
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Hierarchical Architecture of a 2D-CNN
Accelerator: Leveraging High-Level

Design and Embedded Scalable Platform
(ESP)

Supervisors

Prof. Mario Roberto CASU

Dr. Luca URBINATI

Candidate

Angelina MARRA

Academic year 2023-2024

Summary

The rapid expansion of big data applications, while unlocking immense potential
for Machine Learning (ML) advancements, has placed overwhelming demands
on processing speed and scalability that traditional computing systems can no
longer efficiently handle. Conventional von Neumann architectures, which separate
data storage from processing units, face significant limitations due to frequent
back-and-forth data transfers between the CPU and memory. This inefficiency
creates performance bottlenecks and hampers energy efficiency, challenges that
are magnified by the vast datasets utilized in Artificial Intelligence (AI) tasks. To
overcome these obstacles, new computing platforms tailored specifically for AI
have emerged. These domain-specific systems, called hardware accelerators, offer
significant power and performance gains by addressing critical issues such as the
"memory wall" and "power wall", enabling them to manage the computational load
more effectively than general-purpose architectures [1].

In this thesis, starting from the sequential architecture of a 2D-Convolution
hardware accelerator realized in a previous work [2], the corresponding hierarchical
architecture is implemented leveraging High-Level Design (HLD) and Embedded
Scalable Platform (ESP).

• HLD allows the designer to implement loosely-timed or un-timed behavioral
descriptions C/C++ of the accelerator, concise and easy to debug, which can
be synthesized into RTL using High-Level Synthesis (HLS) tools like Catapult
HLS by Siemens [3].

• The ESP platform, developed by the Columbia University, supports HLS-based
flows and facilitates the seamless integration of the accelerator’s architecture
into an FPGA-based prototype of a complex System-on-Chip (SoC), basically
composed by a processor tile, a memory tile, an accelerator tile and an auxiliary
tile [3].

In particular, in order to obtain the hierarchical architecture, where all the phases
performed by the hardware accelerator (configuration, load, compute, store) are
implemented inside functions running in parallel, specific coding style and HLS di-
rectives are employed. Once the architecture is validated through C++ simulations,

ii

synthesized through Catapult and integrated into a SoC using ESP, the bitstream
of the SoC is generated using Xilinx Vivado and uploaded into the FPGA. Together
with the hierarchical implementation of the accelerator, the previous sequential
implementation [2] is validated and synthesized too, to validate some functionalities
that were not tested in the previous work [2] and to obtain a version that can
be compared with the hierarchical one. Finally, FPGA deployment is performed
involving the use of a bare-metal application that implements a tiling algorithm
developed in a previous work [2]. Specifically, for the tests on the hardware, two
different layers are utilized, and various tiling strategies are applied. The results
demonstrate that the hierarchical architecture improves the performance of the
sequential architecture [2] by approximately 33%. They also indicate that the
hierarchical accelerator achieves optimal performance when the number of tiles to
process is relatively low.

iii

Acknowledgements

I would like to extend my heartfelt gratitude to my family and friends for their
constant support and encouragement throughout the years.

Additionally, I would like to express my sincere thanks to my supervisors, Prof.
Mario Roberto Casu and Dr. Luca Urbinati, for giving me the opportunity to work
on such an interesting and rewarding project and for their essential guidance and
assistance.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Hardware Accelerators 1

2 Embedded Scalable Platform (ESP) 6
2.1 The ESP Architecture . 7
2.2 The ESP Methodology . 9

3 Summary of previous work 14
3.1 2D-Conv Accelerator Based on the Sum-Together Multiplier 15
3.2 Architecture of the 2D-Conv NN . 17

3.2.1 Software Implementation: Tiling Algorithm 17
3.2.2 Hardware Implementation: Sequential Architecture 22

3.3 Results . 24

4 2D-Convolution Accelerator: Hierarchical Architecture 25
4.1 Output Quantization . 25

4.1.1 Uniform Integer Quantization UIQ 26
4.1.2 Integer-Only DNN Kernels 27
4.1.3 ST Based 2D-Conv Accelerator Design: UIQ Variables . . . 28

4.2 Hierarchical Architecture . 29
4.2.1 Accelerator Interface . 29
4.2.2 Top-Level Function . 32
4.2.3 Configure Function . 36
4.2.4 Load Function . 37
4.2.5 Compute Function . 41
4.2.6 Store Function . 44

vi

5 C++ Simulations, High-Level Synthesis, FPGA Implementation
and Results 47
5.1 C++ Simulation . 48
5.2 High-Level Synthesis and Co-Simulation 52
5.3 FPGA Prototyping and Validation 57
5.4 Performance Results . 60

6 Conclusions 65

Bibliography 67

vii

List of Tables

5.1 HW and SW performance results for an average DNN layer from [18] 63
5.2 HW and SW performance results for the last layer of MobileNet . . 64

viii

List of Figures

1.1 Highly-parallel compute paradigms: temporal architecture (on the
left) and spatial architecture (on the right). Source [4]. 2

1.2 Read and write access per MAC. Source [4]. 3
1.3 Memory hierarchy and data movement energy. Source [4]. 4
1.4 Hardware Accelerator architecture. Source [5]. 4

2.1 An instance of an ESP SoC architecture with a 4×4 tile grid. Source
[8]. 8

2.2 Agile SoC design and integration flows in ESP. Source [3]. 9
2.3 HLS-based accelerator design in ESP. Source [3]. 11
2.4 High Level Flow. Source [9]. 11
2.5 HLS-based accelerator’s design and integration flow in ESP. Source [8]. 13

3.1 Generic ST multiplier. Source [11]. 15
3.2 Configurations of a ST multiplier. Source [11]. 15
3.3 Working principle of the 2D-Conv accelerator based on the ST

multiplier. Source [11]. 16
3.4 Tiling of the weight tensor across output channel dimension. Source

[2]. 19
3.5 Tiling of the input/weight tensor across input channel dimension.

Source [2]. 19
3.6 Tiling of the input tensor across the height dimension. Source [2]. . 20
3.7 Tensor data organization in external memory. Source [2]. 21
3.8 Organization of the tensors in external memory. Source [2]. 21
3.9 Interface for a generic ESP accelerator. Source [15]. 22
3.10 2D-convolution Accelerator: sequential architecture. Source [13]. . . 23

4.1 Interface for a generic ESP accelerator. Source [15]. 30
4.2 2D-convolution Accelerator: hierarchical architecture. Source [13]. . 33

5.1 C++ Testbench simulation result of the hierarchical architecture. . 52
5.2 C++ Testbench simulation result of the sequential architecture. . . 52

ix

5.3 Loops inside the config function, hierarchical architecture. 55
5.4 Loops inside the load function, hierarchical architecture. 55
5.5 Loops inside the compute function, hierarchical architecture. 56
5.6 Loops inside the store function, hierarchical architecture. 56
5.7 Focus on the pipelined and unrolled loops, sequential architecture. . 56
5.8 RTL/C++ co-simulation result, hierarchical architecture. 57
5.9 RTL/C++ co-simulation waveforms, hierarchical architecture. . . . 57
5.10 RTL/C++ co-simulation result, sequential architecture. 57
5.11 RTL/C++ co-simulation waveforms, sequential architecture. 58
5.12 SoC design in the ESP GUI with the hierarchical architecture of the

2D-Conv accelerator. 58
5.13 2D-Conv results in FPGA, hierarchical architecture. 60
5.14 2D-Conv results in FPGA, sequential architecture. 61

x

Chapter 1

Hardware Accelerators

Classical philosophy once described human thought as the mechanical manipulation
of symbols, and for centuries, people have aspired to create artificial beings with
intelligence and consciousness. This was the foundation of what we now call
Artificial Intelligence (AI). In 1950, Alan Turing proposed "the imitation game"
(now known as the Turing Test), the mathematical possibility of creating an
intelligent machine. The 1956 Dartmouth summer research project on AI officially
marked the beginning of AI as a research field. Since then, AI has seen periods of
both progress and decline. Recently, with the advent of big data and the growing
computing power, AI has surged in importance, attracting widespread attention
and investment. Machine Learning (ML) techniques have been successfully applied
to numerous challenges in both academia and industry [1].

Originally, since the biological brain is considered as the most complex and
efficient “machine”, ML algorithms sought to mimic its behavior. Like biological
nervous systems, ML algorithms are composed of neurons and synapses responsible
for information processing and feature extraction. Various neuron models, such
as the McCulloch–Pitts, Sigmoid, and Rectified Linear Unit (ReLU), are used for
nonlinear feature extraction and Neural Network (NN) training [1].

Despite its tremendous potential for ML’s devlopment, the explosive growth
in big data applications places significant demands in terms of processing speed
and scalability on traditional computing systems. Conventional von Neumann
architectures separate components related to processing and data storage, are
limited by frequent data transfers between processors and memory, leading to
bottlenecks in performance and energy efficiency. These challenges are amplified
by the massive volume of data used by AI applications. As a result, computing
platforms for AI applications have emerged as domain-specific computing systems
designed to overcome these challenges, offering significant power and performance
improvements by addressing issues like the "memory wall" and "power wall" [1].
These platforms, specifically designed for AI tasks, often feature highly parallelized

1

Hardware Accelerators

computing and storage units arranged in a two-dimensional way (2D) to facilitate
common matrix-vector operations in NN. At the core of their innovation three key
pillars lie: biological theory foundation, hardware design, and algorithms (software)
[1].

As this thesis centers on accelerating 2D Convolutional Neural Networks (2D
CNNs), from now on we will focus on the hardware implementation of this algorithm.

The main component in convolutional layers are Multiply-And-Accumulate
(MAC) operations, which lend themselves well to parallelization. Systems often
utilize highly-parallel computing paradigms to achieve optimal performance, with
both temporal and spatial architectures being common approaches [4].

Figure 1.1: Highly-parallel compute paradigms: temporal architecture (on the
left) and spatial architecture (on the right). Source [4].

Temporal architectures are typically found in CPUs and GPUs. These archi-
tectures enhance parallelism relying on centralized control of multiple Arithmetic
Logic Units (ALUs), which access data from the memory hierarchy but cannot
directly communicate with each other [4].

On the other hand, spatial architectures utilize dataflow processing, where
ALUs are organized into a processing chain and pass data directly between one
another. Each ALU can sometimes be equipped with its own control logic and local
memory, such as a scratchpad or register file, effectively turning it into a Processing
Engine (or Processing Element) (PE). Spatial architectures are widely used for

2

Hardware Accelerators

the implementation of CNNs, particularly in Application-Specific Integrated Circuit
(ASIC) and Field-Programmable Gate Array (FPGA) designs, which are also called
hardware accelerators [4]. The main goal of hardware acceleration is to enhance
computational speed by employing custom-designed hardware tailored for specific
routines or algorithms [5].

For CNNs, memory access is the primary bottleneck during processing. Each
MAC operation requires three memory reads (for the filter weight, feature map
activation, and partial sum) and one memory write (for the updated partial sum),
as shown in Fig. 1.2. In the worst-case scenario, all of these memory accesses
would rely on off-chip DRAM, significantly impacting both throughput and energy
efficiency [4]. Given the intensive computations and extensive external data access
required by CNN algorithms, CPUs and GPUs implementations struggle to meet
real-time demands [6].

Figure 1.2: Read and write access per MAC. Source [4].

Spatial architectures, offer a solution to reduce the energy cost associated with
data movement. This is achieved by incorporating multiple levels of local memory
hierarchy with varying energy costs, as illustrated in Fig. 1.3. The hierarchy
includes a large global buffer of several hundred kilobytes that interfaces with the
DRAM, an inter-PE network that allows data to be passed directly between ALUs,
and a small Register File (RF) within each Processing Element (PE), typically only
a few kilobytes in size. These layers of memory hierarchy improve energy efficiency
by enabling low-cost data access. For instance, retrieving data from the RF or
neighboring PEs consumes 1 to 2 orders of magnitude less energy than fetching it
from the DRAM [4].

The hardware accelerator architecture is illustrated in Fig. 1.4. This setup
allows the CPU to handle other tasks while the hardware accelerator takes over
the computation for the specific routine. The CPU’s involvement is limited to
initiating the co-processor and waiting for the results. To achieve performance
gains, the overhead of communicating with the co-processor must be lower than

3

Hardware Accelerators

Figure 1.3: Memory hierarchy and data movement energy. Source [4].

Figure 1.4: Hardware Accelerator architecture. Source [5].

the cost of performing the computation itself [5].
Additionally, FPGAs offer deterministic performance and latency, as long as the

application permits. Unlike CPUs and GPUs, which depend on complex protocol
stacks and are subject to Operating System (OS) resource scheduling, FPGAs can
provide precise latency measurements since they operate independently from an
OS scheduler. Moreover, FPGAs are highly reliable and require less development

4

Hardware Accelerators

time compared to ASICs. This makes them a superior option for hardware-based
acceleration tasks, especially in the early stage of deployment, for small-scale
productions and for their reconfiguration capabilities that allow to deploy different
AI algorithms over time [5].

5

Chapter 2

Embedded Scalable Platform
(ESP)

One of the key effects of the slowdown of Moore’s Law and the end of Den-
nard scaling has been the increasing complexity of chip design. To achieve both
performance and energy efficiency, heterogeneous System-On-Chip (SoC) architec-
tures—combining multicore processors and specialized hardware accelerators—have
become the preferred solution across various application domains. The costs of
SoC development rise, therefore to reduce them there is a growing need for new
methodologies and platforms that emphasize design reuse. Open-Source Hardware
(OSH) offers a valuable solution to support design reuse by fostering innovation
and collaboration between industry and academia. The success of the RISC-V
open standard Instruction Set Architecture (ISA) has driven to a wave of new
SoC designs. With more OSH components available, the open-source community
requires Computer-Aided Design (CAD) methodologies to transform these into
domain-specific SoC designs. These methodologies must emphasize flexibility, ro-
bustness, and scalability, while supporting the logic design, system-level integration
and physical design of these complex systems [7].

A methodology is:
• flexible when it allows seamless integration of diverse OSH components across

different technologies and tools while meeting performance, power, and area
(PPA) requirements [7].

• robust if it ensures functional correctness from Register-Transfer Level (RTL)
specification to final implementation by detecting design issues early and
minimizing errors [7].

• scalable when it is able to manage the growing complexity of SoC designs

6

Embedded Scalable Platform (ESP)

without exponential increases in computational resources, engineering effort,
or design time, ensuring efficiency in large-scale projects [7].

A flexible, robust and scalable methodology for the agile physical design and
programming of heterogeneous FPGA-based SoC architectures is build on the ESP
(Embedded Scalable Platform) platform. ESP is the result of more than a decade of
research at Columbia University [7].

The following explanation about the ESP Architecture and Methodology is
taken from references [7] [3] [8] [9].

2.1 The ESP Architecture
The ESP architecture is designed as a heterogeneous grid of tiles, Fig. 2.1. For
a specific application domain, the architect determines the structure of the SoC
by selecting the number and type of tiles. The tiles are of four types: processor
tiles, accelerator tiles, memory tiles for communication with the main memory,
and auxiliary tiles for peripherals (such as UART and Ethernet) or system utilities
(such as the interrupt controller and timer). To ensure high scalability, ESP tiles
are connected through a multiplane NoC (Network on Chip).

Each tile’s content is encapsulated in a socket, which connects the tile to the
NoC and implements the platform services. This socket-based design approach,
which decouples the design of the tile from the design of the rest of the system, is a
key element of the agile ESP SoC design process. It simplifies the tile development
by handling all the system integration tasks and facilitates the reuse of the blocks.
For example, the ESP accelerator socket provides services like Direct Memory
Access (DMA), cache coherence, performance monitoring and distributed interrupt
requests.

Unlike other open-source hardware platforms, ESP adopts a system-centric
perspective rather than a processor-centric one, where processors and accelerators
are equally prioritized within the SoC.

Let us now analyze more in detail the different types of tiles that the ESP tool
comprises:

• Processor Tile: Each processor tile includes a processor core selected at
design time from the available options. Currently, the choices are between the
32-bit SPARC Leon3 core, the 32-bit RISC-V Ibex core, and the 64-bit RISC-V
CVA6 (formerly known as Ariane) core. All the cores support Linux and
feature their own private L1 caches. Processor integration into the distributed
ESP system is seamless, requiring no ESP-specific software patches to boot

7

Embedded Scalable Platform (ESP)

Figure 2.1: An instance of an ESP SoC architecture with a 4×4 tile grid. Source
[8].

Linux. Each processor operates on a local bus and remains unaware of the
broader system. In addition, the socket of this tile augments the processor
with a private L2 cache of configurable size. The IO/IRQ NoC plane supports
Input-Output (IO) and Interrupt Request (IRQ) channels, typically used by
processors and accelerators to communicate with each other.

• Memory Tile: Each memory tile includes a channel to the external DRAM,
and the number of memory tiles can be configured during the design phase.
Typically, this number ranges from one to four, depending on the size of the SoC.
The necessary hardware logic for partitioning the addressable memory space
is automatically generated, and this partitioning is completely transparent
to the software. Additionally, when the ESP cache hierarchy is enabled, the
memory tile contains the ESP Last-Level Cache (LLC) that can handle DMA
requests directly from accelerators.

• Accelerator Tile: This tile contains the specialized hardware of a loosely-
coupled accelerator, which executes its tasks independently from the processors
while exchanging large datasets with the memory hierarchy. Private Local
Memories (PLMs) are also present inside each accelerator tile to store local data
and are generally much smaller than the external memory. To be integrated
into the ESP tile, accelerators must follow a simple interface that includes
load/store ports for latency-insensitive channels, signals to configure and start
the accelerator and an acc_done signal to notify completion and trigger an
interrupt to the processors. Newly designed ESP accelerators created by
using one of the supported design flows, automatically adhere to this interface.
For pre-existing accelerators, ESP provides a third-party integration flow.

8

Embedded Scalable Platform (ESP)

In this latter case, the accelerator tile includes only a subset of the proxy
components, as standard bus adapters replace configuration registers (DMA for
memory access and Translation Lookaside Buffer (TLB) for virtual memory).
The platform services provided by the socket, such as address translation,
DMA, configuration registers and coherence, relieve designers from the need
to reimplement fundamental capabilities, when they want to focus on the
optimization of their accelerators.

• Auxiliary Tile: The auxiliary tile hosts all shared peripherals in the system,
except for memory, including a digital video interface and a monitor module
that collects various performance counters. For this reason the auxiliary tile’s
socket is the most complex, since it must provide a wide range of platform
services for the devices it hosts.

2.2 The ESP Methodology
ESP allows to quickly create FPGA-based prototypes of complex SoCs, facilitating
the seamless integration of third-party OSH components. SoC architects can also
integrate accelerators developed using a variety of supported design flows, most of
which are automated and supported by commercial CAD tools. As illustrated in
Fig. 2.2, the accelerator design flow (on the left) assists in building an Intellectual
Property (IP) library, while the SoC flow (on the right) automates the integration
of heterogeneous components into a complete SoC.

Figure 2.2: Agile SoC design and integration flows in ESP. Source [3].

9

Embedded Scalable Platform (ESP)

The ultimate goal of this process is to expand the accelerator library with new
elements that can be automatically instantiated within the SoC flow. Designers
have the flexibility to work at different abstraction levels using various specification
languages, including:

• Cycle-accurate RTL descriptions in languages such as VHDL, Verilog, Sys-
temVerilog, or Chisel.

• Loosely-timed or un-timed behavioral descriptions in SystemC or C/C++,
which can be synthesized into RTL using High-Level Synthesis (HLS) tools.
ESP currently supports the three major commercial HLS tools: Cadence
Stratus HLS, Siemens Catapult and Xilinx Vivado HLS.

• Domain-specific libraries for deep learning, such as Keras TensorFlow, PyTorch
and ONNX.

For HLS-based flows, ESP simplifies the work of accelerator designers by
offering ESP-compatible accelerator templates, HLS-ready skeleton source code,
various examples and step-by-step tutorials for each flow. The increasing adoption
of HLS from C/C++ code can be attributed to several factors:

• The extensive codebase of algorithms written in these languages.

• The simplified hardware/software co-design (as most embedded software is in
C).

• The significantly faster functional verification of the C/C++ source code
compared to RTL simulations.

The goal for an ESP accelerator designer is to create a well-structured description
that partitions the source code into concurrent functional blocks. The aim is to
produce a synthesizable source code that enables exploration of a wide design
space by evaluating various micro-architectural and optimization choices. Fig. 2.3
illustrates the relationship between the C/C++/SystemC design space and the RTL
design space. HLS tools provide a rich set of configuration knobs, represented by
the green arrows, which allow for the generation of multiple RTL implementations,
each offering different trade-offs between cost and performance. Designers can also
make manual transformations (orange arrows) to explore the design space while
maintaining functional integrity. For example, they can expose parallelism, by
eliminating false dependencies, or reduce resource usage, by encapsulating code
sections with similar behavior into reusable functions.

There are many HLS tools. Catapult HLS by Siemens is the one we used
in this thesis to design our accelerator. As illustrated in the red box in Fig. 2.4,
starting from the design source code in C, C++ or SystemC describing the structure

10

Embedded Scalable Platform (ESP)

Figure 2.3: HLS-based accelerator design in ESP. Source [3].

and behavior of the design, Catapult is able to synthesize interfaces, data structures
and loops for a targeted ASIC or FPGA technology, ultimately producing an
optimized RTL implementation that is ready for simulation and gate-level synthesis
and includes the following files:

• HDL files (VHDL, Verilog).

• RTL simulation and synthesis scripts—Simulation and synthesis scripts for
specified downstream tools such as Synopsys DesignCompiler.

• Analysis reports.

Figure 2.4: High Level Flow. Source [9].

11

Embedded Scalable Platform (ESP)

Let us now analyze all the steps of the HLS-based accelerator’s design and
integration flow in ESP, Fig. 2.5.

• Accelerator design flow:

– Generate skeleton: Designers can automatically generate a fully func-
tional, HLS-ready accelerator skeleton by specifying a small set of param-
eters. These include a unique name and ID, the desired HLS tool and
details about the accelerator’s input and output data. The skeleton is
provided by ESP with a unit testbench, synthesis and simulation scripts,
a bare-metal test application and a Linux device driver accompanied by a
test application.

– Customize: Starting from the automatically generated skeleton, design-
ers need to customize the computational part of the accelerator. They are
also responsible for adjusting the input-generation and output-validation
functions in the unit testbench, as well as in the bare-metal and Linux
test applications.

– Generate RTL with HLS: Designers can automatically generate one
or more RTL implementations of an accelerator with a simple command
that executes the selected HLS tool. The RTL code generated by HLS is
automatically added to the ESP library of IP blocks for integration.

– Test: The validation step involves running the accelerator’s unit testbench,
which simulates the behavior of the accelerator’s tile socket.

• SoC design flow:

– Software build: ESP automates the creation of both the bare-metal
binaries and the Linux image for testing, together with their Make targets.

– Soc configuration: The ESP Graphical User Interface (GUI) assists
designers in configuring an SoC by allowing them to choose the number,
type, and position of tiles, along with other design options such as processor
type or cache size. Based on these configurations, ESP generates the
complete RTL implementation of the SoC, including the tile sockets
required by each accelerator.

– FPGA prototyping: ESP users can prototype their SoC on any sup-
ported FPGA board without requiring prior FPGA experience. The
generation of the bitstream file, the programming script and the software
deployment are fully automated. FPGA prototyping helps identify and
address potential design issues and performance bottlenecks in a timely
manner.

12

Embedded Scalable Platform (ESP)

– Full-system simulation: This simulation encompasses both hardware
and software components within a virtual environment. This type of
simulation facilitates comprehensive testing and evaluation of the SoC’s
functionality and performance and the interactions between its various
components. By performing a full-system simulation, potential issues or
conflicts can be detected and resolved before the physical implementation
of the SoC.

Figure 2.5: HLS-based accelerator’s design and integration flow in ESP. Source
[8].

13

Chapter 3

Summary of previous work

In this chapter, the thesis of Diego Ricardo Bueno Pacheco, "Efficient Tiling Archi-
tecture for Scalable CNN Inference: Leveraging High-Level Design and Embedded
Scalable Platform" [2], is summarized, since it represents the starting point for this
actual thesis.

As the demand for deep learning and computer vision applications continues
to grow, there is an increasing need for more efficient and scalable solutions to
meet the computational requirements of advanced CNN models. Additionally, the
push to extend these applications to a wider range of devices without relying on
cloud-based solutions has resulted in a shift towards performing computations on
edge devices. However, this shift poses a significant challenge due to the limited
computational power and memory resources available on such devices. Overcoming
this challenge necessitates the use of hardware accelerators and the division of
tensors into smaller, manageable tiles that fit within memory constraints.

In this context, the thesis in [2] presents an innovative tiling architecture
designed to enable large-scale CNN inference, with a specific focus on leveraging the
capabilities of High-Level Design (HLD) and ESP. The tiling algorithm considers
several important factors, including the organization and addressing of tensors
in the external memory, the maximum number of processing elements available
in the accelerator (e.g., MAC units), the required precision for MAC operations
(e.g., 16, 8, or 4 bits), and the memory capacities of PLMs within the accelerator.
These considerations are carefully incorporated into the tiling algorithm to optimize
performance and resource usage. The proposed architecture is thoroughly tested
through RTL simulation and FPGA deployment, demonstrating its practicality
and effectiveness in real-world applications.

14

Summary of previous work

3.1 2D-Conv Accelerator Based on the Sum-Together
Multiplier

One effective way to balance performance and accuracy when working with Deep
Neural Network (DNN) layers is through the use of hardware accelerators that
integrate Precision-Scalable MAC units (PSMACs). One approach to PSMACs
is based on the Sum-Together (ST) multiplier [10], which is described in Fig.
3.1 and Fig. 3.2. The following explanation about it is taken from the references
[10] and [11]. Depending on the CONFIG configuration signal, the multiplier can
perform either one 16×16, one 16×8 multiplication, two 8×8, two 8×4 or four 4×4
dot products in parallel, utilizing signed operands packed into the 16-bit inputs A
and B. Based on the configuration, either a portion or the entire multiplier’s 32-bit
output P will contain the result of the operation.

The focus on these specific precisions is due to several reasons. In applications
demanding high accuracy, 16-bit quantization of activations and weights is a
common choice. This is particularly relevant for safety-critical applications such
as image segmentation in foggy conditions for autonomous driving. The 8-bit
precision, often the default for quantizing DNNs to maintain performance without
degradation, is widely used. For scenarios requiring smaller bit-widths, 4-bit
quantization techniques provide for most applications a good balance between
reducing model size and maintaining performance.

The asymmetric configurations (such as 16×8 and 8×4) are included because
they allow for efficient packing of lower-precision operands, like DNN weights, while
maintaining the precision of other operands, like DNN activations. This helps
reduce the memory footprint of ML models.

Figure 3.1: Generic ST multiplier.
Source [11].

Figure 3.2: Configurations of a ST mul-
tiplier. Source [11].

15

Summary of previous work

Let us now analyze the working principle of the 2D-Conv accelerator imple-
mented that integrates ST multipliers within its MAC units. Fig. 3.3 illustrates
the various access patterns (highlighted in red) employed by the accelerator to read
data from the activation (blue) and weight (orange) tensors, and how these data
are packed into the 16-bit inputs of the ST multipliers. For each filter (orange)
with C kernels, a MAC unit in the 2D-Conv accelerator perform the multiplications
of the C channels of the input tensor (blue) with the corresponding weight kernels
and the channel-wise accumulation of these multiplications. At full precision (N =
1), the ST multiplier in the MAC unit processes the activations and weights from
one input channel at a time. However, at lower precision, the ST multiplier is fed
with pairs of activation and weight data from either two (N = 2) or four (N = 4)
input channels simultaneously. By utilizing the dot-product capability of the ST
multiplier, this approach ideally reduces the number of MAC cycles to C/N and
lowers the latency, scaling at 1/N.

Figure 3.3: Working principle of the 2D-Conv accelerator based on the ST
multiplier. Source [11].

16

Summary of previous work

3.2 Architecture of the 2D-Conv NN
In this section the software implementation will be explained, focusing on the
tiling algorithm used in [2]. Then, the hardware implementation of the sequential
architecture of the accelerator will be also addressed.

3.2.1 Software Implementation: Tiling Algorithm
Several techniques have been developed to reduce the memory demands of CNNs and
minimize the transfer of partial results between intermediate layers, which are often
stored in off-chip memory and then brought back to on-chip memory. This back-and-
forth process increases both latency and energy consumption. Tiling methods are a
set of strategies that divide CNN operations into smaller chunks, or tiles, helping to
strike a balance between computational efficiency and memory constraints, enabling
real-time, energy-efficient processing of deep neural networks. However, choosing
the right tiling method and optimizing its implementation requires trade-offs
between memory usage, processing speed, and model performance, often involving
careful experimentation and fine-tuning for specific applications.

The tiling algorithm implemented takes into account several key aspects of the
accelerator architecture, as well as the topological characteristics, dimensions of
the tensors, typically found in CNN layers. These elements are used as inputs to
the tiling algorithm to determine tile sizes and ordering constraints. The main
considerations can be summarized as follows:

• Primary Objective: The goal of the tiling algorithm is to fit the input, weight
and output data into the accelerator’s PLMs. To achieve this, the algorithm
must know the various sizes of these PLMs, allowing it to recursively check if
a given tile will fit.

• Fixed Loop Bounds: The accelerators’ for loops should have fixed upper limits,
where each loop works on one dimension of the tensor. This implies that each
tensor dimension has a maximum value supported by the accelerators, and
these values must be considered when determining tile dimensions.

• MAC Unit Distribution: The accelerators contain multiple MAC units. Each
Processing Element (PE) operates on a different set of data. For example, in
2D convolution (2D-Conv), each PE works on a different output channel.

• Precision-Scalable Accelerator Consideration: The tiling architecture assumes
the use of a precision-scalable (PS) accelerator based on ST multipliers. As
explained in Sec. 3.1, when operating in low-precision mode, multiple input
and weight values are fetched for each PS multiplier. For 2D-Conv, this involves

17

Summary of previous work

up to 4 channels at the lowest precision. To maximize the benefits of the PS
accelerator, the tiling algorithm must consider the different values mentioned
in the previous bullet points and split the input or weight tensors according to
the precision configuration, allowing for efficient use of low-precision modes.

• Data Replication in Tiling: When tiling the input tensor along the height
or width dimensions, sliding process used in convolution requires replicating
portions of the data in adjacent tiles to ensure correct processing. Therefore,
this algorithm avoids tiling the input tensor in the width dimension and avoids
tiling the weight tensor in both the width and height dimensions.

With these requirements in mind, a set of inequalities is derived for each
accelerator, taking inspiration from [12]. Specifically, three memory size conditions
must be satisfied for each PLM used. The inequalities are:

PLMIN ≥ HIN ∗ WIN ∗ CIN (3.1)

PLMW ≥ Hkernel ∗ Wkernel ∗ CIN ∗ COUT (3.2)

PLMOUT ≥ HOUT ∗ WOUT ∗ COUT (3.3)

Inequality 3.1 evaluates if the input PLM size is is greater or equal to the
multiplication of the input tensor dimensions: height, width and channel dimension.
Inequality 3.2 evaluates if the weight PLM size is greater or equal to the multipli-
cation of the weight tensor dimensions: kernel height, kernel width, channel input,
and channel output dimension. Inequality 3.3 evaluates if the output PLM size
is greater or equal to the multiplication of the output tensor dimensions: height,
width and channel dimension. These conditions are evaluated each time a tile is
processed. If all conditions are met, the tiling algorithm can generate a feasible tile
for the accelerator. If not, the memory constraints need to be relaxed.

Tiling Algorithm Steps:

• Tiling the Output Channel Dimension: The process begins by dividing the
output channel dimension of both the weight and output tensors. To maximize
the accelerator’s performance, the number of output channels per tile matches
the number of PEs in the accelerator. If the number of PEs exceeds the
number of output channels, no tiling is performed. This allows the accelerator
to fully utilize its internal resources and process data in parallel. Fig. 3.4
shows a weight tensor with two output channels represented as two cubes.

18

Summary of previous work

Figure 3.4: Tiling of the weight tensor across output channel dimension. Source
[2].

• Tiling the Input Channel Dimension: The next step is to tile the input channel
dimension of both the input and weight tensors. In this step, the tensors are
recursively divided by two until they meet the constraints defined in Inequalities
3.1 and 3.2, or until a minimum input channel value is reached. This minimum
value varies based on the precision configuration of the accelerator, which
determines how many input channels can be processed simultaneously. For
example, in a low precision setting (i.e., 4-bit for activations and weights), the
accelerator processes up to 4 different values from distinct input channels, so
the minimum input channel value is 4. For medium precision (i.e., 8-bit for
activations and weights), the value is 2, and for full precision (i.e., 16-bit for
activations and weights), the value is 1, as the accelerator processes one value
at a time from the input channels. Fig. 3.5 illustrates a tensor that has been
tiled along the input channel dimension, with the tensor divided in half.

Figure 3.5: Tiling of the input/weight tensor across input channel dimension.
Source [2].

19

Summary of previous work

• Tiling the Height Dimension: If the tiled tensor still does not fit in memory,
the next step involves tiling the input and output tensors along the height
dimension. To simplify the handling of data replication between adjacent tiles,
a fixed-height length is used. This height is set to match the height of the
kernel, which avoids the complexity of calculating a compatible tile dimension
with the size of the kernel and the stride used in convolution operation. This
approach also ensures that no portion of the tensor is unnecessarily included
due to tile size mismatches with the kernel or stride. Tiling across the width
dimension is avoided to prevent data replication in adjacent tiles, which can
have some part of the input data in one and the rest of the data in the next tile.
Fig. 3.6 illustrates a tensor that has been tiled along the height dimension,
with the tile height matching the kernel height.

Figure 3.6: Tiling of the input tensor across the height dimension. Source [2].

• Additional Tiling of the Output Channel Dimension: If memory constraints
still aren’t met at this stage, the final step is to tile the output channel
dimension once more. In this case, performance is sacrificed in favor of
functionality. The tile is divided by two, conditions are rechecked, and this
process is repeated until only one output channel remains.

Once the tile sizes are determined, the next step is to decide the order in which
the tiles will be processed to optimize system performance and minimize memory
transfers when partial results are generated. Additionally, the addressing of tiles
must be managed to ensure correct data access and that the output is stored in the
appropriate locations. Fig. 3.7 illustrates how tensor data is stored in the external
memory for the proposed architecture. The figure represents an example of a tensor
with the following dimensions: 4x2x2x2 (Width - Height - Input Channels - Output
Channels). The values are packed first considering the width dimension or the
rows, then each row is packed considering the height dimension. Next, the input

20

Summary of previous work

channel dimension is grouped, placing the tensor Width-Height-Input_Channel
consecutively. Finally, the outermost index represents the output channels, where
the last packing is done. This is the most complex case, typically involving a weight
tensor. For input and output tensors, only the first three dimensions are considered,
though the packing order remains the same.

Figure 3.7: Tensor data organization in external memory. Source [2].

Fig. 3.8 depicts the external memory organization for the input, weight and
output tensors. To address each tensor, three pointers are used, each pointing
to the start of its respective memory region. These pointers serve as references
when a new tile needs to be addressed. The software responsible for invoking the
accelerator to perform the convolution operation must also calculate the pointer
offsets to correctly address the corresponding tiles. Consequently, the three pointers
are continuously updated with the calculated offsets. Additionally, the tile sizes
are verified in case there is an uneven division during the final iteration.

Figure 3.8: Organization of the tensors in external memory. Source [2].

The tiling algorithm has been implemented in C and can be executed offline,
as the sizes of the accelerator’s PLMs are known beforehand. This means the tile
sizes can be calculated prior to the inference process, reducing computation time
for the processor.

21

Summary of previous work

3.2.2 Hardware Implementation: Sequential Architecture
This section explains the hardware implementation of the accelerator used in the
tiling architecture, obtained referencing to previous works [13] [14]. Fig. 3.9 il-
lustrates the ESP accelerator interface and the signals required to integrate the
accelerator into the SoC. The accelerators operate in four main phases: configura-
tion, load, compute and store. The thesis of D. R. Bueno Pacheco [2] considers only
the sequential architecture of the accelerator, also called single-block architecture,
where all these four phases are executed sequentially and are implemented in a
single C++ function [15]. Instead, a hierarchical architecture where the configure,
load, compute, store phases are coded as separated C++ functions that can run in
parallel [15], can also be implemented and this is the main subject of this work.
Fig. 3.10, that has been obtained adapting to our case a figure from [13], shows
the sequential architecture of a 2D-Convolution accelerator.

Figure 3.9: Interface for a generic ESP accelerator. Source [15].

The accelerator implemented is the PS accelerator proposed in [10]. As mentioned
in Sec. 3.2.1, it contains multiple PEs, each working independently on a different
output channel. Each PE consists of PSMAC units based on ST multipliers,
enabling configurable precision for convolution computations. Additionally, the
accelerator supports output data quantization for three different bit-widths: 4, 8
and 16 bits.

Configuration Phase: During this phase, the configuration parameters stored
in the memory-mapped registers, set by the processor before starting the accelera-
tor, are retrieved by the accelerator via the conf_info port. According to ESP
accelerator specifications, the maximum number of user-defined registers is 14 [16].
Since the proposed architecture requires at least 20 parameters, some of them
have been packed into a single register when written by the processor, and later
unpacked using masks and bitwise or and operations when read by the accelerator.
Once the parameters are unpacked and read, they are passed to the Load phase.

Load Phase: In this phase, the input and weight data of the corresponding

22

Summary of previous work

Figure 3.10: 2D-convolution Accelerator: sequential architecture. Source [13].

tile are transferred from external memory to the accelerator’s PLMs. Then, the
parameters required to perform the quantization of the results of the convolution
are read and stored in their respective variables and they are ready to be used
for the computation phase. These data transfers are handled by the DMA engine
already provided by ESP. Once the data is loaded into the PLMs, it must be
arranged to meet the requirements of the computation unit. This unit requires the
data to be split into four groups, each responsible for handling 4 bits of one MAC
operand. Depending on the precision configuration selected for the ST multiplier,
the operands can be formed in the following ways:

• One 16-bit value from a single input channel.

• Two 8-bit values from two input channels.

• Four 4-bit values from four input channels.

23

Summary of previous work

The packing for the weight data is similar and follows [11].
Computation Phase: This phase is essentially the version of the accelerator

developed in [10] and [11] which has been adapted to the ESP accelerators guide-
lines [15]. For a more in-depth understanding of the internal architecture, it is
recommended to refer to the original papers.

Store Phase: At this stage, all the computed and quantized values are stored
in the output PLM and transferred sequentially to the external memory through
the DMA.

3.3 Results
In [2], the correctness of the tiling algorithm described above has been tested
through both C and RTL simulations, followed by further evaluation on an FPGA
using the ESP framework. Additionally, the performances of hardware accelerators
using the tiling algorithm have been compared with the performances of the RISC-
V processor in computing convolution operations. The results show that the
accelerator performs better then the RISC-V processor bare-metal code when the
number of tiles is low and the tile sizes are large. In such cases, the accelerator
better utilizes each DMA transaction, transferring more data in each transaction
while spending less time on configuring the accelerator or transferring data with
the DMA. The findings suggest that larger PLMs are preferable, as they allow
for fewer and larger tiles. Conversely, when the number of tiles increases and tile
sizes decrease, the tiling and DMA transaction overhead becomes more significant,
negatively impacting the overall performance of both the accelerator and the tiling
algorithm.

We will observe how the implementation of a hierarchical design (with pipelined
config, load, compute and store phases using dataflow directives) will improve
performances.

24

Chapter 4

2D-Convolution Accelerator:
Hierarchical Architecture

In this chapter, the principles underlying the quantization algorithm applied to
the output values will be described. Then, the implementation of the hierarchical
architecture of the ST based 2D-Convolution accelerator, obtained starting from
the sequential architecture implemented in the previous thesis work [2] and reported
in Ch. 3, will be explained and analyzed.

4.1 Output Quantization
The algorithm that performs the quantization on the output values of the accelera-
tor was already present in the base structure of the accelerator code from which
D. R. Bueno Pacheco started his thesis work [2]. In this section the explanation
about the quantization technique implemented in the accelerator is reported and it
is taken from the reference [11].

Quantization of deep neural networks (DNNs) has become a widely adopted
practice that reduces the numerical precision of weight parameters and activation
values within neural network layers. This technique minimizes the model’s size and
lowers memory requirements by allowing multiple low-precision feature maps and
weights to be efficiently stored within a single memory word. Consequently, it also
cuts down on data transfer costs. Furthermore, quantization can enhance inference
speed, throughput and energy efficiency by leveraging dedicated hardware like ST
multipliers.

The focus is on Uniform Integer Quantization (UIQ) [11], although numerous
other quantization methods exist [17]. This choice is guided by UIQ’s straight-
forward mathematical formulation and its availability in popular ML frameworks

25

2D-Convolution Accelerator: Hierarchical Architecture

(e.g., TensorFlow Lite).
The mathematical foundations of UIQ in the context of DNNs are now introduced.

It is important to note that, since the targets are ST-based accelerators for DNN
inference only, the focus is on UIQ for inference rather than training.

4.1.1 Uniform Integer Quantization UIQ
Given a set of real numbers within the real range [α, β], UIQ maps each x ∈ [α, β]
to an integer value xq ∈ [αq, βq] uniformly represented using b bits. The quantized
range [αq, βq] depends on the type of integer representation: for asymmetric or
symmetric signed integers, it is either [−2b−1, 2b−1 − 1] or [−2b−1 − 1, 2b−1 − 1],
respectively, while for unsigned integers, the range is [0, 2b − 1]. The quantization
process is described by the following equation:

xq = clip
3

round
11

s
x + z

2
, αq, βq

4
(4.1)

where:

• s is the scaling factor.

• z is the zero-point (i.e., the integer value that exactly represents the real
number zero).

• round is the rounding function (e.g., round-to-nearest).

• clip ensures that the output remains within the quantized range by saturating
values that fall outside the range.

The scaling factor s and the zero-point z are derived from the real and quantized
ranges as follows:

s = β − α

βq − αq

(4.2)

z = round
1βαq − αβq

β − α

2
(4.3)

The reverse operation, which maps xq back to the real range, is defined as:

x̂ = s(xq − z) (4.4)

where x̂ represents the closest real value to the original x, though it may not be
identical due to the rounding and clipping steps, which can introduce irreversible
errors.

26

2D-Convolution Accelerator: Hierarchical Architecture

The quantization mapping described so far, where the ranges are asymmetric
and z /= 0, is known as affine quantization. On the other hand, when both
ranges are symmetric (i.e., z becomes zero) the equation simplifies to a pure scale
transformation. This form of quantization mapping is commonly referred to as
scale or symmetric quantization.

Furthermore, when the scaling factor s is the same across all channels of a tensor,
it is called per-layer quantization. However, when s is a one-dimensional vector
with a distinct scalar value for each channel, this method is known as per-channel
quantization.

4.1.2 Integer-Only DNN Kernels
The expression of a Fully Connected (FC) layer is the following:

Yk = bk +
CØ

c=1
XcWc,k ∀ k ∈ [1, K] (4.5)

where X ∈ RC represents the input vector of neurons, W ∈ RK×C represents
the weight matrix, b ∈ RK represents the bias array, Y ∈ RK represents the output
array, C and K represent the number of input and output activations processed by
the FC layer, respectively.

If the equation 4.4 is applied to each of the four real variables in 4.5, determining
their quantized ranges in advance, it is possible to obtain the quantized FC
expression valid for the k-th output activation:

Yq,k = zYüûúý
(a)

+ sb

sY

(bq,k − zb)ü ûú ý
(b)

+sXsW

sY

A CØ
c=1

Xq,cWq,c,k

B
ü ûú ý

(c)

−
A

zW

CØ
c=1

Xq,c

B
ü ûú ý

(d)

−
A

zX

CØ
c=1

Wq,c,k

B
ü ûú ý

(e)

+ CzXzWü ûú ý
(f)

 ∀ k ∈ [1, K]
(4.6)

where Xq, Wq, bq, Yq represent the integer values; sX , sW , sb, sY represent the
scaling factors; and zX , zW , zb, zY represent the zero-points, associated with X, W ,
b, Y , respectively. Term (c) represents the core of the computation, the integer dot
product, while term (d) introduces additional overhead, resulting in a performance
penalty. Both must be computed online as they depend on Xq, which is only known
at runtime. On the other hand, terms (a), (b), (e), and (f) are constant and can
be computed offline. When scale quantization is applied to the weights and affine
quantization is used for the activations (a common practice in literature), both

27

2D-Convolution Accelerator: Hierarchical Architecture

zW and zb become zero, and so also terms (d) and (f), while (b) simplifies. This
assumption holds true for this work as well. Before assigning the result of the
expression to Yq, the value is rounded and clipped to ensure it fits within the desired
quantized output range for Yq, though this step is not shown here for readability.

The integer-only formulations for 2D-Convolution closely follow the FC layer
derivation [11].

4.1.3 ST Based 2D-Conv Accelerator Design: UIQ Vari-
ables

To meet a hypothetical requirement of achieving zero computational errors in
UIQ formulas, it would be necessary to use mathematical operators (such as
multipliers and adders) with extremely large bit widths. This is due to the precision
propagation through the various operations involved. However, this would lead
to impractically large accelerators or even prevent the HLS tool from generating
feasible designs. Therefore, to optimize the hardware accelerators, the bitwidth of
the C/C++ variables used in the UIQ formulas have been reduced until there is
not a performance loss greater than a certain threshold.

The UIQ formula 4.6 for the FC layer, with zW = 0 and zb = 0, is considered as
reference. The same logic can be applied to the UIQ formulas for other accelerators.
From the decomposition of (4.6) in (4.7)–(4.10) the intermediate results v1q,k, v2q,k,
v3q,k are obtained and their expressions are reported below:

v1q,k =
 CØ

c=1
Xq,cWq,c,k − zX

CØ
c=1

Wq,c,k

 (4.7)

v2q,k = sXsW · v1q,k (4.8)
v3q,k = sbbq,k + v2q,k (4.9)
Yq,k = clip(round(zY + s−1

Y v3q,k), αq, βq) (4.10)

where Yq,k represents the k-th output element, with k ∈ [1, K], quantized on
INTy bits (y = 16, 8, or 4) on the integer quantized range [αq, βq] = [−2by−1 +
1, 2by−1 − 1], and all other variables are those introduced with (4.6) in Sec. 4.1.1.
In the ST based 2D-Conv accelerator implemented in this thesis, each of these
variables is either a fixed-point or an integer number. In particular, five variables
are identified and used in the output quantization algorithm in the accelerator:

• weights crossproduct

w_cross = zX

CØ
c=1

Wq,c,k (4.11)

28

2D-Convolution Accelerator: Hierarchical Architecture

• scaling factor of inputs and weights

scaling_factor_iw = sXsW (4.12)

• bias quantized scaled

biasq_scaled = sbbq,k (4.13)

• zero point of the output
z_o = zY (4.14)

• scaling factor of the output, inverse

scaling_factor_oi = s−1
Y (4.15)

4.2 Hierarchical Architecture
In this section, that is the core of this thesis work, the high-level description (C++
implementation) of the hierarchical architecture of the accelerator will be explained
and analyzed. In particular, the thesis work [2], resumed in Ch. 3, will be used as
starting point, since it shows the developing of the sequential architecture of the
same accelerator, while the thesis works [13] and [14] will be used as references since
the explain from the very basic steps the workflow followed to implement a CNN
accelerator in ESP. Also, the ESP documentation [15] will be used as guideline.

4.2.1 Accelerator Interface
The ESP accelerator interface and the signals required to integrate the accelerator
into the SoC are the one already shown in Fig. 3.9. The picture is reported again
below, since the interface is now analyzed more thoroughly.

The interface of an ESP accelerator consists of common ports across all supported
HLS flows, with minor syntax variations depending on the tool used.

These ports allow the accelerator to:

• Communicate with the CPU via memory-mapped registers (conf_info).

• Program the DMA controller (dma_read_ctrl and dma_write_ctrl).

• Transfer data to/from the main memory (dma_read_chnl and dma_write_chnl).

• Notify task completion back to the software application (acc_done).

29

2D-Convolution Accelerator: Hierarchical Architecture

Figure 4.1: Interface for a generic ESP accelerator. Source [15].

Listing 4.1: conv2d.cpp - Accelerator Interface
1 void CCS_BLOCK(conv2d_cxx_catapult) (
2 ac_channel<conf_info_t> &conf_info ,
3 ac_channel<dma_info_t> &dma_read_ctrl ,
4 ac_channel<dma_info_t> &dma_write_ctrl ,
5 ac_channel<dma_data_t> &dma_read_chnl ,
6 ac_channel<dma_data_t> &dma_write_chnl ,
7 ac_sync &acc_done)

The interface uses:

• ac_channel: Communication channels to transfer data between the top mod-
ule and the other components.

• ac_sync: Synchronization channel, which Catapult HLS provides for specifying
standalone handshaking signals when a designer needs to control synchroniza-
tion directly.

In addition to the communication and synchronization channels, the accelerator
interface in ESP relies on specific data types:

• Configuration Registers: The configuration data is stored in memory-mapped
registers:

Listing 4.2: conf_info.hpp - Struct for configuration parameters
1 s t r u c t conf_info_t {
2 uint32_t opt ions ;
3 uint32_t offset_PE ;
4 uint32_t offset_PE_out ;
5 uint32_t offset_q_data ;
6 uint32_t pad_stride_kern ;
7 uint32_t f i l t ;
8 uint32_t o f f s e t_read_c i ;
9 uint32_t n_c ;

10 uint32_t n_h ;
11 uint32_t n_w;
12 uint32_t in_add ;

30

2D-Convolution Accelerator: Hierarchical Architecture

13 uint32_t w_add ;
14 uint32_t out_add ;
15 uint32_t f l a g s ;
16 } ;

This conf_info_t structure is used to define the configuration registers. As
already explained in Sec. 3.2.2, all the 14 user-defined registers are used,
inside which 20 parameters are packed. The meaning of these configuration
parameters is the following:

– options: This configuration register contains two parameters: CONFIG1
Configuration variable that specifies the precision (4, 8, or 16 bit) set for
the multiply and accumulate operations performed by the ST multipliers;
CONFIG2 Configuration variable that specifies the precision (4, 8, or 16
bit) set for the output quantization

– offset_PE: Offset value used to read inter-spaced weight values from
different output channels.

– offset_PE_out: Offset value used to write inter-spaced output values to
different output channels.

– offset_q_data: Pointer or offset to the output quantization variables.
– pad_stride_kern: This configuration register contains four parameters:

pad Number of pixels to apply the padding operation; pad_type Configu-
ration variable that indicates where to apply padding around the tensor;
stride Number of positions the kernel slides; kern Width and Height
size of the weight tile (since most of the times a symetric kernel is used,
these dimensions are cosidered the same).

– filt: Output channel size of the output and weight tile.
– offset_read_ci: Offset value used to read inter-spaced input values from

different input channels.
– n_c: Input channel size of the input and weight tile.
– n_h: Height size of the input tile.
– n_w: Width size of the input tile.
– in_add: Pointer or offset to the input tile.
– w_add: Pointer or offset to the weight tile.
– out_add: Pointer or offset to the output tile.
– flags: This configuration register contains three parameters: EN_QUANTI-

ZATION Flag that enables the output quantization operation; RST_OUT_ACC
Flag that enables accumulation of partial results; EN_RELU Flag that
enables Relu operation of the output results.

31

2D-Convolution Accelerator: Hierarchical Architecture

• DMA Configuration: DMA settings are defined by:

Listing 4.3: Struct for DMA configuration
1 s t r u c t dma_info_t {
2 uint32_t index ;
3 uint32_t length ;
4 ac_int <3, f a l s e > s i z e ;
5 } ;

– index: The memory offset for the DMA transaction.
– length: The length of the DMA transaction.
– size: Specifies the width of the DMA word, encoded as follows: 0 for an

8-bit word, 1 for 16 bits, 2 for 32 bits, etc.

This dma_info_t struct is common to all accelerators and designers can not
modify it.

• DMA Word: The DMA word is defined using:

Listing 4.4: conv2d.hpp - Struct for DMA configuration
1 typede f ac_int<DMA_WIDTH, f a l s e > dma_data_t ;

DMA_WIDTH represents the width of the DMA word, which in our case is 64.

4.2.2 Top-Level Function
The accelerator’s execution is divided into four key phases: configuration, load,
compute and store. As already said, in the sequential architecture implemented
in the previous thesis work [2], these phases are executed sequentially and are
coded in a single C++ function. Conversely, in a hierarchical-block architecture the
ESP-accelerator phases are mapped onto blocks that can run concurrently. This
concurrency is achieved by applying HLS constraints (they will be analyzed in Sec.
5.2) along with a recommended coding style.

Key characteristics of the hierarchical-block architecture, shown in Fig. 4.2,
include:

• The configure, load, compute, and store phases are implemented as separate
C++ functions.

• Private local memories (PLMs) are globally defined and shared across these
C++ functions.

32

2D-Convolution Accelerator: Hierarchical Architecture

Figure 4.2: 2D-convolution Accelerator: hierarchical architecture. Source [13].

In standard C++ programming, functions such as load, compute and store
typically exchange data using shared arrays or variables. However, this approach
poses challenges for HLS, as synchronization for data exchange between hierarchical
blocks must be automatically inserted by the synthesis tool. To address this

33

2D-Convolution Accelerator: Hierarchical Architecture

complexity, Catapult HLS provides the ac_channel modeling construct, enabling
users to model data exchange between blocks of the hierarchy more effectively.

In the top-level function of the 2D-Conv accelerator, named conv2d_cxx_catapult,
Lst. 4.5, it is possible to observe that:

• inputs, weights and outputs PLMs are declared and shared among functions
using ac_channel.

• Configuration information and output quantization variables are also ex-
changed via ac_channel.

• Synchronization signals are handled using ac_sync.

Listing 4.5: conv2d.cpp - Top-level function
1 #pragma hls_des ign top
2 void CCS_BLOCK(conv2d_cxx_catapult) (
3 ac_channel<conf_info_t> &conf_info ,
4 ac_channel<dma_info_t> &dma_read_ctrl ,
5 ac_channel<dma_info_t> &dma_write_ctrl ,
6 ac_channel<dma_data_t> &dma_read_chnl ,
7 ac_channel<dma_data_t> &dma_write_chnl ,
8 ac_sync &acc_done) {
9

10 s t a t i c ac_channel<packed_weights_t> packed_weights ;
11 s t a t i c ac_channel<packed_inputs_t> packed_inputs ;
12 s t a t i c ac_channel<plm_outputs_t> plm_outputs ;
13
14 s t a t i c ac_channel<conf_info_t> plm_conf_load ;
15 s t a t i c ac_channel<conf_info_t> plm_conf_compute ;
16 s t a t i c ac_channel<conf_info_t> plm_conf_store ;
17
18 s t a t i c ac_channel<parameters_t> parameters ;
19
20 s t a t i c ac_sync config_done ;
21 s t a t i c ac_sync load_done ;
22 s t a t i c ac_sync compute_done ;
23 s t a t i c ac_sync store_done ;
24
25 c o n f i g (conf_info , plm_conf_load , plm_conf_compute , plm_conf_store , config_done

) ;
26 load (plm_conf_load , packed_inputs , packed_weights , parameters , dma_read_ctrl ,

dma_read_chnl , load_done) ;
27 conv2d_m4_v10_reconf_reducedbitwidth (packed_inputs , packed_weights ,

plm_outputs , plm_conf_compute , parameters , compute_done) ;
28 s t o r e (plm_conf_store , plm_outputs , dma_write_ctrl , dma_write_chnl , store_done)

;
29
30 config_done . sync_in () ;
31 load_done . sync_in () ;
32 compute_done . sync_in () ;
33 store_done . sync_in () ;
34
35 acc_done . sync_out () ;
36 }

34

2D-Convolution Accelerator: Hierarchical Architecture

When dealing with large arrays, it is common practice to map them to memories
during synthesis, as mapping to registers can become too costly in terms of area and
power consumption. In Catapult HLS, mapping shared arrays between different
blocks in a hierarchical design automatically infers a ping-pong memory structure.
This structure typically involves two or more memories, enabling them to be written
to and read from in a sequence that allows the blocks to operate concurrently.
The templated structure plm_t is used to map shared arrays to memories. It
also simplifies the declaration of arrays and matrices and defines an array with S
elements of a specified T data type. This structure is used for representing the
PLMs where input features, weights and outputs are stored, as demonstrated in
Lst. 4.6 and Lst. 4.7.

Listing 4.6: conv2d.hpp - Templated structures for PLMs, definition of maximum
dimensions of the 2D-Conv layers supportd by the accelerator, definition of the
PLMs types

1 template <c l a s s T, unsigned S>
2 s t r u c t plm_t {
3 p u b l i c :
4 T data [S] ;
5 } ;
6
7 #d e f i n e N_H_IN_MAX 18
8 #d e f i n e N_W_IN_MAX N_H_IN_MAX
9 #d e f i n e N_C_MAX 32

10 #d e f i n e KERN_MAX 7
11 #d e f i n e FILT_MAX 8
12 #d e f i n e STRIDE_MAX 2
13 #d e f i n e PAD_MAX 3
14 #d e f i n e N_W_OUT_MAX N_W_IN_MAX
15 #d e f i n e N_H_OUT_MAX N_H_IN_MAX
16
17 #d e f i n e FILTERS_SIZE_MAX KERN_MAX ∗ KERN_MAX ∗ N_C_MAX ∗ FILT_MAX
18 #d e f i n e INPUTS_SIZE_MAX N_W_IN_MAX ∗ N_H_IN_MAX ∗ N_C_MAX
19 #d e f i n e OUTPUTS_SIZE_MAX N_W_OUT_MAX ∗ N_H_OUT_MAX ∗ FILT_MAX
20
21 typede f plm_t<FPDATA_OUT, OUTPUTS_SIZE_MAX> plm_outputs_t ;
22 typede f plm_t<FPDATA_packed , INPUTS_SIZE_MAX> packed_inputs_t ;
23 typede f plm_t<FPDATA_packed , FILTERS_SIZE_MAX> packed_weights_t ;
24 typede f plm_t<FPDATA_IN, INPUTS_SIZE_MAX> plm_inputs_t ;
25 typede f plm_t<FPDATA_IN, FILTERS_SIZE_MAX> plm_f i l t e r s_t ;

Listing 4.7: fpdata.hpp - Definition of the inputs, weights and outputs types
stored in the PLMs

1 typede f ac_int <OUT_BITWIDTH_16x, true> FPDATA_packed ;
2 typede f ac_int <OUT_BITWIDTH_32x, true> FPDATA_IN;
3 typede f ac_int <OUT_BITWIDTH_32x, true> FPDATA_OUT;

Furthermore, a particular coding style must be adhered in order to prevent
unintentional inference of additional memories: a local instance of the templated
struct on which memory operations can be performed must be declared inside every

35

2D-Convolution Accelerator: Hierarchical Architecture

function. This coding style, will be shown and analyzed more in details in Sec.
4.2.4 and Sec. 4.2.6, the sections related to the load and store functions.

The output quantization variables usually consist in shorter arrays, thus they
do not need to be mapped to memories and a normal struct, parameters_t,
shown in Lst. 4.8, is used to encapsulate them. In this way, they are mapped to
simple registers during synthesis. The bitwidth of these parameters are defined in
fpdata.hpp and have been determined by the studies conducted in [11]. Also in
this case, the same coding style that was discussed in the previous paragraph must
be adhered to prevent unintentional inference of additional registers.

Listing 4.8: conv2d.hpp - Structure for ouput quantization variables
1 s t r u c t parameters_t {
2 ac_int<W_CROSS_BITWIDTH, true> WEIGHTS_CROSSPRODUCT[FILT_MAX] ;
3 ac_fixed<SF_IN_W_TOT_BITWIDTH, SF_IN_W_INT_BITWIDTH, true>

SCALING_FACTOR_INPUTS_WEIGHTS[FILT_MAX] ;
4 ac_fixed<BIASQ_SCALED_TOT_BITWIDTH, BIASQ_SCALED_INT_BITWIDTH, true>

BIASQ_SCALED[FILT_MAX] ;
5 ac_fixed<SF_OUT_INV_TOT_BITWIDTH, SF_OUT_INV_INT_BITWIDTH, true>

SCALING_FACTOR_OUT_INVERSE;
6 ac_int<Z_BITWIDTH, true> Z_O2;
7 } ;

4.2.3 Configure Function
The configure function is shown in Lst. 4.9. Its interface consists of the following
ports:

• conf_info port: It allows the function to receive the configuration parameters
from the main function.

• plm_conf_load, plm_conf_compute and plm_conf_store ports: Through
them the configuration parameters are transmitted to the load, compute and
store functions.

• ac_done port: Used to notify task completion to the other functions and
synchronize with them.

Inside the function, the configuration parameters stored in the memory-mapped
registers, set by the processor, are retrieved via the conf_info port. The informa-
tion transmitted through this ac_channel is then organized and stored in the appro-
priate conf_info_t local structure, params. The content of params is then assigned
to the conf_info_t local structures conf_info_load_tmp, conf_info_compute_-
tmp and conf_info_store_tmp. Finally, the the data inside these last three stru-
tures is written inside the three output channels, plm_conf_load, plm_conf_compute
and plm_conf_store.

36

2D-Convolution Accelerator: Hierarchical Architecture

Listing 4.9: conv2d.cpp - Configure function
1 void c o n f i g (
2 ac_channel<conf_info_t> &conf_info ,
3 ac_channel<conf_info_t> &plm_conf_load ,
4 ac_channel<conf_info_t> &plm_conf_compute ,
5 ac_channel<conf_info_t> &plm_conf_store ,
6 ac_sync &done) {
7
8 s t r u c t conf_info_t params ;
9

10 // Read a c c e l e r a t o r c o n f i g u r a t i o n
11 #i f n d e f __SYNTHESIS__
12 whi le (! con f_in fo . a v a i l a b l e (1)) {}
13 // Hardware s t a l l s u n t i l data ready
14 #e n d i f
15
16 params = conf_in fo . read () ;
17
18 conf_info_t conf_info_load_tmp ;
19 conf_info_t conf_info_compute_tmp ;
20 conf_info_t conf_info_store_tmp ;
21
22 conf_info_load_tmp = params ;
23 conf_info_compute_tmp = params ;
24 conf_info_store_tmp = params ;
25
26 plm_conf_load . wr i t e (conf_info_load_tmp) ;
27 plm_conf_compute . wr i t e (conf_info_compute_tmp) ;
28 plm_conf_store . wr i t e (conf_info_store_tmp) ;
29
30 done . sync_out () ;
31 }

4.2.4 Load Function
The load function interface, shown in Lst. 4.10, consists of the following ports:

• conf_info port: It allows the function to receive the configuration parameters
from the configure function.

• packed_inputs, packed_weights and parameters ports: Through them the
input features, the weights and the output quantization parameters are trans-
mitted to the compute function.

• dma_read_ctrl: Used to program the DMA controller.

• dma_read_chnl: Used to receive data from the main memory.

• done port: Used to notify task completion to the other functions and synchro-
nize with them.

37

2D-Convolution Accelerator: Hierarchical Architecture

Listing 4.10: conv2d.cpp - Load function interface
1 void load (
2 ac_channel<conf_info_t> &conf_info ,
3 ac_channel<packed_inputs_t> &packed_inputs ,
4 ac_channel<packed_weights_t> &packed_weights ,
5 ac_channel<parameters_t> ¶meters ,
6 ac_channel<dma_info_t> &dma_read_ctrl ,
7 ac_channel<dma_data_t> &dma_read_chnl ,
8 ac_sync &done)

In the first part of the function, Lst. 4.11, the configuration parameters stored in
the memory-mapped registers, set by the processor, are retrieved via the conf_info
port. The information transmitted through this ac_channel is then organized
and stored in the appropriate conf_info_t local structure, params. Finally, every
parameter is stored inside a proper variable, using masks and and operations when
multiple parameters are packed inside one single field of the structure.

Listing 4.11: conv2d.cpp - Load function, reading of the configuration parameters
1 // Read a c c e l e r a t o r c o n f i g u r a t i o n
2 #i f n d e f __SYNTHESIS__
3 whi le (! con f_in fo . a v a i l a b l e (1)) {} // Hardware s t a l l s u n t i l data ready
4 #e n d i f
5 params = conf_in fo . read () ;
6
7 in_add = params . in_add ;
8 w_add = params . w_add ;
9 out_add = params . out_add ;

10 acc_f lag = (params . f l a g s >>1) & 0 x00000001 ;
11 q_flag = (params . f l a g s) & 0 x00000001 ;
12 r e l u _ f l a g = (params . f l a g s >>2) & 0 x00000001 ;
13 n_w = params .n_w;
14 n_h = params . n_h ;
15 n_c = params . n_c ;
16 kern = ((params . pad_stride_kern) & 0x0000F000) >>12;
17 f i l t = params . f i l t ;
18 pad = ((params . pad_stride_kern) & 0x0000000F) ;
19 pad_type = ((params . pad_stride_kern) & 0x00000F00)>>8;
20 s t r i d e = ((params . pad_stride_kern) & 0x000000F0)>>4;
21 offset_PE_out = params . offset_PE_out ;
22 offset_PE = params . offset_PE ;
23 CONFIG1 = ((params . opt ions) & 0x0000000F) ;
24 CONFIG2 = ((params . opt ions) & 0x000000F0) >> 4 ;
25 of fset_q_data = params . of fset_q_data ;
26 o f f s e t_read_c i = params . o f f s e t_read_c i ;

After that phase a few auxiliary variables are defined to manage the loop
boundaries. The variables n_w_in and n_h_in represent the width and height
dimensions of the input tile after determining the appropriate padding to be
applied. The following code snip shows this process.

Listing 4.12: conv2d.cpp - Load function, definition of the auxiliary variables
1 // Padded Input Dimensions
2 switch (pad_type)
3 {

38

2D-Convolution Accelerator: Hierarchical Architecture

4 case 0 : // no padding
5 n_w_in = n_w ;
6 n_h_in = n_h ;
7 break ;
8 case 1 : // padding 3 s i d e s
9 n_w_in = n_w + 2 ∗ pad ;

10 n_h_in = n_h + pad ;
11 break ;
12 case 2 : // padding 3 s i d e s
13 n_w_in = n_w + 2 ∗ pad ;
14 n_h_in = n_h + pad ;
15 break ;
16 case 3 : // padding 2 s i d e s
17 n_w_in = n_w + 2 ∗ pad ;
18 n_h_in = n_h ;
19 break ;
20 case 4 : // padding 4 s i d e s
21 n_w_in = n_w + 2 ∗ pad ;
22 n_h_in = n_h + 2 ∗ pad ;
23 break ;
24 d e f a u l t :
25 n_w_in = n_w ;
26 n_h_in = n_h ;
27 break ;
28 }

As already explained in Sec. 4.2.2, in order to prevent unintentional infer-
ence of additional memories or registers to which the shared arrays are mapped,
local structs containing the packed arrays must be declared inside every func-
tion to handle memory operations. For this reason, when transferring data
from the external environment via DMA to the shared register, parameters,
a local instance of the parameters_t struct (parameters_tmp) and local vari-
ables to store the output quantization parameters (WEIGHTS_CROSSPRODUCT_tmp,
SCALING_FACTOR_INPUTS_WEIGHTS_tmp, BIASQ_SCALED_tmp, SCALING_FACTOR_-
OUT_INVERSE_tmp and Z_O2_tmp) are declared. In this way, the iteration to read
data from the DMA channel is performed over this local instances. Finally, the
content of the local instance parameters_tmp is written in the shared register
parameters. The following code snip shows this process.

Listing 4.13: conv2d.cpp - Load function, transfer from the external memory to
the shared register parameters of the output quantization parameters

1 i f (q_flag) {
2
3 uint32_t dma_read_q_data_length = f i l t ∗ 3 + 2 ;
4 dma_read_q_info = { offset_q_data , dma_read_q_data_length , DMA_SIZE} ;
5 bool dma_read_ctrl_done3 = f a l s e ;
6 LOAD_CTRL_LOOP3:
7 do { dma_read_ctrl_done3 = dma_read_ctrl . nb_write (dma_read_q_info) ; } whi l e (!

dma_read_ctrl_done3) ;
8
9 ac_int<W_CROSS_BITWIDTH, true> WEIGHTS_CROSSPRODUCT_tmp[FILT_MAX] ;

10 ac_fixed<SF_IN_W_TOT_BITWIDTH, SF_IN_W_INT_BITWIDTH, true>
SCALING_FACTOR_INPUTS_WEIGHTS_tmp[FILT_MAX] ;

39

2D-Convolution Accelerator: Hierarchical Architecture

11 ac_fixed<BIASQ_SCALED_TOT_BITWIDTH, BIASQ_SCALED_INT_BITWIDTH, true>
BIASQ_SCALED_tmp[FILT_MAX] ;

12 ac_fixed<SF_OUT_INV_TOT_BITWIDTH, SF_OUT_INV_INT_BITWIDTH, true>
SCALING_FACTOR_OUT_INVERSE_tmp;

13 ac_int<Z_BITWIDTH, true> Z_O2_tmp;
14 parameters_t parameters_tmp ;
15
16 i f (dma_read_ctrl_done3) {
17
18 LOAD_Q_LOOP:
19 f o r (uint16_t i = 0 ; i < (f i l t ∗3 + 2) ; i++){
20
21 #i f n d e f __SYNTHESIS__
22 whi le (! dma_read_chnl . a v a i l a b l e (1)) {} ; // Hardware s t a l l s u n t i l data

ready
23 #e n d i f
24 ac_int<W_CROSS_BITWIDTH, true> data_WC;
25 ac_int<SF_IN_W_TOT_BITWIDTH, true> data_SF ;
26 ac_int<BIASQ_SCALED_TOT_BITWIDTH, true> data_BS ;
27 ac_int<SF_OUT_INV_TOT_BITWIDTH, true> data_SFI ;
28 ac_int<Z_BITWIDTH, true> data_Z ;
29
30 i f (i < f i l t) {
31
32 data_WC = dma_read_chnl . read () . template s l c <W_CROSS_BITWIDTH>(0) ;
33 WEIGHTS_CROSSPRODUCT_tmp[i] . s e t _ s l c (0 , data_WC) ;
34 parameters_tmp .WEIGHTS_CROSSPRODUCT[i]=WEIGHTS_CROSSPRODUCT_tmp[i] ;
35
36 } e l s e i f (i >= f i l t && i < (f i l t ∗2)) {
37
38 data_SF = dma_read_chnl . read () . template s l c <SF_IN_W_TOT_BITWIDTH>(0) ;
39 SCALING_FACTOR_INPUTS_WEIGHTS_tmp[i− f i l t] . s e t _ s l c (0 , data_SF) ;
40 parameters_tmp .SCALING_FACTOR_INPUTS_WEIGHTS[i− f i l t]=

SCALING_FACTOR_INPUTS_WEIGHTS_tmp[i− f i l t] ;
41
42 } e l s e i f (i >= (f i l t ∗2) && i < (f i l t ∗3)) {
43
44 data_BS = dma_read_chnl . read () . template s l c <BIASQ_SCALED_TOT_BITWIDTH

>(0) ;
45 BIASQ_SCALED_tmp[i− f i l t ∗ 2] . s e t _ s l c (0 , data_BS) ;
46 parameters_tmp .BIASQ_SCALED[i− f i l t ∗2]=BIASQ_SCALED_tmp[i− f i l t ∗ 2] ;
47
48 } e l s e i f (i == (f i l t ∗3)) {
49
50 data_SFI = dma_read_chnl . read () . template s l c <SF_OUT_INV_TOT_BITWIDTH>(0)

;
51 SCALING_FACTOR_OUT_INVERSE_tmp. s e t _ s l c (0 , data_SFI) ;
52 parameters_tmp .SCALING_FACTOR_OUT_INVERSE=SCALING_FACTOR_OUT_INVERSE_tmp

;
53
54 } e l s e {
55
56 data_Z = dma_read_chnl . read () . template s l c <Z_BITWIDTH>(0) ;
57 Z_O2_tmp. s e t _ s l c (0 , data_Z) ;
58 parameters_tmp .Z_O2=Z_O2_tmp;
59
60 }
61
62 i f (i == dma_read_q_data_length − 1) break ;
63 }
64

40

2D-Convolution Accelerator: Hierarchical Architecture

65 parameters . wr i t e (parameters_tmp) ;
66 }
67
68 }

The same issue of declaring local structs on which perform memory operations
concerns the shared memories packed_inputs and packed_weights. In this case,
the data are transferred from the external environment via DMA to the local
instances of the plm_inputs_t and plm_filters_t structs (plm_in and plm_f).
Then, depending on the precision configuration selected for the ST multiplier,
the packing operation on inputs and weights is performed, as already explained
in Sec. 3.2.2. Finally, the input features and the weights correctly packed are
stored in the shared memories packed_inputs and packed_weights. The code
that performs the operations just explained is not reported, since it consists in the
code implemented by D. R. Bueno Pacheco in [2] with just some adjustments to
obtain the last step to store inside the shared memories the packed inputs and
weights.

4.2.5 Compute Function
The compute function interface, shown in Lst. 4.14, consists of the following ports:

• packed_inputs, packed_weights and parameters ports: Through them the
input features, the weights and the output quantization parameters are received
from the load function.

• OUT port: Through it the output of the convolution is transmitted to the store
function.

• conf_info port: It allows the function to receive the configuration parameters
from the configure function.

• done port: Used to notify task completion to the other functions and synchro-
nize with them.

Listing 4.14: conv2d.cpp - Compute function interface
1 void conv2d_m4_v10_reconf_reducedbitwidth (
2 ac_channel<packed_inputs_t> &packed_inputs ,
3 ac_channel<packed_weights_t> &packed_weights ,
4 ac_channel<parameters_t> ¶meters ,
5 ac_channel<plm_outputs_t> &OUT,
6 ac_channel<conf_info_t> &conf_info ,
7 ac_sync &done)

As already explained for the load function, also in this case, in the same way, in
the first part of the function the configuration parameters stored in the memory-
mapped registers, set by the processor, are retrieved and the auxiliary variables

41

2D-Convolution Accelerator: Hierarchical Architecture

are defined to manage the loop boundaries. The only difference, reported in Lst.
4.15, from the previous function consists in the definition of n_w_out and n_h_out,
auxiliary variables used to hold the dimensions of the output tile, taking into
account the padding value and the stride.

Listing 4.15: conv2d.cpp - Compute function, part of the definition of the
auxiliary variables

1 uint16_t n_w_out ;
2 uint16_t n_h_out ;
3 i f (STRIDE == 1) {
4 n_w_out = (n_w_in − K_SIZE) + 1 ;
5 n_h_out = (n_h_in − K_SIZE) + 1 ;
6 }
7 e l s e {
8 n_w_out = (n_w_in − K_SIZE) /2 + 1 ;
9 n_h_out = (n_h_in − K_SIZE) /2 + 1 ;

10 }

The packed inputs and packed weights, received from the packed_inputs and
packed_weights ports, are stored into the local instances of the packed_inputs_t
and packed_weights_t structs (packed_inputs_tmp and packed_weights_tmp),
Lst. 4.16. Afterward, depending on if the output quantization is enabled or not, the
output quantization parameters received from the parameters port are stored into
the local instance of the parameters_t struct (parameters_tmp) and then every
parameter is stored inside a proper variable, Lst.4.17. In particular, a loop iteration
that corresponds to the number of output channels is performed to retrieve the arrays
of values stored in the WEIGHTS_CROSSPRODUCT, SCALING_FACTOR_INPUTS_WEIGHTS
and BIASQ_SCALED fields of the (parameters_tmp) struct. Once all the values from
the input ports are retrieved, the compute function can start to manipulate them.

Listing 4.16: conv2d.cpp - Compute function, retreiving of the packed inputs
and weights from the input ports

1 packed_inputs_t packed_inputs_tmp ;
2 packed_weights_t packed_weights_tmp ;
3
4 packed_inputs_tmp = packed_inputs . read () ;
5 packed_weights_tmp = packed_weights . read () ;

Listing 4.17: conv2d.cpp - Compute function, retreiving of the output quantiza-
tion parameters from the input ports

1 s t r u c t parameters_t parameters_tmp ;
2 i f (EN_QUANTIZATION) {
3 parameters_tmp = parameters . read () ;
4
5 f o r (uint16_t i = 0 ; i < OUT_CH; i++) {
6 WEIGHTS_CROSSPRODUCT[i] = parameters_tmp .WEIGHTS_CROSSPRODUCT[i] ;
7 SCALING_FACTOR_INPUTS_WEIGHTS[i] = parameters_tmp .

SCALING_FACTOR_INPUTS_WEIGHTS[i] ;
8 BIASQ_SCALED[i] = parameters_tmp .BIASQ_SCALED[i] ;
9 }

42

2D-Convolution Accelerator: Hierarchical Architecture

10 SCALING_FACTOR_OUT_INVERSE = parameters_tmp .SCALING_FACTOR_OUT_INVERSE;
11 Z_O2 = parameters_tmp .Z_O2;
12 }

Before starting the convolution operation, the packed weights contained in the
packed_weights_tmp struct are stored in an array with the help of four loops
iterations, each of them corresponding to one dimension of the weights tensor, Lst.
4.18. The order of the loops corresponds on how the weight data is used during
the convolution operation. Hence, the innermost loop iterates through the output
channel dimension, the middle loops iterate first through the width dimension and
then through the height dimension and finally the outermost loop iterates through
the input channel dimension.

Let us understand why this process is implemented. When the high-level
synthesis through Catapult HLS is performed, as it will be shown in Sec. 5.2, since
the loop unrolling directive is applied to the innermost loop of the convolution
operation, the interleave directive is applied to the resource containing the packed
weights that is accessed in this loop. As stated by Catapult Synthesis User and
Reference Manual [9], the interleave directive is not supported on shared memory
type resources, like the packed_weights_t struct, thus they need to be transformed
in typical arrays.

Listing 4.18: conv2d.cpp - Compute function, storing of the packed weights in
an array variable

1 f i r s t _ c i _ f o r :
2 f o r (u int8 c i = 0 ; c i < N_C_MAX; c i ++) {
3 f i r s t _ i _ f o r :
4 f o r (u int8 i = 0 ; i < KERN_MAX; i++) {
5 f i r s t _ j _ f o r :
6 f o r (u int8 j = 0 ; j < KERN_MAX; j++) {
7 f i r s t _ c o _ f o r :
8 f o r (u int16 co = 0 ; co < FILT_MAX; co++) {
9 idx = (MAX_OUTPUT_CHANNELS ∗ (MAX_INPUT_CHANNELS ∗ (KERN_MAX ∗ i +

j) + c i) + co) . to_int () ;
10
11 b [idx] = packed_weights_tmp . data [idx] ;
12
13 i f (co == co_l imit) break ;
14 } // co
15 i f (j == K_SIZE − 1) break ;
16 } // k_w_for
17 i f (i == K_SIZE − 1) break ;
18 } // k_h_for
19 i f (c i == in_ch_temp −1) break ;
20 } // c i

The code that implements the convolution operation is mostly the one that was
inside the conv2d_m4_v10_reconf_reducedbitwidth function of the sequential
architecture inherited by [2]. The only relevant difference is in the innermost loop
of the convolution, where in the original code the multiplier_gautschi_noioreg
function (the function that implements the ST multipilier) was invoked to perform

43

2D-Convolution Accelerator: Hierarchical Architecture

multiplications, while in this case no function is invoked and the operation performed
by the multiplier_gautschi_noioreg function are implemented directly by the
compute function, Lst. 4.19. It is possible to observe how the code reported below
implements an ST multiplier.

Listing 4.19: conv2d.cpp - Compute function, multiplication phase in the convo-
lution operation

1 co_for :
2 f o r (u int16 co = 0 ; co < FILT_MAX; co++) {
3
4 i n t32 product ;
5
6 idx = (MAX_OUTPUT_CHANNELS ∗ (MAX_INPUT_CHANNELS ∗ (KERN_MAX ∗ i + j) + c i) +

co) . to_int () ;
7
8 b_int = b [idx] ;
9

10 i n t32 output ;
11
12 i f (CONFIG1 == 4) { // 16x8
13 output = a ∗ b_int . s l c <8>(0) ;
14 } e l s e i f (CONFIG1 == 1) { // 4x4
15 output = a . s l c <4>(12) ∗ b_int . s l c <4>(0) + a . s l c <4>(8) ∗ b_int . s l c <4>(4) + a

. s l c <4>(4) ∗ b_int . s l c <4>(8) + a . s l c <4>(0) ∗ b_int . s l c <4>(12) ;
16 } e l s e i f (CONFIG1 == 2) { // 8x8
17 output = a . s l c <8>(8) ∗ b_int . s l c <8>(0) + a . s l c <8>(0) ∗ b_int . s l c <8>(8) ;
18 } e l s e i f (CONFIG1 == 3) { // 8x4
19 output = a . s l c <8>(8) ∗ b_int . s l c <4>(0) + a . s l c <8>(0) ∗ b_int . s l c <4>(8) ;
20 } e l s e { // 16 x16
21 output = a ∗ b_int ;
22 }
23
24 product = output ;
25 ACC:
26 output_acc [co] += product ;
27
28 i f (co == co_l imit) break ;
29 }

4.2.6 Store Function
The store function interface, shown in Lst. 4.20, consists of the following ports:

• conf_info port: It allows the function to receive the configuration parameters
from the configure function.

• plm_outputs: Through it the output of the convolution is received from the
compute function.

• dma_write_ctrl: Used to program the DMA controller.

• dma_write_chnl: Used to sent data to the main memory.

44

2D-Convolution Accelerator: Hierarchical Architecture

• done port: Used to notify task completion to the other functions and synchro-
nize with them.

Listing 4.20: conv2d.cpp - Store function interface
1 void s t o r e (
2 ac_channel<conf_info_t> &conf_info ,
3 ac_channel<plm_outputs_t> &plm_outputs ,
4 ac_channel<dma_info_t> &dma_write_ctrl ,
5 ac_channel<dma_data_t> &dma_write_chnl ,
6 ac_sync &done)

As already explained for the load and compute functions, also in this case, in
the first part of the function the configuration parameters stored in the memory-
mapped registers, set by the processor, are retrieved and the auxiliary variables
(the same as the compute function) are defined to manage the loop boundaries.

As already explained in Sec. 4.2.2, in order to prevent unintentional inference
of additional memories or registers to which the shared arrays are mapped, local
structs containing the packed arrays must be declared inside every function to
handle memory operations. For this reason, when transferring data from the shared
memory, plm_outputs, to the external environment via DMA, a local instance
of the plm_ouputs_t struct (plm_ouputs_tmp) is declared. In this way, after the
content of the shared memory is read in the local struct, the iteration to write data
in the DMA channel is performed over this local instances. The following code snip
shows this process.

Listing 4.21: conv2d.cpp - Store function, transfer from the shared memory
plm_outputs to the external memory of the output values

1 plm_outputs_tmp = plm_outputs . read () ;
2 dma_write_data_length = n_w_out ∗ n_h_out ;
3
4 STORE_CO_LOOP: f o r (uint16_t co = 0 ; co < FILT_MAX; co++){
5 uint32_t o f f s e t _ w r i t e = out_add + co ∗ offset_PE_out ;
6 dma_write_info = { o f f s e t _ w r i t e , dma_write_data_length , DMA_SIZE} ;
7 bool dma_write_ctrl_done = f a l s e ;
8 STORE_CTRL_LOOP:
9 do {dma_write_ctrl_done = dma_write_ctrl . nb_write (dma_write_info) ; } whi l e (!

dma_write_ctrl_done) ;
10
11 i f (dma_write_ctrl_done) {
12 STORE_H_LOOP: f o r (uint16_t h = 0 ; h < N_H_OUT_MAX ; h++){
13 STORE_W_LOOP: f o r (uint16_t w = 0 ; w < N_W_OUT_MAX; w++){
14
15 uint32_t index = MAX_OUTPUT_CHANNELS ∗ (MAX_OUTPUT_WIDTH ∗ h + w) + co

;
16 FPDATA_OUT data = plm_outputs_tmp . data [index] ;
17 a s s e r t (DMA_WIDTH == 64 && "DMA_WIDTH should be 64 (s i m p l i c i t y c h o i c e) "

) ;
18 ac_int<DMA_WIDTH, f a l s e > data_ac ;
19 ac_int <32, f a l s e > DEADBEEF = 0 xdeadbeef ;
20 data_ac . s e t _ s l c (32 , DEADBEEF. template s l c <32>(0)) ;
21 data_ac . s e t _ s l c (0 , data . template s l c <DATA_WIDTH>(0)) ;

45

2D-Convolution Accelerator: Hierarchical Architecture

22
23 dma_write_chnl . wr i t e (data_ac) ;
24
25 i f (w == n_w_out −1) break ;
26 }
27 i f (h == n_h_out −1) break ;
28 }
29 }
30 i f (co == f i l t −1) break ;
31 }

46

Chapter 5

C++ Simulations,
High-Level Synthesis, FPGA
Implementation and Results

In this chapter, the correctness of the hierarchical architecture of the ST based
2D-Convolution accelerator, implemented in Ch. 4, will be tested through C++
simulations. Then, the high-level synthesis through Catapult HLS by Siemens
will be performed, obtaining the RTL implementation of the accelerator. In this
way, a co-simulation will be carried out where the RTL is compared against the
untimed C++ to check if there are no functional errors. Finally, the accelerator,
integrated in a SoC exploiting the ESP framework, will be deployed on an FPGA
on which a bare-metal test application will run, further testing the architecture.
All these experiments will be carried out in parallel with the same ones related to
the sequential architecture, and this is due to two main reasons:

• to validate the whole sequential architecture, together with the output quanti-
zation part that has not been validated in the previous thesis work [2].

• to perform the high-level synthesis of the sequential architecture, the same
directives utilized for the hierarchical architecture, except those related to
the dataflow, are applied; in this way, we will obtain a sequential accelerator
comparable with the hierarchical one.

In the end, the results obtained from the FPGA deploying will highlight the
conditions under which the two architectures perform optimally. Additionally, the
performance of the hardware accelerators will be compared with the performance
of the RISC-V processor alone, when computing convolution operations.

The essential steps to set up the framework and environment variables required
to replicate the mentioned tests are detailed in these thesis works [13], [14] and [2].

47

C++ Simulations, High-Level Synthesis, FPGA Implementation and Results

These, together with Catapult Synthesis User and Reference Manual [9], can be used
as reference guides for reproducing the workflow from the ground up. Therefore
the following chapter will focus on explaining the differences in the workflow and
discussing the considerations made to validate the hierarchical architecture and
compare it with the sequential architecture and the RISC-V processor.

5.1 C++ Simulation
The first step in validating the correct functionality of the hierarchical architecture
of the accelerator is to conduct a C++ simulation, using the push-button SystemC
simulation flow integrated in Siemens Catapult HLS, where the accelerator is
isolated from the rest of the SoC. In this simulation, the testbench, main.cpp,
must emulate the operations of the processor. This involves setting the all the
configuration parameters and supplying the DMA channels of the accelerator,
conv2d_cxx_catapult, with inputs, weights and output quantization parameters.
The same configuration parameters, inputs, weights and output quantization
parameters are passed to the golden function conv2d_tb inside the testbench.
Finally, to validate the correctness of the accelerator, its output is fetched from
the accelerator’s output memory and compared with the golden output.

The first difference from the testbench utilized in [2] to test the sequential
architecture consists of the kind of data supplied to the DMA channels of the
accelerator. The testbench implemented in [2] supplied to the DMA channels
only the input and weight values, which were randomly generated, while in this
thesis, realistic stimuli, that are inputs, weights and also the output quantization
parameters (as stated before, this actual testbench, differently from the one in
[2], allows to validate the output quantization part too), are supplied to these
channels. In particular, to validate the architecture ensuring a realistic behavior, a
code based on TensorFlow, and developed in previous works, is used to perform
the convolution operation, also incorporating quantization. This code generates
and writes to text files inputs, weights, outputs and the parameters needed to
apply quantization to the final results, of a 2D-convolutional layer with specified
dimensions set by the designer. Then, a Python script, developed in [2], is utilized
to read the values and parameters from the text files and store them in arrays
within header files. Finally, this header files are imported by the testbench and
their data is loaded in the channels, as shown in the following code snip.

Listing 5.1: main.cpp - Main function, supplying the DMA channels of the
accelerator with inputs, weights and output quantization parameters

1 f o r (unsigned i = 0 ; i < input s_s i z e ; i++) {
2 inputs [i] = input [i] ;
3
4 ac_int<DMA_WIDTH, true> data_ac ;

48

C++ Simulations, High-Level Synthesis, FPGA Implementation and Results

5 ac_int<DMA_WIDTH/2 , true> DEADBEEF = 0 xdeadbeef ;
6 data_ac . s e t _ s l c (DMA_WIDTH/2 , DEADBEEF. template s l c <DMA_WIDTH/2 >(0)) ;
7 data_ac . s e t _ s l c (0 , inputs [i] . template s l c <DATA_WIDTH>(0)) ;
8
9 dma_read_chnl . wr i t e (data_ac) ;

10 }
11 f o r (unsigned i = 0 ; i < we ights_s ize ; i++) {
12 weights [i] = weight [i] ;
13
14 ac_int<DMA_WIDTH, true> data_ac ;
15 ac_int<DMA_WIDTH/2 , true> DEADBEEF = 0 xdeadbeef ;
16 data_ac . s e t _ s l c (DMA_WIDTH/2 , DEADBEEF. template s l c <DMA_WIDTH/2 >(0)) ;
17 data_ac . s e t _ s l c (0 , weights [i] . template s l c <DATA_WIDTH>(0)) ;
18
19 dma_read_chnl . wr i t e (data_ac) ;
20 }
21
22 f o r (unsigned i = 0 ; i < w_cross_size ; i++) {
23
24 w_cross_q [i] = w_cross [i] ;
25
26 ac_int<DMA_WIDTH, true> data_ac ;
27 ac_int<DMA_WIDTH/2 , true> DEADBEEF = 0 xdeadbeef ;
28 data_ac . s e t _ s l c (DMA_WIDTH/2 , DEADBEEF. template s l c <DMA_WIDTH/2 >(0)) ;
29 data_ac . s e t _ s l c (0 , w_cross_q [i] . template s l c <DATA_WIDTH>(0)) ;
30
31 dma_read_chnl . wr i t e (data_ac) ;
32 }
33
34 f o r (unsigned i = 0 ; i < sca l ing_factor_iw_s ize ; i++) {
35
36 scal ing_factor_iw_q [i] = sca l ing_factor_iw [i] ;
37
38 ac_int<DMA_WIDTH, true> data_ac ;
39 ac_int<DMA_WIDTH/2 , true> DEADBEEF = 0 xdeadbeef ;
40 data_ac . s e t _ s l c (DMA_WIDTH/2 , DEADBEEF. template s l c <DMA_WIDTH/2 >(0)) ;
41 data_ac . s e t _ s l c (0 , scal ing_factor_iw_q [i] . template s l c <DATA_WIDTH>(0)) ;
42
43 dma_read_chnl . wr i t e (data_ac) ;
44 }
45
46 f o r (unsigned i = 0 ; i < biasq_sca l ed_s i ze ; i++) {
47
48 biasq_scaled_q [i] = biasq_sca led [i] ;
49
50 ac_int<DMA_WIDTH, true> data_ac ;
51 ac_int<DMA_WIDTH/2 , true> DEADBEEF = 0 xdeadbeef ;
52 data_ac . s e t _ s l c (DMA_WIDTH/2 , DEADBEEF. template s l c <DMA_WIDTH/2 >(0)) ;
53 data_ac . s e t _ s l c (0 , biasq_scaled_q [i] . template s l c <DATA_WIDTH>(0)) ;
54
55 dma_read_chnl . wr i t e (data_ac) ;
56 }
57
58 f o r (unsigned i = 0 ; i < s c a l i n g _ f a c t o r _ o i _ s i z e ; i++) {
59
60 sca l ing_factor_oi_q [i] = s c a l i n g _ f a c t o r _ o i [i] ;
61
62 ac_int<DMA_WIDTH, true> data_ac ;
63 ac_int<DMA_WIDTH/2 , true> DEADBEEF = 0 xdeadbeef ;
64 data_ac . s e t _ s l c (DMA_WIDTH/2 , DEADBEEF. template s l c <DMA_WIDTH/2 >(0)) ;
65 data_ac . s e t _ s l c (0 , sca l ing_factor_oi_q [i] . template s l c <DATA_WIDTH>(0)) ;

49

C++ Simulations, High-Level Synthesis, FPGA Implementation and Results

66
67 dma_read_chnl . wr i t e (data_ac) ;
68 }
69
70 f o r (unsigned i = 0 ; i < z_o_size ; i++) {
71
72 z_o_q [i] = z_o [i] ;
73
74 ac_int<DMA_WIDTH, true> data_ac ;
75 ac_int<DMA_WIDTH/2 , true> DEADBEEF = 0 xdeadbeef ;
76 data_ac . s e t _ s l c (DMA_WIDTH/2 , DEADBEEF. template s l c <DMA_WIDTH/2 >(0)) ;
77 data_ac . s e t _ s l c (0 , z_o_q [i] . template s l c <DATA_WIDTH>(0)) ;
78
79 dma_read_chnl . wr i t e (data_ac) ;
80 }

In Lst. 5.2, the code that performs the output quantization inside the golden
function, conv2d_tb, is reported. It has been obtained modifying and adapting
to our case the code already present in the compute function of the sequential
architecture inherited in [2]. This part of the code, that implements the algorithm
explained in Sec. 4.1.3, allows to validate that the output quantization is correctly
done by the accelerator. It also represents the second difference from the testbench
utilized in [2], inside which the code shown in Lst. 5.2 was not present, since, as
stated before, the output quantization part was not validated in this previous thesis
work.

Listing 5.2: main.cpp - golden function, conv2d_tb, output quantization
1 i f (EN_QUANTIZATION == 0) {
2
3 wb_for :
4 f o r (u int8 co = 0 ; co < f i l t ; co++) {
5 unsigned index3 = n_w_out ∗ n_h_out ∗ co + i ∗ n_w_out + j ;
6 output [index3] = output_bfq [co] ;
7 }
8
9 } e l s e { // i f (EN_QUANTIZATION == 1)

10
11 q_for :
12 f o r (u int8 co = 0 ; co < f i l t ; co++) {
13 unsigned index3 = n_w_out ∗ n_h_out ∗ co + i ∗ n_w_out + j ;
14
15 f ina l_output [co] = 0 ;
16 SUB0_conf2 :
17 outputq_sub [co] = output_bfq [co] − w_cross [co] ;
18 MUL0_conf2 :
19 outputq_scaled [co] = outputq_sub [co] ∗ sca l ing_factor_iw [co] ;
20 ADD0_conf2 :
21 outputq_bias [co] = outputq_scaled [co] + biasq_sca led [co] ;
22
23
24 i f (CONFIG2 == 1) { // 4x
25
26 i f (EN_RELU == 1 && outputq_bias [co] < 0) {
27 outputq_quantized_4x [co] = z_o [0] ;
28 } e l s e {

50

C++ Simulations, High-Level Synthesis, FPGA Implementation and Results

29 outputq_quantized_4x [co] = z_o [0] + outputq_bias [co] ∗
s c a l i n g _ f a c t o r _ o i [0] ;

30 }
31 f ina l_output [co] = outputq_quantized_4x [co] . to_ac_int () ;
32
33
34 } e l s e i f (CONFIG2 == 2) { // 8x
35
36 i f (EN_RELU == 1 && outputq_bias [co] < 0) {
37 outputq_quantized_8x [co] = z_o [0] ;
38 } e l s e {
39 outputq_quantized_8x [co] = z_o [0] + outputq_bias [co] ∗

s c a l i n g _ f a c t o r _ o i [0] ;
40 }
41 f ina l_output [co] = outputq_quantized_8x [co] . to_ac_int () ;
42
43
44 } e l s e { // 16x
45
46 i f (EN_RELU == 1 && outputq_bias [co] < 0) {
47 outputq_quantized_16x [co] = z_o [0] ;
48 } e l s e {
49 outputq_quantized_16x [co] = z_o [0] + outputq_bias [co] ∗

s c a l i n g _ f a c t o r _ o i [0] ;
50 }
51 f ina l_output [co] = outputq_quantized_16x [co] . to_ac_int () ;
52
53 }
54
55 output [index3] = f ina l_output [co] ;
56 }
57 }

Fig. 5.1 shows the result of the simulation of the accelerator with hierarchical
architecture, considering a layer with the following dimensions:

• Width = 8

• Height = 8

• Input channels = 16

• Kernel width and height = 3

• Ouptut channels = 4

• Stride = 1

• Paddding = not apllied

As already remarked, the sequential architecture is tested too, since its output
quantization part has not been validated in [2]. The dimensions of the layer used
are the same considered for the hierarchical architecture’s simulation and Fig. 5.2
shows the result of the test.

51

C++ Simulations, High-Level Synthesis, FPGA Implementation and Results

Figure 5.1: C++ Testbench simulation result of the hierarchical architecture.

Figure 5.2: C++ Testbench simulation result of the sequential architecture.

5.2 High-Level Synthesis and Co-Simulation

The next step consists of performing high-level synthesis (HLS) to generate the
RTL code of the accelerator and integrating it into an ESP-generated SoC. The
HLS tool used for this process is Siemens Catapult HLS. The build_prj.tcl script
contains all the Catapult HLS directives used to synthesize the C++ code of the
accelerator. Many important directives are set such as clock period, design goal,
pipeline constraints and unrolling constraints. For what concerns clock period and
design goal directives, the synthesis workflow follows a similar approach to previous
works, [13], [14] and [2]. The differences concern the directives setting pipeline

52

C++ Simulations, High-Level Synthesis, FPGA Implementation and Results

and unrolling constraints reported in Lst. 5.3. The first set of directives is applied
to synthesize the hierarchical architecture, while the second one to synthesize the
sequential one. As stated before, the goal is to synthesize the two architectures
applying the same constraints (with the exception of the dataflow directives applied
only for the hierarchical architecture; it is explained below), in such a way to obtain
two comparable accelerators.

The only difference between the two cases consists in the first set of directives
related to the hierarchical architecture (rows 3-13), which apply pipeline to all
the functions in the architecture (config, load, compute and store), allowing them
to run in parallel. In particular, the functions are pipelined with an Initiation
Interval (II) of 1. This configuration allows them to accept new input data on
every clock cycle. However, if a function’s input data is not available during a
specific clock cycle, Catapult will, by default, completely stall the design (iterations
without valid data are referred to as bubbles). Using the PIPELINE_STALL_MODE
directive, the designer can specify how Catapult should handle cases when input
data is unavailable for the pipeline. When the pipeline stall mode is set to flush
the pipeline will not stall due to missing input data. This mode allows previous
iterations that already have all the required data to continue processing and flush1

by injecting bubbles into the pipeline.
The other directives, similar for the two cases, apply pipeline to most of the

loops in the compute function/phase. In particular, for both the architectures, an
accelerator with multiple PEs must be synthesized. Consequently, a loop unrolling
directive for the innermost loop of the convolution operation needs to be added
to the synthesis script. Utilizing multiple PEs requires a simultaneous access to
multiple data from the weight PLM (resource accessed in the loop unrolled) to
fully exploit the unrolled loops and avoid memory bottlenecks. Since the memory
blocks have only one read port and one write port, the interleave directive must be
employed to divide the original weight PLM into several smaller memory banks.
In this way, each unrolled loop has access to its own interleaved weight PLM.

Listing 5.3: build_prj.tcl - directives setting pipeline and unrolling constraints
1 i f { $opt (h i e r) } {
2
3 d i r e c t i v e s e t /$ACCELERATOR/ c o n f i g / core /main −PIPELINE_INIT_INTERVAL 1
4 d i r e c t i v e s e t /$ACCELERATOR/ c o n f i g / core /main −PIPELINE_STALL_MODE f l u s h
5
6 d i r e c t i v e s e t /$ACCELERATOR/ load / core /main −PIPELINE_INIT_INTERVAL 1
7 d i r e c t i v e s e t /$ACCELERATOR/ load / core /main −PIPELINE_STALL_MODE f l u s h
8
9 d i r e c t i v e s e t /$ACCELERATOR/conv2d_m4_v10_reconf_reducedbitwidth/ core /main −

PIPELINE_INIT_INTERVAL 1

1flush: Catapult Synthesis User and Reference Manual [9] uses this term to indicate that the
iterations proceed and finish.

53

C++ Simulations, High-Level Synthesis, FPGA Implementation and Results

10 d i r e c t i v e s e t /$ACCELERATOR/conv2d_m4_v10_reconf_reducedbitwidth/ core /main −
PIPELINE_STALL_MODE f l u s h

11
12 d i r e c t i v e s e t /$ACCELERATOR/ s t o r e / core /main −PIPELINE_INIT_INTERVAL 1
13 d i r e c t i v e s e t /$ACCELERATOR/ s t o r e / core /main −PIPELINE_STALL_MODE f l u s h
14
15 d i r e c t i v e s e t /$ACCELERATOR/conv2d_m4_v10_reconf_reducedbitwidth/ core /b : r s c −

INTERLEAVE $MAX_OUTPUT_CHANNELS
16
17 d i r e c t i v e s e t /$ACCELERATOR/conv2d_m4_v10_reconf_reducedbitwidth/ core / in_h_for

−PIPELINE_INIT_INTERVAL 1
18 d i r e c t i v e s e t /$ACCELERATOR/conv2d_m4_v10_reconf_reducedbitwidth/ core /in_w_for

−PIPELINE_INIT_INTERVAL 1
19 d i r e c t i v e s e t /$ACCELERATOR/conv2d_m4_v10_reconf_reducedbitwidth/ core /

f i r s t _ c o _ f o r −PIPELINE_INIT_INTERVAL 1
20 d i r e c t i v e s e t /$ACCELERATOR/conv2d_m4_v10_reconf_reducedbitwidth/ core /k_h_for

−PIPELINE_INIT_INTERVAL 1
21 d i r e c t i v e s e t /$ACCELERATOR/conv2d_m4_v10_reconf_reducedbitwidth/ core /k_w_for

−PIPELINE_INIT_INTERVAL 1
22 d i r e c t i v e s e t /$ACCELERATOR/conv2d_m4_v10_reconf_reducedbitwidth/ core / c i _ f o r

−PIPELINE_INIT_INTERVAL 1
23 d i r e c t i v e s e t /$ACCELERATOR/conv2d_m4_v10_reconf_reducedbitwidth/ core / co_for

−UNROLL yes
24 d i r e c t i v e s e t /$ACCELERATOR/conv2d_m4_v10_reconf_reducedbitwidth/ core / i n i t _ f o r

−PIPELINE_INIT_INTERVAL 1
25 d i r e c t i v e s e t /$ACCELERATOR/conv2d_m4_v10_reconf_reducedbitwidth/ core /wb_for

−PIPELINE_INIT_INTERVAL 1
26 d i r e c t i v e s e t /$ACCELERATOR/conv2d_m4_v10_reconf_reducedbitwidth/ core / q_for

−PIPELINE_INIT_INTERVAL 1
27 } e l s e {
28
29 d i r e c t i v e s e t /$ACCELERATOR/ core /B_reconf_HH : r s c −INTERLEAVE

$MAX_OUTPUT_CHANNELS
30 d i r e c t i v e s e t /$ACCELERATOR/ core /B_reconf_HL : r s c −INTERLEAVE

$MAX_OUTPUT_CHANNELS
31 d i r e c t i v e s e t /$ACCELERATOR/ core /B_reconf_LH : r s c −INTERLEAVE

$MAX_OUTPUT_CHANNELS
32 d i r e c t i v e s e t /$ACCELERATOR/ core /B_reconf_LL : r s c −INTERLEAVE

$MAX_OUTPUT_CHANNELS
33
34 d i r e c t i v e s e t /$ACCELERATOR/ core / in_h_for −PIPELINE_INIT_INTERVAL 1
35 d i r e c t i v e s e t /$ACCELERATOR/ core /in_w_for −PIPELINE_INIT_INTERVAL 1
36 d i r e c t i v e s e t /$ACCELERATOR/ core /k_h_for −PIPELINE_INIT_INTERVAL 1
37 d i r e c t i v e s e t /$ACCELERATOR/ core /k_w_for −PIPELINE_INIT_INTERVAL 1
38 d i r e c t i v e s e t /$ACCELERATOR/ core / c i _ f o r −PIPELINE_INIT_INTERVAL 1
39 d i r e c t i v e s e t /$ACCELERATOR/ core / co_for −UNROLL yes
40 d i r e c t i v e s e t /$ACCELERATOR/ core / i n i t _ f o r −PIPELINE_INIT_INTERVAL 1
41 d i r e c t i v e s e t /$ACCELERATOR/ core /wb_for −PIPELINE_INIT_INTERVAL 1
42 d i r e c t i v e s e t /$ACCELERATOR/ core / q_for −PIPELINE_INIT_INTERVAL 1
43 }

Fig. 5.3, Fig. 5.4, Fig. 5.5 and Fig. 5.6 show respectively the loops inside the
config, load, compute and store functions of the hierarchical architecture. It is
possible to observe how the outermost loop, main, of each function is pipelined
with an II of 1, as stated by the dataflow directives (rows 3-13 of Lst. 5.3), and
consequently all the other loops inside those functions are pipelined with the
same II. For this reason, the pipeline directives inside the compute function of the
hierarchical architecture could be avoided, while the directive that set the unrolling

54

C++ Simulations, High-Level Synthesis, FPGA Implementation and Results

of the innermost loop of the convolution operation should be still specified. The
unrolling generates 8 PEs, as highlighted in Fig. 5.5. Fig. 5.7 presents the list
of loops on which the pipeline and loop unrolling directives are applied in the
case of the sequential architecture, highlighting the loop where unrolling is applied
(co_for) to generate 8 PEs.

Figure 5.3: Loops inside the config function, hierarchical architecture.

Figure 5.4: Loops inside the load function, hierarchical architecture.

Once the high-level synthesis is performed and the RTL implementation of the
accelerator is obtained, a co-simulation is performed, both for the hierarchical and
sequential architecture, where the RTL is compared against the untimed C++
model to ensure there are no errors. During this phase, QuestaSim is used. The
same C++ testbench analyzed in 5.1, setting the same layer’s dimensions, is used.
Fig. 5.8 and Fig. 5.10 show that, in both cases, no errors are detected (Simulation

55

C++ Simulations, High-Level Synthesis, FPGA Implementation and Results

Figure 5.5: Loops inside the compute function, hierarchical architecture.

Figure 5.6: Loops inside the store function, hierarchical architecture.

Figure 5.7: Focus on the pipelined and unrolled loops, sequential architecture.

56

C++ Simulations, High-Level Synthesis, FPGA Implementation and Results

PASSED). Also, it is possible to observe in Fig. 5.9 and Fig. 5.11, the moment when
the signal acc_done indicates that the accelerator has finished the computation. In
particular, the hierarchical architecture takes 634350 ns from the moment the reset
is deactivated to the moment acc_done goes high. The sequential architecture
takes 1023700 ns instead. Therefore, the hierarchical architecture requires 39% less
time than the sequential architecture to perform the same computation.

Figure 5.8: RTL/C++ co-simulation result, hierarchical architecture.

Figure 5.9: RTL/C++ co-simulation waveforms, hierarchical architecture.

Figure 5.10: RTL/C++ co-simulation result, sequential architecture.

5.3 FPGA Prototyping and Validation
Finally, the architectures can be tested on the ProFPGA XC7V2000T board. To
do this, the accelerators have to be integrated into a heterogeneous SoC first.
ESP simplifies this step providing a SoC design GUI that, once opened, displays
a default SoC configuration, where the tiles are organized in a 2×2 grid. This

57

C++ Simulations, High-Level Synthesis, FPGA Implementation and Results

Figure 5.11: RTL/C++ co-simulation waveforms, sequential architecture.

grid includes the processor core, the memory controller and memory channel, an
auxiliary tile and one empty tile. For our design, the modern Ariane RISC-V
processor core is selected and the empty tile is replaced with an accelerator tile
containing the RTL implementation of the 2D-convolution accelerator. Both the
sequential and hierarchical architecture are selected, one at a time, obtaining two
different SoC configurations. The resulting SoC configuration, when the hierarchical
architecture of the accelerator is integrated, is shown in Fig. 5.12. Based on the SoC
configuration, the corresponding RTL implementation is automatically generated.

Figure 5.12: SoC design in the ESP GUI with the hierarchical architecture of the
2D-Conv accelerator.

58

C++ Simulations, High-Level Synthesis, FPGA Implementation and Results

Finally, the two SoC designs, featuring one the sequential and the other the
hierarchical implementation of the accelerator, can be deployed on the FPGA board.
The corresponding bitstreams (top.bit) are generated using Xilinx Vivado and
uploaded into the FPGA. The FPGA is connected via Ethernet to a remote server
(host), which can be accessed through SSH tunneling. The UART interface of the
SoC can be accessed with Minicom, a serial communication program, as the FPGA
is equipped with a UART interface board connected to the host computer via USB.

With a bare-metal test application running on the FPGA, we are able to validate
our accelerators at the system level, accounting for the processor and all other
peripherals. Its output is displayed on the host’s screen via Minicom.

The bare-metal test application has been implemented in the previous thesis
work [2] and performs the tiling algorithm described in Sec. 3.2.1. To be more
specific, the bare-metal code includes the following functions:

• get_tiling It performs the actual tiling of the input and weight tensors.

• conv2d_sw It performs the 2D-Convolution in software.

• conv2d_hw It supplies to the accelerator all the configuration parameters and
invokes it.

• conv2d_tiling It calls the get_tiling function and, once the tiles are ob-
tained, controls how they are going to be processed by the conv2d_hw function
calculating the pointer offsets to correctly address the right tiles, as explained
in Sec. 3.2.1.

• conv2d_tilingSW It calls the get_tiling function and, once the tiles are
obtained, controls how they are going to be processed by the conv2d_sw
function calculating the pointer offsets to correctly address the right tiles, as
explained in Sec. 3.2.1.

• main It fills the external memory with input, weight and output quanti-
zation values from the header files analyzed in Sec. 5.1. It then runs the
conv2d_tilingSW and conv2d_tiling functions, measuring the time required
to execute them, and so obtaining the number of clock cycles required to
perform the 2D convolution in both software and hardware.

Lst. 5.4 shows the part of the bare-metal code where the layer dimensions,
the padding type, the stride and the precision desired are set. Then, the PLMs
dimensions and the number of PEs wanted are defined. In particular, the PLMs
dimensions determine if and how the input and weight tensors are tiled, as explained
in Sec. 3.2.1. For example, the values set in the code snip below cause a simulation
of the accelerators with no tiling applied, since the PLMs dimensions are larger
than the layer ones.

59

C++ Simulations, High-Level Synthesis, FPGA Implementation and Results

Listing 5.4: conv2d_cxx.c - setting the values defining the test to be performed
1 const uint16_t Hin = 8 ;
2 const uint16_t Win = 8 ;
3 const uint16_t Cin = 16 ;
4 const uint16_t ker = 3 ;
5 const uint16_t Cout = 4 ;
6 const uint16_t s t r i d e =1;
7 const uint16_t pad = 0 ;
8
9 const i n t prec i s i on_opt = 0 ; // CONFIG1 i f 0 j u s t i t takes one c in value , i f 1 i t

takes 4 va lue s (4 LSB) in c in , i f 2 or 3 i t takes 2 va lue s (8 LSB) in c in
10
11 const uint8_t q_confg = prec i s i on_opt ; // CONFIG2
12
13 const uint16_t plm_in = 18∗18∗8; // Hin ∗ Win ∗ Cin
14 const uint16_t plm_w = 7∗7∗16∗8; // ker ∗ ker ∗ Cin ∗ Cout
15 const uint16_t plm_out = 18∗18∗8; // Hout ∗ Wout ∗ Cout
16 const uint8_t PE = 8 ;

Fig. 5.13 and Fig. 5.14 show the results of the 2D-Convolution accelerators
implemented in the FPGA when no tiling is applied to the input and weight tensors.

Figure 5.13: 2D-Conv results in FPGA, hierarchical architecture.

5.4 Performance Results
The 2D-Convolution accelerators have been tested with two layers of different
dimensions reported in the seventh columns of Tab. 5.1 and Tab. 5.2:

• A common layer from [18] (Tab. 5.1): Input Height x Input Width x Input
Channels x Output Channel x Kernel Height/Width = 8 x 8 x 16 x 4 x 3.

• The last layer of MobileNet (Tab. 5.2): Input Height x Input Width x Input
Channels x Output Channel x Kernel Height/Width = 3 x 3 x 256 x 256 x 1.

60

C++ Simulations, High-Level Synthesis, FPGA Implementation and Results

Figure 5.14: 2D-Conv results in FPGA, sequential architecture.

For both the layers the test has been performed with a stride of 1 and no padding
applied. The test also examines different PLMs sizes (in such a way to apply
different tiling), two values for the number of PEs (4 and 8, corresponding to the
PLMs’ output channels Cout) and three precision configurations (16, 8 and 4 bits).
All these parameters are reported in the eighth columns of Tab. 5.1 and Tab. 5.2.
In particular, the dimensions of the PLMs are represented in the following order:

• INPUT/OUTPUT PLMs: Height (the same for both the PLMs) × Width
(the same for both the PLMs) × Input Channels × Output Channels.

• WEIGHT PLM: Kernel Height × Kernel Width) × Input Channels × Output
Channels.

The last columns of Tab. 5.1 and Tab. 5.2 show the output of the tiling function
get_tiling in terms of number of tiles and their dimensions, while the first six
columns of both tables report the test results. In particular, the first and second
columns display the number of clock cycles taken by the sequential and hierarchical
architecture of the accelerator respectively, to compute the layer. The third columns
show the time taken by the processor to compute the layer in software. The fourth
columns present the speedup achieved by the sequential accelerator (HW) compared
to the processor (SW), where a negative value indicates that the accelerator takes
less time to perform the computation. The fifth columns compare the speedup of
the hierarchical accelerator against the processor. The sixth columns compare the
speedup of the hierarchical accelerator against the sequential accelerator.

The results reported in both Tab. 5.1 and Tab. 5.2 show that the sequential
accelerator performs better than the processor only when tiling is not applied,
while the hierarchical accelerator obtains better results than the processor until 24

61

C++ Simulations, High-Level Synthesis, FPGA Implementation and Results

tiles are produced by the tiling function. Also, the hierarchical architecture takes
on average 33% less time than the sequential architecture.

Therefore , it is possible to state that the accelerator performs at its best when
implemented with a hierarchical architecture and the number of tiles is quite low,
thus meaning that the tile sizes are large. In these scenarios, the accelerator
optimizes the efficiency of each DMA transaction by transferring larger amounts of
data per transaction and reducing the time spent configuring both the accelerator
and DMA operations. The results indicate that larger PLMs are more advantageous,
as they allow for fewer and larger tiles, which enhances performance. Conversely,
when the number of tiles increases and their sizes decrease, the overhead from tiling
and DMA transactions becomes more significant, negatively impacting the overall
performance of the accelerator.

Furthermore, it is possible to observe how the reduction of the precision of
ST multiplier used in the MAC units of the accelerator leads to no performance
improvements. This is due to the fact that the function where clock cycles reduction
occurs is the compute function; however, this function is much faster compared to
the others, especially when compared to the load function, which takes most of the
computation time. Therefore, the load function determines the final throughput of
the accelerator and masks the benefits provided by the ST multiplier. Thus, the
load function could be optimized in the future to make it faster.

Moreover, to further improve the performance, the tiling algorithm could be
implemented in hardware, integrating it in the structure of the accelerator, in such
a way to avoid the configuration of the accelerator for every tile to compute. Also,
inside a hierarchical architecture all the functions could be still pipelined and run
in parallel, meaning that the tiling algorithm and the other functions (config, load,
compute and store) could be performed simultaneously. These improvements are
left as future work.

62

C++ Simulations, High-Level Synthesis, FPGA Implementation and Results

H
W

(b
a

si
c)

T
im

e
(c

lo
ck

cy
cl

es
)

H
W

(h
ie

r)
T

im
e

(c
lo

ck
cy

cl
es

)

S
W

T
im

e
(c

lo
ck

cy
cl

es
)

H
W

(b
a

si
c)

/
S

W
sp

ee
d

u
p

(%
)

H
W

(h
ie

r)
/

S
W

sp
ee

d
u

p
(%

)

H
W

(h
ie

r)
/

H
W

(b
a

si
c)

sp
ee

d
u

p
(%

)

L
ay

er
a

n
d

d
im

en
si

o
n

s
(H

x
W

x
C

in
x

-
C

o
u

tx
K

)

P
L

M
s

IN
-

O
U

T
d

im
en

-
si

o
n

s
(H

x
W

x
C

in
x

C
o

u
t)

,
P

L
M

W
E

IG
H

T
d

im
en

si
o

n
s

(K
x

K
x

C
in

x
C

ou
t)

,
P

re
ci

si
on

N
u

m
b

er
o

f
T

il
es

,
T

il
e

d
im

en
si

o
n

s
(H

x
W

x
-

C
in

x
C

o
u

t)
,

In
p

u
t

(H
x

W
x

C
in

)
a

n
d

W
ei

g
h

t
(K

x
K

x
C

in
x

-
C

o
u

t)
T

il
es

si
ze

s

40
70

07
7

25
12

69
0

40
80

30
0

-0
.2

5
-3

8.
42

-3
8.

02
A

ve
ra

ge
L

ay
er

,
8x

8x
16

x4
x3

18
x1

8x
16

x8
,

7x
7x

16
x8

,
16

bi
t

1,
8x

8x
16

x4
,

10
24

,
57

6

40
65

58
1

25
09

46
8

40
81

47
4

-0
.3

9
-3

8.
52

-3
7.

99
A

ve
ra

ge
L

ay
er

,
8x

8x
16

x4
x3

18
x1

8x
16

x8
,

7x
7x

16
x8

,
8

bi
t

1,
8x

8x
16

x4
,

10
24

,
57

6

40
64

79
5

25
09

27
8

40
80

56
8

-0
.3

9
-3

8.
51

-3
8.

01
A

ve
ra

ge
L

ay
er

,
8x

8x
16

x4
x3

18
x1

8x
16

x8
,

7x
7x

16
x8

,
4

bi
t

1,
8x

8x
16

x4
,

10
24

,
57

6

68
79

54
5

42
46

53
7

64
60

30
3

6.
49

-3
4.

27
-3

8
A

ve
ra

ge
L

ay
er

,
8x

8x
16

x4
x3

7x
7x

16
x8

,
7x

7x
16

x8
,

16
bi

t
2,

8x
8x

8x
4,

51
2,

28
8

68
75

89
2

42
44

22
5

64
58

65
4

6.
46

-3
4.

29
-3

7.
99

A
ve

ra
ge

L
ay

er
,

8x
8x

16
x4

x3
7x

7x
16

x8
,

7x
7x

16
x8

,
8

bi
t

2,
8x

8x
8x

4,
51

2,
28

8

68
73

63
6

42
42

82
1

64
58

50
1

6.
43

-3
4.

31
-3

7.
99

A
ve

ra
ge

L
ay

er
,

8x
8x

16
x4

x3
7x

7x
16

x8
,

7x
7x

16
x8

,
4

bi
t

2,
8x

8x
8x

4,
51

2,
28

8

14
40

77
88

87
32

04
3

11
45

82
56

25
.7

4
-2

3.
79

-3
5

A
ve

ra
ge

L
ay

er
,

8x
8x

16
x4

x3
7x

7x
4x

8,
7x

7x
4x

8,
16

bi
t

8,
8x

8x
2x

4,
18

2,
72

14
40

57
64

87
30

85
1

11
44

11
61

25
.9

1
-2

3.
69

-3
5

A
ve

ra
ge

L
ay

er
,

8x
8x

16
x4

x3
7x

7x
4x

8,
7x

7x
4x

8,
8

bi
t

8,
8x

8x
2x

4,
18

2,
72

21
43

11
47

13
10

77
35

13
80

85
40

55
.2

0
-5

.0
8

-3
6.

5
A

ve
ra

ge
L

ay
er

,
8x

8x
16

x4
x3

7x
7x

4x
8,

7x
7x

4x
8,

4
bi

t
24

,
3x

8x
4x

4,
96

,
14

4

61
57

70
04

36
54

42
16

22
05

61
57

17
9.

18
65

.6
9

-3
1.

5
A

ve
ra

ge
L

ay
er

,
8x

8x
16

x4
x3

7x
7x

4x
4,

7x
7x

4x
4,

16
bi

t
96

,
3x

8x
1x

4,
24

,
36

37
07

23
04

22
40

01
83

19
36

95
81

91
.3

9
15

.6
5

-3
4.

5
A

ve
ra

ge
L

ay
er

,
8x

8x
16

x4
x3

7x
7x

4x
4,

7x
7x

4x
4,

8
bi

t
48

,
3x

8x
2x

4,
48

,
72

23
63

50
49

14
45

56
86

16
01

21
51

47
.6

1
-9

.7
2

-3
6.

5
A

ve
ra

ge
L

ay
er

,
8x

8x
16

x4
x3

7x
7x

4x
4,

7x
7x

4x
4,

4
bi

t
24

,
3x

8x
4x

4,
96

,
14

4

T
ab

le
5.

1:
H

W
an

d
SW

pe
rfo

rm
an

ce
re

su
lts

fo
r

an
av

er
ag

e
D

N
N

la
ye

r
fro

m
[1

8]

63

C++ Simulations, High-Level Synthesis, FPGA Implementation and Results

H
W

(b
a

si
c)

T
im

e
(c

lo
ck

cy
cl

es
)

H
W

(h
ie

r)
T

im
e

(c
lo

ck
cy

cl
es

)

S
W

T
im

e
(c

lo
ck

cy
cl

es
)

H
W

(b
a

si
c)

/
S

W
sp

ee
d

u
p

(%
)

H
W

(h
ie

r)
/

S
W

sp
ee

d
u

p
(%

)

H
W

(h
ie

r)
/

H
W

(b
a

si
c)

sp
ee

d
u

p
(%

)

L
ay

er
a

n
d

d
im

en
si

o
n

s
(H

x
W

x
C

in
x

-
C

o
u

tx
K

)

P
L

M
s

IN
-

O
U

T
d

im
en

-
si

o
n

s
(H

x
W

x
C

in
x

C
o

u
t)

,
P

L
M

W
E

IG
H

T
d

im
en

si
o

n
s

(K
x

K
x

C
in

x
C

ou
t)

,
P

re
ci

si
on

N
u

m
b

er
o

f
T

il
es

,
T

il
e

d
im

en
si

o
n

s
(H

x
W

x
-

C
in

x
C

o
u

t)
,

In
p

u
t

(H
x

W
x

C
in

)
a

n
d

W
ei

g
h

t
(K

x
K

x
C

in
x

-
C

o
u

t)
T

il
es

si
ze

s

25
20

33
32

9
14

82
54

91
7

34
28

16
27

63
5.

18
33

2.
46

-3
0

L
as

t
la

ye
r

M
ob

il
en

et
,

3x
3x

25
6x

25
6x

1

18
x1

8x
16

x8
,

7x
7x

16
x8

,
16

bi
t

51
2,

3x
3x

16
x8

,
14

4,
12

8

25
20

32
89

7
14

82
54

64
5

34
28

92
02

63
5.

02
33

2.
37

-3
0

L
as

t
la

ye
r

M
ob

il
en

et
,

3x
3x

25
6x

25
6x

1

18
x1

8x
16

x8
,

7x
7x

16
x8

,
8

bi
t

51
2,

3x
3x

16
x8

,
14

4,
12

8

25
27

05
02

2
14

86
50

01
2

34
28

85
58

63
7

33
3.

53
-3

0
L

as
t

la
ye

r
M

ob
il

en
et

,
3x

3x
25

6x
25

6x
1

18
x1

8x
16

x8
,

7x
7x

16
x8

,
4

bi
t

51
2,

3x
3x

16
x8

,
14

4,
12

8

48
97

03
18

1
28

30
65

42
2

37
04

00
61

12
22

.0
9

66
4.

21
-2

7
L

as
t

la
ye

r
M

ob
il

en
et

,
3x

3x
25

6x
25

6x
1

18
x1

8x
16

x4
,

7x
7x

16
x4

,
16

bi
t

10
24

,
3x

3x
16

x4
,

14
4,

64

48
97

02
98

8
28

30
65

31
1

37
02

55
44

12
22

.6
1

66
4.

51
-2

6.
99

L
as

t
la

ye
r

M
ob

il
en

et
,

3x
3x

25
6x

25
6x

1

18
x1

8x
16

x4
,

7x
7x

16
x4

,
8

bi
t

10
24

,
3x

3x
16

x4
,

14
4,

64

48
97

02
70

2
28

30
65

14
5

37
02

23
01

12
22

.7
2

66
4.

58
-2

7
L

as
t

la
ye

r
M

ob
il

en
et

,
3x

3x
25

6x
25

6x
1

18
x1

8x
16

x4
,

7x
7x

16
x4

,
4

bi
t

10
24

,
3x

3x
16

x4
,

14
4,

64

T
ab

le
5.

2:
H

W
an

d
SW

pe
rfo

rm
an

ce
re

su
lts

fo
r

th
e

la
st

la
ye

r
of

M
ob

ile
N

et

64

Chapter 6

Conclusions

The rapid expansion of big data applications, while offering vast potential for the
advancement of machine learning, poses substantial challenges in terms of processing
speed and scalability for traditional computing systems. Conventional von Neumann
architectures, which separate processing and data storage components, are hindered
by frequent data transfers between processors and memory, leading to performance
bottlenecks and inefficiencies in energy consumption. These limitations are further
exacerbated by the immense data volumes required by AI applications [1].

To address these challenges, domain-specific computing hardware platforms
for AI applications, also called hardware accelerators, have emerged, designed to
overcome issues such as the "memory wall" and "power wall" by optimizing data
flow and minimizing energy-intensive operations [1].

In this thesis work, through High-Level Design and the Embedded Scalable
Platform (ESP), starting from the sequential architecture of a 2D-Conv hardware
accelerator realized in a previous work [2], the corresponding hierarchical architec-
ture has been implemented. In the hierarchical architecture, the internal phases
executed by the hardware accelerator (configure, load, compute and store) are
performed in parallel. The architecture has been tested on an FPGA using a
bare-metal application that performs a tiling algorithm realized in a previous work
[2]. In particular, for the simulations, two different layers have been used and
different types of tiling have been applied. The results show that this architecture
improves the previous results of the sequential implementation [2] in terms of
performance by around 33%. They also highlight that the accelerator achieves
the best performance when the number of tiles to be processed is quite low (large
PLMs), which implies that the number of DMA transactions get reduced, because
more data can be moved per transaction. Moreover, the accelerator spends less
time for configuring the DMA, and the processor needs to configure and invoke
the accelerator less frequently. Furthermore, no performance improvements are
obtained from the reduction of the precision of ST multiplier used in the MAC

65

Conclusions

units of the accelerator. This is due to the long execution time of the load function
that determines the throughput of the accelerator, hiding the advantages provided
by ST multipliers in the compute function.

These results lead to several potential directions and suggestions for expanding
this thesis work in the near future, like:

• Modifying the tiling algorithm, making it able to adapt to the input layer’s
dimensions, generating at most a user-defined amount of tiles that allow to
obtain the best performance from the hierarchical accelerator.

• Accelerating the loops in the load function using HLS directives.

• Balancing the workload between the load and compute functions to increase
the accelerator’s throughput by moving some of the operations currently
handled by the load into the compute function. Otherwise, smaller (still
pipelined) load functions could be created to distribute the workload and
increase the accelerator’s throughput.

• Implementing the tiling algorithm in hardware, integrating it in the hierarchical
architecture of the accelerator, in such a way that it could be performed in
parallel with the other functions of the accelerator, which will allow the
processor to avoid to configure the accelerator for every tile to compute.

66

Bibliography

[1] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang. «A Survey of Accelerator
Architectures for Deep Neural Networks». In: Engineerings 6 (Mar. 2020),
pp. 264–274 (cit. on pp. ii, 1, 2, 65).

[2] D. R. Bueno Pacheco. «Efficient Tiling Architecture for Scalable CNN Infer-
ence: Leveraging High-Level Design and Embedded Scalable Platform». MA
thesis. Torino, Italia: Politecnico di Torino, Dec. 2023 (cit. on pp. ii, iii, 14,
17, 19–22, 24, 25, 29, 32, 41, 43, 47, 48, 50–52, 59, 65).

[3] P. Mantovani, D. Giri, G. Di Guglielmo, L. Piccolboni, J. Zuckerman, E.G.
Cota, M. Petracca, C. Pilato, and L.P. Carloni. «Agile SoC development with
open ESP». In: 2020 IEEE/ACM International Conference On Computer
Aided Design (ICCAD) (Dec. 2020), pp. 1–9 (cit. on pp. ii, 7, 9, 11).

[4] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer. «Efficient Processing of Deep
Neural Networks: A Tutorial and Survey». In: (Aug. 2017). url: https:
//arxiv.org/abs/1703.09039 (cit. on pp. 2–4).

[5] M. Ravi, A. Sewa, S. T.G., and S.S.S. Sanagapati. «FPGA as a Hardware
Accelerator for Computation Intensive Maximum Likelihood Expectation
Maximization Medical Image Reconstruction Algorithm». In: IEEE Access 7
(2019), pp. 111727–111735 (cit. on pp. 3–5).

[6] H. Jia and X. Zou. «An FPGA-Based Resource-Saving Hardware Accelerator
for Deep Neural Network». In: International Journal of Intelligence Science
11 (Apr. 2021), pp. 57–69 (cit. on p. 3).

[7] M. Cassel Dos Santos et al. «A Scalable Methodology for Agile Chip Devel-
opment with Open-Source Hardware Components: (Invited Paper)». In: 2022
IEEE/ACM International Conference On Computer Aided Design (ICCAD)
(2022), pp. 1–9 (cit. on pp. 6, 7).

[8] D. Giri, K.-L. Chiu, G. Eichler, P. Mantovani, and L.P. Carloni. ««Accelerator
Integration for Open-Source SoC Design». In: IEEE Micro 41.4 (2021), pp. 8–
14 (cit. on pp. 7, 8, 13).

67

https://arxiv.org/abs/1703.09039
https://arxiv.org/abs/1703.09039

BIBLIOGRAPHY

[9] Catapult® Synthesis User and Reference Manual. Mentor, a Siemens Business.
2020 (cit. on pp. 7, 11, 43, 48, 53).

[10] L. Urbinati and M. R. Casu. ««Design-Space Exploration of Mixedprecision
DNN Accelerators based on Sum-Together Multipliers». In: 2023 18th Confer-
ence on Ph.D Research in Microelectronics and Electronics (PRIME) (2023),
pp. 377–380 (cit. on pp. 15, 22, 24).

[11] L. Urbinati and M. R. Casu. ««High-Level Design of Precision-Scalable DNN
Accelerators Based on Sum-Together Multipliers». In: IEEE Access 12 (2024),
pp. 44163–44189 (cit. on pp. 15, 16, 24, 25, 28, 36).

[12] A. Burrello, A. Garofalo, N. Bruschi, G. Tagliavini, D. Rossi, and F Conti.
««DORY: Automatic End-to-End Deployment of Real-World DNNs on Low-
Cost IoT MCUs». In: IEEE Transactions on Computers 70.8 (2021), pp. 1253–
1268. url: https://doi.org/10.1109%2Ftc.2021.3066883 (cit. on p. 18).

[13] Federico Perenno. «High-Level Design of 2D-Convolution Accelerators for AI
Leveraging Embedded Scalable Platform (ESP)». MA thesis. Torino, Italia:
Politecnico di Torino, 2022 (cit. on pp. 22, 23, 29, 33, 47, 52).

[14] Riccardo Capodicasa. «High-level design of a Depthwise Convolution acceler-
ator and SoC integration using ESP». MA thesis. Torino, Italia: Politecnico
di Torino, 2022 (cit. on pp. 22, 29, 47, 52).

[15] Guide – How to: design an accelerator in C/C++ (Mentor Catapult HLS).
url: https://www.esp.cs.columbia.edu/docs/mentor_cpp_acc/mentor_
cpp_acc-guide/ (cit. on pp. 22, 24, 29, 30).

[16] Columbia University - System Level Design Group. ESP Accelerator Speci-
fications. Accessed: 2024-10-01. url: https://www.esp.cs.columbia.edu/
docs/specs/esp_accelerator_specification.pdf (cit. on p. 22).

[17] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer. «A
Survey of Quantization Methods for Efficient Neural Network Inference». In:
Low-Power Computer Vision: Improve the Efficiency of Artificial Intelligence.
1st. New York, NY, USA: Chapman and Hall/CRC, 2022. Chap. 1.2.12,
pp. 14–17. doi: 10.1201/9781003162810 (cit. on p. 25).

[18] L. Urbinati and M. R. Casu. ««A Reconfigurable 2D-Convolution Accelerator
for DNNs Quantized with Mixed-Precision». In: Applications in Electronics
Pervading Industry, Environment and Society (2023). Ed. by R. Berta and
A De Gloria. Cham: Springer Nature Switzerland ISBN: 978-3-031-30333-3,
pp. 210–215 (cit. on pp. 60, 63).

68

https://doi.org/10.1109%2Ftc.2021.3066883
https://www.esp.cs.columbia.edu/docs/mentor_cpp_acc/mentor_cpp_acc-guide/
https://www.esp.cs.columbia.edu/docs/mentor_cpp_acc/mentor_cpp_acc-guide/
https://www.esp.cs.columbia.edu/docs/specs/esp_accelerator_specification.pdf
https://www.esp.cs.columbia.edu/docs/specs/esp_accelerator_specification.pdf
https://doi.org/10.1201/9781003162810

	List of Tables
	List of Figures
	Hardware Accelerators
	Embedded Scalable Platform (ESP)
	The ESP Architecture
	The ESP Methodology

	Summary of previous work
	2D-Conv Accelerator Based on the Sum-Together Multiplier
	Architecture of the 2D-Conv NN
	Software Implementation: Tiling Algorithm
	Hardware Implementation: Sequential Architecture

	Results

	2D-Convolution Accelerator: Hierarchical Architecture
	Output Quantization
	Uniform Integer Quantization UIQ
	Integer-Only DNN Kernels
	ST Based 2D-Conv Accelerator Design: UIQ Variables

	Hierarchical Architecture
	Accelerator Interface
	Top-Level Function
	Configure Function
	Load Function
	Compute Function
	Store Function

	C++ Simulations, High-Level Synthesis, FPGA Implementation and Results
	C++ Simulation
	High-Level Synthesis and Co-Simulation
	FPGA Prototyping and Validation
	Performance Results

	Conclusions
	Bibliography

