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Summary

Transformers, a groundbreaking innovation in artificial intelligence, have signif-
icantly impacted both natural language processing (NLP) and computer vision,
with models such as ViT, GPT, and BERT leading the way. These models have
demonstrated exceptional performance across a variety of tasks, including ma-
chine translation, text summarization, and sentiment analysis. Their success is
largely due to the use of self-attention layers, which enable them to process large
sequences of data efficiently while supporting parallelized training. However, de-
ploying Transformer-based architectures on smaller platforms poses substantial
challenges, particularly due to their high computational and resource requirements,
especially in real-time and resource-constrained environments.

To address these challenges, Field-Programmable Gate Arrays (FPGAs) have
emerged as a promising solution. FPGAs are versatile, reconfigurable integrated
circuits that offer a unique combination of flexibility, parallelism, and energy
efficiency, making them ideal for specialized applications such as deep learning
inference. Nevertheless, implementing Transformers on FPGAs is a complex task
that requires a diverse range of expertise. It involves several steps, from optimizing
the neural network for quantized inference to designing an accelerator architecture
that maximizes the efficient use of FPGA resources.

This work provides a comprehensive review of the latest developments in trans-
former accelerators using FPGAs. It examines the most recent advancements in
FPGA-based architectures tailored to accelerate transformer models, delving into
various implementation strategies and optimization techniques.
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Chapter 1

Introduction

This chapter is designed to offer a comprehensive overview of essential machine
learning concepts, serving as a foundational introduction for the following chapters.
It begins by outlining the core principles of machine learning, providing context for
its various applications and significance in modern technology. The focus then shifts
to deep neural networks, a critical area within machine learning, where the chapter
delves into their architecture, functionality. Finally, the chapter concludes with a
detailed summary of the most basic and commonly used layers in deep learning
models, explaining their roles and how they contribute to the overall performance
of these models.

1.1 Machine learning overview
To start explaining what is Machine Learning (ML) it is first necessary to have a
sufficiently clear idea of the word learning. Many authors have provided different
definitions regarding this concept, and even though definitions can be related each
author develops a completely unique philosophical framework to conceptualize
machine learning.

Fort this work the definition and framework used in [1]; learning is defined as:

• A computer program is said to learn from experience E with respect to some
task T and some performance measure P, if its performance on T, as measured
by P, improves with experience E

Given this definition the problem of defining learning is reduced to three terms,
Experience E, Task T, and Performance P. These Terms can be derived from a
concrete problem or context, to illustrate this [1] proposes the following example:

• A computer program that learns to play checkers might improve its performance

1



Introduction

as measured by its ability to win at the class of tasks involving playing checkers
games, through experience obtained by playing games against itself [1].

Given the previous formulation, T, P, and E, can be established as follows:

• Task T: playing checkers;

• Performance measure P: percent of games won against opponents;

• Training experience E: playing practice games against itself.

This definition of learning is sufficiently broad and clear enough that it is possible
to formulate many problems as learning problems, where the solution to these is
a computer program that satisfies the definition of learning itself. To design the
aforementioned computer programs, [1] proposes the strategy shown in Figure 1.1
contextualized for checkers example.

Figure 1.1: Summary of design choices from checkers example [1]

2



Introduction

1.1.1 Determining Type of Training Experience
The first step, consist of modeling how data for training is acquired to train the
machine learning program: whether it is generated by the designer or taken from
a dataset, and if data is going to be labeled or not. This step conditions the
overall result of the program and its success depends on having training data that
represents correctly the distribution of the overall data population.

1.1.2 Determine Target Function
The second step, is simply defining the output of the program, for example continu-
ing with the checkers example the output of the model could be the next movement
to perform or scoring the board state. This step is important since it heavily
conditions the implementation of the prediction algorithm.

1.1.3 Determine Representation of Learned Function
This step consist of choosing the mathematical model or algorithm that is going to
be trained, for example it could be a simple regression, a neural network, a decision
tree, etc. It is important to mention that for the sake of brevity learned function is
often referred simply as model.

1.1.4 Determine Learning Algorithm
Finally once all the steps have been defined, a strategy to adjust the trainable
parameters of the model must be defined, this strategy can be for example a mean
square error adjustment, or a gradient descent algorithm to name a few.

1.2 Neural Networks overview
The remaining part of this introduction focuses on one of the most wide-spread
representation models, the Neural Networks and it aims to explain Deep Neural
Networks DNN by first presenting the most simple neural network i.e. a single
Sigmoid Neuron to then explaining how they are trained using back-propagation,
and finally present some of the most common Neural Networks architectures and
layers.

1.2.1 Sigmoid Neuron
The Sigmoid Neuron is inspired by its predecessor the Perceptron that was de-
veloped in the 1950s and 1960s by the scientist Frank Rosenblatt. It consist of a
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mathematical model that follows the formula shown in equation 1.1 [2] and are
graphically represented as shown in Figure 1.2.

output = 1
1 + e(

q
j

wjxj)+b
(1.1)

Figure 1.2: Single perceptron

Equation 1.1 can be divided into three parts: the first being the input of the
model denoted in the equation 1.1 as x ; the second part being the weighted sum,
where w and b are the parameters that the model has to learn; and the third part
is the activation function that in this particular case is just a logistic function also
known as sigmoid function, thus the naming of the neuron. It is worth noting that
in this example [2] all numeric values inside the model ranges from 0 to 1.

The important aspect about Neurons is that they can be connected in many
ways, the most simple way to connect neurons is in a feed-forward way meaning
that neurons are grouped in layers that serve as input to subsequent layers, without
backward loops. This way each subsequent layer performs a more complex computa-
tion, giving the overall network the capacity to represent any kind of mathematical
function, as shown in Figure 1.3. This feature proves useful in a great number of
tasks where mathematical models are required to make predictions based on data,
or classify said data. Examples of these tasks could be Image classification and
Text translation, to name a few.

4
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Figure 1.3: Feed-forward architecture

Once the number of inputs, layers, and outputs is defined, the next step to finish
the model is defining the weights and biases, this is done by training the network
adjusting the values until the model is sufficiently accurate.

1.2.2 Training
When referring to training a neural network, it is intended as executing the learning
algorithm that adjusts the neural networks parameters. This algorithm basically
consist of running inferences i.e. producing outputs with suitable data and then,
scoring the accuracy of the output in some capacity to later, based on these
results modify the values of the parameters accordingly. This is summarized in the
following enumeration [3]:

1. Iterate over a dataset of inputs.

2. Process input through the network.

3. Compute the loss (how far is the output from being correct).

4. Propagate gradients back into the network’s parameters.

5. Update the weights of the network, typically using a simple update rule shown
in equation 1.2.

weight = weight - learning_rate * gradient (1.2)

It is worth mentioning that, due to neural network computational complexity,
the majority of software tools use back propagation and gradient decent methods
to adjust the network parameters.

5
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1.3 Basic DNN models
Having introduced the most basic Neural Network the feed forward layer, is time to
expose some of the most common neural networks and also some of the functions
used along with them.

To start off, the main difference between a simple neural network and a deep
neural networks can be reduced to the higher complexity of the latter with respect
to the former. This complexity is measured in the form of deepness of a given
network where deepness generally means the amount of neuron layers between the
input and output of the model [4]. These layers are always regarded as hidden
layers whereas the input and output are represented as layers themselves, when
representing the model graphically. Figure 1.4 shows a comparison between two
neural networks that differ on depth, the one on the left is considered a shallow
neural network, and the one in the right can be regarded as a deep neural network.

Figure 1.4: Comparison between a Shallow Artificial Neural Network and a Deep
Neural Network

The reason why this terminology became prevalent is due to the increase over
the years of computational power that allowed the one to three layer models to
grow substantially to models of even more than 50 layers of depth [5].

Having stated what deepness means in the context of neural networks the
following sections show other types of neural networks used together with Feed
Forward networks.

1.3.1 Convolutional Neural Network
A Convolutional Neural Network (CNN) is a specialized type of neural network
designed primarily for processing structured grid data, such as images. CNNs
are highly effective in tasks like image recognition, object detection, and image
segmentation due to their ability to automatically and adaptively learn spatial
hierarchies of features from input images. Its key components are:

6
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• Convolutional Layers: These layers apply kernels i.e. performs a 2D or 3D
convolution to the input data, helping detect patterns in the data, Figure 1.5
Shows a graphic example of how a convolution layer performs 2D convolution;

• Pooling Layers: Pooling, often MaxPooling, is used to reduce the spatial
dimensions of the data, which reduces computation and helps to make the
detected features more invariant to scale and orientation, in case of MaxPooling
it down-samples data by picking the maximum value over a window [6].

• Fully Connected Layers or Feed Forward Layers: After several convolutional
and pooling layers, the data is typically flattened and passed through one or
more fully connected layers, which make the final classification or prediction.

Figure 1.5: A visual representation of a convolutional layer. The centre element of
the kernel is placed over the input vector, of which is then calculated and replaced
with a weighted sum of itself and any nearby pixels [7].

CNNs excel in capturing spatial features and are the backbone of most modern
computer vision systems.

1.3.2 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a class of neural networks well-suited for
sequential data, such as time series, language data, or any data where the order of
inputs is important. Unlike feed forward neural networks, RNNs have connections
that form directed cycles as Figure 1.6 shows. This mechanism allows RNNs
maintain a ’memory’ of previous inputs, which is crucial for tasks like language
modeling, speech recognition, and machine translation.

7
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Figure 1.6: An example of a simple recurrent network [8].

1.3.3 Common Layers in DNNs
Having exposed the most common neural network architectures, It is important to
mention that DNNs models can be designed a mixture of the mentioned above by
composing them with layers that perform different operations, so a model can be
composed of layers that perform convolution, layers that are recurrent, and others
that are just feed forward. Aside from these layers there are other kinds of layers
that help model the non linearity of the model such as:

Activation Layers

Activation layers apply a function to the output of a layer, introducing non-linearity
into the model, which is crucial for the network’s ability to learn complex patterns.
Without activation functions, the network would only be able to learn linear
relationships, severely limiting its power.

Some common activation functions are:

• ReLU (Rectified Linear Unit): ReLU is the most widely used activation
function in deep learning, defined as (1.3). It introduces non-linearity while
being computationally efficient and facilitates training of models.

f(x) = max(0, x) (1.3)

• Sigmoid: The sigmoid function maps inputs to a range between 0 and 1,
making it useful for binary classification problems. However, it is less efficient
for training than ReLu gradients.
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• Tanh (Hyperbolic Tangent): Tanh is similar to the sigmoid function but maps
inputs to a range between -1 and 1. It is also not as efficient for training
as ReLu but is preferred over sigmoid in some cases because of its centered
output.

SoftMax Layer

The SoftMax layer is typically used as the final layer in a neural network designed
for multi-class classification problems. It converts the raw output scores (logits)
from the previous layer into probabilities, which represent the likelihood of each
class.

The softmax function is only one of infinitely many functions that map non-
normalized scores onto probability vectors [9]. It applies the equation (1.4) returning
the aforementioned probability vector.

Softmask(X) = exiq
j exj

(1.4)

Normalization Layers

Normalization layers are used to stabilize and accelerate the training process of deep
neural networks by standardizing the inputs to each layer. They help prevent issues
like internal covariate shift, where the distribution of inputs to a layer changes
during training.

Common Normalization Techniques:

• Layer Normalization: normalizes using (1.5) the inputs across the features for
each data point independently [10], where E [x ] is the mean across the input
dimension, and Var[x] is the variance making it more suitable for recurrent
networks.

y = x− E[x]ñ
Var[x] + ϵ

∗ γ + β (1.5)

• Batch Normalization: Batch normalization normalizes the output of a layer
by applying (1.5) with the difference that the mean and the variance are
parameters set in training and calculated across each mini batch of data,
instead of the input dimension [11].

9



Chapter 2

Transformer architecture

After introducing the concepts of Machine Learning and Neural Networks, This
current chapter will shift its focus to the Transformer architecture. Introduced in
the groundbreaking paper "Attention Is All You Need" by Vaswani et al [12]. in
2017, represents a significant leap forward in the field of deep learning, particularly
in natural language processing (NLP). Unlike traditional models like Recurrent
Neural Networks (RNNs) and Convolutional Neural Networks (CNNs), which rely
on sequential data processing or convolutions, the Transformer architecture is based
entirely on a mechanism called self-attention. This innovation allows Transformers
to handle long-range dependencies in data more effectively and efficiently, making
them highly powerful for tasks involving sequential information, such as language
translation, text generation, and even beyond NLP, in areas like image processing
and time-series analysis.

2.1 Architecture Overview
Figure 2.1 shows the original Transformer [12], it displays a block diagram with
each of the transformers layers, notice that there are two blocks encapsulating Feed
Forward, Multi-Head Attention, and Add & Norm layers, these are named Encoder
and Decoder, where the Encoder feeds it’s output to the Decoder and the Decoder
gives it’s output to the final linear layer that is a simple feed forward network as
explained in the previous chapter. The purpose of this design is that it was meant
to operate on sequential data, since the Transformer was mainly developed for
text translation task. The way it operates is that the positional encoders embed
the sequential information of the input, and then the encoder extracts what part
of the sequence are the most important and derive a context from it, then sends
this context to the decoder That was fed with the actual output sequence and
produces the next token. It is important to state that even though the originally

10
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Figure 2.1: Transformer - model architecture [12].

the Transformer architecture was designed in this manner many transformer model
only use Encoders or Decoders given that, by themselves alone, have been proven

11
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to be effective for many other task such as sentiment analysis and text generation.

2.1.1 Self-Attention
Self Attention could be considered the central part of any transformer model since
is in charge of finding relationships on data. In the case of the transformer it
can be illustrated as Figure 2.2 shows. It operates by first computing the matrix
multiplication between the query Q and the keys K, which represents the similarity
between the elements. The resulting scores are then usually scaled down by the
square root of the number of columns the K input, this is due to the softmax layer
that comes after since it could lead extremely small gradients, which can destabilize
training. After scaling, the scores are passed through a SoftMax function to obtain
the attention matrix i.e. how much the keys and the values actually match, which
then is embedded into the value input V using another matrix multiplication, this
can be all summarized in the formula (2.1) or represented visually with Figure 2.2.
The resulting output, captures the relevant information from the entire sequence,
allowing the model to focus on the most important parts of the input when making
predictions.

Attention(Q, K, V ) = Softmax(QKT

√
dk

)V (2.1)

Where dk is the dimension of each token that belongs to the sequence and
Q, K, V are matrices of equal dimensions.

2.1.2 Multi-head attention layer
Multi-Head Attention is an extension of the self-attention mechanism presented
in the previous section. Used in the Transformer architecture, instead of relying
on a single attention operation, Multi-Head Attention splits the inputs data into
multiple smaller subsets that are then processed in parallel applying the Scale
Dot-Product function this can be illustrated as Figure 2.3 where each block of
scaled dot product attention is referred as "head". It is important to signal that
the scale factor is now divided by the square root of the number of heads since the
input to each individual head is now split equally across heads. One explanation
to these choice rather than doing a single head that process all data together is
that the model is then able to capture different types of relationships and patterns
within the data simultaneously, letting the Transformer process data in parallel
rendering Multi-Head Attention a crucial component in the Transformer’s ability
to handle complex tasks like language understanding and sequence modeling. The
behaviour he this layer can be synthesized in the Formulas (2.2) and (2.3).
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Figure 2.2: Scaled dot-product Attention [12].

MultiHead(Q, K, V ) = Concat(headi, ..., headn)W O (2.2)

head = Attention(QW Q
i , KW K

i , V W V
i ) (2.3)

It is important to point out that all operations shown correspond to matrix
operations and that splitting are done, in principle, through matrix multiplications
where Q, K, V are matrices of ℜs×d and W K

i , W Q
i , W V

i are the weights of the initial
linear layers in Figure 2.3 that each have dimensions of ℜd× d

h thus the input to
each attention head shall be of ℜs× d

h .

2.1.3 Positional embedding
Positional embedding is also one of the most innovative components of the Trans-
former architecture, They address the understanding of sequence order. Since
Transformers process input data in parallel rather than sequentially as seen by
the multi head attention layer, there must be a layer that takes into account the
position of each token in a sequence. Positional embedding is added to the input
token embedding, in the original Transformer they are implemented as shown in
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Figure 2.3: MultiHead Attention layer block diagram [12].

Formula (2.4), this way the position in a sequence of a particular Token is embedded
into the data itself, hence the name, This gives the chance to the subsequent layers
to take into account the order of a sequence. The understanding of sequence is
especially crucial in tasks regarding natural language, where the order of words
plays a significant role in the context and interpretation, but it has also been proven
to be as important for image classification tasks since images can be subdivided
and therefore it can be also modelled as a sequence of data.

PEpos,2i = sin(pos/100002i/dmodel)
PEpos,2i+1 = sin(pos/100002i/dmodel)

(2.4)

Where pos is the position of a token given a sequence, i is a token element index,
dmodel is the length of the token, The output PE of this sequence then is added to
the input token respective element.

It is important to point out that even if the original Transformer presented uses
sinusoidal encoding for this embedding, the authors also state that nearly identical
results can be achieved using learned encoding, where the encoder is actually a
series of parameters that are adjusted during training.
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2.1.4 Feed Forward layer
Contrary to what was previously mentioned int this work, Feed Forward layer in
a transformer does not correspond to a single fully-conected layer, instead [12]
intends as a Feed Forward layer the network described by the Formula (2.5).

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.5)

Where x is the input matrix coming from the attention layer, W1, b1, W2, and b2
are the parameters of simple feed forward networks or linear layers. Thus the Feed
forward network is just two linear layers that have in between them an activation
layer.

2.2 Transformer based models
Since the original Transformer architecture appearance in 2017 there have been
many other deep learning models that have inherited from it, these models models
have advanced the field of deep learning, particularly in natural language processing
(NLP). Leveraging the power of self-attention mechanisms and parallel processing,
that were a huge standout for the original Transformer at the time, transformer
based models are capable to handle large-scale data and complex tasks with
unprecedented efficiency and accuracy. Models such as BERT and GPT, have
pushed the boundaries of what can be achieved with artificial intelligence in general.
Ths achievement makes Transformer-based models the go-to architecture for many
cutting-edge AI applications. In this section we are going to present the three most
relevant architectures currently BERT, GPT, and VIT.

2.2.1 BERT
BERT (Bidirectional Encoder Representations from Transformers) is a ground-
breaking Transformer-based model introduced by Google in 2018 [13], which has
significantly advanced the state of the art in natural language processing (NLP).
Unlike previous models that typically processed sequences in a unidirectional man-
ner (left-to-right or right-to-left), BERT is designed to understand context in a
truly bidirectional way, meaning it considers the entire sequence simultaneously
when making a prediction. This bidirectional approach allows BERT to capture
more nuanced relationships between tokens, leading to better performance on a
wide range of tasks such as sentiment analysis [14]. Figure 2.4 displays BERT
architecture, it can be appreciated that BERT can be reduced to just an stack of
Transformer encoders connected sequentially. The important thing is that each
token in a sequence has access to all tokes i.e. it does not mask the token that
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come afterwards, allowing the model to relate all tokens with each other within a
sequence.

Figure 2.4: BERT architecture [14].

2.2.2 GPT
GPT (Generative Pre-trained Transformer) is a series of powerful Transformer-
based language models developed by OpenAI, known for their ability to generate
human-like text [15]. Different from BERT GPT operates as a unidirectional
(left-to-right) language model. It predicts the next word in a sentence based on the
preceding context, making it particularly well-suited for generative tasks where text
needs to be produced sequentially, such as creative writing, dialogue generation,
and code completion. Another difference with BERT is also that, GPT only uses
of the Decoder block from the original Transformer architecture unlike BERT that
only uses the Encoder block.

2.2.3 ViT
All the models that have been presented until now have mainly focused on solving
NLP task, in the case ViT, which stands for Vision Transformer, it uses the
transformer architecture to solve Computer Vision tasks such as image classification
[16].

In the same manner as BERT, ViT leverages the Encoder block to perform
inference with the slight difference that ViT uses a modified version of the Encoder,
the modification being the position of the layer normalization blocks is shifted
downwards and the use of GeLu activation function instead of the usual ReLu
function. Figure 2.5 shows the vision transformer architecture in the form of a block
diagram. To pass images to the encoder, Vision Transformer divides the image
into smaller ones referred as patches that are then tokenized. Patch tokenization
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consist of flattening the sub-image’s dimensions and channels into a 1-D vector
that is grouped with the other flattened patches, making them a sequence. Once
the sequence is built Each patch is linearly projected into a fixed-dimensional
embedding space, i.e. passed through an embedding layer that consist of a single
linear layer this layer also helps embedding position into each patch transforming
them into token, thus being able to serve as an input to the encoder.

2.2.4 Transformer model size discussion
Having presented the Transformer architecture and some of it’s most know varia-
tions, it is necessary to reference each model size in number of parameters. Table
2.1 displays the size in parameters of each, notice that the sizes vary from millions
of parameters to billions, this means that executing models with sizes like these
represent a huge demand on the computer in regards to memory, to store, or access
parameters; computation, since in order to have acceptable execution times the
model demands a large amount of operations per seconds; and lastly energy since
the execution of these models also spends a considerable amount of energy. This
demands affect the overall usage of this models since they represent costs that
make them unsuitable to be used outside of data-centers dedicated to training and
inferencing of neural networks, to reduce this demands there are some techniques
to reduce the overall complexity of a particular model without an appreciable
degrade in performance, one particular technique to reduce the model size is called
quantization which is going to be the subject of the next chapter.

Model Parameters (approx.)
Original Transformer (Base) 65 million
BERT Base 110 million
BERT Large 340 million
GPT (GPT-1) 117 million
GPT-2 Small 117 million
GPT-2 Medium 345 million
GPT-2 Large 762 million
GPT-2 XL 1.5 billion
GPT-3 (175B) 175 billion
ViT Base 86 million
ViT Large 307 million
ViT Huge 632 million

Table 2.1: Comparison of Model Sizes: ViT, BERT, GPT, and Original Trans-
former
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Figure 2.5: ViT model overview [16].
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Chapter 3

Model Optimization

Given the growing size of Transformers based models and it’s impact on scalability,
time of inference and overall cost, it becomes apparent that in order to have models
with an increasing number of parameters of parameters, something must be used
to reduce the size of the model and the complexity. fortunately given the flexible
nature of neural networks, i.e. they can be retrained and adjust the parameters to
better fit the task at hand, some optimizations on the way the model behaves can
be performed. The optimized model can be achieved using one or many techniques
such as knowledge distillation [17], pruning [18], and or model quantization [19].

3.1 Quantization overview

Neural network quantization is a technique used to reduce the size and computa-
tional complexity of deep learning models by mapping the parameters (weights
and biases) with lower-precision representations, typically from floating-point (e.g.,
FP32) to integers (e.g., INT8). The goal is to make neural networks more efficient,
especially in environments where computational resources are limited, such as edge
devices, mobile platforms, and embedded systems. The benefits from performing
quantization from FP32 to INT8 are noticed in the decreases of memory overhead,
since storing parameters and intermediate results decreases by a factor of 4 while
the computational cost for matrix multiplication reduces quadratically by a factor
of 16 [20].

Mathematically Quantization is mapping values from a continuous space to a
discrete space, This mapping is performed using a constant piece-wise function,
such as(3.1). This mapping is what then is going to be used to compress the values
of a floating point number, to an integer one [21].
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Q(r) = qi

r ∈ [ri, ri+1)
(3.1)

It is possible to distinguish two forms in which intervals are assigned to values,
uniform and non uniform. when doing the conversion from a high precision value to
an integer it is preferred to do an uniform mapping, since it allows to also perform
computations in the quantized domain [22].

Uniform quantization means that the ranges are divided in equal intervals, thus
in the case of integer numbers stored in bits this operation can be represented as
formula (3.2) shows:

s = 2b − 1
α− β

z = −round(sβ)− 2b−1
(3.2)

where s is the scale factor and an z is the zero-point the integer value to which
the real value zero is mapped. Once the mapping is performed, to get the particular
representation of a number in continuous space to the quantized space the Formula
(3.3) is employed.

xq = quantize(x, b, s, z) = clip(round(sx + z)),−2b−1,2b−1 − 1) (3.3)
Where the round function rounds the decimal value to the nearest integer, and

the clip function handles overflow by setting the quantized value to the maximum
or min values allowed by the number of bits b that used to represent the integer. In
contrast to go from the quantized space to the continuous spaces the Formula (3.4),
notice that returning from the quantize space does not yield the original continuous
value, that is the main reason why quantization carries out a loss of precision.

x = dequantize(xq, s, z) = 1
s

(xq − z) (3.4)

It is important to point out that, the dynamic range of the continuous space is
assumed to be symmetric, i.e. that is centered at zero, cancelling the z term of
Formulas (3.3) and (3.4).

Once we have the expressions to transit to or from the quantize space, it is possi-
ble to apply quantization to the inputs of an specific operation, and dequantization
to the outputs. In this manner the operation uses integer arithmetic that is far
more efficient than floating-point arithmetic.

3.1.1 Quantization Classification
Having explained quantization, the follow up question appears. How to set the
scale factor and zero point, values of a given operation or in other words how to
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determine the dynamic range of the input values and output values of a layer. To
answer that question, there are many techniques employed to perform quantization,
weather fully or partially to some layers of the networks. these techniques can
be group in three classes Post Training Quantization PTQ, Quantization Aware
Training QAT.

Post training quantization

This method quantizes the model after it has been trained. It is relatively easy
to implement but may lead to accuracy degradation since the network was not
trained to handle quantized values.

Quantization aware training

In QAT, the model is trained with quantization in mind. The training process
simulates quantized values (e.g., using INT8), so the model learns to adjust to
these lower-precision operations. This approach generally preserves more accuracy
than PTQ.

3.2 Model Pruning overview
Model pruning consist of removing unnecessary or less important parameters
(weights or connections) from a trained model to make it more efficient in terms of
memory usage, speed, and power consumption. In the same manner as Quantization,
Pruning is trade off between small degradation in model quality, and a reduction
in model size.

Pruning can be classified in several ways as [23] suggest, one of the ways
consist on how coarse the pruning method i.e. whether pruning consist of zeroing
parameters or removing neurons, filters, or heads of a model. these two kinds
approaches are called as unstructured, structured, and an in between approach
simply named semi-structured.

3.2.1 Unstructured Pruning
Also known as weight-wise pruning, it is the finest-grained case. Mathematically
unstructured pruning can be formulated as an optimization problem [24]:

Given a dataset D = {(xi, yi)}n
i=1, where D is composed of xi input and yi

output pairs; and a desired sparsity level k (i.e., the number of non-zero weights)
the resulting weights are obtained using Formula (3.5).
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min
W

L(W ; D) = min
W

1
N

NØ
i=1

ℓ(W ; (xi, yi))

s.t. W ∈ Rm, ∥W∥0 ≤ k

(3.5)

Where W represents the weights of a neural network, ℓ(.) is a loss function, m
the shape of the weights, and ∥.∥0 counts the number of non zero elements that
vector contains.

It is important to point out that although unstructured pruning reduces the
model size without actually impacting the accuracy, it does not reduce the com-
putational complexity of the model. Moreover it adds to it given that the newly
created W parameters must be stored in a way that signals out the sparsity, there-
fore a decoding algorithm or dedicated hardware is needed to process the weights
effectively giving an overhead to the overall inference time.

3.2.2 Structured Pruning
Structured pruning is much more coarse than unstructured pruning since it mainly
consist on removing network connections, such as neurons, channels, filters, or
layers, rather than individual weights. contrary to unstructured pruning, this
approach is more hardware-friendly, leading to models that are more efficient to run
on common hardware (such as GPUs and CPUs) since they require less calculations,
but it does have an impact on accuracy.

In the same manner as unstructured pruning, structured pruning can also be
defined as simple optimization problem [23]:

Given a specific prune ratio and a neural network with S = {s1, s2, ..., sL}, where
si can be the set of channels, filters, neurons, or transformer attention heads in
layer i. Structured pruning aims to search for s′ = {s′

1, s′
2, ..., s′

L} to minimize
performance degeneration and maximize speed improvement under the given prune
ratio, where s′

i ⊆ si, i ∈ {1, . . . , L}.

3.2.3 Semi-Structured Pruning
Also called pattern based-pruning [25], where the primary focus is on designing
and selecting optimal patterns. The goal is to achieve high accuracy and execu-
tion efficiency by considering theoretical implications, algorithm design, compiler
optimizations, and hardware performance.

One example of pattern based pruning could be dividing an weight matrix into
smaller sub-matrices that then each are unstructured prune a fixed amount of
weights as [26] presents.
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3.3 Knowledge Distillation
Unlike the previous, techniques where there is no requirement for training to
be involved. Knowledge distillation consist of compression technique where the
knowledge is transferred from a large pre-trained teacher model to a small student
model, so it can replicate or mimic the teacher model’s behavior. The resulting
model is then more efficient than the original but has comparable accuracy to the
original model [27]. Figure 3.1 shows a representation of how this technique works.

Figure 3.1: Knowledge Distillation process [27].

Notice that differently from the other methods where the optimization can take
part after training, by solving an optimization problem. Distillation can take part
only on the training of the student model, where the learning algorithm or loss
function, takes as an input not only the dataset, but also the output of the teacher
model.
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Chapter 4

FPGAs and Deep Learning
Inference

Field Programmable Gate Arrays (FPGAs) are programmable devices that offer a
flexible platform for implementing custom hardware at a relatively low development
cost. They also allow the user to add features, or fix bugs by simply loading a
new configuration after deployment in-field, thus the name field-programmable
[28]. These features make FPGAs ideal accelerators for deep learning inference,
as they support fine-grained parallelism and associative operations like broadcast
and collective response [29]. In order to achieve this goal, it is crucial to make
proper usage of the internal resources the FPGA proivdes. This implies that the
accelerator design consist of a trade-off between overall parallelism and reuse of
resources. This whole chapter consist of introducing FPGA components, how do
an FPGA interacts with memory and other peripherals, and how the accelerator
design flow usually consist when designing an accelerator for a Transformer model.

4.1 FPGA overview
FPGA chips have come a long way since their first appearance over 30 ago. Nowa-
days, modern FPGAs are becoming more and more complex than just simple
arrays of programmable logic and IO blocks. They are primarily composed of pro-
grammable logic cells, known as configurable logic blocks (CLBs), a programmable
interconnect network, and programmable input/output cells surrounding the de-
vice. Additionally, FPGAs include a variety of embedded components such as
digital signal processing (DSP) blocks, used for tasks like multiply-and-accumulate
operations, block RAMs (BRAMs), look-up tables (LUTs), flip-flops (FFs), clock
management units, and high-speed I/O links, all interconnected through a hierarchy
of programmable switches [28] as presented in Figure 4.1.
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Figure 4.1: FPGA Block Diagram [30].

4.1.1 FPGA based SOCs and SOMs
Aside from the general evolution of FPGAs and continuous addition of more
and more complex modules inside the die, FPGA boards normally called System
on Modules have also evolved to the point where they can function not only as
an accelerator but also execute the complete applications, generally this boards
consist of an FPGA chip, with multiple interfaces that connect the chip to memory
IO peripherals, and also PCI ports that serve as a communication High speed
link between board and the host computer. Moreover many vendors offer FPGA
chips that not only hold the actual FPGA but integrate it with ARM aplication
processors, and more specialized computation DSP called vector processors. One
major example of these systems on chips (SOC) can be the AMD Xilinx Versal AI
Edge series shown in Figure 4.2.

4.2 FPGA Design Flow
Having Defined the algorithm, i.e. the optimized Transformer model, and the
FPGA device that is in charge of accelerating inference, The remaining step is
implemneting accelerator, in order to do so there is general work flow that consist
of the following steps:

1. Architecture Design: Based on the algorithm’s needs, choose a hardware
architecture that best supports parallelism (e.g., dataflow, pipelining, loop
unroling, etc).
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Figure 4.2: Versal Soc Module components [31]

2. Partition the design: Divide the design into functional blocks or modules,
such as processing units, memory controllers, communication interfaces, and
control logic.

3. Data flow analysis: Determine how data will be passed between different
blocks and the memory.

4. Model the design: Write the accelerator architecture and behaviour using
High level synthesis or RTL code.

5. Debug: Check that the implemented accelerator model produces the same
results as the optimized AI algorithm. This step is performed by means of
a testbench capable of evaluating the correctness of the modeled accelerator
behaviour.

6. Synthesize the accelerator: This step consist of mapping the FPGA resources,
scheduling the operations, and interconnecting them resulting in what is called
a net-list. Synthesis procedure is highly automated as of right now but the
designer can add some configurations that can guide the CAD tools used.

7. Verification: Check that the synthesis result makes a sound use of the available
resources and that it’s performance hit the expected mark. This step also
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performs logic or RTL level simulation to check that the net-list matches the
behaviour of the HDL or High level synthesis code.
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Chapter 5

FPGA accelerators for
Transformer model
inferencing

Having presented the stages to accelerate a Transformer using FPGA, we can
discuss the concrete challenges and solutions when implementing the accelerator.

5.1 Fitting Transformer into an accelerator
Referencing Chapter 2 of this work, Transformers vast number of parameters and
inputs along with the fact that AI models operate withe them in the domain of real
numbers, thus being map to FP32 in computer systems, the memory footprint and
overall computational complexity is such, that it becomes not possible to execute
inference on smaller devices such as FPGA. To solve this issue, designers resort to
the model compression techniques similar to the ones presented in chapter 3 of this
work.

5.1.1 Quantized Transformer Accelerators
Compressing the model using quantization not only reduces the size of parameters
but also allows for the implementation of integer arithmetic instead of floating
point, which highly reduces the usage of DSPs, and also increases the performance
since integer computation is lighter. However, quantization methods vary from
implementation to implementation. For the rest of this section we are going to
reference works that performed or used quantization and a brief mention of what
was done:
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[32] implements integer quantization for the attention mechanism in a non-
uniform manner, mapping parameters and activations to INT16, while inputs are
mapped to INT8. In contrast, [33], [34], and [35] apply INT8 quantization to all
layers and parameters except for the softmax layer, where floating-point arithmetic
is used. [36] also uses INT8 quantized models, but performs 1-bit quantization
on the Q and K matrices. [37] performs INT8 quantization-aware training (QAT)
for BERT-based models. [38] takes a more aggressive approach, assigning 4-bit
quantization to the weights and 8-bit quantization to the intermediate layers in
BERT. [39] uses INT8 quantization for linear operations, INT16 for activation
layers, and 32-bit precision for exponential and square-root. Another approach by
[40] uses a mixed quantization scheme, with some layers using uniform fixed-point
quantization and others employing non-uniform quantization. [41] designs an
accelerator capable of handling models with different levels of quantizations, it
was tested with resolutions of 8 bits, 6 bits, and 4 bits. [42] proposes different
technique to quantize the network, using Hessian analysis, it mainly consist on
performing mixed quantization row-wise, i.e. quantization differs from one row of
parameters to the another. [43] uses INT4 for quantization for parameters and
downscale activation from the usual FP32 to FP16. The most extreme form of
quantization reviewed was the one used by [44] which uses binary BERT models as
base for the accelerator.

5.1.2 Pruned Transformer Accelerators
Another broadly used approach for compressing a Transformer to fit into an FPGA
is the pruning of parameters and operations in a transformer, in the same fashion
as quantization we are going to reference works that used it and briefly explain
how it was implemented:

[45] introduces block-wise balanced pruning, a semi-structured technique where
a parameter matrix is divided into blocks, and a specified number of parameters
are pruned from each block. The pruned weight matrix is then compacted, and a
bitmap of ones and zeros is used to indicate the positions of the remaining weights
in the original matrix.

In regards to semi-structured pruning, [46] introduces N : M sparsity method,
where the weight matrix is divided into N groups of columns, each containing M
non-zero elements. They also propose an algorithm to optimize both the sparse
matrix and the N configuration. Similarly, [47] applies a structured pruning method
known as column-based pruning, combining block-wise pruning with the N : M
sparsity approach.

[48] develops an accelerator capable of supporting both block-wise and block-wise
balanced pruning. In contrast, [49] is the only work reviewed that implements
an accelerator for unstructured pruning. Finally, [50] stands out as the only
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study dynamic token pruning, i.e. there is dedicated hardware to prune tokens
in the attention matrix, and static pruning to get sparse weight matrices, where
the attention weights are pruned using semi-structural block pruning and the
FeedForward layers are pruned using structural row/column pruning.

5.2 Modelling Transformer operations in FPGA
Following the design flow proposed in Chapter 4, one of the most crucial steps in
designing an accelerator is partitioning the design into modules. For Transformers,
accelerators are typically divided into modules that perform the core mathematical
operations within them, concretely, matrix multiplication, softmax, and layer
normalization. In this work, we will discuss the rationale behind how each some
works design the architecture of each individual model.

5.2.1 Matrix Multiplication
Because matrix multiplication is the most prevalent operation in the model, and
Transformer models have grown to support long input sequences with many features,
matrix multiplication engines are designed to be highly concurrent, memory efficient,
and adaptable to make the most out of the FPGA resources. Some remarkable
approaches on how to compute matrix multiplication are:

[41] explains how to perform matrix multiplication when using integer quantiza-
tion, as represented in formula 5.1. Where A3

q is the output quantized matrix, A1
q

and A2
q the input matrix S the scale factor, "Z" the zero point and

ñ
dmodel/h the

scale factor used for the self attention computation.

A3
q = SA1SA2

SA3

ñ
dmodel/h

((A1
q − ZA1)(A2

q − ZA2)) + ZA3 (5.1)

Since [45] uses pruning, it exploits the sparsity of the resulting matrices by
designing Multiply and Accumulate modules with support for sparse row compu-
tation, as Figure 5.1 shows. For sparse computation, Figure 5.1(b), the inputs
and weight parameters are sent to the MAC unit. The bitmap input selects the
non-zero input values, and the selected values are stored into the FIFO, The FIFO
length is determined by the number of reserved non-zero values inside a small block
of the input matrix. Once the FIFO is full, the computation between the stored
values and the weights is made. For dense computation, Figure 5.1(c), the values
are sent directly into the MAC unit to perform computation.

[51] implements a technique denominated DSP-packing which consist of arranging
the inputs of a given DSP to compute multiple results while doing one single
operation. In particular two ways of packing are given, one that realizes two 8-bit

30



FPGA accelerators for Transformer model inferencing

Figure 5.1: [45] Matrix Multiplication architecture

multiplications A · C and B · C where C operand is shared, and another one that
supports four 4-bit multiplication where each multiplication also shares one single
operand, Thus improving the throughput of matrix multiplications since a single
DSP can process up to 4 unrelated multiplications. The DSP employed consist of
a signed multiplier that operates a 27-bit number with a 18 bit number, and the
result is then fed to an adder that takes as input a number of 35-bits and outputs a
48-bit number. The architecture of 8-bit multiplier and 4-bit multiplier are shown
in Figures 5.2 and 5.3 respectively.

Figure 5.2: 8-bit multiplier architecture [51], where A and B are the operands
multiplied by C. RC_A and RC_B are added to correct the result of the initial
multiplication, RC_A is 1 when C is signed and RC_B is −BMSB · 28 · C.
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Figure 5.3: 4-bit multiplier architecture [51], where A, B, C, D are the operands
multiplied by E. the shifters at the beginning truncate the inputs to 4-bit repre-
sentation and at the output are restored to their original size. Much like with the
B ·C correction for the 8-bit multiplier RC_B, RC_C, and RC_D for the 4-bit are
calculated obtained in the same manner. As for RC_A is (−AMSB +AMSB-1) ·23 ·E.

[42] implements yet another type of matrix multiplication module made of
Processing Elements that support 8-bit x 8-bit operations and 1-bit x 8-bit opera-
tions, this is due to the mixed quantization used for parameters where parameters
classified as important, represented in 8-bit quantization, and the unimportant, rep-
resented using only 1-bit, Figure 5.4 displays the architecture of the aforementioned
PEs.

[43], [37], [52], [32], [46], and [33] perform matrix multiplication using a systolic
array, this architecture consist of a grid conformed by identical cells or processing
elements (PE) that calculate concurrently partial results of matrix multiplication
that then pass the partial result to following PEs, this implementation theoretically
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Figure 5.4: Processing element for matrix multiplication [42]. When multiplying
8-bit by 1-bit values the PE operates 8 multiplications concurrently accumulating
them at the end. Instead, when operating 8-bit × 8-bit mode, the PE can only
performs one single multiplication at a time.

reduces the matrix multiplication time complexity to O(n), and produces at each
iteration a column of the output matrix. Thus the aspect that differentiates each
work is the structure of their respective PEs: [32] designs processing elements to
support multiplication between matrices of different integer types, more specifically
to support multiplications of 16-bit by 8-bit and multiplications of 8-bit by 8-bit
integers, this is due to how intermediate activations are stored with a higher bit-
width than parameters and inputs; Sharing the same reasoning [43] designed PEs
support multiplications between FP16 for the activations and INT4 for the weights
and can process in parallel vectors instead of individual elements; On the other
hand, [46] implement PE that support dense or sparse row multiplication, given
that it uses N:M pruning optimization; [33] and [37] uses the straightforward PE
that consist only of a MAC; whereas [52] uses the DSP48E2 embedded IPs inside
the target Xilinx FPGA.

[53] and [54], Differentiate two distinct modules to handle matrix multiplication,
the first one handles matrix multiplications inside of the attention self-attention
product. It consist of a two accumulators, dividers and exponential units that
support the scale and Softmax operations required by multi-head attention. The
second module is used for the linear layers since trainable weights are stored as
the fourier transform of block circulant matrices. A block circulant matrix W
consist of b2 square circulant sub-matrices Bi,j where each row of Bi,j is a cyclic
reformulation of the other rows. This implies that to store a circulant matrix it
is only needed to store one of it’s rows pi,j. Aside from this advantage, matrix
to vector multiplication can be computed as shown in Formula 5.2, where the ◦
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is the Hadamard product. This optimization is valuable since the computational
complexity of the linear layers gets reduced to O(b log(b)).

Wi,jx = pi,j ⊛ x = IFFT (FFT (pi,j) ◦ FFT (pi,j)) (5.2)

[44] implements another novel approach, since it uses binary transformers where
weights can take values of either -1 or 1 matrix multiplication gets much more
simpler, and drastically reduces the amount of resources, since matrix multiplication
becomes a matter of performing additions between the elements in a row. The
proposed module is shown in Figure 5.5, The reasoning behind this approach is to
reuse as much as possible the accumulate result of row items. Notice that Figure
5.5 includes the binary softmax implementation which is going to be explained in
the softmax subsection.

Figure 5.5: Binary transformer Matrix multiplication unit of the proposed
accelerator [44]

Regarding the MatMul operation in [44], it can be sumarize in three steps. In
the first step, the original weight matrix is decomposed into based matrix which
has all the elements set to one and bias matrix. The meaning of each element
inside bias matrix depends on the amount of +1 in the original weight matrix.
When there are more +1 than -1 in the original weight matrix, the value of 0
correspond to +1 and the value of 1 corresponds to -1, in case there are more -1
the opposite occurs. In doing this, the number of 1s in the bias matrix can be
reduced. For the second step, the activation matrix is multiplied by the base matrix
and the bias matrix separately. Since the base matrix consist of only ones, what
happens in reality is that the elements of each rows are accumulated and saved to
be reused multiple times, whereas the multiplication with the bias matrix is done
normally. The final step consist of reconstructing the result of MatMult, this is
done by subtracting the result of the bias matrix multiplication to the base matrix
multiplication twice, then choosing weather to invert the result or keep it as it is.
This last choice is based on the majority of +1 in the original weight matrix, if
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there is majority +1 the resulting matrix becomes the output else the resulting
matrix is inverted. Figure 5.6 illustrates this process with an example.

Figure 5.6: Matrix multiplication process for a binary Transformer example [44].

[38] uses a more traditional approach consisting of integer multiplier, adder trees
and, accumulators to perform matrix multiplication. given that it uses different
INT8 types for activations and INT4 types for weights, the matrix multiplier must
have support for 8-bit by 8-bit multiplication and 4-bit by 8-bit, Figure 5.7. It
consist of and array of multipliers capable of handling sign multiplication if needed
and shifters that actuate depending on the types of the opperand. From Figure
5.7 it can be noticed that the multiplier can accumulate the products of four 8-bit
by 4-bit multiplications or two 8-bit by 8-bit multiplications. In the first case no
shifting is needed whereas in the second case the inputs are rearranged and shifted
according to formula (5.3), where A, B, C, D are all eight bit operands.

AB + CD = ((Ah · 24) + Al)B + ((Ch · 24) + Cl)D
= ((AhB + ChD) · 24) + (AlB + ClD)

(5.3)

[39] tries to optimize matrix multiplication performance by reducing the amount
of accesses to external memory using output block stationary data-flow (OBS),
this means performing block matrix multiplication while attempting to reduce the
writes to external memory, this is done by adding the partial results of block matrix
multiplication internally leveraging the internal built in memory of modern FPGAs
BRAM.

5.2.2 Softmax
Given that the softmax function is non linear comprising exp() function and division
operations, most of the efforts when implementing this part of the self-attention
mechanism goes to approximating or reducing the amount of resources needed to
compute the exponential function. In this current work we are going expose how
some work have solved this issue:
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Figure 5.7: Processing Element capable of handling 8-bit by 4-bit and 8-bit by
8-bit [38].

[41] adopts a Softmax implementation based on lookup tables for computing
exp() for all possible inputs. This approach relies on two lookup tables: NLUT
for numerators and DLUT for denominators. exp() outputs values in the interval
(0, 1], to ensure numerical stability they offset inputs Xq by the maximum value
of the input array, yielding X̂q. Subsequently, the exponential value are derived
through E = exp(X̂q). they also introduce a scaling factor SE and a zero point
ZE as defined in Equations (5.4) and (5.5), accommodating the dynamic range
within the constraints of integer precision. The DLUT and NLUT are calculated
using Equations (5.6) and (5.7), respectively, ensuring bit-widths of 2b for DLUT
and 3b for NLUT to maintain sufficient precision. The final output Aq is obtained
applying Equation (5.8). where i ∈ [1, n].

SE = 1
((22b−1 − 1)− (−22b−1))/(n2h) (5.4)

ZE = 22b−1 − 1
SE

(5.5)

DLUT (X̂q) = clamp(round E

SE

),−22b−1, 22b−1 − 1) (5.6)

NLUT (X̂q) = clamp(round E

SESA

),−23b−1, 23b−1 − 1) (5.7)

Aq = NLUT (X̂q)(i)q
DLUT (X̂q(i))− ZE

(5.8)
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[51] and [51] Treat the softmax function as a piece-wise linear function. The
hardware architecture is shown in Figure 5.8 and it is taken from the work of
[55]. It consists of a locating unit to identify which interval the input belongs, an
N-entry LUT to store approximation parameters (ki, bi), a multiplier and an adder
to calculate the aproximated result. the locating unit is composed of N parallel
subtractors where N is the number of segments the piece-wise function has, the
sign bits resulting of each subtraction between the input and the maximum values
of each segment are then used to select (ki, bi), where ki is multiplied with the
input and bi added to the subsequent result producing the approximated softmax
output.

Figure 5.8: Piecewise Softmax architecture [55]

[42] copies the softmax architecture present in [56] where m Softmax components
are instantiated and work concurrently, being m the number of rows in the attention
matrix. A single softmax operator is shown in Figure 11. It can be divided into
three stages, search for the maximum value, calculate the exponential, and produce
output as shown in Figure 12. This implementation aims at restricting the range of
values with whom the exponential function needs to be computed, by offsetting all
inputs by the maximum value x̃ = x− xmax, the exp() operates only with negative
numbers, Consequently, negative numbers can be decomposed as x̃ = (− ln 2)z + p
where z = ⌊−x̃/ ln 2⌋ is a positive integer and p = x̃ + z ln 2 is a number restricted
to (− ln 2,0] [57], this implies that for the case of negative real numbers exp() can
be expressed as formula (5.9).

exp(x̃) = 2−zexp(p) = exp(p) >> z (5.9)

from (5.9) the range in which the exp() function will operate is the same as
p allowing to approximate it to the polynomial expression of form a(x + b)2 + c
shown in formula (5.10) and replacing it into (5.9) yields formula (5.11).
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Figure 5.9: Architecture of the softmax operator. from [56], from Algorithm 1
"q1 = b/Spe, q2 = c/aS2

pe, q3 = ln 2/Sec, and q4 = −1/q3c, where Se is the scaling
factor of the exponential computation input (relative to qe), Spe is the scaling factor
of the polynomial approximation input (relative to qpe) and a, b, c are the coefficient
of the second-order polynomial that approximates the function, i.e., a(x + b)2 + c.
Therefore, q1,2,3,4 can be computed at design time and provided as constant values".

L(p) = 0.3585(p + 1.353)2 + 0.344 ≈ exp(p) (5.10)

Finally Algorithm 1 summarizes the behaviour of the softmax unit in [42] by
taking into account the effects of quantization.

exp(x̃) = L(p) >> z (5.11)

[46] Presents a re-configurable and scalable softmax architecture that has two
adjustable parameters, P and Q, where P denotes the parallelism of the architecture
and Q represents the pipeline depth, as well as the output precision. The module
operation is as follows: P input data is streamed in parallel and used to calculate
the exponential function, which is approximated using a look up table and a first
order Taylor-approximation consisting of a multiplier and an adder. The exponent
outputs are temporarily stored in the data buffer and also used as input for the
accumulator that computes the denominator of the softmax function. Once the
accumulation is complete, the divider uses the exponent output and the accumulator
result to perform Q-level pipelined division where each stage consist of a subtractor
and a shifter, that grouped together generate P softmax function outputs with Q
bits of precision. As shown in Fig. 5.10, the scalable softmax module is composed
of three major parts: the exponent function, the accumulator, and the scalable
divider.

[33] merges the mask operation and the softmax function from the attention
function into a single module, this combination is expressed with formula (5.12).
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Algorithm 1 Integer-only Exponential and Softmax [57]
Require: q, S: quantized input and scaling factor
Ensure: qout, Sout: quantized output and scaling factor

1: function I-POLY(q, S) ▷ qS = x
2: qb ← ⌊b/S⌋
3: qc ← ⌊c/aS2⌋
4: Sout ← ⌊aS2⌋
5: qout ← (q + qb)2 + qc

6: return qout, Sout ▷ qoutSout ≈ a(x + b)2 + c
7: end function
8: function I-EXP(q, S) ▷ qS = x
9: a, b, c← 0.3585, 1.353, 0.344

10: qln 2 ← ⌊ln 2/S⌋
11: z ← ⌊−q/qln 2⌋
12: qp ← q + zqln 2 ▷ qpS = p
13: qL, SL ← I-POLY(qp, S) with a, b, c
14: qout, Sout ← qL ≫ z, SL

15: return qout, Sout ▷ qoutSout ≈ exp(x)
16: end function
17: function I-SOFTMAX(q, S) ▷ qS = x
18: q̃ ← q −max(q)
19: qexp, Sexp ← I-EXP(q̃, S)
20: qout, Sout ← qexp/sum(qexp), Sexp
21: return qout, Sout ▷ qoutSout ≈ Softmax(x)
22: end function
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Figure 5.10: Architecture of the scalable softmax unit [46].

Y (i, j) =


exp(X(i,j)

8 )q
j=1,Mask(i,j)=0 exp(X(i,j)

8 ) if Mask(i, j) = 0,

0 if Mask(i, j) = 1.
(5.12)

Apart from the merging of the softmax and mask operations another particular
technique employed is the application of the log sum-exp trick which reformulates
the softmax function as shown in 5.13, this reformulation takes away the division
operation and instead uses ln() operation.

Softmax(xi) = exp(xi − xmax)qdk
j=1 exp(xj − xmax)

= exp(xi − xmax − ln(
dkØ

j=1
exp(xj − xmax)))

(5.13)
The architecture of the accelerator is shown in Figure 5.11, this architecture

computes the soft max algorithm in four steps: the first one gets xmax, the second
computes qdk

j=1 exp(xj − xmax), the third steps the log function, and the fourth and
final computes computes the outputs. It is worth noting that the fixed 3-bit shift
at the beginning of the unit, corresponds to the application of the scale factor of
the attention mechanism that in this particular case is equal to eight.

To implement the ln() and the exp() function [33] replicates the works shown in
[58]. To implement the exponential function, first it is expressed with a base of two
as formula (5.14). Then the expression x log2 e is decomposed into an integer part
u = ⌊x log2 e⌋ and w ∈ (0,1] the remaining decimal part, replacing x log2 e with u
and w in (5.14) yields formula (5.15).

exp(x) = 2x log2 e (5.14)

exp(x) = 2u+w = 2u · 2w =
2w << u u > 0

2w >> (−u) u > 0
(5.15)
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Figure 5.11: Softmax implementation with each stage datapath highlighted [33].

with this transformation the exponential function only has to be applied in the
range of w, therefore it can be approximated with a LUT or with linear function,
in the case of [33] it uses the linear approximation 2w = w + d where d can be
two different values one is used for the exp() of individual inputs and the second
value is used for the accumulated result. The architecture implementing (5.15) the
decomposed base 2 exp() function (5.15) is shown in Figure 5.12. Notice that there
is another adder of ln F where F is the result of all the ln(qdk

j=1 exp(xj − xmax)),
which is used in the step four of [33] softmax architecture.

Figure 5.12: Base two exponential function architecture [58]

In the case of the ln() function the first reformulation implies that F is a value
greater than one and can be represented as F = 2w · k where w is a signed integer
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representing the first leading one index (index has negative value if it is below the
fixed point) and k is F shifted w times, making k ∈ [1,2). Replacing F in ln(F )
yields the formula (5.16). Given the interval of k log2 k can be approximated to
log2 k ≈ k − 1, which greatly simplifies the logic, applying this expression into
(5.16) gets a hardware friendly ln() approximation, as formula (5.17) shows. The
architecture of the approximated ln() of (5.17) is shown in Figure 5.13 where LOD
module obtains the leading one of F .

ln(F ) = ln 2 · log2 F = ln 2 · (w + log2 k) (5.16)

ln(F ) ≈ ln 2 · (k − 1 + w) (5.17)

Figure 5.13: Base two exponential natural logarithm architecture [58]

[44] implements an accelerator for the attention mechanism of a binary trans-
former, allowing for a simpler softmax module that exploits the fact that its outputs
can be only one or zero. this is done by rounding values greater than 0.5 to one
and otherwise setting them to zero, Since the sum of all QKT rows gets rounded
to 1, only the maximum value in a row may get a softmax result greater than 0.5
which then gets rounded to one. therefore the softmax unit only has to perform the
accumulation of the exponential results and obtaining the maximum value to then
determine if the result will be greater than 0.5 meaning that division is not needed.
For the exp() a Taylor series expansion is used. Figure 5.14 shows the architecture
employed to calculate the softmax function. It is divided into two stages: the first
one computes the the exponential accumulation and gets the index and value of the
maximum value, the second stage consist of comparing the sum and the maximum
multiplied by two and comparing them thus computing the output of the softmax
module.

[49] is another work that changes the behaviour of the softmax layer since it
implements a modified transformer called cosFormer [59], where the softmax layer
consist of divided each row element by the row-wise sum of elements, thus dropping
the exp() function altogether.
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Figure 5.14: Binary softmax architecture [44].

5.2.3 LayerNorm
Being the second non-linear function belonging to the Transformer, LayerNorm
function is challenging to implement since it’s inputs are data dependent between
each other. Apart from this the computation of the mean and variance,and also
the presence of square root makes this particular function resource hungry and not
straight forward to parallelized.

[41] switches the LayerNorm (1.5) layers with the BatchNorm layers, taking
away the need to compute E[x], Var[x], square root, and division, since E[x] and
V ar[x] become static parameters. The former statements are reflected by making
γ̂ = γ√

Var[x]+ϵ
and β̂ = β − E[x]√

Var[x]+ϵ
then replacing these expressions into (1.5)

yields formula (5.18) which greatly reduces the complexity of the Transformer
model when accelerating inference.

y = γ̂x + β̂ (5.18)

Given that [41] accelerates transformers using integer quantization, γ̂ and β̂ are
also quantized meaning this parameters have their own scale factor (Sγ̂ ; Sβ̂ = Sγ̂Sx)
and zero-point (Zγ̂, Zβ̂) respectively. Taking into account quantization in (5.18)
this expression becomes 5.19.

y ≈ Sγ̂ · Sx

Sy

· (γ̂ − Zγ̂)((xq − Zx) + β̂) + Zy (5.19)

[41] implements again the same structure as [56] ASIC, this time the only
transformation done to the operation is the usage of integer square root to keep all
the operations in the accelerator of the same domain. to compute integer square
root the accelerator performs an iterative algorithm base on newtons method and
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only requires integer arithmetic. This algorithm is computationally lightweight, as
it converges within at most four iterations for any INT32 inputs and each iteration
consists only of one integer division, one integer addition, and one bit-shifting
operation [57]. The rest of the the non-linear operations in LayerNorm such as
division and square root are straightforwardly computed with integer arithmetic.
The aforementioned algorithm is shown in Algorithm 2. The overall architecture of
the Layer norm module is displayed in Figure 5.15.

Algorithm 2 Integer-only Square Root [57]
Require: n: input integer
Ensure: Integer square root of n, i.e., ⌊

√
n⌋

1: function I-SQRT(n)
2: if n = 0 then
3: return 0
4: end if
5: Initialize x0 to 2⌈dBits(n)/2⌉ and i to 0
6: repeat
7: xi+1 ← ⌊(xi + ⌊n/xi⌋)/2⌋
8: if xi+1 ≥ xi then
9: return xi

10: else
11: i← i + 1
12: end if
13: until termination
14: end function

Figure 5.15: LayerNorm architecture with integer square root[56]

[33] goes into detail on how the accelerator executes the layer normalization
operation, first it operates by streaming the results from the attention module to
the layer norm module which operates concurrently for each row of the matrix. To
speed-up the computation the module performs three operations concurrently: the
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first operation consist of buffering the inputs for computing the LayerNorm outputs,
the second operation consist in accumulating the inputs therefore obtaining E[x],
and the third operation consist of accumulating the square value of the inputsq

x2/N . When this three operations are finished the variance can be computed
using the output of the latter two operations since V ar[x] =

ñq
x2/N − E[x]

and finally once the variance for each row is obtained the final step consist of
applying the formula (1.5) producing the output. Figure 5.16 shows the schedule
and architecture of its layer norm module.

Figure 5.16: LayerNorm architecture and schedule [33].

5.3 Discussion
Having presented the diverse approaches that the reviewed works use to accelerate
Transformer models, This chapter aims at summarizing the results found with
their implementation. We group the reviewed papers into three categories based
on how each consulted work compressed Transformer models. Table 5.1 groups the
accelerators that where designed having in mind quantization schemes, whereas
Table 5.2 the ones that employed pruning mechanism. It is apparent that FPGA-
based accelerators for Transformer model is a very active research field, it becomes
very hard to compare the performance of each model side by side. One of the reasons
of this is that there is no standard benchmark that evaluates the performance of
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each accelerator, leaving the designers to make their own ones. The second one
is that each accelerator is deployed in different platforms making it difficult to
determine if one accelerator is better to the other due to the fact that was tested
on a platform with more resources or with an overall better performance.

Reference Quantization scheme Model Latency (ms) Throughput (GOP/s) Target Year
[32] Activation INT16, parameters INT8 Multi Head Attention - 1800 Alveo U250 2022
[33] INT8 for parameters Multi Head Attention 0.106 - XCVU13P 2020
[34] INT8 for parameters Matrix-Vector multiplication - 4696 ZCU102 2024
[35] INT8 for parameters Multi Head Attention 0.494 623 Alveo U55C 2024
[36] INT8 for parameters and lower bit for Q and K Encoder - 3600 Alveo U280 2022
[37] Activation INT8, parameters INT8 Multi Head Attention 4.63 - XCVU13P 2022
[38] Activation INT8, parameters INT8 Multi Head Attention 23.79 - ZCU111 2021
[39] Activation INT16, Parameters INT8 Attention Head 14.97 10.91 VC709 2022
[40] employs uniform and non-uniform PoT quantization LayerNorm and Linear ops - 1970 ZCU102 2022
[42] Hessian row-wise to quantize between 1/8-bit Encoder 1.77 - ZCU102 2024
[43] Activations FP16, parameters INT4 Multi Head Attention 0.379 - VCU128 2024
[41] Uniform quantization INT8 Multi Head Attention 2.82 - XC7S15 2024
[51] Uniform quantization INT8 BERT 6.36 1223 Alveo U280 2024

Table 5.1: Comparison between Quantized or integer arithmetic accelerator

Reference Pruning scheme Model Latency (ms) Throughput (GOP/s) Target Year
[45] block-wise balanced pruning Multi Head Attention - 695 ZCU102 2024
[46] N : M sparsity method Transformer 0.15 1466 XCVU13P 2022
[47] column-based pruning Encoder 1.152 - Alveo U200 2021
[48] block-wise balanced pruning Encoder/Decoder 7.85 - Alveo U200 2021
[49] unstructured pruning cosFormer - 28200 VC709 2024
[50] dynamic token pruning and static weight pruning Vit 0.868 - Alveo U250 2024

Table 5.2: Comparison between accelerators that exploit sparsity patterns

5.4 Conclusions
In this work we presented an overview of artificial inteligence and machine learning,
then explained the general principles behind Transformer models and made emphasis
in the impact that this breakthrough had in the field, and why it is necessary to
accelerate transformer applications. We also showed the techniques employed to
reduce the size and complexity of the model, mainly by means of quantization
and pruning. Furthermore we presented the general structure of FPGAs with
their qualities and limitations, and proposed a design flow to accelerate machine
learning models. Finally we presented the state of the art FPGA accelerators for
transformers and explained the reasoning behind their architectural choices.
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