
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Comparative analysis between Docker
and podman, and secure authentication

and authorization in AWS

Supervisor:
Prof. Cataldo Basile

Company Supervisor:

Luca Ferrua

Candidate:
Hamza Jellouli

Academic Year 2023/2024
Torino

Abstract

The increasing adoption of IoT devices using containers is revolutionizing the technology
landscape, requiring advanced solutions for security and resource management. This thesis,
conducted in the Drivesec company context, focuses on two central themes: secure container
virtualization, user authorization and authentication in IoT environments on Amazon Web
Services (AWS). The first part of the research presents a comparative analysis of two leading
technologies for container creation and management, Docker and Podman. This analysis
examines the performance and security of both technologies, exploring their capabilities
in rootless and rootfull mode. The second part of the thesis explores user authentication
and authorization in IoT environments using AWS capabilities. With the proliferation
of IoT, secure access management becomes essential to protect data, connected devices,
and intellectual property. The research analyzes in depth the capabilities of AWS to
implement robust authorization and authentication policies. The conclusions of this thesis
provide a detailed overview of current security authentication and authorization practices
through AWS services. Furthermore, they highlight the vulnerabilities of current container
virtualization technologies through specific capabilities, thus significantly contributing to
improving the security and reliability of distributed applications. This work responds to
the emerging challenges in an increasingly interconnected environment.

ii

Acknowledgements

Ci tengo a ringraziare in primis Drivesec per l’opportunità che mi è stata offerta di svolgere
questa tesi e per il supporto continuo ricevuto durante tutto il percorso.

Un sincero grazie va anche al mio relatore, Cataldo Basile, per aver accettato la mia
proposta di tesi.

Un ringraziamento speciale va alla mia famiglia: a mia madre, a mio padre, a mia
sorella Sarah e ai miei fratelli Imad e Nabil, che sono stati una fonte di ispirazione e
sostegno costante. Grazie per aver sempre creduto in me e per avermi sostenuto nella
realizzazione dei miei sogni.

iii

Table of Contents

List of Figures viii

Acronyms xii

1 Introduction 1

2 Container virtualization 3

2.1 Differences between virtual machines and containers 3

2.2 Docker and Podman . 4

2.3 Main components . 5

2.3.1 Container engine . 6

2.3.2 Image and container . 6

2.3.3 Client . 7

2.3.4 Registry . 7

2.4 Dockerfile . 8

2.5 Flags and capabilities . 8

2.6 Volumes . 9

2.7 Device passthrough . 9

2.8 Limitation of the resources . 10

v

3 Comparative analysis of Docker and Podman 11

3.1 Flags and capabilities . 11

3.2 Volumes . 12

3.3 Device passthrough . 12

3.4 SELinux . 13

3.5 Performance . 13

3.5.1 RAM . 14

3.5.2 CPU . 14

3.5.3 I/O Write . 14

3.5.4 I/O Read . 16

3.6 Security . 17

3.6.1 Mount the host filesystem . 18

3.6.2 Mounted socket . 21

3.6.3 Process injection . 24

3.6.4 Adding a malicious kernel module 25

3.6.5 Reading secrets from the host . 26

3.6.6 Overriding files on host . 28

4 Authentication and authorization in AWS 30

4.1 AWS IAM . 30

4.1.1 Policies . 30

4.1.2 Roles . 33

4.2 IOTcore . 34

4.3 Authorizing direct calls to AWS services using AWS IoT Core credential
provider . 34

4.3.1 Creation of a thing and a thing group in IoTCore 35

vi

4.3.2 Creation of a role with custom trust policy 35

4.3.3 Creation of an access policy . 37

4.3.4 Integrating IAM Roles with AWS IoT: Role Alias Creation and
Policy Attachment . 37

4.3.5 Configuring Role Aliases and Policy Attachments for AWS STS . . 38

4.3.6 Retrieve tokens . 38

4.3.7 Particular cases . 39

5 Conclusions 40

5.1 Future works . 41

Bibliography 42

vii

List of Figures

2.1 Virtual machine vs Container . 4

2.2 Pods in Podman . 5

2.3 Representation of a container. 7

2.4 Local repository . 8

3.1 Tcpdump on rootless Podman . 11

3.2 Tcpdump on rootless Docker . 12

3.3 Command to run a named volume on Docker 12

3.4 Command to run a named volume on Podman 13

3.5 Device passthrough of a USB pen drive in rootless Podman with the unmask
of a directory . 13

3.6 Memory usage in rootful Docker . 14

3.7 Memory usage in rootless Docker . 15

3.8 Memory usage in rootful Podman . 15

3.9 Memory usage in rootless Podman . 16

3.10 CPU usage in rootful Docker . 16

3.11 CPU usage in rootless Docker . 17

3.12 CPU usage in rootful Podman . 17

3.13 CPU usage in rootless Podman . 18

viii

3.14 I/O performance for write operations in rootful Docker 18

3.15 I/O performance for write operations in rootless Docker 19

3.16 I/O performance for write operations in rootful Podman 19

3.17 I/O performance for write operations in rootless Podman 20

3.18 I/O performance for read operations in rootful Docker 20

3.19 I/O performance for read operations in rootless Docker 21

3.20 I/O performance for read operations in rootful Podman 21

3.21 I/O performance for read operations in rootless Podman 22

3.22 Mount the host filesystem on rootful Docker and rootful Podman 22

3.23 Mount the host filesystem on rootless Podman 23

3.24 Mount the host filesystem on rootless Docker 23

3.25 Mounted socket on rootful Docker . 23

3.26 Mounted socket on rootful Podman . 23

3.27 Mounted socket on rootless Docker . 23

3.28 Mounted socket on rootless Podman . 23

3.29 Process injection on rootful Docker . 24

3.30 Process injection on rootful Podman . 25

3.31 Process injection on rootless Docker . 25

3.32 Process injection on rootless Podman . 25

3.33 Adding a malicious kernel module on rootful Docker 26

3.34 Adding a malicious kernel module on rootful Podman 26

3.35 Adding a malicious kernel module on rootless Docker 26

3.36 Adding a malicious kernel module on rootless Podman 26

3.37 Reading secrets from the host on rootful Docker 27

3.38 Reading secrets from the host on rootful Podman 27

ix

3.39 Reading secrets from the host on rootless Docker and rootless Podman . . 28

3.40 Overriding files on host on rootful Docker 29

3.41 Overriding files on host on rootful Podman 29

3.42 Overriding files on the host on rootless Docker and on rootful Podman . . 29

4.1 JSON policy document structure . 31

4.2 Session policy with a resource-based policy specifying the entity ARN . . . 32

4.3 Session policy with a resource-based policy specifying the session ARN . . 33

4.4 Session policy with a permissions boundary 33

4.5 IoT Core credentials provider workflow . 35

4.6 Creation of a thing and thing group . 36

4.7 Custom trust policy . 36

4.9 IAM policy for role access permissions . 37

4.8 example of access policy . 37

4.10 IoT role alias . 38

4.11 Example of IoT policy that must be attached to the certificate 38

4.12 An access policy in ECR that allows the retrieval of tokens 39

x

Acronyms

IoT
Internet of Things

ARN
Amazon Resource Names

UID
User Identifier

GID
Group Identifier

I/O
Input/Output

PID
Process Idententifier

AWS
Amazon Web Services

ECR
Elastic Container Registry

SNS
Simple Notification Service

IAM
Identity and Access Management

xii

cgroup
Control group

SELinux
Security-Enhanced Linux

xiii

Chapter 1

Introduction

The rapid proliferation of IoT devices has initiated a new era of connectivity and data
exchange, driving the need for scalable, efficient and secure solutions to manage these devices
and their interactions with cloud services. In this context, containerization technologies
such as Docker and Podman have emerged as crucial tools for deploying and managing
applications in a consistent and reproducible manner across diverse environments. Docker
has been the de facto standard in the container ecosystem, offering a mature platform with
robust tooling and widespread adoption. However, Podman, a relatively newer entrant,
presents itself as a daemonless alternative, that can be rootless, with a focus on security
and compatibility with the Open Container Initiative standards.

The goal of this thesis, conducted in collaboration with DriveSec, is to make a compar-
ative analysis between Docker and Podman to evaluate their performance, security, and
efficiency in IoT device scenarios. Additionally, it aims to explore the use of AWS IoT
Core credential provider to authorize direct calls to AWS services, assessing the potential
advantages and challenges of this approach in enhancing the security and operational
efficiency of IoT devices. Through this analysis, the thesis seeks to provide insights into the
advantages of using these technologies in a hypothetical IoT device, offering a foundation
for more secure, efficient and scalable IoT systems.

To ensure consistency and reliability in the comparative analysis, all experiments and
tests were conducted on the same computer system running Debian 12. This standardized
environment was chosen to eliminate variations that could arise from different hardware or
software configurations, allowing for a more accurate comparison of Docker and Podman.
By using Debian 12, a stable and widely used Linux distribution, the thesis ensures that
the findings are relevant and applicable to real-world IoT scenarios where Linux-based
systems are commonly deployed.

The structure of this thesis is organized as follows. Chapter 2 provides an overview of
containers, explaining their fundamental concepts and the key role they play in modern

1

Introduction

software development. It also outlines the main differences between Docker and Podman,
focusing on their architecture. T

Chapter 3 presents a comparative analysis of Docker and Podman, specifically examining
their security features and performance metrics.

Chapter 4 explains the processes of authentication and authorization within AWS,
with a particular focus on authorizing direct calls to AWS services using the AWS IoT
Core credential provider. This chapter covers the components involved in secure device
authentication and details how AWS IoT Core facilitates secure communication between
IoT devices and AWS services.

Finally, Chapter 5 draws conclusions and sketches future works.

2

Chapter 2

Container virtualization

Virtualization is a technology that allows the creation of simulated environments of
resources such as hardware and operating systems through software. They therefore allow
multiple operating systems or applications to be run on a single physical system, in separate
and isolated environments.

2.1 Differences between virtual machines and con-
tainers

Before discussing the differences between Docker and Podman, it is essential to define
container technology and explain how it differs from virtual machines. The official VMware
website provides a definition of a virtual machine:

“A Virtual Machine (VM) is a compute resource that uses software instead of a physical
computer to run programs and deploy apps. One or more virtual ‘guest’ machines run on a
physical host machine. Each virtual machine runs its own operating system and functions
separately from the other VMs, even when they are all running on the same host. This
means that, for example, a virtual MacOS virtual machine can run on a physical PC” [1].

Regarding containers, a definition is available from the official Docker documentation:

“A container is a standard unit of software that packages up code and all its dependencies
so the application runs quickly and reliably from one computing environment to another”
[2].

The two definitions may seem similar, but they completely change the approach to
virtualization with two different software structures, as shown in the figure:

3

Container virtualization

Figure 2.1: Virtual machine vs Container

Virtual machines are more complex since there is a hypervisor. The hypervisor is a
program that takes care of creating and managing virtual machines. Each virtual machine
has its own operating system, and this requires numerous resources from the host OS.
On the contrary, containers require fewer resources because they only need the necessary
libraries and binary files. Container technology does not use a hypervisor, but it uses the
container engine.

2.2 Docker and Podman

Docker and Podman are platforms that allows developers to create, to deploy and to run
applications inside containers. In order to do that, Docker uses the Docker engine which
is a daemon. This can be problematic because there is a bigger attack surface. Podman
was invented to provide an alternative to Docker with a special consideration to security.
Both Docker and Podman allow to be executed in rootful and rootless mode. The rootful
mode is the classic method of execution and container can have a full feature set. But
this can be problematic especially in the security field, because it increase the attack
surface. The rootless mode enhance the security, even if the containers are compromised
the attacker does not gain root access in the host system. To run in rootless mode they
both technologies use user namespaces in order to map container root user to non-root

4

Container virtualization

user in the host. Also the storage of images is affected by the type of execution, because
they are stored by default in different places. This is done in order to ensure isolation
and increase security. It is possible to make the same directory as a destination of the
pulled images, but this is discuraged. To make Podman or Docker run in rootful mode
is required to insert the key world "sudo" before the command. Podman also allows the
usage of pods, which are a way to group multiple containers that share the same network
namespaces, storage and other resources. The pods are useful for running multi-container
applications that need containers to communicate with each other and to share resources.
All pods must have a container called infra, which is a container that have the solely
purpose to hold namespaces associated with the pod. That way it allows to start and to
stop containers within the pod and it will still be running.

Figure 2.2: Pods in Podman

2.3 Main components

For both Docker and Podman there are five fundamental components:

• Container engine

• Image

• Container

• Client

• Registry

5

Container virtualization

2.3.1 Container engine

The container engine is a software that manage the lifecycle, the deployment and the
execution of containers. It is a crucial component that provide all the infrastructure that
containers rely on. The container engine is responsible of:

• Image management: Management of image downloads and storage, as well as the
organization of container images.

• Container runtime: Execution of containers based on provided images.

• Resource management: Allocation of resources among containers.

• Networking: Management of container networking.

• Security: Provision of mechanisms to ensure the security of containers.

Docker uses dockerd as a container engine, which is a daemon. A daemon is a process
that runs continuously; it is often started at the system boot. While Podman is the
container engine itself, all the container processes are children of the Podman process.
Podman is daemonless, so it is not required to be always running when there is no container
in execution.

2.3.2 Image and container

An image is a lightweight and standalone package that contains everything needed to
run an application. An image, by definition, has two fundamental characteristics, which
are being stateless and being immutable. A container is a running instance of an image.
The file system is a R/W layer added to the immutable layers of the image. Docker and
Podman relies on namespaces in order to provide isolation. The definition of namespace is:

A namespace wraps a global system resource in an abstraction that makes it appear
to the processes within the namespace that they have their own isolated instance of the
global resource. Changes to the global resource are visible to other processes that are
members of the namespace, but are invisible to other processes."[3]

In order to make Docker run in rootless mode, the container engine dockerd is executed
inside a namespace, on the contrary for Podman this is not necessary. The namespaces
are also used in the rootless mode to map a non-root user to a root user (UID 0) within
the container. Inside the container, the user appears to have root privileges, although on
the host they remain non-root.

6

Container virtualization

Figure 2.3: Representation of a container.

2.3.3 Client

Client is the interface where are exposed the API of the container engine. The API can be
used by using specific commands in the command line. In order to use the client interface,
it is necessary to put the specific keywords “docker” for Docker and "podman" for Podman.
This command, for example, stops a running container:

• For Docker: docker stop <container Id or container name>

• for Podman: podman stop <container Id or container name>

2.3.4 Registry

The registry is the storage and distribution system of images, which allows users to pull
and push images. Registries can be public or private. The default docker registry of
Docker is Docker Hub, whereas Podman uses a list of configured registries that can be
easily customized. The pulled images are stored in a local repository that varies depending
on whether Podman or Docker was run in rootful mode. In order to download and save an
image in the local repository, it is possible to use the pull command:

• For Docker: docker pull fedora:latest

• For Podman: podman pull fedora:latest

7

Container virtualization

Figure 2.4: Local repository

2.4 Dockerfile

It is possible to create an image by describing the content in a Dockerfile. A Dockerfile is
a text file which has a set of instructions. Each instruction will add a layer to the new
image. The main instructions are:

• FROM: Mandatory instruction that must be the first one. This instruction defines
the base image on which the new one will be created.

• RUN: Execution of a command in the command line of the container engine. This
instruction is useful to install software and packages.

• COPY: Instruction that allows the copying of local files in a specific path.

• ENV: Instruction used to define environment variables.

• EXPOSE: Instruction to define the ports reachable from the outside

• CMD: This instruction allows it to execute in the runtime shell of the container when
it is run.

• ENTRYPOINT: It has the same purpose as the CMD, however is not overwritable
with a command in the command line.

In order to build an image it must be used the command "build".

2.5 Flags and capabilities

Flags modify how Docker/Podman behaves when executing a specific command, such as
running a container, building or pulling an image from a repository. Flags are usually
specified at the command line and affect the behaviour only of the container involved.
Some examples of flags are -d, which makes the container run detached more, and --env,
which is used to set environment variables.

On the other hand, capabilities refer to Linux kernel capabilities, which control the
permissions of the container. They are used to define specific privileges that a container has.
By default, the capabilities are given a limited number of capabilities in order to enhance

8

Container virtualization

security. Capabilities can be added with --cap-add and removed with --cap-drop. Some
examples of capabilities are CAP_NET_ADMIN which allows network-related operations,
and CAP_SYS_TIME, which allows setting the system time.

Both capabilities and flags cannot be granted to a running container.

2.6 Volumes

Volumes in Docker are a mechanism for persisting data generated by and used by containers,
enabling data to be shared among containers and retained even after the container is
deleted. This mechanism can be used also to share data between containers and the host
user. There are three types of volume:

• Anonymous: Usually used to persist data that containers need during their lifecycle
(data are persisted across container restart). The container engine manages the
lifecycle of these volumes, which means that they are removed when no longer in use.

• Named: User-defined volumes with a specific name which are not tied to the lifecycle
of a specific container. They are stored in a specific directory, and usually, they are
used to share data between containers.

• Bind mounts: Mount a file or a directory of the host machine into the container.
Unlike the named volumes, bind mounts can be located anywhere in the host file
system. They are useful when the host machine and the container need to share data.

All of them can be created using the -v flag, and volumes can only be assigned when a
container is not running.

2.7 Device passthrough

It is a technology that allows containers to interact directly with hardware devices from
the host system, like a USB device, by mapping the device from the host into the container
using the --device flag. The path through which the device will be accessible within the
container, as well as the associated permissions, can be configured. These permissions
allow for the restriction of operations that the user container can perform on the device.

9

Container virtualization

2.8 Limitation of the resources

By default, containers do not have bounded resources. Unless specified, containers can
use as much of the host machine’s resources as it needed. This can lead to potentially
to resource contention and performance issues, especially if there are multiple containers
running on the same host. It is possible to limit the resources that a container can access.
The limitations can be set on cpu, memory, I/O and number of PIDs. In order to put
those limitations, it is possible to use multiple flags.

10

Chapter 3

Comparative analysis of Docker
and Podman

3.1 Flags and capabilities

Docker and Podman share identical flags and capabilities, using the same command format
to invoke them. In rootful mode all flags and capabilities work without problems. While
in rootless mode, this is not true because even if some flags and capabilities are granted,
those do not give the possibility to perform the operations theoretically conceded. An
example is the capability NET_RAW, which allows the creation of raw sockets, sending
and receiving certain types of traffic and using protocol headers. This capability is needed
to capture the network packets using tools like tcpdump. This capability can be used
without problem in the rootful version. Rootless Podman allows the container to share
the host’s network using the appropriate flag --network, but the tcpdump cannot be
performed. Therefore, it does not change even if it uses the flag --priviliged, which
grants almost all the same capabilities as the host system.

While in rootless docker is theoretically possible to perform the tcpdump, the flag
--network does not work, so the tcpdump only works in the inner network of the container.
It is possible to solve this problem by binding the container network namespace to the
host namespace, but this operation defeats some security benefits of running rootless.

Figure 3.1: Tcpdump on rootless Podman

11

Comparative analysis of Docker and Podman

Figure 3.2: Tcpdump on rootless Docker

Figure 3.3: Command to run a named volume on Docker

3.2 Volumes

The volumes work in the same way in rootful Podman and rootful Docker. In the rootless
mode, the behaviour of Podmand and Docker differs. In Docker, creating a file inside a
container with the same UID and GID of the host is impossible. The file created in the
container appears to the container as root (UID 0), while in the host it appears as non-root.
On the other hand, in Podman it is possible to do it by adding the flag --userns=keep-id.

3.3 Device passthrough

Device passthrough is possible for both technologies. For a rootful Docker, there are a
few limitations, and those can be overcome by using capabilities. For a rootless Podman
and Docker, the scenario is different: some devices may not be accessible or may require
specific configurations, and not all operations are possible. For rootful Podman, access
to devices is not difficult, but some directories and files may not be accessible by default
for security reasons. This can be proved by doing the device passthrough with a USB

12

Comparative analysis of Docker and Podman

Figure 3.4: Command to run a named volume on Podman

Figure 3.5: Device passthrough of a USB pen drive in rootless Podman with the unmask
of a directory

pen drive and executing the command lsblk. This command does not work because it
relies on the directory /sys/dev/block, which is not accessible by default. To make this
directory accessible the flag --security-opt unmask=/sys/dev/block, which unmask
the directory [4].

Rootless Podman have the same limitations as rootless Docker and rootful Podman. In
order to perform the device passthrough, the capability --device is necessary.

3.4 SELinux

Security-Enhanced Linux (SELinux) is a security component integrated into the Linux
kernel that gives administrators more control over who can access the system [5]. Policies
are used to control how applications, processes, and users interact with each other and with
system resources. Rootful Docker and rootful Podman fully support SELinux. Rootless
Podman partially supports SELinux because some operations cannot be performed due to
the lack of privilege. Rootless Docker does not natively support SELinux.

3.5 Performance

This section evaluates the performance of Docker and Podman in rootful and rootless mode
by using a test code that creates 100000 directories and, inside each one, creates a file.

1 for ((i=1; i <=100000; i++)); do
2 mkdir -p " directory$i "
3 touch " directory$i / file$i .txt"
4 done

To perform the tests, Docker and Podman were installed inside an environment with a
minimal number of services that did not significantly impact the results.

13

Comparative analysis of Docker and Podman

Figure 3.6: Memory usage in rootful Docker

3.5.1 RAM

The RAM consumption gives identical results whether calculated within the container or
from the host machine. The results are as follows:

3.5.2 CPU

The CPU consumption was more challenging to collect because the command stats didn’t
always work properly, especially when using Podman. In this case, there is a clear difference
between data collected inside the container and when collected from the host machine.
On the host machine, the data are accurate, but inside the container, the data can be
incorrect, occasionally showing negative values. This is because the host’s CPU scheduler
controls the distribution of threads across available cores, and containers may only be
aware of the virtual cores assigned to them.

3.5.3 I/O Write

In this case, collecting data inside the container or in the host brought the same results.

14

Comparative analysis of Docker and Podman

Figure 3.7: Memory usage in rootless Docker

Figure 3.8: Memory usage in rootful Podman

15

Comparative analysis of Docker and Podman

Figure 3.9: Memory usage in rootless Podman

Figure 3.10: CPU usage in rootful Docker

3.5.4 I/O Read

Also, in this case, collecting data inside the container or in the host brought the same
results.

16

Comparative analysis of Docker and Podman

Figure 3.11: CPU usage in rootless Docker

Figure 3.12: CPU usage in rootful Podman

3.6 Security

There are seven known ways to escape a container [6], but only six will be considered
implemented to try to escape the container. The one that is not implemented requires the
notify-on-release functionality, which can be used only with cgruoup1. A cgroup (control
group) in Linux is a feature that allows you to allocate and manage system resources
for a group of processes. The host’s operative system is Debian, which by default uses
cgroup2. Some techniques require capabilities and AppArmor disabled. AppArmor is
a Linux security module that provides mandatory access control (MAC) by confining

17

Comparative analysis of Docker and Podman

Figure 3.13: CPU usage in rootless Podman

Figure 3.14: I/O performance for write operations in rootful Docker

programs to a limited set of resources.

3.6.1 Mount the host filesystem

This technique allows the container to be escaped by mounting the host filesystem. This
approach requires that AppArmor must be disabled with the flag
--security-opt apparmor=unconfined. This is needed because AppArmor disables the
mount operation. Also, the capability SYS_ADMIN is required, which grants a set of

18

Comparative analysis of Docker and Podman

Figure 3.15: I/O performance for write operations in rootless Docker

Figure 3.16: I/O performance for write operations in rootful Podman

system administration privileges to the process. The command to create a vulnerable
container is:

• For docker: docker -it --cap-drop=ALL --cap-add=SYS_ADMIN
--security-opt apparmor=unconfined --device=/dev/:/ ubuntu bash

• For podman: podman -it --cap-drop=ALL --cap-add=SYS_ADMIN
--security-opt apparmor=unconfined --device=/dev/:/ ubuntu bash

Once created the container, it is possible to mount the host filesystem by running the

19

Comparative analysis of Docker and Podman

Figure 3.17: I/O performance for write operations in rootless Podman

Figure 3.18: I/O performance for read operations in rootful Docker

command:

• mount /dev/<DEVICE-FILE> /mnt

The command lsblk can be used to discover the host filesystem device. In order to
control if the escape was successful, it is necessary to check the /mnt directory with a
simple command as ls.

This approach works perfectly on rootful Docker and rootful Podman. In rootless
Docker, it is not possible to create a container with those characteristics. On the other

20

Comparative analysis of Docker and Podman

Figure 3.19: I/O performance for read operations in rootless Docker

Figure 3.20: I/O performance for read operations in rootful Podman

hand, in rootless Podman, running the mnt command after the container has been launched
is impossible due to insufficient permissions.

3.6.2 Mounted socket

This technique consists of mounting the socket of Docker or Podman inside the container
to communicate with the container engine within the container. This approach does not
require capabilities or appArmor to be disabled. In order to perform this strategy it must

21

Comparative analysis of Docker and Podman

Figure 3.21: I/O performance for read operations in rootless Podman

Figure 3.22: Mount the host filesystem on rootful Docker and rootful Podman

be set a vulnerable container by passing the socket of the container engine.

• For Docker: docker run -it --cap-drop=ALL -v /var/run/docker.sock:
/run/docker.sock ubuntu bash

• For Podman: podman run -it --cap-drop=ALL -v /run/podman/podman.sock:
/run/podman/podman.sock ubuntu bash

Once created the vulnerable container, it must be installed inside the container the
same container technology used to create the vulnerable container. After the installation
it must be run another container with the flag --privileged :

• For Docker: docker run -it --privileged -v /:/host/ ubuntu bash -c "chroot /host/"

• For Podman: podman run -it --privileged -v /:/host/ ubuntu bash -c "chroot
/host/"

Once the container is run, it is possible to access and modify data and directories of
the host.

22

Comparative analysis of Docker and Podman

Figure 3.23: Mount the host filesystem on rootless Podman

Figure 3.24: Mount the host filesystem on rootless Docker

This escape technique works only in rootful Docker. In rootful Podman it is impossible
to create the container inside the container because an operation (write uid_map) needed
to run the container is not permitted. However, it works if the --privileged flag is added
when running the container on the host. This escape method also works in rootful Podman.
Thiss technique does not wor in rootless Docker because it is impossible to contact the
Docker daemon to create the second container due to user namespace restrictions. At
the same time, on rootless Podman, it is not possible to create the container in the host
because it is not possible to pass the Podman socket due to the lack of permissions.

Figure 3.25: Mounted socket on rootful Docker

Figure 3.26: Mounted socket on rootful Podman

Figure 3.27: Mounted socket on rootless Docker

Figure 3.28: Mounted socket on rootless Podman

23

Comparative analysis of Docker and Podman

3.6.3 Process injection

This technique consists to allow one process to write inside the memory space of another
process. This is only possible if the container shares the same namespace as the host.
Additionally, the SYS_PTRACE capability and the disabling of AppArmor are required to
execute this escape technique. The SYS_PTRACE capability refers to the ability to use
the ptrace system call, which is typically used for debugging and tracing system processes.
The ptrace system call allows one process to observe and to control the execution of
another process. The process injection consist to inject a shellcode in a process of the host.
A shellcode is a compact piece of code used in exploits to inject and execute commands
within a running process. Its main goal is to gain control of a system or elevate privileges,
often by launching a command shell or performing other malicious actions. The injection
process may fail and lead to unintended behavior. To mitigate this and replicate the
methodology, a Python HTTP server running on the host is used as the target process
with shellcode injected into its memory. The command to set a vulnerable container is:

• For Docker: docker run -it --pid=host --cap-drop=ALL --cap-add=
SYS_PTRACE --security-opt apparmor=unconfined ubuntu bash

• For Podman: podman run -it --pid=host --cap-drop=ALL --cap-add =
SYS_PTRACE --security-opt apparmor=unconfined ubuntu bash

To verify the process injection, a shellcode was used to spawn a shell on the host
machine, along with code that, when executed, requires the PID (Process Identifier) of
the target process where the injection will occur. The process injection works perfectly
on rootful Docker and on rootful Podman . On the contrary, on rootless Podman and
Docker, it does not work. On rootless Podman, the injection fails because the ptrace
attach operation is not permitted. At the same time for rootless Docker the injection does
not work, because it lead to an indefinite wait. Also, in this case, the escape on rootless
mode does not work because of a lack of privilege and user namespace restrictions.

Figure 3.29: Process injection on rootful Docker

24

Comparative analysis of Docker and Podman

Figure 3.30: Process injection on rootful Podman

Figure 3.31: Process injection on rootless Docker

Figure 3.32: Process injection on rootless Podman

3.6.4 Adding a malicious kernel module

This approach of escape of the container exploits the fact that containers shares the same
kernel of the host by adding a malicious module that allows the user container to take
control of the host machine. In order to do that, AppArmor must be disabled, the kernel
headers of the host must be the same of the host operating system and the simpler way
to have it is to run inside the container the same os version of the host machine. The
SYS_MODULE capability is necessary, which allows loading and unloading of kernel
modules. This capability allows the use of the command insmod, which is necessary to
add the malicious module to the kernel. The malicious modules that can be used are
significant, however in this case the module used allows the container user to use a shell
on the host machine. The command to set a vulnerable container is:

• For Docker: docker run -it --cap-drop=ALL --cap-add=SYS_MODULE
<HOST-OS>:<HOST-OS-VERDION> bash

• For Podman: podman run -it --cap-drop=ALL --cap-add=SYS_MODULE
<HOST-OS>:<HOST-OS-VERDION> bash

25

Comparative analysis of Docker and Podman

This methodology works perfectly on rootful Docker and rootful Podman. While on
rootless Docker and Podman, the insmod operation is not permitted due to the lack of
privilege and user namespace restrictions.

Figure 3.33: Adding a malicious kernel module on rootful Docker

Figure 3.34: Adding a malicious kernel module on rootful Podman

Figure 3.35: Adding a malicious kernel module on rootless Docker

Figure 3.36: Adding a malicious kernel module on rootless Podman

3.6.5 Reading secrets from the host

This container escape technique reads files from /etc/passwd and /etc/shadow directories
and discovers the host user password, which can be used to connect to the user with services
like SSH. In order to perform this approach, it is necessary the DAC_READ_SEARCH,
which allows a container process to bypass Discretionary Access Control (DAC) restrictions
for reading and searching directories and files. In particular, it makes it possible to perform
the open_by_handle_at system call, which allows accessing files through a persistent
handle, even if the file has been renamed or moved, as long as the underlying file system

26

Comparative analysis of Docker and Podman

still supports the handle. A password cracker, like john the ripper, it is needed in order
to discover the password of the user host. A software like SSH must be installed on the
host to make a connection between the container and the host. The command to set a
vulnerable container is:

• For Docker: docker run -it --cap-drop=ALL --cap-add=
DAC_READ_SEARCH ubuntu bash

• For Podman: podman run -it --cap-drop=ALL --cap-add=
DAC_READ_SEARCH ubuntu bash

This approach works only on rootful Docker. On rootful Podman the
open_by_handle_at system call goes on the stale file handle, so the container cannot
access those files and directories. While on rootless Podman and on rootless Docker, the
open_by_handle_at system call is not permitted.

Figure 3.37: Reading secrets from the host on rootful Docker

Figure 3.38: Reading secrets from the host on rootful Podman

27

Comparative analysis of Docker and Podman

Figure 3.39: Reading secrets from the host on rootless Docker and rootless Podman

3.6.6 Overriding files on host

This container escape technique updates the user’s credential files and uses the updated cre-
dential, such as the user password, or user-authorized keys, to perform the login by using a
service like SSH. In order to perform this approach, it is needed the DAC_READ_SEARCH
and DAC_OVERRIDE capabilities. Both capabilities enable container processes to bypass
Discretionary Access Control (DAC). The DAC_READ_SEARCH allows bypassing re-
strictions on reading and searching directories and files, while DAC_OVERRIDE permits
bypassing file read, write, and execute permission checks. This container escape technique
can be implemented in multiple ways; however, only two methods were tested. The first
method involves overriding the user password, while the second method overrides the host
user’s SSH authorized keys. The command used to configure a vulnerable container to
override the password is:

• For Docker: docker run -it --cap-drop=ALL --cap-add=DAC_OVERRIDE
--cap-add=DAC_READ_SEARCH --cap-add=CHOWN ubuntu bash

• For Podman: podman run -it --cap-drop=ALL --cap-add=DAC_OVERRIDE
--cap-add=DAC_READ_SEARCH --cap-add=CHOWN ubuntu bash

Whereas the command to set a vulnerable container to override authorized keys is:

• For Docker: docker run -it --cap-drop=ALL --cap-add=DAC_OVERRIDE
--cap-add=DAC_READ_SEARCH ubuntu bash

• For Podman: podman run -it --cap-drop=ALL --cap-add=DAC_OVERRIDE
--cap-add=DAC_READ_SEARCH ubuntu bash

This approach similarly to the past one works only on rootful Docker, because this
methodology relies on open_by_handle_at system call, which goes on stale file handle on
rootful Podman and it is not permitted on rootless Podman and on rootless Docker.

28

Comparative analysis of Docker and Podman

Figure 3.40: Overriding files on host on rootful Docker

Figure 3.41: Overriding files on host on rootful Podman

Figure 3.42: Overriding files on the host on rootless Docker and on rootful Podman

29

Chapter 4

Authentication and
authorization in AWS

Traditionally, IoT devices rely on stored credentials like access keys, which pose significant
security risks if compromised. AWS IoT Core addresses this issue by allowing devices to
authenticate through X.509 certificates. It further enhances security by employing the
AWS IoT Credential Provider, which issues temporary credentials that reduce the risk
associated with long-term credential storage. This method allows secure and short-term
access to AWS services without exposing permanent credentials. In order to implement
this, the AWS IAM (Identity and Access Management) service is needed.

4.1 AWS IAM

AWS IAM allows organizations to define access controls by specifying who can access what
and under what conditions. Specifically, it manages access for users, roles and groups to
various AWS services and resources [7].

4.1.1 Policies

IAM policies are formalized sets of permissions that define the actions a user, or a group, or
a role is authorized to perform on specific AWS resources. These policies are expressed in
JSON format and serve as the mechanism by which access controls are enforced within the
AWS environment. Each policy includes one or more statements that define the permitted
or restricted actions, the associated resources and any conditions that may refine the
permissions. Policies can be assigned directly to users, groups and roles, allowing for

30

Authentication and authorization in AWS

detailed and specific control over access to AWS services and resources.

Figure 4.1: JSON policy document structure

AWS introduces the concept of principal, which is an entity that can request access
to resources, such as users, roles, services or accounts. Principals are central to the
authorization process, as they represent the actors for whom permissions are granted or
denied. There are six types of different policies [8] :

• Identity-based policies: Grant permissions to an identity

• Resource-based policies: Provide permissions to the specified principal within the
policy. These principals can either belong to the same AWS account as the resource
or come from other AWS accounts.

• Permissions boundaries: Set the upper limit on the permissions that identity-based
policies can provide to an entity.

• Organizations service control policy: Restrict the permissions that identity-based or
resource-based policies can grant to entities like users or roles within the account.

• Access control lists: Manage access to resources by specifying which principals in
other accounts can access them. They are similar to Identity-based policies, but they
differ because they don’t use JSON policy document structure and they cannot grant
permissions to entities within the same account.

• Session policies: Restrict the permissions granted by the role or user’s identity-based
policies for that session.

AWS uses ARNs (Amazon Resource Names) as unique identifiers to distinctly specify
resources across its services. These unique identifiers ensure precise reference and manage-
ment of resources within AWS. An example of arn is
arn:aws:ec2:us-west-2:123456789012:instance/i-0abcd1234efgh5678 where:

31

Authentication and authorization in AWS

Figure 4.2: Session policy with a resource-based policy specifying the entity ARN

• arn: It is the prefix of Amazon Resource Names.

• aws: It identifies the AWS namespace.

• ec2: It indicates the service, which is AWS EC2 in this case.

• us-west-2: It indicates the AWS region.

• 123456789012: It is account ID.

• instance/i-0abcd1234efgh5678: It represents the resource type and its unique ID.

A resource-based policy can designate the ARN of a user or role as a principal. When this
is done, the permissions specified by the resource-based policy are combined with those
from the role or user’s identity-based policy before initiating the session. The session policy
then restricts the overall permissions granted by both the resource- and identity-based
policies. As a result, the session’s permissions are determined by the intersection of the
session policies with the resource-based policies and the intersection of the session policies
with the identity-based policies [7].

A resource-based policy can designate the ARN of the session as a principal. In this
case, the permissions granted by the resource-based policy are applied after the session
is established and are not restricted by the session policy. Consequently, the resulting
session includes all permissions from the resource-based policy, along with the intersection
of permissions from the identity-based policy and the session policy [7]. A permissions
boundary can define the maximum permissions for a user or role when creating a session.
In this scenario, the resulting session’s permissions are determined by the intersection of
the session policy, the permissions boundary and the identity-based policy. However, a
permissions boundary does not constrain the permissions granted by a resource-based
policy that specifies the ARN of the resulting session [7]. In IAM, it is possible for AWS

32

Authentication and authorization in AWS

Figure 4.3: Session policy with a resource-based policy specifying the session ARN

Figure 4.4: Session policy with a permissions boundary

Security Token Service (STS) to generate and distribute temporary security credentials to
trusted users, enabling controlled access to AWS resources. These temporary credentials
function similarly to long-term access key credentials, with the following distinctions: they
expire, and credentials are not stored but are dynamically generated and provided at
request [9].

4.1.2 Roles

An IAM role is a set of permissions that define what actions are allowed and under what
conditions. The primary distinction between roles and users lies in their respective purposes

33

Authentication and authorization in AWS

and usage contexts. An IAM user is a static identity designed for specific individuals or
services, usually with permanent credentials. Each user has a fixed set of permissions that
are assigned directly. In contrast, IAM roles are not tied to a specific user or service but
are designed to be assumed by entities that require temporary access to resources. When
a role is assumed, the entity temporarily inherits the permissions associated with that role.
This approach enhances security by minimizing the need for long-term credentials and
allows for more granular access control [10].

4.2 IOTcore

IoT Core is a platform designed to enable secure, bidirectional communication between
internet-connected devices and AWS services. Central to its functionality is its ability
to handle vast numbers of devices, scale data processing and facilitate the integration of
IoT-generated data into other AWS services. One of the critical challenges that IoT Core
addresses is the secure authentication and authorization of devices, which is essential for
ensuring the integrity and security of communications in an IoT environment. The classical
method is that devices store keys, which can cause a security risk. IoT Core offers multiple
methods for device authentication, ensuring flexibility and security regardless of the device
or its capabilities. The most prominent authentication method in IoT Core is through
X.509 certificates. Each IoT device is required to have a unique certificate, which is used to
authenticate its identity when it attempts to connect to the IoT Core service. The X.509
certificate authenticity is verified through a trusted certificate authority; if the certificate
is valid and trusted, the device is allowed to proceed with further operations [11]. IoT
Core enables devices to connect using X.509 certificates and TLS mutual authentication;
this method is not directly applicable to other AWS services, which typically require AWS
Signature Version 4 for authentication. This signature algorithm traditionally necessitates
using an access key ID and a secret access key. IoT Core credential provider addresses
this issue by allowing devices to leverage their X.509 certificates as a unique identity for
authenticating requests to AWS services. This approach effectively mitigates the problem
of embedding static credentials on devices. The credential provider uses the device X.509
certificate to obtain temporary, dynamically generated credentials for accessing AWS
services.

4.3 Authorizing direct calls to AWS services using
AWS IoT Core credential provider

In order to authorize direct calls to AWS services, it is necessary to follow a specific
credential provider workflow.

34

Authentication and authorization in AWS

Figure 4.5: IoT Core credentials provider workflow

4.3.1 Creation of a thing and a thing group in IoTCore

A thing is a representation of a physical device or a logical entity. A thing group is a
collection of things that can be managed collectively. Certificates can be either auto-
generated or imported during the creation of a thing. The recommended approach is to
auto-generate the certificate. If this option is selected, the certificate and the private key
should be downloaded, as they will be necessary for subsequent steps.

4.3.2 Creation of a role with custom trust policy

Create a role in the IAM with a custom trust policy in order to allow the IoT credential
provider to assume the role and provide the ability to obtain temporary security credentials.

35

Authentication and authorization in AWS

Figure 4.6: Creation of a thing and thing group

Figure 4.7: Custom trust policy

36

Authentication and authorization in AWS

Figure 4.9: IAM policy for role access permissions

4.3.3 Creation of an access policy

This access policy defines permissions for interacting with AWS services. It is possible to
limit the access to specific entities of a service and define which operation the user can
perform.

Figure 4.8: example of access policy

The access policy created must be attached to the previously created role.

4.3.4 Integrating IAM Roles with AWS IoT: Role Alias Creation
and Policy Attachment

The IAM role that was created must be provided to AWS IoT for the creation of a role
alias. A new policy must be created and attached to the IAM user of interest to facilitate
this process.

37

Authentication and authorization in AWS

Figure 4.10: IoT role alias

Figure 4.11: Example of IoT policy that must be attached to the certificate

4.3.5 Configuring Role Aliases and Policy Attachments for AWS
STS

The role, alias in IoT core, serves as an alternate data model that is directed to an IAM
role. When requesting credentials from the provider, it is necessary to include the role
alias name to specify the IAM role to be assumed for obtaining a security token from AWS
STS. During the creation of a role alias, the ARN of the access role must be provided.
Additionally, it is essential to create and attach a policy to the certificate of the thing to
authorize the request for the security token, ensuring that the certificate has the necessary
permissions to interact with AWS STS. After completing this step, authorization for direct
AWS IoT access can be successfully achieved.

4.3.6 Retrieve tokens

In order to retrieve credentials and the token needed to authenticate the user, it is required
to run these commands in the command line of the user:

38

Authentication and authorization in AWS

Figure 4.12: An access policy in ECR that allows the retrieval of tokens

• to retrieve the endpoint: aws iot describe-endpoint
--endpoint-type iot:CredentialProvider

• to retrieve the tokens: curl --cert <CERTIFICATE> --key <PRIVATE-KEY>
-H "x-amzn-iot-thingname: <THING-NAME>" <END-POINT>/role-aliases/test-
role-alias3/credentials

4.3.7 Particular cases

Certain access policies associated with specific services must ensure global access to all
resources to enable token retrieval. In such instances, it is necessary to modify the access
policy configuration to provide global access to the service responsible for token retrieval.
Meanwhile, the user should be restricted to performing only the operations permitted on
the specified resources. For example, this scenario is applicable to AWS ECR. Some AWS
services enforce mandatory internal policies that take precedence over IoT Core policies.
This prioritization can present challenges. However, a solution involves assigning actions
to these internal policies that do not compromise the system’s integrity, while all other
actions are managed through IoT Core. An example of this situation is found in AWS
SNS.

39

Chapter 5

Conclusions

This thesis has provided a comparative analysis of Docker and Podman, examining their
performance, security, and operational efficiency. The analysis shows that while Podman
offers enhanced security features, particularly with its daemon-less architecture, this added
security could come at the cost of convenience, especially during the development and
testing phases. Podman strict security model can impose limitations, especially when
services like tcpdump are required for network packet analysis or when comprehensive
system-level tools are needed. Although Docker default mode runs with root privileges,
making it potentially less secure than Podman, it offers a more straightforward experience
for developers during testing and prototyping.

Both Docker and Podman support rootless operation, significantly enhancing security
by reducing the risk of container escape and privilege escalation attacks. However, the
rootless mode is not without limitations. Even when explicitly granted, many system
capabilities do not work as expected due to the inherent restrictions of running without
root privileges. This limitation confines rootless containers to specific use cases where the
need for elevated permissions is minimal.

In terms of performance, Docker and Podman exhibit almost identical capabilities.
Both tools provide comparable speed and resource efficiency, ensuring that containerized
applications run smoothly regardless of the choice between them. The minor differences
in performance observed in this study are negligible and do not significantly impact the
overall functionality or user experience.

In exploring the AWS IoT Core credential provider for authorizing direct calls to AWS
services, the thesis demonstrates that this method works effectively, providing a robust
mechanism for secure device authentication using X.509 certificates. This approach not only
strengthens security but also simplifies the management of IoT devices by centralizing all
the policies in one place. This centralization allows for more streamlined and manageable
policy enforcement, making overseeing and controlling device access to AWS resources

40

Conclusions

easier.

In conclusion, while Podman offers superior security features compared to Docker, it
may not always be the best choice, especially during the testing phase or when certain
system-level services are required. Docker provides a more flexible environment at the
expense of some security considerations. The AWS IoT Core credential provider facilitates
secure and efficient authorization for IoT devices, enabling seamless integration with AWS
services. The findings from this thesis offer valuable insights into selecting and implementing
containerization and cloud integration solutions in IoT environments, balancing the trade-
offs between security, functionality and ease of use.

5.1 Future works

Both Podman and Docker can significantly improve security by making container escapes
harder in rootful mode. Enhancements to Podman could include making it more adaptable
in development scenarios without compromising its security posture by make it more
flexible. For IoT devices that use AWS, implementing AWS IoT Core is crucial due to
its superior security. However, simplifying the setup process and automating certain
commands could improve its usability and efficiency.

41

Bibliography

[1] VMware, Inc. What is a Virtual machine. https://www.vmware.com/topics/
glossary/content/virtual-machine.html. Accessed: August 10, 2024. 2024.

[2] Docker, Inc. What is a Container? https://www.docker.com/resources/what-
container/. Accessed: August 10, 2024. 2024.

[3] Michael Kerrisk. Linux Programmer’s Manual: namespaces(7). https://man7.org/
linux/man-pages/man7/namespaces.7.html. Accessed: August 15, 2024. 2021.

[4] Red Hat Bugzilla. Bug 1884283 - Docker: Centos8 podman run fails with Error: could
not get runtime: cannot re-exec process. https://bugzilla.redhat.com/show_bug.
cgi?id=1884283. Accessed: August 20, 2024. 2020.

[5] Red Hat, Inc. What is SELinux? https://www.redhat.com/en/topics/linux/
what-is-selinux. Accessed: August 25, 2024. 2024.

[6] Ori Abargil. 7 Ways to Escape a Container. https://www.panoptica.app/resear
ch/7-ways-to-escape-a-container. Accessed: August 25, 2024. 2023.

[7] Amazon Web Services. AWS Identity and Access Management (IAM) User Guide.
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html.
Accessed: August 25, 2024. 2024.

[8] Amazon Web Services. IAM Policies. https://docs.aws.amazon.com/IAM/latest/
UserGuide/access_policies.html. Accessed: August 31, 2024. 2024.

[9] Amazon Web Services. Temporary Security Credentials in IAM. https://docs.
aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html. Accessed:
Septemnber 1, 2024. 2024.

[10] Amazon Web Services. IAM Roles. https://docs.aws.amazon.com/IAM/latest/
UserGuide/id_roles.html. Accessed: September 2, 2024. 2024.

[11] Amazon Web Services. What is AWS IoT? https://docs.aws.amazon.com/iot/
latest/developerguide/what- is- aws- iot.html. Accessed: August 25, 2024.
2024.

42

https://www.vmware.com/topics/glossary/content/virtual-machine.html
https://www.vmware.com/topics/glossary/content/virtual-machine.html
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://bugzilla.redhat.com/show_bug.cgi?id=1884283
https://bugzilla.redhat.com/show_bug.cgi?id=1884283
https://www.redhat.com/en/topics/linux/what-is-selinux
https://www.redhat.com/en/topics/linux/what-is-selinux
https://www.panoptica.app/research/7-ways-to-escape-a-container
https://www.panoptica.app/research/7-ways-to-escape-a-container
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

	List of Figures
	Acronyms
	Introduction
	Container virtualization
	 Differences between virtual machines and containers
	Docker and Podman
	Main components
	Container engine
	Image and container
	Client
	Registry

	Dockerfile
	Flags and capabilities
	Volumes
	Device passthrough
	Limitation of the resources

	Comparative analysis of Docker and Podman
	Flags and capabilities
	Volumes
	Device passthrough
	SELinux
	Performance
	RAM
	CPU
	I/O Write
	I/O Read

	Security
	Mount the host filesystem
	Mounted socket
	Process injection
	Adding a malicious kernel module
	Reading secrets from the host
	Overriding files on host

	Authentication and authorization in AWS
	AWS IAM
	Policies
	Roles

	IOTcore
	Authorizing direct calls to AWS services using AWS IoT Core credential provider
	Creation of a thing and a thing group in IoTCore
	Creation of a role with custom trust policy
	Creation of an access policy
	Integrating IAM Roles with AWS IoT: Role Alias Creation and Policy Attachment
	Configuring Role Aliases and Policy Attachments for AWS STS
	Retrieve tokens
	Particular cases

	Conclusions
	Future works

	Bibliography

