

If you do something and it turns out well enough,

you should go ahead and do something wonderful.

Steve Jobs

Se fai qualcosa e risulta abbastanza buona,

dovresti andare avanti a fare qualcosa di meraviglioso.

Steve Jobs

ii

Abstract

Data integrity in a processor is crucial to ensure that computations are processed
without errors, preserving the consistency and reliability of the results. This is es-
pecially important in applications such as automotive, aerospace, and other critical
sectors. Modern processor architectures have been shown to be vulnerable to fault
injection attacks, which involve injecting errors into the circuit using simultaneous
laser beams that target single or multiple data bits to compromise their integrity
and extract sensitive information. This method has proven effective over the past
decade through the observation of faulty behavior. Designing countermeasures
against fault injection attacks has become essential to ensure data integrity, par-
ticularly with the increasing use of open-source implementations such as RISC-V,
where the attacker has full knowledge of the architecture. This work proposes a
fault detection methodology called «permutation-based homomorphic tags». It
involves providing a redundant hardware implementation that computes arithmetic
and logic operations in a permuted domain associated with a specific key. The
permuted execution ensures that no faults have been injected into the processed
data by preventing attackers from consistently targeting the same bits, as the
permutation key is randomly changed. The outcome of this study is the hardware
implementation of a permuted Arithmetic Logic Unit (ALU) and a permuted mul-
tiplier , where two different techniques were explored: an iterative approach aimed
at low area consumption, and the 2-way Karatsuba algorithm for reducing latency.
The architecture was implemented targeting the 64-bit RISC-V CVA6 application
processor. The design was validated on Xilinx Artix-7-100T and Kintex-7 FPGAs
and it was estimated the cost of the countermeasure resulted in a 7.67x area
overhead and a 2.4x increase in the critical path for the ALU, a 0.31x area overhead
and a 1.44x increase in the critical path for the iterative multiplier, and a 32.3x
area overhead and an 8.81x increase in the critical path for the Karatsuba multiplier.

Keywords: data integrity, fault injection attacks, countermeasure, permutation-
based homomorphic tags, CVA6, RISC-V

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xii

1 Introduction 1
1.0.1 Thesis objectives and structure 4

2 Environment 5
2.1 SystemVerilog . 5
2.2 CVA6 . 6

2.2.1 RISC-V . 7

3 Homomorphic security tags and permutation 8
3.1 Definition of the countermeasure . 8
3.2 Permutation . 10
3.3 Depermutation . 12
3.4 Effectiveness countermeasure . 13

4 Permuted ALU 14
4.1 Elementary operations . 16

4.1.1 Extraction single bit . 16
4.1.2 Set single bit . 17

4.2 Boolean operations . 19
4.3 Addition operations . 20

4.3.1 Subtracter . 25
4.3.2 Comparator . 26

4.4 Shift operations . 28
4.4.1 Shift left by 1 . 28
4.4.2 Shift left by 2 . 30

vi

4.4.3 Shift left by a power of 2 . 32
4.4.4 Barrel shifter . 34

4.5 Count operations . 36
4.5.1 Population count . 37
4.5.2 Leading/trailing zeros count 38

5 Permuted multiplier 40
5.1 Iterative way . 40
5.2 2-way Karatsuba algorithm . 44

5.2.1 Pre-computation tree . 49
5.2.2 Layer of multiplication . 51
5.2.3 Reconstructive tree . 52

6 Validation process and analysis 56
6.1 Hardware interface . 57

6.1.1 Controller . 58
6.2 Software interface . 59
6.3 Results . 61

6.3.1 Adder and shifter comparison 61
6.3.2 ALU comparison . 62
6.3.3 Multiplier comparison . 63

7 Conclusion 66

Bibliography 68

vii

List of Tables

3.1 Fredkin gate truth table . 9

4.1 ALU operations supported by the CVA6 core 15
4.2 Comparison cases as function of zero bit(z) and carry-out bit(carry) 27

6.1 Area and critical path results for CLA, permuted CLA and permuted
shifter . 61

6.2 Area and critical path results for ALUs 62
6.3 Area and critical path results for CVA6 multiplier, permuted Iterative

multiplier and 2-way Karatsuba approach in three different run
strategies . 63

6.4 Possible optimizations permuted multiplier components 65

7.1 Final integration choices for the CVA6 core 66

viii

List of Figures

1.1 Block diagram representation of redundancy techniques: a) hardware
redundancy, b) temporal redundancy, c) information redundancy . . 2

1.2 Dual modular redundancy and error detection example. The Per-
mutation blocks(P) are stages of transformation of the operands for
the new alternative domain while the Depermutation block(P ≠1) is
a stage of reconstruction of the native result. 3

2.1 Placement countermeasure in CVA6 pipeline 7

3.1 Fredkin gate block . 9
3.2 Dichotomous tree for 32-bit permutation function 10
3.3 Permuted dichotomous tree example for 8-bit operand 11
3.4 Depermuted dichotomous tree example for 8-bit operand 12

4.1 Extraction block . 16
4.2 Extraction dichotomous tree example for 8-bit permuted operand . 17
4.3 Set block . 18
4.4 Set dichotomous tree example for 8-bit permuted operand 18
4.5 Permuted AND logic function example for 8-bit operand 19
4.6 Full-Adder block with sum(s) and carry-out(co) generation 20
4.7 Propagation problem for Ripple-Carry Adder connection typology . 21
4.8 Full-Adder block with generate(g) and propagate(p) generation . . . 21
4.9 Unrolling carry recurrence . 22
4.10 Propagate/generate block . 22
4.11 Dichotomous tree example for 8-bit CLA 23
4.12 Permuted propagate/generate block 24
4.13 Dichotomous tree example for 8-bit permuted CLA 24
4.14 Subtracter adaptation for native and permuted domain 25
4.15 Comparison examples for >, <, Ø, = 26
4.16 White block . 28
4.17 Permuted shift left by 1 example with White Block(WB) 29

ix

4.18 Permuted shift left by 2 example with White Block(WB) 30
4.19 White key block . 31
4.20 Black block . 31
4.21 Permuted shift left by 2 example with White Block(WB), Black

Block(BB) and White Key Block(WKB) 32
4.22 Black block key . 33
4.23 Permuted shift left by a power of 2 adaptation for 16-bit KD gener-

ation with White Block(WB) and Black Block Key(BBK). 34
4.24 Barrel shifter configuration with multiplexer selection 34
4.25 SIMD example for 16-bit permuted operand 35
4.26 Leading zeros example . 36
4.27 Trailing zeros example . 36
4.28 Population example . 36
4.29 Population counter example for 8-bit permuted operand 37
4.30 Leading/trailing zeros block . 38
4.31 Leading zeros counter example for 8-bit permuted operand 39

5.1 4-bit dot notation iterative approach 40
5.2 Permuted iterative multiplier architecture 42
5.3 128-bit permuted product management 43
5.4 Partial contribution deriving the 2-way Karatsuba algorithm 44
5.5 Trichotomous tree example for 16-bit permuted 2-way Karatsuba

multiplier . 47
5.6 Tree-like example structure for 16-bit parallelism reduction 48
5.7 Key-extraction example for 16-bit permuted operand 49
5.8 Carry decomposition formulas for m computation 50
5.9 Carry decomposition example for m computation with 8-bit operand 51
5.10 Key extension example from 4-bit operand to 8-bit 52
5.11 Key misalignment example with difference in the MSB position . . 53
5.12 Reorder example with difference in the MSB-1 position 54
5.13 Adaptation process from key1 to key2 example 55
5.14 Key misalignment example in m computation 55

6.1 Functional validation architecture 57
6.2 Functional Controller graph . 58

x

Acronyms

ALU
Arithmetic Logic Unit

ASIC
Application Specific Integrated Circuit

AXI
Advanced eXtensible Interface

BB
Black Block

BBK
Black Block Key

CA2
2’s Complement

CLA
Carry-Lookahead Adder

CPU
Central Processing Unit

CSA
Carry-Save Adders

CSR
Control and Status Register

xii

CU
Control Unit

DUT
Design Under Test

FA
Full-Adder

FPU
Floating Point Unit

FSM
Finite State Machine

FVA
Functional Validation Architecture

ISA
Instruction Set Architecture

LSB
Least Significant Bit

MMU
Memory Management Unit

MSB
Most Significant Bit

OCB
Ones Count Block

PGB
Propagate Generate Block

PMP
Physical Memory Protection

xiii

PPGB
Permuted Propagate Generate Block

RCA
Ripple-Carry Adder

SIMD
Single Instructions Multiple Data

UART
Universal Asynchronous Receiver-Transmitter

WB
White Block

WKB
White Key Block

xiv

Chapter 1

Introduction

In recent years, the way we interact with our surroundings has changed dramatically,
especially thanks to the rise of the Internet of Things.
These networked devices consist of sensors, which are managed by an increasing
number of processors running programs and exchanging data. While this represents
technological advancement, it also expands the attack surface. Among all applica-
tions, the automotive, aerospace, and defense industries, which require complete
reliability and security, are the most sensitive in this regard.
The reason for this concern lies in the fact that modern processor architectures have
been shown to be vulnerable to fault injection attacks, as noted in [1], [2], and
[3]. Fault injection involves introducing errors that can cause timing malfunctions
or logic errors in the circuit, enabling information exfiltration from the faulty
behavior and computation on false data. This means corrupting the contents of
circuit registers or control signals while the circuit is still operating, using multi
beams laser attack, which is a kind of attack that raises problems difficult to
manage among all the possibilities(electromagnetic injection, clock glitch, power
glitches,...).
The objectives of these injections can vary, with the most critical being the mainte-
nance of data integrity during program execution. Indeed, it is possible to bypass
security controls, such as permissions and authenticity checks, to gain complete
access to sensitive information from any running critical section.
The type of attack discussed here involves physical contact with the target system,
which, for example, can cause voltage or current changes, such as those that occur
in a bridging fault by introducing a short circuit.
Moreover, the rise of embedded systems in both the public and private sectors
has significantly expanded the vulnerability landscape. With the growing use of
open-source implementations like RISC-V, where attackers have full knowledge of
the architecture, the level of sensitivity becomes even higher. The adoption of these
implementations has proven necessary for many companies to reduce production

1

Introduction

costs, by benefiting from community support without internal big expenses in the
specific areas of validation and verification.
Consequently, designing countermeasures against fault injection attacks has be-
come essential to ensure data integrity. Existing countermeasures consist of both
correction and detection methods, but we propose focusing on the latter. While
correction techniques show good effectiveness, they come at a much higher cost
and are not as widely adopted.
Fault detection, in particular, consists of hardware or software techniques capable of
recognizing any unauthorized alterations, with the objective of maintaining system
functionality, data integrity, and security.
At the hardware level, systems can adopt three mechanisms as proposed by [4]:

• Hardware redundancy involves duplicating the circuit section to be pro-
tected in order to compare differences with the result obtained. It is the most
straightforward and simplest to implement, but it has the highest cost in
terms of area, as it doubles the resource usage. It can also be applied using a
multiple modular redundancy approach, with costs proportional to the number
of redundancies.

• Temporal redundancy involves repeating operations either in reverse or
through duplication, so that the result of the computation can be compared
with the previous or duplicated value. Among the three methods, it has the
highest cost in execution time, as the same operation is performed twice.

• Information redundancy involves adding state information, such as parity
bits or checksum. Of the three methods, it is the most efficient in terms
of resource overhead, as it only extends the parallelism of the data being
transmitted.

Figure 1.1: Block diagram representation of redundancy techniques: a) hardware
redundancy, b) temporal redundancy, c) information redundancy

2

Introduction

The technique discussed in this study is the dual modular hardware redundancy,
which duplicates the path of interest, but this alone is not sufficient. The ability to
target multiple bits simultaneously has made simple hardware replication ineffective
and more vulnerable to injections. Therefore, an additional transformation of the
data is necessary to enhance the system and make it more difficult for the attacker
to select bits in the detection branch.
This work proposes a fault detection methodology called «permutation-based
homomorphic tags», which provides a redundant hardware implementation that
performs arithmetic and logic operations, in a permuted domain associated with a
specific key that is randomly changed. The main goal is to preserve data integrity
by verifying the correctness of the results.
Given that we aim to maintain data integrity in a processor, the choice of per-
mutation is not trivial: it is required a parallel domain to the original one that
operates at high frequencies and within the same clock cycle. The primary focus
is to identify the best transformation for logical and arithmetic operations, and
only then choose the replication area. Thus, the design, implementation, and
adaptation of arithmetic-logic components, capable of handling the generated tags,
are developed.
In our case, these architectural considerations were implemented targeting the
64-bit RISC-V CVA6 application core.

Figure 1.2: Dual modular redundancy and error detection example. The Permuta-
tion blocks(P) are stages of transformation of the operands for the new alternative
domain while the Depermutation block(P ≠1) is a stage of reconstruction of the
native result.

3

Introduction

1.0.1 Thesis objectives and structure
The objective of the internship is to develop a permuted Arithmetic Logic Unit(ALU)
for a 64-bit core target, precisely the CVA6 application core of the openHW Group,
that will be used by the team for Application Specific Integrated Circuit(ASIC)
integration.
Here it is necessary to support all the extensions of the core according to the
RISC-V Instruction Set Architecture(ISA), and then it is necessary to validate and
verify all the modules developed in SystemVerilog.
After this introductory Chapter 1, the thesis is structured as follows:

• Chapter 2: presents a description of the countermeasure development en-
vironment. We discuss the language adopted in Section 2.1 and the CVA6
application processor, as the target core, along with its RISC-V ISA in Section
2.2.

• Chapter 3: introduces the permutation-based homomorphic tags countermea-
sure in Section 3.1, including the definition of the new representation domain
and its properties.

• Chapter 4: presents the implementation of the arithmetic-logic components
required for the realization of the redundant ALU. We start with two elemen-
tary operations, such as single-bit extraction and setting values, in Sections
4.1.1 and 4.1.2. We then address Boolean operations in Section 4.2, the
addition operation and its adaptations in Section 4.3, the shift operation in
Section 4.4, and count operations in Section 4.5.

• Chapter 5: presents the implementation of a permuted multiplier using an
iterative approach in Section 5.1 and a 2-way Karatsuba approach in Section
5.2.

• Chapter 6: discusses the validation phase, providing a description of the
validation architecture in Sections 6.1 and 6.2, followed by a discussion of the
results obtained.

• Chapter 7: summarizes the conclusions of this thesis, including a brief
overview of the decisions made regarding countermeasure integration.

4

Chapter 2

Environment

The topic of this thesis project is based on a previous research conducted by G.
Leplus, O. Savry, L. Bossuet and M. Panigati, at CEA-Leti (Grenoble, France),
which developed the theory of elementary components of countermeasures as noted
in [5], [6] and [7].
Moreover the work is characterized by a dual aim: first to extend the existing adder
and shifter architectures from an initial 32-bit parallelism to 64-bit parallelism;
second to implement from scratch the «permuted ALU» consistent the one of
the CVA6, aiming to handle all its extensions, as well as to explore a potential
architecture for the multiplier, envisioned as a standalone component.
In this chapter it is introduced the hardware description language used, as pro-
posed by the [8], [9], [10] articles, and the target core for the integration of the
countermeasure as noted in [11] and [12].

2.1 SystemVerilog
SystemVerilog is the hardware description language used for countermeasure devel-
opment.
It is a language that was standardized by the IEEE around 2005 with the primary
goal of extending Verilog and combining VHDL to design, simulate, test and imple-
ment electronic systems.
Additionally to simplify the description of the hardware behavior from a syntactic
point of view, it incorporates features of the C++ programming language, which
makes easier the simulation and verification phases through a more object-oriented
approach.

5

Environment

Its main features include:

1. Syntax extensions and compatibility: maintains compatibility with the
previous language, so a project written in Verilog is still valid in SystemVerilog,
despite the fact that the latter introduces new extensions that make writing
code clearer and more fluent. For example, it introduces new data types such
as logic in place of wire and reg without creating ambiguity and destitution
between signals.

2. Advanced data types and interconnections: introduces from the software
world the use of data types such as enum and struct that makes easier the
reading of the code

3. Classes and Assertions: when writing Testbench, it allows an object-
oriented description that can greatly simplify the code; assertions allow us to
visualise that certain conditions during the test phase are fulfilled.

According to these features and the compatibility of our target core language,
SystemVerilog is a versatile and ideal language for the development of our coun-
termeasure where before one design language and another for verification were
needed.

2.2 CVA6
CVA6 is a configurable 32- or 64-bit single-issue RISC-V application core developed
by the OpenHW group for ASIC or FPGA implementations. Specifically, it is the
name of a GitHub repository in SystemVerilog, where the CV prefix identifies it
as a member of the CORE-V family, following th RISC-V specification, and the
A6 indicates that it is an application class processor with a six-stage execution
pipeline.
In terms of on-board processor functionality, the CVA6 is characterized by many
hardware components: Control and Status Register(CSR), Advanced eXtensible
Interface(AXI), L1 write-through or write-back configurable cache, optional Floating
Point Unit(FPU), optional Memory Management Unit(MMU), optional Physical
Memory Protection(PMP) and others.
However, our focus for implementing a countermeasure is limited to the ALU.
The countermeasure in fact wants to act where the integrity of the data could be
endangered, and therefore in correspondence with computation processes.
It is possible to conclude thus that the area of our competence it is mostly the
Execution Stage of the pipeline, where the data manipulation takes place, and a
small percentage of the general core pipeline where the permutation domain is
propagated. Figure 2.1 shows this area zoomed in.

6

https://github.com/openhwgroup/cva6

Environment

2.2.1 RISC-V
The CORE-V family is a member of a group of processors following the RISC-V
specification.
It is a computer architecture started in 2021 by the Berkeley University, in order
to propose an open and flexible ISA in respect Intel or Arm ISAs that, for example,
are not open; «V» indicates the fifth generation of the project.
The ISA includes some faculties, through extensions, to provide more functionality:
floating point(F), multiplication and division(M), atomic(A), compressed(C), or
other manipulation. All this makes the ISA generic in nature, giving the possibility
of customising its CPU according to the needs of the application.
In general following this approach can be observed three different features that
makes this kind of implementation different:

⌅ Open Source: RISC-V is an open-source architecture, which means that anyone
can use, modify and implement the specification without paying royalties.

⌅ Modularity: RISC-V is modularly designed, allowing developers to select
specific functionalities

⌅ Standardisation: RISC-V is supported by a foundation that promotes stan-
dardisation between implementations.

Figure 2.1: Placement countermeasure in CVA6 pipeline
Source: image taken from the CVA6 GitHub [12]

7

Chapter 3

Homomorphic security tags
and permutation

The alternative domain plays a fundamental role in the countermeasure, as the
main challenge is developing networks capable of delivering authentic results, where
here the concept of authenticity refers to maintaining a direct connection to the
original data. Even more crucial is ensuring excellent performance at the processor
level while leaving for a potential verification stage.
This approach forms the basis for the countermeasure developed, through the
definition of homomorphism.

3.1 Definition of the countermeasure
A homomorphism is

"a map between two algebraic structures of the same type that preserves
the operations of the structures"

Wikipedia, 2020, [13]

In other words given an operation and two operands u and v we assert that „ is a
homomorphism if the following equality holds:

„(u ú v) = „(u) · „(v) (3.1)

This means that calculating the operation «ú» on u and v and applying the function
„ should generate the same result as applying „ on the two operands and only
after performing the operation «·».

8

https://it.wikipedia.org/wiki/Omomorfismo

Homomorphic security tags and permutation

Now if the intent is to create an alternative domain, while maintaining a con-
nection through a verification stage, can be observed well how the transformation
sought is convenient to be homomorphic. In fact, the complexity would come in
looking, for each logical or arithmetic operation, the respective permuted version
that would enforce the equality of the Formula 3.1.
For us, equality means that performing the operation «ú» on u and v, and then
converting to the new domain, must generate the same result as the operation
«·» on the authenticity tags. Consequently, considering that we are working with
binary numbers, the choice of the function „ fell on the transposition function, i.e

"the modification of the position of certain elements within an ordered
object"

Treccani, 2020, [14]

The function constituting the countermeasure, however, is not just about transpo-
sition. In fact, it is necessary a function over which it is possible to have decision
power in reversing the ordering.
In this way can be constructed the «permutation» function, an association between
a transposition and a key with the power to decide whether to make an inversion
rather than an identity. Permute will consist of dividing an input data into blocks
of bits and rotate them according to the associated control signal.
In searching for an elementary block capable of emulating the behavior just de-
scribed, it is found a cell called «Fredkin gate», as in Figure 3.1, containing three
inputs: two input data X1 and X2 and a selection signal Sel. According to its
truth Table 3.1, swap is performed when the control signal is worth 1 and vice
versa identity when the control signal is worth 0.

Figure 3.1: Fredkin gate block

Sel X1 X2 Y 1 Y 2
0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 1
1 0 0 0 0
1 0 1 1 0
1 1 0 0 1
1 1 1 1 1

Table 3.1: Fredkin gate truth table

Using this cell, as an elementary module, on a multilevel structure we are able to
define the permutation.

9

https://www.treccani.it/vocabolario/trasposizione/

Homomorphic security tags and permutation

3.2 Permutation
The permutation function is a dichotomous tree in which each node consists of a
Fredkin gate. The idea of the tree structure is shown in Figure 3.2 in which can be
observed the organization on multiple levels for a 32-bit data and how each block
on each section is on the power of 2, consecutive and not overlapping.
The application of permutation begins dividing the input into two halves, with
the Most Significant Bit(MSB) of the key serving as the control signal. Then, by
progressing to the least significant bits, the same principle of division into two
halves is applied to each sub-block, until the lowest level of the tree is reached,
consisting of single-bit section.
It means that if it is taken a 64-bit data the first division would be in two 32-bit
blocks, the second division would be in four 16-bit blocks and so on up to sixty-
four 1-bit blocks. In the transition from one stage to the next, an output signal
is generated at the initial level of parallelism, which becomes the input to the
subsequent stage. This process occurs over a depth of log2(n), where n represents
the width of the input data.

Figure 3.2: Dichotomous tree for 32-bit permutation function
Source: image taken from the [5] article

Constructing the permutation, it is used the notation Keyi
j to refer to a single bit

of the key: i represents the size of the subsection on which to make the decision;
j represents the position index of the key dedicated to that specific size. For
example, the Key2

[7:0] notation represent the eight bits related to swap control for
2-bit groups.
To generalize now for a generic width of the data is fundamental to understand how

10

Homomorphic security tags and permutation

can be determined the size of the permutation key. Starting from the last Figure
3.2 and applying the function from the MSB toward the Least Significant Bit(LSB),
can be seen how for 16-bit groups only one bit is needed, for 8-bit groups two bits
are needed until sixteen bits for 1-bit groups. It means that key is characterized by
31 bits of width in correspondence to a 32-bit data.
In this way, the iterative application and the use of power-of-2 blocks allow to
conclude that the dimension must be n - 1 bits for data of width n. This property
is illustrated in the example of Figure 3.3, which shows an 8-bit data and its
corresponding 7-bit key with the notation k = k4

0k2
1k2

0k1
3k1

2k1
1k1

0.

Figure 3.3: Permuted dichotomous tree example for 8-bit operand

Here according to the theory presented, an ascending key association and dichoto-
mous tree with depth log2(n = 8) = 3 are observed, where the distinction into blue
and red blocks facilitates the idea of division for each sub-section into two halves,
on which to take a swap or identity decision.

11

Homomorphic security tags and permutation

3.3 Depermutation

Complementary to the permutation function it is needed the inverse operation to
bring back the native domain, presumably in a symmetric way with respect to the
previous one.
The new function in this case is called «depermutation» and creates the opposite
association of the same key, from the LSB toward the MSB, generating an inverted
alternation of swap and identity. The structure is still a dichotomous tree with
depth log2(n = 8) = 3 just flipped, as Figure 3.4 reports.

Figure 3.4: Depermuted dichotomous tree example for 8-bit operand

Here, making a comparison with the permutation Figure 3.3, can be easily observed
the similarity with a symmetric application of the function where the distinction into
blue and red blocks, once again, facilitates the idea of division for each sub-section
into two halves, on which to take a swap or identity decision.

12

Homomorphic security tags and permutation

3.4 Effectiveness countermeasure
The proposed theory explains a technique capable of changing the representation
domain, by being able to easily recreate native data when needed, where the
homomorphic choice is the main aspect, because allows the insertion of a comparison
stage to detect a possible attack.
However, it still did not answer the most important question:

Why would the proposed countermeasure work?

The fault injection technique uses simultaneous laser beams that target single or
multiple data bits to compromise their integrity and extract sensitive information.
Our aim is to create redundant hardware that computes arithmetic and logic
operations in a permuted domain associated with a specific key, where the permuted
execution ensures that no faults have been injected, into the processed data, by
preventing attackers from consistently targeting the same bits, as the permutation
key is randomly changed.
The last aspect of randomness corresponds to the crucial point because it does not
allow predictions about the placement of the new weights and thus not predict
the operations. In fact, as the permutation example in Figure 3.3 shows, the new
representation will be directly dependent on each individual bit of the key: a change
of a single bit could result in large variations in the representation.
It is still necessary that each network, developed in accordance with the technique,
makes no reference to the native representation neither uses a static arrangement
of weights. This means to have an internal propagation of bits that differs with
each new key generated; in this way, the circuit will also possess their own intrinsic
and completely random computation and will guarantee not predictable execution.
So far then, the new domain transformation technique has been presented; it must
now concern with understanding how the different recurring operations can be
handled.
If, for example, we were to refer to the sum operation, a random sorting of the
new permuted data would not allow us to solve the calculation in the classical
sense, but would require the search for dedicated hardware. Similarly, the same
may apply to those simpler operations such as extraction and set that are normally
done through indexing.

13

Chapter 4

Permuted ALU

The ALU is a fundamental component within a Central Processing Unit(CPU),
responsible for performing arithmetic and logical operations. It represents the heart
of the computational process, as it handles basic mathematical operations such as
addition and subtraction and logical operations such as shift, AND, OR, NOT.
Each operation performed by the ALU is supervised by a Control Unit(CU), that
decides which operation is to be performed according to the instructions, and which
data to select from the many registers present.
The countermeasure discussed above is applied here, where the task is to adapt
the elementary components to create a new redundant path, thereby forming a
«permuted ALU». By recalling that CVA6 is the target core, can be observed that
the ALU can be divided into four sections:

⌅ Logic circuits: performs logic operations

⌅ Addition: performs the sums and count operations

⌅ Shift: performs shift operations

⌅ Comparison: compare two operands

By adapting these four sections and their components, we are able to develop all
63 planned operations as listed in Table 4.1. To achieve this, two elementary opera-
tions of single-bit extraction and set are analysed first, and only after the Boolean
operations, an adder, a shifter and finally some networks for count operations. The
latter, despite containing the adder, are characterised by dedicated structures in
order to handle permutation.

14

Permuted ALU

Table 4.1: ALU operations supported by the CVA6 core
Source: definitions from the [15] book and the [16] manual

15

Permuted ALU

4.1 Elementary operations
Elementary operations are understood to be extractions and sets of individual bits
usually provided for specific operations. An extraction for example is fundamental
in the case of arithmetic shift, for which it is essential to observe and replicate the
sign bit; a set for example is fundamental for creating masks or activating status
flags.

4.1.1 Extraction single bit
The extraction of a bit is normally achieved by a selection of the specific bit and
so, taking the example of the sign extension, by simple indexing to the left most
position.
In the case of a permuted operand, remembering that we are dealing with data
whose weights are out of phase with the native representation, this is no longer
possible. In general, for any given position, it is required to find a dedicated
structure that brings us back to the bit of the desired weight by comparing the
requested position with the corresponding bit of the key. A shape to fulfil this
behavior corresponds to the elementary block shown in Figure 4.1.

Figure 4.1: Extraction block
Source: image taken from the [6] article

The cell receives as input two data bits (a and b), a key bit (k) and a position
bit (p). If k and p are different it propagates the input a, if k and p are equal it
propagates the input b.
Obviously the block solves for only one decision bit; it is necessary to develop a
generic network on n bits resulting from the connection of several levels as shown
in Figure 4.2 for an 8-bit case and a key with the notation k = k4

0k2
1k2

0k1
3k1

2k1
1k1

0.
As can be seen, the architecture has a similar shape to the one of the depermutation

16

Permuted ALU

in Figure 3.4, i.e. a descending dichotomous tree. This occurs when it is attempted
to apply the key during the reconstruction phase, assigning it from the least
significant index to the most significant one.
Also in this case the depth of the tree it is equal to log2(n = 8)=3 corresponding to
the width of the position signal(p2p1p0). Each level it is thus linked to each bit of
this signal and it allows to make a comparison with the corresponding key section.

Figure 4.2: Extraction dichotomous tree example for 8-bit permuted operand
Source: image taken from the [6] article

4.1.2 Set single bit

A bit set is normally achieved by indexing the required specific bit and by the
application of a logical function rather than a direct assignment. It means that
the access is usually realised by indexing the desired weight followed by a specific
operation.
In the case of a permuted operand, as with extraction, remembering that we are
dealing with data whose weights are out of phase with the native representation,
this is no longer possible. In general, for any given position, it is required to
find a dedicated structure that brings us back to the bit of the desired weight, by
comparing the requested position with the corresponding bit of the key.
A shape to satisfy this behavior corresponds to the elementary block shown in
Figure 4.3.

17

Permuted ALU

Figure 4.3: Set block
Source: image taken from the [6] article

The cell receives as input an activation bit (activate), a key bit (k) and a position
bit (p). If k and p are different it propagates the input activate to the left, if k and
p are the same it propagates the input activate to the right.
We thus observe that the activate input controls the activation of the entire network
because if it were equal to 0 the network would never encounter a stimulus that
results in an all-zero output.
Obviously, the block solves for only one decision bit; it is necessary to develop a
generic network on n bits resulting from the linking of several levels as shown in
Figure 4.4 for an 8-bit case and a key with the notation k = k4

0k2
1k2

0k1
3k1

2k1
1k1

0.

Figure 4.4: Set dichotomous tree example for 8-bit permuted operand
Source: image taken from the [6] article

18

Permuted ALU

As can be seen, the architecture has a similar shape to that of the permutation in
Figure 3.3, i.e. an ascending dichotomous tree in a complementary way in respect
the previous one of extraction.
This happens because, if the extraction involves starting from a data vector and
arriving at a 1-bit output, the set performs the reverse operation by propagating
a 1-bit input to the desired position accordingly to the permutation. There is in
a such way an assignment of the key from the most significant index to the least
significant one.
The output of this architecture it is a signal with the same parallelism as the data,
where the idea is to render it as a mask. Indeed the bit with the logical value 1 it
is aligned to the corresponding weight, allowing to apply some function in the new
permuted domain.
Also in this case the depth of the tree it is equal to log2(n = 8)=3 corresponding
to the width of the position signal(p2p1p0). Each level is thus linked to each bit of
this signal and allows to make a comparison with the corresponding key section.

4.2 Boolean operations

The first class of operations to observe are the logical functions: ANDL, ANDN, ORL,
ORN, XORL, XNOR.
In this case, since these are bit-wise operations, the concept of permutation becomes
essential, inducing the need to introduce a simple permutation stage. In fact, the
two operands involved, apart from the permutation, possess a weight alignment
that allows the direct application of the logic function.
Figure 4.5 shows the example of the logical AND function, where can be seen how
a dedicated network is not necessary.

Figure 4.5: Permuted AND logic function example for 8-bit operand

19

Permuted ALU

4.3 Addition operations
The second elementary computation is the addition. Through an adder in fact we
are able to manage various arithmetic operations: ADD, ADDW, ADDUW, SH1ADD,
SH2ADD, SH3ADD, SH1ADDUW, SH2ADDUW, SH3ADDUW.
As for elementary and Boolean operations discussed in the previous sections, it
is needed to evaluate whether to develop a basic architecture capable of support
the new domain of the countermeasure. One initial idea could be the use of the
classical adders: the Ripple-Carry Adder(RCA).
The architecture begins by analysing the binary addition generally described as a
2-input block that outputs the sum bit and the carry bit. However, generalizing
over a multiple number of bits leads to connect the carry of the previous block as the
input of the next one, resulting in a new 3-input cell called the «Full-Adder»(FA).
About this latter, given two data inputs ai and bi and a third input cin of carry,
can be derived the respective 3-input truth table and the output logical functions
as shown in Figure 4.6.

Figure 4.6: Full-Adder block with sum(s) and carry-out(co) generation

The architecture of an RCA consists of a chain of FAs and represents the simplest
type that can be realized. However, the carry signal propagation between each
block highlights the weakest point of this structure: the linear connection of the
architecture, that first of all creates a significant critical path for high parallelism,
complicates adaptation to the permuted domain.
The necessary propagation shown in Figure 4.7, due to the rearrangement introduced
by the permutation function, is difficult to adapt from the first input carry as it is
not known which block to attach it to.
Requiring too complex networks we are forced to shift our attention to different
architectures. Trying to find a better solution among those in the mathematical
literature, in the Carry-Lookahead Adder(CLA) configuration several affinities with
the permutation are met.

20

Permuted ALU

Figure 4.7: Propagation problem for Ripple-Carry Adder connection typology

The starting point for this design is the generation of the signals propagate(p)
and generate(g) through which the carry-out can be re-expressed as their function.
These are internal signals from inputs generated that given two bits of the same
operand weight, such as ai and bi, correspond to their XOR and AND respectively.
Accordingly their definitions are generated through an initial layer of FAs, that
have been redefined without a carry-out, as shown in Figure 4.8.

Figure 4.8: Full-Adder block with generate(g) and propagate(p) generation

To derive the architecture the crucial step lies in observing that the carry-out(index
i) of the adder can be re-expressed as a function of the last propagate and generate

at the index i-1:

21

Permuted ALU

Continuing, now the carry recurrence at the index i-1 can be unrolled founding
directly a function of the input carry and of p and g terms derived from input
operands as developed in Figure 4.9.
For simplicity of the propagation concept, we will now refer, in the derived tree
structure, to left and right signals as shown in the following circuit solutions.

Figure 4.9: Unrolling carry recurrence
Source: image taken from the [17] article

The latter steps are the most important because if the substitution appears to be
very complex, the different g and p signals could be combined with what is called
«propagate/generate block»(PGB), reported in Figure 4.10.
It is a combination structure that receives a carry for a specific position, along
with two pairs generated and propagated from the left and right. It manages their
propagation through output signals, which are a combination of them to be used
as interconnections for further PGBs, along with two output carries.
The output propagate term is set to 1 if both those of the input pair are worth 1;
the generate term is set to 1 if the g from the left is worth 1 or if the p from the
left and the g from the right are both worth 1.

Figure 4.10: Propagate/generate block

22

Permuted ALU

With these observations, these last two blocks of Figures 4.8 and 4.10 give the
possibility of depicting the final structure of the CLA, as the Figure 4.11 with an
8-bit case, where the several affinities mentioned come to the eye when observing a
permutation-like configuration.
It is in fact the same dichotomous tree, with a depth equal to log2(n = 8)=3,
starting from the bottom where the carry c0 corresponds to cin.

Figure 4.11: Dichotomous tree example for 8-bit CLA
Source: image derived from the [6] article

The adder works through the operands that enter at the top to calculate g and
p signals, they flow to the bottom to calculate the intermediate carries from the
input one and then data flow back up to calculate the sum.
This kind of propagation optimizes the design for the permutation by demonstrating
that a carry does not need to be used simultaneously with its generation. In the
final step of back-propagation using FAs, all carries arrive in the same moment,
allowing the sum to be computed.
Starting from the input carry, the adaptation object becomes the propagation to
the right weight of the internal carries by inserting the key as a decisional signal in
the transmission directions.
In this way from the PBG can be derived the «permuted propagate/generate

block»(PPGB), as shown in Figure 4.12, where the outputs correspond to a mix
between the left and right ones depending on the key that equal to 0 would return
to the native domain.

23

Permuted ALU

Figure 4.12: Permuted propagate/generate block

This last block is the only point required to find the final permuted architecture,
analogous to the previous Figure 4.11, where each PPGB, with an input key bit,
allows to correctly handle an operand with a random weight arrangement.
The final configuration of the adder is thus represented in Figure 4.13, once again for
the 8-bit case and a key notation k = k4

0k2
1k2

0k1
3k1

2k1
1k1

0, with a visible correspondence
of the weights of the input bits with that of each internal carry resulting from the
back-propagation.

Figure 4.13: Dichotomous tree example for 8-bit permuted CLA
Source: image derived from the [6] article

24

Permuted ALU

4.3.1 Subtracter
Algebraic operations do not end with addition but also include subtraction opera-
tions such as SUB and SUBW.
While in a digital circuit addition is relatively simple to implement, due to the
first configuration of the RCA, subtraction is more complicated, mainly due to the
calculation of credits between the various bits.
This is why it is generally exploited the property whereby subtracting a number is
equivalent to adding its complement with the entry of the 2’s complement(CA2), a
binary numerical representation for negative numbers. It is obtained by inverting
all the bits of the operand and then adding 1, but the crucial aspect lies in the
observation that if a number is added to its CA2, the result it is 0.
This is a fundamental property because it means that subtracting a number b from
a number a is equivalent to add the CA2 of b to a providing a method to transform
a subtracter into an adder through the same logical units, which can potentially be
shared as a single component.
The steps to follow become two:

⌅ reverse the bits of b

⌅ add 1 to the negated result

Thus, using any summing machine as a basis, it is possible to integrate these two
steps through a logical NOT(¶ its notation), before the connection of the operand
b, and an input carry of 1.
The final extension required is the adaptation for permuted operands, as shown in
Figure 4.14, where no further modifications are needed. In fact, the same changes
applied in the native domain can be computed with the permuted adder, given
that the logical operations do not require dedicated structures, and the +1 can be
seamlessly integrated as input carry.

Figure 4.14: Subtracter adaptation for native and permuted domain
Source: image derived from the [6] article

25

Permuted ALU

4.3.2 Comparator
The architecture of an ALU often has instructions for comparing operands in
order to implement set and branch instructions. This means, for example, taking
decisions after checking whether the first operand a is greater than, less than or
equal to the second operand b.
A unit of this type in our case would allow to cover several operations: MAX, MAXU,
MIN, MINU, LTS, LTU, SLTS, SLTU, GES, GEU, EQ, EN.
In this way the goal becomes to build the unit where, fortunately, the previ-
ously defined logic can be reused. In particular, it is only needed the subtracter
configuration with three additional output signals on which to take a decision:

⌅ zero bit

⌅ less unsigned bit

⌅ less signed bit

Sometimes in the case of the CVA6 the result may not be the primary interest.
For operations such as EQ, LTS... it is directly the single bit of zero or less that
concerns us, which is why the CVA6 ALU has a dual output: the «result» of 64-bit
and the «branch» of 1-bit.
An equality comparator, and therefore the unit for controlling the zero bit signal,
can be easily computed using a XNOR function between the two operands that, as
a logical function, does not have problems of adaptation. In this way, computing
another AND with all the bits of the result the zero bit it is set to 0, indicating
different inputs, otherwise, the zero bit it is set to 1, meaning the operands are
equal and the condition is satisfied.
A relational comparator, and therefore the unit for controlling the less bit signal,
must necessary be a subtracter. From here, having already dealt with its adaptation
in the permuted domain, can be taken the previous configuration of the adder and
insert some considerations from the obtained result.
Starting with the unsigned case, four examples are shown in Figure 4.15, allowing
us to observe certain properties, particularly highlighting the values of the zero
and carry bits.

Figure 4.15: Comparison examples for >, <, Ø, =

26

Permuted ALU

The first example in the case of A = 5 and B = 2 shows how the difference of the
two operands A-B = 3 returns carry bits equal to 1 and zero bits equal to 0. The
second example in the case of A = 1 and B = 3 shows how the difference of the
two operands A-B = -2 returns carry bit equal to 0 and zero bit equal to 0.
The third example similarly with A-B = 0 returns carry equal to 0 and zero bit
equal to 1 and the fourth example with A-B = 1 returns 0 and 1 respectively.
Each of these examples illustrates that a decision can be made directly as a function
of the carry and zero bits, accordingly with the request, and this is the main result
because trying to generalise with any comparison request we are able to construct
a unique logical decision function, to fix the less signal, deriving the Table 4.2.

Case Logical function
A > B carry · z
A Ø B carry
A < B carry
A Æ B carry + z
A = B z
A /= B z

Table 4.2: Comparison cases as function of zero bit(z) and carry-out bit(carry)

It was not the only case because in order to complete the unit of comparison there
is the need to deal with the signed numbers that at the moment are uncovered.
However luckily, in this case another additional dedicated structure is not necessary
and a few expedients are sufficient. Precisely there are two possible scenarios:

⌅ when the signs of the operands are the same, the previous Table 4.2 is still
valid and the same subtracter configuration can be used.

⌅ when the signs of the operands are different it is even easier to determine the
comparison. In fact the subtracter is not longer necessary because can be
compared directly the signs of the inputs. For example, if the operands have
different signs, it could be possible to conclude that they are different or that
the operand with sign equal to 0, i.e. a positive integer, is the greater.

To conclude for this last signed case, several shortcuts can be implemented using
simple 2-bit logic gates, thereby conserving resources.
But as a final point, it is important to note that when interacting with permuted
operands, if no further adjustments are needed for the unsigned case, as the
permuted subtracter configuration is already complete, a final adaptation is required
for the signed case: due to the random order of the bits, it is not possible to directly
access the MSB and we are obliged to insert the dedicated network of extraction
from Section 4.1.1.

27

Permuted ALU

4.4 Shift operations
The third fundamental computation is the shift. Through a shifter in fact we
are able to manage various logic operations: SLL, SRL, SRA, SLLW, SRLW, SRAW,
SH1ADD, SH2ADD, SH3ADD, SH1ADDUW, SH2ADDUW, SH3ADDUW, ROL, ROR, RORI,
ROLW, RORW, RORIW, REV8, SLLIUW.
The manipulation refers to a bit-wise logical function that involves moving the bits
of a number either to the right or to the left by a specific amount. The vacant
positions created during this operation are filled with zeros, ones, or bits from the
same operand, depending on the operation required.
Now to fulfil all these possible instructions and arrive at a permuted Barrel Shifter
architecture, i.e. a shifter conformed to any amount and mode, it is necessary to
go through four steps:

1. Shift left by 1

2. Shift left by 2

3. Shift left by a power of 2

4. Barrel Shifter
Of the various operations, we rely on the logical shift to the left as the most classic
model and from which the others can be derived by means of some adaptation.

4.4.1 Shift left by 1
The shift left by 1 is the simplest case of all, being of one position only, that finds
its starting point in a block called «White block»(WB) shown in Figure 4.16. The
component has 3 data inputs a,b,c and a control input k, correspondent with the
permutation key, that has the ability to recreate a rotation in its function.

Figure 4.16: White block

28

Permuted ALU

The final structure, that can be derived, is a multi-level tree that provides the
mean of rotation in a propagation of the input signals towards an upper level or a
lower level. First of all a decision is made between the inputs a and b, on which to
propagate upwards, via the signal propagate(p) and the permutation key(k): if k =
0 the input a is brought out on the left side, together with c on the right side and
b in the propagate position; if k = 1 the input b is brought out on the right side,
together with c on the left side and a in the propagate position.
The previously mentioned rotation concept became visible trying to construct the
tree architecture where can be observed the third input c coming from an upper
level, as shown in Figure 4.17 for a 4-bit case and the permuted data a0a1a3a2.

Figure 4.17: Permuted shift left by 1 example with White Block(WB)
Source: image derived from the [6] article

The final architecture is dichotomous as for permutation, with a key connection
to each WB until the LSB, and a number of levels equal to log2 (n

block) where n

represents the width and block the shift amount.
It is worth noting in the example the ejection of the bit corresponding to position
a3, in correspondence of the last propagate signal in the top position, and how in
the same top block, since there are no other upper levels, the third input c is equal
to 0, i.e. the point at which the vacant positions are fulfilled.
To conclude if it is observed in detail at the output level of the tree, can be observed
such a structure is capable of placing the new zero-weighted bit in its permuted
position, generating a signal equal to a2a1a00 and thus the value we would expect
with input a3a2a1a0.

29

Permuted ALU

4.4.2 Shift left by 2

The shift left by 2 is the second easiest case to handle, being of two positions only.
This step is fundamental because trying to apply the same WB structure, it reveals
that this block is no longer sufficient. In fact, the 4-bit example in Figure 4.18
shows how, with a structure that would now be only one level remembering the
formula log2 (n

block), it would arrive at an output equal to a0a100 when for an input
of a3a2a1a0 it would be expected to get a1a000.

Figure 4.18: Permuted shift left by 2 example with White Block(WB)
Source: image derived from the [6]

Here the main problem arises from the fact that the structure has a depth of one
such that the permutation key is partially associated. In this way is possible to
conclude that for shifts with powers greater than one the WB is not able by itself
to take into account the LSB of the key.
The example with the output a0a100 clearly demonstrates this error, where the
most significant pair appears in reverse order from what is expected that could be
resolved applying the respective LSB of the key with value 1.
The problem in other words can be described by observing that by shifting to
higher powers we create a division of the data into sections larger than 1-bit and,
in the event of a shift of these sections, they would respect a different segment of
the key from the original one before the operation.

30

Permuted ALU

So, if our goal is to achieve generality for any given shift amount, we are forced to in-
troduce something new. The two involved blocks are the «White Key Block»(WKB)
and the «Black Block»(BB), as shown in Figures 4.19 and 4.20, respectively.

Figure 4.19: White key block
Source: image derived from the [6] article

The first is a block useful for generating a new key denoted KD. The example with
n = 4 and block = 2 provides a 3-input cell, matching with the bits of the key,
where the one of the top, corresponding with the MSB, takes the decision if invert
or not the least significant positions.
The vector KD in fact does not possess a dimension identical to the native key but
a reduced size with only the bits that could not be applied due to the insufficient
depth of the tree. Precisely if the MSB is 1 the outputs are the two LSBs but in
reverse order, if the MSB is 0 the order remains the same.

Figure 4.20: Black block
Source: image derived from the [6] article

31

Permuted ALU

The second block is capable of resolving inconsistencies by using the native key and
the vector KD, deciding whether to swap the halves of its input: if the signals k

and KD are equal the outputs are left and right sides in the same order, otherwise
they are reversed.
Such as the shift by 1, in this way the mismatch between larger sections of a bit
and respective segments of the permutation key is resolved and a new dichotomous
tree structure can be derived. As shown in the 4-bit example in Figure 4.21 it is
correctly obtained a1a000 from the permuted data a0a1a3a2.

Figure 4.21: Permuted shift left by 2 example with White Block(WB), Black
Block(BB) and White Key Block(WKB)

Source: image derived from the [6] article

Here the generation of the two components KD0 and KD1 is implicit: we would
have to include the WKB to have a complete diagram.

4.4.3 Shift left by a power of 2
The shift left by a power of 2 is the third case which is already more complex than
the previous ones.
In this case this step is fundamental because trying to apply the same structure
previously mentioned there is a limitation: the vector KD was generated with a
simple block having to manage only a 3-bit key as the number of inputs of the
block itself, not including generalities.
Therefore this step is crucial to extend the network in a new tree structure called

32

Permuted ALU

«White key tree». Here the purpose remains the same: it is requested to recognize
any mismatches between the data sections and the key segments providing a new
key KD that bridges the inconsistencies.
The solution for a more generic shift amount is obtained by observing the previously
developed approach for the data. Indeed the architecture is entirely analogous as it
is sufficient to note that we are concerned with rotating the key’s segments in the
same direction as the data. The difference lies ensuring that no additional input
bits are required and considering the possibility of inverting the LSBs at a later
stage.
On this last aspect, the structure can be derived introducing a new block called
«Black block key»(BBK) as shown in Figure 4.22.

Figure 4.22: Black block key
Source: image derived from the [6] article

The cell receives an input bit of the key along with an its segments where the MSB
of this latter is immediately taken to the output as part of the new vector KD but
is also used in a XOR function with k to decide whether to invert the LSBs.
In this context, it should be noted that the inversion does not mean to change the
order of some bits but follows the permutation, swapping precisely two branches of
the dichotomous tree.
The final architecture is thus provided through the example in Figure 4.23 for
a 16-bit data and a shift amount of four where the three main aspects, already
mentioned, can be observed:

⌅ The architecture is analogous to that of the data.

⌅ The top block of the structure has a link between the shifted-out value and
the shifted-in value.

33

Permuted ALU

⌅ The key could be divided into MSBs for the first levels of rotation and LSBs
to manipulate internal swaps.

Figure 4.23: Permuted shift left by a power of 2 adaptation for 16-bit KD

generation with White Block(WB) and Black Block Key(BBK).
Source: image derived from the [6] article

4.4.4 Barrel shifter
The final implementation concerns the most complex case for handling any shift
amount.
Unlike the previous steps, this is the only case in which directly a reuse of the
last proposed architecture is applied: it is sufficient to organize in a multiplexer
selection some blocks of shifts by a power of 2 as shown in Figure 4.24.

Figure 4.24: Barrel shifter configuration with multiplexer selection
Source: image derived from the [6] article

34

Permuted ALU

Knowing that a generic shift amount can be represented as the sum of the contri-
butions from the powers of 2 of its bits, can be established a selection structure
between a simple wire and the output of the shifter. Furthermore, working on 64
bits, this shift-amount, consisting of 6 bits of the second operand, corresponds to
the mux selectors and tells whether or not to consider the shift of that weight.
As last remark the final implementation proposed until this moment knows how to
manipulate permuted operands in the case of a logical shift to the left.
What to do for the other shift types? As initially stated starting with this last
Barrel shifter configuration, small variations are sufficient:

⌅ Logical shift to the right: can be obtained simply by observing that the
negation of the key reverses the direction of rotation of the bits

⌅ Arithmetical shift to the right: can be achieved by extracting the MSB and
connecting it as an input to the upper block of the network

⌅ Rotation to the left or to the right: reverse from the top block of the inputs
without new insertion and without takes care about the permutation key

Additionally to these possible operations provided by the CVA6 ALU, our version of
the shifter includes another feature. It is the Single Instruction Multiple Data(SIMD)
option managed by means of the insertion of vectorization bit control that stops
the requested operation with the specified parallelism.
Figure 4.25 shows the idea of this mode and consists of conceiving the received
input data as consisting of multiple data bits over a reduced width, for which the
requested operation is carried out separately.
In our case, three SIMD modes were implemented, working at the initial width of
64 bits: vectorization mode on 8-bit, on 16-bit and on 32-bit.

Figure 4.25: SIMD example for 16-bit permuted operand

35

Permuted ALU

4.5 Count operations
In order to conclude the permuted ALU, it is needed to go through counting
operations. To begin with, it is important to define several groupings of bits:

⌅ Leading Zeros: leading zeros are the consecutive zeros in the left most
position before the first 1’s and the specific operation corresponds in the count
of these zeros at the beginning of the operand. In the example shown in Figure
4.26 the number of the left most zeros is 4.

Figure 4.26: Leading zeros example

⌅ Trailing Zeros: trailing zeros are the consecutive zeros in the right most
position before the first 1’s and the specific operation corresponds in the count
of these zeros at the end of the operand. In the example shown in Figure 4.27
the number of the right most zeros is 3.

Figure 4.27: Trailing zeros example

⌅ Population: population corresponds with the count of the 1’s inside the
operand. In the example shown in Figure 4.28, the number of 1s is 5.

Figure 4.28: Population example

The reason for these three definitions is to be found by looking at the ALU of CVA6
where CLZ, CLW, CTZ, CTZW, CPOP, CPOPW are required count operations
and refer exactly to leading zeros, trailing zeros and population respectively.
For each of these cases, the adaptation to the permuted domain must be sought.

36

Permuted ALU

4.5.1 Population count

The first network to deal is the population counter, a unit that count the amount
of 1s in the input operand, by solving operations such as CPOP and CPOPW.
For this type of operation there is a crucial point that needs to be underlined:
the permutation is of no interest as it does not include changes to the binary
representation.
The function in fact, as shown in the example of Figure 3.3, does nothing more
than exchange randomly the sorting, according to the permutation key bits, leaving
the number of 1s and 0s unchanged.
In this way the population counter shape can be derived easily from the CVA6
without changing the original structure as in Figure 4.29.

Figure 4.29: Population counter example for 8-bit permuted operand

Here precisely can be observed how it is a dichotomous tree structure, by summing
pairs of bits and partial results up to the value of the permutation count.
To conclude, however, if the propagation of partial sums is unchanged by the type
of transformation, the same does not happen when we have to care about obtaining
a permuted count result. To solve this aspect, if in the case of the CVA6 the result
was handled on 6 bits and then possibly extended internally to the ALU, in our
case wanting to handle a permuted output, there is the need to use 64-bit permuted
adders directly.

37

Permuted ALU

4.5.2 Leading/trailing zeros count

Leading and trailing zeros counters are the units that take care of counting the
size of the homonym segments of the input operand, by solving operations such as
CTZ, CLZ, CTZW, CLZW.
For these kind of sections can be observed the fundamental aspect opposite to that
of the population: to observe the first 1 position, from the right or the left according
to their request, it is necessary to somehow reconstruct the native operand to
understand its real weight and stop the count.
The «Ones count block»(OCB) in Figure 4.30 is the elementary cell that follows
this behavior, where can be observed how it propagates either their sum or just
one side, receiving a key bit, 1s from the left and right and a maximum value for
that level(M). Reference is made to the 1s because counting the zeros makes it
more convenient to use the operand inverted bits as direct summing inputs.

Figure 4.30: Leading/trailing zeros block

The most important feature is the dependence from the key that possesses the
control over propagation.
It means to have a description of a logic of each OCB that is more complex than
a single adder as was the population counter. In terms of configuration, we are
lucky that it is the same dichotomous tree, but with the distinction that each node
is more composed. The need to introduce the key arises from the need to assess
whether the count of zeros corresponds to the maximum possible for that level
because otherwise, if it does not, it suggest the presence of a 1 that interrupts the
sequence of zeros. Once identified, the network propagates the sum from a higher
level using a simple wire, which can be implemented as a multiplexer.
As shown by the example in Figure 4.31, which represents an 8-bit counter in the
specific case of leading zeros, each block implicitly subtends the adder and the
multiplexer previously mentioned but it includes a key bit as input to indicate its
subordination.

38

Permuted ALU

Figure 4.31: Leading zeros counter example for 8-bit permuted operand

From this example can be viewed how the counter network receives incoming
operands where the number of leading zeros cannot be explicitly understood,
by having the permutation. The key allows us to do the reconstruction with a
configuration identical to that of the permutation, i.e. starting from its LSB and
moving towards the MSB.
Finally, if the example shows a leading zeros counter, nothing changes moving the
structure to the trailing zeros shape. Indeed its architecture can be represented
in a similar way by changing the elementary block that, instead of favouring the
passage of the left-hand side, promotes the propagation of the right-hand one.

39

Chapter 5

Permuted multiplier

The multiplication in the mathematical literature can be approached using different
hardware implementation: the Carry-Save Adders(CSA), the parallel approach with
Wallace or Dadda tree, high-root fast multipliers and decomposition algorithms.
In our case, remembering to target the permuted domain, two methodologies are
adapted:

⌅ Multiplication recurrence or iterative way

⌅ 2-way Karatsuba algorithm

5.1 Iterative way
The iterative approach is the simplest process that takes inspiration from decimal
multiplication. It calculates several partial products and only after put them in
addition to reconstruct the result, following the old school approach in dot notation
as shown in Figure 5.1.

Figure 5.1: 4-bit dot notation iterative approach
Source: image taken from the [17] article

40

Permuted multiplier

Here can be observed how the multiplication starts by multiplying each bit of the
second operand by the first, from right to left. The first result is written right
aligned thanks the least significant weight of multiplication in respect all the others
case, where a shift by one is required to account the positional value of those bits.
Continuing iteratively for each available bit, the product can be obtained and
written as the sum of the partial products. The crucial point lies in observing some
mathematical recollections that allow to describe a partial product at iteration j+1
as function of the previous one at iteration j as in the Formula 5.1.

P = x0a · 20 + x1a · 21 + x2a · 22 + x3a · 23

= ((((x0a · 24)2≠1 + x1a · 24)2≠1 + x2a · 24)2≠1 + x3a · 24)2≠1

p(j+1) = (p(j) + xja 2k)2≠1 (5.1)

This formula corresponds to the starting point for the architecture of the iterative
multiplier which, remembering that only represents a single partial product, allows
us to develop the pseudo-code of Algorithm 1.
Here a and x are the input operands, X, Y0 and Y1 are the registers through which
to store the intermediate results and co represents the carry coming from the sum
operation.
Precisely the two registers Y1 and Y0 compose the 128-bit result as 64-bit sections,
most significant and less significant respectively, due to the need to handle the
permutation domain on which a 63-bit key is supported and does not allow classical
management.

Algorithm 1 | Iterative multiplication pseudo-code
procedure mul(a,x) Û a • x

2: X= a, Y0 = x, Y1 = 0, cnt = 0 Û Initialization

4: while cnt < n do
if Y0[0] == 1 then

6: c0||Y1 = X + Y1 Û Addition X and last Y1
c0||Y1||Y0 »= 1 Û Right shift for next step

8: else
c0||Y1||Y0 »= 1 Û Right shift for next step

10: end if
return Y1||Y0 Û Result after n cycles

12: end while

14: end procedure

41

Permuted multiplier

Moving the focus on a possible hardware implementation for a multiplication
between 64-bit operands, the Formula 5.1 and the Algorithm 1 suggest the need
for only one shifter by 1, instead the complete Barrel shifter configuration, and one
adder thanks the interpretation of the term 2k as the direct selection of the MSBs
of the result. This is why the pseudo-code, where sum computation is present, uses
X and Y1 as operands.
More in details, to be coherent with the subdivision of the result in Algorithm 1 and
as shown in Figure 5.2, there is the need to split the shifter into two 64-bit units,
that allows to handle the permutation domain, and there is a loop configuration.

Figure 5.2: Permuted iterative multiplier architecture
Source: image derived from the [6] article

About this last aspect in fact, the Formula 5.1, which represents a single partial
product, in order to compute the final result requires multiple iterations equal to
the width of the operands.

42

Permuted multiplier

In particular, the algorithm involves an initialization phase in which the operands a

and x are stored in the respective X and Y0 registers, while the Y1 register together
with the counter are reset. This reset state is necessary because the counter keeps
track of how many iterations are still required to read the registers correctly.
At each cycle it is taken the LSB of the Y0 register, in which the multiplier is
contained, and if the bit is a 1 is computed the addition of the multiplicand before
entering into the most significant shifter. Otherwise the addition is not performed
and the value contained in Y1 undergoes to a direct shift to the right. In the other
side simultaneously the register Y0, which initially contains the multiplier x, is
shifted at each iteration by entering the shifted-out bit of the most significant
shifter.
In others words when shifting, it is inserted the carry-out of the adder into the
MSB of the most significant result portion and similarly, when extracting the LSB
of Y1, it is connected to the MSB of the least significant result portion, effectively
shifting out the current LSB of Y0, which corresponds to the decisional bit just
compared.
In this way to conclude with the previously mentioned method, at the end of the
64 cycles, the registers Y1 and Y0 no longer store the multiplier x or a reset null
value but rather the resulting product.
As last remark on the permuted management of the result, the use of two shifters
comes to our help as it is requested to handle a 128-bit data with a 63-bit key.
Consequently, as shown by Figure 5.3, there are two permuted separated sections
according to the same key which are analysed individually when reconstructing the
result.

Figure 5.3: 128-bit permuted product management

43

Permuted multiplier

5.2 2-way Karatsuba algorithm
This section is a new approach taken in an attempt to improve the previous imple-
mentation through the application of the Karatsuba algorithm.

"The Karatsuba algorithm is a fast multiplication algorithm discovered
by Anatoly Karatsuba in 1960 and published in 1962. It is a divide
and conquer algorithm that reduces the multiplication of two n-digit
numbers to three multiplication of n/2-digit numbers and to at most n1.58

single-digit multiplications. It means that it is asymptotically faster than
the traditional algorithm with n2 single-digit products"

Wikipedia, 2024, [18]

The 2-way typology corresponds to what is shown in Figure 5.4 based on the idea
of being able to write both the operands in two separated and adjacent sections of
MSBs and LSBs, respectively called left and right side.

Figure 5.4: Partial contribution deriving the 2-way Karatsuba algorithm

The algorithm again involves calculating three partial products, but this time in a
parallel manner in order to reconstruct the result later:

⌅ z0 corresponds to the product of the most significant sections

⌅ z2 corresponds to the product of the least significant sections

⌅ z1 corresponds to a combination of most significant and least significant
sections.

44

https://en.wikipedia.org/wiki/Karatsuba_algorithm

Permuted multiplier

The last term z1 involves a first computation of an intermediate value m, given by
the product of the sums of the most significant and least significant segments of
the same operand. Only after the other two terms z0 and z2 are needed to find the
final z1 component.
The reconstruction, as shown in the last formula, is characterised by a shift for each
partial product according to the weight of their operands and, as in the iterative
method, by their sum:

⌅ z0 π n, it is a multiplication between most significant bits

⌅ z1 π n
2 , it is a mixed multiplication

⌅ z2 deriving from the least significant sections can be directly used as a partial
product.

The crucial point of our architecture it is that, if n is higher than 2 and a power of
2, the three partial products can be computed recursively calling another time the
Karatsuba algorithm at each new multiplication. This last step can be done by
creating a tree structure on several levels until a minimum width is reached.
Trying to describe this approach according to a pseudo-code, it results in the
Algorithm 2 in which the recursiveness has to be revised in the recall of the same
procedure Karatsuba_mul.

Algorithm 2 | 2-way recursive Karatsuba algorithm
procedure Karatsuba_mul(a,b) Û a • x

2:
al = a·2n≠k Û left a

4: ar = a[k-1:0] Û right a
bl = b·2n≠k Û left b

6: br = b[k-1:0] Û right b

8: z0 = Karatsuba_mul(al,bl) Û Recursive proc call
z2 = Karatsuba_mul(ar,br) Û Recursive proc call

10: z1 = Karatsuba_mul((al + ar),(bl + br)) - z0 - z2 Û Recursive proc call

12: return z0 · 2n + z1 · 2n
2 + z2

end procedure

The idea lies in repeatedly calling the algorithm with continuous division into three
new contributions of each term z0, z1, z2 as these are new multiplications.

45

Permuted multiplier

From an implementation perspective, it is now necessary to translate the pseudo-
code and, more importantly, address the challenge of handling the permutation of
the operands.
The proposed solution is to divide the architecture into three main networks:

⌅ pre-computation tree: is the initial structure in which recursiveness finds
its place by dividing each new multiplication into the three contributions z0,
z1, z2 taking into account the domain of the countermeasure.

⌅ layer of multiplication: is the structure that performs true multiplication
in the classical sense having reached the minimum level of pre-computation
with 2-bit operands. Assuming (a + b)(c + d) with a,b,c,d single bits the
result is computed as p = ac + ad + bc + bd.

⌅ reconstruction tree: is the final structure in which a partial reconstruction
is calculated at each level according to the formula z = z0 · 2n + z1 · 2n

2 + z2.

Each of the three components is a trichotomous tree, as suggested by the definition
of the algorithm, in which three partial products are computed and where the
trichotomy consists of dividing and reconstructing each block into three more at
the next level.
To give an idea, an example with 16-bit operands is shown in Figure 5.5 where, as
can be seen, the network consists of 8 different blocks:

1. Left Right block ∆ LR

2. Left Right carry block ∆ LRC

3. Karatsuba basic block ∆ K

4. Karatsuba carry block ∆ KC

5. Reconstructive basic block ∆ z0, z2

6. Reconstructive carry block ∆ m

7. Reconstructive last carry block ∆ last m

8. Reconstructive top block ∆ top

The colour system used serves to underline that each block has a different function,
in order to respect the algorithm and manage the permutation, in which cannot be
derived a simple logical function considering the complex usage of adders, shifters,
extractors and others permuted networks.

46

Permuted multiplier

Figure 5.5: Trichotomous tree example for 16-bit permuted 2-way Karatsuba
multiplier

47

Permuted multiplier

Here can be observed a parallel configuration of the architecture requiring a
reduction of the network’s internal signals in an attempt to compress the size of
the multiplier, as shown in Figure 5.6:

⌅ Pre-computation phase halves the parallelism between levels, from 16 bits
down to a minimum of 2 bits.

⌅ Multiplication phase computes the first partial products over a width of 8
bits. This happens because of the term m, which on a minimum size of 6 bits,
brought to use the next power of 2.

⌅ Reconstructive phase returns to the maximum width of 16 bits like the
parallelism of the input operands.

Figure 5.6: Tree-like example structure for 16-bit parallelism reduction

The 32-bit result in the example is presented in its normal parallelism, the double of
the operands, but once again is recomposed as two separated and adjacent sections.
In the specific case of 128-bit result, considering our aim for 64-bit multiplication,
the management follows the Figure 5.3 with a single 63-bit key.
However, during the development phase of the entire network, several issues related
to permutation management needed to be addressed. To provide a more in-depth
analysis, each of the three macro-areas it is proposed in greater detail.

48

Permuted multiplier

5.2.1 Pre-computation tree

The pre-computation tree is the network through which Karatsuba’s algorithm
finds a recursive application.
The idea of the tree is to divide the native 64-bit multiplication into the three
partial products z0, m(z1 is rebuilt later), z2 that are further multiplications with
32-bit operands. In this way, finding the multiplicand and the multiplier as a new
powers of 2, there is the possibility of decomposing each partial term into three
new further contributions.
This principle of recurrence leads to the construction of the pre-computation tree
with a continuous recall of the algorithm up to the bottom level where the operands
reach the minimum size of two bits. However, problems arise here, and two of them
are identified: the subkeys extraction and the carry management in m computation.

1) Subkeys extraction

Decreasing internal parallelism leads to maintaining as permuted each section of
data extracted.
Not being able to play with the indexes, by means of a simple extraction, the
permuted domain forced to use a dedicated network capable to select the specific
bits that the section would be subjected during the permutation phase.
The Figure 5.7 provides an example for a 16-bit data showing the extraction of the
red or blue segments. This allows for an easy derivation of the key association for
each possible data block, according to the permutation function, figuring out how
to proceed.

Figure 5.7: Key-extraction example for 16-bit permuted operand

49

Permuted multiplier

2) Carry management in m computation

Recursion is not an immediate concept; it involves an adaptation to return powers
of 2.
The contribution z1 does not simply involve multiplication by passing through the
internal value m, where the recurrence introduced by the first addition generates a
carry-out bit. In this way it brings the internal signal width to n+1 bits, i.e. an
odd representation.
The problem of this approach comes here, for example after the first application of
the algorithm, trying to apply the same procedure on the new 33-bit multiplication,
where it is obvious the difficulty to handle the new recursion.
Luckily the adaptation finds a solution by decomposing the multiplication into two
contributions: one belonging to the carry bit and one associated with the others n

bits which can be re-written as a new powers of 2 multiplication.
This procedure exploits mathematical properties that extract the contribution of
one bit deriving several contributions that, in the case of the most significant bit,
are three terms as shown in Figure 5.8:

⌅ A corresponds to the contribution if both carries are equal to 1, making the
AND and shifting the result by two times the parallelism of the operands.

⌅ B corresponds to the contribution if the carry of the first operand is 1. In this
case the bits of the second operand, except its carry, are shifted by n bits.

⌅ C corresponds to the contribution if the carry of the second operand is 1.
Opposite to the previous case, the bits of the first operand, except its carry,
are shifted by n bits.

Figure 5.8: Carry decomposition formulas for m computation

The crucial point of this property is to restore the perfect conditions to apply a
new recursion step using powers of two operands. At this level in fact the carry is

50

Permuted multiplier

not necessary and instead ends up directly as input signals of the reconstruction
tree.
In Figure 5.5 this process is carried out within the yellow blocks which differ from
the white ones for z0 and z2, where just key extraction is sufficient. Finally to get
a better idea of how the extraction of the three contributions works, an example is
given in Figure 5.9.

Figure 5.9: Carry decomposition example for m computation with 8-bit operand

The example shows the case where both the carries are equal to 1 and thus each
term(A, B, C) are different from zero. In the contributions suma and sumb, the
decisional carry is represented by the MSB.

5.2.2 Layer of multiplication
The multiplication layer is the level where the partial products are truly computed.
The previous structure was in fact concerned with a recursive application of the
algorithm without really computing anything, up to 2-bit last partial products z0
and z2 and the 3-bit term m.
Regarding the first two, i.e. z0 and z2, the choice is to divide for the umpteenth time
the operands into single bits in order to calculate the partial products according to
the Karatsuba algorithm. The new process is related with the internal m, and so
z1, where the choices are to write the term in its extended Formula 5.2 made by
m1 and m0.

z0 = (a1 · b1)
z2 = (a0 · b0)
m = (a1 + a0) · (b1 + b0) æ z1 = m ≠ z0 ≠ z2 = a1 · b0 + a0 · b1 = m1 + m0

z = z02n + (m1 + m0)2
n
2 + z2 (5.2)

Regarding the third contribution m, and so z1, following the same procedure of z0
and z2 but with an internal value m in a 3-bit parallelism, one more adaptation
is required: decomposition of the Figure 5.8 and the direct addition of the carry
contribution.

51

Permuted multiplier

In this way can be determined the third term z1 as the Formula 5.3, ready to be
used.

m = carry + (a1a0) · (b1b0) ∆ z1 = carry + (a1a0) · (b1b0) ≠ z0 ≠ z2

z1 = carry + (zÕ
02n + (mÕ

1 + mÕ
0)2

n
2 + zÕ

2) ≠ z0 ≠ z2 (5.3)
As these last Formulas indicate, in any case, it is possible to conclude that the first
actual computation always follows the algorithm but through a step of 4 partial
products instead of 3.

5.2.3 Reconstructive tree
The reconstruction tree is the network through which Karatsuba’s algorithm is
applied in order to get back the result. In fact, after the multiplication layer there
are 243 partial products on 8 bits to be handled.
The idea of the tree is to apply the last formula of Figure 5.4 to compute the terms
z0, z2 and m of the next layer and to arrive at the last three contributions, that
allow to express the output result.
Here, however, in order to have a correct propagation, two difficulties need to be
managed: the key extension and the change of the permutation key.

1) Key extension

Increasing internal parallelism leads to maintain as permuted each section of the
extended data where a classical extension is not valid.
Normally indeed, to extend a data, some zeros are placed in front of the number
up to the new parallelism but additionally, in a permuted path, also the key needs
an extension with an insertion of zeros that must follow the permutation.
A different approach is required because the old data, in its new extended version,
corresponds with the LSBs section which needs to be controlled by the same key
bits as before the extension. Consequently, traditional zero padding cannot be
applied as shown in Figure 5.10.

Figure 5.10: Key extension example from 4-bit operand to 8-bit

52

Permuted multiplier

2) Change key of permutation

The extension of the key is not the only issue to solve.
Trying for example to go from 4-bit to 8-bit data, over the normal key extension,
with an increment from 3-bit to 7-bit, a shift to a new target domain is required.
The derived carry that arrives from the decomposition of a previous level it is a clear
example because its representation is certainly different from a simply extended
key. In fact the carries that go directly into the reconstruction tree have their own
domain that is certainly different.
In this way it became something to solve also if the the final aim is to return to
the native 63-bit key where it is preferable to progressively use larger sections, not
simple extensions with zeros, as they lack a clear connection to the permutation
domain.
To address this issue, two dedicated components, named «reorder key» and «change
key», are proposed. The preliminary step in developing at these two modules is to
figure out how to switch from one permutation key to another, without passing
through the native representation of the data.
Starting from the first of the two blocks, it answers a specific question:

What differentiates two keys?
This question is a crucial point because represents the source of the problem. Here,
in order to reply, can be observed the applications of any two permutations in
which the keys already differ only by their MSB as in Figure 5.11.
Remembering then that a 1 means swap and a 0 means identity, if the first two
sections correspond to the left and right of the data itself we can see how well
a mismatch between the applications is created from the outset. Continuing the
permutation towards the LSBs of the key means having groups of swapped bits
and with each new different pair a further inversion of the splits.

Figure 5.11: Key misalignment example with difference in the MSB position

53

Permuted multiplier

The reorder network called «reorder key» is exactly the kind of circuit that over-
comes this problem. It deals precisely with resolving the misalignment by comparing
from the MSB to the LSB the bits of the source key against the target one, creating
inversions for each difference encountered.
This circuit is necessary because an inversion can touch several bits at the same
time: if there is a first difference in the MSB, it means having to invert the next
two bits dealing with n/4 bit groups, the next four bits dealing with n/8 bit groups,
and so on. It corresponds in practice to an inversion according to the permutation
function as shown by the example in Figure 5.12 with the difference about the
MSB-1.

Figure 5.12: Reorder example with difference in the MSB-1 position

The solution, however, does not end there because up to this point it was concerned
with understanding the disparity between two keys. Now the next step needed is
to make the transition from one key to another via, what is called «change key».
Luckily for this case a property of permutations comes to our aid: when two keys
differ only by bits at the same level of the tree, transitioning from one key to the
other can be achieved by applying a new permutation stage with the key being the
XOR of the two.
Following the aim to apply the rule between two generic keys, it is first needed
the last «reorder key» network to solve the mismatch of two domains that are not
directly comparable.
In this way, the newly reordered and target keys have weights on the same plane,
allowing a XOR function to generate the new value and subsequently apply the
permutation.
With this approach the final structure can be concluded that consist of a «reorder
key» and a «change key» in cascade as shown in Figure 5.13.

54

Permuted multiplier

Figure 5.13: Adaptation process from key1 to key2 example

The problem observed so far is not only present in the reconstruction phase but
already in the pre-computation. In fact, in the internal value m it is needed to
take care about the left and right addition of the operands a and b, each with its
own permutation key as shown in Figure 5.14.
The permuted adder of Section 4.3 was characterized by a single permutation key,
the same between the two operands, leading us back to the problem just presented.
In this case then, it is necessary to choose an adaptation to one of the two keys
and reintroduce the cascade of «reorder key» and «change key».

Figure 5.14: Key misalignment example in m computation

55

Chapter 6

Validation process and
analysis

The functional validation means to check the correctness of the results of the per-
muted hardware architectures on FPGAs with a software model used as a golden
reference.
This step is crucial before a designed structure can truly be considered functional.
Indeed the simulation phase alone cannot fully evaluate the physical and perfor-
mance characteristics of a hardware design by providing a superficial analysis; it is
nice from a behavioural point of view but very bad from a physical point of view.
Additionally parameters such as delay, noise and interferences are very complex to
be predicted under a single simulation aspect where, on the contrary, ideal models
with simplified and approximated propagation times are assumed. In this way
the simulation does not account real-time execution, so that a very long on-board
projection might only take a few seconds. Finally, it may have simulated a simple
internal module, neglecting the integration of the entire system and, consequently,
skipping factors that could compromise the functionality.
On-board validation allows us to verify all these aspects by providing a characteri-
sation of the design on several points:

⌅ Energy consumption

⌅ Maximum operating frequency

⌅ Heat management

⌅ Latency and throughput

⌅ Interaction with peripheral devices

56

Validation process and analysis

6.1 Hardware interface
The architectures proposed in Chapters 4 and 5 have been described in SystemVer-
ilog and have been implemented using the Xilinx Vivado hardware design tool.
The validation was developed targeting the Xilinx Artix-7 100T and the Kintex-7
FPGAs through Vivado Default run strategy for synthesis and implementation.
Precisely the Kintex-7 was chosen to be used for those architectures that were too
large for which the Artix-7 100T was not sufficient.
Each design was tested with an operating frequency in accordance with the critical
path estimated after an initial synthesis phase. For example, the maximum fre-
quency used was 50MHz in the cases of the adder and iterative multiplier, while
the minimum was 6.125MHz in the case of the Karatsuba arrangement.
Each of the proposed modules were developed according to a fully combinatorial
architecture, which required a specific support structure to enable their testing. In
order to ensure communication with these modules, was implemented a Functional
Validation Architecture(FVA), such as the one illustrated in Figure 6.1 and as
noted in [19].

Figure 6.1: Functional validation architecture
Source: image taken from the [19] article

Here can be observed in the first line the Design Under Test(DUT) including the
permuted adder, permuted shifter, permuted ALU and permuted multiplier while,
in the second entry, the contour architecture consists of two additional components:

1. Universal Asynchronous Receiver-Transmitter(UART) which serves the com-
munication interface with the host computer, facilitating the data transfer

2. Finite State Machine(FSM) or controller responsible for managing both data
flow and protocol control signals, ensuring effective coordination with the
DUT.

57

Validation process and analysis

6.1.1 Controller
The controller or FSM is the module that coordinates the communication between
host computer and DUT. This takes the data transmitted by the UART as input,
to dictate the timing of the output and send it for processing, and receives the
result as input to take care of its transmission, respecting the «busy» condition of
the communication channels.
In order to correctly manage a combinatorial module with input and output
register wrappers, the FSM is composed of 4 states(IDLE, WAIT_TX, WAIT_COMP,
OUTPUT_SEND) as shown in the graph in Figure 6.2. Here, the specific count value
for reading the result is set to 10, after a first estimation of the process duration,
to ensure that the computation is correctly brings to the output by the circuit.
Finally it is important to note that for the iterative multiplier, employing 64 clock
cycles, there is the need to handle an additional validation signal to ensure that
the product is read at the correct time, not reported in the example.

Figure 6.2: Functional Controller graph

58

Validation process and analysis

6.2 Software interface
As a software golden model, a Python program was developed. Here the main
purpose is to randomly generate the input signals for each DUT and, by using
a software implementations of the permutation and depermutation functions, to
perform the respective operations of the design in the native domain by comparing
the two output results.
The entire process makes it possible to verify the correctness of an instruction and
identify any discrepancies between the two versions of the path. In the event of
differences between the software and hardware outputs, an integer counter reports
the error and displays it immediately on the screen.
The program integrates perfectly itself with the FVA, thanks to the usage of the
Serial library, which manages communication between the software and hardware
fixing a BaudRate at the optimal speed of 115200bps. Given the frequencies
involved of a few MHz, in fact, there is no problem in respecting the Formula 6.1
binding the two parameters to guarantee reliable and correct interaction.

fck Ø Baud rate

2 (6.1)

Regarding to data again, a function is implemented to construct a single byte-sized
string related with the DUT, specified by a macro-variable. Similarly the read-out
via UART of the result works where a single string it is used before depermutation
and comparison. In general can be concluded that, using the FVA, communication
is efficient and simple, being able to launch millions of test points.
Below there are three code used in the test of the permuted ALU:

⌅ Listing 6.1: shows the random generation of the inputs in which there is a
specific set of the most significant byte since it is the ALU operation.

⌅ Listing 6.2: is the permutation function analogous to the hardware function
via transposition call.

⌅ Listing 6.3: is the function communicating with the UART which takes care
of sending and receiving new data and results maintaining the error count.

The ALU case is the only test that does not involve direct software computation
for each operation required, having decided to use the CVA6 ALU as the reference
model. In all other cases, in fact, the desired action is performed through the use
of symbols such as +, » and *, i.e. the equivalent software implementations.

59

Validation process and analysis

1 def random_value (size=N_BYTE_RX , verbose =False):

2 message_in = bytearray ()

3 message_in . append (int(format (random . randint (0, 56) , ’06b’) + ’01 ’ ,2))

4 for i in range(size -1): message_in . append (random . randint (0, 255))

5 if (verbose): print(" generated random message = ", message_in .hex ())

6 return message_in

Listing 6.1: Python random ALU inputs generation

1 def permutation (width , transposition_value , data_i , key_i):

2 levels = math.ceil(math.log2(width))

3 permute_data = [None] * (levels + 1)

4 permute_data [levels] = data_i

5
6 key_i_rev = list(f"{int(key_i , 16) :0{64} b}") [1:64]

7
8 key_i = []

9 for j in range(len(key_i_rev)):

10 key_i. append (key_i_rev [62 - j])

11
12 for i in range(levels - 1, -1, -1):

13 if (list(f"{ transposition_value :0{6}b}")[i] == ’1’):

14 key_segment_start = (width - 2) - (pow (2, (levels - i - 1)) -

1) + 1

15 key_segment_end = (width - 2) - (pow (2, (levels - i)) - 2)

16 key_segment = key_i[key_segment_end : key_segment_start]

17 permute_data [i] = transposition (width , pow (2, i),

permute_data [i + 1], key_segment)

18 else:

19 permute_data [i] = permute_data [i + 1]

20 return permute_data [0]

Listing 6.2: Python permutation function

1 def test_with_random_inputs (verbose =False):

2 hardware_error = 0

3 software_error = 0

4 for i in range(ITERATION_NUMBER):

5 message_sent = random_value ()

6 key_i = message_sent .hex ().zfill (49) [2:18]

7 USB_serial .write(message_sent)

8 message_read = USB_serial .read(N_BYTE_TX)

9 if (message_read .hex ().zfill (33) [0:2] != "00"):

10 hardware_error += 1

11 presult = depermutation (64, 63, message_read .hex ().zfill (33)

[2:18] , key_i).zfill (16)

12 if(message_read .hex ().zfill (33) [18:34] != presult):

13 software_error += 1

14 print(" Error from hardware verification : ", hardware_error)

15 print(" Error from software verification : ", software_error)

Listing 6.3: Python results comparison from UART module

60

Validation process and analysis

6.3 Results
For the acquisition of the results, the process is divided into several steps, following
a chronological sequence to first obtain the desired ALU.
Initially, attention is paid to fundamental components such as adder and shifter,
on the second line there is the ALU as a whole, and to conclude there is the
observation and the verification of the multiplier as a standalone component.
For compatibility with the FVA, and thus with the hardware and software interface
levels proposed in the previous two sections, wrappers were defined for each DUT
containing input and output registers, which also enabled the estimation of the
maximum operating frequency.

6.3.1 Adder and shifter comparison
The adder and shifer components, in view of their complexity and importance for
almost all operations, are the first on which a validation phase was carried out. In
fact, they are the elementary cells in the comparator and the counters, and finally
in both the methods of the proposed multipliers.
Their verification was carried out on Artix-7 100T through which, after observing
the correct operation of both, post-implementation data was collected on the area
used and the critical path, as shown in Table 6.1.

Table 6.1: Area and critical path results for CLA, permuted CLA and permuted
shifter

Here the main feature from the collection is the result of a normal CLA through
which an initial estimation of the permutation cost could be made. Precisely the
great similarity with the permuted version was exploited by defining the PGB of
the Figure 4.10 and implementing the same network.
Starting from this point can be highlighted how there is an increase in area, as
already anticipated in general with the use of hardware redundancy in Chapter
1, and how it is possible to estimate in detail the cost by introducing the key
management.
The results extracted tell us that the area has an increment factor of about 1.59x
while the critical path has an increment factor of about 1.22x. As we might have

61

Validation process and analysis

expected, this performance indicates that a countermeasure, while securing the
application, makes all the parameters involved worse.

6.3.2 ALU comparison
The next step is the construction of the entire permuted ALU according to that of
CVA6.
Following this approach, the software development was slightly different from a
program point of view, simulating in general the behaviour of all operations. In fact,
having the ALU of the CVA6 available, it is decided to directly perform a hardware
check by loading both paths on board, as in a simulation of the redundancy after
integration of the countermeasure.
The software program in this case is realised by means of a simple serial one-byte
read-out of the resulting value from the hardware comparison, and in order to
ensure that this stage also did not return erroneous values, it is still chosen to send
the outputs of both ALUs to assess their consistency.
The table 6.2 shows the obtained area and critical path results.

Table 6.2: Area and critical path results for ALUs

These performances clearly indicate that no single permuted version is reported.
In fact, the final version decided to use is the «partial permuted ALU» which, as
implied, does not have all 63 permuted operations.
The reason lies in the count operations of Section 4.5 where the tree structures have
each node consisting of the logic of a permuted adder, in the case of population
counter, and some additional gates, in the case of leading/trailing zeros counter.
Following this approach a 64-bit adder for 63 total nodes takes up a minimum
of 15k Slices LUT just for these structures that, making an initial comparison
with the ALU of CVA6, means a huge overhead since each counter should already
be 5 times the entire unit. The solution adopted in this way is to bypass these
networks by leaving the counters unchanged in their native shape by adding stages
of depermutation of the operands and permutation of their result.
By doing so as shown in Table 6.2, the final result has an area of about 21k Slices
LUT considered acceptable, leading to increment factors of about 7.67x in the
surface case and about 2.4x in the critical path case.

62

Validation process and analysis

6.3.3 Multiplier comparison
The last analysis concerns the multiplier proposed as a standalone component,
which in the case of the CVA6 is an Array multiplier with a single latency clock
cycle.
The verification is carried out on Artix-7 100T, in the case of the Iterative architec-
ture, and on Kintex-7, in the case of the Karatsuba architecture, through which,
after observing the correct operation of both, the post-implementation data relative
to the area used and the critical path was collected in the Table 6.3.

Table 6.3: Area and critical path results for CVA6 multiplier, permuted Iterative
multiplier and 2-way Karatsuba approach in three different run strategies

Iterative way

The first iterative route has several contrasting aspects, seeming better in some of
them.

• Area: the results show a smaller occupied area due to the use of a single adder
and of two shifters as proposed in Figure 5.2, which however would appear to
be inconsistent with Table 6.1 showing the single shifter. The reason for this
advantage arises from the fact that the standalone architecture is a Barrel
shifter, i.e. a union of several levels through a multiplexer selection, and just
the simplest degree of a single shift position is required, bringing in a very
compressed solution.

• Critical path and latency: the results show minimal overhead regarding the
critical path, suggesting that it is a highly efficient architecture. However,
the number of cycles and thus the latency required to complete an operation,
cannot be overlooked. For the required case of a 64-bit multiplier, the iterative
version must pass through the same circuit 64 times to compute the same
number of partial products, compared to just a single cycle in the Array
configuration.

63

Validation process and analysis

The performance thus obtained indicates an increase factor of 0.31x in the case of
the surface area, an increase factor of 1.44x in the case of the critical path and a
factor of 64x in the case of the number of cycles.

2-way Karatsuba

The second way according to the Karatsuba algorithm does not seem to be encour-
aging at first glance.

• Area: the results show a much larger occupied surface area. The motivation
goes back to what was said in Section 5.2, namely how each tree is composed
of permuted adders, shifters and extractors that raise the parameters of the
final architecture. Although several different strategies have been tried, none
have led to big improvements.

• Critical path and latency: the results once again show a large deterioration
of the critical path to about 10 times the reference one without, however,
introducing any deterioration from the latency point of view.

The performance thus obtained indicates an increase factor of 32.3x in the case of
surface area, an increase factor of 8.81x in the case of critical path and a factor of
1x in the case of number of cycles.

Optimizations

Before concluding that both the implementations have excessive overhead, it is still
possible to explore their optimization, as shown in Table 6.4.
The Karatsuba architecture in particular despite has each parameter much higher
than the initial model, it is a parallel architecture using only one clock cycle for a
multiplication.
This indicates that there is a potential for improvement by applying the pipeline
technique, which could enhance performance where, ideally with 10 stages of
registers, it might be possible to raise the maximum operating frequency to 100
MHz.
This approach could also provide the additional advantages of pipelining, such as an
increase in throughput with one data output per clock cycle, although the number
of cycles for a single operation would correspond to the number of registers used.
The only drawback remains the area, as pipelining increases the area occupied
through the additional registers rather than reducing it.
Shifting the attention to the iterative architecture there is no way of realising
optimizations because of its loop structure that obliges to compute the multiplication
with a number of cycles equal to the parallelism whatever improvements we manage
to apply.

64

Validation process and analysis

Table 6.4: Possible optimizations permuted multiplier components

65

Chapter 7

Conclusion

This thesis work presents a hardware architecture for protection against fault
injection attacks, focusing on the ALU and the multiplier of the CVA6 core. In
designing a redundant detection system, with the logic already duplicated, the main
objective was to minimize the cost in terms of area and to maximize performances.
The implemented architectures appear to be potentially compatible with any core,
having provided the right balance between critical path and area, where future
developments could focus on timing optimization or on the introduction of new
algorithms that better match the permutation function used.
Taking into account the target features, the surface occupied by the CVA6 core(≥=50k
LUT) and the target frequency(≥=50MHz), we have chosen to integrate only the
permuted ALU leaving the set of multiplication operations uncovered as shown in
Table 7.1.
A further research direction in this way, as previously mentioned, involves the design
of new implementations for multiplication, with the goal of finding a compromise
between latency and area, unlike the two approaches studied so far which are at the
edge of performances. In addition, a specific architecture for the division operation,
currently not covered, could be integrated.
Therefore to preserve data integrity, considerable effort will be required to develop
countermeasures with negligible overhead to ensure total security of systems against
injections.

Table 7.1: Final integration choices for the CVA6 core

66

Conclusion

67

Bibliography

[1] José Manuel Martín-Valencia, Hipólito Guzmán-Miranda, and Miguel Ángel
Aguirre Echánove. «FPGA-based mimicking of cryptographic device hacking
through fault injection attacks». In: 2015 IEEE International Conference

on Industrial Technology (ICIT). 2015, pp. 1576–1580. doi: 10.1109/ICIT.

2015.7125321 (cit. on p. 1).
[2] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache.

«Fault Injection Attacks on Cryptographic Devices: Theory, Practice, and
Countermeasures». In: Proceedings of the IEEE 100.11 (2012), pp. 3056–3076.
doi: 10.1109/JPROC.2012.2188769 (cit. on p. 1).

[3] Mei-Chen Hsueh, T.K. Tsai, and R.K. Iyer. «Fault injection techniques and
tools». In: Computer 30.4 (1997), pp. 75–82. doi: 10.1109/2.585157 (cit. on
p. 1).

[4] Francisco Eugenio Potestad-Ordóñez, Erica Tena-Sánchez, Antonio José
Acosta-Jiménez, Carlos Jesús Jiménez-Fernández, and Ricardo Chaves.
«"Hardware Countermeasures Benchmarking against Fault Attacks"». In:
Applied Sciences 12.5 (2022). doi: 10.3390/app12052443 (cit. on p. 2).

[5] Olivier Savry Gaëtan Leplus and Lilian Bossuet. «AKHACIA : Arborescent
Keyed Homomorphic tAgs for Confidentiality, Integrity and Authenticity of
data in CPU pipeline». In: CEA-LETI, University Grenoble Alpes (submitted
for publication) (cit. on pp. 5, 10).

[6] Olivier Savry Matteo Panigati Massimo Poncino. «Implementing homomor-
phic security tags in CPU pipeline». In: Politecnico di Torino, CEA-LETI

(2023). secreted thesis. url: https://webthesis.biblio.polito.it/

29381/ (cit. on pp. 5, 16–18, 23–25, 29–34, 42).
[7] Gaëtan Leplus. «Processeur résistant et résilient aux attaques de fautes

et aux attaques par canaux auxiliaires». In: (2023). 2023STET0059. url:
http://www.theses.fr/2023STET0059/document (cit. on p. 5).

[8] Verification Guide. SystemVerilog tutorial for beginners. Online. 2024. url:
https://verificationguide.com (cit. on p. 5).

68

https://doi.org/10.1109/ICIT.2015.7125321
https://doi.org/10.1109/ICIT.2015.7125321
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1109/2.585157
https://doi.org/10.3390/app12052443
https://webthesis.biblio.polito.it/29381/
https://webthesis.biblio.polito.it/29381/
http://www.theses.fr/2023STET0059/document
https://verificationguide.com

BIBLIOGRAPHY

[9] Nima Honarmand. A Brief Introduction to SystemVerilog. Slides Online,
Stony Brook University. 2015. url: https://compas.cs.stonybrook.edu/

~nhonarmand/courses/sp15/cse502/slides/03-systemverilog.pdf (cit.
on p. 5).

[10] Sistemi SystemVerilog. Il linguaggio SystemVerilog nel progetto di FPGA.
Online. 2009. url: https://elettronica-plus.it/wp-content/uploads/

sites/2/2009/06/20090401010_11.pdf (cit. on p. 5).
[11] David A. Patterson and John L. Hennessy. Computer organization and design.

USA: Morgan Kauffmann, 2018 (cit. on p. 5).
[12] OpenHW Group. CVA6: An open-source RISC-V CPU Core. GitHub Online.

2024. url: https://github.com/openhwgroup/cva6 (cit. on pp. 5, 7).
[13] Wikipedia contributors. Omomorfismo. Online. 2020. url: https://it.

wikipedia.org/wiki/Omomorfismo (cit. on p. 8).
[14] Treccani. Trasposizione. Online. 2020. url: https://www.treccani.it/

vocabolario/trasposizione/ (cit. on p. 9).
[15] David A. Patterson and Andrew Waterman. The RISC-V Reader. CA,USA:

Strawberry Canyon LLC San Francisco, 2017 (cit. on p. 15).
[16] OpenHW Group. The RISC-V Instruction Set Manual, Volume I: Unprivileged

ISA. GitHub Online. 2024. url: https://github.com/riscv/riscv-isa-

manual (cit. on p. 15).
[17] Guido masera. «Part 2_A: Arithmetic circuits». In: Politecnico di Torino,

Slides Integrated Systems Architecture. 2022 (cit. on pp. 22, 40).
[18] Wikipedia contributors. Karatsuba algorithm. Online. 2024. url: https :

//en.wikipedia.org/wiki/Karatsuba_algorithm (cit. on p. 44).
[19] Davide Zoni, Andrea Galimberti, and William Fornaciari. «Flexible and

Scalable FPGA-Oriented Design of Multipliers for Large Binary Polynomials».
In: IEEE Access 8 (2020), pp. 75809–75821. doi: 10.1109/ACCESS.2020.

2989423 (cit. on p. 57).

69

https://compas.cs.stonybrook.edu/~nhonarmand/courses/sp15/cse502/slides/03-systemverilog.pdf
https://compas.cs.stonybrook.edu/~nhonarmand/courses/sp15/cse502/slides/03-systemverilog.pdf
https://elettronica-plus.it/wp-content/uploads/sites/2/2009/06/20090401010_11.pdf
https://elettronica-plus.it/wp-content/uploads/sites/2/2009/06/20090401010_11.pdf
https://github.com/openhwgroup/cva6
https://it.wikipedia.org/wiki/Omomorfismo
https://it.wikipedia.org/wiki/Omomorfismo
https://www.treccani.it/vocabolario/trasposizione/
https://www.treccani.it/vocabolario/trasposizione/
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
https://en.wikipedia.org/wiki/Karatsuba_algorithm
https://en.wikipedia.org/wiki/Karatsuba_algorithm
https://doi.org/10.1109/ACCESS.2020.2989423
https://doi.org/10.1109/ACCESS.2020.2989423

