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Summary

In today’s world it is possible to deploy thousands of satellites at lower orbits, due
to the rapid technological advancements in the aerospace engineering field and the
drop in the manufacturing costs of satellites. Non Geo-stationary Satellite Orbit
(NGSO) mega-constellations, consisting of Low Earth Orbit (LEO) and Very Low
Earth Orbit (VLEO) satellites at altitudes between 300 km and 2000 km, present
new challenges when addressing routing. Mainly, they arise from the configuration
of the constellation under test and the selection of paths, which require innovative
routing solutions to ensure efficient data transmission. In the following research
work, the performance of different deterministic routing algorithms has been studied
for both LEO and VLEO Walker Delta constellations as well as the impact of
distinct altitude, inclination and topology. Additionally, a novel heuristic has
been introduced, showing its potential to significantly reduce overall latency by
optimizing routing patterns in the Arctic and Antarctic regions.
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Chapter 1

Introduction

Nowadays the ever-increasing demand for global connectivity and higher per-
formance in terms of coverage, data throughput, reliability and latency acts as a
driver for the advancements of communication technologies and the introduction of
new standards.
Wireless connectivity is relevant across all industrial fields, though emerging sectors
such as telemedicine, precision agriculture, autonomous vehicles, IoT, are particu-
larly challenging and require continuous innovation and development of new mobile
broadband frameworks, which include also the integration of satellite constellations
to support coverage in remote and under-served areas.

The most relevant mobile network standard used worldwide commercially for
wireless communications at the moment is 5G, edited by the 3rd Generation Party
project (3GPP). Its main use cases are:

• Enhanced Mobile Broadband (eMBB) whose aim is to guarantee high bit-rate
to users (circa 1 Gbps of experienced rate and 10 Gbps of peak-rate).

• Ultra Reliable Low Latency Communications (URLLC) that targets a latency
of 1 ms and it is crucial in providing high reliability and quicker response for
real-time applications such as remote surgery and autonomous vehicles.
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• massive Machine Type Communications (mMTC) that grants Internet con-
nectivity up to one million of low-cost and low-powered sensors per square
kilometer.

3GPP is now developing 5G Release 18 and Release 19, the so-called 5G-Advanced
[1], with a collaboration of both the academia and the industry. It guarantees better
performance for all the above-mentioned use cases (especially eMBB) and focuses
on massive MIMO (Multiple Input Multiple Output) evolution, better positioning
for the users, the introduction of AI (Artificial Intelligence) and ML (Machine
Learning) and green networks (energy saving by reducing power consumption both
at the UE (User Equipment) and the network side). Noteworthy is the discussion of
the topological advancements by the integration of NTN (Non Terrestrial Networks)
that will be crucial for 6G standard as well: traditionally satellite networks and
terrestrial ones have been implemented separately and have dedicated user devices
each. The terrestrial network covers only 20% of the land and 6% of the overall
earth surface [2], where it provides small latency and optimized routing algorithms.
The reason for such low coverage is caused by the potential low return of investment
with respect to the sustained costs. Therefore, its infrastructure cannot reach
isolated regions with low population density such as rural locations or areas with
geographical challenges (for instance, the poles, the deserts and remote islands).
With 5G-Advanced and then 6G, NTN not only will guarantee connectivity in these
scenarios but also will increase performance in positioning and navigation of users,
ensuring extreme coverage.

Still, in the future, there will be various scenarios that will require even stricter
and compelling performance of the next generation of mobile network standards.
To give an example, the introduction of new technologies that ensure an immersive
experience to the user like Extended Reality (XR), Augmented Reality (AR),
Virtual Reality (VR) will necessitate the development of holographic displays and
haptic communication (the ability to interact with devices through touch). A direct
game-changing application is remote surgery that will allow doctors to save lives
without being physically present in the operating room. Other instances can be
automation in the Industry 4.0 (motion control in the automation line), smart cities,
autonomous vehicles that will substitute completely human drivers, high-precision
localization and positioning, the goal of reaching 100% coverage on Earth. All the
above-mentioned cases need even higher data-rates (of the order of Tbps), very low
latency (of the order of microseconds) and ubiquity with seamless connections.

Building upon 5G-Advanced, 6G aims at achieving these performances. The
world of telecommunications will pass from having connected people and connected
things to connected pervasive intelligence. It has been envisioned as the standard
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that will make AI the crucial backbone of the network. The latter will not have a
cloud-based computing infrastructure anymore, since it will become a distributed
learning one (defined as NET4AI). In terms of eMBB 6G offers an experience rate
of 10 to 100 Gbps and peak rate of 1 Tbps to users, improves mMTC by having
sensing battery life up to 20 years and 10 million sensors per squared kilometer,
reaches latency of 0.1 milliseconds, positioning precision of 1 cm indoor and 50 cm
outdoor and guarantees a reliability of 99.99999%.[3]

In 6G, due to the rapid technological advancements in the aerospace engineering
field and the drop in the launch and manufacturing costs of satellites, it is possible
to place thousands of satellites at lower orbits. Thus, the integration of NTN
(therefore satellite networks) with the traditional terrestrial one is performed
through the employment of distinct layers of Non Geo-stationary Satellite Orbit
(NGSO) mega-constellations (satellite vehicles are between 300 km and 2000 km
of altitude with respect to the surface of the Earth). Since they are closer to the
ground than Geo-stationary Earth Orbit Satellites (GEO) and Medium Earth Orbit
(MEO), NGSO satellites and in particular Very Low Earth Orbit (VLEO) ones,
have several advantages [4]:

• fewer presence of space debris,

• reduced transmission delay to users on the ground,

• higher signal power,

• lower propagation loss,

• better resolution for real-time Earth observation,

• full coverage of the Earth (even to remote areas),

• back-up in case of critical situations and natural calamities (earthquakes,
floods and other extreme environmental events),

• connectivity to users on the move (for example to users on flights or on boats),

• increased performance for navigation and greater accuracy in positioning,

• lower maintenance costs,

• due to the atmospheric drag, satellites can be dismissed more easily when
they end their operational period,

• the users will be equipped with terminals that can connect directly to both
the cellular network on the ground and the satellites NTN.
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Of course, there are various drawbacks as well. For instance, the gravitational
perturbations of the Earth, the Moon and the Sun together with the already
mentioned atmospheric drag, which is stronger at lower altitudes, can slow the
satellite vehicle down and cause an alteration of the satellite’s orbit, thus reducing
its lifespan in space. NGSO and especially VLEO have a smaller footprint, therefore
to cover the same area of a GEO satellite, several VLEO must be well-coordinated.
Furthermore, since they are moving at a higher rotational speed, they travel for
shorter orbital periods around Earth (generally in 1.5-2 hours). As a result, the
topology of the network dynamically changes. Special attention must be given
to this last concept because the faster the satellites are, the more frequent the
handovers will be for ground stations or users that try to connect to the ones in
their line of sight.

Fast topology changes and the management of data sent along Inter-Satellite
Links (ISL) are also the fundamental drivers for research advancements in the
development of new routing techniques for the commonly named space segment
(thus the section of the satellite network that comprehends the paths from the
source and destination satellites, that are supposed to be selected by the users on
the ground and known by the network before performing routing).
Moreover, mega-constellations imply huge routing tables. Consequently, there is
the open issue of where the routing tables should be stored and how often routing
should be performed, choosing between offline solutions and on-demand ones. For
instance, in multi-layer layer constellations NGSO satellites are coordinated by
higher layer (in general, MEO) ones that compute the paths and keep track of the
overall network state.

Routing can be studied deterministically, after building up constellation models
such as Walker Star and Walker Delta. The orbit of each satellite is known, thus it
is possible to make predictions on where the satellite and its neighbours will be
to make routing decisions. In literature, the neighbours of the satellite under test
usually are four: two in the same orbit, immediately before and after it and two in
the adjacent orbits.
Another strategy used to implement routing is to handle frequent network topology
shifts with ML. The latter is a solution that is not based on deterministic modeling
but on interpreting the received data defining a scheme that fits it and using it
to forecast results. Each satellite node learns the forwarding policy independently
from the others. For instance, when a link fails the node can straight away re-route
traffic on another path. The most utilized technique by nodes to acquire knowledge
of the network is Q-learning that is a branch of Reinforcement Learning (RL).
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In the following master’s thesis project, the performance of different routing
techniques will be examined for each satellite pair of a constellation under study.
The term “pair” refers to the couple source satellite and destination satellite. The
analysis is provided first on aLEO (Low Earth Orbit) constellation and then ex-
tended on a VLEO (Very Low Earth Orbit) one. The research work will focus
particularly on DisCoRoute algorithm [5], designed for Walker Delta LEO constel-
lations. After verifying the results of the paper in terms of propagation delay and
computational time, the evaluation is expanded to a VLEO configuration. Results
highlight a drop in performance of DisCoRoute around the polar regions. A further
analysis is carried out to investigate the relationship of the routing performance to
the different altitude, inclination and topology (number of planes and number of
satellites per plane). Finally, a new heuristic is proposed to handle the issue in the
Arctic and Antarctic areas.

The thesis is organized as follows:

• In chapter 2, corresponding to the background, a description of the main
concepts useful to fully comprehend the thesis is provided.

• In chapter 3 the state-of-the-art is presented as a collection of the most recent
methods, techniques and innovations that are available nowadays regarding
LEO and VLEO satellites and routing.

• In chapter 4 the overall structure of the study is shown in terms of design
choices and selected algorithms, showing the detailed description of each step
of the procedures used to analyze the data and generate the results, both
taking into account the outcomes and granting their reproducibility.
The practical implementation of the illustrated techniques is displayed as well.

• In chapter 5 findings of the above-mentioned analysis are shown, explained
and interpreted, including a comparison with existent papers, taking into
consideration the equipment and the software employed.

• In chapter 6 as a conclusion, a synopsis of the work is delineated, restating
the procedures with the obtained outcomes and highlighting the strengths and
the limitations of the utilized approaches. Future research implications are
discussed as well.

6





Chapter 2

Background

2.1 Overview
This section aims to introduce all the fundamental concepts necessary for un-
derstanding the project and its implementation. It begins by explaining what
a satellite is and its orbital characteristics, providing an in-depth exploration of
Non-Terrestrial Networks (NTN). Following this, it presents an initial definition of
satellite constellations along with their essential parameters. Lastly, it covers basic
concepts of routing and the routing strategies that will be employed throughout
the thesis.

2.2 Satellites and their orbital characteristics
Conventionally, a satellite is an object that revolves around another of a larger
size in a periodical fashion. It is classified as either natural or artificial. A natural
satellite is a celestial body that rotates around a planet. For instance, the Moon
orbits around the Earth, thus being known as the only natural satellite of the
Earth.
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The research work of the thesis will focus on artificial satellites. As a definition, an
artificial satellite is a man-made vehicle sent up into space to travel an elliptical
and periodical trajectory around Earth. Its central scope is to be used to collect
and deliver information from either the Earth or space and send it back either to
the ground or to other satellites.

When discussing satellite systems, it is crucial to specify the reference system
with respect to which the satellite’s position, speed, and other characteristics are
defined. For instance, in the following study, two reference frames will be frequently
used. The Earth-Centered Earth-Fixed (ECEF) one corresponds to a Cartesian
coordinate system in which the origin is the center of the Earth, with x and y that
are on the equatorial plane. Noteworthy is the fact that it rotates with Earth. The
other one is the Geodetic Coordinate Frame, which employs latitude, longitude
and height coordinates to identify both satellites in space and users on the surface
of Earth.

Taking into account the point of view of an observer on the ground, a satellite
is detected in the sky depending on a few specifications, such as, first of all, the
reference system. In this scenario, the one employed is ECEF. In addition, other key
parameters are the elevation, the zenith and the azimuth [6]. The above-mentioned
considerations are frequently utilized when a user wants to compute its own position.
It is a process called trilateration: the user understands its own location on the
ground calculating the distances with respect to at least four satellites in its horizon
of visibility.

As shown in Figure 2.1:

• the zenith is the point in the celestial spherical cap on top of the observer.

• the horizon is the plane tangent to the Earth’s surface at the observer’s
position. It is necessary to determine which satellites are in visibility of the
observer.

• the elevation is the angle between the straight line joining the observer’s and
satellite’s respective locations and the horizon plane. It goes from 0° to 90°
when the satellite is at the zenith. Habitually a satellite is intended to be “in
Line Of Sight (LOS)” when its elevation angle is at least above 5°.

• the azimuth is the angle measured on the horizontal plane between the direction
from the observer to the North and the projection on the same plane of the
straight line joining the observer’s and satellite’s respective locations.

The location in space of a specific orbit and the position of each satellite within
the orbit are identified by six criteria, known as keplerian orbital parameters [7],

9
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Observer

Azimuth

North

Satellite
Zenith

Celestial spherical cap

Horizon

Elevation

Figure 2.1: Satellite’s specifications from observer’s point of view

that can be converted into geodetic and cartesian coordinates. They are illustrated
in Figure 2.2:

• the inclination (α) is the angle that the orbital plane generates with respect
to the equatorial plane, measured at the ascending node (that is the point in
which the satellite crosses the equatorial plane while ascending, meaning it
goes from the south hemisphere to the north one). It is worth mentioning that
the equatorial plane itself has a sinusoidal variation of its own inclination with
respect to the straight line connecting the center of the Earth and the Sun
over a period of 365 days (during which it is possible to determine solstices
and equinoxes).

• the eccentricity (e) is a value that indicates how much a curve is closer to a
circumference. It can be classified as follows:

e = apogee− perigee

apogee + perigee
=


0 circumference
(0,1) ellipse
1 parabola
> 1 hyperbole

(2.1)

where the apogee is the point in the orbit where a satellite is at maximum
distance from the center of the Earth and the perigee where it is at minimum.
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• the semi-major axis (a) of the orbit is the sum of periapsis and apoapsis
divided by 2.

• the argument of periapsis is the angle between the line joining the center of
Earth with the ascending node and the one connecting the center of Earth
with the perigee.

• the true anomaly (ω) is the angle between the line from the focus of the ellipse
(in case of a circumference, the center of the Earth) to the perigee and the
line joining the center with the satellite.

• the Right Ascension of the Ascending Node (RAAN) (Ω) is the angle in the
equatorial plane from the direction taken as a reference (the vernal equinox)
and the one from the center of the Earth pointing at the ascending node.

Orbital plane

Inclination

Vernal equinox

Satellite

RAAN
Equatorial plane

Argument of 
periapsis

True 
anomaly

Ascending 
node

Figure 2.2: Keplerian orbital parameters

The satellite vehicles analyzed in the thesis travel a circular orbit around Earth,
thus being a scenario whose behaviour can be modeled as a two-body problem.
Indeed, the latter is used to describe the situation in which an object moves with
respect to another, given that the two only interact with each other. Newton’s law
of universal gravitation and Kepler’s laws of planetary motion, which are illustrated
concisely in the following paragraphs, are the fundamental pillars that characterize
such model.
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Newton’s gravitational law is given by equation 2.2:

F = G
m1m2

r2 r̂ (2.2)

It means that the magnitude of the gravitational force vector F between two
masses is directly proportional to their product and inversely to the square of the
distance of their center of mass, whereas r̂ is the unit vector starting from one mass
to the other. G is the universal gravity constant:

G ≈ 6.67× 10−11 m3kg−1s−2

Kepler’s first law of planetary motion is: “The orbit of a planet (satellite) around
the Sun (Earth) is elliptical, with the Sun (Earth) being one of the two foci”. In
the cases of LEO and VLEO constellations, that constitute the pivot of the current
research work, as already mentioned the orbits are circumferences (e = 0), thus
implying that the center of the Earth coincides with the center of the orbit.
Next, Kepler’s second law is: “The imaginary line between the planet(satellite) and
the Sun(Earth) sweeps out equal areas in equal amount of time” suggesting that in
a circular orbit the speed of the satellite is constant. Finally, Kepler’s third law is:
“The square of the orbital period of any satellite is proportional to the cube of the
semi-major axis of its elliptical orbit” [7].

In order to comprehend the subsequent contents, it is necessary to make a brief
digression and introduce also the concepts of propagation delay, horizon time and
antenna footprint [8].

• The propagation delay is the time t needed by a signal to travel at the speed
of light c through the distance d between a transmitter and a receiver. It is
computed as t = d

c
where c ≈ 3× 108m/s. In the context of satellite networks,

both the transmitter and the receiver can be either a satellite or a ground
station/user on the surface of the Earth.

• The horizon time is the interval during which a satellite is in the visibility
region of the observer from the ground.

• The antenna footprint is the geographical area illuminated by the antenna’s
beam of a specific satellite. It delineates the region within which users can
receive the satellite’s signal and vice versa.

When referring to satellite communication systems, it is quite common to sepa-
rate the space segment (that comprehends both the space stations and the satellite
infrastructure in space for earth observation, communication and navigation) from
the ground segment (which encompasses the user terminals, the mission control
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centers and the ground stations). Focusing on the space segment, a satellite can
belong to GEO, MEO, LEO and VLEO categories, depending on the altitude with
respect to the ground:

• GEO satellites orbit at 35786 km above Earth’s surface. They travel at the
same rotational speed of the Earth with the same 24-hour period, therefore
when an observer on the ground looks for them, they can be found at a fixed
position in the sky. GEO satellites are traditionally employed for broadcasting
services and weather monitoring. On one hand, an interesting benefit of using
GEO satellites is the coverage stability, which is continuous over a specific
region (they have an antenna footprint of 1000 km square). On the other
hand, an obvious drawback is that the long distance from the surface of the
Earth causes a significant propagation delay (circa 270 ms) which impairs the
applications of GEO satellites for real-time or emergency scenarios.

• MEO satellites operate in the space region between 2000 km to 35786 km.
Their period is 12 hours, thus they can be seen from the ground twice a day for
a horizon time of maximum 2 hours. Their antenna’s footprint is circa 500 km
and has a latency of 94 ms.[8]. They are fundamentally used for positioning
and navigation purposes, both for military and civilian applications. For
instance, the DoD of the USA launched the GPS (Global Positioning System)
in the 1970s which is composed of 24 MEO satellites at 20000 km (4 distinct
satellites in each of 6 orbital planes).

• LEO satellites are placed between 500 km and 2000 km. Their period is 2 hours
and the horizon time is 10 minutes. The latency is lower (circa 20ms) and the
antenna’s footprint is 100 km squared. Since they are at a lower altitude with
respect to the Earth’s surface, to escape the gravitational pull and in order
to maintain their orbit, their rotational speed is very high. Furthermore, to
cover the same geographical region as Geo Stationary Orbit satellites, many
more satellites need to be coordinated.

• VLEO satellites travel through orbits below 500 km in periods of at most 90
minutes. On the one hand, they guarantee even better latency than LEO
(about 5 ms) and very good image resolution. Besides that, at very low orbits
there is less risk of encountering space debris and colliding with other satellites.
On the other hand, the lifespan is shorter due to the atmospheric drag and
radiation effects.

2.3 Overview on Non-Terrestrial Networks
Big private companies both in the US and Europe such as SpaceX (Starlink), Project
Kuiper (Amazon), OneWeb and Iridium Communications have been investing
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consistently for years in aerospace and communications technologies to extend
coverage to unconnected regions, providing low latency and high data throughput
to users even in emergency situations. Their strategic pivot is the provision of NTN
services thanks to the production, launch and coordination of thousands of LEO
and VLEO satellites (creating the so-called mega-constellations). Since they are
produced with Commercial-Off-The-Shelf (COTS) components, NGSO satellites
are not as expensive as GEO and MEO ones. The latter types of satellites are still
manufactured and controlled by government space agencies (namely, NASA and
ESA).

Non-Terrestrial Networks are infrastructures built up either on air (defined as
Air-borne platforms) or in space (also called Space borne platforms) [8]. Their main
goal is to reach global coverage by offering connectivity not only in remote areas
with low density population but also in harsh environments and disaster scenarios.
However, they are also decisive in supplying even better performance in navigation
and positioning, paving the way for very useful applications like precision farming
and autonomous vehicles. Fundamental will be the integration in the 6G standard
of NTN with existing terrestrial networks as well.
In Figure 2.3 an overall depiction of NTNs is presented.

Remote AreasTerrestrial network

GEO 
(35786 km)

LEO
(500 to 2000km)

VLEO
(below 500 km)

MEO
(2000 to 35786km)

Positioning and Navigation

Space-borne 
network

Air-borne 
network

Ground

HAPS
(below 20km)

UAV

Stratospheric balloonReconnaissance aircraft

Figure 2.3: Non-Terrestrial Networks

Air-borne networks are a broad ensemble of network configurations generated
at altitudes lower than 22 km that are meant to guarantee coverage with low
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propagation delay to users in disaster scenarios and remote areas. They can be
designed either as a collection of scientific research balloons or reconnaissance
aircraft that generally operate at between 17 and 22 km of height with respect to
the ground (in the stratosphere), forming the High Altitude Platform (HAP) or at
lower altitudes (around 10 km) with air-crafts (planes, airships) and Unmanned
Aerial Vehicles UAV (drones). The limitations in the use of air-borne networks are
that they have a restricted antenna footprint and present challenges in the stability
of the routes and in the robustness of components, constantly stressed by hostile
weather conditions and adverse temperatures. The high costs of maintenance are
a drawback as well. Therefore, the focus of the current research work has been
the establishment of satellite constellations that can reach global coverage and
overcome weather sensitivity.

Space-borne networks are composed of collections of satellites at different alti-
tudes, each forming a distinct layer (or shell). To give an example, the farthest
layer from Earth comprehends only GEO satellites, whereas the closest is made of
VLEO ones. The layers may or may not interact with each other in case of a specific
task to achieve (for instance, in some routing strategies the routing decisions can
be computed by MEO satellites and sent to the LEO ones). Commonly, the more
distant the layer, the more costly for a company.
In this type of networks, either the ground stations or directly the users (UE)
connect to the satellites that are in their line of sight for a specific period of time
that is called the horizon interval. Such satellites are known as access satellites.
They can act as relays between users and also regenerate their signal, otherwise
they are able to communicate with other satellites both in the same and other
shells through ISLs.
The most utilized frequency bands to provide high speed Internet connectivity are:

• S-band: from 2 to 4 GHz

• Ku-band: from 12 to 18 GHz

• Ka-band: from 26 to 40 GHz

As already mentioned in chapter 1, NGSO satellites take approximately 2 hours
to conclude an orbit around the Earth because they travel at much higher rota-
tional speed than that of the Earth. Given this velocity, the ground observers
(being them either users or ground stations) can connect to an access satellite for a
limited amount of time, usually just a few minutes, before the satellite moves away
from their visibility space. This situation implies that to avoid any connectivity
disruption, UEs must switch and link to other satellites in a short interval (thus
having to undergo multiple handovers).
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Moreover, they have also to consider and compensate for the effect of the Doppler
shift in the received/sent signals, due to the relative motion of the satellite with
respect to them. To give an example, suppose a satellite is moving along its own
orbit and transmitting a signal to a ground station. As soon as it advances toward
the ground station, the latter will receive a signal whose carrier frequency will be
higher than the transmitted one. On the contrary, when the satellite distances itself
from the ground station, the received signal will have a carrier frequency that is
lower than the one of the transmitted signal. In equation 2.3, the above-mentioned
situation is mathematically described [9]:

frx

ftx + fDoppler satellite moving forward the receiver
ftx − fDoppler satellite moving away from the receiver

(2.3)

where the Doppler shift, given the speed of light c and the speed of the satellite v
(relative to the ground station), is given from equation 2.4:

fDoppler = f0
v

c
(2.4)

In substance, if not handled, the Doppler effect produces frequency offsets (shifts)
that cause misalignments and loss of synchronization at the receiver. As an
example, it is well known that OFDM modulation systems suffer from inter-carrier
interference (ICI) when affected by multi-path channels exhibiting different Doppler
shifts [10].
Noteworthy is the fact that in 6G the integration of NTN with the traditional
network will be done even with the design of new UEs able to exchange information
with both the traditional terrestrial networks systems and different NTNs, thus
substituting a collection of distinct devices, each dedicated to a single type of
network.

2.4 Portrayal of Satellite Constellations
A satellite constellation is a collection of artificial satellite vehicles that travel
either circular or elliptical trajectories around Earth. Each satellite works with
the others in a coordinated fashion to perform a specific task, thus forming a true
infrastructure in space. All constellations have the main goal to provide global
coverage to users on the surface of the Earth, by connecting directly to them or
through ground stations allocated around the planet.
As a rule of thumb, a constellation is composed of a fixed number of orbits, each
of them with a constant number of equally spaced satellites [11]. If the orbits
are circular and have the same inclination, with satellites at the same altitude
from the ground, then the just mentioned scenario is classified as an orbital shell.
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Mega-constellations (which comprehend thousands of satellites, generally either
LEO or VLEO) may also be composed of several orbital shells communicating with
each other in a hierarchical pattern, for example for routing purposes.

The design of NGSO constellations in literature has been defined through two
models, the Walker Delta and the Walker Star ones, proposed by engineers J.
Walker [11] and A. H. Ballard in 1985 [12].
Walker constellations are described by a well-known notation which is α:T/P/F
where:

• α represents the inclination of the orbital planes with respect to the equatorial
one.

• P is the number of orbital planes of the constellation.

• T is the total number of the satellite constellation, therefore it is the product
of the number of planes P with the number of satellites per plane Q and can
be also denoted as PQ.

• F is the phasing factor, it is a parameter that gives information about the
spacing between satellites in adjacent orbital planes. Moreover, it assumes
only integer values that belong to the interval [0, P − 1].

As already mentioned, orbits are also defined as circular. For this reason, the
eccentricity is always null and the speed of the satellite is constant (for example
in case of LEO it is around 7.5 m/s). Additionally, the semi-major axis is always
equal to the radius, and there is not a specific point where it is possible to identify
either the apogee or the perigee.
In particular, the absence of the perigee causes a problem when delineating the true
anomaly. As a solution, the latter is not used anymore and is substituted by a new
quantity, called argument of latitude. It is the angle between the line connecting
the center of the Earth and the ascending node and the one linking again the center
with the position of the satellite under test in the orbit. When dealing with the
Walker layout, the initial longitude of the ascending node constitutes another key
parameter. In the context of this thesis project, its value is set to zero.

The Walker Delta configuration is a set of orbits arranged in a flower-like pattern
(that is the reason why it is also referred to as the Ballard-Rosette model). The
orbits are circular and allocated to different planes evenly spaced within 360°
along the Equator. Moreover, they have the same inclination (generally below 60°)
and the same altitude from the surface of the Earth to avoid variations in the
transmitted signal power. Satellites are evenly distributed in each orbit, such that
they don’t collide with each other in orbital plane intersections at the poles.
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(a) LEO constellation 60°:500/25/5 (1) (b) LEO constellation 60°:500/25/5 (2)

Figure 2.4: Walker Delta configuration for LEO

To give an example, Galileo constellation, which is the official satellite infrastructure
built up by several European countries and under the control of ESA, is a Walker
Delta pattern of MEO satellites at around 23000 km. It is represented by the
notation 56°:27/3/1 [13] It means that there are a total of 27 satellites distributed
along 3 orbital planes (9 per plane). Satellites in adjacent orbits are aligned and
have the same latitude since the phasing factor is 1.
The vast majority of LEO and VLEO constellations are based on this described
model, such as the ones from private companies like Starlink. In Figure 2.4 a plot
of the Walker Delta pattern for LEO constellation 60°:500/25/5 is shown from two
different angles (Figures 2.4a and 2.4b). There are 500 satellites with phasing factor
equal to 5 that are distributed along 25 planes. The latter ones are all inclined
by 60° with respect to the equatorial plane. Noteworthy is the fact that with this
type of configuration, no satellite covers the full Arctic and Antarctic regions.

The Walker Star pattern uses the same Walker notation. Typically, the inclina-
tion is higher than the Walker Delta (therefore, around 90°). The big difference
is the disposition of orbital planes and the corresponding ascending nodes on the
Equator. They are equally placed around 180° and not 360°. It is a configuration
mainly used by Iridium company.
The most known layout from Iridium is represented by notation 86.4°:66/6/2 at
781 km orbit altitude. It means that there are 66 satellites placed in 6 different
orbital planes with same inclination 86.4° and phasing factor equal to 2 [14]. Its
depiction is presented in Figure 2.5 from two different viewpoints as well (Figures
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(a) Iridium constellation 86.4:66/6/2 (1) (b) Iridium constellation 86.4:66/6/2 (2)

Figure 2.5: Walker Star configuration for LEO

2.5a and 2.5b). As a comparison with the previous arrangement of satellites, the
Walker Star setup can actually provide full coverage to the polar areas.
In the following thesis, all the models analyzed both for LEO and VLEO will focus
on the Walker Delta configuration since it is the most utilized one.

Focusing on the type of links in a satellite constellation, in both the Walker
layouts, each satellite is connected to the others through 4 links, 2 intra-orbit
(within the same orbit) and 2 inter-orbit (between adjacent orbits), also called
Inter Satellite Link (ISL).
In the case of multi-layer constellations, which are space network systems composed
of more than one orbital shell (for instance, one layer is made by GEO satellites,
one by MEO and one by LEO) there are also the inter-layer links.

2.5 Routing Strategies
In traditional communication networks, routing is a set of strategies, decisions and
algorithms that allows to determine the best path to connect a source node to a
destination one. The goal is to send information through packets that can have
either fixed or variable size in the most efficient way possible. The most suited
path is always delineated with respect to a precise metric. For instance, the best
path may be the shortest one, however as an alternative it could also be the less
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congested one or the path that guarantees some specific Quality of Service (QoS)
requirements (like reducing packet loss, bandwidth allocation and giving priority
to a certain traffic category in respect of others).
In the context of NTN, the satellites of a constellation are considered as nodes
of a topology, with the links between them that can be weighted or not with a
metric. Therefore, both academia and private companies worldwide are looking
for new methods to transfer and adapt the know-how of routing of terrestrial
networks in space. Of course, satellite constellations present a challenging and
dynamic environment with different traffic requirements. Besides that, satellites
have restricted on-board storage space. The need for the implementation of new
routing algorithms is clearly compelling.
Routing tables and other types of delays besides the propagation one become as
crucial in satellite communication networks as well as they are in terrestrial ones
[15].

• The routing table is a logical data structure stored in satellite nodes, that
contains details about the source node, the destination, the selected metric,
the port where to send data and the next hop. The latter is computed with
an ad-hoc algorithm.

• The processing delay is the time required by the satellite to process the header
of a packet and select the most suited routing choice.

• The transmission delay is the time that a satellite employs to send a packet. It
is equal to the ratio between the packet size and the data transmission speed.

• The queuing delay is the time a packet has to wait inside the buffer of a
satellite node before being transmitted.

• The end-to-end delay between the source and destination satellites is the sum
of the aforementioned delays caused by each intermediate node, along with
the propagation delay.

In general, routing in a satellite communication network system can be tackled
by three different approaches that are called boundary routing, access routing and
the most important one, on-board routing [16].
Both boundary and access routing address the portion of the network infrastructure
between the ground segment and the access satellites (which act as intermediaries
with the space segment). Essentially, boundary routing protocols’ main aim is to
allow the interoperability between the NTN and the terrestrial networks, whereas
the access routing examines the implications of connecting to one specific access
satellite with respect to the others.
On-boarding routing is currently the field where most of the research is concen-
trated on since it looks for the best path between a selected source satellite and a
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destination one. It involves only the space segment.

Routing algorithms can also be tailored based on the type of constellation layer
they are aimed at. If it is a single-layered one (therefore, only one orbital shell) then
the routing can be done based on either a virtual topology or a virtual node. All the
satellites belonging to the same layer move periodically, such that after a certain
amount of time, they come back to their original position. In the virtual topology
strategy, which is the most utilized line of action, snapshots of the constellation are
captured at regular small time intervals, so that the constellation can be consid-
ered fixed and routing is performed within that duration. What actually changes
between different time spans is the disposition of the links between satellites. In
the virtual node approach, the satellites move, but their logical position remains
constant, so that when a satellite leaves its own location, that same spot is occupied
by another satellite of the same orbit. In this case, routing algorithms can be
carried out on the obtained fixed logical topology, independent from satellites’
motion.
Alternatively, regarding the multi-layered structure, the constellation is arranged
in either 2 or 3 orbital shells performing a master-slave scheme with the help of
inter-layer links. The most common scenario is the one where there is one MEO
satellite that acts as a master. It collects information about the state of the network
and computes the routing tables and best paths for the LEOs that take the role of
access satellites for the ground users. Then, the master sends the routing decisions
to the MEOs responsible for the LEO satellites in a definite area. The MEOs sends
only the routing entries to the LEOs. Finally, the LEO satellite source can start
sending packets over the selected path.

Routing algorithms can also be categorized making a distinction between cen-
tralized and distributed routing fashion.
Centralized routing can be applied when the topology of the network is not changing
frequently. In substance, there is a control entity, which has the complete knowledge
of the topology of either the entire or a significant portion of the network. It is
able both to compute the routing tables and to make routing decisions for every
satellite in that same area. In this way, it communicates the path to follow to
each node, thus saving computational time and end-to-end delay for each satellite
and reducing network management issues. The main drawback is that if there is
a problem in the control entity, it causes an impact on the entire section of the
network under its supervision.
Instead, in a distributed scheme, each satellite computes its own routing table,
based on the information gathered by communicating with its neighbours. This
approach has the advantages of gaining adaptability and flexibility when network
changes happen. Unfortunately, it sometimes produces considerable overhead in
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packets and scalability problems which increase the network management complex-
ity.

Finally, a last classification is made by distinguishing between a deterministic
approach and one that uses ML.
In the first setting, routing algorithms are implemented so that, once the inputs
and the initial conditions of the scenario are defined, the outcome of the procedure
is optimized and immutable for that particular case. The procedure itself is pre-
dictable and fixed since it is based on a mathematical model in the methodology.
For instance, in [17] and [5], the constellation is set out as a Walker Delta. Then
the on-board routing is computed, in a distributed fashion, by considering a mathe-
matical model about the minimum number of hops and the directions that packets
should travel through from the source satellite to the destination satellite. The just
mentioned obtained minimum hop count reduces the search space to a grid where
two vertices are the source and the destination and it is always possible to reach
the destination through the same number of hops with the Manhattan distance.
Essentially, [5] introduces a new sub-optimal algorithm called DisCoRoute and
compares its performance in terms of computational time and end-to-end delay
with the other well-known algorithms (such as the optimized single-pair shortest
path Dijkstra routing algorithm) [18].

As an alternative, a branch of ML named Reinforcement Learning (RL) is
frequently utilized to face the rapid topology changes of the satellite network. The
goal of RL is to learn a strategy in a rapidly mutable environment through taking
actions and maximizing a cumulative reward. Unlike deterministic models, RL
interprets collected data to develop and apply a scheme that adapts to current
conditions of the satellite network and forecasts future outcomes. In this approach,
each satellite node independently learns its forwarding policy. For example, if a
link fails, the node can immediately reroute traffic through an alternative path. A
widely used technique for satellite nodes to learn about the network is Q-learning
[19]. The latter is a technology where satellites are considered as agents taking
actions and obtaining rewards governed by Q-tables and the Bellman equation.
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Chapter 3

State of the Art

3.1 Overview
In this master’s thesis, a set of algorithms regarding routing and their application
to both Low Earth Orbit (LEO) and Very Low Earth Orbit (VLEO) constellations
will be illustrated and explained.
The state of the art is presented as a collection of papers that show the innovations
and techniques that are available nowadays in academia regarding LEO and VLEO
satellites and routing. At the beginning, a description of VLEO advantages and
disadvantages is provided, followed by a set of articles explaining deterministic rout-
ing over satellite constellations. Finally, a wide insight on ML and its adaptability
to space networks is outlined.

3.2 VLEO benefits and challenges
The work Very Low Earth Orbit Mission Concepts for Earth Observation - Benefits
and Challenges by Josep Virgili-Llop et al.[20] shows the advantages and limitations
of a satellite vehicle in a VLEO constellation (with orbits below 450 km) for Earth
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Observation tasks. On the one hand, VLEO offers crucial benefits such as an
increased resolution, an improved geospatial accuracy and a decreased payload
weight. On the other hand, the article highlights the challenges posed by the
atmospheric drag and oxygen erosion, which require new design solutions such as
atmosphere-breathing propulsion. The study also discusses the opportunities to
reduce satellite size and costs, making Earth Observation missions more flexible
and less expensive. Furthermore, VLEO offers natural debris mitigation, allowing
satellites to end their operating period without requiring additional costs.

Are Very Low Earth Orbit Satellites a Solution for Tomorrow’s Telecommunica-
tion Needs? by Lucy Berthoud et al.[21] is an article that explores VLEO satellites
as a promising solution when responding to the increasing telecommunication de-
mands. VLEO satellites provide significant benefits like reduced latency, improved
link budgets, and lower transmit power. The paper describes the introduction of
a VLEO constellation able to guarantee 5G connectivity to 95% of the Earth’s
population. Each satellite is designed to have 320 beams, providing an average data
rate of 3.8 Mbps per beam. The flexibility of the system allows to vary data rates
depending on usage. Despite the benefits, the disadvantages already mentioned in
the previous paper are discussed, with possible solutions like electric propulsion as
compensation for the atmospheric drag.

Another comprehensive review of the advantages of using VLEO for Earth
Observation missions is detailed in The Benefits of Very Low Earth Orbit for Earth
Observation Missions by Nicholas H. Crisp et al.[22]. The main asset of VLEO
emphasized by the article is the enhanced spatial resolution for optical, radar, and
lidar systems due to the reduced distance to the Earth. VLEO also guarantees
higher launch mass efficiency. However, the paper identifies the drawback of the
reduced orbital lifetime, which requires further research in propulsion systems and
novel materials. The review also draws attention to the growing commercial and
environmental importance of Earth Observation tasks, urging continuous innovation
and investments in enabling VLEO technology.

The paper Very Low Earth Orbit Constellations for Earth Observation by
Nicholas H. Crisp et al.[23] examines the trade-offs in system design for deploying
VLEO satellite constellations. The increased atmospheric drag is compensated by
an advanced propulsion system called “Atmosphere-Breathing Electric propulsion”
(ABEP). The study stresses that VLEO constellation configurations need more
satellites to achieve global coverage due to the limited field of view at lower altitudes.
However, the benefits of improved data resolution and cost-efficiency outperform
the just-mentioned issue.
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Finally, System Modelling of Very Low Earth Orbit Satellites for Earth Observa-
tion by Nicholas H. Crisp et al. [24] presents a detailed system modeling framework
for designing satellites operating in VLEO. The paper emphasizes the potential
of VLEO to reduce satellite mass and manufacturing costs while maintaining or
improving its performances. New technologies are designed to understand how they
can support the satellite functionalities in the denser atmospheric environment of
VLEO. The case studies show up to 75% mass reduction and over 50% cost savings
for optical payloads. However, in this paper the challenges of increased atmospheric
drag and the need for continuous technological advancements in propulsion systems
and materials are pointed out as well.

3.3 Deterministic Routing in Space Networks
In deterministic routing, once the configuration of the constellation is set up, the
algorithms select choices that are made based on a mathematical model, thus being
specific and immutable for that scenario only and respecting several predefined
conditions in the methodology.

A Survey of Routing Techniques for Satellite Networks by Q. Xiaogang et al.
[16] provides a comprehensive overview of routing strategies in satellite networks,
focusing on both single-layer and multi-layer constellations.
For single-layer networks, two crucial approaches are presented: virtual node strat-
egy and virtual topology strategy. In the multi-layer case, the paper provides
insights regarding the inter-satellite links (ISLs) that change frequently between
LEO and MEO satellites. The survey also underlines the challenge of implementing
good routing algorithms in satellite networks due to limited onboard processing
capabilities, high error rates, and long delays. The authors predict future research
will focus on improving adaptability to traffic changes, ensuring robustness against
network failures, and optimizing routing algorithms for both performance and
resilience.

An Overview of Low Earth Orbit Satellite Routing Algorithms by C. Li [25]
reviews several routing algorithms implemented for LEO networks, focusing on
the unique challenges posed by dynamic topologies and limited resources. Several
approaches are explored, including static and dynamic routing, with a particular
focus on the use of time-varying graphs for dynamic path optimization. Software-
defined networking (SDN) is identified as a promising solution, enabling centralized
control and topology updates in real-time. The authors highlight the trade-offs
between delay reduction, bandwidth management, and security.
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Time-Varying Topology Model for Dynamic Routing in LEO Satellite Constella-
tion Networks by Z. Han et al. [26] describes a time-varying topology model to
enable dynamic routing in LEO satellite constellation networks. The model uses a
weighted time vs space evolution graph to represent ISLs with dynamic attributes
such as signal to noise ratio, link duration, and buffer queue, thus quantifying
link utility for routing. The proposed Inter-Satellite Link Utility-based Dynamic
Routing (IUDR) algorithm selects routes with the highest link utility, dynamically
adapting to topology changes. Simulation results show how the introduced proce-
dure outperforms static routing in reducing packet drop rate, improving end-to-end
delay, and enhancing throughput.

The paper Topological Design and Routing for Low-Earth Orbit Satellite Net-
works by H. S. Chang et al. [27] details the joint optimization of both the topology
definition and routing for LEO constellations. The authors model the satellite
network as a Finite State Automaton (FSA), where satellite visibility and inter-
satellite link (ISL) connectivity change dynamically. Then, the joint optimization
issue is divided into two problems: link assignment and traffic routing, with the
goal of maximizing network performance by balancing traffic loads. A heuristic
algorithm is introduced to find sub-optimal solutions for both problems. The
previously calculated link and routing tables are stored on satellites and updated
during state transitions. Simulation results show that this procedure effectively
increases network performance.

Finally, Performance Comparison of Static and Dynamic Routing in Low-Earth
Orbit Satellite Networks [28] compares the performance of static and dynamic
routing schemes in LEO satellite networks using again a Finite State Automaton
(FSA) model. Static routing pre-computes routing tables for each state of the
network topology, while dynamic routing updates routes in real time using the
shortest path algorithm. Simulation results show that static routing outperforms
dynamic routing in terms of initiated call blocking and ongoing call reliability. This
is because static routing avoids the overhead of frequent updates and performs
better during state transitions, whereas dynamic routing struggles to adapt quickly
enough to topology changes, resulting in higher call drops.
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3.4 Machine Learning for Routing in Space Net-
works

Machine Learning (ML) fundamental functioning is to collect data, to fit them
into a model, and being able to make predictions and forecasts. Its application to
the space segment is relative to the possible quick changes of the satellite network
topology. The key insight is that its employment allows to have a strategy that
adapts to constellations that can vary dynamically. Indeed, frequent link failures
can be handled rapidly by rerouting traffic.
As previously mentioned, a significant area within Machine Learning (ML) is Rein-
forcement Learning (RL). In the context of space networks, Q-learning emerges as
one of the most promising techniques. It enables an agent to determine the optimal
action to take in a given state, maximizing the cumulative rewards received while
interacting within a specific environment. In this framework, each satellite node
acts as an agent and maintains a Q-table that stores the Q values for all possible
actions and states. The Q-values are updated using the Bellman Equation. When
a satellite agent receives a packet, it looks up the Q-table entry corresponding to
the packet’s destination node, identifies the action with the highest Q-value, and
executes that action to forward the packet appropriately.

“Fast-Convergence Reinforcement Learning for Routing in LEO Satellite Net-
works” by Ding et al.[19] highlights that traditional routing algorithms like Dijkstra
struggle to adapt in real-time to the possible dynamic nature of space networks, caus-
ing higher delays and congestion. To tackle these problems, the authors introduce
a Fast-Convergence Reinforcement Learning Satellite Routing algorithm (FRL-SR).
It is a procedure that employs multi-agent reinforcement learning (MARL).
In conventional Q-learning, when the state of a satellite link changes, the update is
sent first to the two satellite nodes connected by the link, and then it propagates
to their adjacent nodes. This process impairs the convergence of reinforcement
learning algorithms, particularly in dynamic satellite networks where frequent link
modifications may happen before the convergence is completed.
In FRL-SR, each satellite is an independent agent that learns to make routing
decisions by observing the network states, such as link quality and queue lengths,
while periodically exchanging information with neighboring satellites. The actions
consist of selecting the next node from the neighboring nodes. The novelty is that
the routing process involves two phases: an offline training on a static network
scenario to initialize Q-tables, and then an online training to perform fine-tuning
on the network feedback.
FRL-SR uses a reward that takes into account the transmission delay, the queue
length, and the congestion, selecting the path with minimum delay. Simulation
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results show that FRL-SR outperforms Dijkstra by reducing average latency, in-
creasing packet delivery rates, and achieving better load distribution.

sayAn Intelligent Routing Algorithm for LEO Satellites Based on Deep Rein-
forcement Learning by P. Zuo et al.[29] faces the challenges of routing in dynamic
Low Earth Orbit LEO satellite networks as well. The solution that is proposed
is a Deep Q-Network-based Intelligent Routing algorithm (DQN-IR). The latter
employs decentralized routing with local state information.
The DQN-IR algorithm uses Deep Reinforcement Learning to make routing de-
cisions based on surrounding satellite conditions, such as signal to noise ratio,
bandwidth, queuing delay, and distance to the destination. Each satellite acts as
an agent that selects the optimal next hop using a trained DQN model, considering
both the current network states and long term rewards. The reward function
includes quantities such as data transmission rate, queuing delay, and hop count
with the goal of reducing latency. As a result, DQN-IR demonstrates lower delay
than the conventional routing algorithms. Simulations show that DQN-IR outper-
forms methods such as Greedy Perimeter Stateless Routing (GPSR) and Greedy
Fixed Weight Routing (GFWR), achieving better delay performance by balancing
short-term and long-term routing benefits. The approach has been proven to work
well for LEO networks, enabling efficient local routing decisions in a dynamic
environment.

Finally, “LEO Satellite Network Routing Algorithm Based on Reinforcement
Learning” by X. Wang [30] addresses the issues presented in the previous two
papers by proposing a Q-learning reinforcement learning algorithm for finding
optimal transmission paths without prior knowledge of the network.
In this approach, the LEO constellation becomes a Q-learning environment. Each
satellite is an agent and as usual selects the next hop based on a Q-table that is
iteratively updated with feedback from the network. During training, the packets
are forwarded based on Q-values, and positive feedback is propagated backward to
reinforce optimal routing decisions. To enhance the algorithm’s performance, two
improvements are introduced:

1. the number of allowed hops is limited to fasten convergence by avoiding
excessively long paths

2. to avoid the algorithm from falling into a local optimal, a dynamic greedy rate
starts with exploration and then moves to exploitation.

Simulation results show that the improved Q-learning algorithm achieves faster con-
vergence and better routing performance than traditional methods. It is successful
in decreasing latency as well.
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Chapter 4

Methodology and
Implementation

4.1 Overview

In the following chapter, the research work is comprehensively illustrated by detail-
ing both the design choices and the selected algorithms utilized throughout the
study. To begin with, the constellation setup is thoroughly presented, along with an
explanation of the Minimum Hop Count concept, which plays a crucial role in opti-
mizing routing efficiency. Following this, a diverse collection of route path selection
methods is introduced, with particular emphasis on describing several procedures
employed to analyze the data and generate the outcomes. This systematic approach
ensures that the entire process is reproducible, thus guaranteeing the reliability and
validity of the study’s findings. For further clarification, Appendix A includes the
code implementations of various MATLAB functions that were useful in the analysis.
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4.2 Constellation setup and Minimum Hop Count
The structure of the thesis starts from the testing of the replicability of some
important results of the paper Distributed On-Demand Routing for LEO Mega-
Constellations: A Starlink Case Study by Stock, Fraire and Hermanns [5].
First of all, the modeling of the Walker Delta constellation is outlined, defining the
key parameters of the notation α: T/P/F along with other fundamental quantities
such as the argument of latitude, also called phase angle and referred to as u, and
the initial longitude of the ascending node, denoted with L0.
The altitude of a satellite with respect to the ground is specified by the parameter
h. To get the actual radius of a circular orbit, h is summed up to the semi-major
axis of the Earth ra = 6378.137 [km]. The latter is a constant obtained from the
reference model World Geodetic System 1984 (WGS84) in which Earth is depicted
as an ellipsoid [31].

All the just mentioned variables have been already described in chapter 2.4,
however, it is crucial to specify that, in the case of circular orbits, both u and L0
assume values in the interval [−π, π[. In particular, when u belongs to the range
[−π/2, π/2] it means that a satellite is ascending, thus moving from the south
hemisphere to the north one. On the contrary, when it travels from north to south,
the satellite is classified as descending (as illustrated in Figure 4.1).

Ascending section of the circular orbit
Descending section of the circular orbit𝜋

2

−
𝜋

2

0±𝜋

u

Earth

Ascending satellite

Figure 4.1: Ascending and descending sections of a circular orbit
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To be consistent with paper [5], each satellite of the Walker Delta layout is
uniquely identified in two ways:

• by a single index (from 1 to the total number of satellites in the constellation
T),

• by the couple of indices (o, i) where o is the index (from 0 to P-1) of the orbit
which the satellite under test belongs to, whereas i is the index (from 0 to
Q-1) of the satellite within that orbit.

The transformations between the two ways of representing a certain satellite
have been carried out with the MATLAB functions pair_to_id and id_to_pair.
To convert the notation of a satellite from (o, i) to a single index, pair_to_id
adds i to the product of o and Q (since MATLAB indices start from 1, the lat-
ter needs to be summed up as well). The id_to_pair function performs the
reverse operation, therefore it needs as arguments both Q and the single index
id, returning as outputs the couple of identifiers (o, i). To get o, the floor round-
ing of (id−1)/Q is performed, whereas i is the remainder of the division (id−1)/Q.

Every satellite has 4 ISLs connecting to 4 neighbours, 2 in the same orbit and 2 in
adjacent orbits. Consequently, when considering a particular satellite with indices
(o, i), the previous neighbour belonging to the same orbit is (o, (i− 1) mod Q) and
the successive one is (o, (i + 1) mod Q). Regarding the adjacent orbits, the satellite
on the left if o /= 0 is (o−1, i) and (P −1, (i−F ) mod Q) otherwise. The neighbour
on the right if o /= P − 1 is (o + 1, i) and (0, (i + F ) mod Q) otherwise. Functions
get_previous, get_successive, get_left, and get_right aim at obtaining the
just mentioned neighbours for each satellite.

There are 3 other quantities that play a significant role when delineating the
geometry and the relations between satellites within the Walker Delta constellation
(refer to Figure 4.2):

• The phase difference is the angular spacing between satellites within the same
orbit. Since they are evenly distributed, it can be computed as ∆Φ = 2π

Q
∈

[0, 2π].

• The RAAN difference is an angular expression to define the distance between
adjacent orbital planes. It follows the formula ∆Ω = 2π

P
∈ [0, 2π].

• The phase offset ∆f = 2πF
P Q
∈ [0, 2π[ that determines the “gain” in latitude of

a satellite with respect to another on an adjacent plane (therefore with respect
to the left and right neighbours) and not in the same orbit. When ∆f = 0 it
means they are aligned (meaning they have the same latitude). Moreover, the
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constellation is symmetric, hence each satellite has the same offset ∆f from
the corresponding ones belonging to adjacent planes and P ·∆f is a multiple
of ∆Φ.

Thanks to the definition of the phase difference, the RAAN difference and the
phase offset, it is possible to write both the phase angle and the initial longitude of
the ascending node of a generic satellite as functions of the indices pair (o, i):

• u = f(o ·∆Ω + i ·∆Φ)

• L0 = f(o ·∆Ω)

where the function f(x) = ((x + π) mod 2π)− π is just a type of normalization,
so that the result always belongs to the interval [−π, π[
In MATLAB each constellation configuration is implemented thanks to the built-in
functions satelliteScenario and walkerDelta which require α, T, P, F, the
radius from the center of the Earth, and the initial longitude of the ascending node
equal to zero.
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Fig. 1: Frontal view on a circular orbit, showing the argument
of latitude 𝑢 and the two regions of flying direction.

filings. The satellites in such a constellation follow circular
orbits and are partitioned into different orbital planes. Before
we mathematically describe these constellations in more detail,
we first consider the modelling of individual satellites.

B. Satellite Model

The current position of a satellite is typically represented
using the six Keplerian elements, also known as classical orbital
elements. Most important are the longitude of the ascending
node Ω and the true anomaly 𝜈. In the following, we will usually
refer to the initial longitude of the ascending node 𝐿0 ∈ [−𝜋, 𝜋[
at some Epoch, which is a constant and independent of the
current time 𝑡. The current longitude of the ascending node Ω
at time 𝑡 is given by Ω = 𝐿0 − 𝜔𝐸 · 𝑡, where 𝜔𝐸 is the
angular speed of Earth’s rotation. Since the orbits are circular
(i. e. eccentricity 𝑒 = 0), the true anomaly is undefined, as
the periapsis cannot be uniquely determined. Therefore, the
argument of latitude (or phase angle) 𝑢 ∈ [−𝜋, 𝜋[ is used
instead, which is the angle between the ascending node and the
satellite and basically defines the position of the satellite in its
orbit. We say that a satellite is ascending, i. e. flying in north-
east direction, if 𝑢 ∈ [− 𝜋

2 ,
𝜋
2 ] and call it otherwise descending,

i. e. flying towards the south-east (see Fig. 1). The remaining
orbital elements, i. e. semi-major axis 𝑎 and inclination 𝛼, are
equal for all satellites and therefore considered global constants
of the constellation. Note that the semi-major axis of the orbit
is equal to its radius due to its circular shape. Further, note
that we define a satellite’s altitude ℎ relative to the surface of
the Earth, i. e. the orbit radius is equal to the sum of ℎ and
Earth’s semi-major axis 𝑟𝑎 = 6378.137 km as specified in the
WGS84 reference system [5].
While it is very descriptive and convenient to model the

position of a single satellite using these basic orbital parameters,
it is usually not very useful when comparing the positions of
different satellites, e. g. calculating their distance. Therefore, we
show in the following how the argument of latitude 𝑢 and the
(initial) longitude of the ascending node 𝐿0 can be converted
first to geodetic coordinates (latitude & longitude) and then to

Equator

𝑢1

𝑢2

ΔΦ

ΔΩ

Δ 𝑓

𝜁 (𝑢2 )
𝜁 (𝑢1 )

Δ𝐿0

sat1 sat2

Fig. 2: Ground plot of a section of a constellation annotated
by the various modelling parameters. All indicated parameters
are given as angles measured from the centre of Earth.

a cartesian coordinate system known as ECEF (Earth-centered,
Earth-fixed).

1) Keplerian to Geodetic: Geodetic coordinates are specified
using latitude 𝜑, longitude 𝜆, and the height ℎ. The conversion
of a satellite position to geodetic coordinates is given by:

𝜑 = arcsin(sin𝛼 · sin 𝑢) ∈ [−𝛼, 𝛼]
𝜆 = N (

𝐿0 − 𝜔𝐸 · 𝑡 + 𝜁 (𝑢)
)
= N (

Ω + 𝜁 (𝑢)) ∈ [−𝜋, 𝜋[
Here, 𝜁 (𝑢) indicates the longitude difference of a satellite to
its ascending node (see Fig. 2):

𝜁 (𝑢) = arctan(cos𝛼 · tan 𝑢) +
{
0 asc. segment
𝜋 desc. segment

N(𝑥) = ((𝑥 + 𝜋) mod 2𝜋) − 𝜋 is a normalisation function that
ensures that the resulting values are within the desired interval
[−𝜋, 𝜋[. An important application of geodetic coordinates is
the calculation of the sub-satellite point. It is defined as the
point where a straight line from the centre of the Earth to
the satellite intersects with the surface of the Earth. Since
the geodetic coordinate system is a spherical system, the sub-
satellite point of a satellite has the same latitude and longitude
as the satellite, i. e. only its altitude differs.

2) Geodetic to Cartesian: The Earth-centered, Earth-fixed
coordinate system (ECEF) is a geocentric system that uses
Cartesian coordinates. This representation is well suited to
compute distances between two objects in space. Converting
geodetic coordinates to Cartesian coordinates (𝑋,𝑌, 𝑍) can be
done as follows:( (𝑟𝑎 + ℎ) cos 𝜑 cos𝜆︸                   ︷︷                   ︸

𝑋

, (𝑟𝑎 + ℎ) cos 𝜑 sin𝜆︸                  ︷︷                  ︸
𝑌

, (𝑟𝑎 + ℎ) sin 𝜑︸          ︷︷          ︸
𝑍

)

C. Walker Delta Constellation
A Walker Delta constellation consists of 𝑃 orbital planes

that are evenly spaced around the Equator. Each of these
planes contains 𝑄 evenly spaced satellites. All satellites follow
a circular orbit with the same inclination 𝛼 and altitude ℎ.
A Walker Delta constellation is often formally described by
𝛼 : 𝑃𝑄/𝑃/𝐹 where 𝐹 indicates the relative spacing between

2

Figure 4.2: Section of a Walker Delta constellation with modelling parameters [5]

The focus of the paper by Stock et al. [5] is the use of the concept of the
Minimum Hop Count introduced by Chen et al.[17] to implement a new heuristic
called DisCoRoute that handles routing for Walker Delta constellations launched
by Starlink.
The above-mentioned parameters and relations are crucial in the computation of
the Minimum Hop Count. Given a source satellite belonging to a Walker Delta
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pattern, the Minimum Hop Count is the minimum number of hops that the routing
path must cross to reach a designated destination satellite. The hops are either
horizontal when the link between two satellites is between two adjacent planes, also
known as inter-link (therefore obtained with get_left and get_right functions)
or vertical when the link is within the same orbit, the intra-link (thus provided by
get_previous, get_successive).

The demonstration below is extracted from [5].
Assuming that:

• ∆L0 = (L0,dest − L0,src) mod 2π is the total angular difference of the initial
longitude of the ascending node of the source and the destination following
the East direction (2π −∆Ω selecting West direction),

• ∆Ω is the distance between adjacent orbital planes.

Then, the number of horizontal hops is given by the ratios:

Hh,E =
⌊

∆L0

∆Ω

⌉
(4.1)

Hh,W =
⌊

2π −∆L0

∆Ω

⌉
(4.2)

where and ⌊·⌉ is a notation indicating the so-called commercial rounding that
performs ⌊x⌉ = sgn(x) ⌊|x|+ 0.5⌋.

Suppose now that a satellite under test with phase angle u1 has to be connected
with another one that is its closest neighbour in the North-East direction. The
latter will have a phase angle expressed by:

u2 = u1 + (HE ·∆f) + (HNE ·∆Φ) (4.3)

The term (HNE ·∆Φ) is denominated ∆uE and corresponds to:

∆uE = (u2 − u1 − (HE ·∆f)) mod 2π (4.4)

Obviously, in case of direction North-West:

∆uW = (u2 − u1 − (HW ·∆f)) mod 2π (4.5)

Finally, given ∆uE and ∆uW it is possible to derive the vertical hops and the
directions with the equations:

Hv,NE =
⌊

∆uE

∆Φ

⌉
(4.6)
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Hv,NW =
⌊

∆uW

∆Φ

⌉
(4.7)

Hv,SE =
⌊

2π −∆uE

∆Φ

⌉
(4.8)

Hv,SW =
⌊

2π −∆uW

∆Φ

⌉
(4.9)

To determine the Minimum Hop Count and identify the corresponding directions
to follow, the smallest value among four different combinations of horizontal and
vertical hops sums should be selected:

min {Hv,NE + Hh,E, Hv,NW + Hh,W , Hv,SE + Hh,E, Hv,SW + Hh,W} (4.10)

For completeness, in Figure 4.2, the function ζ(u) is also present, where ζ(u) =
arctan(cos(α) · tan(u)), with 0 for the ascending segment and π for the descending
segment. ζ(u) is the angular difference in longitude of a satellite with respect to
the ascending node of its orbit.

4.3 Route Path Selection Methods
Let’s assume that a Walker Delta constellation has been generated with a precise
choice of parameters (α, T, P, F, h). Then, it is plotted both in 3D with MATLAB
built-in function satelliteScenarioViewer and in a 2D grid with an ad hoc (for
that purpose only) function.

This section provides an in-depth exploration of the routing methodologies and
techniques employed to establish a connection between two distinct satellites within
the aforementioned constellation. Each routing strategy is meticulously examined,
with a step-by-step explanation to ensure a clear understanding of its underlying
mechanisms.
In general, all the procedures depicted in this chapter are implemented such that
they take as inputs the source and destination satellites that have to be connected
and return as outputs their algorithm’s name and the routing paths both as pair
of indices (o, i) and as the single index notation. The route path first entry is the
source node (so it has the size of the sum of vertical and horizontal hops plus 1).

4.3.1 Trivial Routing algorithm
This method takes as inputs, besides the already mentioned ones, the results of
the Minimum Hop Count function (therefore the minimum sum of the combina-
tions of horizontal and vertical hops as well as their selected directions) and some
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parameters of the constellation (P, Q, F). Next, it computes a simple (“trivial”)
routing path across the constellation based on the Minimum Hop Count. Starting
from the source, it moves based on the specified vertical and horizontal hop counts.
The algorithm handles all the horizontal hops first, whether they are either ’W’
(West) or ’E’ (East) according to the chosen direction, and then proceeds with the
remaining all vertical ones, moving ’N’ (North) or ’S’ (South). P, Q and F are used
to tackle the wrap-around of the constellation structure.

The procedure accepts first_hops as an extra argument. It is used to extend the
flexibility of Trivial Routing algorithm. This modification supports the development
of a new heuristic designed to address the behaviour of routing paths near Arctic
and Antarctic regions. Essentially, it allows a choice between prioritizing either all
the vertical hops or horizontal ones initially, followed by all the others.

4.3.2 Flip-Coin Routing algorithm
This strategy follows the same principles outlined in the CoinFlip algorithm de-
scribed in [5]. It takes the same inputs of Trivial Routing algorithm and it also
utilizes the Minimum Hop Count. By determining the total number of horizontal
and vertical hops, along with the respective directions, the algorithm effectively
connects the source and destination satellites. The outputs consist of routes repre-
sented by pairs of indices (o, i), as well as single satellite node indices. The core
decision-making process, thus how the destination is reached, relies on coin-flipping,
where the choice between moving horizontally or vertically is made with equal
probability at each satellite node, introducing an element of randomness to the
path selection.
A vertical token and a horizontal token are set with the corresponding total number
of vertical and horizontal hops obtained by the Minimum Hop Count, then the
algorithm loops and at each iteration checks if there are still available tokens. For in-
stance, if there are no more vertical hops, the choice is forced on the horizontal ones.

As an enhancement to this strategy, the choice at each satellite node is no
longer purely random between the two directions, but instead weighted based on
the remaining hops that still have to be traversed. This approach offers greater
flexibility compared to the equal-probability coin flipping. Since the Minimum
Hop Count constrains the search space to a rectangular grid where hops follow a
Manhattan distance fashion between the source and the destination which are 2
vertices, the methodology is more aligned with the routing context. For example,
if 99 vertical hops and only 1 horizontal hop remain, the algorithm will choose
the vertical direction 99% of the times and the horizontal direction just 1%. This
method reduces unnecessary detours and adapts dynamically to the situation,
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making it a more efficient alternative to the random selection approach.

4.3.3 DisCoRoute Routing algorithm
This technique is the core of the paper Distributed On-Demand Routing for LEO
Mega-Constellations: A Starlink Case Study by Stock, Fraire and Hermanns [5]. It
is based on the design of the constellation, exploiting the fact that the intra-links
(within the same orbit) are constant in magnitude whereas inter-links (between
adjacent orbital planes) decrease the closer they are to the polar regions. Further-
more, the conventional Dijkstra’s solution does not account for the Minimum Hop
Count. As a result, when considering the total end-to-end delay rather than just
the propagation delay, having even one hop more may increase significantly the
latency (as it is shown in the following chapter).

It takes as inputs the source and destination satellite nodes, some parameters
of the constellation (P, Q, F), the Minimum Hop Count as well as the directions
of the hops, and the latitude of each satellite. The output is a sub-optimal route
between two satellite nodes, constructed with horizontal (H_h) and vertical (H_v)
hops and expressed both as satellite pairs and single satellite IDs.
Firstly, the algorithm first initializes the indices pairs of the source and destination
nodes (o_src, i_src, o_dst, i_dst), as well as 2 sections of the final route, called
route_s and rout_t, starting respectively one from the source and one from the
destination.
Then, it verifies if both nodes are either ascending or descending, using the function
isAscending. The check is pivotal because it splits the procedure into 2 sections:

• the routing case is A2A (ascending to ascending), described in Algorithm 1

• the routing case is A2D (ascending to descending), shown in Algorithm 2.

The considerations that are done are equivalent for the scenarios D2D (descending
to descending) and D2A (descending to ascending).

In the A2A case, the algorithm manages horizontal hops by iteratively calculating
rewards based on the latitudes of neighboring nodes. At each step, the route
construction alternates between the source and destination, depending on which
path provides a lower reward (determined by latitude differences). Once the
horizontal hops are completed, 2 route sections are generated: the final satellites of
each segment are positioned within the same orbit, and if necessary, vertical hops
are appended on that plane.

For the A2D case, the method reverses the logic, first performing vertical hops.
Similarly to the A2A case, it computes the latitude-based rewards for both the
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source and destination paths, building the vertical route segments iteratively. After
completing all the vertical hops, horizontal hops are added to connect the nodes
on the same orbital plane.

Algorithm 1 Disco Routing Algorithm (A2A Case)
Require: latitudes, src_node, dst_node, MinHopCount, P, Q, F
Ensure: RoutePath, route_singleid_path, RoutingName

1: Extract osrc, isrc from src_node
2: Extract odst, idst from dst_node
3: Set horizontal (Hh) and vertical (Hv) hops from MinHopCount
4: Initialize routes ← src_node, routet ← dst_node
5: if isAscending(osrc, isrc, PQ, P, F ) == isAscending(odst, idst, PQ, P, F ) then ▷

A2A Case: Horizontal Routing
6: Set i← 0, j ← Hh

7: for h = 1 to Hh do
8: Compute latidi,0 and latidi+1,0 for routes

9: Compute latidj,Hv and latidj−1,Hv for routet

10: Calculate reward_s and reward_t based on latitude values
11: if reward_s < reward_t then
12: Add a hop to routet (left or right based on direction)
13: Update j ← j − 1
14: else
15: Add a hop to routes (left or right based on direction)
16: Update i← i + 1
17: end if
18: end for
19: Ensure i = j (i.e., same orbital plane is reached)
20: if Hv > 0 then
21: Add vertical hops to routes

22: for v = 1 to Hv − 1 do
23: Add vertical hops based on North/South direction
24: end for
25: end if
26: Concatenate routes and reversed routet to form RoutePath
27: Convert RoutePath coordinates to MATLAB indexes using pair_to_id
28: Set route_singleid_path← RoutePath converted to single IDs
29: end if
30: Set RoutingName ← “with DiscoRouting” return RoutePath,

route_singleid_path, RoutingName
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Algorithm 2 Disco Routing Algorithm (A2D Case)
Require: latitudes, src_node, dst_node, MinHopCount, P, Q, F
Ensure: RoutePath, route_singleid_path, RoutingName

1: Extract osrc, isrc from src_node
2: Extract odst, idst from dst_node
3: Set horizontal (Hh) and vertical (Hv) hops from MinHopCount
4: Initialize routes ← src_node, routet ← dst_node
5: if isAscending(osrc, isrc, PQ, P, F ) /= isAscending(odst, idst, PQ, P, F ) then ▷

A2D Case: Vertical Routing
6: Set i← 0, j ← Hv

7: for h = 1 to Hv do
8: Compute latid0,i and latid0,i+1 for routes

9: Compute latidHh,j and latidHh,j−1 for routet

10: Calculate reward_s and reward_t based on latitude values
11: if reward_s < reward_t then
12: Add a vertical hop to routes based on direction
13: Update i← i + 1
14: else
15: Add a vertical hop to routet based on direction
16: Update j ← j − 1
17: end if
18: end for
19: if Hh > 0 then
20: Add horizontal hops to routes

21: for horiz_hop = 1 to Hh − 1 do
22: Add horizontal hops based on East/West direction
23: end for
24: end if
25: Concatenate routes and reversed routet to form RoutePath
26: Convert RoutePath coordinates to MATLAB indexes using pair_to_id
27: Set route_singleid_path← RoutePath converted to single IDs
28: end if
29: Set RoutingName ← “with DiscoRouting” return RoutePath,

route_singleid_path, RoutingName
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4.3.4 Dijkstra’s Routing algorithm
Dijkstra’s Routing algorithm [18] applied to satellite networks finds the shortest
path with minimum propagation delay from a chosen source satellite to its destina-
tion. The satellite constellation can be considered as a weighted graph where the
weights associated with the links between satellites are never negative. Therefore,
Dijkstra’s solution is optimal, meaning that it grants the shortest path through an
exhaustive exploration of all the reachable neighbour satellites of the node under
test, marking them as “visited” only if they have the minimum cumulative distance
from the source. It also keeps track of the previous crossed nodes to enable path
reconstruction.

In essence, the function has the positions of satellites, the total number of satel-
lites, the source and destination nodes and some parameters of the constellation
as inputs. As usual, it returns the route path and the algorithm name. There are
three arrays that have the size of the total number of satellites. They are initialized,
distance is set to infinite, prev to Not-a-Number and visited to False, with the
distance of the source set to zero as a starting point. Then, the min-heap priority
queue Q_dijkstra is generated, keeping track of nodes and distances.
A while loop iterates over the unvisited nodes getting the one with minimum
distance and setting it as “visited”. The condition to leave the loop is when the
node is the destination satellite. The neighbours of the current satellite are analyzed
by computing the Euclidean distance and if a minimum distance is found, then
the distance vector, the array of predecessors and the priority queue are updated.
Since the chain of previous nodes has been recorded, it is possible to reconstruct
the path starting from the destination up to the source.
For further explanation, the pseudo-code is shown in Algorithm 3.

Unlike the algorithms that rely on the minimum hop count computation, Di-
jkstra’s procedure calculates the route which is the shortest in terms of overall
distance and propagation delay, however it may happen that it does not traverse
the minimum number of nodes. The implications of this fact require some further
analysis and observations, also in terms of overall performance, that are widely
discussed in the “Results and Discussion” section (Chapter 5).

4.3.5 DijkstraHop Routing Algorithm
This function is implemented in a similar way with respect to the traditional
Dijkstra’s algorithm, yet with a crucial distinction: rather than being optimized for
finding the shortest path in terms of distance, it focuses specifically on minimizing
the number of hops. The core modification lies in how neighboring nodes are
examined. Unlike the standard approach, where edge weights may vary and are
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Algorithm 3 Dijkstra’s Algorithm for Satellite Routing
1: Input: positions, num_satellites, src_node, dst_node, P , Q, F
2: Output: RoutePath, route_singleid_path, RoutingName
3: src_index← pair_to_id(Q, src_node)
4: dst_index← pair_to_id(Q, dst_node)
5: Initialize distance←∞, prev ← NaN , visited← False for all satellites
6: distance(src_index)← 0
7: Initialize priority queue Q_dijkstra← [(1 : num_satellites)′, distance]
8: while any satellite is not visited do
9: Extract node u with minimum distance from Q_dijkstra

10: Remove u from Q_dijkstra
11: Mark u as visited
12: if u == dst_index then
13: break
14: end if
15: Get (o, i) pair from u using id_to_pair(Q, u)
16: Get neighbours of u from get_4neighbours(P , Q, F , o, i)
17: for each neighbour v of u do
18: if v is not visited then
19: Calculate Euclidean distance alt← distance(u) + norm(positions(:

, u)− positions(:, v))
20: if alt < distance(v) then
21: Update distance(v)← alt
22: Update prev(v)← u
23: Update priority queue Q_dijkstra(v)← alt
24: end if
25: end if
26: end for
27: end while
28: Initialize empty route_singleid_path
29: Reconstruct the shortest path starting from dst_index:
30: while u is not NaN do
31: Prepend u to route_singleid_path
32: u← prev(u)
33: end while
34: Initialize RoutePath← empty array
35: for each index in route_singleid_path do
36: Convert index to (o, i) pair and append to RoutePath
37: end for
38: RoutingName← ’ with Dijkstra’
39: return RoutePath, route_singleid_path, RoutingName
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cumulatively summed to determine the shortest distance, here, every link is treated
as having a unitary weight.

To put this into context, the change in the pseudo-code is relatively localized,
affecting primarily the section responsible for exploring neighboring nodes and
calculating the cumulative cost of the path. Here, the weight of each edge is treated
as equal, reducing the complexity of edge comparison to merely counting steps
(Algorithm 4). In essence, the algorithm navigates the graph by assigning each
edge a uniform weight of one, simplifying the computation and optimizing for path
efficiency in terms of the number of intermediate nodes encountered. For a more
comprehensive evaluation of its performance, detailed results and comparative
metrics will be discussed in the subsequent chapter.

Algorithm 4 Neighbours exploration for DijkstraHop
Let h be the current number of hops from the source to node u
Let numOfHops(v) be the minimum number of hops from the source to node v
for each neighbour v of u do

if v is not visited then

alt← h + 1 ▷ Each edge represents one hop
if alt < numOfHops(v) then

Update numOfHops(v)← alt
Update prev(v)← u ▷ Set the predecessor of v to u
Update priority queue Q_dijkstra(v)← alt

end if
end if

end for

4.3.6 DijkstraTrans Routing algorithm
This method represents another variation of the classical Dijkstra’s algorithm,
originally designed to optimize the shortest path in terms of physical distance.
However, in this implementation, the focus shifts towards minimizing the overall
end-to-end delay. In the framework of this investigation, the end-to-end delay is the
sum of two key components: the traditional propagation delay and the transmission
time given by each node along the path.
The propagation delay is preserved as it is in the original Dijkstra’s algorithm,
reflecting the time taken for signals to travel across distances between satellites.
However, this implementation introduces an additional term: the transmission
time. This value, though fixed and externally configurable, plays a critical role
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in capturing the full scope of delays experienced during communication between
satellites.
In this modified algorithm, the transmission time is incorporated directly into
the core path-finding logic. In particular, within the for-loop section where the
neighboring satellites of a node under investigation are considered, the transmission
time is treated as an additional distance factor. To maintain consistency with the
propagation delay metric, the transmission time is multiplied by the speed of light,
effectively converting it into a distance. By summing these two components, the
propagation delay and the transmission time, the algorithm is capable of selecting
paths that offer the best performance in terms of overall end-to-end delay. For a
more detailed understanding of the implementation, the pseudo-code (Algorithm
5) shows the modifications that are applied in the loop responsible for evaluating
neighboring satellites. In Chapter 5 the algorithm performance and evaluation of
the results will be shown as well.

Algorithm 5 Neighbours exploration for DijkstraTrans
1: for each neighbour v of u do
2: if v is not visited then
3: Compute the distance between u and v, plus transmission time
4: alt← d + norm(positions(:, u)− positions(:, v)) + transT ime× c
5: if alt < distance(v) then
6: distance(v)← alt ▷ Update the shortest distance to node v
7: Update prev(v)← u ▷ Set the predecessor of v to u
8: Q_dijkstra(v)← alt ▷ Update priority queue
9: end if

10: end if
11: end for

4.3.7 New heuristic: T.A.A.T. enhancement
Algorithm T.A.A.T. stands for Targeted for Arctic and Antarctic Tracking. It
adapts the path calculation based on the latitude of the source and destination
satellites, potentially leveraging polar satellites when the source and destination
are near the poles. This technique is modeled to handle routing between satellites
in the polar regions of a constellation, especially when both the source and the
destination satellites are situated near the poles. The goal of the algorithm is to
efficiently use the satellites in the Arctic and Antarctic areas to minimize hops and
improve routing performance.
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Initially, the algorithm identifies the source and destination satellites’ latitude.
Subsequently, it checks two thresholds to trigger the algorithm:

• Is the latitude of both satellites greater than 62.5°? If yes, it means they are
close to a polar region. Noteworthy is the fact that the value of the threshold
is positive for the north pole and negative for the south pole.

• Are there enough hops between the source and destination satellites?

If these conditions are met, the T.A.A.T. algorithm is executed; otherwise, it
defaults to the DisCoRoute algorithm.
T.A.A.T. first identifies satellites located near the poles (above 82° latitude) and
calculates the Minimum Hop Count from the source satellite to these polar satellites.
Next, it calculates the minimum hops from the destination satellite to the same set
of polar satellites. By comparing the hop counts, the algorithm selects the best
polar satellite pair (one close to the source and one close to the destination) that
minimizes the total number of hops.

The routing process is divided into three segments:

• From the source satellite to the selected source polar satellite.

• From the source polar satellite to the destination polar satellite.

• From the destination polar satellite to the final destination satellite.

The section from the source satellite to the polar source is calculated by com-
puting the Minimum Hop Count from the source to a collection of polar satellites,
then selecting the one that is closest (in terms of hops) and finally computing the
route with Trivial algorithm. The same process is followed for the path from the
polar destination to the actual destination satellite.
For the polar-to-polar segment, T.A.A.T. selects routing paths through the poles by
minimizing a custom metric that incorporates the latitudes of the polar satellites
and the number of vertical hops. This ensures that the routing path takes full
advantage of the polar constellation’s geometry. Finally, the algorithm concatenates
the three segments into a single route, offering a final path through the polar region.
If the polar conditions are not met, the default DisCoRoute algorithm is used.
To improve the readability of the overall Algorithm, the latter has been split into 2
segments:

• the first section handles the input processing, if conditions and the basic
structure (Part 1 - Algorithm 6)

• the second one focuses on the routing in the polar regions and constructing
the final route (Part 2 - Algorithm 7)
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Algorithm 6 TAAT Routing Algorithm (Part 1)
1: Input: latitudes, src_node, dst_node, P, Q, F
2: Output: RoutePath, route_singleid_path, RoutingName, used_taat
3: PQ ← P * Q ▷ Total number of satellites
4: Extract source and destination satellite IDs
5: osrc, isrc ← src_node
6: odst, idst ← dst_node
7: src_id ← pair_to_id(Q, osrc, isrc)
8: dst_id ← pair_to_id(Q, odst, idst)
9: src_lat ← latitudes[src_id]

10: dst_lat ← latitudes[dst_id]
11: Compute Minimum Hop Count between Source and Destination
12: MinHopCount ← min_hop_count_v3(PQ, P, F, osrc, isrc, odst, idst)
13: Check Conditions for T.A.A.T. Routing
14: lat_threshold ← 62.5
15: lat_condition_north ← (src_lat > lat_threshold) and (dst_lat >

lat_threshold)
16: lat_condition_south ← (src_lat < -lat_threshold) and (dst_lat < -

lat_threshold)
17: lat_condition ← lat_condition_north or lat_condition_south
18: vertical_hop_threshold ← 5
19: hop_condition ← MinHopCount.H_h_H_v[2] > vertical_hop_threshold
20: taat_condition ← lat_condition and hop_condition
21: if taat_condition then
22: used_taat ← 1
23: Identify Pole Satellites
24: if lat_condition_north then
25: pole_satellites ← find(latitudes > 82)
26: else if lat_condition_south then
27: pole_satellites ← find(latitudes < -82)
28: end if
29: else
30: used_taat ← 0
31: Apply DiscoRouting
32: RoutePath ← runDiscoRouting(latitudes, src_node, dst_node, MinHop-

Count, P, Q, F)
33: Go to End
34: end if
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Algorithm 7 TAAT Routing Algorithm (Part 2)
1: Step 1: Compute hops from source to all pole satellites
2: for all ps in pole_satellites do
3: opole, ipole ← id_to_pair(Q, ps)
4: MinHopCountPoles ← min_hop_count(PQ, P, F, osrc, isrc, opole, ipole)
5: num_hop_src_to_pole_satellites[ps]← sum(MinHopCountPoles.H_h_H_v)
6: end for
7: Step 2: Compute hops from destination to all pole satellites
8: for all ps in pole_satellites do
9: opole, ipole ← id_to_pair(Q, ps)

10: MinHopCountPoles ← min_hop_count(PQ, P, F, opole, ipole, odst, idst)
11: num_hop_dst_to_pole_satellites[ps]← sum(MinHopCountPoles.H_h_H_v)
12: end for
13: Step 3: Select the best 5 pole satellites for source and destination
14: closest_src_pole ← mink(num_hop_src_to_pole_satellites, 5)
15: closest_dst_pole ← mink(num_hop_dst_to_pole_satellites, 5)
16: Step 4: Evaluate best pole satellite pair (source and destination)
17: Initialize num_hops_src_to_dst_with_poles[5][5] ← 0
18: for all src_pole in closest_src_pole do
19: for all dst_pole in closest_dst_pole do
20: Compute hops for source → src_pole → dst_pole → destination
21: Store result in num_hops_src_to_dst_with_poles
22: end for
23: end for
24: Select src_pole_best and dst_pole_best that minimize

num_hops_src_to_dst_with_poles
25: Construct the final route
26: RoutePath ← source → src_pole_best → dst_pole_best → destination
27: Convert route to single IDs
28: for all i in RoutePath do
29: route_singleid_path[i] ← pair_to_id(Q, RoutePath[i])
30: end for
31: RoutingName ← ’ with T.A.A.T.’
32: Return: RoutePath, route_singleid_path, RoutingName, used_taat
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Chapter 5

Results and Discussion

5.1 Overview
The entire project has been developed on MATLAB Release 2023b. All the constel-
lation patterns and the tested algorithms have been implemented with MATLAB
programming language. Their performance and the selected benchmarks have
been assessed through multiple simulations. The utilized computing machine has
a Windows 11 OS with CPU 11th Gen Intel Core i7 at 2.80GHz, and 16 GB of RAM.

In this chapter several constellation configurations are selected and illustrated
by plotting them in 3D with MATLAB function satelliteScenarioViewer. The
algorithms that have been outlined in Chapter 4, Methodology and Implementa-
tion, are plotted in 3D and 2D. They have been evaluated and compared taking
the conventional Dijkstra’s solution as a baseline. Firstly, the goal is to test the
reproducibility of the outcomes obtained in [5] (in terms of end-to-end delay and
computational time) of various optimal and sub-optimal routing algorithms on the
constellation. Then, a performance analysis of the procedures in terms of distinct
constellation conditions (different inclinations, altitudes and topologies) is shown.
Finally, the description of a new heuristic that handles routing in the polar regions
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is provided.

The constellation designs examined in this thesis are:

• LEO Walker Delta configuration 53°:1584/72/39 at 550 km from the FCC
Filing SAT-MOD-20190830 document sent by Space Exploration Holding LLC
[32]

• VLEO Walker Delta pattern 96.9°:2000/40/21 at 360 km from from the FCC
Filing SAT-AMD-20210818 document sent by Space Exploration Holding LLC
[33]

The phasing factor F is calculated by finding the value of the phase offset
from the obtained documentation (both [32] and [33] have a technical parameters
attachment that can be opened with Microsoft Access) and then inverting the
formula ∆f = 2πF

P Q
∈ [0, 2π[.

Note that as a further constellation, also LEO 60°:500/25/5 at 550 km has been
considered for plotting purposes.

5.2 Constellation 3D plots
In this project, two main Starlink constellation patterns are examined. They
are depicted in Figures 5.1 and 5.2. As elaborated in Chapter 2, these constel-
lations are arranged using the Walker Delta configuration, characterized by a
distinctive flower-like distribution of orbital planes that ensures near-global cov-
erage. Indeed, this type of design provides effective communication service over
the Earth’s surface, with the exception of the polar regions. The extent of these
uncovered polar gaps is influenced primarily by the inclination angle chosen for
the constellation (the higher the absolute value of α, the smaller the uncovered gap).

The LEO arranged setup is positioned at an altitude of 550 km, while the VLEO
configuration operates at 360 km. This altitude difference highlights the trade-offs
between coverage area, satellite count, orbital mechanics, and operational complex-
ity that must be carefully balanced in the design of satellite constellations. Lower
altitudes, as in the case of VLEO, offer reduced latency and improved resolution for
communication systems, but at the cost of requiring more satellites and increased
operational demands due to faster orbital dynamics.

As already mentioned, another critical consideration for VLEO constellations is
the stronger gravitational force experienced at lower altitudes. As a matter of fact,
satellites in VLEO must contend with a stronger gravitational attraction, conse-
quently, they orbit around the Earth at a faster rate, resulting in shorter orbital
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periods compared to satellites in LEO. This increased velocity also contributes to
faster orbital decay, causing shorter satellite lifespans.

(a) (1) (b) (2)

Figure 5.1: LEO Walker Delta constellation 53°:1584/72/39 at 550 km

(a) (1) (b) (2)

Figure 5.2: VLEO Walker Delta constellation 96.9°:2000/40/21 at 360 km

When visualizing the routing paths in the 3D representations, the source and
destination satellites are marked with red dots, while the satellites traversed along
the path are shown in green.
The connections between them are illustrated using the function plot_path (whose
full implementation is available in Appendix A).
Links between satellites in adjacent planes, known as interplane links, correspond
to horizontal hops (H_h) and are shown in green.
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Links between satellites within the same orbit, referred to as intraplane links,
represent vertical hops (H_v) and are shown in red.

Figures 5.3 and 5.4 refer to Trivial Routing and FlipCoin Routing applied
from source satellite (21,10) to destination satellite (23,13). Both algorithms use
the Minimum Hop Count as input, which is set to 5, consisting of 2 horizontal hops
and 3 vertical hops, with the selected direction being North-East.
Although both strategies have the same Minimum Hop Count and direction, they
take different paths, as illustrated in Tables 5.1 and 5.2 with the notation (o, i)
in the first two columns and the single satellite IDs in the remaining one. The
Trivial algorithm completes all the horizontal hops first before moving on to the
vertical hops. In contrast, the FlipCoin algorithm selects its path based on coin
flips, giving equal probability to each direction.

Figure 5.3: Trivial Route Path on LEO
53°:1584/72/39 from (21,10) to (23,13)

o i Single ID
21 10 473
22 10 495
23 10 517
23 11 518
23 12 519
23 13 520

Table 5.1: Trivial Route Path
on LEO from (21,10) to (23,13)

Figure 5.5 is the result of the traditional Dijkstra Routing algorithm applied
to find the shortest path in terms of overall distance (thus, minimum propagation
delay) from satellite (21,10) to (23,13). The route with the satellite nodes repre-
sented in both (o,i) and single IDs notations is in table 5.3.

Noteworthy is the fact that DisCoRoute converges to the same result using
both Minimum Hop Count (obtaining 3 horizontal hops and 2 vertical ones, with
direction North-East) and the part of the strategy that handles A2A (Ascending
to Ascending) satellites, constructing two routes of horizontal hops, one from the
source and one from the destination, and finally connecting them with a route of
vertical links (if necessary).
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Figure 5.4: Flip Coin Route on LEO
53°:1584/72/39 from (21,10) to (23,13)

o i Single ID
21 10 473
21 11 474
22 11 496
22 12 497
22 13 498
23 13 520

Table 5.2: Flip Coin Route Path
on LEO from (21,10) to (23,13)

Figure 5.5: Dijkstra Route Path on LEO
53°:1584/72/39 from (21,10) to (23,13)

o i Single ID
21 10 473
21 11 474
21 12 475
21 13 476
22 13 498
23 13 520

Table 5.3: Dijkstra Route Path
on LEO from (21,10) to (23,13)

Figure 5.6 shows DisCoRoute applied in the A2D (Ascending to Descending)
case from satellite (24,12) to (26,16). The Minimum Hop Count is 6 with 4 vertical
hops and 2 horizontal ones, direction North-East. DisCoRoute in the A2D (or
D2A) case exploits the conjecture that the closer the links to the poles, the shorter
the horizontal hops [5]. Therefore, firstly it selects the vertical hops in order to
reach the poles starting both from the source and the destination, then connects
the resulting two routes (one from the source and one from the destination) with
one made of only horizontal hops.

To provide further clarity, Figures 5.7a and 5.7b show two distinct scenarios
where the DisCoRoute algorithm selects paths based exclusively on vertical hops or
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Figure 5.6: DisCoRoute Route Path
on LEO 53°:1584/72/39 from (24,12) to
(26,16)

o i Single ID
24 12 541
24 13 542
24 14 543
25 14 565
26 14 587
26 15 588
26 16 589

Table 5.4: DisCoRoute Route
Path on LEO from (24,12) to
(26,16)

horizontal hops. In the first scenario, depicted in Figure 5.7a, the algorithm chooses
a path that involves only vertical hops. This path connects the starting node at
(24,6) to the destination node at (24,10), maintaining the same orbit index while
moving vertically across the grid. In contrast, Figure 5.7b depicts a case where the
algorithm opts for a path composed of horizontal hops. Here, the movement is from
node (47,21) to node (41,21), where the satellite index within an orbit remains
constant, and the algorithm traverses only horizontally. These two figures provide
clear visual examples of how Minimum Hop Count-based algorithms can adapt the
routing strategy based on the specific network scenario.

(a) DisCoRoute Route Path on LEO from
(24,6) to (24,10) only vertical hops

(b) DisCoRoute from (47,21) to (41,21)
only horizontal hops

Figure 5.7: DisCoRoute Route Path on LEO 53°:1584/72/39 at 550 km
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The same considerations can be applied to the Walker Delta configuration VLEO
96.9°:2000/40/21 at 360 km.
In Figure 5.8 Trivial Routing is applied to reach destination satellite (0,18) from
source satellite (37,5). The algorithm takes as input the Minimum Hop Count,
therefore the route will cross a total of 11 hops, with direction South-East (3 links
are horizontal and 8 vertical).

Figure 5.8: Trivial Path on VLEO
96.9°:2000/40/21 from (37,5) to (0,18)

o i Single ID
37 5 1856
38 5 1906
39 5 1956
0 26 27
0 25 26
0 24 25
0 23 24
0 22 23
0 21 22
0 20 21
0 19 20
0 18 19

Table 5.5: Trivial Route Path
on VLEO from (37,5) to (0,18)

FlipCoin route is shown in Figure 5.9. Since it also uses Minimum Hop Count
computation, the direction and the number of total hops (therefore, the amount
of both horizontal and vertical ones) are the same as Trivial routing. Indeed,
Minimum Hop Count shrinks the search space to a rectangular grid on the con-
stellation, where only Manhattan distances can be crossed. However, the choice of
nodes to be traversed is again dependent on the algorithms’ implementation.

Dijkstra’s route is presented in Figure 5.10 and Table 5.7. It is the same result
as DisCoRoute when it handles (37,5) and (18,0) as both Descending satellites
(D2D case).
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Figure 5.9: Flip Coin Path on VLEO
96.9°:2000/40/21 from (37,5) to (0,18)

o i Single ID
37 5 1856
37 4 1855
37 3 1854
37 2 1853
38 2 1903
38 1 1902
38 0 1901
39 0 1951
0 21 22
0 20 21
0 19 20
0 18 19

Table 5.6: Flip Coin Route Path
on VLEO from (37,5) to (0,18)

Figure 5.10: Dijkstra Path on VLEO
96.9°:2000/40/21 from (37,5) to (0,18)

o i Single ID
37 5 1856
37 4 1855
37 3 1854
37 2 1853
37 1 1852
37 0 1851
37 49 1900
37 48 1899
37 47 1898
38 47 1948
39 47 1998
0 18 19

Table 5.7: Dijkstra Route Path
on VLEO from (37,5) to (0,18)
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5.3 Performance Evaluation
In the following section the performance in terms of propagation delay and com-
putational time is shown and commented. The results are depicted both for LEO
and VLEO as usual, taking the conventional Dijkstra’s algorithm as a baseline.

The propagation delay is expressed in percentage to be consistent with [5].
In Figure 5.11 the performance of Trivial, FlipCoin and DisCoRoute is shown
for LEO 53°:1584/72/39 at 550 km over 20000 random pairs. All the algorithms
are at most 3% worse than Dijkstra’s, however, unlike Dijkstra, they guarantee
the Minimum Hop Count. The outcomes reproduce successfully what was proposed
in [5].
Then, in Figure 5.12 the investigation of Trivial’s, FlipCoin’s and DisCoRoute’s
propagation delay is extended to VLEO 96.9°:2000/40/21 at 360 km over 20000
random pairs. In this case, there is a clear degradation of performance since all
the algorithms perform even 60% worse than Dijkstra, with the exception of
DisCoRoute performing at most 9% worse. The results show that there is room of
improvement in this scenario.

When observing the computational time of LEO (Figure 5.13) and VLEO
(Figure 5.14), it is noticeable that in both cases Dijkstra’s computational time
is huge with respect to Trivial, FlipCoin and DisCoRoute: it depends on the
implementation of the algorithms and the different search space of Dijkstra with
respect to the one computed with Minimum Hop Count.

Figures 5.15 and 5.16 are histograms that illustrate the comparison in terms
of hop count between conventional Dijkstra and DisCoRoute strategies. They
have been analyzed over 20000 random pairs of source and destination satellites
belonging to LEO and VLEO configurations.
DisCoRoute prioritizes finding paths with the fewest possible hops by using the
Minimum Hop Count criterion. In contrast, Dijkstra’s algorithm focuses on
selecting paths with the smallest propagation delay, which can result in choosing
routes that, while shorter, may involve a greater number of hops than those selected
by DisCoRoute.
LEO Walker Delta configuration 53°:1584/72/39 has the majority (19816/20000) of
paths selected by both Dijkstra and DisCoRoute with the same number of hops.
The remaining 184 routes have 1 hop more when computed with Dijkstra instead
of DisCoRoute (Fig. 5.15).
VLEO 96.9°:2000/40/21 has 19135 paths in which Dijkstra and DisCoRoute share
the same number of hops, however it has also 361 where Dijkstra has 1 more
hop than DisCoRoute, 228 with 2 more hops, up to 12 with 11 more hops (Fig. 5.16).
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Trivial FlipCoin DiscoRoute
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Figure 5.11: Boxplot of propagation delay in LEO 53°:1584/72/39 over 20000
random pairs
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Figure 5.12: Boxplot of propagation delay in VLEO 96.9°:2000/40/21 over 20000
random pairs
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Figure 5.13: Boxplot of computational time in LEO 53°:1584/72/39 over 20000
random pairs
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Figure 5.14: Boxplot of computational time in VLEO 96.9°:2000/40/21 over
20000 random pairs

The choice of one algorithm with respect to another should be done based on a
trade-off: if the goal is the shortest distance, of course Dijkstra is the optimal solu-
tion. However, this strategy does not take into account the possible processing time,
queueing delay and transmission time that are present at each node. If they are
not negligible, then DisCoRoute becomes a better choice, despite being sub-optimal.
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Figure 5.15: Increase in hops of Dijkstra with respect to DisCoRoute on LEO
53°:1584/72/39 over 20000 random pairs

Figure 5.16: Increase in hops of Dijkstra with respect to DisCoRoute on VLEO
96.9°:2000/40/21 over 20000 random pairs
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5.4 Constellation 2D grid
Figures 5.17 and 5.18 visualize the same constellation patterns analyzed so far,
focusing on a 2D representation where the rows correspond to the orbit plane
indices (o) and the columns are the labels (i) of the satellites within an orbit (o).
The result is a satellite 2D grid, with each node represented by a unique pair of
indices (o,i). Then, the distances between every satellite and its four neighbours
are computed and normalized with respect to the global maximum distance (so
that their value goes from 0 to 1). Noteworthy is the fact that their normalized
magnitude is associated with a color map to show their impact in the constellation.

On the one hand, LEO configuration present distances that have similar colours
(corresponding to the nuances of orange in Figure 5.17). This implies that they
are close to each other in their magnitude and also analogous to the maximum
distance (which is dark red).
On the other hand, VLEO’s 2D grid shows a significant change regarding some
areas, where the distances are noticeably shorter (indeed, they are represented with
colours like yellow, light blue and blue). These zones correspond to the Arctic and
Antarctic regions.

Figure 5.17: Constellation 2D grid for LEO 53°:1584/72/39
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Figure 5.18: Constellation 2D grid for VLEO 96.9°:2000/40/21

5.5 Routing analysis changing altitude, inclina-
tion and topology

The analysis of the two-dimensional representations of the constellation designs for
LEO and VLEO reveals notable changes in the topology near the polar regions.
Shorter distances between neighbouring satellites may produce also variations in
the performance of the algorithms. Especially, DisCoRoute constructs segments of
its final routing path by using Minimum Hop Count and the latitudes of source
and destination satellites. To further analyze the performance of these algorithms,
tests are conducted by varying one parameter at a time, inclination, altitude,
or topology (defined by the number of planes and the number of satellites per
plane), while keeping the other two parameters fixed. This approach allows for
a detailed evaluation of how each parameter influences algorithmic performance.
Several simulations have been launched over 2000 random pairs to observe routing
performance in terms of average end-to-end delay (hereafter referred to as latency)
among pairs with specified benchmark values for altitude, inclination, topology
and transmission time.
The chosen quantities are:

• altitude: 360 km, 550 km, 800 km, 1000 km,

• inclination: 53°, 96.9°, 105°, 130°,

• topology: 1584/72/21 and 2000/40/39,

• transmission time: from 0 to 100ms.

62



Results and Discussion

5.5.1 Variation of altitude
The benchmarks (360 km, 550 km, 800 km, 1000 km) have been selected both
based on the technical reports of [32] and [33] and empirically.

Distribution of distances and performance of algorithms for configuration
53°:1584/72/39

The topology of the constellation is 1584/72/39, the inclination is fixed at 53° and
the transmission time at zero. The altitude varies from 360 km to 1000 km.
Figure 5.19 represents the distribution of vertical and horizontal distances for
the just mentioned scenario. As expected, the higher the altitude, the larger the
magnitude of the distances. It’s quite interesting to note that the distribution of
horizontal hops slightly increases with altitude as well.
Figures 5.20 and 5.21 both depict the relation between end-to-end delay and al-
titude. The difference is that the second figure takes DijkstraTrans as baseline
(with transmission time equal to zero). In line with intuitions, the latency increases
with altitude and the mutual performance of algorithms is almost unchanged,
with Dijkstra, DijkstraTrans being optimal and DisCoRoute being better than
Trivial and FlipCoin.

Figure 5.19: Distribution of distances in 53°:1584/72/39 changing altitude
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Figure 5.20: Latency vs Altitude for 53°:1584/72/39 over 2000 random pairs
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Figure 5.21: Latency vs Altitude w.r.t. DijkstraTrans for 53°:1584/72/39 over
2000 random pairs
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Distribution of distances and performance of algorithms for configuration
96.9°:2000/40/21

Analogously to the previous case, the configuration of the topology is 2000/40/21,
the inclination is 96.9° and the transmission time is set to zero. The altitude
changes from 360 km to 1000 km.

In Figure 5.22 the distribution of vertical and horizontal distances for the chosen
layout is shown. The same considerations done for the previous case are also
valid here. Notably, the distribution of horizontal hops exhibits a marked increase
as altitude rises. Selecting the appropriate horizontal hop makes a substantial
difference in terms of distance, and consequently, in delay.
In Figures 5.23 and 5.24 similar observations to the 1584/72/39 case hold here as
well.

Figure 5.22: Distribution of distances in 96.9°:2000/40/21 changing altitude
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Figure 5.23: Latency vs Altitude for 96.9°:2000/40/21 over 2000 random pairs
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Figure 5.24: Latency vs Altitude w.r.t. DijkstraTrans for 96.9°:2000/40/21 over
2000 random pairs
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5.5.2 Variation of inclination
The benchmarks (53°, 96.9°, 105°, 130°) have been chosen based on the technical
reports of [32] and [33].

Distribution of distances and performance of algorithms for configuration
1584/72/39

The constellation pattern is 1584/72/39, the altitude is fixed at 550 km and the
transmission time at zero. The inclination varies from 53° to 130°.

The distribution of vertical and horizontal distances is in Figure 5.25. Inter-
estingly, the higher the inclination, the smaller the magnitude of the distances.
Noteworthy the fact that the distribution of horizontal hops slightly increases with
inclination as well.

Figures 5.26 and 5.27 show the behaviour of the end-to-end delay with respect
to inclination. As usual, the second figure takes DijkstraTrans as baseline (with
transmission time equal to zero). The latency decreases with inclination. Further
considerations on the performance of the algorithms are presented in the 2000/40/21
case.

Figure 5.25: Distribution of distances in 1584/72/39 changing inclination
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Figure 5.26: Latency vs Inclination for 1584/72/39 over 2000 random pairs
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Figure 5.27: Latency vs Inclination w.r.t. Transmission Time for 1584/72/39
over 2000 random pairs
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Distribution of distances and performance of algorithms for configuration
2000/40/21

In the following section, the configuration of the constellation under test is
2000/40/21, the altitude is set at 360 km and the transmission time at zero.
The inclination varies from 53° to 130°.

The distribution of vertical and horizontal distances is in Figure 5.28. As for the
previous case, the distances get smaller in magnitude the higher the inclination. In
this scenario, the distribution of horizontal hops significantly grows with inclination.
The latency with respect to the inclination is described as usual by Figures 5.29
and 5.30. All the algorithms perform better by increasing the inclination. In
particular, Dijkstra, DijkstraTrans and DisCoRoute perform better the higher
the inclination.

The latency decreases, however it suggests either a stabilization point or an
increase the higher the inclination. Therefore, a further study has been conducted
including the full period of possible inclinations from 0° to 360°.
Figures 5.31 and 5.32 show the results. The second figure collects the same out-
comes, however it represents them taking DijkstraTrans as a baseline. What
emerges is that there is a symmetry in performance around 180°, which probably
depends on the Walker Delta initial set-up. Indeed, the findings in Figure 5.29
correspond exactly to the interval from 53° to 130° of Figure 5.31.

Figure 5.33 is illustrated in order to correlate the physical properties of the con-
stellation with the resulting performance in routing. It is the plot of the standard
deviation of horizontal hops (Distances in [m]) in the previously shown histograms
of 2000/40/21 when changing inclination and the average delay (Delay in [s]) of
DisCoRoute taking as a baseline DijkstraTrans. Both are normalized with respect
to their maximum value.
Interestingly, Pearson correlation between delays and distances in the interval from
30° to 130° is very high (0.8874).

As a final insight, DisCoRoute and Minimum Hop Count work well when hops
have similar distances so that minimizing the number of hops is almost equivalent
to computing the total shortest distance (Dijkstra).
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Figure 5.28: Distribution of distances in 2000/40/21 varying inclination
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Figure 5.29: Latency vs Inclination for 2000/40/21 over 2000 random pairs
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Figure 5.30: Latency vs Inclination w.r.t. DijkstraTrans for 2000/40/21 over
2000 random pairs
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Figure 5.31: Latency vs Inclination full 360° for 2000/40/21 over 2000 random
pairs

71



Results and Discussion

0 50 100 150 200 250 300 350 400

Inclination [deg]

0

1

2

3

4

5

6

7

8

9

D
e
la

y
 [
s
]

10-3
Latency vs inclination full 360° w.r.t. DijkstraTrans for const: VLEO alt: 360 km trans-time: 0.00000 s pairs:2000

Trivial

Flip

Disco

Dijkstra

DijkstraHop

DijkstraTrans

Figure 5.32: Latency vs Inclination full 360° w.r.t. DijkstraTrans for 2000/40/21
over 2000 random pairs
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5.5.3 Variation of topology
Selected topologies are 1584/72/39 and 2000/40/21. Figure 5.34 and Figure 5.35
present two cases the first with same inclination 53° and altitude 550 km and the
second with inclination 96.9° and altitude 550 km. In the case of 1584/72/39,
utilizing vertical hops (the red bar) is not convenient due to their length, which can
lead to inefficiencies. Conversely, the situation is reversed in 2000/40/21, where
vertical hops are more advantageous since they are shorter than several horizontal
hops. Notably, the distribution of horizontal hops in 2000/40/21 is larger than
that in 1584/72/39. This emphasizes the critical importance of selecting the right
horizontal hops in 2000/40/21, as this decision has a significant impact on overall
performance.

Figure 5.34: Same inclination at 53°, same altitude at 360 km, different topologies
2000/40/21 and 1584/72/39
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Figure 5.35: Same inclination at 96.9°, same altitude at 550 km, different
topologies 2000/40/21 and 1584/72/39

5.5.4 Performance changing the transmission time
The transmission time goes from 0 to 100ms. These values have been decided to
be consistent with the maximum latency between two neighbouring satellites (for
instance in 2000/40/21 is 3.7 ms). Figures 5.36 and 5.37 represent the traditional
53°:1584/72/39 setup taking DijkstraTrans as a baseline.
Figures 5.38 and 5.39 represent the 96.9°:2000/40/21 pattern, taking the usual
DijkstraTrans as a baseline.

The following observations are presented and hold for all the just-mentioned
scenarios:

• DijkstraTrans performs better than Dijkstra when the transmission time
is high (because it selects a better route with fewer hops when transmission
time is high)

• At a certain time even DisCoRoute performs better than Dijkstra because it
has the minimum number of hops calculated with Minimum Hop Count (and
for each hop the transmission time is added). This phenomenon is even more
evident in Figure 5.40.
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Figure 5.36: Latency vs Transmission Time 53°:1584/72/39 at 550 km over 2000
random pairs
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Figure 5.37: Latency vs Transmission Time w.r.t DijkstraTrans 53°:1584/72/39
at 550 km over 2000 random pairs
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Figure 5.38: Latency vs Transmission Time 96.9°:2000/40/21 at 360 km over
2000 random pairs

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Transmission time [s]

0

1

2

3

4

5

6

7

8

D
e
la

y
 [
s
]

10-3
Latency vs TransTime w.r.t. DijkstraTrans for const:VLEO alt: 360 km incl: 96.9 deg pairs:2000

Trivial

Flip

Disco

Dijkstra

DijkstraHop

DijkstraTrans

Figure 5.39: Latency vs Transmission Time w.r.t. DijkstraTrans 96.9°:2000/40/21
at 360 km over 2000 random pairs
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Figure 5.40: Latency vs Transmission Time 53°:2000/40/21 at 550 km over 2000
random pairs
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5.6 Enhancement: new heuristic
This section provides several illustrations of 3D plots and 2D satellite grid repre-
sentations for a VLEO constellation characterized by an inclination of 96.9° and an
orbital configuration of 2000/40/21. The visualizations include the orbital paths
and inter-satellite connections for a specific satellite pair within this constellation.
Indeed, as an example, the source satellite is identified by (34,23), while the desti-
nation satellite is (9,29). These plots effectively highlight the relative positions and
movement patterns in both three-dimensional space and a flattened grid layout,
showing the routing paths between the selected satellites, using the algorithms
DisCoRoute, Dijkstra and the new heuristic TAAT.

It is evident from Figures 5.42 and 5.41 that if DisCoRoute is used, the potential
benefits of shorter link distances in the polar regions are not fully utilized as
expected. In the 2D grid representation, the selected route avoids traversing the
light blue area of the grid, indicating that these regions, which could offer more effi-
cient connections due to shorter link magnitudes, are not being adequately exploited.

Figure 5.41: DisCoRoute Route Path on VLEO 96.9°:2000/40/21 from (34,23)
to (9,29)

When employing Dijkstra, the satellite pair is connected thanks to a zig-zag
route crossing the polar zones, which is clearly visible in the 3-dimensional repre-
sentation from Figures 5.43 and 5.44.
The zoom has been captured making the satelliteScenario progress in time
solely for visualization purposes, indeed, the analysis of this thesis remains static.
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Figure 5.42: VLEO 2D grid with DisCoRoute Route Path from (34,23) to (9,29)

The zig-zag pattern is even more apparent in the flattened 2-dimensional representa-
tion (Figure 5.45), where the path passes through the light blue area, corresponding
to the South Pole region.

Figure 5.43: Dijkstra Route Path on VLEO 96.9°:2000/40/21 from (34,23) to
(9,29)
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Figure 5.44: Zoom on Dijkstra Route Path from (34,23) to (9,29)

Figure 5.45: VLEO 2D grid with Dijkstra Route Path from (34,23) to (9,29)
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In Figures 5.46 and 5.47 the new heuristic TAAT (Targeted for Arctic and Antarctic
Tracking aims at using DisCoRoute outside the Arctic and Antarctic zones, whereas
it constructs a 3-segments route within these regions, 2 using Trivial Routing and
1 connecting the polar source and polar destination employing Weighted Round
Robin, reproducing a zig-zag route within the polar areas.

Testing the performance for the aforementioned algorithms on 2000 random
pairs, the outcomes show that:

• when computing the performance over 2000 random pairs, the new heuristic
is used 41 times (2% of cases),

• average delay of TAAT is 0.05123 s, with standard deviation equal to 0.01894s

• average delay of DisCoRoute is 0.05133 with standard deviation = 0.01894 s

• the average number of hops in TAAT is 21.3895

• the average number of hops in DisCoRoute is 21.3620

• the average number of hops in Dijkstra is 21.5010

Consequently, the TAAT algorithm demonstrates better performance compared
to DisCoRoute in terms of average delay, achieving lower mean latency across the
evaluated 2000 random pairs.
Additionally, it outperforms the Dijkstra algorithm with a reduced average num-
ber of hops, indicating more efficient routing. However, despite these advantages,
the TAAT algorithm still tends to utilize a higher number of hops in the polar regions
with respect to the minimum, due to the 3-segment strategy. This tendency suggests
that there is still significant potential for improving the algorithm, particularly in
the way it manages paths in areas where satellite connectivity is dense but link
distances are shorter.
Such improvements could include dynamic adjustments based on regional link
density, enhanced path selection criteria to prioritize shorter links in high-latitude
zones. These enhancements would help in further reducing latency and improving
the overall efficiency of satellite communication in VLEO constellations.
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Figure 5.46: TAAT Route Path on VLEO 96.9°:2000/40/21 from (34,23) to (9,29)

Figure 5.47: VLEO 2D grid with TAAT Route Path from (34,23) to (9,29)
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Chapter 6

Conclusions and Future
Works

This master’s thesis is a comprehensive study of the performance of several
routing strategies, initially applied on a LEO Walker Delta configuration and
subsequently on a VLEO pattern.
The analysis, realized with different topologies, inclinations, and altitudes, has
revealed key insights into the effectiveness of these algorithms under varying orbital
conditions. One of the major findings has been the identification of a critical perfor-
mance issue in DisCoRoute, the routing algorithm most suitable for Starlink’s LEO
53°:1584/72/39 configuration. In particular, a performance degradation around
the Arctic and Antarctic regions has been observed and consequently tackled by
the introduction of a new heuristic, whose name has been defined as TAAT which
stands for Targeted for Arctic and Antarctic Tracking.

Firstly, the LEO 53°:1584/72/39 at 550 km has been implemented in MAT-
LAB. On the just-mentioned constellation, the reproducibility of the performance
of DisCoRoute algorithm with respect to Dijkstra introduced in Distributed On-
Demand Routing for LEO Mega-Constellations: A Starlink Case Study by G.Stock,
J. Fraire and H. Hermanns [5] has been successfully tested and confirmed.
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Then, the investigation has been extended to a more challenging scenario, the
configuration 96.9°:2000/40/21 at 360km (VLEO). The noticeable difference in
the results has suggested a drop in performance of DisCoRoute around the polar
regions. This fact has prompted a further analysis, that has been conducted by
changing the altitude (selecting as benchmark values 360 km, 550 km, 800 km,
1000 km), the inclination (with 53°,60°,85°,105°,130°) and the topologies (different
number of planes and number of satellites per plane). The outcomes have shown
an increase in latency (propagation and transmission delays) proportional to the
altitude and inversely proportional to the inclination (due to the symmetry of the
Walker Delta configuration around 180°).

Finally, the behaviour of DisCoRoute algorithm in the Arctic and Antarctic
regions has been addressed by proposing the new heuristic (TAAT). The latter
selects DisCoRoute whenever both source and destination are far from the polar
areas, otherwise it computes a route composed of 3 segments, 2 of which use Trivial
Routing and 1 Weighted Round Robin. This hybrid approach has led to improved
performance, particularly in reducing average latency.

In conclusion, this thesis has contributed a novel routing heuristic, TAAT, that
successfully addresses the critical performance issues of existing algorithms in polar
regions, offering a significant improvement in latency. The results demonstrate the
importance of considering inclination and altitude changes as well as topological
variations in satellite constellations when designing efficient routing algorithms for
global coverage.

6.1 Future works
Future research could build on the findings of this work by further refining the
heuristic and exploring its applicability to other constellation types and network
conditions.
For instance, in the introduced heuristic, there is potential for further optimization
in constructing routes that traverse polar areas. Rather than using the current
approach of dividing the route into 3 segments, where the first segment connects
the source to a point in the polar region (polar source), the second connects the
polar source to another point in the polar region (polar destination), and the third
connects the polar destination to the final destination, a more efficient method
could be employed. Specifically, a new criterion could be developed to identify a
single optimal point within the polar region. Both the source and destination could
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then be directly connected to this single polar point, effectively reducing the route
to just 2 segments. The route would simply consist of 2 direct connections: one
from the source to the chosen polar point, and the second from the polar point to
the destination, reducing the overall route complexity and improving latency.

The issue at the Arctic and Antarctic zones highlights a criticality in the general
formalism of routing algorithms. It could be interesting, as a further approach, to
use a routing strategy that near the poles does not confine the geometry of possible
hops only to the 4 neighbours of each satellite (left, right, previous and successive).

The performance evaluation of the routing algorithms in this thesis has been
conducted on a static constellation model. While this approach provides valuable
insights, the analysis can be expanded by considering a dynamic constellation,
where the positions of satellites and links vary over time. A dynamic model would
allow for a more realistic simulation of satellite networks, capturing the temporal
fluctuations in satellite connectivity and node availability.

Moreover, expanding the analysis beyond latency, which was the primary perfor-
mance metric in this study, would enable a deeper understanding of how routing
algorithms perform under different operational conditions. Other metrics, such as
queue size at each node, traffic load distribution, load balancing efficiency, and
link quality, could become more critical depending on the specific application or
network context.
For example, in scenarios where algorithms prioritize minimum hop count, once the
search space is restricted to a rectangular graph, it would be beneficial to further
refine the weights of each edge based on a traffic model that incorporates elements
of uncertainty. This approach could allow the routing algorithm to dynamically
adjust to fluctuating traffic conditions, prioritizing paths that can better handle
congestion or varying traffic loads. By assigning weights to edges that reflect real-
time conditions, such as link quality, traffic volume, and node buffer capacity, an
algorithm could make more informed routing decisions, enhancing overall network
performance.
Incorporating such metrics into the analysis would also enable a more compre-
hensive study of load balancing across the network. Instead of focusing only on
minimizing latency, the routing algorithms could be optimized to distribute traffic
more evenly among nodes, preventing bottlenecks in high-traffic areas. Additionally,
queue sizes at each node could be monitored to ensure efficient handling of data
packets, and link quality could be factored in to prioritize routes with more stable
and reliable connections.
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In addition to focusing only on the deterministic routing strategies, it would
be intriguing to explore machine learning techniques, particularly Reinforcement
Learning (Q-learning), for satellite networks. Deterministic methods offer pre-
dictable routing but may lack flexibility in dynamic environments, such as those
with fluctuating traffic or varying link quality. By implementing Q-learning, net-
work nodes could act as agents that learn optimal routing strategies over time,
based on real-time feedback.
A comparative analysis of deterministic versus Q-learning approaches would offer
valuable insights. Deterministic methods might excel in static or predictable scenar-
ios, but Reinforcement Learning algorithms would likely offer superior adaptability
and load balancing in more complex, real-time conditions. This combination could
significantly enhance routing resilience in satellite networks.
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Useful MATLAB functions

• Functions id_to_pair and pair_to_id

1 f unc t i on [ o , i ]= id_to_pair (Q, id )
2 %from s i n g l e ID to pa i r {o , i }
3 o = f l o o r ( ( id −1) / Q) ;
4 i = mod( ( id −1) , Q) ;
5 end

1 f unc t i on id = pair_to_id (Q, o , i )
2 %get sa t index from pa i r ( o , i )
3 id = o ∗ Q + i + 1 ;
4 end

• Functions get_left and get_right

1 f unc t i on [ o_le f t , i _ l e f t ] = g e t _ l e f t (Q, F , P, o , i )
2 % get sa t on the l e f t o f the cur rent one
3 i f o ~= 0
4 o_le f t = o − 1 ;
5 i _ l e f t = i ;
6 e l s e
7 o_le f t = P − 1 ;
8 i _ l e f t = mod( i − F, Q) ;
9 end

10 end
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1 f unc t i on [ o_right , i_r i ght ] = get_r ight (Q, F , P, o , i )
2 %get sa t on the r i g h t o f the cur rent one
3 i f o ~= P − 1
4 o_right = o + 1 ;
5 i_r i gh t = i ;
6 e l s e
7 o_right = 0 ;
8 i_r i gh t = mod( i + F, Q) ;
9 end

10 end

• Functions get_successive and get_previous

1 f unc t i on [ o_succ , i_succ ] = ge t_succe s s i v e (Q, o , i )
2 %get s u c c e s s i v e sa t i n d i c e s in the same o r b i t
3 o_succ = o ;
4 i_succ = mod( i + 1 , Q) ;
5 end

1 f unc t i on [ o_prev , i_prev ] = get_previous (Q, o , i )
2 %get prev ious
3 o_prev = o ;
4 i_prev = mod( i − 1 , Q) ;
5 end

• Function isAscending

1 f unc t i on t f = isAscending ( o_test , i_test ,PQ,P,F)
2 %compute u_test o f sa t ( o_test , i_t e s t ) from walkerDelta

param
3 Q = PQ/P;
4 delta_phi = 2 ∗ pi / Q;
5 de l ta_f = F ∗ 2 ∗ pi / PQ;
6 u_test = normal ize_pi ( o_test ∗ de l ta_f + i_te s t ∗ delta_phi ) ;
7 % Check i f the s a t e l l i t e i s in ascending node
8 t f = (−pi /2 <= u_test ) && ( u_test <= pi /2) ;
9 end

90



Useful MATLAB functions

• Function plot_path on 3D constellation

1 f unc t i on plot_path ( c o n s t e l l a t i o n , path_indices ,Q)
2 path_indices_o_i = ze ro s ( l ength ( path_indices ) , 2) ;
3 f o r idx = 1 : l ength ( path_indices )
4 [ o , i ] = id_to_pair (Q, path_indices ( idx ) ) ;
5 path_indices_o_i ( idx , : ) = [ o , i ] ;
6 end
7

8 c o l o r s _ f l a g = d i f f ( path_indices_o_i ( : , 1 ) ) ;
9

10 %plo t f i r s t and l a s t sa t nodes
11 f o r i =1:numel ( path_indices )
12 c o n s t e l l a t i o n ( path_indices ( i ) ) . MarkerSize = 12 ;
13 i f i == 1 | | i == numel ( path_indices )
14 c o n s t e l l a t i o n ( path_indices ( i ) ) . MarkerColor = [ 0 . 8 5 0 0 0 .3250

0 . 0 9 8 0 ] ;
15 e l s e
16 c o n s t e l l a t i o n ( path_indices ( i ) ) . MarkerColor = [ 0 . 4 6 6 0 0 .6740

0 . 1 8 8 0 ] ;
17 end
18 end
19 %plo t l i n k s
20 f o r i = 1 : numel ( path_indices )−1
21 gimbaltxSat = gimbal ( c o n s t e l l a t i o n ( path_indices ( i ) ) ) ;
22 gimbalrxSat = gimbal ( c o n s t e l l a t i o n ( path_indices ( i +1) ) ) ;
23

24 rxSat = r e c e i v e r ( gimbalrxSat ) ;
25 txSat = t ran smi t t e r ( gimbaltxSat ) ;
26 pointAt ( gimbaltxSat , c o n s t e l l a t i o n ( path_indices ( i +1) ) ) ;
27 pointAt ( gimbalrxSat , c o n s t e l l a t i o n ( path_indices ( i ) ) ) ;
28 %l i n k
29 lnk = l i n k ( txSat , rxSat ) ;
30 s e t ( lnk , ’ LineWidth ’ , 4 ) ;
31 i f c o l o r s _ f l a g ( i ) == 0
32 s e t ( lnk , ’ LineColor ’ , ’ red ’ )
33 e l s e
34 s e t ( lnk , ’ LineColor ’ , ’ green ’ )
35 end
36 end
37 end
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