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Abstract 
The growing demand for high computational performance and energy efficiency has 
made multi-core architectures a fundamental component in modern computing systems. 
From mobile devices to data center servers, multi-core systems allow for the execution of 
multiple operations simultaneously, improving speed and processing capacity without 
increasing the clock frequency. However, managing concurrency for resource access can 
present complex challenges that require innovative and optimized solutions. 

This thesis aims to address two main objectives in the context of multi-core and single-
core architectures, with a particular focus on concurrency management and performance 
optimization. The first objective is the development of methodologies for managing 
concurrency in a specific multi-core architecture within a SER-DES (serializer-
deserializer) environment. This process begins with the analysis of a specific industrial 
case of interest and then attempts to generalize the solutions found to improve the 
efficiency and robustness of concurrent operations. In this first case, the goal is to explore 
various synchronization algorithms and inter-core communication strategies, evaluating 
their robustness and criticalities. 

The second objective is the development of a scheduler for the STRED_L architecture 
(property of STMicroelectronics), a software component that, based on the type of 
implemented algorithm, manages the order and duration with which processes get access 
to the CPU, allowing for efficiency optimization and responsiveness of the system. This 
part will be developed for the single-core configuration, which is able to work at a 
frequency four times higher than the multi-core mode, which ultimately is a quad-core. 

The main question we want to answer in this case is: Is a quad-core system, where up to 
four tasks can work in parallel, better than a single-core system with scheduling, where 
operations are executed in series but can run at a speed four times higher? Which of these 
solutions allows for higher performance, and, most importantly, how significant is this 
difference between them? By answering this, this work aims to make some 
considerations about which one can ultimately provide the best balance in terms of area, 
performance, power consumption, and cost. 

The developed scheduler will be tested in specific industrial scenarios and will feature a 
Round-Robin algorithm. The analysis will start with simple and limited solutions and will 
gradually become more complex, covering some possible cases of industrial application 
interest. 
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1. Introduction 
This thesis was conducted at STMicroelectronics under the supervision of Luca Longhi,  
inside the SW/FW team led by Stefano Antoniazzi. 

The work environment for this project is represented by the S112, a SerDes application 
system developed by STMicroelectronics. The focus of this work will be on the 
microcontroller subsystem within this environment, which has the capability to work in 
both single-core and quad-core configurations. 

The first part of this thesis will concentrate on the multi-core mode of the 
microcontroller, addressing a specific problem related to resource sharing and 
synchronization mechanisms. Given that the four cores run in parallel, access to shared 
resources must be carefully managed. The aim is to explore synchronization techniques 
between the cores to develop a more general and efficient approach. 

The second part of the thesis will focus on designing a scheduler for the single-core 
configuration, specifically for the STRED_L architecture, which is the core implemented 
in the microcontroller produced by STMicroelectronics. The aim is not only to create a 
more dynamic environment for the single core, making it more suitable for real-time 
operations, but also to compare its performance with the quad-core configuration. It is 
noteworthy that the quad-core configuration operates at only one-fourth of the nominal 
frequency. 

By estimating the impact of the overhead introduced by the scheduler, we can then 
compare the two configurations in terms of performance and make some considerations 
on the pros and cons of single-core versus quad-core setups. Without a scheduler, the 
comparison would be skewed, as the advantages of the multi-core configuration would be 
too significant. The multi-core setup not only offers superior performance by running 
different jobs in parallel but also provides better responsiveness, making it more suitable 
for tasks with strict deadlines. 

By addressing these objectives, this thesis aims to enhance the efficiency and 
functionality of the microcontroller subsystem in both single-core and multi-core 
configurations. 

The documentation will begin with an introduction to the architecture, with a particular 
emphasis on the specific blocks utilized in this project. The subsequent chapter will 
address the resource-sharing problem in the quad-core configuration within a specific 
case of interest. Various approaches will be presented, discussing their pros and cons, 
until the selection of the final solution. 
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The methodology for core synchronization will aim to achieve the highest performance 
while exploiting the idle states of the cores. 

The final chapter will focus on the secondary objective of this work: the development of 
a scheduler for the STRED_L core architecture. The primary goal will be to implement a 
scheduler capable of performing context switches between tasks effectively, thereby 
creating a more responsive system. The work will begin from simple solutions until a 
more complete and complex one. The last sections will then provide the results of the 
context switch impact on performances. 

1.1 Brief description of a Serializer/Deserializer (SerDes) 
system 

Since the work environment is represented by the S112 SerDes application, it is pertinent 
to provide a brief description of a SerDes system, even though it is not necessary for the 
comprehension of the involved project. 

A SerDes environment stands for Serializer/Deserializer. It is a functional block used in 
high-speed communications that can convert between serial data and parallel interfaces, 
and vice versa. The primary use of a SerDes is to enable data transmission over a single 
line, thereby minimizing the number of I/O pins and interconnects in chips where large 
data transactions are required and there are constraints regarding the number of I/O pins 
[10]. 

A basic SerDes system is composed of two functional blocks: 

1. Parallel-In Serial-Out (PISO) Block: Also known as the parallel-to-serial 
converter, this block functions as the transmitter of the system. It converts parallel 
data into a serial data stream for transmission over a single line. 
Serial-In Parallel-Out (SIPO) Block: Also referred to as the serial-to-parallel 
converter, this block functions as the receiver of the system. It converts the 
incoming serial data stream back into parallel data [9]. 
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Figure 1: block diagram of a typical high-speed SerDes [1]. 

Given the very high-speed transactions involved, it is essential for these systems to 
implement equalization techniques for data recovery. Equalization helps to mitigate 
signal degradation and ensures accurate data transmission and reception [1]. 
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2. Architecture description 
Due to confidentiality and secrecy obligations, the detailed architecture of this advanced 
SerDes system cannot be fully disclosed. However, to facilitate understanding, it is 
sufficient to highlight some general characteristics of the system and the key components 
involved. An overview of the system will be provided in the following chapter, while a 
more detailed description of the various functional blocks will be given when discussing 
the specific parts of the work in which they got involved. 

 
As reported in its user manual, the S112 is a multi-channel SerDes system composed of 
multiple Data Slice Quads (DS-Quad), each of which is composed of: 

•  4 Data Slices: they are the same physical instance and are mainly composed of 3 
blocks: a high-frequency Clock generation block, the Serializer which 
corresponds to the Transmitter, and the Deserializer which represents the 
receiver.  

• A micro subsystem shared among the 4 Data Slices that assists in the calibration 
of the SerDes and offers an improvement in flexibility of use. 

The other fundamental block of the Quad is the Clock Slice Twin. This is an aggregation 
of: 

• Clock Slice (CS): also in this case they are the same exact physical instance and 
are dedicated to the distribution of the clock through all the quad. 

• Clock Slice Auxiliary (CSA): it contains auxiliary blocks like a thermal sensor, 
an auxiliary ADC and impedance Compensation [3]. 

  2.1 Clock Slice Auxiliary 

A particular focus will be dedicated to the Clock Slice Auxiliary block, as it has been the 
primary subject of the first part of this work. As previously mentioned, this block is 
responsible for impedance compensation, includes a thermal sensor for calibration and 
adaptation purposes, and features an auxiliary ADC, among other functionalities. 
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Figure 2: CSA block diagram.[3] 

The most important blocks to focus on here are the Thermal Sensor and the Auxiliary 
ADC. Both components are connected to control registers, which can be accessed by the 
microcontroller and utilized to configure and set these blocks. For example, these control 
registers allow the microcontroller to turn on the Thermal Sensor or start the ADC [3]. 

2.2 Micro sub-system architecture 

The micro sub-system integrated in S112 SerDes is composed of: 

• A very low power core processor, the STRED_L architecture. 
• A program RAM. 
• A data RAM. 
• An interrupt controller for managing interrupts. 
• 1 UART 
• 1 LINK bus that allows to access the clock Slice memory map or the memory 

map of others Quad-slices. 
• Multicore and single core capability that can be manually configured based on the 

type of application. 

This Micro is able to configure and control multiple Data Slices in parallel, thanks to the 
multicore configuration, to the timers that are available to support this task [3]. 

Below a Block diagram of the sub-system is reported. 
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Figure 3: Block diagram of the micro subsystem in S112(single core-configuration) [4]. 

As the diagram shows, the code memory and data memory are connected to the core 
through a 32-bit Full Crossbar, along with all other peripherals. The crossbar functions as 
an arbiter, managing access requests from all connected devices. The necessary blocks 
showed in the image will be explained more in detail later, as follows the description of 
the specific activities in which they got involved. 

In the multi-core configuration, all four STRED_L core become active, sharing all 
peripheral resources among them and getting referred to as core0, core1, core2, core3 
[3]. 
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3. Thermal Sensor reading in 
multicore. 

The Data Slices blocks are highly complex, comprising various groups of analog and 
digital components that must communicate at very high speeds. To ensure proper signal 
restoration and communication, advanced signal processing and quantization techniques 
are required [3]. Numerous variables must be considered to dynamically adjust the 
behavior and parameters of the involved algorithms and devices in real time. One critical 
variable is temperature, which can be monitored using the thermal sensor located in the 
CSA. The main problem in this case is that the thermal sensor is unique and as mentioned 
before the Quad Slice is an aggregation of four different Data Slices and each of them 
might need to retain an updated value of the temperature. In the multi-core configuration, 
each core is dedicated to a specific Data Slice of the Ser-Des system being able to 
directly access its memory map [2]. 

A resource sharing issue arises in this context, as the four cores need to access the same 
resource, potentially interfering with each other's operations and hindering the correct 
completion of the task. Since a shared memory region at which all cores can access is 
also present in the memory map, this solution could be very simple; we could assign the 
task to read the thermal sensor to a specific core (for example core0),  which will then 
save the value in the shared memory region, where all the other cores can access, read the 
value and make it available for the relative Data Slice.  

This is undoubtedly the simplest solution, but it introduces an overhead for the specific 
core tasked with reading the thermal sensor. The process involves waiting for access to 
the LNK BUS and then waiting for the completion of the analog-to-digital (AD) 
conversion. This task is not immediate and must be repeated periodically, as the 
temperature is not constant, thereby introducing a non-negligible overhead for the relative 
core (in this example core0) [3]. 

 

Figure 4: schematic of the relation between the clock slice auxiliary and the four cores.  
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Our goal is to find a general solution that allows the four cores to operate independently, 
balancing the workload and improving overall system efficiency. The main idea is for the 
least busy core to take charge of the task and complete it. In other words, the first core 
able to handle the pending request to read the temperature will perform the task for all the 
other cores. This decision will not be made by the user but will be an automatic result of 
the core's activity. This approach enables all cores to remain operational across all 
channels, without penalizing any single core, and allows for a more predictable and 
deterministic system. 

To achieve the mentioned advantages, the cores will need to run the same code (which 
translates to executing the same instructions), ensuring that there are no branches where 
only specific cores execute certain tasks. This uniformity in code execution ensures 
balanced workload distribution and system efficiency. Below, we will begin by listing 
and briefly explaining some of the peripherals required for accessing and reading the 
thermal sensor, followed by the applied methodologies. 

3.1 Link Bus  

The link bus is a modified version of the IIC bus, which allows to access the memory 
map of others quad in a composition of more quads or to access the Clock Slice memory 
map from any quad.  

The IIC features supported also by the link bus are: 

• Multi master mode: this means more than one master device can initiate 
communication and control the bus.  

• 7 bits addressing. 
• Arbitration: when two or more master device attempt to take control of the bus 

simultaneously, an arbitration process determines which master gets control. 
• Repeated start: this allows device to maintain control of the bus and continue 

communication with either the same or a different slave device. 

The link bus can be configured and controlled with the micro by accessing the related 
memory map and setting the required values on the registers. These register allow to 
select the master(the QUAD) and the slave (CS), by specifying the device address bits in 
the related register. 

The most important registers for managing communication and initiating a transaction 
with the link bus, once the master and slave devices have been selected, are the STATUS 
registers. The primary register is the LNK_STATUS, which holds several critical flags, 
including: 
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1. LNK_STATUS[0] → ‘status_cmd_done’: it indicates the end of the actual access. 
2. LNK_STATUS[1] → ‘bus_busy’: it indicates when the bus is busy and can’t start 

new transactions [4]. 

 

Figure 5: Link Bus register map [4]. 

3.2 ADC auxiliary 

The auxiliary ADC, as previously mentioned, is located in the Clock Slice Auxiliary and 
is a fundamental block for reading the thermal sensor, as the sensor's original output is an 
analog value. The ADC converts this analog signal into a digital format and writes it to 
its dedicated registers, where it can be accessed by the microcontroller. Like the Link 
Bus, both the calibration and normal operation of the ADC are controlled by software. 

Initially, the ADC needs to be powered on, and the thermal sensor must be selected as the 
current input for the ADC, since a preliminary multiplexer allows for different input 
sources. 

 A conversion can occur when the ADC's specific start signal is high. After a certain 
number of clock cycles from the start command, the ADC raises the end of conversion 
signal indicating that the output data in the output register is valid. When a new start 
conversion command is issued, the end of conversion signal resets until the new 
conversion is finished.[3] 
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3.3 Necessary steps for accessing ADC and Link Bus  

To access the ADC, two types of LNK_BUS access functions are necessary: one for read 
mode and one for write mode. Below are reported the sequential steps used for accessing 
the LNK_BUS to start a transaction with the auxiliary ADC in the CSA: 

1. Write in the dedicated LNK_BUS size register the size of the data to read/write 
(8/16/32 bits). 

2. Define the address of the peripheral to be accessed (register address of the ADC) 
3. Give start command for starting the transaction. 
4. Wait until LNK_STATUS register shows end of transaction. 
5. In case of read operation, return the read value which will be stored in a 

LNK_BUS register. 

The core will continuously use these functions for accessing the registers of the ADC.  

Now the steps for accessing and starting the ADC are showed (each step is implied 
making use of the LNK functions): 

1. Turn-On the analog to digital converter. 
2. Give start conversion command to ADC control register. 
3. Wait for end of conversion by continuously reading ADC status register, until 

EOC bit is risen; now the data is valid for reading. 
4. Turn-off ADC. 

3.4 Strategies for Core Concurrency handling 

Now that all the necessary devices involved in this task have been presented, we can 
begin analyzing the possible algorithmic approaches for implementing this task and 
handling core concurrency. The objective is not only to correctly manage the core 
concurrency involved in this task but also to design an efficient method for accessing a 
shared resource (in this case the thermal sensor), which value can be required by all the 
cores, starting from a practical case and try to generalize it for all similar scenarios. 
Different approaches will be considered analyzing the pros and the cons. 

Different considerations in fact, will be made based on the purpose and final use 
scenarios of the temperature data, which may influence the choice of the best solution. 
Therefore, we will analyze different approaches and finally choose the one that better 
suits our application. 
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3.4.1 First approach: on-demand temperature request 
One approach is to have each core start the thermal sensor and initialize the ADC 
conversion whenever they need the temperature: this is the so called on-demand request 
approach. It is important to consider that temperature is not a parameter that changes 
rapidly and does not need to be consistently updated. Depending on the running 
application, the temperature could be considered stable for 20 seconds, 30 seconds, one 
minute, or even longer. 

This means that if a core needs the temperature a few seconds after another core has 
already started the ADC and obtained the temperature, it is unnecessary for this core to 
restart the process, as it will likely read the same value. It is worth noting that we are not 
considering applications that require continuous temperature tracking over a specific 
period or very high precision values, as this assumption may not hold in such scenarios. 

For this purpose, each time a core reads the temperature, a timestamp is recorded. If a 
new core or even the same core requests the temperature within an interval during which 
the previous temperature value is still considered valid, there is no need to initiate a new 
conversion. Instead, the temperature can be directly read from the ADC output register or 
from the shared memory region. 

Concurrency must be managed in this scenario, as multiple cores might simultaneously 
request to access the auxiliary ADC for reading the thermal sensor. 

 

Figure 6: graphic representation example of On-demand approach. 

The critical issue with this approach is that if a specific core (for example, core0) has a 
higher demand for temperature readings compared to the other three cores over a certain 
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period, core0 will be solely responsible for reading the thermal sensor. This could lead to 
inefficient workload balancing, as we would not be utilizing other cores that might be 
idle during that period, potentially resulting in suboptimal performance. 

On the positive side, this approach ensures that the thermal sensor is read only when 
necessary, avoiding unnecessary ADC conversions and conserving resources. 

3.4.2 Second approach: Periodic temperature request 
Another possible approach, which might be more advantageous in terms of performance 
for a different type of application, is to implement a periodic temperature read request. In 
this scenario, at regular intervals (for example, every 30 seconds), all cores receive a 
command to read the temperature value from the thermal sensor. A mechanism must be 
in place to ensure that only one core accesses the resource, with the fastest core to 
respond taking the request. This mechanism is illustrated in Figure 7. 

In this setup, cores that do not secure the request will return to their execution. When a 
specific core subsequently needs the temperature, it can simply retrieve the value from 
the ADC output register or the shared memory region, as the value will still be valid. 

 

Figure 7: graphic representation periodic request approach. 

The advantage of this solution is that it fully exploits workload balancing among the 
cores, as the process of reading the temperature will always be handled by the readiest 
core (i.e., the least busy one). However, this approach also has a downside: it requires a 
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significant amount of energy to always ensure a valid temperature value. In environments 
where the temperature can be triggered by rapid changes, this needs a shorter intervals for 
periodic requests, leading to a higher frequency of thermal sensor accesses and ADC 
conversions. Consequently, the number of sensor readings and conversions could be 
much higher than the actual number of times the cores effectively requests the 
temperature. 

3.4.3 Third Approach: Combination of periodic and On-demand 
request. 
The third approach proposed in this chapter is more interesting and comprehensive. It 
combines the first two techniques discussed earlier, effectively balancing, and mitigating 
the critical aspects of the previous methods. 

In this case, a periodic request is still sent to all cores, but only one core processes it. 
Unlike the previous methods, the time interval for these requests does not necessarily 
need to be less than or equal to the maximum duration in which the last temperature value 
can still be considered valid. This reduces the number of useless accesses. 

When a core needs the temperature data, it checks if the last ADC (Analog-to-Digital 
Converter) conversion occurred within a valid timestamp. If the timestamp is valid, the 
core retrieves the temperature value from the registers. If not, the core starts a new ADC 
conversion and updates the temperature value. The next periodic request will use this 
event as the starting point of its period. 

The graphic in the image below illustrates how this process works. 

 

Figure 8: On-demand and periodic request implementation. 
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From this, we can see that every PERIOD, a new request to update the temperature value 
is sent to all the cores. As before, only one core handles the request while the others 
return to their executions. 

The yellow area represents the valid timestamp within which the last update can still be 
considered valid. This means that if a core needs the temperature data (for example, 
core2 and core3 in the first yellow area), they will simply retrieve the last updated value. 

The purple color indicates that a core (core3 in this example) requested the temperature 
outside the TMAX interval. Since the temperature data cannot be considered valid in this 
case, the core starts a new ADC conversion. The next periodic request will occur a 
PERIOD after this event. 

This approach leverages the workload balance among the different cores due to the 
periodic requests while simultaneously reducing the number of ADC accesses to closely 
match the actual number of times the temperature is needed by the cores. 

This solution has ultimately been chosen for being implemented in the firmware. 

3.5 Practical Implementation 

As previously stated, the purpose is to maintain the same code for all the cores in order to 
balance the workload between all the cores, and the previously showed algorithm is in 
alignment with this, since no specific core is in charge of taking specific branches. 

In this approach, we need to handle core concurrency for both periodic and on-demand 
requests: 

1. Periodic Requests: We must ensure that only one core gains access to the auxiliary 
ADC. This prevents multiple cores from attempting to process the periodic request 
simultaneously. 

2. On-Demand Requests: We need to consider that multiple cores might request the 
temperature at the same time. However, only one core can initiate the ADC 
conversion, while the others must wait for it to complete. 

3.5.1 Synchronization Mechanisms 
A secure synchronization mechanism in order to avoid race conditions between the cores 
is required when handling simultaneous requests. 

As reported in the micro-subsystem manual, the micro itself features a dedicated 
synchronization mechanism using a specific register called RESOURCE_SYNC_REG 
when using multi-core configuration. This register is accessible by all cores and allows 
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them to lock resources and release them at the end of an operation. Dedicated hardware 
ensures the proper behavior of this register. 

This register is composed of nibbles, and each of them can be associated to specific 
resource(this a chosen by the user, there is not an hardware association between the 
resource and the nibble. 

At reset, the generic nibbles show a value of 0xF, indicating that the resource is free and 
not locked by any core. Any write to the fourth bit of the nibble (bit[3]) represents a 
resource request by the core. If, at the moment of the request, the nibble is still free (value 
0xF), it will latch the number of the requesting core (0x0, 0x1, 0x2, or 0x3). If the 
resource is already locked, the write is ignored. When a nibble is locked by a certain core 
X, any write to that nibble by other cores is ignored. Only the locking core can write back 
to the nibble, setting ‘bit[3]’ to '1', which frees the resource, and the nibble will then show 
'0xF'. 

After a core attempts to lock the nibble, a read operation is required to verify if the 
request was successful. By reading the nibble, any core can determine which core is 
locking a particular resource [4]. 

3.5.2 Periodic request implementation 
A primary challenge for this task is defining how to issue the command to start the 
conversion to all cores simultaneously at each defined period of time. A possible solution 
is to use a timer interrupt. As mentioned in previous chapters, the microcontroller has 5 
timers available, each capable of triggering an interrupt [4]. 

The timers have different priority levels, meaning that if two interrupts are triggered 
simultaneously, the hardware will select the interrupt with the higher priority. These 
timers are 32-bit registers that count downwards, and when they reach a value below 
zero, an interrupt is triggered. All cores have access to these timers, allowing multiple 
cores to be triggered by the same interrupt [4]. 

The main idea is to select one of these timers and trigger an interrupt each period to 
command each core to start the conversion. It is important to note that only the command 
is given to the cores during the interrupt; the actual conversion is not performed. This 
approach avoids lengthy interrupt handling routines, which would make the system less 
responsive to other external events (like for example other interrupts coming during that 
operation). Based always on the user manual, higher priority interrupt cannot be 
interrupted by lower ones [4]. 

After returning from the interrupt handler, the first core to respond to the command will 
lock the resource and start updating the temperature value. 
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3.5.3 Algorithm 
Now that all the necessary elements for accomplishing this task have been explained, we 
can examine the developed final algorithm. 

Figure 9 shows the implemented algorithm that is followed by all the four cores to 
ensure all the advantages and purposes previously discussed. The explanation is as 
follows. 

All cores must receive a command to start a specific task. If no command is received, the 
core stays in an idle state. We’ll start by analyzing the left branch of the graph. When the 

cores receive the command for the periodic read, they attempt to lock the resource (in this 
case, the ADC) by writing in a specific nibble of the RESOURCE_SYNC register.     
They then check if they successfully acquired the resource or if another core did. The 
successful core powers on the ADC, starts the conversion, and waits for the end-of-
conversion signal. After the output of the ADC is valid, the core reads the temperature 
and puts it in a shared memory region where all the other cores can recover it. 

The right side of the graph shows what happens when the core effectively needs the 
temperature. First of all it checks if the last update of the temperature happened within a 
timestamp in which the value can still be considered valid. If it did, nothing further is 
done, and the temperature value is simply read from the memory. 
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Figure 9: flow flow diagram of temperature reading algorithm. 

On the other case, a new conversion is required. The core checks if the ADC resource is 
free (another core might be using the ADC for the same or a different purpose).. If the 
resource is free, the core locks it, verifies that it has successfully acquired the resource, 
and proceeds with the usual routine to start the conversion. Ultimately, the core releases 
the resource, resets the timer interrupt for the periodic request to restart counting from 
this moment (since the temperature value has been just updated) and returns to the idle 
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state until a new command is received. If the ADC is not available, the core simply waits 
in a loop until the resource is released.  

  

Figure 10: flow chart of timer interrupt handler. 

Figure 10 shows the algorithm followed by the handler routine of the timer interrupt that 
gives the command for the periodic read. All the cores are sensitive to the same timer 
interrupt, so this means that the command arrives in the same instant to all the cores.  

A consideration must be made here. With a 32-bit counter, the maximum number of 
counts is 0xFFFFFFFF. Depending on the microcontroller's running frequency, this 
represents the maximum countable time interval for a single timer cycle. On the 
considered board, the microcontroller operates at a frequency of 437.5 MHz, meaning 
that a timer cycle represents 9 seconds. To handle longer intervals, multiple timer cycles 
must occur. For example, to perform the periodic request every 30 seconds, three timer 
cycles are required. We need a method to calculate the number of these cycles and issue 
the related command only after the required number of cycles has occurred. 

A solution can be the use of a counter variable that each new cycle is increased. Each 
interrupt handler checks if the necessary number of cycles has occurred and in case gives 
the command. 

3.6 Encountered Problems 

As previously mentioned, the approach where all cores follow the same instructions and 
autonomously handle the synchronization of resources presents many advantages. 
However, there are also some criticalities to consider. 
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For example, when the same interrupts arrive simultaneously at all different cores to give 
the same command, it might happen that a core is already handling a higher-priority 
interrupt. As a result, the new interrupt might be delayed, causing the command to arrive 
at that specific core later than at the other cores. During this delay, another core might 
have already locked the resource, completed the task, and released the resource. 
Consequently, the delayed core would find the resource free and start performing the 
same operation (in this case, starting the ADC conversion) even if it is not needed. 

Fortunately, in our practical scenario of interest, this is not a significant problem. The 
worst-case scenario is that an additional reading of the thermal sensor is performed, 
which does not compromise the purpose of the task. 

However, in more critical applications where timing and resource management are 
crucial, this delay could lead to inefficiencies and potential errors. For instance, in real-
time systems where precise timing is essential, such delays could disrupt the 
synchronization of tasks and lead to inconsistent states. In these cases, this type of 
approach could not be the best or a more advanced interrupt handling system might be 
required. In our case, even though it is not necessary, a potential solution could be to use 
a very high-priority timer interrupt to issue the periodic request. However, this would 
mean removing this possibility for other tasks across all. This trade-off must be carefully 
considered to ensure that the system remains efficient and reliable while meeting the 
specific requirements of the application. 

3.7 Final considerations 

Handling resource sharing in a multi-core environment can present additional challenges 
and criticalities. As seen with this specific implementation, some issues may arise, 
especially if a more general algorithmic approach is followed to improve performance, 
work load balance, and efficiency. 

In this specific task, synchronizing commands given to different cores can lead to 
unwanted behaviors. In the application of our interest, we saw this is not a big problem. 
However, this could be a more serious issue for tasks where very high and unpredictable 
behaviors cannot be accepted. 

In such cases, a more suitable approach would be to assign a specific core the task of 
recovering a resource needed by all the cores and sharing it through the shared memory 
region. Although this approach may not provide all the listed advantages deriving from 
the first approach and introduces overhead for the specific core, it offers a more robust 
solution for different types of applications. 
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By adopting this method, the system can ensure that critical resources are managed more 
reliably, albeit at the cost of some performance benefits. This trade-off is often necessary 
in environments where predictability and stability are paramount. 
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4. Scheduler Development for 
STRED_L architecture 

The second part of this thesis focuses on designing a scheduler for the STRED_L 
microprocessor in C language, enabling it to handle more tasks simultaneously. The main 
idea is to start with four tasks to replicate the multicore configuration, which is designed 
to work with four different channels. 

In single-core mode, the processor can operate at a frequency that is four times higher 
than in multi-core mode. The micro system is designed so that, when multiple cores are 
used simultaneously, each core is responsible for sampling only one-fourth of the clock 
signal ramps. This means that each ramp of the clock signal is sequentially sampled by 
the next core, and so on. This approach helps to distribute the workload among the cores, 
thereby alleviating some of the limitations related to the total concurrency of the limited 
resources [4]. 

A program and a code memory RAM are present. In multicore configuration the data 
RAM is divided into 4 blocks and each of them is assigned to a specific CPU, making 
that area accessible only by the assigned CPU. Also, the memory map of the registers is 
reconfigured so that the different CPUs can use the same address, but to point at different 
physical locations in RAM. This allows for using the same code for all the cores, without 
having the need to calculate the offset for the different data slices. 

In single core configuration the memory map becomes unique so that the CPU can access 
all regions of the RAM. The code memory RAM is shared among all the CPUs: the first 
64 kB are read-only slots, while the last 64 kB can be accessed in read or write mode by 
all cores and can be used as a shared memory region [4]. 

 

Figure 11:block diagram of the microcontroller system in quad core configuration [4]. 
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From Figure 11, it can be seen that to enable the four cores to interface with all the 
microcontroller peripherals, additional control logic is required. This includes 
mechanisms to select between single-core and multi-core configurations, as well as 
control logic for managing access from different cores on the bus, including arbiters and 
selectors. Additionally, specific registers are reserved for multi-core mode [4]. 

The primary necessity for experimenting with a new scheduler implementation is based 
on the following two points: 

• There is currently no scheduler available for the STRED-L architecture, unlike 
other architectures that already have dedicated schedulers. 

• Due to the very limited resources in terms of RAM and computational power till 
now shown, a dedicated and optimized solution is necessary. 

Our objective is to develop a scheduler for the specified core architecture that can 
efficiently manage context switches between various tasks. Beyond simply implementing 
a functional scheduler for this system, we aim to analyze its performance in a single-core 
setup and compare it with the quad-core configuration. 

Theoretically, the multi-core setup should deliver superior performance. Despite 
operating at only a quarter of the maximum frequency, it can execute four distinct tasks 
concurrently, eliminating the need for context switching and its associated overhead. 
Context switching, in fact will incur a cost due to the necessary operations required to 
ensure the correct execution of tasks [8]. Our goal is to quantify this performance 
disparity and evaluate the true benefits of the multi-core configuration in terms of 
efficiency. Additionally, we aim to assess whether a single-core solution equipped with a 
scheduler could also be a viable alternative. 

The presentation will begin with a brief introduction to real-time schedulers and an 
overview of the various algorithms they employ. Following this, there will be a general 
description of the STRED_L architecture, which is in particular essential for 
understanding the application of the context switch operation. 

4.1 Brief introduction to real time schedulers 

Real-time systems are those systems in which the correctness of the system depends not 
only on the correct execution of the task but also on its execution within a specific 
deadline [7]. A real-time system is dynamic and responsive to external or internal inputs. 
These systems must handle events in a timely manner to ensure predictable behavior and 
meet stringent timing constraints [11].  
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All these characteristics of a real-time system are enabled by the scheduler, the system 
component responsible for managing the execution of tasks or processes in a computing 
environment. It decides the order and timing of task execution, ensuring efficient 
utilization of system resources. More specifically, a scheduler assigns the CPU to specific 
tasks based on priority or other criteria, handles task switching while ensuring data 
integrity, and in real-time systems, manages task execution timing to ensure that tasks 
meet their deadlines [7].  

 

4.1.1 Scheduling algorithms 
A scheduler can implement various algorithms to manage task execution order, balancing 
factors such as responsiveness, efficiency, fairness, and real-time constraints. By 
selecting the appropriate scheduling algorithm, a system can optimize performance based 
on its specific needs [6]. 

For instance, some algorithms prioritize tasks to ensure quick response times, making 
them suitable for interactive systems, while others focus on maximizing overall system 
efficiency by minimizing idle time. Fairness is another critical aspect, where algorithms 
ensure that all tasks receive a fair share of CPU time, preventing any single task from 
monopolizing resources [6]. 

In this application, the primary requirements are to enhance system responsiveness and 
ensure fairness among tasks, replicating the behavior of the quad-core configuration 
where each core is associated with a specific data slice. To achieve this, a Round-Robin 
algorithm will be implemented. This simple algorithm allows each task to run for a 
specific time slice before switching to the next available task, ensuring that every task 
receives an equal amount of CPU time. 

The implementation will progress from a basic solution to a more complex and 
comprehensive final version. This iterative approach allows for incremental development 
and testing, ensuring that each stage is functional before proceeding to the next. 

4.2 Non preemptive scheduler 

The first step for creating the scheduler is to start with a non-preemptive algorithm. This 
means that the tasks will be executed in sequence and no context switch will happen 
between them. Every task is interrupted by reaching the end of its execution, and by 
leaving control back to the scheduler which will check for the next available task in the 
ready queue and execute it [5]. This is a much simpler version of the scheduler and of 
course it has many limitations.  Some of these are: 
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• Poor responsiveness: since tasks cannot be interrupted once they start running 
quick response time cannot be guaranteed. 

• Inefficient CPU utilization: if a running task is blocked or waiting for an I/O 
operation to complete, the CPU remains idle until the task finishes, while it would 
be more efficient to start executing another task in the meanwhile. Idle states are 
not exploited efficiently. 

• Less capable of handling real time constraints: the impossibility to preempt 
tasks makes it more difficult to ensure that all tasks meet their deadlines[5]. 

Due to these limitations, this type of scheduler is suitable only for specific environments 
where real-time constraints and high responsiveness are not critical requirements. In our 
case, it may be useful in industrial applications and serves as an initial starting point for 
designing of a more complex scheduler. 

4.2.1 Task Definition 
First thing is define the task structure:  every task will needs an ID number to be 
identified unequivocally, an active flag, that tells if the task is active or not, a pointer to 
the task function that the task will execute and a period attribute for cyclic tasks: by 
assigning an integer N higher than zero to this field, it means the task will be executed 
every N milliseconds. A maximum number of tasks, which can be defined by the user, 
defines the size of the tasks array. The position of the tasks in the task array also 
represents the ID number of task. The task array is initialized in the main, where the user 
can specify all the previous attributes for each task. 

Once all necessary tasks have been initialized the scheduler can start its job. 

 

Figure 12: task structure definition for non-preemptive scheduler. 

 

4.2.2 Scheduler Function  
The scheduler itself is defined as a non-returning function since it implements an infinite 
while loop. Inside this loop, a counter starting from zero is incremented until it reaches 
the maximum number of tasks in the task array. For each cycle, the corresponding task is 
checked to see if it is active. If the task is not active, it will not be scheduled, and the loop 
will proceed to the next cycle. 
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If the task is active, the scheduler checks if it is a periodic task. If it is not periodic, the 
scheduler simply executes the task. Once the task execution finishes (when the task 
returns), it is set as inactive and will not be scheduled again until it is reactivated. 

For periodic tasks (those with a non-zero periodic field), the scheduler checks if the 
necessary period since the previous execution has passed. This is achieved by using a 
timer interrupt that updates a counter variable every millisecond. The period of the task is 
expressed in milliseconds (this can be easily adjusted as needed). Every time the task is 
executed, its nextRunTime field is updated by adding the task's period to the timer 
interrupt's counter variable. The task will not be executed again until the counter variable 
reaches or exceeds the nextRunTime value. 

 

Figure 13: flow chart of non-preemptive scheduler algorithm. 

While this mechanism allows for periodic tasks, it is important to note that it is not very 
precise. The execution of a running task cannot be preempted, so even if the period for a 
periodic task has passed, it must wait for the currently running task to finish execution 
before it can be scheduled again. 
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4.3. Round Robin Scheduler 

Now we can start with the implementation of the round-robin context switch scheduler, 
that will have no more the limitations of the previous solution but will allow for higher 
responsiveness, a better real time constraints handling and a more efficient CPU 
utilization. 

The key point in the development of this part, and probably the most challenging, is to 
correctly perform context switching between tasks. This operation refers to the switching 
of the CPU from one process (or task in this case) to another [8]. This involves saving the 
state of the currently running task and accurately restoring the state of the next task that 
will access the CPU.  

Saving the state of a task means capturing its program counter, stack pointer, link 
register, and all related data used in its intermediate operations. This information must be 
stored in a known and specific region of the RAM memory [7]. 

After restoring the task, it should be able to resume execution from the exact instruction 
where it was interrupted, with the same data as its previous state. All these data are stored 
in the register files of the CPU architecture during task execution. To correctly access 
save and restore them when needed, a deep understanding of the core architecture is first 
required. 

4.3.1  STRED_L architecture 
For reservation rights its properties and characteristics cannot be fully disclosed; Only the 
essential aspects necessary to describe this work will be presented. 

STRED-L is a sophisticated 32-bit RISC architecture, capable of handling up to 256 bits 
per operation. As reported in its manual It is intended to be integrated into ST's 
proprietary System-on-Chip (SoC), whether as a standalone core or within a multi-
processor unit, to support a diverse range of computing-intensive application [2]. 

It includes sixteen 32-bit standard registers, a set of special registers to handle interrupts 
and exceptions, a program counter register and instruction result flags. Its Harvard 
topology allows for concurrent data memory accesses and instruction fetches [2]. 

 An important part for being able to perform context switch, as said before, is to analyze 
the Register File of the micro architecture. This one is composed of 16 registers going 
from R[15] down to R[0], which are accessed by all the standard instructions and can 
maintain an 8/16/20 or 32 bit data type[2]. 
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Three of these registers serve special purposes: the link register, the stack pointer, and the  
program status register. These registers are crucial for the effective implementation of 
context switching.  

• Link Register: During a function or subroutine call, the current value of the 
program counter is saved in the link register. This value is then used by the return 
instruction at the end of the subroutine to jump back to the original routine. 

• Stack Pointer Register: it points to the top of the stack memory. 
• Program status register: this register holds the program status word and the 

saved program counter during interrupt routines[2]. 

In this architecture the program counter is not directly readable, but it can be accessed 
and modified through standard jump instructions and the RFE (return from exception) 
instruction.[2] 

Exceptions handling 
An exception is any event that disrupts the normal flow of program execution [2]. In the 
STRED-L core, two types of exceptions are defined: interrupts and traps. For our 
purposes, interrupts are the most relevant, as they will be used to regulate the timing of 
context switching. This is crucial for implementing the Round Robin algorithm discussed 
earlier. 

The exception point is the specific moment during program execution when an exception 
occurs. All instructions initiated before this point will complete and update the 
architectural state. However, no subsequent instructions will update the architectural state 
until the exception is handled. 

During an exception, the program execution branches to the required handler, similar to a 
function subroutine, but some additional operations need to be considered. Most 
importantly, the Program Counter (PC) is stored in the Save State register, and then the 
PC is updated to point to the exception handler routine. 

The RFE instruction is used to recommence the execution at the exception point. It takes 
the content of the saved state register and writes it back on the Program Status (PS) and 
PC registers respectively. It is important to notice that the values stored in PS register can 
be accessed and changed during the interrupt handler execution [2] and this will be very 
important for the implementation of context switch. 
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Figure 14: interrupt priority levels [2]. 

The interrupt controller handles from to 31 interrupt sources. Each interrupt has its own 
priority level, and it depends on the index number of the interrupt. 

List of some instructions 
Some of the necessary assembly instructions (listed in the manual of the core)  for 
implementing a context switch are described here. As mentioned, we need to save the 
state of the execution in memory and be able to restore it at a different time. Therefore, 
instructions that allow access to memory, such as load and store instructions, will 
definitely be required. 

• The store value to memory operation is given by the assembly instruction: 
stw       [imm], %ry 
stw       [%rx], %ry 

The instruction can be used in two different semantics: the first one allows for 
storing the content (in this case a 32-bit data) of the register ry at the address 
targeted by the immediate value imm, while in the second case the memory 
address is the one targeted by the content of the register rx [2]. 

• The load from memory operation is given by the assembly instruction: 
     ldw %ry, [imm] 
    ldw      %ry, [%rx] 
This allows to load the content stored in the targeted address memory into the ry 
register. Also in this case the memory address can be targeted with an immediate 
value or using the content of a register. 

Other important instructions to consider for our purpose are the jump instructions. These 
allow the program to jump to a different branch of execution and store the return address 
in the link register or the PS register [2]. 

4.3.2 Context Switch 
We now possess all the necessary elements to effectively implement context switching 
between different tasks. To ensure data integrity, it is essential to save all sixteen registers 
in the register file, as it is unpredictable which registers the compiler will utilize for 
executing the task's instructions. The most straightforward approach is to store their 
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values sequentially in the task's stack memory and then, in the reverse order, load them 
from the stack back into the register file by directly using the stack pointer register. 

The save and restore context operations must be atomic, meaning they must be executed 
as a single, indivisible action to ensure no external instructions can interfere and 
compromise the integrity of the restore process. This precaution is necessary because any 
extraneous instructions could alter critical values in the register file, thereby 
compromising the data integrity required for the current task's execution. Therefore, a 
method to ensure atomicity is required. 

Once the save context operation is completed, new external instructions can then be 
executed. At this point, the scheduler can assume control of the CPU. Depending on its 
functionalities, it can select the next task to run, remove inactive tasks from the schedule, 
manage task priorities, and perform other necessary scheduling operations, without the 
risk of compromising the status of the just preempted task. 

Once the next task has been selected, the scheduler must restore its context from the 
designated memory region (task’s stack memory) and load it back into the register file. 

As mentioned, atomicity must be assured during this operation as well. After the context 
has been successfully restored, it is necessary to update the Program Counter (PC) to 
point to the next instruction of the restored task to restart its execution. 

In summary, the final scheduling algorithm implementing context switch will be 
composed of three main ordered sections: 

1. Store context of current running task. 
2. Task scheduling algorithm. 
3. Restore context of next scheduled task. 

In a Round Robin scheduling algorithm, context switches must occur at regular, 
predefined intervals. In the STRED_L architecture the only effective way to achieve this 
is by using a timer interrupt to mark each time slice during which a task takes control of 
the CPU. For example, if each time slice is 1ms, a timer interrupt will occur every 1ms. 
When the timer interrupt occurs, the execution jumps to the interrupt service routine, 
which initiates the context switch process and gives the command to perform the three 
sections listed above. 

There are several ways to handle this mechanism. The first possibility, for example, is to 
perform the entire activity within the Interrupt Service Routine (ISR). This solution 
would have the structure shown in Figure 15. 
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Figure 15: scheduler ISR pseudocode for context switch. 

The advantage of this mechanism is that by choosing the highest priority timer interrupt 
as the ISR, all these operations can occur without external interruptions. No lower 
priority interrupt could preempt this operation, thereby ensuring atomicity as required. 
However, there are also some minor drawbacks to consider. Although this is a solid 
operation, this method might result in a relatively lengthy Interrupt Service Routine 
(ISR). The task management section could vary in complexity based on the 
functionalities we wish to add to the scheduler. Keeping this section within an interrupt 
handler routine might not be the best choice, as it could introduce significant overhead 
and reduce system responsiveness to other interrupts. Additionally, this section does not 
require atomicity, making its inclusion in the ISR unnecessary. 

A second option is to use the ISR solely to jump to the scheduler routine, where the three 
necessary sections will be performed. This means that in the IRQ, the saved status 
register (let's hypothesize it is r13) must be filled with the address of the entry point of 
the scheduler function. Then, the RFE (Return from Exception) instruction is executed. 
This instruction will pop the content of r13 and load it into the Program Counter register. 
Once in the scheduler routine, all three necessary sections for the context switch can be 
performed. 

    

Figure 16: pseudocode for scheduler and ISR routine. 

This solution allows for a much shorter and faster ISR. The problem in this case is that 
atomicity of the context switch activity is not guaranteed since other interrupts can occur 
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during the scheduler routine potentially compromising the data integrity of the context 
switch. To avoid this, one possibility is to globally disable interrupts during these two 
procedures. 

The chosen solution is a modified version of the last one presented. Figure 17 shows the 
final implemented algorithm. The context of the currently running task is stored directly 
in the timer interrupt handler, as this already guarantees atomicity for the operation. 

 

Figure 17: the ISR only handles the store context than jumps to scheduler routine. 

After that, the ISR jumps to the scheduler routine, where all the necessary task 
management activities are handled and the context of the next selected task is restored. 
During this last operation interrupts must be disabled. 

4.3.3 Stack Memory Handling 
Stack memory is a specific region of a device’s memory that operates in a last-in, first-
out (LIFO) manner, meaning the most recently added item is the first to be removed. It is 
primarily used for managing function calls, local variables, and control flow within a 
program. 

Memory allocation and deallocation on the stack are generally handled automatically by 
the compiler, as also in the STRED architecture. When a function is called, its local 
variables are pushed onto the stack, and when the function returns, its local variables are 
popped off the stack. A fundamental component of this mechanism is the Stack Pointer, a 
variable that points to the top of the stack and is automatically updated as items are 
pushed onto or popped off the stack. In our architecture, stack memory grows 
downwards, which means that the first element pushed onto the stack will be at the 
highest address. 

For the scheduler implementation, to each task is assigned a dedicated memory region to 
be used as stack memory. This is achieved by initializing the stack pointer register during 
the first execution of each task to point to the top of its assigned stack memory. Since the 
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flow of execution will be interrupted and replaced with other tasks, it is also necessary to 
have a specific address to store the content of the stack pointer register itself, so that it 
can be recovered during the restoring phase. 

If the stack pointer register were saved on the stack, it would be impossible to know 
which address to access in memory during the restoring context, as the top of the stack 
address will be lost during the execution of other tasks. Therefore, at the end of the store 
context for each task, the stack pointer register is saved in a known, dedicated memory 
address. This ensures that during restoration, the stack pointer can be easily retrieved and 
used to access the stack of the newly scheduled task. 

 

Figure 18: Stack handling representation. 

 

Let's suppose task1 is currently running and a context switch occurs. The context of task1 
needs to be saved, so all the registers are pushed onto the stack using the stack pointer 
register. Once all the registers have been stored, the stack pointer register itself must be 
saved to a known address for future restoration. In this case, the stack pointer register will 
be saved to the memory address designated as stackPTR_task1. 

When task1 is rescheduled, we can access the address 0x21000 to retrieve and load its 
content into the stack pointer register. This will ensure that the stack pointer points to the 
top of stack_task1, allowing the scheduler to load back the register values and resume 
execution. 
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Figure 19 summarizes both the store and restore context operations of a task. 

 

Figure 19: During the context store phase, registers are saved onto the task's stack. In the context 
restore phase, they are retrieved from the stack in the reverse order, as the stack operates in a 
Last-In, First-Out (LIFO) manner. A hardware mechanism allows to save the PC in one of the 
registers, so that it can be saved and restored. 

Now the three sections composing the  context switch operation will be showed in detail. 

4.3.4 Store Context 
The storing of the running context doesn’t require external data. By just using the stack 

pointer register the content of all the registers can be pushed into the stack. The following 
image shows how the algorithm would look. 

 

Figure 20: store context algorithm. 
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From the reported image (Figure 20), we can see that the stack pointer register (sp) is 
used to point to the stack memory of the currently running task for storing all the standard 
registers, starting from register r0 until r14. After a stw instruction, the stack pointer 
register (sp) is updated by subtracting the immediate value 4. This is because the stack 
grows downwards, so to point to the next free address after a push, it has to be decreased. 
The value 4 stands for the number of bytes in each register. After each push operation, 
the sp value is reduced by 4 bytes to point to the next location. 

The final operation to be done is the storing of the sp register itself. Based on the current 
running task, this is stored in a specific memory address to be easily retrieved during the 
restoring session. 

After this last operation, all the necessary data to restart the execution of this task the next 
time it will be scheduled are stored in memory. At this point, external instructions cannot 
affect the integrity of this operation. 

4.3.5 Task scheduling 
The scheduling of the next task can be managed based on the functionalities of the 
scheduler. The algorithm for selecting the next task to run can vary in complexity 
depending on these functionalities. Initially, we aim to keep it as simple as possible for 
two main reasons: 

1. Testing purposes: A simple scheduling algorithm will make it easier to test the 
functioning of the context switch operation. 

2. Overhead analysis: the simplest task management will allow to calculate the 
lowest overhead value introduced by the scheduler activity. 

Considering always to have four tasks, the simplest implementation for Round-Robin 
algorithm is to schedule them sequentially: starting with task1, followed by task2, 
task3, and task4, and then repeating the cycle. 

(In the last chapters more complex algorithms will be introduced able to manage task’s 

priority). 

4.3.6 Restore Context 
After selecting the next task to run, the scheduler must access the top of its stack memory 
and restore the elements by loading them into the register file. This operation must be 
performed in the reverse order of the store context process. For instance, if the store 
context operation began by saving register r0, followed by r1, r2, and so on until r15, 
then the restore context operation should start by loading register r15, followed by r14, 
r13, and so forth, ending with r0. This ensures that all the registers are restored with the 
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correct values and that the stack pointer register will point to the same exact position as it 
did before the context switch.  

 

Figure 21: pseudocode for restore context algorithm. 

The first step is to update the stack pointer register with the address of the top of the stack 
for the selected task, which is stored in a known location. This address is loaded into the 
stack pointer register to access the stack memory of the selected task. As each register is 
restored, the stack pointer register is incremented to point to the next element in the stack, 
ensuring proper sequential access as elements are popped off. After this no other 
instructions that could modifie the values of the register should be effectuated since it 
could affet the data integrity for the new running task. 

 

4.3.7  Final solution 
By putting together these three sections the final Round-Robin scheduler for the STRED-
L architecture can be completed. As in the first non-preemptive scheduler a task structure 
is defined, composed of a task identifier (task ID), a stack memory array and a task 
function. 

 

Figure 22: Task structure definition. 

The new defined stack field represents the assigned stack memory for each task. Its 
dimension can be directly set by the user. During task’s execution the stack pointer 

register will point to this region in memory. 
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The task initialization is performed in the main program. As illustrated in the flow graph 
in Figure 23, the initTask function sets the taskID for all tasks and, based on the taskID, 
assigns each task a specific memory address to act as the stack pointer. At first the stack 
pointer will point to the first address of the stack and is immediately used to initialize the 
stack locations that will be loaded into the register file for the first execution of the task. 

All stack locations that will be loaded into the register file for the first execution of the 
tasks are set to 0 (just for safety purposes), except for the one corresponding 
to r13 (status register), which is overwritten with the entry point of the associated task 
function. This value will, in fact, be loaded into the Program Counter (PC) register [2], 
when the task will be scheduled for the first time. 

 

Figure 23: flow chart of main and task initialization. 
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Before task execution, these elements will be popped off the stack and loaded into the 
register file. Once initialization is complete for each task, the current_task global variable 
is set to 1, ensuring that task1 will be the first to be scheduled. The final step is to jump to 
the scheduler routine, which will schedule the first task. From this point onward, 
execution will never return to the main function again. 

The first step here is to save all the registers onto the stack and store the content of the 
stack pointer register in the current task’s memory location, as shown in previous 

chapters. The timer is then set to 0 to halt until the complete context switch is applied. 

Now that all the data of task1 have been saved, the r13 register is overwritten with the 
address of the scheduler entry point since the old value has already been stored in 
memory. The interrupt bit is cleared, as required at the end of a handler routine. With 
the RFE (Return from Exception) instruction, the r13 value is popped into the Program 
Counter (PC) register [2], causing the execution to jump to the scheduler function. 

 

Figure 24: flow chart of scheduler and sys_timer interrupt routine. 
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Once in the scheduler routine, the task to be run for the first time is extracted from the 
task array. The global variable currentTask(it indicates which task is currently being 
executed) is updated with the new taskID. Now, before starting the restore context 
section, interrupts are globally disabled making this operation atomic. Restore context is 
then applied as explained in the previous paragraph, and before jumping to the entry 
point of the first scheduled task, interrupts are enabled. Disabling and enabling the 
interrupts requires just to write in the dedicated interrupt register a ‘0’ or a’1’. 

Also, before taking the jump, timer4 (the highest priority timer interrupt in the system 
[2]) is set with the necessary value that defines the established time slice. The new 
scheduled task will execute until the timer expires again and the interrupt occurs. 

From here, the new task is selected (in this case, task2). The system timer is then 
restarted to begin counting the new time slice. 

 

Figure 25: scheduling execution flow with four tasks. 

4.3.8 Testing 
The scheduler has been tested to ensure its robustness and reliability. Initially, loop test 
programs were employed to verify the basic functionality and performance of the 
scheduler under continuous and repetitive operations. These tests helped identify and 
resolve any issues related to task switching, timing, and data integrity. 

Subsequently, the scheduler was subjected to more rigorous testing using industry 
applications. These applications were chosen to simulate real-world scenarios and 
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workloads, ensuring that the scheduler can handle the complexities and demands of the 
industrial environments for which it is intended. The main test is the firmware of the 
receiver calibration. Each task has runned the calibration algorithm for a specific data 
slice context switching.  

By combining both loop test programs and industrial-grade applications, we have ensured 
that the scheduler is capable of efficiently managing tasks in a wide range of scenarios, 
from simple repetitive tasks to complex and high-demand operations.  

Timing performance comparation 
A timing performance analysis is performed to quantify the scheduling overhead and then 
compare it with a quad-core configuration. This is done by running a timer and taking 
samples t1 at the start of the process and t2 at the end of it. Since the timer counts down, 
the final duration is obtained by: 

𝑇 = 𝑡1 − 𝑡2 

The first step is to calculate the overhead of the context switch. This is done by taking the 
first timestamp at the arrival of the interrupt and the last timestamp at the beginning of 
the next scheduled task. The test measurements have been portrayed in a system running 
at a frequency of 437.5 Mhz. 

The context switch operation itself takes 142 cycles operations, which at the 
corresponding frequency means 324 ns of overhead. 

The second timing performance test was conducted by running a series of four loops, 
each consisting of a defined number of cycles (1 million in this case), without 
interruptions (i.e., without context switching) to obtain a precise measurement of the 
program's duration. Subsequently, each task was executed by running a single loop. This 
means that the tasks now run a program that is four times shorter in duration, but with 
context switching between four tasks at each defined time slice. The duration of the loop 
in each task is measured and compared with the first case. 

We expect the task to require an amount of time for loop execution that equals the time 
taken in the case without context switching to complete the four sequential loops, plus the 
introduced overhead. 

As shown in Table 1, these measurements were conducted for different values of time 
slices to quantify the impact of context switching on performance. 
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Table 1: overhead percentage impact over different time slices values. 

The measurements were started considering a minimum reasonable time slice of 0.01ms. 
In this case, we can see that the scheduler affects performance by an increase of 3.39%, 
which can be considered an optimal percentage for this time slice. By increasing the time 
slice, the overhead, as expected, decreases until it almost reaches 0%. Conversely, further 
reducing the time slice would increase the overhead, eventually reaching a point where 
the CPU spends more time context switching than actually executing the tasks. 

 

Figure 26: Analysis of overhead curve with varying time slices. 
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4.3.9 Final Considerations 
From the analysis, we can see that a single-core scheduler might be a valid solution with 
respect to the quad-core configuration, considering that at this frequency the introduced 
overhead is very small and almost negligible, even for very small time slices. 

However, we must also consider that the results obtained here represent the minimum 
introduced overhead. The scheduler is currently very simple and limited. It does not 
allow for activating or deactivating tasks, does not consider priority levels for tasks 
(which would make the system more dynamic and adaptive to a greater number of 
application scenarios), does not allow for pausing tasks or other useful functionalities. 

All these additional functionalities would introduce complexity into the scheduling 
algorithm. Even though the store and restore sections would remain the same, the 
increased number of instructions required for the scheduling activity would lead to a 
higher overhead. 

From the point of view of power consumption, an analysis has not been conducted. This 
is because, for the type of application towards which this system is designed, a difference 
in power consumption would not be appreciable. The entire SerDes system is not 
intended to be a low-power application. Therefore, any potential variations in power 
usage due the multi-core and single core environment are considered negligible and not 
critical to the overall system performance. 

In the next chapters new features will be added to the scheduler making it more complex 
and dynamic. 

4.4 Adding new functionalities. 

The scheduler algorithm developed till now theoretically allows for the highest 
performance since the introduced overhead is minimal considering that task management 
is very simple. This solution might be enough for certain types of applications, but it’s 

still not very efficient for real time environments since it does not account for the varying 
importance or urgency of different tasks. 

To address this limitation and make the scheduler more complete for future possible 
applications, priority levels are introduced within the Round Robin algorithm. This 
means that to each task can be assigned a priority attribute (within a certain range) that 
will allow it to receive higher attention from the scheduler. This enhancement aims to 
improve the overall efficiency and responsiveness of the system, particularly in 
environments where certain tasks are critical and require prompt execution.  
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Also, an important feature that is very important for making the system more complete is 
adding locking mechanisms. As presented in the previous chapters of this document, the 
multi-core configuration of the micro allows to synchronize the different cores during 
access to shared resources by accessing a specific register (SOURCE_SYNC_REG), 
properly designed in hardware to latch-in with the writing core. This mechanism cannot 
be exploited anymore in the single core configuration, so a new mechanism is necessary 
for allowing the different tasks to securely access shared resources. 

In the next paragraph, these new added features will be presented starting from the new 
priority base round-robin algorithm. 

4.4.1 Task’s priority handling. 
The implemented algorithms for taking into account also priorities is based on the fact 
that each defined time slice the scheduler finds the task with the highest priority and runs 
it. If more tasks have the same priority (the highest in task’s active list), then context 
switch will happen only between these tasks. The tasks with a lower priority will not be 
scheduled, until its priority will be equal or higher than the other’s tasks.  Figure 27 
shows this concept with an example. 

 

 

 

Figure 27: scheduling example with priority. 

To implement this mechanism, a priority queue is created, consisting of a head pointer 
and a tail pointer. Each task is assigned to a queue representing its level of priority, and 
these queues are part of a queue array. The position of the queue in the array represents 
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the priority level of the queue. During initialization, all tasks are assigned to their 
respective queues. 

Task insertion in the priority queue 
A queue is a data structure that follows the First-In-First-Out (FIFO) principle, which 
means that the first element added to the queue will be the first one to be removed. Since 
we want to preserve the order in which tasks are inserted the queue structure results in the 
most suitable one. It is composed of: 

• Head pointer: Points to the first element inserted in the queue, which is the next 
element to be extracted from the queue. 

• Tail pointer: Points to the last element inserted in the queue. 

The task structure becomes more complex and with more fields. Now besides the one 
described in the previous paragraphs, each task structure will have a priority and a 
pointer to the next task in the queue. This one is needed for pointing to the next task in 
the same priority queue and maintain the order of insertion in the queue. See Figure 28. 

At initialization, the priority queue is empty, and the head and tail fields are NULL 
pointers. The first task inserted into the queue will be pointed to by both the head and the 
tail. Being the first task inserted, its nextTask field will be set to NULL. The next task 
inserted into the queue will be pointed to by the current task tail and become then the new 
tail of the queue. 

 

Figure 28: Task structure for handling priorities. 

 

Task Extraction Algorithm 
To schedule the next task at the end of the time slice, the scheduler, after saving the 
context (as described in the previous chapters), moves the current task to the end of its 
priority queue. The next task pointed to by the current task becomes the new head of the 
priority queue. 
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After this operation, the array of priority queues is scanned from the highest index to the 
lowest until the first non-empty priority queue is found. The task pointed to by its head 
will then be scheduled. Every scheduled task is re-inserted at the end of its priority queue. 
See Figure 29. 

 

Figure 29: task management during scheduling. 

Considering for example a 5-level priority system it means that 5 priority queues will be 
instantiated and the head of the first non-empty highest priority queue will be scheduled.  

The flow chart in Figure 30 shows in detail the extraction of the next task to be 
scheduled algorithm. In the first branch the scheduler checks if the current running task is 
the tail of its queue, because this might mean only two things: 

1. The task is the only one in the priority queue, so it does not need to be moved to 
the tail. 

2. The task has changed its priority during execution and has already been inserted 
at the tail of the new priority queue. Therefore, no further moving operations are 
required. 
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Figure 30: flow chart of task extraction algorithm. 

Remove task from priority queue. 
To make the whole system more dynamic and complete tasks should be able to change 
priority during execution. This means that a task might change its own or the priority of 
another task. To change the priority of a specific task all is needed is to remove the task 
from the current priority queue and insert it in the new selected one.  

Pause task 
The PauseTask function allows a task to be put into an inactive mode. When this occurs, 
the task is removed from its priority queue and will not be scheduled until it is 
reactivated. If a task pauses itself, the function does not return to that task because it 
immediately triggers a context switch by writing to the timer interrupt. 

The task can be reactivated by another task using the ActivateTask function, which 
simply re-inserts the task into the priority queue corresponding to its current priority 
level. 
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4.4.2  Synchronization mechanism 
As mentioned before, the synchronization mechanism available in the quad-core 
configuration cannot be used here, so a software method is necessary to handle cases in 
which more than one task wants to access the same resource.  

The designed method is based on a simple mutual exclusion (mutex) mechanism. The 
first task that accesses the resource locks it, and any subsequent tasks that want to access 
the resource must wait until the locking task unlocks it. To facilitate this, a locking 
structure has been defined with two members: the first one is a flag indicating whether 
the mutex is locked or unlocked, and the second member is a pointer to the task that has 
locked the mutex. 

 

Figure 31: mutex structure definition. 

To use a mutex, it must first be initialized. During initialization, the mutex is set to a free 
state, and the task owner is set to a NULL pointer. After initializing the mutex, two 
additional functions are necessary to implement this mechanism: one function to lock the 
mutex and another function to unlock it. 

 Lock mutex function 
The most crucial aspect of implementing the lock mechanism is to guarantee the 
atomicity of the operation. Two scenarios might occur while a task is trying to lock an 
available mutex: 

1. The operation is interrupted by a context switch, allowing another task to attempt 
to acquire the same mutex, leading to race conditions. 

2. The operation is interrupted by an occurring interrupt handler that might lead to 
unpredictable behaviors. 

These situations must be avoided to ensure that a task can securely lock a resource. Since 
both worst-case scenarios stem from interrupt sources, the simplest solution is to globally 
disable interrupts during this operation. The reported flow chart below illustrates the 
steps involved in this process. 
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Figure 32: lock mutex function algorithm. 

The first step to ensure atomicity, as mentioned, is to globally disable interrupts. Then, 
check if the mutex is free. If the mutex is free, it is set to a locked state, the mutex owner 
is updated to the task currently acquiring it, and interrupts are re-enabled. 

If the mutex is already locked, there is no reason for the task to wait until the next context 
switch, as the mutex will not be unlocked during that time slice by another task. 
Therefore, a context switch is triggered. Before triggering the context switch, interrupts 
are, of course, re-enabled. When the task is scheduled again, it will disable interrupts and 
check once more if the mutex is free. This cycle will be repeated until the mutex is freed, 
allowing the task to lock it. 

The unlock mutex function follows the same logic for making the operation atomic. 

 

4.4.4 Overhead analysis 
The same overhead analysis conducted in the first case has also been applied to the new 
scheduling algorithm. Measuring the impact of overhead in this scenario is more 
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challenging, as the algorithm is more dynamic, and the effective introduced delay will 
also depend on the distribution of tasks in the priority queue.  

To simplify the analysis, the worst-case scenario has been considered. All tasks are 
assumed to be inserted into the lowest priority queue; in this way the scheduling 
algorithm will follow the longest path for extracting the next task. The overhead will also 
depend on the number of priority levels introduced since the scheduling algorithm is a 
scanning loop starting from the highest level to the lowest. In this case, a reasonable 
value of five priority levels is being considered. 

Using the same measurement method, the context switch overhead in this scenario is 335 
cycles. At the corresponding frequency of 437.5 MHz, this translates to 789 ns, which is 
more than twice the overhead of the previous case. Despite this increase, the result can 
still be considered acceptable. 

4.5 Conclusions 

By adding priority levels to the scheduler, the single-core solution can now be considered 
more suitable for real-time environments, where certain tasks must complete their jobs 
within specific deadlines. Although the solution developed thus far still presents some 
limitations, it marks a significant first step towards the development of a more complex 
system. 

From an industrial perspective, the results of the context switch impact on operating 
system performance are very promising, making the single-core solution a viable 
alternative to the quad-core configuration for future developments. Cutting the need for 
four cores can increase the available area by removing all the control logic dedicated to 
managing the quad-core configuration. This freed-up space could be utilized, for 
example, to increase the RAM memory. 

However, determining whether the single-core scheduling solution is superior to the 
quad-core configuration is not straightforward. The scheduler solution still presents some 
limitations compared to the quad-core setup. Firstly, the performance of the quad-core 
configuration remains still higher, which might be crucial for certain applications. 
Additionally, synchronization between different tasks in the quad-core configuration is 
provided by hardware, which is significantly faster than the software-based mutex 
synchronization in the single-core solution. 
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5. Future Developments 
Future development of the work done so far could involve stressing the new 
functionalities of the scheduler for the STRED_L architecture to implement more robust 
testing. This would help identify potential issues and ensure the system's reliability under 
various conditions. 

Priority levels enhance task management by ensuring critical tasks receive necessary 
resources promptly, leading to more efficient and predictable system behavior. This is 
particularly beneficial in real-time applications. Mutexes ensure controlled access to 
shared resources, preventing race conditions and data corruption. 

However, some new challenges and criticalities can be present with this implementation. 
Regarding priority levels, lower-priority tasks may suffer from starvation. A solution to 
this might be introducing mitigating techniques like aging, where the task’s priority 
changes dynamically based on the waiting time without being scheduled. On the mutex 
side, there might be situations where a lower-priority task holds the mutex required by a 
higher-priority task, leading to priority inversion. Implementing priority inheritance 
protocols might be a good solution to this problem. 

Another challenge that could enhance system responsiveness is the ability to preempt 
lower-priority tasks even during their time slice when a higher-priority task becomes 
ready to execute. This means that if a task with a higher priority than the currently 
executing task becomes ready, an immediate context switch should occur to allow the 
higher-priority task to run. In the current implementation, a higher-priority task must still 
wait for the completion of the defined time slice before it can be executed. 

In conclusion, while the implementation of priority levels in scheduling and mutex 
mechanisms offers significant benefits, it also introduces challenges that must be 
addressed to enhance performance. By considering potential issues and implementing 
proper strategies, a robust and efficient scheduling system can be achieved. 

 

 

 

 

 

 



56 
 

 

 

 

Bibliography 
 

[1] D. R. Stauffer, J. Mechler, Michael A. Sorna, K. Dramstad, C. Rosser Ogilvie, A. 
Mohammad, J. D. Rockrohr, “Serdes Concepts” in High Speed Serdes Devices and 
Applications. Springer. 2008  

[2] STRED-L “Architecture Reference Manual Part I: STRED L Instruction Set 
Architecture”. Revision 0.7, 2018. 

[3] STMicroelectronics. ”S112N3E_LR Architectural Spec 1.1.6 ”, 2023. 

[4] STMicroelectronics. “S112 LR Micro Subsystem”. 

[5] Jian-jia Chen, Gregor von der Bruggen, “Non-Preemptive and Limited Preemptive 
Scheduling”, TU Dortmund, 2017. 

[6] L. Kishor, D. Goyal. "Comparative Analysis of Various Scheduling Algorithms." 
International Journal of Advanced Research in Computer Engineering & Technology 
(IJARCET), vol. 2, no. 4, April 2013. 

[7] F. Cottet, J. Delacroix, C. Kaiser, Z. Mammeri. “Basic Concepts” in Scheduling in 
Real-Time Systems. Wiley. pp.282, 2002. 

[8] C. Li, C. Deng, K. Shen, “Quantifying The Cost of Context Switch”, 
https://www.usenix.org/legacy/events/expcs07/papers/2-li.pdf 

[9] "SerDes." Wikipedia, 2024, https://en.wikipedia.org/wiki/SerDes 

[10] K Ravi Kiran, A. Kumar, "Design and Implementation of High Speed 
Serializer/Deserializer for High Speed Data Transfer Applications." Vol. 63 No. 6 (2020). 

[11] R. Mall, ”Introduction”  in Real-Time Systems: Theory and Practice, Pearson 
Education India, 2009 

 

https://www.google.it/search?hl=it&tbo=p&tbm=bks&q=inauthor:%22David+Robert+Stauffer%22
https://www.google.it/search?hl=it&tbo=p&tbm=bks&q=inauthor:%22Jeanne+Trinko+Mechler%22
https://www.google.it/search?hl=it&tbo=p&tbm=bks&q=inauthor:%22Michael+A.+Sorna%22
https://www.google.it/search?hl=it&tbo=p&tbm=bks&q=inauthor:%22Kent+Dramstad%22
https://www.google.it/search?hl=it&tbo=p&tbm=bks&q=inauthor:%22Clarence+Rosser+Ogilvie%22
https://www.google.it/search?hl=it&tbo=p&tbm=bks&q=inauthor:%22Amanullah+Mohammad%22
https://www.google.it/search?hl=it&tbo=p&tbm=bks&q=inauthor:%22Amanullah+Mohammad%22
https://www.google.it/search?hl=it&tbo=p&tbm=bks&q=inauthor:%22James+Donald+Rockrohr%22
https://solidstatetechnology.us/index.php/JSST/issue/view/49


57 
 

List of figures 
 

Figure 1: block diagram of a typical high-speed SerDes [1]. ............................................. 9 
Figure 2: CSA block diagram.[3]...................................................................................... 11 
Figure 3: Block diagram of the micro subsystem in S112(single core-configuration) [4].
........................................................................................................................................... 12 
Figure 4: schematic of the relation between the clock slice auxiliary and the four cores. 13 
Figure 5: Link Bus register map [4]. ................................................................................. 15 
Figure 6: graphic representation example of On-demand approach. ................................ 17 
Figure 7: graphic representation periodic request approach. ............................................ 18 
Figure 8: On-demand and periodic request implementation. ............................................ 19 
Figure 9: flow chart diagram of temperature reading algorithm. ...................................... 23 
Figure 10: flow chart of timer interrupt handler. .............................................................. 24 
Figure 11:block diagram of the microcontroller system in quad core configuration [4]. . 27 
Figure 12: task structure definition for non-preemptive scheduler. .................................. 30 
Figure 13: flow chart of non-preemptive scheduler algorithm. ........................................ 31 
Figure 14: interrupt priority levels [2]. ............................................................................. 34 
Figure 15: scheduler ISR pseudocode for context switch. ................................................ 36 
Figure 16: pseudocode for scheduler and ISR routine. ..................................................... 36 
Figure 17: the ISR only handles the store context than jumps to scheduler routine. ........ 37 
Figure 18: Stack handling representation. ........................................................................ 38 
Figure 19: During the context store phase, registers are saved onto the task's stack. In the 
context restore phase, they are retrieved from the stack in the reverse order, as the stack 
operates in a Last-In, First-Out (LIFO) manner. A hardware mechanism allows to save 
the PC in one of the registers, so that it can be saved and restored. ................................. 39 
Figure 20: store context algorithm. ................................................................................... 39 
Figure 21: pseudocode for restore context algorithm. ...................................................... 41 
Figure 22: Task structure definition. ................................................................................. 41 
Figure 23: flow chart of main and task initialization. ....................................................... 42 
Figure 24: flow chart of scheduler and sys_timer interrupt routine. ................................. 43 
Figure 25: scheduling execution flow with four tasks. ..................................................... 44 
Figure 26: Analysis of overhead curve with varying time slices. ..................................... 46 
Figure 27: scheduling example with priority. ................................................................... 48 
Figure 28: Task structure for handling priorities. ............................................................. 49 
Figure 29: task management during scheduling. .............................................................. 50 
Figure 30: flow chart of task extraction algorithm. .......................................................... 51 
Figure 31: mutex structure definition. .............................................................................. 52 
Figure 32: lock mutex function algorithm. ....................................................................... 53 
 



58 
 

 

List of tables 
 

Table 1: overhead percentage impact over different time slices values. .......................... 46 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 
 

 

 

Acknowledgements 
 

I would like to thank Professor Maurizio Martina for his guidance throughout this final 
path of my academic journey. 
I also extend my gratitude to my industrial tutors at STMicroelectronics, Luca Longhi 
and Stefano Antoniazzi, for their valuable feedback and insights, which have enhanced 
my knowledge and enabled me to complete this thesis. 

A final special thanks goes to my family for their unwavering support and patience 
during these long years of academic studies. 

 


