
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Embedded Systems

Master’s Degree Thesis

UVM testbench development for
I2S protocol verification

Supervisors

Prof. MAURIZIO MARTINA

Eng. ALESSIO PELLE

Eng. SANDRO SARTONI

Candidate

DAVIDE FERRARO

October 2024

Abstract

Modern digital integrated circuits are increasingly becoming more and more
complex, with several internal logic blocks, submodules and interconnections. Not
only the functionalities they implement are quite complicated, but they must
perform their tasks with stringent timing, area and power requirements.
Due to these reasons, verification of integrated circuits is becoming more and more
important. Thanks to the verification process, it is possible to make sure that new
devices behave according to their specifications in a timely manner, reducing the
time to market. Moreover, it allows to significantly shrink the number of bugs
reaching the physical production stage of chips, preventing costly manufacturing
errors and increasing the product reliability.

The introduction of the Universal Verification Method (UVM) has drastically
changed the way verification is carried out, introducing a standardized, robust,
modular and flexible environment, enhancing the interoperability and facilitating
the exchange of code between different teams and projects.
This thesis aims at verifying an I2S protocol master unit developed by TDK
Invensense, using the SystemVerilog language and the UVM framework.
After a preliminary study on UVM and SystemVerilog language through Cadence
courses, the obtained notions have been applied to develop a full UVM environment
with classes and tests, written to cover one, or more, specific features of the Device
Under Test (DUT), needed to fully verify the DUT.
The results obtained by applying the aforementioned tests have been thoroughly
analyzed and evaluated. Neat and intuitive coverage reports have been generated
through the use of regression testing and merging in combination with SystemVerilog
and UVM coverage features.
The generated reports showed a quite complete verification of all specifications
written in the Test Plan. The remaining not covered points have been investigated
to understand whether they represent not reachable scenarios or tests related bugs.
For the few reachable not covered points, some ad hoc tests have been created by
driving specific signals to recreate the correct stimulus generation, while the others
were removed through refinement steps adding justification on why could not be
cover.
Thanks to the combination of the random stimuli generation and the constrained
one, a full coverage of the master unit has been reached.

i

Table of Contents

List of Figures v

Acronyms ix

1 Introduction 1
1.1 Background . 1
1.2 UVM and MDV . 2
1.3 Aim and motivation . 4

2 I2S Protocol 6
2.1 Introduction . 6
2.2 Specification . 7

2.2.1 Serial Data . 7
2.2.2 Word Select . 8

2.3 Master Block . 8
2.3.1 FIFOs . 9
2.3.2 PROTOCOL block . 10
2.3.3 PAD . 11

3 UVM 13
3.1 Key Concepts . 13
3.2 UVM Classes . 14

3.2.1 UVM Testbench Structure 14

4 Testbench Implementation 20
4.1 Preliminary Choices . 20
4.2 Top Module . 24
4.3 Test . 26
4.4 Environment . 29
4.5 Virtual Sequencer . 30
4.6 Virtual Sequences . 30

ii

4.7 Configuration files . 33
4.8 Define_pkg . 33
4.9 Scoreboard . 33
4.10 FIFO . 39

4.10.1 FIFO package . 39
4.10.2 FIFO agent . 40
4.10.3 FIFO driver . 40
4.10.4 FIFO interface . 42
4.10.5 FIFO monitor . 43
4.10.6 FIFO packet . 44
4.10.7 FIFO sequencer . 45
4.10.8 FIFO sequence . 45

4.11 I2S . 46
4.11.1 I2S package . 46
4.11.2 I2S agent . 47
4.11.3 I2S driver . 48
4.11.4 I2S interface . 50
4.11.5 I2S monitor . 50
4.11.6 I2S packet . 52
4.11.7 I2S sequencer . 52
4.11.8 I2S sequence . 53

4.12 CFG . 54
4.12.1 CFG package . 54
4.12.2 CFG agent . 54
4.12.3 CFG driver . 55
4.12.4 CFG interface . 55
4.12.5 CFG monitor . 56
4.12.6 CFG packet . 56
4.12.7 CFG sequence . 56
4.12.8 CFG sequencer . 57

5 Coverage, Assertions, Regressions, Merging, Results 58
5.1 Code Coverage . 58
5.2 Functional Coverage . 59

5.2.1 Cover Group, Cover Points and Cross Coverage 60
5.3 Assertion Based Verification . 60

5.3.1 Immediate Assertions . 60
5.3.2 Concurrent Assertion . 61

5.4 Testbench Coverage . 61
5.4.1 Coverage.sv . 63

iii

6 Conclusions 74

Bibliography 75

iv

List of Figures

1.1 MDV Cycle . 5

2.1 I2S Simple System Configurations [8] 8
2.2 I2S Master Block Diagram . 9
2.3 I2S Pad block [9] . 12

3.1 UVM hierarchy . 15
3.2 UVM Testbench Hierarchy . 16
3.3 UVM Scoreboard . 19

4.1 UVM Scoreboard . 22

5.1 First run TX . 68
5.2 TX coverage after merge . 70
5.3 TX coverage after merge and refining 71
5.4 Rx coverage after merging and refinement 72
5.5 Final coverage report . 73
5.6 Final tx and rx merged report . 73

v

Listings

4.1 set method . 23
4.2 top module | import and include . 24
4.3 top module | DUT and Interfaces 25
4.4 top module | set functions . 26
4.5 test class | check_phase and end_of_elaboration_phase 27
4.6 test class | run_phase . 27
4.7 test class | rx_over_test . 28
4.8 environment class | build_phase . 29
4.9 environment class | scoreboard connections 30
4.10 mc_sequencer | code snippet . 30
4.11 base_mcseq | pre_body and post_body 31
4.12 tx_v_seq | body task . 32
4.13 config_fifo active_passive . 33
4.14 scoreboard . 34
4.15 fifo_pkg | include and typedef . 39
4.16 fifo_agent | active_passive check and components create 40
4.17 fifo_agent | driver - sequencer connection 40
4.18 fifo_driver | run_phase . 41
4.19 fifo_driver | send_packet - data transmission 41
4.20 fifo_driver | receive_packet - data reception 42
4.21 fifo interface | signals . 42
4.22 fifo monitor | connect_phase . 43
4.23 fifo monitor | run_phase . 44
4.24 fifo_sequencer | new function . 45
4.25 fifo_sequence | fifo_write_over_seq 46
4.26 i2s_pkg | typedef and include . 47
4.27 i2s_agent | active_passive check and components create 47
4.28 i2s_agent | ch_id variable management 47
4.29 i2s_agent | connect_phase . 48
4.30 i2s_driver | run_phase . 48
4.31 i2s_driver| run_phase - send_data 49

vi

4.32 i2s_driver | run_phase - get_data 49
4.33 i2s_if| signals and assertion . 50
4.34 i2s_monitor | connect_phase . 50
4.35 i2s_monitor | run_phase . 51
4.36 i2s_packet | data fields . 52
4.37 i2s_sequencer | class . 52
4.38 i2s_sequence | i2s_read_over_seq 53
4.39 cfg_package | include and typedef 54
4.40 cfg_agent | build_phase . 54
4.41 cfg_agent | connect_phase . 55
4.42 cfg_driver | run_phase . 55
4.43 cfg_interface | class . 56
4.44 cfg_monitor | run_phase . 56
4.45 cfg_sequencer | class . 57
5.1 run.f file | include directories . 61
5.2 run.f file | permissions and input files 62
5.3 run.f file | test options . 62
5.4 run.f file | testbench files and rtl . 63
5.5 coverage.sv file | build_phase . 64
5.6 coverage.sv file | fifo_cg covergroup 64
5.7 coverage.sv file | data_tx coverpoint 65
5.8 coverage.sv file | fifo_cg cross coverage 65
5.9 regression.sch file . 67
5.10 merge.cmd file . 67
5.11 fifo_seq.sv file | fifo_last_seq . 69
5.12 i2s_seq.sv file | i2s_last_seq . 71

vii

Acronyms

ABV
Assertion Based Verification

DUT
Device Under Test

eRM
e-Reuse Methodology

FIFO
First In First Out

FSM
Finite State Machine

I2S
Inter-IC Sound

LSB
Least Significant Bit

MDV
Metric Driven Verification

MEMS
Micro-Electromechanical Systems

MSB
Most Significant Bit

ix

OVM
Open Verification Methodology

RTL
Register-Transfer Level

RX
Reception

SCK
Continuous Serial Clock

SD
Serial Data

TLM
Transaction Level Modeling

TX
Transmission

UVC
UVM Verification Component

UVM
Universal Verification Methodology

VIP
Verification Intellectual Property

VMM
Verification Methodology Manual

WS
Word Select

x

Chapter 1

Introduction

1.1 Background

The electronic industry is in constant development and innovation, continuously
pushing the boundaries to achieve greater results in terms of performance, efficiency
and features.
The evolution of the systems has led to an exponential increase of the function-
alities offered. This growth has been accompanied by a correspondent rise in the
complexity required to meet all the expected specifications.
The logical consequence of these advancements has been an exponential technology
scaling, which corresponds to the rapid increase of the units number present on
a single chip or system. However this innovation introduced new challenges and
issues that have to be checked and controlled such as the power management that
has to be optimized maintaining top-notch performance without compromising
energy efficiency, or the coexistence of complex analog and digital units with their
communication problems.

Due to the parallel compelling need to be competitive in the market both on
timing and performances ends, the electronic industry continuously tries to create
methodologies to reduce time and costs required to create a new product. Design
and verification are certainly the two most expensive process in term of time, and
the latter is the one that usually is the most time consuming and thus the most
critical in the overall development process.

Verification is a fundamental production stage: to verify means to check that
the units, circuits and systems comply with the required specifications according
to different parameters as well as performance, power and timing. The relevance of
each of the aforementioned characteristics depends on the nature of the system to

1

Introduction

be tested: in an embedded system power management is a very delicate topic while
in real time systems it is compulsory that each data is not only logically correct
but also that it is computed in the correct time frame.
Verification has been proven over time as a fundamental step to avoid wasting
resources and incurring in unnecessary costs. As a matter of facts, there have
been cases where companies have been forced to remove one of their products off
the market due to unexpected behaviours or malfunctioning. Such cases lead not
only to a non negligible money loss, but also to a dent in the company reputation.
Those issues could have been avoided by performing a tailored verification routine
starting from the digital design stage.
Digital verification allows to identify issues before the circuit is physically printed,
preventing huge amounts of losses in terms of money and time. As a consequence,
this topic has been thoroughly studied and applied both in academia and in industry.
Through the use of an ad-hoc environment, the digital circuit is tested by means of
logic simulations that perform the following fundamental tasks:

• the injection of a pseudo-randomic set of input stimuli to cover many different
scenarios;

• the collection of output data gathered from the application of the aforemen-
tioned stimuli;

• generation of a reference model used to check data correctness;

• comparison of collected data to the expected one, thus making sure the DUT
works as intended;

The necessity of reducing verification time has led to the creation of programming
languages designed to enhance the precision and to ease overall the whole verification
process by adding specific features to obtain better results.
With the introduction of new methodologies, the industry continues to improve its
capabilities of generating reliable high quality products reducing at the minimum
the probability of unexpected and incorrect behaviour.

1.2 UVM and MDV
Due to the aforementioned reasons, verification plays a central role in the produc-
tion line of today’s most advanced electronic systems.
As the electronic systems have evolved over time verification methodologies pro-
gressed as well, thus leading to a significant progress since the early 2000s.

In 2001-2002 the e-Reuse Methodology (eRM) first emerged. This was one of the
first attempts at introducing a standardized approach to verification — including

2

Introduction

guidelines — such as the functional partitioning of the testbench and a file naming
convention [1].

Later on, in 2005, Synopsys announced the release of the Verification Methodol-
ogy Manual (VMM), a manual that established guidelines and recommendations for
object-oriented programming by taking advantage of randomization and constraints
which are essential in verification. The VMM also provided industry best practises
to help prevent common mistakes creating new verification components. [2]
After that, it is important to highlight another key stone: in 2008 the Open Verifica-
tion Methodology (OVM) was created, becoming the first truly open, interoperable
and proven verification methodology. OVM is a SystemVerilog language class
library, completely open-source that defines a framework for reusable Verification
IP (VIP). That has been one of the key moments for the creation of a universal
standard. Indeed, one year later the so called Open Verification Methodology
has been chosen by Accelera to become the base of the nowadays used Universal
Verification Methodology (UVM) [3].
Using OVM as its core, UVM integrates years of object-oriented designs and
methodologies in order to create scalable, reusable, and flexible testbenches. These
principles have been the cornerstones of UVM, a methodology with the main goal
of creating an open, unified class structure for interoperable VIP enhancing code
reusability and adding strong built-in automation features [4, 5].

Another significant advantage of UVM is time optimization in industry projects.
Thanks to the object-oriented approach and common generic guidelines, it is possible
to separate different parts of a testbench between various team members enhancing
productivity and facilitating the reuse of the single developed components. Splitting
work between different people has had a large impact on the testbench produced,
obtaining a more modular and reusable verification environment connected to the
Device Under Test (DUT).
By following the UVM approach and taking advantage of the randomization and
coverage-oriented characteristics of the SystemVerilog language, it is possible to
create powerful testbenches capable of verifying the majority of, if not all, the
possible inputs and scenarios that devices to be verified can experiment and undergo
through during their operative lifetime.

Moreover another layer of methodology is often used: the Metric Driven Method-
ology (MDV). The MDV is used to defines clear and measurable goals of the
verification creating Executable Plans of what has to be tested.

Furthermore MDV offers guidelines and tools to enhance the efficiency and
effectiveness of the verification process using metrics and automation to maximize
the verification potential of a testbench. The main features of this methodology

3

Introduction

can help to:

• manage frequent changes in specifications and project plans;

• generating organized and intuitive reports useful to categorize the verification
results leading to better productivity and higher work quality;

• finding more bugs faster through the combination of formal techniques and
constrained-random inputs;

The MDV process is divided into four stages: [6]

• Plan: highlights the needed specifications, structure the verification plan and
design the verification environment defining the structure;

• Construct: the verification environment is created through the reuse of
existing modules or the implementation of new ones in order to cover the
verification plan scenarios;

• Execute: simulation is launched and a formal analysis of the result is per-
formed. Often powerful environments are used to summarize the results
obtained;

• Measure/Analyze: features like coverage and assertions are used to deter-
mine the effectiveness of the test performed. In case of not satisfying results,
bugs or failures adjustments and refinements are performed and then the cycle
is restarted;

1.3 Aim and motivation
The present thesis aims primarily at demonstrating the effectiveness of the combina-
tion between the Universal Verification Methodology (UVM) and the Metric Driven
Verification (MDV) approaches. The final achievement is to verify the correctness
of a Design Under Test (DUT) provided as a grey box exploiting the main and
most useful characteristics of the two aforementioned methodologies. To reach a
full verification of the DUT, scripting and test regressions have been extensively
used, as well as SystemVerilog language features such as assertions and coverage.
The DUT analyzed is an I2S protocol master unit developed in Verilog by TDK
Invensense.
As aforementioned, a grey box approach has been used bringing only a partial
knowledge of the unit’s design while having a thorough understanding of how the

4

Introduction

Figure 1.1: MDV Cycle

protocol should work and its expected functionalities. This strategy allows to cre-
ate a tailored testbench environment without being influenced by the design choices.

Prior to the beginning of the work on the practical aspects of this thesis project,
I dedicated a significant amount of time to acquire and develop the necessary
verification related skills and knowledge.
TDK Invensense provided invaluable support giving me the opportunity to attend
Cadence courses on: SystemVerilog for Design and Verification, SystemVerilog
Verification with UVM, SystemVerilog Assertions and on Cadence software such
as: Xcelium Simulator, Xcelium Fault Simulator, Xcelium Integrated Coverage
(which also introduced the usage of IMC a software for the coverage and reports).
The combination of acquired theoretical concepts and the experience gained during
months have been crucial to successfully complete the verification of the I2S protocol
master unit.

5

Chapter 2

I2S Protocol

2.1 Introduction

The I2S protocol (Inter-IC-Sound), also known as IIS, was developed in 1986 by
Philips Semiconductor (now known as NXP Semiconductor).
The I2S protocol has been designed as a standardized solution for the transmission
of digital audio data between different units such as microcontrollers.
As electronics became a fundamental part of the industry and the world transitioned
from analog to digital, a new protocol was needed that could transmit data without
losing quality while maintaining a high efficiency.

Over the years, I2S has proven to be crucial in applications where the sound
quality is critical, becoming a de-facto standard in the digital industry. Moreover,
the relatively low complexity of the protocol and its low number of interface pins
helped to make it one of the most convenient choices in audio design systems.
The establishment of the I2S has been essential for the rapid spread of digital
audio systems in the consumer and professional markets. Before its adoption,
audio systems relied on analog signals that were subject to a lot of issues, such as
distortions or interferences [7].

The primary goal behind the creation of the I2S standard was to establish a
simple and reliable solution for the transmission of digital audio signals between
various components of a digital circuit or between different chips. This ensures
an excellent sound quality and great signal robustness compared to the previous
technologies.
Even nowadays, the forever long debate to determine the superiority between
analog and digital audio quality hasn’t concluded yet. A consequence of this issue
is the production of different systems’ configurations according to its final use and

6

I2S Protocol

its final consumer: some systems keep the audio analog as long as possible reducing
to the minimum the digital processing, others, instead, take the audio data digital
and process that without having any analog part.
As always in the market, all the decisions are made upon the trade off between
cost and quality, so in audiophile systems there is the tendency of incorporating a
larger part of analog elements prioritizing sound fidelity, while on the other hand
in consumer electronics, where digital micro-electro-mechanical systems (MEMS)
microphones and digital speakers are vastly present, the focus is on cost reduction
using digital audio data and having simpler systems [7].

Despite this ongoing debate, the key role that the I2S has played in the digital
world is undeniable and, thanks to the improvements of digital speakers and
microphones, the protocol is nowadays spread in the majority of audio systems.

2.2 Specification
The I2S interface is a serial bus that uses three lines:

• Continuous Serial Clock (SCK)

• Word Select (WS)

• Serial Data (SD)

The protocol transfers data between two units called transmitter and receiver. Both
transmitter and receiver units share the same clock signal for data transmission,
the unit that generates the SCK and WS is referred to as the controller. In complex
systems it is possible to have multiple transmitters and receivers. If not regulated
this could lead to issues, as logic and electrical conflicts may arise when multiple
transmitters try to broadcast a frame concurrently. In those cases the solution is
to have a system controller managing the digital data flow between the units [8].
The use of only three lines is adopted as to minimize cost and area, keeping at the
minimum the number of pins required and simplifying wiring.

2.2.1 Serial Data
The SD is transmitted Most Significant Bit (MSB) first in two’s complement. The
MSB first transmission is used in order to prevent possible word length problems.
In this way, the receiver doesn’t need to know how many bits the transmitter wants
to send and neither the transmitter needs to know how many bits the receiver can
handle. If the receiver’s word length is bigger than the transmitter’s word, the
least significant bits that are not filled will be set to ’0’. On the opposite, if the

7

I2S Protocol

Figure 2.1: I2S Simple System Configurations [8]

transmitter’s word length is greater than the receiver’s one the word is truncated
and bits after the LSB are ignored.
In order not to have problems between different words, the MSB of the next word
is transmitted one clock period after the Word Select change, synchronizing the
start of each new word on the trailing or leading clock edge [8].

2.2.2 Word Select
The WS signal specifies on which channel the transmission occurs: if WS is high,
channel 0 (left) is selected, otherwise with WS low channel 1 (right) is the active
one.
The WS changes one clock period before the MSB is transmitted guaranteeing
synchronicity between transmitter and receiver, while giving the receiver time to
store the previous word [8].

2.3 Master Block
For the purposes of this thesis a I2S Master protocol encoder block has been
developed by TDK Invensense with its analysis and verification as the main target.

The internal architecture of the Master block is composed by four key compo-
nents: a PROTOCOL block, a PAD block and two FIFO blocks.

In order to have a more generic code some parameters has been defined:

• WORD_LEN_LOG2 represents the log2 of the word size transmitted or
received by the block master; its value is 4 by default

8

I2S Protocol

Figure 2.2: I2S Master Block Diagram

• FIFO_ADDR_LEN_LOG2 represents the log2 of the FIFO length; its
value is 3 by default

• WORD_LEN it is the actual word length

• FIFO_ADDR_LEN it is the address length

The Master block can work in two different modes: Transmission (TX) and
Reception (RX).
The TX mode is responsible for transmitting data from the two channels to the
output of the PAD block. In RX mode, instead, data is taken from the PAD side
and transferred to the output of FIFO blocks [9].

2.3.1 FIFOs
Each FIFO block is a dual-port memory structure that can be accessed from two
sides: one side is connected to the PROTOCOL block, the other to the peripheral’s
interface. Both FIFO sides support read and write operations for an optimal data
management.
When the block is in TX mode each FIFO is written from outside of the peripheral
through the interface and read by the Protocol block. In RX mode the opposite
happens, with the FIFO read by the external and written by the PROTOCOL
block.
The FIFOs have been implemented as circular buffers, and they are controlled

9

I2S Protocol

by two pointers that are updated after each read or write operation to track
the presence of data saved. This approach ensures a correct data management
inside FIFOs without the necessity of additional memory to store the position or
addresses.
Moreover two edge-cases has to be evaluated: the possibility of having a full
FIFO and the possibility of having an empty FIFO. The master block checks the
happening of one of these scenario using two signals. The signal associated to
FIFO full is asserted when the FIFO buffer reaches its maximum capacity (the
internal pointer reaches the last possible position) preventing other write operations.
Conversely, if the FIFO is empty the correspondent signal is asserted, not allowing
other read operations. In case of write operation with FIFO full data will not be
stored and lost, instead in case of read operation with FIFO empty the output will
be ’0’.

2.3.2 PROTOCOL block
The PROTOCOL block controls a Finite State Machine (FSM) that manages the
control signals needed to correctly handle a transmission or a reception.
During a transmission, data is retrieved from the two FIFOs and serially transmitted
to the PAD block along with the WS signal and the clock. While receiving a frame,
on the other hand, the serial data is taken from the PAD, assembled into words
and directed to the correct channel (FIFO) according to the WS signal.
The FSM has six possible states:

• IDLE

• STARTUP

• TX_CH0

• TX_CH1

• RX_CH0

• RX_CH1

The IDLE state is the first active state right after the device power-up and before
the enable signal, cfg_i2s_en, is asserted. In this state all signals are held low.
Once the enable signal is asserted, the state transitions to STARTUP. In this state,
a word of all zeros is sent to the I2S line while the clock starts toggling and WS is
set high. The STARTUP state prepares and synchronizes the receiver for the word
reception on the Word Select falling edge.
Following the falling edge of WS, the state transitions again from STARTUP
to TX_CH0. During TX_CH0 a transition to channel 0 is performed, the first

10

I2S Protocol

available word is sent to the fifo associated to channel 0. After the first word has
been transmitted, WS toggles and the state changes to TX_CH1 with a word
moved to the FIFO of the other channel. It is important to underline that each
transmission always starts on channel 0 without exceptions.
The Transmission goes on alternating the two channels (and so the correspondent
states) until the enable signal transitions to 0. With this last transition, the trans-
mission is interrupted immediately even if a word has not been fully transmitted.
In reception mode (RX) the FSM operates in a similar way, with states RX_CH0
and RX_CH1 mirroring the transmission states.
During reception, data is taken from the PAD and directed to the respective channel
based on the WS signal value. Just like during the transmission, if the enable
signal is deasserted the reception process is halted immediately, even though the
data reception is incomplete.

2.3.3 PAD
The I2S output is managed by the PAD block.
As with the other components the behaviour of the PAD block changes according
to the protocol mode.
In the PAD block there are the SD line, SCK signal and WS signal.

The SCK signal is PAD the serial clock signal. This is simply the clock signal of
the protocol inverted and used to correctly synchronize the unit with the remaining
of the Master block.

The WS signal mirrors the functionality of the WS in the PROTOCOL block.
This signal is used to correctly select the audio channel to which data has to be
directed: channel 0 if WS is 0, and channel 1 otherwise.

The SD line is the most complex one, it is a bidirectional serial line that operates
according to the mode of the Master block.
In case of a transmission, the SD line works as an output by receiving data from

the PROTOCOL block and transmitting it to a potential external source.
In reception mode, instead, the SD line works as an input by receiving serial data
from external source and transmitting them to the PROTOCOL block.
In case of an RX, in order to prevent possible conflicts on the line, the output
capability of the line can be disabled. This control ensures the correct functionality
of the line in both modes, keeping the input always active and enabling the output
only when necessary to transmit a specific data stream [9].

11

I2S Protocol

Figure 2.3: I2S Pad block [9]

12

Chapter 3

UVM

3.1 Key Concepts
The introduction and widespread adoption of UVM in the semiconductor industry
has brought several advantages to verification that couldn’t be made possible by
its precursors or by the OVM approach.
UVM constructed its strenght on some key pillars [10]:

• Reusability: although the OVM bases its structure on a object-oriented
approach with pre-defined classes, those where not designed to be modular and
reusable: without those characteristics its adaptability was limited in different
verification environments. Instead, UVM has been designed to set a clear
separation between the Device Under Test (DUT) and the testbench. This
more modular approach leads to an easier code reusability of the verification
segments in different projects.
The UVM Class Library has been one of the main advantages that allowed
UVM to become so widely adopted by the industry;

• Flexibility: differently from OVM, the UVM approach is designed to guaran-
tee a higher level of flexibility between the Register-Transfer Level (RTL) and
the Transaction-Level Modeling (TLM), increasing the number of scenarios
that can be verified;

• Maintainability: strictly connected to the other factors, an high standard
of maintainability ensures a code that is easy to manage and update. Even
after years or updates in UVM methodologies, previously written code is still
functional and usable or, at least, it is very easy to be modified and corrected.
This feature ensures long term efficiency of the code in different verification
projects limiting the obsolescence issue;

13

UVM

• Standardization: as said, standardization is one of the strengths of UVM.
While OVM introduced guidelines in verification, it lacked formal standards
in how to develop code, making each piece of code written by verification
engineers different and structured in a personal way. The inconsistency in the
code structure brought up new problems in code sharing between teams, with
lots of time wasted in trying to understand and decipher the code content and
structure. With the introduction of a strict standard methodology, written
code became more uniform, consistent and more manageable, ensuring an easy
diffusion between different industries, too.

3.2 UVM Classes
In order to be maintainable and reusable, in the UVM Class Library all the
fundamental blocks used in a testbench are derived from a set of basic classes that
defines characteristics and methods that each block can have [11]:

• uvm_void: it is the base class of all the UVM classes.
It has no particular functionalities and sets no restrictions,

• uvm_object: abstract class derived from uvm_void. All classes used to
create a UVM Environment are derived from uvm_object.
It sets some useful methods like copy, print and compare often used in the
derived classes,

• uvm_component: derived from uvm_object, this is the direct parent class
of all UVM standard components. It is used to introduce mechanisms like
factory, hierarchy, reporting, objection and phasing that allow to build a real
structure between all components and define how those modules interact one
with the other,

• uvm_sequence_item: class derived from uvm_transaction that allows to
manage phases and timing. It is the base class for objects, sequence items and
sequences.

3.2.1 UVM Testbench Structure
From these base classes, in particular from the uvm_object, the real testbench
components are declared. The most important classes that define the testbench
structure are:

14

UVM

Figure 3.1: UVM hierarchy

uvm top

It is the top level module and it functions as a container where the uvm_test and
the Design Under Test (DUT) will be instantiated, defining explicitly the connection
between them. To guarantee the maximum code versatility and reusability, the
uvm_test is usually instantiated at run_time; this dynamic instantiation allows
the use of different tests according to specific settings that we need to verify. This
also provides a flexible approach to verify the various DUT configurations.
uvm_top usually contains also one or more clock generation blocks, together with
some control logic on the reset generation, too.
The connection of the DUT to all the testbench signals is performed through the
use of a specialized object called Interface. The Interface will be further explained
in detail later.

uvm test

The uvm_test has the primary aim of instantiating the environment class and
configuring all the necessary parameters required. This purpose is usually achieved
by using the set method and factory overrides, features that are peculiar to the
UVM approach. In addition, the uvm_test is also asked to run certain sequences
on a specific sequencer.
Typically, in a complex system a high number of different tests are required to

15

UVM

Figure 3.2: UVM Testbench Hierarchy

achieved an optimal verification. In order to obtain that, all the defined tests are
derived from a common one, allowing to extend test functionalities, set values or
enabling/disabling classes at need.
Each created test is used to verify one or more specific functionalities of the system
under test, covering all the possible scenarios and edge cases.

uvm environment

The uvm_environment class represents another layer of encapsulation.
An environment contains a variety of reusable components useful for verification
purposes. Inside an environment it is not unusual to find other layers of environment
nested: this method is used for the sole purpose of enhancing reusability. With
the creation of those encapsulation layer, it is easier to incorporate components,
environments or agents written by different teams or developed for other projects
that can be useful for the current needs.
Inside an environment one or multiple agents are usually instantiated, together
with scoreboards, interfaces, coverage collectors and multiple checkers [12].

uvm agent

As we advance through the levels of encapsulation, the Agent represents the next
step.

16

UVM

An Agent is usually designed in order to interact with the DUT via an Interface
and managing the communication with a Scoreboard and a Checker to control the
results obtained.
Two different types of Agent can be identified, namely active and passive Agents.

• Active Agent: it is responsible for the generation of the stimulus or sequences
that have to be sent to the DUT. Moreover it has to control the timing and
conditions under which those stimulus are sent to the DUT. At the same time
an Active agent has to observe the response obtained by the DUT after the
application of the stimuli and communicate with the Scoreboard;

• Passive Agent: differently from the Active it doesn’t generate or control
stimuli, instead it has the only aim of observing and monitoring the DUT
through the interfaces without directly interact with it. The only other action
that it has to perform is to communicate with the Scoreboard to control the
data observed.

The distinction between an Active and Passive Agent is very clear also in the
internal architecture. More in details, the Passive Agent only encapsulates a
Monitor, while an Active one encapsulates also a Driver and a Sequencer other
than the Monitor. This difference is given by the necessity of stimuli generation
through the use of the Driver and the Sequencer, as it will be explained later.
An Agent can be set as active or passive through the control of an internal variable
in the developed code. Such variable called is_active, and it is set by default as
active.

uvm driver

The Driver is an active component class derived from uvm_component and it is
used to drive randomized transactions or data to the DUT through the interface.
The Driver must retrieve transactions, i.e. data, from the Sequencer and, having
knowledge of the DUT functionalities, it must decide the correct timing to apply
them to the DUT to adhere to the protocol requirements [5].

uvm monitor

The Monitor is a totally passive component responsible for capturing and monitoring
the DUT signals from the interface.
It can have basic checking functionalities to understand if the data observed are
correct, even if the majority of them are performed inside the Scoreboard.
In order to observe the data, it has to be connected to the DUT through the
interface.

17

UVM

uvm sequencer

The Sequencer is an active component that is responsible for data transactions
generation as well as their transmission to the Driver for the execution.
The Sequencer is usually encapsulated inside the agent, but it is common practice
to create a sequencer in the Environment, called virtual sequencer or multichannel
sequencer. This Sequencer is used to collect multiple sequencers from different
agents and activate the correct one at the correct time to send data to the DUT
from the right input port. This methodology gives the possibility of controlling
multiple sequencer without knowing exactly how they are implemented but only
their functionalities, improving code’s reusability.
Two different types of sequencers can be identified:

• m_sequencer: is used as a generic handle to give a reference to the sequencer
object

• p_sequencer: is a specific handler used to give access to sequencer’s properties
or methods

uvm sequence

The Sequence is the class that has to define the stimulus pattern for each data
item used in the verification process.
If the Sequencer controls timing and ports to check the correct scenarios, the
Sequence aims to generate the correct input to stimulate them in the right way.
Input Sequence is usually generated using the random feature of SystemVerilog
language. Randomization may be subjected to ad-hoc constraints, so to avoid the
generation of non-possible values for specific signals. Thanks to this feature it is
possible to test as many different combination of inputs as possible, covering some
scenarios that may not come to mind when writing dedicated tests, only.
Once the Sequence has set the data item’s boundaries and it has generated the
data, it will be taken by the sequencer and it will be transmitted to the Driver to
be executed [13].

uvm scoreboard

The Scoreboard is an active class contained in the Environment. It has the main
purpose of comparing the output DUT data with the expected output calculated
starting from the DUT inputs.
A Scoreboard has three main functions:

• Reference model or transfer function: to perform its checker functionali-
ties the Scoreboard needs to reproduce the DUT behaviour and calculate the

18

UVM

expected output data starting from the input ones. The DUT behaviour has
to be replicated without knowing its original design to avoid possible common
mistakes. The model is usually written in high level languages like C++ or
SystemVerilog,

• Internal Storage: DUT output needs time to be ready and available, while
the reference model is usually an untimed algorithm. Due to that timing
discrepancy, the Scoreboard is capable of storing data so that it is able to align
the model and DUT output values and perform a meaningful comparison,

• Comparison logic: used to control and check the calculated output with the
actual DUT one in order to understand if the behaviour of the DUT is correct
or not. This checker can be very straightforward with a simple equivalence or
very complicated with a complex functional model.

Figure 3.3: UVM Scoreboard

In addition, a Scoreboard can also contain coverage functionalities or be part of
a complex hierarchy to determine the correctness of the results.
Scoreboard usually obtains data from a monitor connected to the input of the DUT
and from another monitor connected to the DUT output. It is also possible that
data doesn’t arrive in the expected order, thus leading the Scoreboard to analyze
them using an out-of-order logic [13] [14].

uvm interface

The Interface is used as the connection between the DUT and the Agent. The
Interface encapsulates all signals needed to let the two entities communicate. The
encapsulation simplifies the change of components or DUT in the testbench without
compromising the data flow and transactions.
The Interface is used to hide the low level details of signal management, thus
simplifying the verification environment and making it easier to be reviewed.

19

Chapter 4

Testbench Implementation

4.1 Preliminary Choices
In order to accomplish the goals of this thesis, the adopted approach consists
of trying to simulate an industrial project using the Metric-Driven Verification
(MDV) methodology. Throughout the various steps of the thesis project, I had the
valuable opportunity to discuss ideas, doubts and problems with people much more
experienced than me. Their guide helped me in finding new strategic choices and
alternative approaches to successfully reach the final goal.
Following the four steps cycle of the MDV methodology, the first phase is the
Plan definition. During this period, after having studied the I2S protocol, the
initial task was to identify, by means of a preliminary analysis, the key features
and specifications that the verification process needed to control.
A few key points have been identified:

• Simple TX: a transmission where the number of transmitted items doesn’t
saturate the receiver’s FIFO,

• TX with Overwrite: a transmission where the amount of data transmitted
is larger than the amount of data that can be stored in the FIFO, thus
reproducing the scenario where the FIFO is completely filled while additional
incoming data is being received,

• Simple RX: a reception where the number of received items doesn’t empty
the FIFO;

• RX with Underread: a reception in which the FIFO is read till it becomes
empty, after that other additional read operations are attempted,

• Reset management: the correct functioning of the reset has to be tested by

20

Testbench Implementation

ensuring that the logical value ’0’ is assigned to all signals, with the exception
of the SD signal that must be set to Z, i.e., high impedance,

• Check Channel and Data: it is important to check that data is correctly
generated and redirected to the appropriate channel. Data generated goes in
the master unit to be transmitted on channel X and it is effectively transmitted
on that channel,

• Correct Mode: verify that the protocol performs the right operation, either
Transmission or Reception, according to the control signal,

• Enable signal management: check that actions are performed only when
the enable signal is asserted and that are all interrupted when enable is
deasserted.

Once all the key points have been identified and described, the next step consisted
of outlining a testbench structure comprised of all the sub-classes needed to carry
out the verification process.
The following testbench topology has been chosen:

• Top

– Test
∗ Environment

· i2s_agent
· fifo_agent
· cfg_agent
· scoreboard

Each agent is active, thus requiring both monitoring and driving capabilities. For
this reason, every agent contains a sequencer, a driver and a monitor.
As detailed by the previous list, the choice has been to subdivide the verification
environment into three agents having very similar characteristics but each covering
a specific aspect of the DUT.
The i2s_agent is responsible for handling the protocol connection to the peripheral.
The fifo_agent, on the other hand, is the one controlling the input and output
pins of the FIFOs, while the cfg_agent is the one overseeing the system’s control
signals and ensuring proper configuration settings.
Agents are not directly connected to the DUT, as a dedicated interface is used to
manage and organize signals for each agent. This division is performed in order to
increase the verification environment’s modularity and improving flexibility and
maintainability.

21

Testbench Implementation

In order to better exemplify the proposed testbench structure, a graphic repre-
sentation is depicted in fig. 4.1.

Figure 4.1: UVM Scoreboard

As showed in the figure above, the two FIFOs channels have been managed
and controlled separately, each one with its dedicated agent. The I2S has been
designed similarly, with channel 0 controlled through agent i2s_ch0 and channel 1
with i2s_ch1.
While the structure is divided into 2 agents for each side, the same thing cannot
be said for what concerns the code files.
Thanks to the functionalities offered by SystemVerilog, in order to create the same
agent twice with small differences just few lines of code are needed. Through the
combination of the get and set methods the two agents can be easily instantiated

22

Testbench Implementation

simplifying the code, reducing the amount of code lines and increasing the manage-
ability.

The SystemVerilog database is used in order to effectively handle different
versions of the same agent. It allows the storage and retrieval of variable values
across different testbench components. The access to the database is guaranteed
through the use of uvm_config_db class, a class that provides two key functions:
set and get. These are, respectively, used to store and retrieve information in and
from the database. Both functions have a quite similar implementation, as they
need:

• a context: required to know what components can access the database’s items,

• an instance name,

• a field name,

• the actual value that has to be stored.

The paths provided in the function fields are often written using wildcards like
"*" or "?" in order to enable the selection of multiple possible components using a
single path. An example of how the set function can be used is showed in listing 4.1.

Listing 4.1: set method
1 f i f o _ v i f _ c o n f i g : : s e t (nu l l , " ∗ . env_tb . ∗ " , " v i f_ f i f o_cov " , f i f o_ i f_ch0)

The introduction of the third agent, cfg_agent, has been another important de-
sign choice. This agent, as it will be explained in-depth in the dedicated paragraph,
has the main aim of managing the control signals such as reset and enable, and
distribute them to the other components.
An alternative approach could have been to integrate the management of these
configuration signals inside one of the other two agent components. This, however,
would have significantly reduced the modularity of the code, hence why the third
agent has been included. Other than that, this decision increases also the readability
and comprehensibility of the verification environment.

In order to further clarify the functionalities of the testbench and illustrate
the most important features of the code, each file is deeply explained individually.
Due to the big similarity between some classes of different agents some sections
will be quite similar but, for the sake of completeness, all are reported in the chapter.

23

Testbench Implementation

4.2 Top Module
The top module is the top level entity that controls and contains everything in the
proposed architecture.
This module has the fundamental aim of importing the uvm_pkg and including
the uvm_macros in order to guarantee that all the uvm functions and macros are
available for the sub components.

Listing 4.2: top module | import and include
1 module top ;
2

3 // import the UVM l i b r a r y
4 import uvm_pkg : : ∗ ;
5 // inc lude the UVM macros
6 ‘ i n c l u d e "uvm_macros . svh "
7

8 // import c f g package
9 import cfg_pkg : : ∗ ;

10 // import f i f o package
11 import f i fo_pkg : : ∗ ;
12 // import i 2 s package
13 import i2s_pkg : : ∗ ;
14

15 // inc lude the v i r t u a l sequencer
16 ‘ i n c l u d e " mc_sequencer . sv "
17 // inc lude v i r t u a l sequencer sequences
18 ‘ i n c l u d e " mcseq_lib . sv "
19

20 // inc lude f u n c t i o n a l coverage
21 ‘ i n c l u d e " coverage . sv "
22

23 // inc lude the scoreboard
24 ‘ i n c l u d e " scoreboard . sv "
25

26 // inc lude the env
27 ‘ i n c l u d e " env . sv "
28

29 // inc lude the t e s t _ l i b
30 ‘ i n c l u d e " t e s t . sv "

Packages for cfg, fifo and i2s blocks are used in order to prevent the presence
of large amount of code lines in the top entity, by grouping within them all the
include related to the single component resulting in a more comprehensible and
immediate code.
Other than to simplify the code, the pkg files is used in order to avoid further
modifications in the top module in case of changes in the architecture during
advanced steps. Indeed, it is not so unusual that, during the real development of

24

Testbench Implementation

the testbench, some decisions previously taken could be re-evaluated with possible
modification of the components present.
In this case, the only file that has to be modified is the relative pkg, leading to a
better organization in working teams.

Another important task performed by the top entity is the construction of
the hierarchy. All the sub components are included, namely the environment,
the testbench, the scoreboard, the coverage calculator, the virtual sequencer, the
virtual sequencer sequences and, finally, the DUT, named in the testbench as
i2s_master_txrx.
The connection of the DUT to the verification environment is performed through
the use of interfaces, fifo_if, cfg_if and i2s_if. All the signals connections are
explicitly declared in the code, the choice has been to use an explicit declaration of
the connections in order to have a better understanding of the environment even
with a slightly longer code.

Listing 4.3: top module | DUT and Interfaces
1 //FIFO I n t e r f a c e to DUT
2 f i f o _ i f f i f o_ i f_ch0 (c lock , r e s e t , enable_top , tx_nrx_top) ;
3 f i f o _ i f f i f o_ i f_ch1 (c lock , r e s e t , enable_top , tx_nrx_top) ;
4

5 // i 2 s I n t e r f a c e
6 i 2 s _ i f i 2 s _ i f (sck , r e s e t , enable_top , tx_nrx_top) ;
7

8 c f g _ i f c f g _ i f (c lock , r e s e t , enable_top , tx_nrx_top) ;
9

10 i2s_master_txrx dut (. c l k (c l o ck) ,
11 . rst_b (r e s e t) ,
12

13 . cfg_tx_nrx (tx_nrx_top) ,
14 . cfg_i2s_en (enable_top) ,
15

16 //FIFO ch0 i n t e r f a c e
17 . ch0_data_tx (f i f o_ i f_ch0 . data_tx) ,
18 . ch0_data_tx_put_en (f i f o_ i f_ch0 . data_tx_put_en) ,
19 . ch0_fifo_underrun (f i f o_ i f_ch0 . f i fo_underrun) ,
20 . ch0_fi fo_overrun (f i f o_ i f_ch0 . f i f o_over run) ,
21 . ch0_data_rx (f i f o_ i f_ch0 . data_rx) ,
22 . ch0_data_rx_get_en (f i f o_ i f_ch0 . data_rx_get_en) ,
23

24 //FIFO ch1 i n t e r f a c e
25 . ch1_data_tx (f i f o_ i f_ch1 . data_tx) ,
26 . ch1_data_tx_put_en (f i f o_ i f_ch1 . data_tx_put_en) ,
27 . ch1_fifo_underrun (f i f o_ i f_ch1 . f i fo_underrun) ,
28 . ch1_fi fo_overrun (f i f o_ i f_ch1 . f i f o_over run) ,
29 . ch1_data_rx (f i f o_ i f_ch1 . data_rx) ,

25

Testbench Implementation

30 . ch1_data_rx_get_en (f i f o_ i f_ch1 . data_rx_get_en) ,
31

32 // I2S i n t e r f a c e output
33 .SCK(sck) ,
34 .WS(i 2 s _ i f . ws) ,
35 .SD(i 2 s _ i f . sd)
36) ;

Then, as aforementioned, the uvm database is exploited through the use of
uvm_config_db class and its set and get methods in order to store required values
that must be passed on to other components.

Listing 4.4: top module | set functions
1 i 2 s_v i f_con f i g : : s e t (nu l l , " ∗ . env_tb . ∗ " , " v i f_i2s_cov " , i 2 s _ i f) ;
2 f i f o _ v i f _ c o n f i g : : s e t (nu l l , " ∗ . env_tb . agent_fi fo_ch0 . ∗ " , " v i f _ f i f o " ,

f i f o_ i f_ch0) ;

As it is visible in the code snippet above, the set method is used to assign to the
correct agent the correspondent channel interface and, consequently, the contained
signals.

The use of wildcards "*" helps to reference multiple components at the same time:
the "*" replaces a part of path that can be filled by any other path that correctly
matches the fixed part written before or after the wildcard. This feature helps in
dealing with complex structures and deep architectures avoiding the repetition of
multiple lines, reducing the code length and increasing the readability.

Finally, the last operation performed by the top module is to run the test. This
is done through the use of the method run_test() that starts the simulation of the
testbench and constructs a uvm_root object. Moreover, it gets the test name that
has to be run and it constructs the test object, too. Lastly it starts the phases
system, allowing the testbench to run.

4.3 Test
The test class is the one in charge of building the architecture needed to verify a
specific feature of the DUT. Due to the necessity of trying out multiple features,
the test file consists of a library of tests. In this file, different tests were written in
order to adapt the characteristics of the testbench to the features that must be
tested.
The first test written is the base_test class, from which all the other tests will be
derived. This test contains the instantiation of the environment and config_fifo
(that contains configurations for the fifo_agent), and the set of all the phases useful
with meaningful checks.

26

Testbench Implementation

Listing 4.5: test class | check_phase and end_of_elaboration_phase
1 //CHECK_PHASE
2 f unc t i on void base_test : : check_phase (uvm_phase phase) ;
3 check_config_usage () ;
4 app ly_conf ig_set t ings () ;
5 endfunct ion : check_phase
6 //END_OF_ELABORATION_PHASE
7 f unc t i on void base_test : : end_of_elaboration_phase (uvm_phase phase

) ;
8 uvm_top . pr int_topology () ;
9 endfunct ion : end_of_elaboration_phase

Among the generic tasks, there is the creation of the environment class in the
build_phase, some configurations checks like the use of check_config_usage() and
apply_config_settings() methods in the check_phase, an useful debug control like
print_topology in the end_of_elaboration_phase and the set of the drain time at
200 ns with the set_drain_time method in the run_phase.

Listing 4.6: test class | run_phase
1 //RUN_PHASE
2 task base_test : : run_phase (uvm_phase phase) ;
3 super . run_phase (phase) ;
4 phase . phase_done . set_drain_time (th i s , 200 ns) ;
5 endtask : run_phase

To explain the use of the drain time, it is necessary to first introduce another
important topic: objections.
The objection mechanism is the method used to coordinate the communications
and the work done by different modules. When a component starts working during
the run_phase, an objection is raised in order to point out that an operation has
started; when the operation is concluded the objection is dropped. Once all the
objections are dropped the system can change phase, exiting from the run_phase.
Drain time is a time added at the end of all the operations once all the objections
have been dropped, so that it is possible to ensure that all the transactions have
been completed and nothing is still running. To summarize, drain time is a fixed
amount of time that is used to check that no more objections are raised when all
the current raised ones have been dropped.

From the base_test seven tests are derived:

• tx_test

• tx_last_test

• tx_over_test

27

Testbench Implementation

• rx_test

• rx_last_test

• rx_over_test

• not_rst_test

Each test has been specifically written for a test scenario that had to be verified,
configuring in the virtual sequencer the correspondent ad hoc written sequence to
inject input values that are instrumental to create the test scenario.
The class tx_test has been created in order to verify a simple transmission, that is,
a data packet transmitted from the FIFO side to the I2S side without creating an
overload condition in the FIFO.
The FIFO overload scenario for the transmission is tested in the tx_over_test class,
where a higher number of data is expected to be transmitted in a short time frame
to control the correct management of the overload.
A similar motivation resides behind the creation of the rx_test and rx_over_test,
two tests that have been created to verify the correctness of the reception mechanism,
i.e., a transmission of data from the i2s to the FIFO side, either without any
underrun condition in rx_test and with an underrun condition in rx_over_test.
The not_rst_test has been created in order to control the behaviour of the DUT
in case of the absence of a toggle on the reset signal. Lastly, the remaining two
sequences tx_last_test and rx_last_test has been written for coverage purposes
and will be explained in details in the coverage chapter.
In each of the described tests, the uvm_config_wrapper::set method is used to select
the virtual sequencer and the sequence to be transmitted on it. The rx_over_test
with the rx_over_v_seq applied in the virtual sequencer identified by the path
"env_tb.mc_seqr.run_phase" is reported in listing 4.7.

Listing 4.7: test class | rx_over_test
1 c l a s s rx_over_test extends base_test ;
2

3 ‘uvm_component_utils (rx_over_test)
4

5 f unc t i on new(s t r i n g name , uvm_component parent) ;
6 super . new(name , parent) ;
7 endfunct ion
8

9 extern func t i on void build_phase (uvm_phase phase) ;
10 endc l a s s : rx_over_test
11

12 //BUILD_PHASE
13 f unc t i on void rx_over_test : : build_phase (uvm_phase phase) ;
14

28

Testbench Implementation

15 // v i r t u a l sequencer
16 uvm_config_wrapper : : s e t (th i s , " env_tb . mc_seqr . run_phase " , "

de fau l t_sequence " , rx_over_v_seq : : type_id : : get ()) ;
17

18 super . build_phase (phase) ;
19 endfunct ion : build_phase

4.4 Environment
The testbench environment file is called env.sv. On this level, agents of both
channels are instantiated along with configuration classes, the virtual sequencer,
the scoreboard and coverage class.
Moreover, it is important to underline the use of set and create methods in the
build_phase to construct the testbench architecture through the single components
and set the variables in the uvm database. In listing 4.8, a few lines of the
build_phase are displayed. In line 2, the uvm_config_db with set method is used
to assign the value 0 to the variable ch_id of the class agent_i2s_ch0; similarly, in
line 3 value 1 is assigned to ch_id of class agent_i2s_ch1. In the other lines, the
creation of the class objects using the method create can be observed.

Listing 4.8: environment class | build_phase
1 // s e t o f ch_id in to the correspondent agent
2 uvm_config_db#(i n t) : : s e t (th i s , " ∗ . agent_i2s_ch0 " , " ch_id " , 0) ;
3 uvm_config_db#(i n t) : : s e t (th i s , " ∗ . agent_i2s_ch1 " , " ch_id " , 1) ;
4

5 // c r e a t e o f the i2s_agent
6 agent_i2s_ch0 = i2s_agent : : type_id : : c r e a t e (" agent_i2s_ch0 " , t h i s) ;
7 agent_i2s_ch1 = i2s_agent : : type_id : : c r e a t e (" agent_i2s_ch1 " , t h i s) ;
8

9 // c r e a t e o f the mc_sequencer
10 mc_seqr = mc_sequencer : : type_id : : c r e a t e (" mc_seqr " , t h i s) ;
11

12 // c r e a t e o f the scoreboard
13 scoreb = scoreboard : : type_id : : c r e a t e (" scoreb " , t h i s) ;

Afterwards, the connect_phase is used in order to generate the connection
between the virtual sequencer and the agents of the various components. Then,
the scoreboard connection with the FIFO agents and I2S agents is created through
the use of analysis ports.

Analysis port is a class used to create connections between components instan-
tiated at the same architectural level, in the situation displayed the environment
level. The components link is performed through the use of the connect method as
it can be seen in listing 4.9

29

Testbench Implementation

Listing 4.9: environment class | scoreboard connections
1 agent_fi fo_ch0 . mon_fifo . f i f o_wr i t e_por t . connect (scoreb .

sb_fi fo_ch0) ;
2 agent_i2s_ch0 . mon_i2s . i2s_write_port . connect (scoreb . sb_i2s_ch0) ;

4.5 Virtual Sequencer
The virtual sequencer is a special component used to coordinate the execution of
multiple sequencers of different components. The file is called mc_sequencer.sv.
In the developed code, the virtual sequencer is called mc_sequencer (the name
derives from the contraction of multichannel sequencer which is an alternative
name of the virtual sequencer).
It contains the instantiation of all the agents’ sequencer, which will be later recalled
and used in the virtual sequence class mcseq_lib to express on which sequencer
each sequence has to be run.

Listing 4.10: mc_sequencer | code snippet
1 c l a s s mc_sequencer extends uvm_sequencer ;
2 ‘uvm_component_utils (mc_sequencer)
3

4 f i f o_sequence r f i f o_seq r0 , f i f o _ s e q r 1 ;
5 i 2 s_sequencer i2s_seqr0 , i2 s_seqr1 ;
6 c fg_sequencer c fg_seqr ;
7

8 f unc t i on new(s t r i n g name , uvm_component parent) ;
9 super . new(name , parent) ;

10 endfunct ion : new
11 endc l a s s : mc_sequencer

4.6 Virtual Sequences
Virtual sequences are contained in a file called mcseq_lib.sv. It is the collection of
the sequences used by the sequencers contained in the mc_sequencer.
At first a base sequence called and base_mcseq is created. This sequence is
structured in order to derive all the other required sequences. The base sequence
contains the object handler of all the single sequences of the sequencers collected
in the virtual sequencer.
Then, in the pre_body and post_body phases the objections are managed. As
described before, the objections methodology is used to understand if there are
some sequences that are active or not in each time instant. The pre_body phase
is activated before the execution of the body of each derived sequence raising the

30

Testbench Implementation

objection, and after the conclusion of the body task the post_body is performed,
dropping the objection.

Listing 4.11: base_mcseq | pre_body and post_body
1

2 //PRE_BODY
3 task base_mcseq : : pre_body () ;
4 uvm_phase phase f ;
5

6 phase f = get_start ing_phase () ;
7

8 i f (phase f != n u l l) begin
9 phase f . r a i s e _ o b j e c t i o n (th i s , get_type_name ()) ;

10 ‘uvm_info (get_type_name () , " r a i s e o b j e c t i o n v i r t u a l
sequence " , UVM_MEDIUM)

11 end
12 endtask : pre_body
13

14 //POST_BODY
15 task base_mcseq : : post_body () ;
16 uvm_phase phase f ;
17

18 phase f = get_start ing_phase () ;
19

20 i f (phase f != n u l l) begin
21 phase f . drop_object ion (th i s , get_type_name ()) ;
22 ‘uvm_info (get_type_name () , " drop o b j e c t i o n v i r t u a l

sequence " , UVM_MEDIUM)
23 end
24 endtask : post_body

Once the base_mcseq has been defined, all the other sequences are derived from
that.
A total of seven sequences are derived:

• tx_v_seq

• tx_last_v_seq

• tx_over_v_seq

• rx_v_seq

• rx_last_v_seq

• rx_over_v_seq

• not_rst_v_seq

31

Testbench Implementation

As it can be deducted from the names chosen, there is an obvious parallelism
between the tx and rx sequences having as main difference the data direction.
The tx_v_seq and rx_v_seq are used to perform a transmission or reception
with a simple read and write of the FIFOs, without having complex scenarios like
overwrite or underread in the FIFOs.
The tx_over_v_seq and rx_over_v_seq are the two virtual sequences used to
evaluate the scenarios with overwrite and underrun. The main difference, other than
the change of sequences used, is the waiting time set at 16000 ns. This time has been
estimated empirically knowing a priori the number of cycles that each sequence needs
to complete its operations. Sequences tx_last_v_seq and rx_last_v_seq have
been generated after gathering the first coverage data. These virtual sequences are
used to perform the fifo_last_seq and i2s_last_seq. As explained in the chapter 5,
those are constrained sequences that have been generated to cover the few inputs
not randomly generated. With the execution of those sequences the expected
coverage is 100%.

The tx_v_seq is shown in listing 4.12 After the use of cfg_raise_enable_rst
sequence to raise the enable signal and power up the unit, a sequence is started
on each sequencer in the same instant of time using a fork structure. The fork is
concluded using a join_none and then waiting 5000 ns. This time is needed in
order to let the sequences perform the operations on the master unit.
After the waiting time the cfg_drop_enable_rst sequence is started on the
cfg_sequencer in order to drop the enable signal and change the state to IDLE.

Listing 4.12: tx_v_seq | body task
1 //BODY
2 v i r t u a l task body () ;
3 ‘uvm_info (" base_mcseq " , " execute tx_v_seq o f

v i r tua l_sequence r " , UVM_LOW)
4

5 ‘uvm_do_on(c fg_raise_enable_rst , p_sequencer . c fg_seqr)
6

7 f o rk
8 ‘uvm_do_on(fifo_wr_seq , p_sequencer . f i f o _ s e q r 0)
9 ‘uvm_do_on(i2s_rd_seq , p_sequencer . i2 s_seqr0)

10 ‘uvm_do_on(fifo_wr_seq , p_sequencer . f i f o _ s e q r 1)
11 ‘uvm_do_on(i2s_rd_seq , p_sequencer . i2 s_seqr1)
12 ‘uvm_do_on(cfg_write , p_sequencer . c fg_seqr)
13 join_none ;
14

15 #5000;
16

17 ‘uvm_do_on(cfg_drop_enable_rst , p_sequencer . c fg_seqr)
18 endtask : body

32

Testbench Implementation

4.7 Configuration files
The following files:

• config_i2s.sv

• config_fifo.sv

are configuration files. The main aim is setting the agent and environment con-
figurations. As usual, the creation of these classes has been done for the sake of
modularity and encapsulation: in this way it is more clear where one informa-
tion can be found and retrieved. Due to the simplicity of the architecture, the
active_passive variable of the agents is contained and set only.

Listing 4.13: config_fifo active_passive
1 // f i f o_agent i s_ac t i v e
2 uvm_active_passive_enum f i f o _ a c t i v e = UVM_ACTIVE;

4.8 Define_pkg
The define_pkg contains all the constants used in the testbench. The keyword
used to declare a constant gives its name to the file.
Four constants are contained:

• WORD_LEN_LOG2: which is the base 2 logarithm of the word length;

• FIFO_ADDR_LEN: is the FIFO address’ number of bits;

• WORD_LEN: represents the word length;

• FIFO_MEM_SIZE: is the maximum number of item that can be stored in a
FIFO;

4.9 Scoreboard
The UVM Scoreboard is a crucial component used to check the correct functioning
of the DUT. The scoreboard class used in the testbench is shown in listing 4.14.
The idea was to create two queues for each channel to store and compare data
at DUT’s input and output, ensuring that data remains unaltered during the
transmission, as required for a correct functionality of the I2S protocol.
Due to the timing delays applied by the transmission, the queue at the input has to
maintain data till the transmission is completed and data is ready at the output.

33

Testbench Implementation

From line 17 to 20, the queues are created. The queue fifo_q stores data at the
FIFO side, while i2s_q manages data at the I2S side. Queues have been defined as
dynamic to manage the unpredictable number of data items that must be stored
by the input queue.
The scoreboard code can be divided in five parts:

• write_fifo_ch0

• write_fifo_ch1

• write_i2s_ch0

• write_i2s_ch

• report_phase

The four "write" functions differ on the channel managed and the side of the DUT
that control.
To illustrate the code in details, the write_fifo_ch0 function is explained.
This function takes as argument a fifo_packet, which represents the data item
present at the FIFO side. According to the working mode, checked at line 60
of listing 4.14, the packet is simply added to the corresponding queue using the
push_back method (line 61 of listing 4.14) or compared to the other DUT side
packet.
In the function taken as example, if the DUT is in RX mode, the first step consists
of checking the i2s side queue size. If it is not empty, the first element is taken and
its data field is compared with the first one saved in the FIFO queue. According
to the comparison result the correspondent counter is incremented, counting the
number of successful and failed receptions. In order to prepare the data for the
next check, the data compared is popped out (line 79 of listing 4.14) at the end of
the process.
Finally, in the report phase the transmission results are listed to offer a meaningful
summary on the number of packets elaborated.

Listing 4.14: scoreboard
1 c l a s s scoreboard extends uvm_scoreboard ;
2

3 ‘uvm_analysis_imp_decl (_fi fo_ch0)
4 ‘uvm_analysis_imp_decl (_fi fo_ch1)
5

6 ‘uvm_analysis_imp_decl (_i2s_ch0)
7 ‘uvm_analysis_imp_decl (_i2s_ch1)
8

9 uvm_analysis_imp_fifo_ch0#(f i fo_packet , scoreboard) sb_fi fo_ch0 ;
10 uvm_analysis_imp_fifo_ch1#(f i fo_packet , scoreboard) sb_fi fo_ch1 ;

34

Testbench Implementation

11

12 uvm_analysis_imp_i2s_ch0#(i2s_packet , scoreboard) sb_i2s_ch0 ;
13 uvm_analysis_imp_i2s_ch1#(i2s_packet , scoreboard) sb_i2s_ch1 ;
14

15 ‘uvm_component_utils (scoreboard)
16

17 f i f o_packe t f i fo_q_ch0 [$] ;
18 f i f o_packe t f i fo_q_ch1 [$] ;
19 i2s_packet i2s_q_ch0 [$] ;
20 i2s_packet i2s_q_ch1 [$] ;
21

22

23 // scoreboard s t a t i s t i c s
24 i n t success_tx , f a i l _ t x = 0 ;
25 i n t success_rx , f a i l _ r x = 0 ;
26

27 i n t num_packet_i2s_0 , num_packet_i2s_1 = 0 ;
28 i n t num_packet_fifo_0 , num_packet_fifo_1 = 0 ;
29

30 i n t check = 0 ;
31

32 f unc t i on new (s t r i n g name , uvm_component parent) ;
33 super . new(name , parent) ;
34

35 //new TLM port s
36 sb_fi fo_ch0 = new(" sb_fi fo_ch0 " , t h i s) ;
37 sb_fi fo_ch1 = new(" sb_fi fo_ch1 " , t h i s) ;
38

39 sb_i2s_ch0 = new(" sb_i2s_ch0 " , t h i s) ;
40 sb_i2s_ch1 = new(" sb_i2s_ch1 " , t h i s) ;
41 endfunct ion : new
42

43 extern v i r t u a l f unc t i on void wr i te_f i fo_ch0 (f i f o_packe t packet) ;
44 extern v i r t u a l f unc t i on void write_i2s_ch0 (i2s_packet packet) ;
45 extern v i r t u a l f unc t i on void wr i te_f i fo_ch1 (f i f o_packe t packet) ;
46 extern v i r t u a l f unc t i on void write_i2s_ch1 (i2s_packet packet) ;
47 extern func t i on void report_phase (uvm_phase phase) ;
48

49 endc l a s s : scoreboard
50

51

52 //WRITE_FIFO_CH0
53 f unc t i on void scoreboard : : wr i te_f i fo_ch0 (f i f o_packe t packet) ;
54

55 i2s_packet i2s_p ;
56 f i f o_packe t f i f o_p ;
57 $cas t (f i fo_p , packet . c l one ()) ;
58 num_packet_fifo_0++;
59

35

Testbench Implementation

60 i f (f i f o_p . tx_nrx) begin
61 f i fo_q_ch0 . push_back (f i f o_p) ;
62 ‘uvm_info (get_type_name () , $ s fo rmat f ("ADDED 0 f i f o packet

to Scoreboard Queue 0 : \n%s \n\n" , f i f o_p . s p r i n t ()) , UVM_HIGH) ;
63 end
64 e l s e begin
65 i f (i2s_q_ch0 . s i z e () == 0) begin
66 ‘uvm_info (get_type_name () , $ s fo rmat f (" Scoreboard

Error EMPTY QUEUE on channel 0 ") , UVM_HIGH) ;
67 re turn ;
68 end
69

70 i2s_p = i2s_q_ch0 [0] ;
71 i f (f i f o_p . data == i2s_p . sd) begin
72 ‘uvm_info (get_type_name () , $ s fo rmat f (" Scoreboard

CORRECT 0 Check : Channel_0 Packet\n%s \n\n" , i2s_p . s p r i n t ()) ,
UVM_MEDIUM)

73 success_rx++;
74 end
75 e l s e begin
76 ‘uvm_info (get_type_name () , $ s fo rmat f (" Scoreboard

ERROR NOT MATCH: Channel_0 Packet \n%s \n\n" , i2s_p . s p r i n t ()) ,
UVM_MEDIUM)

77 f a i l _ r x++;
78 end
79 i2s_q_ch0 . pop_front () ;
80 end
81

82 endfunct ion : wr i te_f i fo_ch0
83

84

85 //WRITE_FIFO_CH1
86 f unc t i on void scoreboard : : wr i te_f i fo_ch1 (f i f o_packe t packet) ;
87

88 i2s_packet i2s_p ;
89 f i f o_packe t f i f o_p ;
90 $cas t (f i fo_p , packet . c l one ()) ;
91 num_packet_fifo_1++;
92

93 i f (f i f o_p . tx_nrx) begin
94 f i fo_q_ch1 . push_back (f i f o_p) ;
95 ‘uvm_info (get_type_name () , $ s fo rmat f ("ADDED 1 f i f o packet

to Scoreboard Queue 1 : \n%s \n\n" , f i f o_p . s p r i n t ()) , UVM_HIGH) ;
96 end
97 e l s e begin
98 i f (i2s_q_ch1 . s i z e () == 0) begin
99 ‘uvm_info (get_type_name () , $ s fo rmat f (" Scoreboard

Error EMPTY QUEUE on channel 1 ") , UVM_HIGH) ;
100 re turn ;

36

Testbench Implementation

101 end
102

103 i2s_p = i2s_q_ch1 [0] ;
104 i f (f i f o_p . data == i2s_p . sd) begin
105 ‘uvm_info (get_type_name () , $ s fo rmat f (" Scoreboard

CORRECT 1 Check : Channel_1 Packet\n%s \n\n" , i2s_p . s p r i n t ()) ,
UVM_MEDIUM)

106 success_rx++;
107 end
108 e l s e begin
109 ‘uvm_info (get_type_name () , $ s fo rmat f (" Scoreboard

ERROR NOT MATCH: Channel_1 Packet \n%s \n\n" , i2s_p . s p r i n t ()) ,
UVM_MEDIUM)

110 f a i l _ r x++;
111 end
112 i2s_q_ch1 . pop_front () ;
113 end
114

115 endfunct ion : wr i te_f i fo_ch1
116

117

118 //WRITE_I2S_CH0
119 f unc t i on void scoreboard : : write_i2s_ch0 (i2s_packet packet) ;
120

121 i2s_packet i2s_p ;
122 f i f o_packe t f i f o_p ;
123 $cas t (i2s_p , packet . c l one ()) ;
124 num_packet_i2s_0++;
125

126 i f (i2s_p . tx_nrx) begin
127 i f (f i fo_q_ch0 . s i z e () == 0) begin
128 ‘uvm_info (get_type_name () , $ s fo rmat f (" Scoreboard

Error EMPTY QUEUE on channel 0 ") , UVM_HIGH) ;
129 re turn ;
130 end
131

132 f i f o_p = fifo_q_ch0 [0] ;
133 i f (f i f o_p . data == i2s_p . sd) begin
134 ‘uvm_info (get_type_name () , $ s fo rmat f (" Scoreboard

CORRECT 0 Check : Channel_0 Packet\n%s \n\n" , f i f o_p . s p r i n t ()) ,
UVM_MEDIUM)

135 success_tx++;
136 end
137 e l s e begin
138 ‘uvm_info (get_type_name () , $ s fo rmat f (" Scoreboard

ERROR NOT MATCH: Channel_0 Packet \n%s \n\n" , f i f o_p . s p r i n t ()) ,
UVM_MEDIUM)

139 f a i l _ t x++;
140 end

37

Testbench Implementation

141 f i fo_q_ch0 . pop_front () ;
142 end
143 e l s e begin
144 i2s_q_ch0 . push_back (i2s_p) ;
145 ‘uvm_info (get_type_name () , "Added i 2 s packet to

Scoreboard Queue 0 " , UVM_HIGH) ;
146 end
147

148 endfunct ion : write_i2s_ch0
149

150

151 //WRITE_I2S_CH1
152 f unc t i on void scoreboard : : write_i2s_ch1 (i2s_packet packet) ;
153

154 i2s_packet i2s_p ;
155 f i f o_packe t f i f o_p ;
156 $cas t (i2s_p , packet . c l one ()) ;
157 num_packet_i2s_1++;
158

159 i f (i2s_p . tx_nrx) begin
160 i f (f i fo_q_ch1 . s i z e () == 0) begin
161 ‘uvm_info (get_type_name () , $ s fo rmat f (" Scoreboard

Error EMPTY QUEUE on channel 1 ") , UVM_HIGH) ;
162 re turn ;
163 end
164

165 f i f o_p = fifo_q_ch1 [0] ;
166 i f (f i f o_p . data == i2s_p . sd) begin
167 ‘uvm_info (get_type_name () , $ s fo rmat f (" Scoreboard

CORRECT 1 Check : Channel_1 Packet\n%s \n\n" , f i f o_p . s p r i n t ()) ,
UVM_MEDIUM)

168 success_tx++;
169 end
170 e l s e begin
171 ‘uvm_info (get_type_name () , $ s fo rmat f (" Scoreboard

ERROR NOT MATCH: Channel_1 Packet \n%s \n\n" , f i f o_p . s p r i n t ()) ,
UVM_MEDIUM)

172 f a i l _ t x++;
173 end
174 f i fo_q_ch1 . pop_front () ;
175 end
176 e l s e begin
177 i2s_q_ch1 . push_back (i2s_p) ;
178 ‘uvm_info (get_type_name () , "Added i 2 s packet to

Scoreboard Queue 1 " , UVM_HIGH) ;
179 end
180

181 endfunct ion : write_i2s_ch1
182

38

Testbench Implementation

183

184 //REPORT_PHASE
185 f unc t i on void scoreboard : : report_phase (uvm_phase phase) ;
186 num_packet_i2s_0 = num_packet_i2s_0 + num_packet_i2s_1 ;
187 num_packet_fifo_0 = num_packet_fifo_0 + num_packet_fifo_1 ;
188 ‘uvm_info (get_type_name () , $ s fo rmat f (" \n
189 @@
190 \nReport : \ n\n SCOREBOARD: \n SEQ_ITEM ana l i z ed : \n
191 FIFO_PACKET: %d I2S_PACKET: %d \n\n
192 SUCCESS TX : %d FAIL TX: %d \n
193 SUCCESS RX : %d FAIL RX: %d\n\n
194 @@" ,
195 num_packet_fifo_0 , num_packet_i2s_0 , success_tx , f a i l_tx ,

success_rx , f a i l _ r x) , UVM_LOW)
196 endfunct ion : report_phase

4.10 FIFO
In this section all files related to the FIFO are analyzed in depth.

4.10.1 FIFO package

This file is called fifo_pkg.sv, and it is used to group all the include related to FIFO.
After the uvm_macros, all the single components are included. It is important
to underline the order of the include which is not random, as the components are
listed using a bottom-up approach. When the compilation starts, all the single
files are analyzed and synthesized. This approach is used to ensure no compilation
problems given by file dependencies arise.
Moreover, a typedef is present in the file. This keyword is used to avoid the
repetition of long code parts in order to use a uvm database’s call related to the
fifo_interface, as it can be seen in ??.

Listing 4.15: fifo_pkg | include and typedef
1 typede f uvm_config_db#(v i r t u a l f i f o _ i f) f i f o _ v i f _ c o n f i g ;
2

3 ‘ i n c l u d e " f i f o_sequence r . sv "
4 ‘ i n c l u d e " f i f o _ s e q . sv "
5 ‘ i n c l u d e " f i f o _ d r i v e r . sv "
6 ‘ i n c l u d e " f i f o_moni tor . sv "
7

8 ‘ i n c l u d e " f i f o_agent . sv "

39

Testbench Implementation

4.10.2 FIFO agent
File fifo_agent.sv contains the fifo_agent. It contains the declaration and instanti-
ation of the sub-components: monitor, driver and sequencer. The build_phase is
dedicated to the creation of the hierarchy.
The components inside an agent change according to it being active or passive.
As a consequence, the first check done inside the build_phase is the control of
the uvm_active_passive_enum fifo_active value contained in the config_fifo.sv
file. In case of a passive value an uvm_error is triggered with a debug message
displayed as output. It is very important that the uvm_error shows an explanatory
statement on the reason of the error in order to make the debug work easier and
faster.

Listing 4.16: fifo_agent | active_passive check and components create
1 i f (! ‘ ob j_con f i g (c o n f i g _ f i f o) : : get (th i s , get_full_name () , "

c o n f i g _ f i f o " , f i f o _ c f g))
2 ‘uvm_error ("NO_CFG" , { " c o n f i g u r a t i o n ob j e c t i s not s e t

proper ly f o r : " , get_full_name () })
3 e l s e
4 ‘uvm_info (get_full_name () , " ok get : : c f g " , UVM_HIGH)
5

6 mon_fifo = f i fo_moni tor : : type_id : : c r e a t e (" mon_fifo " , t h i s) ;
7 i f (f i f o _ c f g . f i f o _ a c t i v e == UVM_ACTIVE) begin
8 s e q r _ f i f o = f i f o_sequence r : : type_id : : c r e a t e (" s e q r _ f i f o " ,

t h i s) ;
9 drv_f i f o = f i f o _ d r i v e r : : type_id : : c r e a t e (" d rv_f i f o " , t h i s)

;
10 end

In the connect_phase, after the check of the active_passive value, the connection
of the driver with the sequencer through the seq_item_port is implemented.

Listing 4.17: fifo_agent | driver - sequencer connection
1 i f (f i f o _ c f g . f i f o _ a c t i v e == UVM_ACTIVE) begin
2 //Connect d r i v e r and seqr
3 drv_f i f o . seq_item_port . connect (s e q r _ f i f o . seq_item_export) ;
4 end

4.10.3 FIFO driver
The fifo_driver has the fundamental goal of sending data to the DUT at the correct
time in order to simulate a real situation where the DUT has to work.
Three tasks must be highlighted in the code:

• run_phase

40

Testbench Implementation

• send_packet

• receive_packet

The run_phase is the main between those three, as the other two represent the
two alternative situations in which the driver has to work: a transmission or a
reception.
In the run_phase, a few timing controls are used to synchronize the driver with the
rest of the environment and then, according to the value of tx_nrx (that represents
the mode in which the driver is working: 0 for RX, 1 for TX), one of the two
remaining tasks is selected.
The assignment at line 3 is performed in order to avoid strange values on data_tx
in case of a transmission.

Listing 4.18: fifo_driver | run_phase
1 task f i f o _ d r i v e r : : run_phase (uvm_phase phase) ;
2

3 v i f _ f i f o . data_tx = 0 ;
4

5 f o r e v e r begin
6 wait (v i f _ f i f o . enable) ;
7 i f (v i f _ f i f o . r s t_ l)
8 @(posedge v i f _ f i f o . c l k)
9 @(posedge v i f _ f i f o . c l k)

10 i f (v i f _ f i f o . tx_nrx)
11 send_packet () ; // task tx
12 e l s e
13 rece ive_packet () ; // task rx
14 e l s e
15 ‘uvm_info (get_full_name () , " Reset low " , UVM_MEDIUM)
16 end
17

18 endtask : run_phase

The send_packet task has been designed in order to manage a transmission.
Given the fact that, in a transmission, the fifo agent is the one that has to transmit
data, a data item is taken from the sequencer using the get_next_item method
and transmits data to the FIFO interface. Finally, the driver let the sequencer
knows that the transaction is concluded by means of the item_done method. At
the next positive edge of the clock, both data_tx and data_tx_put_en are reset
to 0.

Listing 4.19: fifo_driver | send_packet - data transmission
1 // get new data_item from seqr
2 seq_item_port . get_next_item (req) ;
3

41

Testbench Implementation

4 // dr iv e data_item and record the t r a n s a c t i o n
5 v i f _ f i f o . data_tx = req . data ;
6 v i f _ f i f o . data_tx_put_en = 1 ’ b1 ;
7

8 // Communicate item done to the sequencer
9 seq_item_port . item_done () ;

10

11 @(posedge v i f _ f i f o . c l k)
12 v i f _ f i f o . data_tx = ’ h0 ;
13 v i f _ f i f o . data_tx_put_en = 1 ’ b0 ;

When in receive_packet, instead, the task driver is set to correctly manage a
reception. In order to achieve that, after the get_next_item method to get an
item from the sequencer, the data field is set to the value read by the interface.
After that the transaction is concluded with the item_done method called and the
data_rx_get_en is set for one clock cycle to report that a data has been received.

Listing 4.20: fifo_driver | receive_packet - data reception
1 // get new data_item from seqr
2 seq_item_port . get_next_item (req) ;
3

4 req . data = v i f _ f i f o . data_rx ;
5

6 // Communicate item done to the sequencer
7 seq_item_port . item_done () ;
8

9 v i f _ f i f o . data_rx_get_en = 1 ’ b1 ;
10 @(posedge v i f _ f i f o . c l k)
11 v i f _ f i f o . data_rx_get_en = 1 ’ b0 ;

4.10.4 FIFO interface
The FIFO interface is called fifo_if. It contains all the signals needed to connect
the fifo_agent with the DUT.
Signals are divided according to their direction: data_tx, data_tx_put_en,
data_rx_get_en are used to drive data from the testbench to the DUT; instead
data_rx is used to drive data from DUT to the testbench.
Then, there are two signals asserted, respectively, in case of an underrun or a
overrun of the FIFOs: fifo_underrun and fifo_overrun.

Listing 4.21: fifo interface | signals
1 // from i f to DUT
2 l o g i c [‘WORD_LEN −1 : 0] data_tx ;
3 b i t data_tx_put_en ;
4 b i t data_rx_get_en ;

42

Testbench Implementation

5

6 // from DUT to i f
7 l o g i c [‘WORD_LEN −1 : 0] data_rx ;
8

9 b i t f i fo_underrun ;
10 b i t f i f o_over run ;
11

12 property enable_txnrx ;
13 @(posedge c l k) enable |−> rs t_ l ;
14 endproperty
15

16 a s s e r t property (enable_txnrx) ;

Last lines are related to coverage and assertions and will be explained in chapter 5.

4.10.5 FIFO monitor
The fifo_monitor is used to look at the values that pass through the fifo_agent. It
has an analysis port used for TLM connection to the Scoreboard.
The connection_phase is used to control the correct configuration of the virtual in-
terface and the config_fifo. In case of connection errors or not correct instantiations,
an uvm_error is triggered giving a self explanatory message as output.

Listing 4.22: fifo monitor | connect_phase
1 f unc t i on void f i f o_moni tor : : connect_phase (uvm_phase phase) ;
2 // get v i r t u a l i n t e r f a c e
3 i f (! f i f o _ v i f _ c o n f i g : : get (th i s , get_full_name () , " v i f _ f i f o " ,

v i f _ f i f o))
4

5 ‘uvm_error ("NOVIF" ,{ " v i r t u a l i n t e r f a c e must be s e t f o r : " ,
get_full_name () , " . v i f _ f i f o " })

6

7 // get conf ig_obj
8 i f (! ‘ ob j_con f i g (c o n f i g _ f i f o) : : get (th i s , get_full_name () , "

c o n f i g _ f i f o " , f i f o _ c f g))
9

10 ‘uvm_error ("NO_CFG_OBJ" , { " c o n f i g u r a t i o n ob j e c t i s not s e t
proper ly f o r : " , get_full_name () })

11 e l s e
12 ‘uvm_info (get_full_name () , " ok get : : c f g " , UVM_HIGH)
13 endfunct ion : connect_phase

Due to the passive characteristic of the monitor class, the run_phase has two main
aims:

• reading data,

• sending data to the scoreboard.

43

Testbench Implementation

As it can be seen in listing 4.23, the run_phase is controlled by a forever loop
followed by a wait condition activated by the reset signal of the FIFO interface
(line 3). This condition is set in order to let the read of data start only when the
reset signal is deactivated. The check at line 5 is performed in order to capture
the data correctly. Indeed, data is synchronized with one of the two signals:
data_tx_put_en or data_rx_get_en, respectively, in case of TX or RX. The
following lines are used to create the data_item with the characteristics of the
fifo_packet and assigning the data read to the correct field. Line 18 is used to
display the data read, useful mostly for debug purposes.
Lastly, line 21 is the write method of the analysis port associated to the monitor -
scoreboard connection.

Listing 4.23: fifo monitor | run_phase
1 task f i f o_moni tor : : run_phase (uvm_phase phase) ;
2 f o r e v e r begin
3 wait (v i f _ f i f o . r s t_ l) ;
4 @(posedge v i f _ f i f o . c l k)
5 i f (v i f _ f i f o . data_tx_put_en | | v i f _ f i f o . data_rx_get_en) begin
6

7 // Create Packet
8 data_write = f i f o_packe t : : type_id : : c r e a t e (" data_write " ,

t h i s) ;
9

10 data_write . tx_nrx = v i f _ f i f o . tx_nrx ;
11

12 i f (v i f _ f i f o . tx_nrx && v i f _ f i f o . data_tx_put_en)
13 data_write . data = v i f _ f i f o . data_tx ;
14 e l s e i f (! v i f _ f i f o . tx_nrx && v i f _ f i f o . data_rx_get_en)
15 data_write . data = v i f _ f i f o . data_rx ;
16

17 @(posedge v i f _ f i f o . c l k)
18 ‘uvm_info (get_type_name () , $ s fo rmat f (" Packet c o l l e c t e d

: \ n%s " , data_write . s p r i n t ()) , UVM_LOW)
19

20 // send packet to scoreboard v ia TLM wr i t e ()
21 f i f o_wr i t e_por t . wr i t e (data_write) ;
22 end
23 end
24 endtask : run_phase

4.10.6 FIFO packet
FIFO packet represents the sequence item used by the fifo_agent. It defines the
data fields that will be present in each transaction.
In a fifo_packet two data fields are present:

44

Testbench Implementation

• data: an array of WORD_LEN bits that represents the data transmitted or
received;

• tx_nrx: a single bit used to define the master unit mode, a 1 represents tx
mode while 0 stands for rx mode;

Both data fields are declared as random using the rand keyword. This aspect is
extremely useful for coverage purposes, allowing to generate random values without
the direct control of the programmer.

4.10.7 FIFO sequencer
The FIFO sequencer extends the uvm_sequencer and it has the fifo_packet as
sequence_item of the class. The function new calls super.new(name, parent) in
order to correctly manage the object construction, to pass the arguments to the
UVM library. Those arguments can be recalled using methods like get_full_name().

Listing 4.24: fifo_sequencer | new function
1 c l a s s f i f o_sequence r extends uvm_sequencer #(f i f o_packe t) ;
2

3 ‘uvm_component_utils (f i f o_sequence r)
4

5 f unc t i on new (s t r i n g name , uvm_component parent) ;
6 super . new(name , parent) ;
7 endfunct ion : new
8

9 endc l a s s : f i f o_sequence r

4.10.8 FIFO sequence
FIFO sequences are defined in the fifo_seq.sv file.
This file is a library of sequences with the fifo_base_seq as the base sequence from
where all the other sequences are derived. All the sequences use the fifo_packet
as sequence_item. In the pre_body and post_body the objection mechanism is
managed, raising the objection in the pre_body and dropping it once the sequence
is concluded. From the base_sequence five sequences are derived:

• fifo_write_seq

• fifo_write_over_seq

• fifo_last_seq

• fifo_read_seq

45

Testbench Implementation

• fifo_read_over_seq

Fifo_write_seq is the sequence dedicated to a simple transmission (TX), in-
stead fifo_write_over_seq manages the scenario in which an overwrite is gen-
erated in the FIFO. fifo_read_seq is used in case of a simple reception (RX)
and fifo_read_over_seq manages a reception in which a situation of underrun is
generated. Lastly the fifo_last_seq is the sequence created for coverage purposes
that aims at cover specifically the values not produced randomly. ?? shows the
fifo_write_over_seq.

Listing 4.25: fifo_sequence | fifo_write_over_seq
1 // overrun in f i f o ==> f i r s t wr i t e run acco rd ing ly but a f t e r f i f o .

l ength f i f o . overrun = 1 and no more wr i t e
2 c l a s s f i fo_write_over_seq extends f i fo_base_seq ;
3

4 f unc t i on new(s t r i n g name=" f i fo_write_over_seq ") ;
5 super . new(name) ;
6 endfunct ion
7

8 ‘uvm_object_uti l s (f i fo_write_over_seq)
9

10 //BODY
11 v i r t u a l task body () ;
12 f o r (i n t i = 0 ; i < ‘FIFO_MEM_SIZE ∗ 3 ; i++) begin
13 ‘uvm_info (get_type_name () , $ s fo rmat f (" Executing sequence

f i f o _ w r i t e %0d" , i) , UVM_LOW)
14 ‘uvm_do_with (req , { req . tx_nrx == 1 ’ b1 ; })
15 end
16 endtask : body
17

18 endc l a s s : f i fo_write_over_seq

4.11 I2S
This section is dedicated to the analysis of the I2S protocol related files.

4.11.1 I2S package
The i2s_package is contained in a file called i2s_pkg.sv. This has been created in
order to store all the include necessary for a correct implementation of the I2S agent
architecture. Due to compilation necessities, files are included using a bottom-up
approach, from the sequencer and sequence till the agent.
Additionally, in order to facilitate the use of virtual interfaces in the included files,
a new type is declared using the typedef keyword.

46

Testbench Implementation

Listing 4.26: i2s_pkg | typedef and include
1 typede f uvm_config_db#(v i r t u a l i 2 s _ i f) i 2 s_v i f_con f i g ;
2

3 ‘ i n c l u d e " con f i g_ i2 s . sv "
4 ‘ i n c l u d e " i2s_packet . sv "
5

6 ‘ i n c l u d e " i2s_monitor . sv "
7 ‘ i n c l u d e " i2s_sequencer . sv "
8 ‘ i n c l u d e " i2s_seq . sv "
9 ‘ i n c l u d e " i 2 s_dr i v e r . sv "

10

11 ‘ i n c l u d e " i2s_agent . sv "

4.11.2 I2S agent
The I2S agent is contained in the i2s_agent.sv file. Since I2S must be an active
agent, the monitor, driver and sequencer objects are instantiated inside the agent.
To guarantee code flexibility, a check on the i2s_active variable is set. In order
to allow that, first a check on the configuration object is performed, then, if the
i2s_active variable has an active value, a sequencer and a driver are created.

Listing 4.27: i2s_agent | active_passive check and components create
1 typede f uvm_config_db#(v i r t u a l i 2 s _ i f) i 2 s_v i f_con f i g ;
2 // get conf ig_obj
3 i f (! ‘ ob j_con f i g (con f i g_ i2 s) : : get (th i s , get_full_name () , "

c on f i g_ i2 s " , i 2 s_c fg))
4 ‘uvm_error ("NO_CFG" , { " c o n f i g u r a t i o n ob j e c t i s not s e t

proper ly f o r : " , get_full_name () })
5

6 mon_i2s = i2s_monitor : : type_id : : c r e a t e (" mon_i2s " , t h i s) ;
7 i f (i 2 s_c fg . i 2 s_ac t i v e == UVM_ACTIVE) begin
8 seqr_i2s = i2s_sequencer : : type_id : : c r e a t e (" seqr_i2s " ,

t h i s) ;
9 drv_i2s = i2 s_dr iv e r : : type_id : : c r e a t e (" drv_i2s " , t h i s) ;

10 end

Moreover, the i2s_agent shows an example of the management of the ch_id
variable in order to distinguish the objects of a channel with respect to the other
ones. The ch_id variable is declared as an integer in the agent, its value its taken
from the uvm database and set again for the lower levels of the architecture, as it
can be seen in listing 4.28

Listing 4.28: i2s_agent | ch_id variable management
1 // get ch_id from env
2 i f (! uvm_config_db#(i n t) : : get (th i s , get_full_name () , " ch_id " ,

ch_id))

47

Testbench Implementation

3 ‘uvm_error ("NO CH_ID" , { " ch_id i s not s e t proper ly f o r : "
, get_full_name () })

4

5 // s e t ch_id in to a l l lower l e v e l components
6 uvm_config_db#(i n t) : : s e t (th i s , " ∗ " , " ch_id " , ch_id) ;

Then, in the connect_phase, there is the connection of the driver to the sequencer
constructed using a seq_item_port. This has been implemented to permit the
drive of data item generated by the sequencer.

Listing 4.29: i2s_agent | connect_phase
1 i f (i 2 s_c fg . i 2 s_ac t i v e == UVM_ACTIVE) begin
2 //Connect d r i v e r and sequencer
3 drv_i2s . seq_item_port . connect (seqr_i2s . seq_item_export) ;
4 end

4.11.3 I2S driver
The i2s_driver is used to send data to the DUT in the correct time frame following
the specifics of the protocol. In the run_phase, the first action is setting the sd_reg
signal to Z, i.e., high impedance. This is done in order to avoid conflicts on the
line, setting it to high impedance.
Few wait conditions are used in order to synchronize the driver with the DUT, then
a forever loop is used to start the sending of data. Line 9 of listing 4.30 is used
to control that only the i2s_agent associated with the correct channel performs
the operation. Then, according to the value of tx_nrx signal of the interface, the
correspondent task is selected. In case of a transmission the send_data task is
executed, else the DUT is in reception mode and the get_data task is performed.

Listing 4.30: i2s_driver | run_phase
1 v i f _ i 2 s . sd_reg = 1 ’ bz ;
2

3 wait (v i f _ i 2 s . enable) ;
4 wait (v i f _ i 2 s . r s t_ l) ;
5 @(negedge v i f _ i 2 s . sck)
6 wait (v i f _ i 2 s . ws == 0) ;
7

8 f o r e v e r begin
9 wait (v i f _ i 2 s . ws == ch_id) ; // i f

t h i s i s the c o r r e c t channel
10 i f (! v i f _ i 2 s . tx_nrx)
11 send_data () ;
12 e l s e
13 get_data () ;
14 end

48

Testbench Implementation

The send_data task is responsible for the sending of transactions generated by
the i2s_sequencer.
Using the seq_item_port.get_next_item(req) method, a data item is taken from
the sequencer. The for cycle at line 3 is used in order to save SD on the array of
WORD_LEN bits one bit at each clock cycle on the negative edge of the clock.

Listing 4.31: i2s_driver| run_phase - send_data
1 seq_item_port . get_next_item (req) ;
2

3 f o r (i n t i = ‘WORD_LEN − 1 ; i >= 0 ; i −−) begin
4 @(negedge v i f _ i 2 s . sck)
5 v i f _ i 2 s . sd_reg = req . sd [i] ;
6 end
7

8 @(posedge v i f _ i 2 s . sck) void ’ (t h i s . begin_tr (req , " I2S
Transact ion ")) ;

9 ‘uvm_info (get_type_name () , $ s fo rmat f (" Driv ing t r a n s a c t i o n : \ n
%s " , req . s p r i n t ()) , UVM_MEDIUM)

10 t h i s . end_tr (req) ;
11

12 // Communicate item done to the sequencer
13 seq_item_port . item_done () ;
14

15 endtask : send_data

The opposite purpose is managed by the get_data task.
A i2s_packet instance called data_collected is created in order to store the data
received. A for cycle is used to manage the reception of all data, one bit per clock
cycle, followed by the correct assignment of the tx_nrx value.

Listing 4.32: i2s_driver | run_phase - get_data
1 i2s_packet data_co l l e c t ed ;
2

3 @(negedge v i f _ i 2 s . sck)
4 seq_item_port . get_next_item (req) ;
5

6 data_co l l e c t ed = i2s_packet : : type_id : : c r e a t e (" data_co l l e c t ed " ,
t h i s) ;

7

8 f o r (i n t i = ‘WORD_LEN − 1 ; i >= 0 ; i −−) begin
9 @(negedge v i f _ i 2 s . sck)

10 data_co l l e c t ed . sd [i] = v i f _ i 2 s . sd ;
11 end
12

13 data_co l l e c t ed . tx_nrx = v i f _ i 2 s . tx_nrx ;
14

49

Testbench Implementation

15 @(posedge v i f _ i 2 s . sck) void ’ (t h i s . begin_tr (req)) ;
16 t h i s . end_tr (req) ;
17 seq_item_port . item_done () ;

4.11.4 I2S interface
The interface is called i2s_if. This file contains all the signals needed to connect
the i2s_agent to the DUT.
Among all signals, it is important to highlight the SD signal, declared as a wire,
and a logic bit WS. The reason why the SD signal is implemented as a wire and it is
managed by means of sd_reg, that is, a backing variable, stems from the fact that
it is used both as input and output. The assignment at line 7 listing 4.33 is used
to simulate the behaviour of the wire in the pad block of the I2S protocol. Lastly,
lines 9 to 11 of listing 4.33 are used for coverage purposes, the property keyword
represents an Assertion used to check the occurrence of some specific scenarios
between the listed signals. The use of assertions is further explained in chapter 5.

Listing 4.33: i2s_if| signals and assertion
1 // from dut to i f
2 wire sd ;
3 l o g i c ws ;
4

5 l o g i c sd_reg ;
6

7 a s s i gn sd = sd_reg ;
8

9 property ws_down_stable ;
10 @(posedge sck) $ f e l l (ws) |−> ($past (ws , 15) == 1 ’ b1) ;
11 endproperty
12

13 ws_down_p : a s s e r t property (ws_down_stable) ;

4.11.5 I2S monitor
The i2s_monitor is a passive component that is used to keep track of all the
transmitted and received data.
The connection_phase is used to control the correct instantiation of the virtual
interface (line 3 of listing 4.34) and the presence of a configuration object (line
5 of listing 4.34), other than the channel id. In case of an error, a uvm_error is
displayed, reporting the error type too.

Listing 4.34: i2s_monitor | connect_phase
1 // get v i r t u a l i n t e r f a c e

50

Testbench Implementation

2 i f (! i 2 s_v i f_con f i g : : get (th i s , get_full_name () , " v i f _ i 2 s " ,
v i f _ i 2 s))

3 ‘uvm_error ("NOVIF" ,{ " v i r t u a l i n t e r f a c e must be s e t f o r : "
, get_full_name () , " . v i f _ i 2 s " })

4 // get conf ig_obj
5 i f (! ‘ ob j_con f i g (con f i g_ i2 s) : : get (th i s , get_full_name () , "

c on f i g_ i2 s " , i 2 s_c fg))
6 ‘uvm_error ("NO_CONFIG" , { " c o n f i g u r a t i o n ob j e c t i s not s e t

proper ly f o r : " , get_full_name () })
7 e l s e
8 ‘uvm_info (get_full_name () , " ok get : : c f g " , UVM_HIGH)

//debug
9

10 // get ch_id
11 i f (! uvm_config_db#(i n t) : : get (th i s , get_full_name () , " ch_id " ,

ch_id))
12 ‘uvm_error ("NO_CH" ,{ " ch_id must be s e t f o r : " ,

get_full_name () })

In the run_phase, instead, the storing of the received data is performed. A
i2s_packet, called data_collected, is declared and used to save the bits sent or
received at each negative edge of the clock. Once that a i2s_packet is completely
stored, tx_nrx included, the i2s_packet is sent to the scoreboard using the TLM
port.
In the Scoreboard, the data item is compared to the one obtained in the FIFO side
to check for the correctness of the transmission.

Listing 4.35: i2s_monitor | run_phase
1 i2s_packet data_co l l e c t ed ;
2

3 v i f _ i 2 s . sd_reg = 1 ’ bz ;
4

5 wait (v i f _ i 2 s . enable) ;
6 wait (v i f _ i 2 s . r s t_ l) ;
7 @(negedge v i f _ i 2 s . sck)
8 wait (v i f _ i 2 s . ws == 0) ;
9

10 f o r e v e r begin
11 wait (v i f _ i 2 s . ws == ch_id) ;
12 @(negedge v i f _ i 2 s . sck)
13 // c r e a t e sequence_item
14 data_co l l e c t ed = i2s_packet : : type_id : : c r e a t e ("

data_co l l e c t ed " , t h i s) ;
15

16 f o r (i n t i = ‘WORD_LEN − 1 ; i >= 0 ; i −−) begin
17 @(negedge v i f _ i 2 s . sck)
18 data_co l l e c t ed . sd [i] = v i f _ i 2 s . sd ;
19 end

51

Testbench Implementation

20

21 // send packet to Scoreboard us ing TLM port
22 i2s_write_port . wr i t e (data_co l l e c t ed) ;
23 end

4.11.6 I2S packet
I2S packet is the data item used by the architecture of the i2s_agent, setting
the data fields that will be filled by the data items generated at each transaction
request.
In the i2s_packet, two data fields are present:

• sd : serial data, it represents the actual bits of data transmitted or received,

• tx_nrx : control bit used to identify the working mode. It is set to 0 in case
of RX, while 1 is used for a TX.

Listing 4.36: i2s_packet | data fields
1 rand b i t [‘WORD_LEN − 1 : 0] sd ;
2 rand b i t tx_nrx ;

Both data fields are declared with the keyword "rand". Thanks to this keyword,
once a data item is created the two data fields are generated randomly with a
uniform distribution.
The sd data field is an array of WORD_LEN bits, it hasn’t been set as a simple bit
like the actual SD of the I2S protocol controls in order to more smoothly compare
input and output data of the I2S protocol during the coverage phase.

4.11.7 I2S sequencer
The i2s_sequencer is fundamental for data transmission to the driver, that is
in charge of driving them to the interface. It is defined as an extension of the
uvm_sequencer and uses the i2s_packet as a data item.

Listing 4.37: i2s_sequencer | class
1

2 c l a s s i2s_sequencer extends uvm_sequencer #(i2s_packet) ;
3

4 ‘uvm_component_utils (i2s_sequencer)
5

6 f unc t i on new (s t r i n g name , uvm_component parent) ;
7 super . new(name , parent) ;
8 endfunct ion : new
9

10 endc l a s s : i2 s_sequencer

52

Testbench Implementation

4.11.8 I2S sequence
The i2s_seq.sv is the file containing the sequences used by the i2s_sequencer. All
sequences created have been derived from a common one: i2s_base_seq, that uses
the i2s_packet aforementioned. All the sequences are controlled by the objection
mechanism in order to lock the system in the run_phase for all the required time.
Five sequences are created:

• i2s_read_seq

• i2s_read_over_seq

• i2s_write_seq

• i2s_write_over_seq

• i2s_last_seq

Since the I2S side has to work directly with the FIFO side, the sequences are very
similar. It is important to notice that each write on the I2S side is associated with
a read on the FIFO side and vice-versa.

The read sequences differ on the number of data items received on the protocol,
with the i2s_read_seq that is used to receive FIFO_MEM_SIZE - 5 data items
and i2s_read_over_seq that expects FIFO_MEM_SIZE * 3 data items.
For what concerns the write sequences, the only difference is that these sequences
are used to send data items in the protocol, setting the tx_nrx bit to 1 to correctly
set the working mode. In listing 4.38, the i2s_read_over_seq is shown.

Listing 4.38: i2s_sequence | i2s_read_over_seq
1 c l a s s i2s_read_over_seq extends i2s_base_seq ;
2

3 f unc t i on new(s t r i n g name = " i2s_read_over_seq ") ;
4 super . new(name) ;
5 endfunct ion : new
6

7 ‘uvm_object_uti l s (i2s_read_over_seq)
8

9 //BODY
10 v i r t u a l task body () ;
11 f o r (i n t i = 0 ; i < ‘FIFO_MEM_SIZE ∗ 3 ; i++) begin
12 ‘uvm_info (get_type_name () , $ s fo rmat f (" Executing sequence

i2s_read %0d" , i) , UVM_LOW) //debug
13 ‘uvm_do_with (req , { req . sd == 0 ;
14 req . tx_nrx == 1 ’ b1 ; })
15 end
16 endtask : body

53

Testbench Implementation

17

18 endc l a s s : i2s_read_over_seq

4.12 CFG
The CGF unit is the simplest one. It is the UVC dedicated to the management of
the control signals such as the enable, reset and the tx_nrx signals.

4.12.1 CFG package
The package is contained in the cfg_pkg.sv file. In this file all the include related
to the CFG are contained other than the type creation of the virtual interface.

Listing 4.39: cfg_package | include and typedef
1

2 typede f uvm_config_db#(v i r t u a l c f g _ i f) c f g_v i f_con f i g ;
3

4 ‘ i n c l u d e " cfg_packet . sv "
5

6 ‘ i n c l u d e " cfg_monitor . sv "
7 ‘ i n c l u d e " c fg_sequencer . sv "
8 ‘ i n c l u d e " cfg_seq . sv "
9 ‘ i n c l u d e " c fg_dr ive r . sv "

10

11 ‘ i n c l u d e " cfg_agent . sv "

4.12.2 CFG agent
The cfg_agent is saved in the cfg_agent.sv file. It manages the presence of the
submodules in the build_phase using a check on the value of the is_active variable.
In case the variable is equal to UVM_ACTIVE, the architecture is composed by a
monitor, a sequencer and a driver. On the other hand, if the agent is passive it
only contains the monitor.

Listing 4.40: cfg_agent | build_phase
1 super . build_phase (phase) ;
2 mon_cfg = cfg_monitor : : type_id : : c r e a t e (" mon_cfg " , t h i s) ;
3 i f (i s_ac t i v e == UVM_ACTIVE) begin
4 seqr_cfg = cfg_sequencer : : type_id : : c r e a t e (" seqr_cfg " ,

t h i s) ;
5 drv_cfg = c fg_dr ive r : : type_id : : c r e a t e (" drv_cfg " , t h i s) ;

54

Testbench Implementation

6 end

In the connect_phase, instead, the connection between the driver and the
sequencer is created, using the connect method.

Listing 4.41: cfg_agent | connect_phase
1 i f (i s_ac t i v e == UVM_ACTIVE) begin
2 //Connect d r i v e r and seqr
3 drv_cfg . seq_item_port . connect (seqr_cfg . seq_item_export) ;
4 end

4.12.3 CFG driver
The cfg_driver, as usual, has configuration checks in the build_phase to ensure the
correctness of the architecture construction. The run_phase, on the other hand,
first initializes the three controlled signals to 0.
Then, a forever loop guarantees that the driver works as long as needed: at each
positive edge of the clock a sequence item is transmitted controlling the values of
enable, tx_nrx (signal controlling the working mode) and the reset.

Listing 4.42: cfg_driver | run_phase
1

2 v i f_c f g . tx_nrx = 0 ;
3 v i f_c f g . enable = 0 ;
4 v i f_c f g . r s t_ l = 0 ;
5

6 f o r e v e r begin
7 @(posedge v i f_c f g . c l k)
8 seq_item_port . get_next_item (req) ;
9 void ’ (t h i s . begin_tr (req , "CFG Driver Transact ion ")) ;

10 ‘uvm_info (get_type_name () , " Driv ing enable and mode" ,
UVM_LOW)

11 v i f_c f g . enable = req . enable ;
12 v i f_c f g . tx_nrx = req . tx_nrx ;
13 v i f_c f g . r s t_ l = req . r s t_ l ;
14 t h i s . end_tr (req) ;
15 seq_item_port . item_done () ;
16 end

4.12.4 CFG interface
All signals controlled by the CFG UVC are signals that are declared in the top
entity, without adding signals used specifically for this UVC. For this reason, the
interface is declared with all the controlled signals in the sensitivity list, as shown
in listing 4.43 .

55

Testbench Implementation

Listing 4.43: cfg_interface | class
1 i n t e r f a c e c f g _ i f (input c lk , output l o g i c rst_l , output l o g i c enable ,

output l o g i c tx_nrx) ;
2

3

4 e n d i n t e r f a c e : c f g _ i f

4.12.5 CFG monitor
The monitor in this UVC is primarily used for debug purposes, since it does not
receive data and inject not random signals value.
In the run_phase, the phase is controlled by a forever loop with a wait condition
used to synchronize the class with the rest of the architecture. At each positive
edge of the clock, a data item is created and transmitted to the DUT.

Listing 4.44: cfg_monitor | run_phase
1 f o r e v e r begin
2 wait (! v i f_c f g . r s t_ l)
3 @(posedge v i f_c f g . c l k)
4 cfg_pkt = cfg_packet : : type_id : : c r e a t e (" cfg_pkt " , t h i s) ;
5 void ’ (t h i s . begin_tr (cfg_pkt , "CFG Monitor Transact ion ")) ;
6 t h i s . end_tr (cfg_pkt) ;
7 end

4.12.6 CFG packet
Due to its limited functionalities the data item’s structure is very simple, given the
fact that there is no necessity of sending data but only setting some signals.

4.12.7 CFG sequence
In the cfg_seq.sv file, five sequences related to the CFG UVC are contained. Due
to the UVC characteristics, the sequences set the appropriate values of the control
signals. The five sequences are:

• cfg_write_seq

• cfg_read_seq

• cfg_drop_enable_rst_seq

• cfg_raise_enable_rst_seq

56

Testbench Implementation

The cfg_write_seq is the sequence that raises the enable signal, sets the tx_nrx
signal at 1 meaning a TX working mode and deactivates the reset setting it to 1.
The cfg_read_seq is the opposite sequence with respect to the aforementioned one,
as it sets the tx_nrx signal to 0.
The cfg_drop_enable_rst_seq is used to drop the enable signal and also set the
reset to 0.
Lastly, the cfg_raise_enable_rst_seq is used to raise the enable signal and deacti-
vate the reset one.

4.12.8 CFG sequencer
The cfg_sequencer is the component used to send the generated data_item to the
driver. It uses the cfg_packet as data_item.

Listing 4.45: cfg_sequencer | class
1 c l a s s c fg_sequencer extends uvm_sequencer #(cfg_packet) ;
2

3 ‘uvm_component_utils (c fg_sequencer)
4

5 f unc t i on new (s t r i n g name , uvm_component parent) ;
6 super . new(name , parent) ;
7 endfunct ion : new
8

9 endc l a s s : c fg_sequencer

57

Chapter 5

Coverage, Assertions,
Regressions, Merging,
Results

The final phase of the MDV cycle is dedicated to the application of the proposed
tests and the analysis of the obtained results.
In order to understand if the code developed for this thesis project covers all the
possible scenarios and all the requested features, coverage data is essential.
Coverage is the measure of how much the DUT has been tested according to the
test plan, providing us insights about the system’s controllability and observability.
Controllability is the ability of triggering a Finite State Machine (FSM) state, a
specific line of code or a working mode by stimulating a subset of input ports, only.
Observability, on the other hand, is related to the ability of monitoring the effects
of a specific FSM state, code line or working mode.[15]
In conclusion, coverage data gives us information about what portion of code has
been activated by the tests and if all the planned features have been adequately
tested, in addition to what results have been produced.
Two types of Coverage can be primarily identified:

• Code coverage

• Functional coverage

5.1 Code Coverage
Code coverage is undoubtedly the most straightforward and direct type of coverage
as it doesn’t need any change in the code or code lines written for this specific

58

Coverage, Assertions, Regressions, Merging, Results

purpose.
Code Coverage gives the verification engineer information on what line or structure
of the code has been tested. It is categorized into the following types [15] [16]:

• Toggle Coverage: measures if and how many times the value of each bit of
a register, or wire, has toggled,

• Line Coverage: measures how many times each code’s line has been executed.
It is not unusual that a minimum number of times higher than 1 is set to
obtain a pass,

• Statement Coverage: evaluates which statement in the code has been tested
highlighting which part of each statement has not been executed,

• Block Coverage: detects if a block of code has been tested,

• Branch Coverage: identifies if both the possible branches, namely true or
false, of a branch statement have been tested,

• Expression Coverage: measures if a Boolean expression has been tested
both on true and false input,

• Finite State Machine Coverage: controls if all the available states have
been checked and tested.

5.2 Functional Coverage
Code Coverage is very useful, although on its own it is not capable of providing
sufficient information to determine if the DUT has been properly tested.
With the introduction of constrained-random stimuli in simulations, functional
coverage allows to generate accurate reports showing which inputs have been used
in the tests and which have not. Due to the random nature of the inputs, precisely
determining what input data has been used without manually inspecting the output
waveforms is a challenging task for the verification engineer. In addition to that,
such inspection often proves to be a time-consuming and tedious process. In order
to save time and make the job easier, reports have been generated by leveraging the
features of functional coverage, producing a set of organized and straightforward
results.
Unfortunately, this coverage type is not automatic and requires code modifications
in order to be implemented.

59

Coverage, Assertions, Regressions, Merging, Results

5.2.1 Cover Group, Cover Points and Cross Coverage
To obtain an accurate functional coverage there is the necessity of testing all the
signals of the DUT and monitor which stimuli has been used.

Cover groups and Cover points are two user-defined metric used to specify a
coverage model and to provide an accurate control on which inputs have been
randomly used.
A cover group is an object-type used to monitor variable values and it is defined
using the cover group keyword. Within a cover group, cover points are declared in
order to specify which values have to be tracked.
Given an input of the DUT, a cover point can be a specific value or a range of
values that must be covered during simulations to obtain a pass. Additionally, a
minimum number of occurrences can be defined for each cover point, indicating
how many times a specific value must occur to consider the test successful.
Unfortunately, the application of a value in a specific input is not always sufficient
to generate a certain output or trigger a particular event, as it is possible that more
than one input must have a specific value at the same time. In this case the use of
Cross Coverage is essential. Cross coverage controls the cross-product between two
cover points previously defined. In other words, it checks that all the combinations
of the two cover points are generated. Only when all the possible combinations
have been evaluated is the cross coverage considered completed and passed [16].

5.3 Assertion Based Verification
In addition to the functional coverage, the Assertion Based Verification (ABV) is
used to verify the design correctness.
This type of verification combines characteristics of the formal and functional
verification using Assertions as the main structure. An assertion is a SystemVerilog
feature that expresses a condition that must always be true, ensuring that the
design behaves as expected under specified conditions [17]. Two types of assertions
can be distinguished:

• Immediate Assertions

• Concurrent Assertions

5.3.1 Immediate Assertions
An immediate assertion is used to check a condition at the current simulation time,
specifying which actions have to be performed in case of a success or a failure.
Assertions are construct used to verify the correctness of a statement, with failures
typically associated with a certain severity level. By default the severity is set at

60

Coverage, Assertions, Regressions, Merging, Results

’error’.
This structure is identified by the keyword: ’assert’ followed by the expression that
has to be checked [18].

5.3.2 Concurrent Assertion
A concurrent assertion controls a sequence of events over one or multiple clock
cycles resulting in a continuous check throughout the simulation. To differentiate
the two types of assertions, they is identified by the words ’assert property’, followed
by the events to be tracked [18].

5.4 Testbench Coverage
This thesis’ aim is to verify all features and code lines of the DUT. Achieving this
goal requires the execution of a large number of tests to cover every obtainable
result through the injection of all potential input combinations.
In the developed testbench the features identified in the Plan phase have been
tested using the seven different tests described in the Test section. A single run is
typically not enough to generate a sufficient coverage. For example the tx_over_seq
in the tx_over test injects only 20 random stimuli for each run. It is, therefore,
clear why it is necessary to compound the results of multiple runs in order to obtain
a full coverage.

In order to launch a test, multiple procedures can be followed. The goal is to
automate the majority of the work as well as optimizing and minimizing the time
spent manually writing code lines in the terminal.

The simulation is executed using Cadence Xcelium Logic Simulator. The
simulator uses a file called run.f that contains all the information needed to compile
and execute the testbench environment developed. To get more into details, it has
all the include statements related to the directives containing files that are used in
the testbench, as shown in listing 5.1.

Listing 5.1: run.f file | include directories
1 // inc lude d i r e c t o r i e s
2 − i n c d i r . . / env
3 − i n c d i r . . / t e s t s
4 − i n c d i r . . / bfm/ f i f o
5 − i n c d i r . . / bfm/ i 2 s
6 − i n c d i r . . / bfm/ c f g
7 − i n c d i r . . / cov

61

Coverage, Assertions, Regressions, Merging, Results

Moreover, this file contains specifications of the access permissions given to all the
objects in the design during the simulation. Possible permissions are: read, write
and connectivity (line 1 of listing 5.2). While read and write are straightforward,
connectivity is chosen to provide information useful for signals traceability across
the DUT hierarchy.
Then, two input specifications are used to include two TCL files: waves.tcl and
run.tcl (line 2-3 listing 5.2). The first line provides important information for the
representation and saving of the output waveforms, while run.tcl simply includes
the run command.

Listing 5.2: run.f file | permissions and input files
1 −ac c e s s +rwc
2 −input waves . t c l
3 −input run . t c l

Following that, a few lines are used to specify characteristics of the run:

• UVM_TESTNAME: provides the name of the test to be executed. The name
has to coincide with the one declared in the test class,

• UVM_VERBOSITY: expresses the verbosity level, that is, the amount of
information and debug messages contained in the output terminal. Six levels
of verbosity exist: NONE, LOW, MEDIUM, HIGH, FULL and DEBUG. By
default it is set at MEDIUM.
All the messages with a verbosity lower or equal to the level set will be
displayed,

• SVSEED: is an option used to set the seed of the value generated in the
testbench.

Listing 5.3 shows an example of how the options have been set in a run. The
selected test is tx_over_test, with HIGH verbosity and a random seed. Due to
the limited number of data combinations the SVSEED has been left as random for
every run executed, reaching whatsoever the total coverage in a very reasonable
time. In a different situation with bigger data sets, it could be appropriate to
change coherently the seed to obtain some specific values with a higher frequency.

Listing 5.3: run.f file | test options
1 // t e s t opt ions
2 +UVM_TESTNAME = tx_over_test
3 +UVM_VERBOSITY = UVM_HIGH
4 +SVSEED = random

After the run options, the files that need to be compiled for the testbench are
listed with a bottom to top order, with final entry being the file containing the

62

Coverage, Assertions, Regressions, Merging, Results

RTL of the DUT. Listing 5.4 shows the final segment of run.f with files divided by
testbench unit.

Listing 5.4: run.f file | testbench files and rtl
1 . . / env/ define_pkg . sv
2

3 . . / bfm/ f i f o / f i fo_pkg . sv
4 . . / bfm/ f i f o / f i f o _ i f . sv
5

6 . . / bfm/ c f g /cfg_pkg . sv
7 . . / bfm/ c f g / c f g _ i f . sv
8

9 . . / bfm/ i 2 s / i2s_pkg . sv
10 . . / bfm/ i 2 s / i 2 s _ i f . sv
11

12 // top module f o r uvm_module
13 . . / env/ top . sv
14

15 // r t l
16 . . / . . / i2s_block / r t l / i2s_master_pkg . sv
17 . . / . . / i2s_block / r t l / i2s_dp_f i fo . sv
18 . . / . . / i2s_block / r t l / i2s_pads . sv
19 . . / . . / i2s_block / r t l / i 2 s_pro toco l . sv
20 . . / . . / i2s_block / r t l / i2s_master_txrx . sv

Before introducing the concept of regression tests and discussing the related
results, it is useful to deeply analyze the last not described file of the testbench
implemented: coverage.sv.

5.4.1 Coverage.sv
Coverage file is the file in charge of defining the cover groups and cover points useful
to obtain an accurate coverage of the DUT. It is defined as a uvm_component
extension. The file can be divided in 4 main parts:

• new function: mandatory to construct the component in the testbench;

• build_phase

• i2s_cg covergroup

• fifo_cg covergroup
In the build_phase, the correct declaration of the interface is controlled for both

the FIFO and I2S agents. The construction is quite simple: an if structure checks
the presence of the virtual interface, and in case it is not found, it displays an
uvm_error. The presence of the virtual interface is checked using the get method
of the uvm_database.

63

Coverage, Assertions, Regressions, Merging, Results

Listing 5.5: coverage.sv file | build_phase
1

2 i f (! i 2 s_v i f_con f i g : : get (th i s , get_full_name () , " v i f_i2s_cov " , v i f _ i 2 s
))

3 ‘uvm_error ("NOVIF" ,{ " v i r t u a l i n t e r f a c e must be s e t f o r : " ,
get_full_name () , " . v i f_i2s_cov " })

4

5 i f (! f i f o _ v i f _ c o n f i g : : get (th i s , " " , " v i f_ f i f o_cov " , v i f _ f i f o))
6 ‘uvm_error ("NOVIF" ,{ " v i r t u a l i n t e r f a c e must be s e t f o r : " ,

get_full_name () , " . v i f_ f i f o_cov " })

On the other hand, for what concerns the coverage of the FIFO agent some
cover points have been created.
The adopted approach consisted in setting a different cover point for each signal
in the fifo_interface so: data_tx, data_tx_put_en, data_rx, data_rx_get_en,
fifo_overrun and fifo_underrun. In listing 5.6, the two possible types of cover
point declarations can be observed. For data_tx_put_en and data_rx_get_en
the bins have been explicitly declared, specifying the exact grouping of the values
and allowing for better organized results and more meaningful reports. In this case,
since these are two single bit signals the division is very straightforward.
Different case is the one concerning data_tx and data_rx, as no bin has been
specified for those two signals. The absence of an explicit bins declaration results
in an automatic division of the total range of values of the cover point into 64
identical intervals. Due to the data length, i.e., 16 bits, and the uniform probability
of the single values, the division into 64 bins is considered acceptable for a good
coverage of the whole range.
If the specifications change and a different grouping of values is needed, those
ranges can be modified as it is more convenient. An example is shown in listing 5.7.
Analyzing in depth the listing 5.6: at line 2 there is the " option.per_instance =
1 ". This method is used to fix the minimum number of times each bin has to be
triggered to be considered as tested. In the example it is set to 1; this is a quite
conservative choice aimed to have a low total compilation time.

Listing 5.6: coverage.sv file | fifo_cg covergroup
1 covergroup f i f o_cg @(posedge v i f _ f i f o . c l k) ;
2 opt ion . per_instance = 1 ;
3

4 data_tx : coverpo int v i f _ f i f o . data_tx ;
5

6 data_tx_put_en : coverpo int v i f _ f i f o . data_tx_put_en
7 { b ins zero ={0};
8 bins one ={1}; }
9 data_rx : coverpo int v i f _ f i f o . data_rx ;

10 data_rx_get_en : coverpo int v i f _ f i f o . data_rx_get_en
11 { b ins zero ={0};

64

Coverage, Assertions, Regressions, Merging, Results

12 bins one ={1}; }
13 f i f o_over run : coverpo int v i f _ f i f o . f i f o_over run ;
14 f i fo_underrun : coverpo int v i f _ f i f o . f i fo_underrun ;
15

16 put_enXtx : c r o s s data_tx_put_en , data_tx { ignore_bins
put_en_zero = b i n s o f (data_tx_put_en . zero) ; }

17 get_enXrx : c r o s s data_rx_get_en , data_rx { ignore_bins
get_en_zero = b i n s o f (data_rx_get_en . zero) ; }

18

19 endgroup : f i f o_cg

Listing 5.7: coverage.sv file | data_tx coverpoint
1 data_tx : coverpo int v i f _ f i f o . data_tx ;
2 {
3 bins zero = {0} ;
4 bins low_val = { [1 : 16384] } ;
5 bins mid_val [6 4] = {[16384 : 32768] } ;
6 bins high_val [6 4] = {[32769 : 65535] } ;
7 bins max = {65535};
8 }

In the last few lines of fifo_cg, lines 16 and 17 of listing 5.6, an example of
cross coverage can be observed. The cross coverage is identified by the keyword
cross before the two types of cover points involved, after that some additional
commands can be inserted between curly braces. At line 16, the the ignore_bins
statement is included, with the goal of telling the simulator not to evaluate a precise
combination of the cross coverage. In the reported scenario, the ignored bin is the
value 0 of data_tx_put_en.

Due to the agent simplicity with respect to the FIFO one, the i2s_cg is much
simpler than fifo_cg. Even if there are no significant differences, for the sake of
completeness, i2s_cg is reported in the listing 5.8.

Listing 5.8: coverage.sv file | fifo_cg cross coverage
1 covergroup i2s_cg @(posedge v i f _ i 2 s . sck) ;
2

3 opt ion . per_instance = 1 ;
4

5 sd : cove rpo int v i f _ i 2 s . sd ;
6 ws : coverpo int v i f _ i 2 s . ws ;
7

8 sdXws : c r o s s sd , ws ;
9

10 endgroup : i2s_cg

Once all the required cover group and cover points have been defined, the test
can be run.

65

Coverage, Assertions, Regressions, Merging, Results

Due to the necessity of running multiple times the simulation the usual solution
is the construction of a script that automatize the process. This script is called
Regression, it has to execute the run multiple times with various configurations,
test and, if , changing the seed for randomization.
After selecting a reasonable amount of runs to obtain meaningful results and having
completed the regression run, the reports can be analyzed on IMC.
IMC is a powerful software developed by Cadence that allows to organize and
show the results of a run or a regression in an ordinate and intuitive report, with a
visual representation of all the analyzed coverage types and their associated covered
percentage.
In order to correctly analyze the results it is important to remember some informa-
tion:

• FIFO_MEM_SIZE is set to 8,

• the sequence fifo_write_seq of the FIFO UVC generates a number of data
items to be transmitted equal to FIFO_MEM_SIZE - 5, so 3 data items,

• the sequence fifo_write_over_seq of the FIFO UVC generates a number of
data item to be transmitted equal to FIFO_MEM_SIZE * 3, so 24 data items,

• the I2S sequences replicates the functioning of the FIFO ones in terms of
number of generated data items.

Taking into account all these information, it was decided to execute the run.f file
10 times. Remembering the aforementioned data, it has been estimated that the
generation of 240 random stimuli, throughout the ten runs, would be a reasonable
number of inputs to have a very high probability of covering all the bins created
without increasing too much the total simulation time. Special care has been placed
in making sure that the data_tx field, with its 64 bins, is thoroughly verified and
no bin is left unchecked.
The regression script ’regression.sch’ contains a simple for cycle that executes the
run.f file 10 times. The run.f file is executed using the xrun command adding some
options in order to obtain the coverage results and being able to analyze them on
IMC.
The added options are:

• -coverage: this option enables coverage data generation. The coverage type
can be specified using a letter after the keyword: B for Block Coverage, E for
expression, F for FSM, T for toggle, U for functional and A for all the types,

• -covscope: used to specify the scope in which the results will be stored,

• -covtest: used to specify the name of the test executed during this run,

66

Coverage, Assertions, Regressions, Merging, Results

• -covoverwrite: used to enable the overwriting of coverage output files and
directories.

Listing 5.9: regression.sch file
1 #! / bin / sh
2

3 f o r i in $ (seq 0 9) ;
4 do
5 echo $ i
6 xrun −f r u n . f −coverage A −covscope tx_test −covtest tx_$i

−covoverwrite
7 done
8

9 imc −exec merge.cmd
10 imc −load cov_work/ rx_test / rx_merge_all

In the last lines of the regression file are reported some IMC command lines. Line
9 and 10 of listing 5.9 are used for merging purposes.
Merging is a methodology employed to aggregate the various data obtained from
each single run together in order to obtain a comprehensive view of what has been
covered.
IMC doesn’t support a graphic interface to perform the merge, but it requires the
use of the batch mode. The batch mode needs the commands insertion through the
use of terminal or through scripts in order to be performed. If needed, the merge
action is often automatized inside the regression script to save time at each new
simulation. In order to avoid the manual insertion of code lines on the terminal,
line 9 is used. The -exec option guarantees the possibility to launch a script and
then close IMC. In this thesis work, such script is named merge.cmd. As it can
be seen in listing 5.10, a single line of code is contained in merge.cmd and it is
essential to obtain the desired merging.

Listing 5.10: merge.cmd file
1 merge cov_work/ rx_test /∗ −out cov_work/ rx_test / rx_merge_all −

i n i t i a l_mode l union_al l −ove rwr i t e

The command shown above can be divided in few parts:

• path of the files that must be merged. In the reported example, there is only
one path, but it ends with a *. This wildcard is used to represent all the files
contained in the rx_test folder so that they can be merged together,

• -out option: specifies the path of the directory where the results will be stored,

• -initial_model which specify the target model for the merge operation. It
can accept few arguments: -union_all, primary_run and -empty. In the code

67

Coverage, Assertions, Regressions, Merging, Results

shown above, the union_all option has been chosen, ensuring the merge of all
data without the exclusion of neither of them;

• -overwrite option, this has been used due to the need of overwriting some
directories previously created;

Once all the regression settings have been set and after deciding the test to be run,
the regression is launched.
The first regression has been run with the tx_over_test, saving the results in the
directory tx_test and merging all the obtained results in the merge_all directory
using the -union_all model.
On IMC, the obtained results can be analyzed and grouped as shown in fig. 5.1.

Figure 5.1: First run TX

As it can be seen after a single run, 31.25% of data_tx bins has been covered.
The tested bins can be observed in detail in the right column of fig. 5.1.
The obtained coverage is not sufficient: this is given by the limited number of
inputs tested,leading to a low percentage of bins covered.
More meaningful results can be analyzed after the regression execution, that is, 10
runs of the test. To better organize and understand the results obtained, the single
results were merged together by means of the merge command, thus obtaining the
total regression coverage. For what concerns the data_tx field, the percentage of
bins covered is higher than the 90% with only two bins not covered, while all the
other fields related to the TX transmission have been fully covered.
To ensure the coverage of the remaining bins, the test tx_last_test has been used.

68

Coverage, Assertions, Regressions, Merging, Results

This test uses the sequence fifo_last_seq of the fifo_sequencer that has been
specifically created to hit the remaining three bins not covered. The sequence can
be observed in listing 5.11.

Listing 5.11: fifo_seq.sv file | fifo_last_seq
1 // sequence c rea ted to h i t the l a s t three b ins not covered in to

coverage
2 c l a s s f i f o _ l a s t _ s e q extends f i fo_base_seq ;
3

4 f unc t i on new(s t r i n g name=" f i f o _ l a s t _ s e q ") ;
5 super . new(name) ;
6 endfunct ion : new
7

8 ‘uvm_object_uti l s (f i f o _ l a s t _ s e q)
9

10 //BODY
11 v i r t u a l task body () ;
12 f o r (i n t i = 0 ; i < 3 ; i++) begin
13 ‘uvm_info (get_type_name () , $ s fo rmat f (" Executing sequence

f i f o _ w r i t e %0d" , i) , UVM_LOW)
14 i f (i == 1)
15 ‘uvm_do_with (req , { req . data == 4000 ;
16 req . tx_nrx == 1 ’ b1 ; })
17 e l s e i f (i == 2)
18 ‘uvm_do_with (req , { req . data == 31000;
19 req . tx_nrx == 1 ’ b1 ; })
20 e l s e
21 ‘uvm_do_with (req , { req . data == 35000;
22 req . tx_nrx == 1 ’ b1 ; })
23 end
24 endtask : body
25

26 endc l a s s : f i f o _ l a s t _ s e q

Through the combination of a for loop and the uvm_do_with macro the data
field is forced to the desired value, obtaining the three wanted values in three
distinct cycles. The three assigned values are chosen arbitrarily by analyzing the
IMC report and picking a value for each remaining bin.
The proposed approach is not the only possible one, as the total coverage can also
be reached through the execution of a higher number of test runs. Unfortunately,
increasing the number of runs has as a direct drawback as it increases the amount
of time required to conclude the regression, without guaranteeing the mathematical
certainty of a full coverage.
The random driven approach used to fulfill the coverage of the majority of the
bins plus the generation of few constrained values to cover the last bins is the best
trade-off between time required for simulations and time spent to write additional

69

Coverage, Assertions, Regressions, Merging, Results

code.
After the run of the tx_last test, the obtained results have been merged with the
ones of the regression. As shown in fig. 5.2, the coverage percentage has drastically
improved.

Figure 5.2: TX coverage after merge

Although all bins of data_tx have been hit, the observed coverage remains below
100%.
By analyzing the single cover points, it is possible to see how signal data_get_en
has its 0 value not covered. This information, if not contextualized, can be seen as a
missed covered value. However, knowing how the i2s protocol works, it is possible to
determine that the value 1 of the aforementioned signal can be triggered only during
the reception mode when a value is received in the FIFO block. Consequently, it
is correct that it has not been covered yet, given the set of tests that have been
launched so far.
The analysis of the coverage results and the exclusion of some cover points impossible
to be covered is called refinement, and it is an important step in the whole coverage
process.
The refinement ensures that the coverage percentage really reflects the amount of
scenarios covered.
In the coverage report, the refinement process has been done using the exclusion
feature of IMC, obtaining a fully coverage for what concerns the Transmission
mode.

70

Coverage, Assertions, Regressions, Merging, Results

As shown in the fig. 5.3 the value 0 of the data_rx_get_en and the cross coverage
get_enXrx, directly affected by the previous signal coverage, have been excluded
from the coverage through refinement.

Figure 5.3: TX coverage after merge and refining

Then, the test has been changed with the rx_over_test to also verify the
reception. After that first regression, the test has been changed to rx_last in order
to also hit the remaining not covered bins.
The sequence run by the i2s_sequencer is rx_write_last and it is reported in
listing 5.12.

Listing 5.12: i2s_seq.sv file | i2s_last_seq
1 c l a s s i2 s_las t_seq extends i2s_base_seq ;
2

3 f unc t i on new(s t r i n g name = " i2s_las t_seq ") ;
4 super . new(name) ;
5 endfunct ion : new
6

7 ‘uvm_object_uti l s (i2 s_las t_seq)
8

9 //BODY
10 v i r t u a l task body () ;
11 ‘uvm_info (get_type_name () , $ s fo rmat f (" Executing sequence

i2 s_wr i te ") , UVM_LOW)
12

13 ‘uvm_do_with (req , { req . sd == 25000 ;
14 req . tx_nrx == 1 ’ b0 ; })

71

Coverage, Assertions, Regressions, Merging, Results

15 endtask : body
16

17 endc l a s s : i 2 s_las t_seq

As for the TX mode, the value of sd in the i2s_last_seq has been chosen observ-
ing the results obtained by the regression and modifying the sequence accordingly.
Through the merging and the subsequent data refinement (using the same line of
reasoning applied to the TX), the i2s coverage too reaches a total coverage of 100%
as shown in fig. 5.4.

Figure 5.4: Rx coverage after merging and refinement

The merging of the rx and tx final reports shows the total obtained coverage of
both the working modes TX and RX fig. 5.5.
In this report an almost perfect coverage can be observed, with a cover percentage
equal to 100% for most of the metrics. This is ideally the goal that each verification
process has, but unfortunately it is not always reachable in a reasonable amount of
time.
For the sake of completeness, a final report with all the metrics is shown in fig. 5.6.
As it can be seen, all the metrics except for the top entity have a coverage equal
to 100%. Analyzing more in detail, it is shown that the protocol unit is the one
with a not perfect coverage. The Protocol has the FSM tested completely, but 2
expressions not. Those two expressions represent two limit scenarios that do not
happened during the regression.
Even with this small lack the verification process can be concluded, with the 99.86%

72

Coverage, Assertions, Regressions, Merging, Results

of the DUT tested correctly.

Figure 5.5: Final coverage report

Figure 5.6: Final tx and rx merged report

73

Chapter 6

Conclusions

This thesis work proposed the development of a UVM environment for the verifica-
tion of a I2S protocol.
Due to the continuous development of electronic systems and their increasing
complexity, verification has gained exponentially more importance.
The verification of the protocol started from its analysis and in depth study as
detailed in chapter 2, allowing a full understanding on its basic, most important
principles and working scenarios. The first step has been to explicitly identify
and declare all the protocol functionalities to be tested. Once the objective has
been declared, the code development part started. By using the UVM library of
SystemVerilog, an ad-hoc environment has been created. As described in chapter 3,
the key principles of reusability and modularity have been followed in order to
create a flexible and easy to be maintained architecture.
To evaluate all the decided functionality of the two working mode, namely TX
and RX, seven different tests have been created, their description is provided in
chapter 4 . chapter 5 presents an in depth discussion on the results obtained using
cover groups, cover points and assertions to correctly understand which parts of
the DUT has been tested. After the test of TX and RX functionalities on their
own, the results obtained were merged and refined allowing the correct evaluation
of the obtained data. At the end, the total coverage of the DUT has reached a
percentage of 99.86% very near the ideal 100%.
After the verification of the I2S master block developed by TDK InvenSense, future
works may focus on develop a test case able to certainly cover also the last 0.14%
not covered. After obtaining this result, the verification of a complete I2S module
could lead me to applying the experience gained in this project on an even more
complex one.

74

Bibliography

[1] e Reuse Methodology. Jan. 2023. url: https://en.wikipedia.org/wiki/
E_Reuse_Methodology (cit. on p. 3).

[2] VMM. url: https://semiengineering.com/knowledge_centers/eda-
design / verification / methodology / vmm / # : ~ : text = Created % 20by %
20Synopsys%2C%20VMM%20harnesses%20language%20features%20such,
SystemVerilog%2C%20provides%20industry%20best%20practices%20dev
eloped%20since%202005 (cit. on p. 3).

[3] Cadence Design Systems. Open Verification Methodology. url: https://www.
cadence.com/en_US/home/alliances/standards-and-languages/open-
verification-methodology.html (cit. on p. 3).

[4] Cadence Design Systems. Universal Verification Methodology. url: https:
//www.cadence.com/en_US/home/alliances/standards-and-languages/
universal-verification-methodology.html (cit. on p. 3).

[5] Siemens EDA. Universal Verification Methodology UVM Cookbook. 2021 (cit.
on pp. 3, 17).

[6] Cadence. SystemVerilog Accelerated Verification with UVM (Engineer Explorer
Series) v1.2.5. Cadence_Learning_&_Support. Online course (cit. on p. 4).

[7] Ben Miller. The I2S Protocol and Why Digital Audio is Everywhere. Apr.
2022. url: https://www.keysight.com/blogs/en/tech/bench/2022/04/
29/the-i2s-protocol-and-why-digital-audio-is-everywhere (cit. on
pp. 6, 7).

[8] I2S bus specification. White Paper. NXP, Feb. 2022 (cit. on pp. 7, 8).
[9] Alessio Pelle. I2S_MASTER_TXRX Functional Specifications. TDK In-

vensense Private Paper. TDK Invensense, Feb. 2024 (cit. on pp. 9, 11, 12).
[10] UVM Tutorial. url: https://www.chipverify.com/uvm/uvm-tutorial

(cit. on p. 13).
[11] Base Classes. url: https://www.chipverify.com/uvm/base- classes

(cit. on p. 14).

75

https://en.wikipedia.org/wiki/E_Reuse_Methodology
https://en.wikipedia.org/wiki/E_Reuse_Methodology
https://semiengineering.com/knowledge_centers/eda-design/verification/methodology/vmm/#:~:text=Created%20by%20Synopsys%2C%20VMM%20harnesses%20language%20features%20such,SystemVerilog%2C%20provides%20industry%20best%20practices%20developed%20since%202005
https://semiengineering.com/knowledge_centers/eda-design/verification/methodology/vmm/#:~:text=Created%20by%20Synopsys%2C%20VMM%20harnesses%20language%20features%20such,SystemVerilog%2C%20provides%20industry%20best%20practices%20developed%20since%202005
https://semiengineering.com/knowledge_centers/eda-design/verification/methodology/vmm/#:~:text=Created%20by%20Synopsys%2C%20VMM%20harnesses%20language%20features%20such,SystemVerilog%2C%20provides%20industry%20best%20practices%20developed%20since%202005
https://semiengineering.com/knowledge_centers/eda-design/verification/methodology/vmm/#:~:text=Created%20by%20Synopsys%2C%20VMM%20harnesses%20language%20features%20such,SystemVerilog%2C%20provides%20industry%20best%20practices%20developed%20since%202005
https://semiengineering.com/knowledge_centers/eda-design/verification/methodology/vmm/#:~:text=Created%20by%20Synopsys%2C%20VMM%20harnesses%20language%20features%20such,SystemVerilog%2C%20provides%20industry%20best%20practices%20developed%20since%202005
https://www.cadence.com/en_US/home/alliances/standards-and-languages/open-verification-methodology.html
https://www.cadence.com/en_US/home/alliances/standards-and-languages/open-verification-methodology.html
https://www.cadence.com/en_US/home/alliances/standards-and-languages/open-verification-methodology.html
https://www.cadence.com/en_US/home/alliances/standards-and-languages/universal-verification-methodology.html
https://www.cadence.com/en_US/home/alliances/standards-and-languages/universal-verification-methodology.html
https://www.cadence.com/en_US/home/alliances/standards-and-languages/universal-verification-methodology.html
https://www.keysight.com/blogs/en/tech/bench/2022/04/29/the-i2s-protocol-and-why-digital-audio-is-everywhere
https://www.keysight.com/blogs/en/tech/bench/2022/04/29/the-i2s-protocol-and-why-digital-audio-is-everywhere
https://www.chipverify.com/uvm/uvm-tutorial
https://www.chipverify.com/uvm/base-classes

BIBLIOGRAPHY

[12] UVMEnvironment. url: https://www.chipverify.com/uvm/uvm-environ
ment (cit. on p. 16).

[13] Cadence. SystemVerilog Accelerated Verification Using UVM. Apr. 2023 (cit.
on pp. 18, 19).

[14] UVM Scoreboard. url: https://vlsiverify.com/uvm/uvm-scoreboard/
(cit. on p. 19).

[15] Mentor Graphics Corporation. Coverage Cookbook. 2019 (cit. on pp. 58, 59).
[16] Cadence. Xcelium Integrated Coverage v20.09(Online). Cadence_Learning_&_Support.

Online course (cit. on pp. 59, 60).
[17] Assertion Based Verification. url: https://www.chipverify.com/verific

ation/assertion-based-verification (cit. on p. 60).
[18] Assertions in SystemVerilog. url: https://verificationguide.com/syst

emverilog/systemverilog-assertions/ (cit. on p. 61).

76

https://www.chipverify.com/uvm/uvm-environment
https://www.chipverify.com/uvm/uvm-environment
https://vlsiverify.com/uvm/uvm-scoreboard/
https://www.chipverify.com/verification/assertion-based-verification
https://www.chipverify.com/verification/assertion-based-verification
https://verificationguide.com/systemverilog/systemverilog-assertions/
https://verificationguide.com/systemverilog/systemverilog-assertions/

	List of Figures
	Acronyms
	Introduction
	Background
	UVM and MDV
	Aim and motivation

	I2S Protocol
	Introduction
	Specification
	Serial Data
	Word Select

	Master Block
	FIFOs
	PROTOCOL block
	PAD

	UVM
	Key Concepts
	UVM Classes
	UVM Testbench Structure

	Testbench Implementation
	Preliminary Choices
	Top Module
	Test
	Environment
	Virtual Sequencer
	Virtual Sequences
	Configuration files
	Define_pkg
	Scoreboard
	FIFO
	FIFO package
	FIFO agent
	FIFO driver
	FIFO interface
	FIFO monitor
	FIFO packet
	FIFO sequencer
	FIFO sequence

	I2S
	I2S package
	I2S agent
	I2S driver
	I2S interface
	I2S monitor
	I2S packet
	I2S sequencer
	I2S sequence

	CFG
	CFG package
	CFG agent
	CFG driver
	CFG interface
	CFG monitor
	CFG packet
	CFG sequence
	CFG sequencer

	Coverage, Assertions, Regressions, Merging, Results
	Code Coverage
	Functional Coverage
	Cover Group, Cover Points and Cross Coverage

	Assertion Based Verification
	Immediate Assertions
	Concurrent Assertion

	Testbench Coverage
	Coverage.sv

	Conclusions
	Bibliography

