where the terms Vpol · ∇n and Vin · ∇n are dropped because of the drift-reduced ordering, and

dn

dt
=

den

dt
+
(
V∥i − V∥e

)
∇∥n (1.41)

Thus its final form will be:

3

2
n
dTi
dt

+ Ti∇ · nVde + pi∇ ·
(
VE + V∥eb

)
− Ti

j∥

en
∇∥n−∇∥

(
χ∥i∇∥Ti

)
+

+
5pi
2e

(
∇× b

B

)
· ∇Ti + 2

me

mi

n

τe
(Ti − Te) = sTi + Sn

Ti (1.42)

1.3.5 Drift-reduced Braginskii equations

We recall the previously introduced cylindrical non-field-aligned coordinate system (R,φ,Z), where
R is the distance from the axis of symmetry of the torus, Z is the vertical coordinate, and φ is the
toroidal angle. Then, collecting all equations and rewriting them as explicit evolution equations for our
observables of interest (density, vorticity, parallel velocities and temperatures) in the new coordinate
system, the following system is recovered:

∂n

∂t
=− 1

B
[ϕ, n] +

2

eB
[C (pe)− enC(ϕ)]−∇∥

(
nV∥e

)
+ sn + νiznn − νrecn (1.43)

∂Ω

∂t
=− 1

B
∇ · [ϕ, ω]−∇ ·

(
V∥i∇∥ω

)
+
BΩci
e

∇∥j∥ +
2Ωci
e
C (pe + pi) +

Ωci
3e
C (Gi)−

nn
n
νcxΩ (1.44)

∂U∥e

∂t
=− 1

B

[
ϕ, V∥e

]
− V∥e∇∥V∥e +

e
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The above equations are coupled to the Poisson and Ampère equations discussed earlier:

∇ · (n∇⊥ϕ) = Ω−
∇2

⊥pi
e

(1.49)(
∇2

⊥ − e2µ0
me

n

)
V∥e = ∇2

⊥U∥e −
e2µ0
me

nV∥i +
e2µ0
me

j̄∥ (1.50)

where Ω = ∇·ω = ∇· (n∇⊥ϕ+∇⊥pi/e) is the scalar vorticity, while U∥e = V∥e+eψ/me is the sum of
the electron inertia and the electromagnetic induction contributions. In the system of equations the
following operators have been introduced:

• the E×B convective term:

[ϕ, f ] = b · (∇ϕ×∇f)

• the curvature operator:

C(f) =
B

2

(
∇× b

B

)
· ∇f

• the parallel gradient, which includes the electromagnetic flutter contribution:

∇∥f = b · ∇f +
1

B
[ψ, f ]

• the perpendicular Laplacian:

∇2
⊥f = ∇ · [(b×∇f)× b]

given f a general scalar function.

Additionally, we define externally imposed sources in the density and temperature equations, sn
and sT , which are analytical and toroidally uniform functions of the poloidal magnetic flux ψ(R,Z),

sn = sn0 exp

(
−(ψ(R,Z)− ψn)

2

∆2
n

)

sT =
sT0
2

[
tanh

(
−ψ(R,Z)− ψT

∆T

)
+ 1

]
where ψn and ψT are flux surfaces located inside the separatrix.
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The gyroviscous terms are defined as:

Gi = −η0i
[
2∇∥V∥i +

1

B
C(ϕ) +

1

enB
C (pi)

]
(1.51)

Ge = −η0e
[
2∇∥V∥e +

1

B
C(ϕ)− 1

enB
C (pe)

]
(1.52)

where η0i = 0.96nTiτi and η0e = 0.73nTeτe.

Before moving on to the discussion of the implementation of the numerical implementation of
the model just recovered, we would discuss an important additional approximation that is not only
relevant for the code itself, but also for all the analytic derivations present in this thesis: the large
aspect ratio approximation.

1.3.6 Differential operators in the large-aspect-ratio approximation

Most of the analytic derivations and the numerical implementation of the above model will make use of
the large aspect ratio approximation [9]. It will particularly affect the differential operators previously
introduced, as it simplifies greatly their analytic expressions.

Introducing the same (R,φ,Z) coordinate system previously discussed, the toroidally symmetric
equilibrium magnetic field is written in terms of the poloidal magnetic flux ψ, as:

B = RBφ∇φ+∇φ×∇ψ (1.53)

where ψ = ψ(R,Z) is itself toroidally symmetric.

In order to perform our approximation, we recall that the magnetic field is decomposed as:

B = BReR +BZeZ +Bφeφ = Bp +Bφeφ (1.54)

with eR, eZ and eφ the basis vectors.

Then the large aspect ratio expansion will be performed in terms of the parameters ϵ ∼ r/R0 ≪ 1
and δ ∼ Bp/Bφ ≪ 1, where r is the minor radius and the implicit assumption is that the poloidal
component of the magnetic field is smaller than the toroidal one. Additionally one assumes a safety
factor at the midplane q ∼ ϵ/δ of order unity. Leading order terms in ϵ and δ will be retained in our
expansions.

We start by noticing that, at zeroth-order in ϵ and δ, the modulus of the magnetic field is constant:

B2

B2
0

=
B2
R

B2
0

+
B2
Z

B2
0

+
B2
φ

B2
0

=
B2
φ

B2
0

+O
(
δ2
)
= 1 +O

(
ϵ, δ2

)
(1.55)

with B0 the modulus of the tmagnetic field taken at the tokamak magnetic axis. This will be particu-
larly useful in the next chapter, when the need will arise of the definition of normalization parameters.

Then, given a scalar function f , one can proceed to expand all the previously mentioned operators
in ϵ and δ.

In particular, the Poisson brackets take the form:

[ϕ, f ] = b · ∇ϕ×∇f =

= b ·
[(
∂RϕeR + ∂ZϕeZ +

1

R
∂φϕeφ

)
×
(
∂RfeR + ∂ZfeZ +

1

R
∂φfeφ

)]
=

=
1

R

BR
B

(∂φϕ∂Zf − ∂Zϕ∂φf) +
1

R

BZ
B

(∂Rϕ∂φf − ∂φϕ∂Rf) +
Bφ
B

(∂Zϕ∂Rf − ∂Rϕ∂Zf) (1.56)
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which, normalising poloidal lengths in terms of the reference ion sound Larmor radius, ρs0, and toroidal
lengths in terms of the tokamak major radius, R0 to obtain a dimensionless form, gives:

[ϕ, f ] =
ρs0
R

BR
B

(∂φϕ∂Zf − ∂Zϕ∂φf) +
ρs0
R

BZ
B

(∂Rϕ∂φf − ∂φϕ∂Rf) +
Bφ
B

(∂Zϕ∂Rf − ∂Rϕ∂Zf) =

=
Bφ
B

(∂Zϕ∂Rf − ∂Rϕ∂Zf) +O(ϵ, δ) (1.57)

as BZ/B ∼ BR/B ∼ δ and ρs0/R ∼ ρs0/R0 ≪ r/R0 ∼ ϵ.

Neglecting local current (i.e., assuming ∇×B = 0), the curvature operator can be expanded in ϵ
and δ as:

C(f) =
B

2

(
∇× b

B

)
· ∇f =

=
1

2B

(
Bφ
B2

∂ZB
2∂Rf − Bφ
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)
+O(ϵ, δ) (1.58)

The poloidal derivatives ∂ZB
2 and ∂RB

2 are given by:
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(1.60)

where we use B2
φ/B

2
0 = R2

0/R
2 = 1+O(ϵ). Finally, maintaining only the leading order terms in ϵ and

δ, the curvature operator, normalised to 1/ (R0ρs0), becomes:

C(f) =
Bφ
B0

∂Zf +O(ϵ, δ)

The parallel gradient is normalised to 1/R0 and, in dimensionless units, is given by:

∇∥f = b · ∇f = ρ−1
∗

(
BR
B
∂Rf +

BZ
B
∂Zf +

Bφ
B

ρs0
R
∂φf

)
=

= ∂Zψ∂Rf − ∂Rψ∂Zf +
Bφ
B0

∂φf +O(ϵ, δ) (1.61)

where BR = ∂Zψ/R,BZ = −∂Rψ/R.
Lastly, the perpendicular laplacian can be recovered as:

∇2
⊥f = ∇ ·

[
1

B2
(B×∇f)×B

]
=

1

B2
∇ · [(B×∇f)×B]− ∇B2

B4
· [(B×∇f)×B] (1.62)

The second term on the right-hand side of (1.62) is one order ϵ smaller than the first one, which can
be written in cylindrical coordinates as:

(B×∇f)×B =

(
B2
Z∂Rf −BZBR∂Zf − BRBφ

R
∂φf +B2

φ∂Rf
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eφ (1.63)
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and expanded in ϵ and δ,

(B×∇f)×B ≃
B2
φ

B2
∂RfeR +

B2
φ

B2
∂ZfeZ +O(ϵ, δ) (1.64)

Thus, the leading order terms can be expressed as:

∇2
⊥f = ∂2RRf + ∂2ZZf +O(ϵ, δ) (1.65)

which gives the final expression for the last of our basic operators defined in the system of equations.

Now that we have the full physical apparatus, we can proceed to describe the practical tools we
have used to study the phenomenon, starting from the most important one: the simulation code itself.
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Chapter 2

The methodology: numerical tools and
general notation

Now that the main physical background has been clarified, what remains to be discussed is the details
of the general methodology which will be employed.

The present chapter is divided in three sections: the first one will recall the previously introduced
physical model and will delve into the details of the implementation of the simulation code, GBS, and
the possible approximations which will take place; the second section will illustrate the simulation
data that has been examined in our post-processing code, so to have a comprehensive description of
the subset of the parameter space we will be working in; the third one specifies some details about the
notation that will be used throughout the present thesis, so to have it clear and fixed for the analytic
derivations that will follow.

2.1 The GBS Code

GBS (Global Braginskii Solver) is a first-principles, three-dimensional, flux-driven, global, turbulence
code that evolves the drift-reduced Braginskii equations.

The GBS code was initially developed to study plasma turbulence in basic plasma devices [24].
The very first version evolved the two-dimensional plasma dynamics in the plane perpendicular to the
magnetic field [25], but was later extended to include the direction parallel to the magnetic field. In
2012, a new version of GBS was developed to simulate plasma turbulence in the scrape-off layer of
tokamak devices in limited magnetic configurations [26], in which an electrostatic model in the cold
ion limit was considered, along with a specific approximation which allowed to simplify the numerical
implementation of the divergence of the polarisation current (the Boussinesq approximation, which
we will discuss in detail later). A second version of GBS was developed in 2016 [27], where the
physical model was improved by adding the ion temperature dynamics and electromagnetic effects.
The Boussinesq approximation was relaxed and the plasma model was coupled to a self-consistent
kinetic neutral model, leading to the first plasma turbulence simulations of the Scrape-Off Layer
that self-consistently include the coupling to the neutral dynamics. Subsequently, a non-field-aligned
coordinate system was introduced in GBS to simulate complex magnetic geometries including one or
more X-points and a third version of the code was reported in 2018, leading to the first GBS simulation
of a diverted geometry [28]. The second-order numerical scheme was improved to a fourth-order finite
difference scheme, with a domain with circular poloidal cross-section that avoided the core region.

Finally, a new version of the code appeared in 2022 [24], which significantly improved the previous
by introducing a rectangular poloidal cross-section which included the core region, encompassing the
whole plasma volume and avoiding an artificial boundary with the core. The core region is present in
the simulations, as previously stated, but core dynamics are not correctly reproduced as they would
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be outside the regime of validity of the aforementioned physical model: its function is to avoid the
artificial boundary conditions at the separatrix which would not retain the core-edge-SOL turbulence
interplay, that is found to play a key role in determining the plasma dynamics of the tokamak boundary.
A cartesian system of coordinates was chosen, and the new domain allowed for more flexibility on the
choice of the magnetic configuration, which could now be loaded from an equilibrium reconstruction
or a Grad-Shafranov solver, making room for more exotic magnetic geometries (specifically, Snowflake
divertor configurations). A significant speed-up was achieved by implementing a new iterative solver
for the Poisson and Ampère equations, therefore allowing for efficient electromagnetic simulations that
avoid the use of the Boussinesq approximation.

The present thesis considers data from simulations run employing this last version of the code,
used to describe the turbulence in the boundary region of diverted tokamaks.

2.1.1 GBS equations

The physical model described in the previous chapter (Eqs. 1.43 - 1.48) is implemented in GBS in
dimentionless form ([9, 27]), that is:
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where the dynamical variables are normalised in the following way:

- perpendicular lengths are normalised to the reference ion sound Larmor radius, ρs0;

- parallel lengths are normalised to the tokamak major radius, R0;
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- time is normalised to R0/cs0

where cs0 is the reference sound speed cs0 =
√
Te0/mi and ρs0 = cs0/Ωci, Ωci = qiB0/mi the ion

cyclotron frequency.

The numerical diffusion terms, Df∇2
⊥f , Df∇2

∥f , are added for numerical stability.

The observables of interest of the system are themselves normalised:

• the density n is normalised to the reference value n0, taken at the separatrix;

• the electron and ion temperatures, Te and Ti, are normalised to the reference values Te0 and Ti0
(taken again at the separatrix);

• the electron and ion parallel velocities, V∥e and V∥i, are normalised to the reference sound speed
cs0;

• the magnetic field is normalised to its modulus B0 at the tokamak magnetic axis;

• the electrostatic potential, ϕ, is normalised to Te0/e;

• the magnetic flux function ψ is normalised to ρs0B0;

Lastly, we defined the remaining dimensionless parameters that regulate the system dynamics, which
are:

• the normalised ion sound Larmor radius, ρ∗ = ρs0/R0,

• the ion to electron reference temperature ratio, τ = Ti0/Te0,

• the normalised electron and ion parallel thermal conductivities,
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• the reference electron plasma β, βe0 = 2µ0n0Te0/B
2
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where λ is the Coulomb logarithm.
This system of equations is again paired with the normalised Poisson and Ampère equations (??),

which take the form:
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Solving these last equations entail solving two sparse linear systems at each step, which can be very
time-consuming and therefore could require additional simplifications to make the system more effi-
cient.

The differential operators are implemented in GBS in the large aspect ratio approximation, which
in normalised units and cartesian coordinates (x, z, y) corresponds to:

[ϕ, f ] = sign(B0) (∂yϕ∂xf − ∂xϕ∂yf) (2.9)

C(f) = sign(B0)∂yf (2.10)

∇∥f = ∂yψ∂xf − ∂xψ∂yf + sign(B0)∂zf (2.11)

∇2
⊥f = ∂2xxf + ∂2yyf (2.12)

where the parameter sign(B0) is introduced to indicate the toroidal magnetic field direction. It
is conventionally set to be +1 in the Reversed (unfavourable for H-mode access) cases and -1 in
the Forward (favourable for H-mode access) ones. It corresponds to the normalised version of the
Bϕ/B parameter in front of each of the expressions derived for the differential operators in the large
aspect ratio approximation discussed in the previous chapter. Furthermore, one can perform the
same ordering on some additional operators that appear implicitly in the system (2.1 - 2.6): the
parallel laplacian, ∇2

∥f , the curvature of the parallel gradient, C
(
∇∥f

)
, and the parallel gradient of

the curvature, ∇∥[C(f)]. In dimensionless units:

• the parallel laplacian is given by:
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2
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2
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• the curvature of the parallel gradient by:

C
(
∇∥f

)
= sign(B0) (∂yyψ∂xf + ∂yψ∂xyf − ∂xyψ∂yf − ∂xψ∂yyf) + ∂yzf +O(ϵ, δ)

• the parallel gradient of the curvature by:

∇∥[C(f)] = sign(B0)∂yψ∂xyf − sign(B0)∂xψ∂yyf + ∂yzf +O(ϵ, δ)

Equations (2.1 - 2.8) are paired with generalised Bohm-Chodura sheath boundary conditions at the
magnetic pre-sheath [29]. The same set of boundary conditions is applied to the walls not containing
strike points, with the exception of the condition on the potential, which is set to ϕ = ΛTe/e, Λ =
Λ0 −

√
1 + Ti/Te as the Poisson equation would be ill-defined if Neumann boundary conditions were

set at the four walls of the domain.
From now on Eqs. (2.1 -2.8) will be referred to as GBS equations and will be meant in the

normalised formulation, unless explicitly stated otherwise. All quantities of interest will similarly be
considered as normalised.

2.1.2 Boussinesq approximation

One approximation that is taken into consideration many tokamak boundary turbulence simulations
is the Boussinesq one (see [30, 28, 26, 9]). It consists in neglecting the spatial and time dependency
of the density in the polarisation velocity component of the Poisson equation, i.e.:

∇ · (n∇⊥ϕ) ≃ n∇2
⊥ϕ
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This greatly simplifies the numerical treatment of the Poisson equation (Eq. 2.7), as it takes the form:

∇2
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⊥Ti

and the vorticity equation (Eq. 2.2) reduces to:
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While it is a useful approximation since it reduces the computational time, recasting the term in
the Poisson equation into a constant Laplacian instead of needing to be recomputed at each time, but
it does not necessarily hold in general, especially in edge simulations, as steep density gradients can
appear across the separatrix and in general in the Scrape-Off Layer ([9]).

We take into account the possible effect of this approximation by comparing the results of simu-
lations run taking it into account and others which do not, making the appropriate considerations in
each case to account for the physical consequences of such an approximation for the phenomenon we
are examining.

2.2 Simulation data

Having defined what the general simulation tool looks like, we can now take a look at the specific
simulations taken in exam.

In the present thesis simulation data run using GBS has been employed, and has been analysed
through the post-processing tools present in the gbspy library, from which routines were taken and
modified to accommodate our particular cases of interest.

Our dataset is comprised of 19 simulations in total, divided into 3 categories depending on the
magnetic geometry taken into account (Table 2.1):

1. Snowflakes

2. Single Nulls [7]

3. Single Nulls (Divrec [31])

Of these, 9 are 3D simulations and 8 are 2D, that is are run considering only one poloidal plane for
the evolution of the system. The latter will entail a higher coefficient for the spurious perpendicular
diffusion terms, as they mimic the effect of turbulence.

For each specific magnetic configuration we will have both the case for forward toroidal magnetic
field (labelled as “Forward B”) and reversed toroidal magnetic field (assumed as default), with the
only exception of the 3D Snowflake Single Null, which does not have a respective Forward case. The
magnetic configurations (two cases for each type) are shown in Fig. 2.1, in which the time and
toroidally averaged electric potential heatmap is shown, with the separatrix highlighted in white. The
outer divertor leg is highlighted in black, as we will focus our analysis on that particular region for
most of the present thesis.

Out of the whole dataset, some particular cases are important to highlight:

• there are 4 simulations (2 Snowflakes and 2 Single Nulls (Divrec)) which are run considering the
Boussinesq approximation (§2.1.2), labelled accordingly;

• there are 2 simulations (denoted with η0), in which we consider a temperature dependent Spitzer

thermal conductivity (χ∥,e = η0T
5/2
e I[Te < 1] + η0I[Te ≥ 1]); for all others, the thermal conduc-

tivity will be taken as constant;

29



Figure 2.1: Magnetic Configurations
Time and toroidally averaged electric potential for the given magnetic geometries. The separatrix is

highlighted in white and the outer divertor leg in black. Time averages were performed over 10 time units.

• there are 5 simulations which are run using a much lower mass ratio (the first 4 Snowflakes and
the 3D Snowflake Single Null), which is expected to help achieving larger time steps; even though
the presented mass ratio is unphysical, they represent an interesting comparison to determine
the role of this parameter in the verification of some important relations;

• correspondingly, there are 2 Snowflake simulations labelled as “Reloaded”, which are obtained
using an accurate mass ratio starting from the results of the 3D Snowflake simulations, and thus
are run for much less time.

All the information is summarised in Table 2.1. For the numerical values of the parameters not
specified there we refer to Table 1 in Appendix A.

Now it is possible to make some preliminary considerations about the parameter range we find
ourselves in.

The first parameter to be examined is the Spitzer resistivity, as we are interested in the electric
potential profile along the outer divertor leg and the latter is heavily influenced by the former. If we
consider the full expression for the resistivity previously defined:

ν = ν0T
−3/2
e

we can see the profile of the Spitzer resistivity along the leg. From Fig. 2.2 we can see two very
important things:

• The range of values do not seem to change significantly from reversed to forward B cases (it
stays within the same order of magnitude, when not nearly the same);
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inv. norm.
ion sound mass resistivity

simulation Bt Larmor radius ratio
(labels) (ρ−1

∗ ) (mi/me) (ν0)

Snowflakes
Snowflake with Boussinesq Reversed 700 200.0 0.2

Snowflake with Boussinesq Fw B Forward 700 200.0 0.2
Snowflake Reversed 700.0 400.0 0.2

Snowflake Fw B Forward 700.0 400.0 0.2
Snowflake 2D Reversed 500.0 1836.0 0.1

Snowflake 2D Fw B Forward 500.0 1836.0 0.1
Snowflake Reloaded Reversed 700.0 1836.0 0.1

Snowflake Reloaded Fw B Forward 700.0 1836.0 0.1
Single Nulls

Single Null Reversed 700.0 200.0 0.4
Single Null 2D Reversed 700.0 1836.0 0.1

Single Null 2D Fw B Forward 700.0 1836.0 0.1
Single Nulls (Divrec)

Single Null Divrec Reversed 500.0 1836.0 0.1
Single Null Divrec Fw B Forward 500.0 1836.0 0.1
Single Null Divrec η0 Reversed 494.0 1836.0 0.08

Single Null Divrec η0 Fw B Forward 494.0 1836.0 0.08
Single Null Divrec with Boussinesq Reversed 500.0 1836.0 0.1

Single Null Divrec with Boussinesq Fw B Forward 500.0 1836.0 0.1
Single Null Divrec 3D Reversed 500.0 1836.0 0.1

Single Null Divrec 3D Fw B Forward 500.0 1836.0 0.1

Table 2.1: simulation parameters

• the only normalised Spitzer resistivity parameter ν0 that is significantly higher than the others
is that of the 3D Single Null case, which could affect the results.

Another parameter of interest for the system are the diffusion coefficients for temperature and
density. While the parallel thermal diffusion (thermal conductivity) is indeed present in the physical
model, the parallel diffusion for the density and the perpendicular diffusion in both cases are introduced
only for numerical stability, but nevertheless affect the data, as they are especially significant in the
2D simulations. In these cases, in fact, the perpendicular diffusion terms are meant to reproduce the
effect of turbulent transport, which would not be present otherwise. The parallel transport terms are
also larger, as the 2D simulations are more numerically stable and thus can handle them.

Lastly, we want to comment on the inverse normalised ion sound Larmor radius of our simulations.
We will consider one large enough to allow us to use all of the corresponding approximations (drift
ordering), while still considering small devices (we are in the 500-700 range for ρ−1

∗ , where the one
expected for ITER is in the order of 104).

2.3 A brief digression on notation

As the following chapters contain many analytic derivations, we thought it necessary to specify the
main conventions that will be used throughout the present thesis, so as to make the reading more
fluid; when necessary, additional notation conventions may be added.

Since most of the analysis will focus on the profiles along the divertor leg (Fig. 2.1), we start by
defining properly our domain of interest. Given a field line in the full 3D domain following the path
along the separatrix which connects the outer target to the X-point, we consider its projection onto
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Figure 2.2: Spitzer resistivity profiles along the outer divertor leg
The Spitzer resistivities are plotted against the poloidal projection coordinate σ. The x-labels are omitted

because of spatial constraints.

the poloidal cross-section. Given a cartesian coordinate system (x, z, y), we take a parametrisation
σ(x, y) of such projection, assumed to be such that lengths are expressed in normalised [ρ0] (ion sound
Larmor radius) units. The parallel coordinate is defined as:

s(σ) :=

∫ σ

target

1

|Bpol|
dσ

which is now a parametrisation of the original field line, representing the connection length in nor-
malised [R0] (major radius) units. Thus the magnetic geometry is incorporated in the definition of
the parallel coordinate.

2.3.1 Differential operators

We proceed to rewrite the GBS differential operators in terms of the parametrisation we have obtained
for the curve. That is, given the poloidal magnetic flux function ψ, one starts by defining the parallel
and perpendicular directions of the poloidal projections of the flux surfaces, indicated respectively by
∇Tψ and ∇ψ. In the large aspect ratio approximation and in axisymmetric configurations, for any
given field f , the corresponding poloidal gradients associated to these directions can be defined as:

∂̃∥f :=
1

|Bpol|
(∂yψ∂xf − ∂xψ∂yf) =

1

|Bpol|
∇∥f

∂̃⊥f :=
1

|Bpol|
(∂xψ∂xf + ∂yψ∂yf) =

1

|Bpol|
∇⊥f

where the last gradients are now meant to be understood as the actual GBS differential operators
parallel and perpendicular to the flux surfaces and thus rescaled in terms of the connection length. In
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all the following we will consider the gradients with the ∼ superscript (∂̃∥,⊥) indicating the lengths
in the poloidal projection parametrisation and the ones without (∂∥,⊥) following the parametrisation
along the field lines (i.e., considering the 1/|Bpol| factor). Moreover since as previously stated most of
the analysis will focus on the profiles along the divertor leg Fig 2.1, we will equivalently denote the
parallel gradient as:

∂sf := −∂∥f ≃ −∇∥f

where s is the previously defined parallel coordinate. The minus sign is due to the fact that the parallel
gradient is defined in GBS as going in the X-point → target direction, while it’s more convenient to
consider the opposite direction in our analysis, since it is easier to measure most quantities of interest
at the target and thus initial conditions are well defined there.

2.3.2 Integration paths

Analogously to the case of differential operators, we have the need to define what it means to integrate
in our particular framework.

In particular we consider that, given a field f and a parametrisation σ of the poloidal projection
of the divertor leg, we define the integral along the leg in the following way:∫

leg
f(s)ds =

∫ X-pt

target

1

|Bpol|
f(σ)dσ

where s is the previously defined parallel coordinate. All integrals are considered to be along field
lines, thus with a scaling of 1/|Bpol| due to the curve parametrisation, and will be considered to be
taken in the direction target → X-point, as above.

Figure 2.3: Magnetic Configurations: cutoffs
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Due to the way we define the parallel coordinate s, it diverges at the X-point: we will thus consider
a cutoff parameter (Fig. 2.3) when evaluating it in the code, as we only have complete information
about the points in the poloidal plane, but we would have only few sparse data points as we get
closer to the X-point. The corresponding cutoff parameter will be smaller for the Single Null cases
than in the Snowflake one, as we have a stronger flux expansion in the latter (due to the fact that
|Bpol| ∼ |r − rX−pt|2 in Snowflake configurations, rather than the |Bpol| ∼ |r − rX−pt| law we have
in Single Null configurations close to the X-point). In practice, the value is chosen so to exclude the
last n poloidal points recovered from the routine get_line from the gbspy library, with n = 10 in the
Snowflake cases, n = 5 in the Single Nulls: it is chosen so that the parallel coordinate stays within the
same order of magnitude for the two cases (s ∈ (30, 40) range for SF, (10, 20)/(20, 30) for SN). It will
affect some of the numerical fits, making them more informative, as otherwise there would be skewed
results as they would be fit on points accumulated at the beginning of the line. The particular choice
of this cut-off does not affect the theoretical model, as what we are ultimately interested in is not the
description of the profiles exactly at the X-point, but rather in its vicinity.
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Chapter 3

Integrating the electric potential along
the divertor leg: Ohm’s law

Now that all the theoretical and computational tools that will be employed in this analysis have been
properly described, we can proceed to present the obtained results.

As anticipated, the aim of the present thesis is to investigate the potential structures forming
around the X-point. In order to do so we try to find a description of the potential profile along the
outer divertor leg (Fig. 2.1). In particular, we start from previously developed analysis and try to
improve on those results to recover a more informative description of the phenomenon.

3.1 Previous results for the potential profile along the divertor leg

The formation of a potential structure around the X-point has been observed in experimental devices,
and has been investigated in [20] using 2D simulations run with SOLPS-ITER. As previously men-
tioned, a scaling relation involving the values of density, temperature and potential at the target and
at the X-point was obtained. In order to do so, the following simplifying assumptions were made:

1. a simplified geometry (straight divertor leg) is considered;

2. gradients are assumed to be constant along the integration paths (divertor leg), so that all the
profiles of interest are linear;

3. flux expansion is assumed to be constant along the leg.

Considering sheath boundary conditions at the target and the parallel electron momentum balance
in the form of a generalised version of Ohm’s law:

E∥ = η∥j∥ −
∇∥pe

ene
− 0.71

∇∥Te

e

the mechanism that is assumed to drive the potential well/hill formation in reversed/forward magnetic
field conditions is the Pfirsch-Schlüter current:

j∥ = jPS + j∥,XP

jPS = ∓ 2p

B0
tR0

LXP
λj

∣∣∣∣ BBθ
∣∣∣∣ cosα (3.1)

where α is the pitch angle of the leg, R0 is the major radius, B0
t is the toroidal field at the midplane,

Bθ is the poloidal field, LXP and λj are respectively the width and the height of a closed volume
extending from target to X-point in the private flux region where the parallel current doesn’t change
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sign. The Pfirsch-Schlüter current is defined as the part of the parallel current which closes the
diamagnetic current (i.e., cancels its non-divergence-free component), while the other component of
the parallel current would represent charge sharing between the divertor legs due to asymmetries in
the temperature or density; the latter is assumed to be null.

This allowed to recover a scaling relation between potential, density and temperature:

eδϕ

TXPe

≈
2enXPe η∥

B0
t

L2
XP

λjR0

∣∣∣∣ BBθ
∣∣∣∣2 cosα+ 1.71 =

= m · nXPe
(T te)

3/2
+ 1.71,

where the superscripts t, XP represent the values measured at the target and the X-point respectively,
m is the proportionality constant and δϕ = ϕt − ϕXP . The predicted results were compared to Single
Null configurations run in 2D [18], although the simulations include drift effects not previously included
in SOLPS-ITER, and they show good agreement with the data in the reversed case, but the effect is
overestimated by a factor 2-3 in the forward case.

The simplifying assumptions previously discussed allowed to recover a model which gives an inter-
esting description of the phenomenon, although it relies on the measurement of quantities at X-point,
which is experimentally difficult to obtain. Additionally, it was observed in GBS simulations that the
potential well/hill effect seemed to be of larger magnitude in the case of Snowflake divertor configu-
rations compared to single null configurations at similar parameters, leading one to wonder about the
effect of the magnetic geometry, which is not considered in the previous paper.

The goal would be to expand on the ideas presented here, by including:

• drift effects, as they are more relevant in GBS simulations;

• flux expansion effects, as the hill/well effect has been observed to be much stronger in the
Snowflake simulations.

We moreover want to only consider quantities measured at the target, which would be easier to obtain
experimentally.

3.2 Ohm’s law

We consider, analogously to the procedure in [20], a generalised version of Ohm’s law along the leg,
which in the stationary case is recovered from the parallel electron velocity equation:

∂U∥,e

∂t
=− ρ−1

∗
B

[ϕ, V∥,e]− V∥,e∇∥V∥,e +
mi

me

(
+∇∥ϕ+ νj∥ −

1

n
∇∥pe − 0.71∇∥Te −

2

3n
∇∥Ge

)
+DV∥,e∇

2
⊥V∥,e

(3.2)

By assuming quasi-steady case and considering that the term associated to mi
me

to be dominating
and thus needing to be set to zero to maintain the balance, a relation between the terms within the
frame is obtained, setting the potential along the leg (Fig. 2.3)

Such a balance is recovered in the differential case at a relative level, that is rescaling by the
maximal term:

0 ≃
∑
j

ãj , ãi :=
ai

maxj{|aj |}

and {aj}j are the terms in the r.h.s. of the equation. One finds an agreement within 10% for the
simulations with realistic mass ratio (§2.2), as can be seen in Fig. 3.1. The reason why a relative
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(a) Reversed B (b) Forward B

Figure 3.1: Relative Balance for the U∥,e equation
The terms in the labels correspond to those in Eq. (3.2), where the “Generalised Ohm’s Law” corresponds to

the framed term and the l.h.s. is considered time and poloidaly averaged.

balance is considered is mainly to reduce the effect of the fluctuations and of the interpolation error
as the profile is taken along the leg. Moreover the balance is verified in the integral case, with a good
agreement in all cases.

Therefore one can now set:

−∇∥ϕ ≃ νj∥ −
1

n
∇∥pe − 0.71∇∥Te −

2

3n
∇∥Ge (3.3)

⇒ ϕ
∣∣∣
leg

≃
∫
leg

[
νj∥ −

1

n
∇∥pe − 0.71∇∥Te −

2

3n
∇∥Ge

]
ds =

≃
∫ X-pt

target

[
νj∥ −

1

n
∇∥pe − 0.71∇∥Te −

2

3n
∇∥Ge

]
1

|Bpol|
dσ

as we are ultimately interested in integrating the potential profile along the divertor leg (§2.3).
In doing so a couple of observations can be made about the terms present in the balance, especially

comparing the differential and the integral cases for forward versus reversed magnetic configurations.
First of all, it seems that, contrary to [20]’s prediction, the terms setting the potential profile in the
forward and reversed case are different: in the reversed case the dominating term is the one associated
to the parallel current, whereas the dominating ones in the forward case are the thermoelectric currents.
This is not due to a possible difference in the resistivities, as they do not differ much in the reverse
versus forward cases (§2.2). What is however observed is a sign switch between the two cases, as
predicted in the aforementioned paper, as is shown in Fig. 3.2. Lastly we note that the gyroviscuous
term 2

3n∇∥Ge is non-zero only very close to the target in the differential formulation, and is therefore
negligible at an integral level since, given λGe the length of the support of ∇∥Ge, in the integral
formulation we would obtain a term of the order O

(
λGe∇∥Ge/|Bpol|

)
≪ 1, as the connection length

scaling 1/|Bpol| ≪ 1 in this region (Fig. 3.3).

Given that a trend in the behaviour of the potential in our cases seems to emerge, we want now
to proceed to study more in depth the individual terms making up the equation. In particular our
goal would be to find a description for them in terms of other GBS-evolved quantities which could be
measured at the target (e.g. density, electron temperature).
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(a) Reversed B (b) Forward B

Figure 3.2: Generalised Ohm’s law components
The components of the generalised Ohm’s law have been plotted against the poloidal parallel coordinate σ.

The term denoted as “rhs” is the sum of all of the components of Eq. (3.3)

(a) Reversed B (b) Forward B

Figure 3.3: Integral Generalised Ohm’s law

3.3 Parallel current closure

Taking an approach akin to that in [20], one can try to find a closure for the parallel current in terms
of the other currents present in the Scrape-Off Layer. The way this balance is achieved is through the
vorticity equation.
The normalised vorticity equation in GBS is given by:

∂Ω

∂t
=−ρ

−1
∗
B

∇ · [ϕ,ω]−∇ ·
(
V∥i∇∥ω

)
+B2∇∥j∥+2BC(pe + τpi)+

+
B

3
C(Gi) +DΩ∇2

⊥Ω+DΩ,∥∇2
∥Ω

which, in the Boussinesq approximation (§2.1.2), reduces to:

∂ω

∂t
=−ρ

−1
∗
B

[ϕ, ω]− V∥i∇∥ω +
B2

n
∇∥j∥+

2B

n
C(pe + pi)+

+
B

3n
C(Gi) +Dω∇2

⊥ω +Dω,∥∇2
∥ω
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(a) Reversed B (b) Forward B

Figure 3.4: Vorticity Equation
The different components of the vorticity equation are represented in the reversed and forward case. The

perpendicular diffusion terms, although large, are not considered in the determination of the dominant terms
as they are considered to be spurious (§2.2).

The terms highlighted in colour are the dominating ones, as one can see in differential form in Fig.
3.4 and in integral form in Fig. 3.5; then, in a steady state scenario, the equation is reduced to:

∇∥j∥ ≃ − 2

B
C(pe + τpi) +

ρ−1
∗
B3

∇ · [ϕ,ω] (without Boussinesq)

∇∥j∥ ≃ − 2

B
C(pe + pi) + n

ρ−1
∗
B3

[ϕ, ω] (with Boussinesq)

(a) Reversed B (b) Forward B

Figure 3.5: Integral Vorticity Equation

They represent, respectively, the terms associated to divergence of the E × B (first one in red),
the parallel (the one in green), and the diamagnetic (second one in red) drift velocities.

Thus, in the same spirit as [20], the terms that cancel out in divergence form are assumed to be
equal when integrated, so that one can substitute the parallel current term in Ohm’s Law with the
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corresponding integrated terms, e.g. in the case without the Boussinesq approximation:

j∥

∣∣∣
leg

= −
∫
leg

∇∥j∥ds ≃
∫
leg

[
2C(pe + τpi)− ρ−1

∗ ∇ · [ϕ, ω]
]
ds

where the fact that in normalised GBS units B = 1 has been considered.
Spurious diffusion terms, which are present for numerical stability, will be considered separately.
Now that a satisfactory description for the parallel current, which is then removed from our system

of equations, the aim is to find an appropriate description for the density and the temperature profiles
along the leg, as they become the only remaining unknowns in Ohm’s law: as we will see, this will
prove to be a less than trivial matter.
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Chapter 4

Density and Temperature profiles: the
refined two-point model

4.1 GBS equations for n and Te and the two-point model

We start by empirically observing that, at least at a first approximation, there seems to be a scaling
relation between the density and the electron temperature profiles along the divertor leg, as shown in
a few examples in Fig. 4.1. This is shown to hold up to a 10% precision when considering the same
fitting procedure for points on different flux surfaces around the leg area (Fig. 4.2).

Our first attempt to explain this behaviour stems from the normalised GBS equations for the
density and the electron temperature:

∂n

∂t
=− ρ−1

∗
B

[ϕ, n] +
2

B

[
C(pe)− nC(ϕ)

]
−∇∥(nv∥,e) +Dn∇2

∥n+Dn,⊥∇2
⊥n+ Sn

∂Te
∂t

=− ρ−1
∗
B

[ϕ, Te] +
4Te
3B

[
7

2
C(Te) +

Te
n
C(n)− C(ϕ)

]
−∇∥(Tev∥,e) +

2

3
0.71Te

∇∥j∥

n
+
Te
3
∇∥v∥,e+

+∇∥(χ∥,e∇∥Te) +DTe,⊥∇2
⊥Te + STe (4.1)

where, as usual, the neutral interactions have been neglected.
While in principle the study of these equations along the leg is the most complete description

one has of these profiles, what is instead interesting iS what these two equations have in common, as
they have similar terms appearing due to similar structures of the conservation laws they come from
(§1.3.2).

The näıve approach would be to try and apply the so called two-point model ([10], [6]): this
model considers a simplified case in which perpendicular dynamics and magnetic field variations can
be neglected, obtaining a 1D description relating quantities at an upstream location (which in our
case of interest would be at the X-point) to one downstream (e.g. the target). Given λ⊥ the length
scale of variation in the direction perpendicular to the magnetic field and L∥ the characteristic length
in the parallel direction, the key assumption can be written as:

V⊥ ≪ λ⊥
L∥

V∥

where V = V⊥ +V∥ is the average velocity defined as in (§1.3.1) and is decomposed into its perpen-
dicular and parallel components. The perpendicular scale of variation of the magnetic field Lb is also
assumed to be small Lb ≪ L∥, which would be equivalent to considering a straight field line. This
assumptions, combined with energy conservation laws, allow to derive scaling relations of the quan-
tities involved, in particular in the two fundamental limits (sheath limited, conduction-limited). We
find this description to be insufficient in our particular case, as the power-law dependencies recovered
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Figure 4.1: n vs Te scaling
n vs Te scaling for different magnetic geometries. The corresponding parallel coordinate is shown in the

colorbar on the side.

Figure 4.2: n vs Te scaling: area around the leg
Te is compared to a linear fit of the type an+ b by estimating the relative error around the leg area in

different configurations. Labels are abbreviated as such: “sf” = Snowflake, “sn” = Single Null (Divrec), “fwd”
= Forward B, “rev” = Reversed B, “wbou/nbou” = with/without Boussinesq approximation.

for the density and temperature in terms of the parallel coordinate do not match the ones shown in
the data (Fig. 4.4), as one would expect a power δ = 2/7, 0 in the respective limits for n(s)−nt ∝ sδ.
This could be due to the fact that the first hypothesis for the application of such a simplified model
fails in our case because of drift-ordering ([6], chapter 5.5).

Note that, additionally, the two equations do not present the same functional form in the dominant
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terms. Given a sequence of differential operators {Di}mi=0 and corresponding coefficients {αi}mi=0, one
could try to write the two equations in the same form as:

∂n

∂t
=

[
m∑
i=0

αiDi

]
n+ rn

∂Te
∂t

=

[
m∑
i=0

αiDi

]
Te + rTe

where the remainder terms rn, rTe are expected to be negligible with respect to the others. That is
however shown not to be the case, as one can see in Fig. 4.3: the terms that differ between the two
equations are found to be non-negligible along the leg.

One has to take a different approach in order to recover information from the system. In particular
a refinement of the two point model will be considered: the perpendicular dynamics will be approxi-
mated, but not neglected, in order to obtain a simplified, but nevertheless informative, description.

(a) n equation (b) Te equation

Figure 4.3: n vs Te equation comparison
The n and Te equations are compared in logarithmic form (dividing both sides by n and Te respectively, with

Θ = logn). The term rTe is given by the remaining components of the temperature equation after the
common ones are removed, and it is shown not to be negligible

4.2 Refined two-point model

Such an approach is taken in [32], as a refined version of the two-point model is derived starting from
the same drift-reduced Braginskii equations (§1.3.2) implemented in GBS, in the particular case of a
limited SOL. The predicted results are validated against GBS simulation data. The model estimates
the electron temperature drop along a field line from a region far from the limiter to the limiter plates
and is obtained by balancing the parallel and perpendicular transport of plasma and heat.

The configuration studied in [32] differs in many aspects from our cases: namely, it considers a
limited configuration and takes into account plasma-neutral interaction. Nevertheless, what makes it
worth exploring for our particular case is its key idea: the simplification of perpendicular dynamics.
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Figure 4.4: Power-law fits for the n and Te profiles
Power laws of the type f(s) = bsa + c, f ∈ {n, Te} (black dotted lines) were fitted over the profiles of n and Te

(scattered data points). The resulting exponents in this case were aTe = 0.512, an = 0.531.

All of the contributions which participate in perpendicular transport (e.g. E × B and diamagnetic
transport) are collected into what are defined as perpendicular source terms, which are then consid-
ered to be independent from the parallel dynamics. Such an approach is powerful since, by making
assumptions about the newly defined source terms, one does not have to worry about the specifics of
each contribution, but just focus on modelling their overall effect.

In the aforementioned paper the authors then proceed to make assumptions about the behaviour
of the distribution of the perpendicular source terms independently such that it is possible to integrate
the relevant profiles directly. The integration is performed in two steps:

1. rewriting the density and temperature equations in terms of the perpendicular source terms,
simplifying all of the negligible terms in order to recover the simplest possible parallel equations;

2. recasting them into a conservation law for density and heat such that one of the profiles can be
recovered given the other.

We exploit this same line of reasoning, taking care to adapt the derivation as the assumptions vary,
in order to greatly simplify the description of the perpendicular dynamics.

4.2.1 Parallel equations

Following a derivation analogous to [32], one starts from the normalised GBS equations for density
(Eq. 2.1) and electron temperature (Eq. 2.5) in the absence of neutrals, which through algebraic
manipulation are rewritten as:

∂n

∂t
+∇∥(nv∥,e)−Dn∇2

∥n = Sn,⊥

∂Te
∂t

+∇∥(Tev∥,e)−
[
Te
3
∇∥v∥,e

]
−∇∥(χ∥,e∇∥Te) = STe,⊥

(4.2)

where the perpendicular source terms are defined as:

Sn,⊥ = −ρ
−1
∗
B

[ϕ, n] +
2

B

[
C(pe)− nC(ϕ)

]
+Dn,⊥∇2

⊥n+ Sn (4.3)

STe,⊥ = −ρ
−1
∗
B

[ϕ, Te] +
4Te
3B

[
7

2
C(Te) +

Te
n
C(n)− C(ϕ)

]
+DTe,⊥∇2

⊥Te +
2

3
0.71Te

∇∥j∥

n
+ STe (4.4)

(the term ∇∥j∥ can be considered as a perpendicular source term as a closure for it involving in
curvature operators and Poisson brakets has been found(§3.3)).
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Note that the spurious diffusion terms are neglected in [32], whereas they are kept as optional in
the post-processing routines.

The key difference with the previous approach is that in one case we collect terms with the same
functional form and then expect the remainder terms to be negligible with respect to the common ones,
whereas in this case we collect components with the same functional form only for the parallel direction
and then observe heuristically the behaviour of the other collected source terms, not necessarily
expecting them to be negligible.

4.2.2 Scaling relation between n and Te

The first consequence of the new form of the equations in (4.2) is that it could justify the scaling
relation heuristically observed for n and Te, as one finds that:

• the perpendicular source terms are found to exhibit similar profiles along the leg (Fig. 4.5);

• Eqs.(4.3-4.4) exhibit similar structures, as the term in the square bracket is observed to be small
compared to the others.

Thus the following relation will be employed in the subsequent discussion:

Te ≃ γ(n+ T0) ∼ γn (4.5)

Figure 4.5: Perpendicular source terms
Sn,⊥ and STe,⊥ were plotted against the poloidal parallel coordinate σ. Similar profiles were observed for the

source terms both in reversed and in forward B configurations.

Moreover, this will allow considering only one of the two equations of the system (4.2), as it would
be overdetermined otherwise. The density equation is chosen for this purpose.
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4.3 Perpendicular source terms

A slightly different approach has been used, compared to [32], when it comes to the perpendicular
source terms. That is, instead of making assumptions about their general distributions along the leg
as is done in the paper, we decide to approximate the perpendicular dynamics instead.

In particular the approximation of the perpendicular gradients is done by considering the profiles
to be of exponential decay type (Fig. 4.6), and therefore rewriting their perpendicular gradients as:

f(ζ) ≃ f0e
−ζ/λf

⇒ ∂⊥f ≃ − f

λf

where f could be either n or Te, ζ is the poloidal perpendicular coordinate (i.e. ∇ζ = +∇ψ/|∇ψ|),
and λf is the characteristic perpendicular decay length of each field, for which an expression in terms
of the parallel coordinate will be derived in the next section.

Figure 4.6: n vs Te perpendicular profiles
The perpendicular profiles have been plotted in terms of the poloidal projection coordinate ζ and of the flux
field ψ and normalised with respect to the values on the leg to make comparison easier in terms of exponential
decay behaviour. To make the plots more readable the rescaled coordinate ψ/1000 was used. The solid black
line corresponds to the average exponential decay fit on the different profiles, where 15 lines were selected for

each.

A little more complex will be the approximation of the perpendicular gradients for the potential,
as its perpendicular dynamics are more complex than in the previous case (Fig. 4.7). The same
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approximation is considered:

∂⊥ϕ ≃ −|ϕ|
λϕ

this time considering as decay length the scale of variation of the abrupt raise/fall of the profile
around the separatrix and allowing for negative values of the parameter to mimic the sign change in
the different magnetic configurations.

(a) Reversed B (b) Forward B

Figure 4.7: ϕ perpendicular profile
ϕ perpendicular profile in the magnetic flux coordinate ψ for reversed and forward B configurations. The red
line at the bottom indicates the average length of the ∆ψ associated to the raise/fall in the profile, while the
red dot represents the intersection with the divertor leg. The black line is an exponential decay fit akin to that

of the previous case.

One proceeds to rewrite each term in the perpendicular source term as combinations of parallel
and perpendicular gradients, which can be simplified as illustrated above.

In all of the following the large aspect ratio approximation and the axisymmetric case will be
considered unless explicitly specified otherwise, which justifies the expression of the operator in terms
of the previously defined poloidal gradients (§2.3).

Poisson brakets For the Poisson brakets one recovers the following:

[ϕ, n] = sign(B0)
(
−∂̃∥ϕ∂̃⊥n+ ∂̃∥n∂̃⊥ϕ

)
=

≃ sign(B0)

|Bpol|

(
+∂̃∥ϕ

n

λn
− ∂̃∥n

|ϕ|
λϕ

)
=

≃ sign(B0)

|Bpol|2

(
+∂∥ϕ

n

λn
− ∂∥n

|ϕ|
λϕ

)
(4.6)

where the corresponding definitions of the perpendicular decay lengths for n and ϕ have been used.
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Curvature terms For the curvature terms one obtains:

2

B
[C(pe)− nC(ϕ)] =

2 sign(B0)

B
∂ype −

2 sign(B0)n

B
∂yϕ =

†
= 2 sign(B0)

∂yψ

|Bpol|2
(∂⊥pe− n∂⊥ϕ)− 2 sign(B0)

∂xψ

|Bpol|2
(∂∥pe− ∂∥ϕ) =

≃ 2 sign(B0)∂yψ

|Bpol|2

[
− pe
λpe

+ n
|ϕ|
λϕ

]
− 2 sign(B0)∂xψ

|Bpol|2

[
∂∥pe− n∂∥ϕ

]
=

≃ 2 sign(B0)∂yψ

|Bpol|2

[
−γn

2

λpe
+ n

|ϕ|
λϕ

]
− 2 sign(B0)∂xψ

|Bpol|2

[
2γn∂∥n− n∂∥ϕ

]
(4.7)

using in
†
= the fact that the vertical derivative can be rewritten in terms of parallel and perpendicular

gradients as:

∂yf =
∂yψ

|Bpol|2
∂⊥f − ∂xψ

|Bpol|2
∂∥f (4.8)

In addition, the perpendicular decay length for the pressure can be computed from those of tem-
perature and density, as:

pe = nTe ⇒
1

λpe
=

1

λn
+

1

λTe
(4.9)

4.3.1 Perpendicular decay length estimation

Figure 4.8: ∇ψ lines selected for the perpendicular profile estimation for the Snowflake case.

In order to recover the dependency of the perpendicular decay length from the parallel coordinate
s (in connection length, R0 units), a numerical approach has been taken, divided in multiple steps.
We are interested in obtaining the λf ’s in perpendicular length ζ[ρ0] units (namely λf,ζ(s)), and in
order to do so one can proceed in the following way:

1. estimate the λf ’s numerically in the magnetic potential coordinate ψ units (namely λf,ψ(s)),
and observe their dependency on the parallel coordinate s;
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2. use the chain rule to obtain the scaling from ψ to ρ0 units, i.e.:

f

λψ
= ∂ψf = ∂ψζ∂ζf = ∂ψζ

f

λζ

⇒λf,ζ(s) = λf,ψ(s)

(
∂ψ

∂ζ
(0)

)−1

where the perpendicular coordinate has been fixed to ζ = 0 at the intersection with the leg and
ψ0 corresponds to the value of the magnetic potential along the leg. In particular, by definition:

∂ψ

∂ζ
(0; s) = |∇ψ|(s)

3. approximate the perpendicular length scale along the leg using the analytic expressions of the
recovered relations.

Now the estimation for λn, λTe and λϕ have to be considered separately, as the perpendicular
dynamics to be captured are fundamentally different.

n and Te decay lengths

In order to recover the characteristic perpendicular decay lengths for n and Te one fits an exponential
decay function on the perpendicular profiles of the respective quantities evaluated at lines crossing
points distributed along the divertor leg (Fig. 4.8).

An inverse dependency seems to be recovered for the λψ with respect to the parallel coordinate:

λn,ψ(s) =
ans+ bn
s+ cn

≃ dn
s

+ an (4.10)

λTe,ψ(s) =
aTes+ bTe
s+ cTe

≃ dTe
s

+ aTe (4.11)

as can be seen in Fig. 4.9.

Figure 4.9: Perpendicular decay lengths: n and Te
An inverse dependency has been fitted on the λf , f ∈ {n, Te} recovered for the profiles shown in Fig. 4.6. The

λf s labels are in units of ψ and thus were rescaled by the same factor 1/1000.

In particular, for s→ ∞ one finds:

1

λf
∼

s→∞
af = const, f ∈ {n, Te}

In particular for the pressure one can use the estimate:

1

λpe
=

1

λTe
+

1

λn
≃

dn
s + dTe

s
dn
s
dTe
s

≃ s

dpe
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ϕ decay length

The definition of the perpendicular decay length for the electric potential will require a little more
work.

As previously stated, the perpendicular dynamics of the potential is not simply an exponential
decay, presenting a complex structure around the leg. What can be observed though is that in many
cases one finds an abrupt raise/fall across the leg (taking the perpendicular coordinate) as seen in Fig.
4.7.

Nevertheless, we observe that the profile will relax for ζ → ∞, therefore the sharp gradient
could reasonably be approximated using the ratio between the height of the jump (which is taken as
proportional to the value of the field at the leg) and its width.

Thus the characteristic decay length of the potential is defined to be the one associated to such
jump and it is allowed to change sign depending on the direction of the fall.

(a) Reversed B (b) Forward B

Figure 4.10: Perpendicular decay length: ϕ
Plot of λϕ := ∆ψ vs parallel coordinate, recovered for the profiles shown in Fig. 4.7.
Analogously to the previous case, an inverse dependency is fitted over the profiles,

labelled as “λϕ fit”.

In particular it is assumed, analogously to the previous case, 1/λϕ ∼
s→∞

const.

4.3.2 Parallel density equation

By rewriting the source terms in terms of perpendicular decay lengths and substituting them into the
1st equation of system (4.2) one obtains the following equation:

v∥,e∂∥n+ n∂∥v∥,e −Dn∂
2
∥n =

= − sign(B0)

[
n

(
− ρ−1

∗
|Bpol|2

∂∥ϕ
1

λn
− 2∂yψ

|Bpol|2
|ϕ|
λϕ

− 2∂xψ

|Bpol|2
∂∥ϕ

)
− ∂∥n

ρ−1
∗

|Bpol|2
|ϕ|
λϕ

+
2∂yψ

|Bpol|2
γn2

λpe
+

2∂xψ

|Bpol|2
2γn∂∥n

]
= −sign(B0)

|Bpol|

[
n

(
− ρ−1

∗
|Bpol|

∂∥ϕ
1

λn
− 2 cos θ

|ϕ|
λϕ

− 2 sin θ∂∥ϕ

)
+ ∂∥n

ρ−1
∗

|Bpol|
|ϕ|
λϕ

+ 2 cos θ
γn2

λpe
+ 4 sin θγn∂∥n

]
where a 1/|Bpol| factor is collected in the r.h.s. and the components of the poloidal magnetic field are
written in terms of the poloidal pitch angle θ:

∂xψ = |∇ψ| sin θ , ∂yψ = |∇ψ| cos θ

where θ is defined as the angle in the poloidal plane between the vertical axis and ∇ψ.
This last expression, through algebraic manipulation, can be written in the following form:

α(s)∂∥n+ β(s)n+ δ(s)n2 + η(s)n∂∥n−Dn∂
2
∥n = 0 (4.12)
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with all coefficient functions defined by the corresponding terms in the above equation for simplicity
of notation.

A differential equation has been recovered for the density, which in turn is found to be the only
remaining unknown of the r.h.s. of Ohm’s law: it is now time to gather all of our results into one
system which will describe our two observables of interest (density and electric potential) along the
divertor leg.
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Chapter 5

The density-potential system

5.1 Ohm’s law and final system

Substituting all of the obtained relations and the closures into the original formulation of Ohm’s law
(and considering for simplicity the case in which the Boussinesq approximation is absent) one obtains:

−∇∥ϕ = νj∥ −
1

n
∇∥pe − 0.71∇∥Te −

2

3n
∇∥Ge =

≃ ν0T
−3/2
e

[∫
leg

[
2C(pe + τpi)−

ρ−1
∗
B

∇ · [ϕ, ω]
]
ds+ jt

]
− 1

n
∇∥pe − 0.71∇∥Te −

2

3n
∇∥Ge =

†
≃ ν0γ

−3/2n−3/2

[∫
leg

[
2C(pe + τpi)−

ρ−1
∗
B

∇ · [ϕ, ω]
]
ds+ jt

]
−
γ∇∥(n

2)

n
− 0.71γ∇∥n =

= ν0γ
−3/2n−3/2

[∫
leg

[
2C(pe + τpi)−

ρ−1
∗
B

∇ · [ϕ, ω]
]
ds+ jt

]
− 2.71γ∇∥n =

= ν0γ
−3/2n−3/2

[∫
leg

[
2C(pe + τpi)

]
+ jt

]
+ Ξ(s)− 2.71γ∇∥n (5.1)

where jt is the value of the current at the target and in the step (†) the definition of ν, the scaling
relation between n and Te (Eq. 4.5) and the fact that the gyroviscuous term is negligible in the
integral formulation (§3.2) have been considered, in the spirit of verifying Ohm’s law at an integral
level. Moreover in the last step the following term was defined:

Ξ(s) :=


−ν0γ−3/2n−3/2

∫ s

0

[
ρ−1
∗ ∇ · [ϕ, ω]

]
ds (non-Boussinesq case)

−ν0γ−3/2n−3/2

∫ s

0

[
ρ−1
∗ n∇[ϕ, ω]

]
ds (Boussinesq case)

(5.2)

as not to treat it analytically, but to consider it separately.
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Then, substituting the corresponding expressions for the curvature operators in (5.1) one gets:

−∇∥ϕ = ν0γ
−3/2n−3/2

∫
leg

[
2C(pe + τpi)

]
ds+ ν0γ

−3/2n−3/2jt + Ξ(s)− 2.71γ∇∥n =

≃ ν0γ
−3/2n−3/2

∫
leg

[
2 sign(B0)

(
∂yψ

|Bpol|2
∂⊥ − ∂xψ

|Bpol|2
∂∥

)
(pe+ τpi)

]
ds+ ν0γ

−3/2n−3/2jt

+ Ξ(s)− 2.71γ∇∥n =

≃ ν0γ
−3/2n−3/2

∫
leg

[
2 sign(B0)

(
∂yψ

|Bpol|2
(pe+ τpi)

λp
− ∂xψ

|Bpol|2
∇∥(pe+ τpi)

)]
ds+ ν0γ

−3/2n−3/2jt+

+ Ξ(s)− 2.71γ∇∥n =

≃ ν0γ
−3/2n−3/2

∫
leg

[
2 sign(B0)

(
∂yψ

|Bpol|2
(γn2 + τnTi)

λp
− ∂xψ

|Bpol|2
2γn∇∥n− ∂xψ

|Bpol|2
∇∥(τpi)

)]
ds+

+ ν0γ
−3/2n−3/2jt + Ξ(s)− 2.71γ∇∥n =

≃ ν0γ
−3/2n−3/2

∫
leg

[
2 sign(B0)

(
∂yψ

|Bpol|2
γ(1 + τµ)n2

λp
− ∂xψ

|Bpol|2
2γ(1 + τµ)n∇∥n

)]
ds+

+ ν0γ
−3/2n−3/2jt + Ξ(s)− 2.71γ∇∥n =

= 2ν0(1 + τµ)γ−1/2n−3/2

∫
leg

[
sign(B0)

|Bpol|

(
n2 cos θ

λp
− 2 sin θn∇∥n

)]
ds+ ν0γ

−3/2n−3/2jt+

+ Ξ(s)− 2.71γ∇∥n (5.3)

using in the last step a scaling relation between the electron and ion temperature, with Ti ≃ µTe.
Thus a system of equations for the density and the potential is obtained:

∂sϕ = 2ν0(1 + τµ)γ−1/2n−3/2

∫
leg

[
sign(B0)

|Bpol|

(
−n

2 cos θ

λp
+ 2 sin θn∂sn

)]
ds+ ν0γ

−3/2n−3/2jt

+Ξ(s) + 2.71γ∂sn

−α(s)∂sn+ β(s)n+ δ(s)n2 − η(s)n∂sn−D∥,n∂
2
sn = 0

(5.4)

which describes the full profiles of these observables along the divertor leg, given the initial conditions.
What makes this result powerful is that the only information needed is that of the value of the
observables at the target (where they could, in principle, be measured experimentally or imposed as
boundary conditions [29]).

One can proceed to analyse the type of information this equation encompasses, in particular in
regards of the potential structure we are interested in.

5.2 Simplified density profile

The first type of analysis would be to consider a simplification of the density profile in order to verify
whether the model matches the predicted behaviour at least qualitatively, similarly to the one in [20].
The form of our system allows us to do so, as the potential equation only involves the density profile,
and therefore could be extrapolated independently if one were to make hypothesis on the latter.

5.2.1 Linear density profile

For a start, the simplest possible case is taken, that is a linear density profile:

n(s) = as+ nt (5.5)
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and one replaces its expression in the equation for the potential in (5.4); moreover, a simplified
geometry is considered, with a straight divertor leg (constant θ). Recall that Te ≃ γ(n+ T0), so that
the electron temperature can be written itself as a linear profile:

Te(s) = γ (n(s) + T0) = γ (as+ T0 + nt)

Figure 5.1: Integrated ϕ equation for linear n profile
The terms corresponding to the thermoelectric current and the one for the parallel current are labelled 2.71γn
and “

∫
νj∥ closure” respectively, as in rest of the discussion; the second in particular is decomposed into the

Pfirsch-Schlüter contribution (IC(p), as in Eq. 5.6) and the target current one (
∫
νj∥,t). The term labelled “ϕ

approx.” is merely their sum and is compared to the real ϕ profile along the leg. θ = π/3 was assumed along
the leg.

Numerically integrating the equation (as it is sufficient to integrate the r.h.s., given the density
profile), it seems to match the expected qualitative behaviour. One observes, in fact, both the predicted
dominating terms in the forward/reversed B configurations (the thermoelectric and parallel currents,
respectively) and the sign reversal of the potential (Fig. 5.1). The match is quantitatively better when
the pitch angle profile is taken into account, by extrapolating it from the data (Fig. 5.2).

Analytically one can substitute the expression (5.5) into the first equation in (5.4), integrating and
obtaining:

ϕ(s)− ϕt =

= −2ν0(1 + τµ)γ−1/2

∫ s

0
(as′ + nt + T0)

−3/2

∫ s′

0

[
sign(B0)

|Bpol|

(
(as′′ + nt)

2 cos θ

λp(s′′)
− 2 sin θa(as′′ + nt)

)]
ds′′ds′

+

∫ s

0
ν0γ

−3/2(as′ + nt + T0)
−3/2jtds

′ + 2.71γas =

= IC(p)(s) + ν0γ
−3/2jt

2

a

(
1√

nt + T0
− 1√

as+ nt + T0

)
+ 2.71γas (5.6)
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where IC(p) is defined as the first double integral, due to the closure of the parallel current gradient, and
the offset T0 has been considered for the temperature-density scaling relation (4.5). In the following
discussion the term associated to the parallel current contribution will be denoted as:∫

νj∥ds := IC(p) +

∫
νjtds

where ν = ν0T
−3/2
e is the Spitzer resistivity and jt is the parallel current at the target.

Figure 5.2: Integrated ϕ equation for linear n profile
The pitch angle θ profile has been extrapolated from the data in the bottom case, and is compared to the top

case in which a constant θ = π/4 was considered.

An analysis can be performed considering each contribution to our model. The first two terms are
those associated to the parallel current term, of which the first one, IC(p), corresponds to the Pfirsch-
Schlüter current in [20], as it corresponds to the closure of the parallel current gradient. It contains
an implicit dependency on the sign of the toroidal magnetic field, which makes it be favourable to
the magnetic structure (i.e., gives an overall negative contribution for the potential well cases, and
a positive one for that of the potential hill ones). The second one is due to the initial value of the
current at the target, and is usually significantly larger in magnitude in the reversed case (when it
is always negative) rather than in the forward, to the point where it is the one setting the potential
structure in the reversed cases. The last contribution, associated with the thermoelectric currents,
has constant sign, and is the one setting the potential in the forward cases.

In order to obtain a scaling law, one can consider the following approximations:

- a straight divertor leg (θ = const)

- a simple inverse dependency for the perpendicular decay length of λpe,ψ ∼ dpe
s (§4.3.1)
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- an exponential dependency of the parallel coordinate on the poloidal length, that is: s(σ) ≃
c1e

c2σ, with σ the length of the poloidal projection of the leg, so to mimic the divergence of the
connection length at the X-point. Given the definition of s (§2.3), this gives a dependency of
the type 1/|Bpol| ∝ s, so that the second term in the integral can be rewritten as:

2
sign(B0)

|Bpol|
sin θa(as+ nt) ≃ 2

sign(B0)

Bt
sin θa(as+ nt)s, Bt = const

This way the following scaling law for the potential is obtained:

ϕ(s)− ϕt ≃
2ν0(1 + τµ)γ−1/2

√
as+ nt + T0

(
c4s

4 + c3s
3 + c2s

2 + c1s+ c1/2
√
as+ nt + T0 + c0

)
+

+ ν0γ
−3/2jt

2

a

(
1√

nt + T0
− 1√

as+ nt + T0

)
+ 2.71γas

≃ − sign(B0)
2ν0(1 + τµ)γ−1/2

√
as+ nt + T0

a cos θ

14dpe
s4 + ν0γ

−3/2jt
2

a

1√
nt + T0

+ 2.71γas (5.7)

retaining only the highest power in the expression for the parallel current closure and the asymptoti-
cally constant term for the initial condition. The constants coefficients c4, c3, c2, c1, c1/2, c0 correspond-
ing to the different powers of s appearing in the analytic expression for the integral can be shown to
be of similar magnitudes, as they are derived from the expansion of a polynomial with coefficients
of similar magnitude (a, nt and nt + T0 are of the same order of magnitude), multiplied by common
terms which are one order of magnitude apart (cos θ/dpe ∼ 1

102 sin θ/Bt); hence one can keep only the
highest order in the parallel coordinate, as the parallel coordinate reaches values in the 10− 15 range
for Single Nulls, 30−40 for Snowflakes (refer to Appendix A for the definition of the other constants).

From the scaling relation one could extrapolate an explanation as to why the phenomenon seems
to be more prominent in Snowflake configurations rather than in Single Nulls: the parallel coordi-
nate is much larger in the Snowflake cases due to the much greater flux expansion, thus making the
potential drop along the divertor leg much larger in unfavourable configurations. Moreover one can
observe the effects of the two regulating parameters of the model, that is the resistivity ν0 and the
density condition at the target nt. The former widens the magnitude of the ∆ϕ, although less in the
forward B configurations as it is associated to the parallel current contribution

∫
νj∥ds which is not

dominant; moreover, the curving of the potential associated to the Pfirsch-Schlüter current becomes
more noticeable correspondingly, as it is proportional to ν0 itself. The target condition nt instead
decreases the gap as it increases, more noticeably so in the reversed B case as it is associated with the
dominant term.

The above result can be compared with the scaling law obtained in [20] (Eq. 3.1); in order to do
so one has to reconsider the approximations taken into account, applied to our case. In particular,
starting from the first equation in system (5.4):

• a constant flux expansion is considered, which entails:

– a constant 1/|Bpol| ≃ 1/Bc along the leg;

– constant λf ,∀f ∈ {n, Te, pe}, as they capture the dependency on flux expansion along the
leg, thus:

1

|Bpol|
1

λpe(s)
≃ 1

Bc

1

λpe
= const

– that the parallel coordinate s becomes simply a rescaling of the poloidal coordinate σ by a
constant factor, as:

s =

∫ σ

0

1

|Bpol|
dσ ≃

∫ σ

0

1

Bc
dσ =

1

Bc
σ
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Figure 5.3: ∆ϕ scaling law
Scaling law for the potential along the leg in the case of a simplified power-law density profile of the type:

n(s) = as+ nt. Potential profiles are plotted for different resistivities (constant nt = 0.1) and different value of
density condition at the target (constant ν = 0.1). The full expression for the component associated to the

target current was used in order to have a ∆ϕ = 0 at the target:
∫
νjt = ν0γ

−3/2jt
2
a

(
1√

nt+T0
− 1√

as+nt+T0

)
.

• it considers linear profiles with negligible conditions at the target to approximate the gradients,
so that one has ∇sf ≃ f(s)/s,∀f ∈ {n, Te, pe, ϕ}. In particular for the pressure this entails:

∂spe(s)

n(s)
≃ pe(s)

s

1

n(s)
=
n(s)Te(s)

s

1

n(s)
=
Te(s)

s
≃ ∂sTe

Thus, the thermoelectric current term 2.71γ∂sn ≃ 2.71∂sTe turns into 1.71∂sTe, which integrated
gives the required term 1.71Te(s);

• the resistivity is taken directly at the target and assumed to be constant, so that one can take
it outside of the integration:

ν ≃ ν0

Te(s)3/2
≃ ν0

(T te)
3/2

• a null condition is considered at the target for the parallel current: jt ≃ 0 ;

• the diamagnetic contribution in the argument of the double integral IC(p) is taken to be only
perpendicular to the integration path, therefore neglecting the second term in the integration.

Substituting all of these hypothesis and rewriting everything in terms of the corresponding n(s), Te(s), T
t
e
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values to make the comparison with (3.1) easier, one recovers:

ϕ(s)− ϕt = − sign(B0)
2ν0(1 + τµ)

λpeBc
cos θ

n(s)Te(s)

(T te)
3/2

s2 + 1.71Te(s)

⇒ ϕ(s)− ϕt
Te(s)

= − sign(B0)2(1 + τµ)
ν0 cos θ

λpeBc

n(s)

(T te)
3/2

s2 + 1.71

which, taking s = sXP (corresponding to LXP /Bc) gives the required comparison.

Then one can examine each of the juxtaposed terms. First of all, the thermoelectric current
contribution jWthm = 1.71Te(s) is smaller than the one one expects in direct comparison from (5.7),
jthm = 2.71γn(s) = 2.71Te(s), by almost a factor 1.5, which could explain the fact that it was not
considered dominant in the forward case. This could be due to the fact that a linear profile was
assumed for the pressure, whereas it would be quadratic in our case, if one takes the other profiles
to be linear. Second of all, the Spitzer resistivity is considered to be constant for the parallel current
term

∫
νj∥ds, which makes it remain much bigger in magnitude than in our case, as the temperature

increases along the leg. This makes it dominant in the approximation but not in our model. Finally,
the Pfirsch-Schlüter contribution IC(p) is observed to gain importance as s ≫ 1 (that is, getting
closer to the X-point). The term associated to the current at the target

∫
νjtds, not present in (3.1)

as jt = 0 is assumed, becomes constant, while the Pfirsch-Schlüter one increases proportionally to
1/|Bpol|. Thus, the reason why it is not dominating in our data could be owed to the fact that we
consider a large but finite s, for which the initial conditions for the current prevails up until very close
to the X-point (Fig. 5.1).

5.2.2 General power-law density profile

One can proceed to consider a more general form for our density profile, that is using a power-
law dependency: our density profiles are found to take a square root dependency in the data (Fig.
4.1); moreover, this could be compared to highly-recycling regimes (for which a square dependence is
expected on the parallel coordinate).

We use a generalised power-law of the type:

n(s) = (as+ b)ω (5.8)

for general coefficients a, b and power ω.

Analytically one obtains, analogously to the previous case:

ϕ(s)− ϕt =

= −2ν0(1 + τµ)γ−1/2

∫ s

0
(as′ + b)−3ω/2

∫ s′

0

[
sign(B0)

|Bpol|

(
(as′′ + b)2ω cos θ

λp(s′′)
− 4aω sin θ(as′′ + b)2ω−1

)]
ds′′ds′

+

∫ s

0
ν0γ

−3/2(as′ + b)−3ω/2jtds
′ + 2.71γ ((as+ b)ω − bω) =

= IC(p)(s) + ν0γ
−3/2jt

2

a(3ω − 2)

(
1

b3ω/2−1
− 1

(as+ b)3ω/2−1

)
+ 2.71γ ((as+ b)ω − bω)

where the T0 offset for the temperature-density scaling has been neglected for simplicity.
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Figure 5.4: Integrated ϕ equation for power-law n profile
The ϕ profile is obtained using the simplified n ansatz for the same simulation. The top one corresponds to
the linear density case, and it is compared to the bottom one, in which we consider a power law of the type:

n(s) = (as+ b)ω, ω = 1/2.

This time a scaling law of the type:

ϕ(s)− ϕt ≃
2ν0(1 + τµ)γ−1/2

(as+ nt)3ω/2
(
c2ω+3(as+ b)2ωs3 + c2ω+2(as+ b)2ωs2 + c2ω+1(as+ b)2ωs ...

)
+

+ ν0γ
−3/2jt

2

a(3ω − 2)

(
1

b3ω/2−1
− 1

(as+ b)3ω/2−1

)
+ 2.71γ ((as+ b)ω − bω)

≃ − sign(B0)2ν0(1 + τµ)γ−1/2 cos θ

dpe

(as+ b)ω/2s3

(1 + ω)(6 + ω)
+

+ ν0γ
−3/2jt

2

a(3ω − 2)

(
1

b3ω/2−1
− 1

(as+ b)3ω/2−1

)
+ 2.71γ ((as+ b)ω − bω) (5.9)

is recovered in the straight leg approximation and retaining again the highest order term for the
integral, in analogy to the previous case. Note that the coefficient of the highest order term in IC(p),

c2ω+3 = − sign(B0)
(1+ω)(6+ω)

cos θ
dpe

, coincides with the coefficient c4 = − sign(B0)
cos θ
14dpe

in the expansion for the
case ω = 1.

Note that in this case, compared to the linear density one, the ∆ϕ decreases in absolute value
in both magnetic configurations (reversed and forward B), but the contribution due to the Pfirsch-
Schlüter closure IC(p) becomes appreciable earlier, as the potential starts curving more evidently.
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Figure 5.5: ∆ϕ scaling law
Scaling law for the potential along the leg in the case of a simplified power-law density profile of the type:
n(s) = (as+ b)ω, ω = 1/2. Potential profiles are plotted for different resistivities (constant nt = 0.1) and

different value of density condition at the target (constant ν = 0.1).

5.3 Numerical integration

While the density equation in system (5.4) is not directly analytically integrable, it could however be
investigated employing numerical tools.

One starts by defining the integration scheme for the density equation. To do so one rewrites the
second equation in (5.4) as a system, defining the auxiliary field m(s) := ∂sn:∂2sn = ∂sm = 1

D∥,n

[
−α(s)m+ β(s)n+ δ(s)n2 − η(s)nm

]
∂sn = m

(5.10)

The code allows for both the straight leg approximation (θ = const, given as an additional parameter)
and to infer the variation of the pitch angle from the data (analogously to what was done for the
simplified profile).

Then one can employ this scheme to gain different types of information about the system.

5.3.1 Simplified density profile: error estimation

An informative result which can be obtained by employing the numerical integration scheme is an
estimate of the error for the previously used simplified density profile ansatz, as one could substitute
the profiles obtained for ϕ and ∂sϕ into the equation for the density and consider the integration
scheme in (5.10) to integrate the corresponding density profile along the leg. The result could be
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compared to the real density profile, akin to what is done in the case of the potential, with the error
estimate given by the relative mean absolute difference:

err = E
[
|nest − nreal|

nreal

]
The deviation from our original model is instead evaluated from the relative average modulus of

the l.h.s. of (4.12), that is defining a metric of the kind:

d(nest, nreal) = E

[
| − α(s)∂snest + β(s)nest + δ(s)n2est − η(s)nest∂snest −D∥,n∂

2
snest|

nreal

]

In principle, one could aim at constructing a fixed point iteration by back-substituting the obtained
density profile into the equation for the potential and proceeding iteratively until one obtains a distance
from the profile within a certain threshold. The results can be seen in Figs. ??.

Figure 5.6: Simplified n profile: error estimation
As before, the pitch angle θ profile has been given as a datum. The ϕ profiles obtained for the linear density
case were substituted into the corresponding terms for the density equation, integrating for n. The resulting
approximation has been compared against the real profile. The term labelled as “r.h.s.” in the left panel is the

sum of all the components of the density equation.

Figure 5.7: Simplified n profile: error estimation
The ϕ profiles obtained for the power-law density case, n(s) ≃ (as+ b)ω, were substituted into the

corresponding terms for the density equation, integrating for n. The resulting approximation for the case
ω = 1/2 has been compared against the real profile.
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As the spurious parallel diffusion coefficient is quite small compared to the others, the presence of
the 1/D∥,n factor in the integration scheme could lead to numerical instabilities as it would make the
r.h.s. of system (5.10) large. One solution could be to neglect the term, rewriting the system into a
1st order equation and integrating it directly, that is using:

−α(s)∂sn+ β(s)n+ δ(s)n2 − η(s)n∂sn = 0

⇒∂sn =
β(s)n+ δ(s)n2

α(s) + η(s)n
(5.11)

and evolving the terms correspondingly (Fig. 5.8).

The reduced model shows more stability in some cases, as is expected since those correspond to
small values of the spurious diffusion coefficient (see Table 1).

Figure 5.8: Simplified n profile: error estimation
The top panel shows how the ϕ profiles obtained for the power-law density case, n(s) ≃ (as+ b)ω, were
substituted into the corresponding terms for the reduced density equation (5.11), integrating for n. The

resulting approximation for the case ω = 1/2 has been compared against the real profile. The bottom panel
shows the corresponding case for the full density equation, which is unstable.

5.3.2 Numerical integration scheme for the full density-potential system

One could then proceed to consider the full density-potential system. The numerical integration
scheme is defined in the following way:

At each step sk =

k∑
i=1

hi:
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1. update nk using the system (5.10), where the r.h.s is computed using the potential ϕk−1 and its
parallel gradient ∂sϕk−1 at the previous step and employing the RK45 scheme;

2. update ϕk using the obtained expression for nk and numerically evaluating the integral term in
(5.3).

In particular a composite trapezoidal rule will be employed for the integral in the r.h.s. of (5.3),

ĨC(p) :=
∫
leg

[
sign(B0)
|Bpol|

(
−n2 cos θ

λp
+ 2 sin θn∂sn

)]
ds. It will allow to iteratively update its value at each

step based on the previous time, instead of having to evaluate it at each time step, making the code

more efficient. That is, at each step sk =
k∑
i=1

hi:

ĨC(p),k ≃ ĨC(p),k−1 +
(Ak +Ak−1)hk−1

2

where Ak =
sign(B0)
|Bpol|k

(
−n2

k cos θk
λp,k

+ 2 sin θknk∂snk

)
is the argument of the integral at each step. Storing

the values of the integral at each step one greatly reduces the computational time. Analogous consid-
erations can be made for the second integral IC(p),k in the equation for ϕk. Additionally, a constant
step size h = 1e−4 was considered, as it would allow to pre-compute the coefficients of interest instead
of evaluating the contributions at each step. Some examples of the results are shown in Fig. 5.9.

The resulting profiles are subject to error propagation, as can be seen from the figures: this could
be due to the integration error in the ϕ equation, which then propagates into the density equation step
and so on. The scheme could be further improved in future works by considering either an adaptive
step size (at the cost of a slower algorithm as pre-computed factors could not be employed) or more
robust scheme for the numerical evaluation of the double integral in the second equation.
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Figure 5.9: Numerical integration scheme for the full ϕ, n system
The ϕ-n system has been numerically integrated using the scheme described above and the results have been

compared against the real profiles. The pitch angle θ profile has been extrapolated from the data. The
x-labels are omitted due to spatial constraints.
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Conclusions

The present analysis aims to find a description of the electric potential structure around the X-point
in a tokamak in terms of the smallest number of fundamental observables of our system.

The starting point was a model obtained by [20] to describe the potential along the divertor leg.
The resulting scaling law was obtained by applying some simplifying assumptions:

• simplified geometry (straight divertor leg);

• constant gradients along the integration path (divertor leg), so that all the profiles of interest
are linear;

• constant flux expansion (broadening of the distance between adjacent flux surfaces) along the
leg.

Additionally, the model was compared to simulation data obtained using a code, SOLPS-ITER, which
works in regimes in which the drift effects were a lot less pronounced than in the code taken in exam
in our case, and involved quantities both measured at the target and at the X-point.

Our work focused on expanding on this previous result. Using the drift-reduced Braginskii equa-
tions as a theoretical starting point and employing GBS simulation data as validation, the analysis was
articulated in many steps. The first one was to find an equation to describe its profile along the outer
divertor leg, the generalised Ohm’s law, which was verified against simulation data and analysed in its
different components. In particular a closure was found for the first of its components, associated to
the parallel current, so as to recover an equation for the potential which only involved two fundamen-
tal fields, electron temperature and density, with the corresponding derivatives. The new variables of
interest were then analysed and a simplified model was recovered to describe their profiles along the
outer divertor leg, which in particular revealed a scaling relation between the electron temperature and
density profiles. This approach entailed the approximation of the perpendicular dynamics through the
definition of perpendicular length scales, which would relate perpendicular gradients to the quantities
measured along the leg. Thus, an equation was obtained describing the evolution of the required
fields along the leg. Finally the approximations recovered were substituted back into the original law,
obtaining a coupled system of equations in the density and the electric potential. This final system
was then analysed in specific regimes, where in particular some approximations where introduced for
the density profile: a simple linear profile was considered at first, which allowed a direct comparison
with the results in [20] as a scaling law was recovered which could be directly compared to the one
obtained in the aformentioned paper; later, a more general power-law profile was considered, and a
scaling law was recovered using the same approximations. The advantages that these last scaling laws
presented in comparison to the previous result were numerous:

• although simplified geometries were taken in consideration, as a straight leg was assumed (as in
[20]), the main features of the magnetic geometry were captured by the definition of the parallel
coordinate itself, allowing to differentiate implicitly between the single null and snowflake cases;

• similarly, the effect of flux expansion was captured both by the definition of the parallel coordi-
nate and of the characteristic perpendicular lengths;
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• additionally, although in an approximated way, drift effects were taken into consideration, more
than in the original result;

• lastly, the required conditions for the 1D model involved quantities measured at the target,
which would be easier to obtain experimentally (or to set theoretically from the sheath boundary
conditions).

Finally, numerical integration schemes were proposed, both to recover estimates for the error in the
case of simplified density profiles and to integrate the full density-potential system. These last results
leave room for further improvement: the first, as it could be used to defined iterative fixed-point
schemes starting from simplified profiles and converging to the real ones; the second, as the current
numerical integration scheme presents some numerical instabilities which could be later resolved by
either employing adaptive schemes or more robust integration routines.

The road to controlled fusion is paved with many problems to be resolved, but just as many
interesting solutions to each of them. Taming the power of the stars requires a lot of effort and
imagination: the only way forward is to consider our contributions, however small they might be, as
a function of the bigger picture, and keep hoping that one day our collective effort will bear its fruits.
That is how humanity progresses, after all.
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Appendix A: Tables and constants

The constants recovered in the scaling law in Chapter 5 (§5.2, Eq. 5.7) are:

c4 = − sign(B0)
a cos θ

14dpe

c3 = − sign(B0)
1

210a3
(
−24a3Ab− 28a4B + 56a3Ant

)
c2 = − sign(B0)

1

210a3
(
48a2Ab2 + 56a3bB − 112a2Abnt − 70a3Bnt + 70a2An2t

)
c1 = − sign(B0)

1

210a3
(
−192aAb3 − 224a2b2B + 448aAb2nt + 280a2bBnt − 280aAbn2t

)
c1/2 = − sign(B0)

1

210a3

(
384Ab7/2 + 448ab5/2B − 896Ab5/2nt − 560ab3/2Bnt + 560Ab3/2n2t

)
c0 = − sign(B0)

1

210a3
(
−384Ab4 − 448ab3B + 896Ab3nt + 560ab2Bnt − 560Ab2n2t

)
where in the above equations one defines the following constants:

b = nt + T0

A =
cos θ

dpe

B =
2 sin θ

Bt
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