
POLYTECHNIC OF TURIN

Master’s Degree in Electronic Engineering

Master’s Degree Thesis

5G-Enabled UAV System:
Implementation, Deployment and

Analysis

Supervisors

Prof. Carla Fabiana CHIASSERINI

Dr. Corrado PULIGHEDDU

Candidate

Lorenzo BRAVI

OCT 2024

Abstract

With the growing adoption of Unmanned Aerial Vehicles (UAVs) across various industries, the
need for reliable, real-time control of these systems has become more critical than ever. UAVs
are now utilized in various use-cases ranging from civilian to military, many of which demand
low-latency highly reliable communication between the drone and its control system. However,
conventional communication networks like 4G LTE and earlier technologies often fall short of
meeting the demanding needs of these applications.
In this context, a key enabling technology is edge computing: in the edge computing paradigm,
computation and data storage are brought closer to the location where they are needed, typically
just outside the network core. This has the main benefit of reducing the latency of communication
towards the User Equipment (UE) compared to using cloud servers and allows for real-time
processing. Concerning UAV operations, edge computing also enables offloading resource-intensive
tasks, such as trajectory calculation and image processing, to local servers, thereby reducing the
computational load on the UAV itself and extending its battery life.
This thesis seeks to demonstrate the deployment and performance of a 5G-enabled UAV system.
The study aims to explore the challenges involved in its implementation and assess its capacity
to deliver reliable and real-time control in UAV operations.
The first aspect that is investigated is the deployment of an OpenAirInterface 5G network
leveraging Ettus USRP B210 software-defined radios. After the correct operation of the network
is validated, the thesis moves on to examine a second critical component: the PX4 Autopilot
framework, an open-source flight control software providing a simulation environment and
integration with Robot Operating System 2 (ROS2).
Having laid the theoretical background, the complete deployment of the 5G-enabled UAV testbed
is documented, detailing the development of the ROS2 UAV control application and proposing
solutions to the issues that arise, especially regarding the ROS2 Middleware for communications.
The experimental UAV testbed is then analyzed in terms of trajectory error, occupied network
bandwidth and ROS2 application round-trip time (RTT). The study proposes a method to measure
RTT based on talker/listener ROS2 nodes and researches the causes of the high variability of
RTT over time by gathering and analyzing the behavior of RAN KPIs. Finally, trajectory error
between the desired and actual flight paths is evaluated, in particular when varying angular
velocity over the circular trajectory and control publishing frequency. The analysis identifies a
critical angular velocity over which the UAV is not controlled effectively and suggests a value for
the control publishing frequency.
Since the thesis makes use of a simulated UAV, future work could concentrate on repeating
the performance evaluation with an actual UAV, as well as applying a URRLC network slice
to the UE and employing more advanced edge-computing frameworks (such as Multi-access
Edge-Computing) to further improve trajectory error.

Acknowledgements

The work of this thesis was performed at the Advanced Wireless Experience (AWE) lab at Po-
litecnico di Torino. Many thanks to Prof. Carla Fabiana Chiasserini and Dr. Corrado Puligheddu
for allowing me to work on this thesis under their supervision.

I would also like to express my deep gratitude to PhD student Yen-Chia Yu (Rex) for his
unwavering support and altruistic attitude.
Finally, special thanks to my friend and fellow colleague Davide Boggio Marzet for his collaboration
throughout the ups and downs of this journey.

2

Table of Contents

1 Introduction 7
1.1 Problem Statement and Research Objective . 7

2 5G System Overview 8
2.1 System Architecture . 9
2.2 RAN fundamentals . 11

2.2.1 OFDM . 12
2.2.2 Frequency Ranges and Numerology . 12
2.2.3 Frame Structure and PRBs . 12
2.2.4 Physical Channels and Signals . 13

2.3 Cloud Computing and Edge Computing . 14
2.3.1 Multi-access Edge Computing . 15

3 OpenAirInterface 5G 17
3.1 Deployment of OAI5G network with nr-UE . 17
3.2 OAI MEP . 20

3.2.1 Deployment of OAI-MEP 5G network with RFsim 22
3.2.2 Understanding the example MEC app . 22
3.2.3 Deployment of OAI-MEP 5G network with nr-UE 25
3.2.4 Evaluation of MEP Testbed: Radio Link Measurements 27

4 PX4 Autopilot 31
4.1 System Architecture . 31
4.2 Software Architecture . 32

4.2.1 Flight Stack . 33
4.2.2 Middleware . 34
4.2.3 Update Rates . 35
4.2.4 Runtime Environment . 35

4.3 Simulation Environments . 35
4.4 Flight Modes . 36

4.4.1 Offboard Control Mode . 37
4.5 PX4-ROS2 Integration . 38

4.5.1 Architecture . 38
4.5.2 ROS2 Middleware (RMW) - DDS . 39
4.5.3 Discovery of nodes . 41

4.6 Related Works . 41

4

5 UAV Testbed Deployment 43
5.1 PX4/ROS2 Offboard Control Application . 43
5.2 ROS2 Middleware Troubleshooting . 44

5.2.1 Zenoh . 45
5.2.2 Zenoh bridge for ROS2 over DDS . 45

5.3 Network topology of UAV Testbed . 46
5.3.1 Finalized UAV Testbed . 46

6 UAV Testbed Analysis 50
6.1 ROS2 topics throughput . 50
6.2 ROS2 Application Round-trip Time . 51

6.2.1 Talker/Listener nodes . 52
6.2.2 RTT measurements . 52
6.2.3 Latency Spikes Investigation . 54

6.3 Trajectory Error . 58
6.3.1 vs. Angular Velocity . 60
6.3.2 vs. Control Publishing Frequency . 62

7 Conclusions 67
7.1 Future Works . 68

List of Figures 69

List of Tables 71

A Offboard Control C++ Application 72

B ROS2 Talker/Listener nodes 78
B.1 Talker . 78
B.2 Listener . 81

Bibliography 82

5

Chapter 1

Introduction

Fifth-generation mobile networks (5G) represent a significant leap in wireless communication
technology. 5G offers higher data rates, lower latency, and higher reliability compared to its
predecessors, making it ideal for applications that require real-time communication and fast data
processing.
An example of such applications is the control Unmanned Aerial Vehicles (UAVs). A UAV,
commonly referred to as a drone, is an aircraft that operates without a human pilot on board, via
radio control or in a completely autonomous fashion using onboard computers and sensors. They
are widely used for a range of applications, going from civilian to military uses, from agriculture
and disaster response to search-and-rescue and mapping.
In this context, a key enabling technology is edge computing: in the edge computing paradigm,
computation and data storage are brought closer to the location where they are needed, typically
just outside the network core. This has the main benefit of reducing the latency of communication
towards the User Equipment compared to using cloud servers and allows for real-time processing.
Concerning UAV operations, edge computing enables offloading resource-intensive tasks, such as
trajectory calculation and image processing, to local servers, thereby reducing the computational
load on the UAV itself and extending its battery life.

1.1 Problem Statement and Research Objective
With the growing adoption of Unmanned Aerial Vehicles (UAVs) in various industries, the need
for reliable, real-time control of these systems has become more critical than ever. UAVs are
increasingly employed in applications ranging from aerial surveillance to logistics, most of which
require seamless communication between the drone and the operator or control system. However,
traditional communication technologies, including 4G LTE and earlier networks, struggle to meet
the stringent requirements of these use cases, particularly in terms of latency and bandwidth.
While 4G technology offers moderate data throughput and latency, it lacks the ability to support
ultra-reliable and low-latency communications (URLLC), which are of great aid in real-time UAV
control. The introduction of 5G technology, with its promise of enhanced mobile broadband
(eMBB) and URLLC, presents a potential solution to these issues.

This thesis seeks to demonstrate the deployment and performance of a 5G-enabled UAV system.
The study aims to explore the challenges involved in its implementation and assess its capacity
to deliver reliable and real-time control in UAV operations. By doing so, this research aims to
contribute to the growing body of knowledge on leveraging 5G technology for UAV applications.

7

Chapter 2

5G System Overview

5G refers to the fifth generation of mobile telephony, a system defined and standardized by the
Third Generation Partnership Project (3GPP).
3GPP is a consortium made up of a number of standards organizations: it produces complete
specifications not only for the air interface (PHY+DATA layers), but also for all network interfaces
crucial for the operation of mobile systems. This encompasses call and session control, mobility
management, service provisioning, and other essential functionalities. Such comprehensive
standards enable 3GPP networks to seamlessly operate across different vendors and operators,
which aided in the global convergence towards 3GPP specifications.
3GPP was formed in 1998 and is best known for producing complete specifications of:

• 2G: GSM, GPRS, EDGE

• 3G: UMTS, HSPA, HSPA+

• 4G: LTE, LTE Advanced, LTE Advanced Pro

• 5G: NR, 5G Advanced

5G enhances 4G services across various dimensions:

• Enhanced Mobile Broadband (eMBB): 5G specifies higher data rates, offering up to
50 Mbps for outdoor and 1 Gbps for indoor (5GLAN) in the downlink, with half of these
values available for the uplink. Case studies, including aviation, demonstrate 5G’s capability
to deliver a bitrate of 1.2 Gbps to airborne flights.

• Critical Communications (CC) and Ultra Reliable and Low Latency Communi-
cations (URLLC): In contexts requiring a highly reliable link, 5G can ensure a reliability
of 99.9999% and end-to-end latency of 50 ms. Edge computing (describe in section 3.1)
plays a vital role in achieving these requirements.

• Massive Internet of Things (mIoT) : 5G supports scenarios with very high traffic
densities of devices

It is important to understand that the key advantage of 5G lies in its flexibility. Taking a glance
at figures 2.1, it can be noted that 5G expands 4G capabilities by about and order of magnitude
in each metric: a single user cannot experience all these improvements simultaneously, but the
5G cell is able to push the limits on certain KPIs while relaxing specifications on others.

8

5G System Overview

In this regard, an important innovation lies in the ability to operate network slicing: the overall
network can be split into a number of different sub-networks which serve different UEs with
different KPIs.
5G’s flexibility and adaptability open possibilities for different use cases, enabling expansion to
new sets of markets, the verticals. Examples of verticals include automotive, media streaming
and robotics. [1]

(a) (b)

Figure 2.1: (a) Enhancement of key capabilities from IMT-Advanced to IMT-2020, (b) Impor-
tance of key capabilities in different usage scenarios

2.1 System Architecture
As in previous generations, the 5G system (5GS) is composed of a radio access network (NG-RAN),
a core network (5GC, or CN in general) and a variable number of user equipments (UEs).

The CN and the RAN are two essential components of a telecommunications system.
On one hand, the core network acts as the central hub, responsible for managing user connections,
authenticating devices, routing data, and ensuring secure communication. It connects access
networks like 4G, 5G, or Wi-Fi, to external systems such as the internet. The core network is
also where essential network functions are performed, such as mobility management, billing,
service orchestration and security.
On the other hand, the RAN connects end-user devices (UEs) to the core network through radio
signals. It consists of base stations that manage the radio frequency spectrum, signal transmission,
and eventually handovers when devices move between cell towers.

It is important to note that two deployment models are specified for 5G:

1. Non-Standalone (NSA) architecture: in this setup, the 5G RAN with its New Radio (NR)
interface operates alongside the existing LTE and Evolved Packet Core (EPC) infrastructure
(i.e., the 4G RAN and 4G Core). This allows the use of 5G NR technology without needing

9

5G System Overview

to replace the entire network. While only 4G services are supported in this architecture,
they benefit from the enhanced capabilities of the 5G NR, such as reduced latency and
increased bandwidth

2. Standalone (SA) architecture: refers to a pure 5G network, where the NR interface connects
directly to the 5GC. This unlocks all the advanced features of 5G technology

Figure 2.2: 5G system basic overview

As can be observed in figure 2.2, the NG-RAN is based on one or more instances of a gNB (the
5G base station), while UEs connect to the RAN via the radio interface NR-Uu.

Concerning the 5GC, its two most powerful innovations lie in Network Function Virtualization
(NFV) and Software-defined Networking (SDN), which are the two enabling technologies for
network slicing.

4G and previous generations of mobile telephony relied on proprietary, hardware-based appliances
for each network function (NF). NFV enables these functions to be virtualized and deployed
flexibly on general-purpose server. This approach brings greater agility, scalability and cost
efficiency to network management.

SDN is a networking architecture that separates the control plane, which determines how data
packets should be routed, from the data plane, which handles the actual forwarding of packets.
This decoupling allows for centralized, software-based control of the network, providing a simpler,
more flexible and cost-effective way to manage the network compared to the traditional approach.

10

5G System Overview

Figure 2.3: 5G system showing the CN functions

Figure 2.4 shows the 5GS with an emphasis on the main NFs of the CN. The upper part of figure
2.4 shows the NFs involved in the control plane, while the bottom part the NFs and elements
pertaining to the user plane. The interaction between NFs is facilitated via APIs, where each NF
offers services to other NFs (service-based architecture).
Some notable elements include:

• The already introduced UE, NG-RAN

• External Data Nework (ext-DN): refers to a network that is external to the 5G system,
such as for example the public internet

• User Plane Function (UPF): manages data transfer towards/from the external DN and
enforces QoS

• Access and Mobility management Function (AMF): handles UE registration, authentication,
authorization and mobility inside the network (e.g. handovers)

• Session Management Function (SMF): handles the establishment, maintenance and termi-
nation of data sessions for UEs, including IP address assignment

• Policy Control Function (PCF): manages policies related to quality of service (QoS) and
resource allocation.

• Network Slice Selection Function (NSSF): selects and manages network slices for different
services and users

A more complete list of 5G NFs is provided in [2] (page 42).

2.2 RAN fundamentals
This section introduces a selection of concepts related to the 5G RAN that will prove useful later
in the thesis.

11

5G System Overview

2.2.1 OFDM
5G’s modulation technique is the same as LTE, Orthogonal Frequency Division Multiplexing
(OFDM). In short, OFDM transmits symbols concurrently across closely spaced channels, each
characterized by a narrow bandwidth. This helps to mitigate multipath effects, as each sub-
channel will have almost flat frequency response. The waveforms utilized for symbol transmission
on each subcarrier are orthogonal, meaning that the scalar product of two waveforms operating
at different frequencies results in zero. [3]

2.2.2 Frequency Ranges and Numerology
5G utilizes two primary frequency ranges to achieve varying performance characteristics.
The first is the Sub-6 GHz range (FR1), which encompasses frequencies from 450 MHz to 6 GHz.
This range includes traditional cellular bands and is characterized by broader coverage and better
penetration through obstacles.
The second range is Millimeter Wave (FR2), covering frequencies from 24.25 GHz to 52.6 GHz.
FR2 supports exceptionally high data rates and capacity but is limited by its shorter range and
reduced penetration capabilities.

In 5G, numerology refers to the different configurations of subcarrier spacing and related parame-
ters in the OFDM (Orthogonal Frequency Division Multiplexing) waveform, tailored to support a
variety of use cases and frequency ranges. 5G uses scalable numerologies, defined by a parameter
µ, which determines subcarrier spacing ∆f .
The subcarrier spacing can be adjusted to accommodate different services and operating frequencies.
For example, lower subcarrier spacings (like 15 kHz) are used for sub-6 GHz frequencies, as
multipath effects are prevalent at these frequencies. Larger subcarrier spacings (like 120 kHz) are
employed at higher frequencies, such as millimeter waves, to minimize latency (because symbol
duration is shorter). [4]

Numerology (µ) Subcarrier Spacing (∆f)
0 15 kHz
1 30 kHz
2 60 kHz
3 120 kHz
4 240 kHz

Table 2.1: 5G Numerologies and their corresponding subcarrier spacings

2.2.3 Frame Structure and PRBs
Downlink and uplink transmissions are organized into frames, each with a duration of Tf = 10
ms, which are divided into ten subframes, each lasting Tsf = 1 ms. Each subframe is further
partitioned into a number of slots, where each slot comprises 14 consecutive OFDM symbols.
The slot serves as the fundamental scheduling unit in the time domain. The duration of each
slot is inversely proportional to the subcarrier spacing, given by the formula: Slot length = 1 ms

2µ .
Consequently, the number of slots within a subframe is dependent on the value of µ.

In this context, a Physical Resource Block (PRB) is defined as a set of 12 consecutive OFDM
subcarriers in the frequency domain. Therefore, the size of a PRB is dependent on the employed

12

5G System Overview

numerology; PRBs serve as the fundamental unit for scheduling resources within the frequency
domain.

Time Division Duplex (TDD) and Frequency Division Duplex (FDD) are two key duplexing
methods used for managing uplink and downlink transmissions. TDD employs a single frequency
band, alternating in the time domain between uplink and downlink transmissions. This allows
for flexible adjustment of the uplink and downlink ratio based on traffic demands, making TDD
suitable for asymmetric traffic patterns. In contrast, FDD uses separate frequency bands for
uplink and downlink, providing simultaneous bidirectional communication.
The NG-RAN supports both TDD and FDD operations by providing the possibility to configure
a slot in various ways: it may consist entirely of downlink transmissions, with all OFDM symbols
allocated for downlink; entirely of uplink transmissions, with all OFDM symbols allocated for
uplink; or a combination of both. [4]

2.2.4 Physical Channels and Signals
Physical channels and signals are essential for the transmission and reception of data across the
network. Physical channels refer to the standardized pathways through which data is transmitted,
different channels are allocated over different subcarriers and over different parts of the time slot.
Simoultaneously, some sub-carriers are allocated to the transmission of signals, which are used
for synchronization, channel estimation and aiding in the establishment of a reliable connection
between the UE and gNB.

• Downlink Physical Channels:

– PDSCH: Downlink Shared Channel
– PBCH: Downlink Broadcast Channel
– PDCCH: Downlink Control Channel

• Downlink Physical Signals:

– Demodulation Reference Signals (DMRS)
– Phase Tracking Reference Signals (PTRS)
– Channel State Information Reference Signals (CSI-RS)
– Synchronization Signals (PSS, SSS)

• Uplink Physical Channels:

– PUSCH: Uplink Shared Channel
– PRACH: Uplink Random Access Channel
– PUCCH: Uplink Control Channel

• Uplink Physical Signals:

– Demodulation Reference Signals (DMRS)
– Phase Tracking Reference Signals (PTRS)
– Sounding Reference Signals (SRS) [4]

13

5G System Overview

2.3 Cloud Computing and Edge Computing
Cloud computing refers to the delivery of various services (such as data storage, processing power,
and networking) over the internet ("the cloud"). It allows users to access and store data or run
applications without the need for dedicated hardware or infrastructure. The core idea is resource
pooling, where large-scale data centers handle computing tasks and storage, offering services like
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).

Mobile cloud computing (MCC) extends these principles to mobile devices. Its focus is on enabling
smartphones, tablets, and other portable devices to run more complex applications by offloading
computational tasks to remote cloud servers. This approach helps conserve battery life and device
resources, since the cloud handles tasks that would otherwise exhaust the mobile device’s limited
processing power and storage. MCC is particularly useful for applications that involve heavy data
processing, like video streaming or real-time analytics, but faces challenges such as bandwidth
limitations, latency issues, and service availability across various networks. [5]

Edge computing aims to solve these issues by shifting from cloud-centric models to more localized
processing: cloud capabilities closer to the UE through the deployment of edge servers in mini
clouds at the network’s edge. This proximity significantly reduces latency and enhances security,
enabling to meet the stringent quality of service (QoS) requirements of next-generation applications
like augmented reality, virtual reality and robotics.
Nonetheless, edge computing comes with certain challenges that increase complexity. One major
issue is its lower geographical availability, as applications are deployed on local servers, limiting
their accessibility to users in other regions. This can lead to consistency issues between different
geographical deployments, where data or service discrepancies arise due to the decentralized
nature of edge computing.
Additionally, service migration becomes more complex as services move between different edge
locations, requiring careful management to avoid disruptions.

Figure 2.4: Edge computing infographic [6]

In the context of 5G, edge computing serves 5 main objectives: it improves data management by
handling large volumes of real-time data locally, thereby reducing the burden on centralized data
centers; it enhances QoS by meeting the low-latency and high-throughput demands of highly

14

5G System Overview

interactive applications; it predicts network demand for optimal resource allocation, ensuring
efficient use of limited network resources; it manages location awareness to provide personalized,
context-based services; and it improves resource management by optimizing network resource
utilization.
Various computational platforms support edge computing in 5G, including multi-access edge
computing (MEC), which provides storage and computational capabilities at the edge, often
co-located with base stations, and fog computing, which utilizes local hardware devices like
routers and switches for computation. [7]

2.3.1 Multi-access Edge Computing
MEC is an evolution of traditional edge computing that is specifically designed for mobile networks,
with a key difference being that it exploits information related to the radio link. While standard
edge computing reduces latency by processing data closer to the user, MEC goes further by
integrating with the mobile network infrastructure itself. This allows MEC to take advantage
of real-time insights into the radio link, such as signal strength or bit error rates. This feature
makes MEC ideal for applications like video streaming or augmented reality, where the ability to
adapt to radio link conditions in real-time is particularly useful.

Figure 2.5: MEC System Reference Architecture [8]

The MEC system reference architecture (reported in figure 2.5) consists of two high-level entities:

• MEC host, which is composed of:

– MEC platform, which provides essential functionalities to run MEC applications and
provide MEC services to such applications.

15

5G System Overview

Among MEC services, two critical ones are the Radio Network Information Service
(RNIS) and the Location Service (LS).
RNIS gives authorized applications access to real-time radio network data, including
details about the UE and its associated radio access bearers (RABs). The Location
Service (LS), on the other hand, provides precise location data for UEs, including
geolocation and Cell ID information. LS can cater to specific needs, such as identifying
the location of all UEs in a particular area or tracking the location of a specific UE

– Virtualization infrastructure, which provides compute power, storage, and network
resources needed to run the MEC applications, which are hosted on top of the infras-
tructure in the form of VMs or containers. An important fact is that the virtualization
infrastructure includes a data plane that handles traffic routing between MEC applica-
tions, the 5G network, local networks and external networks

• MEC management, which comprises of:

– MEC system-level management, responsible for supervising the entire MEC system via
the MEC orchestrator, which is responsible for a number of tasks. Firstly, it maintains
an overall view of deployed MEC Hosts and Services, available resources and topology.
In addition, it handles tasks such as preparing the virtualization infrastructure, selecting
appropriate MEC hosts for app instantiation, triggering app instantiation/termination
and eventually execute app relocation from one MEC host to another

– MEC host-level management, responsible for managing the functionality of a specific
MEC host and the applications running on it. It includes the MEC platform manager,
which manages the lifecycle of MEC applications, and the virtualization infrastructure
manager, whose main task is to handle the allocation, management and release of
virtualized resources

Reference points are standardized communication interfaces between network functions or entities.
MEC reference points can be divided into three groups:

• Mp: MEC platform functionality reference points

• Mm: Management reference points

• Mx: Reference points connecting to external entities [8]

16

Chapter 3

OpenAirInterface 5G

In 2009, the research center EURECOM founded the OpenAirInterface (OAI) Software Alliance
with the goal of developing software that would offer a standard-compliant implementation of
3GPP mobile network components.
OpenAirInterface5G (OAI5G) refers to OAI’s implementation of 5G, which includes the RAN and
CN as well as MEP, which is OAI’s implementation of the MEC standard. The platform is designed
to run on commercial off-the-shelf (COTS) hardware, making it accessible and cost-effective for a
wide range of applications.
The framework itself is made up of several Linux packages that can be downloaded from the
official website and installed on one or more systems. Additionally, it can be integrated with radio
frequency hardware, such as Ettus USRP or other RF platforms customized by EURECOM. [9]

3.1 Deployment of OAI5G network with nr-UE

The first step in the exploration of OAI5G is to set up a standalone 5G network in its simplest
form, in a wired configuration without MEC capabilities. The testbed is composed of:

• 2x laptops - running the OAI gNB and UE respectively (version 2.1.0).

Specification Details
Hardware Model MSI Co., Ltd. PL62 7RC

Memory 16.0 GiB
Processor Intel® CoreTM i7-7700HQ CPU @ 2.80GHz x 8
Graphics NVIDIA GeForce MX150

Disk Capacity 2.0 TB SSD
OS Name Ubuntu 22.04.4 LTS
OS Type 64-bit

Table 3.1: HW and SW details of the laptop running the gNB and CN

17

OpenAirInterface 5G

Specification Details
Hardware Model Dell Vostro 15 3578

Memory 8.0 GiB
Processor Intel® CoreTM i7-8550U CPU @ 1.80GHz x 8
Graphics AMD Radeon 520

Disk Capacity 500 GB HD
OS Name Ubuntu 22.04.4 LTS
OS Type 64-bit

Table 3.2: HW and SW details of the laptop running the UE

• 2x Ettus USRP B210 + Enclosure Kit - software defined radios for the transmission and
reception of messages

• 2x SMA-SMA cable - to create a communication channel

• 2x 30 dB attenuator - placed in order to simulate channel attenuation

Figure 3.1: Wired connection of USRPs

The deployment of the network was achieved by following tutorial [10]. An important thing to
note is that the system requirements to run the OAI gNB and UE are stringent:

• Laptop/Desktop/Server for OAI CN5G and OAI gNB

– Operating System: Ubuntu 22.04 LTS
– CPU: 8 cores x86_64 @ 3.5 GHz
– RAM: 32 GB

• Laptop for UE

– Operating System: Ubuntu 22.04 LTS
– CPU: 8 cores x86_64 @ 3.5 GHz

18

OpenAirInterface 5G

– RAM: 8 GB

Both the gNB and UE laptops do not respect the system requirements!
Unfortunately, this was the most powerful hardware available for the thesis, so the rest of
the research will have to accomodate for the shortage of compute resources.

Initially, file gnb.sa.band78.fr1.106PRB.usrpb210.conf was used as configuration for the gNB:

• Standalone version of 5G, exploiting New 5G Packet Core (NGCore)

• Band n78, consisting of frequencies from 3.3 to 3.8 GHz, TDD duplex mode

• Numerology I, which can be employed for frequencies below 6 GHz

• 106 Physical Resource Blocks (PRBs), each corresponding to 12 consecutive subcarriers in
the frequency domain

In order to ensure the presence of the 5G network, a GNU-radio-based spectrum analyzer was
built according to [11] and was later used to prove that the network was deployed in the correct
frequency band. A screenshot is shown in figure 3.2.

Figure 3.2: GNU radio based spectrum analyzer receiving signal in band n41

After ensuring that the UE could ping the external data network (ext-dn) (fig 3.3), a downlink
throughput test was performed for bands n78 and n41 (.conf file was appropriately changed to
gnb.sa.band41.fr1.52PRB.usrpb210.conf). The latter is again a TDD band, ranging from 2.5 to
2.7 GHz.

An iperf server was launched on the UE (iperf -s -u -i 1 -B 10.0.0.3), while Docker con-
tainer oai-ext-dn was accessed in the CN (docker exec -it oai-ext-dn /bin/bash): after a
successful ping towards the UE, a (downlink) throughput test was started by running the com-
mand iperf -u -t 86400 -i 1 -fk -B 192.168.70.135 -b 100M -c 10.0.0.3, which sets
the maximum bandwidth for the test to 100 Mbps (never reached by the network).

19

OpenAirInterface 5G

Figure 3.3: Ping UE to ext-dn

Figure 3.4: Wireless connection of USRPs

The same tests were ran when the USRPs were connected in a wireless configuration by removing
the 30 dB attenuators and substituting the SMA-SMA cables with antennas. The results are
summarized in table 3.3.
The available throughput seems to be in the 10s of Mb/s in both cases, however the wired config-
uration (with 30 dB of signal attenuation) always performs better than the wireless counterpart.
In addition, for the wired case, the higher band leads to higher throughput, contrary to the wired
configuration, where the chosen frequency band does not affect throughput; this suggests that in
this case the conditions of the testing environment might be the bottleneck.

The range of the OAI5G connection performed via USRP B210 seems to be very limited, as even
walking a few meters in the laboratory frequently leads to crashes of the UE. The problem might
be caused by the limited computing resources of the setup.

3.2 OAI MEP
OAI MEP was recently developed by EURECOM in adherence to the 3GPP standard ETSI
GS MEC 003 V3.1.1 and is tightly integrated with the OAI 5G network. At the time of
writing, the OAI MEP remains a work in progress, currently providing only a registry and
discovery environment for MEC services, along with its own implementation of the Radio Network

20

OpenAirInterface 5G

[Mb/s] Wired Wireless
n41 17.3 14.7
n78 20.2 14.6

Table 3.3: Average throughput over 20 seconds for different configurations [Mb/s]

Information Service (RNIS).
The currently developed architecture is shown in figure 3.5. Both Mp1 and Mp2 interfaces are
implemented: MEC apps communicate with MEP via the Mp1 interface, whereas applications
hosted at MEP communicate with the RAN and CN via the Mp2 interface.

Figure 3.5: MEP architecture

Additionally, OAI also provides its own implementation of the RNIS, which in theory is able to
expose radio link information to MEC apps. The service is composed of several modules (figure
3.6):

• Northbound API: An OpenAPI Standard interface that exposes the Radio Network
Information API, allowing MEC Apps to subscribe to radio data via a RESTful interface

• Notification Service: Informs subscribed apps about changes in network data via an
HTTP-based notification service

• Data Convergence Service: A repository for network information, which processes data
and triggers notifications when changes occur

• Core Network Wrapper Service: Provides an abstraction layer for the Core Network.
It is a consumer for all the events related to the CN exposed by the OAI-CM

• KPIs-xApp Service: Interfaces with the RAN xApp’s (RNIS xApp) northbound API
to collect user KPIs. xApps are specialized software applications that run on the RAN
Intelligent Controller (RIC) designed to perform various radio network functions, analytics,
and control tasks to optimize the performance of the RAN.

21

OpenAirInterface 5G

In other words, the Core Network Wrapper handles events from the CN, while the KPIs-xApp
collects radio metrics from the O-RAN xApp. The collected data is sent to the Data Convergence
Service, which aggregates the information and triggers events; lastly, this data is made accessible
via the Northbound API or the Notification Service. [12]

Figure 3.6: RNIS Architecture as of the time of writing

3.2.1 Deployment of OAI-MEP 5G network with RFsim
The goal of this section is to showcase how OAI-MEP can be exploited to run a simple MEC appli-
cation consuming RAN and CN KPIs exposed via RNIS, all done in a simulated environment
(rfsim).
Compared to previous deployments of OAI5G, where only the CN made use of Docker containers,
this implementation is completely container-based and includes the configuration manager, a
network function designed to manage OAI CN functions potentially through a GUI.

After following [12], a quick check revealed that all containers are in the right state, as can be
observed in figure 3.7. It was then possible to successfully ping the ext-dn container from the
UE (figure 3.8) and to run the example MEC app provided by the tutorial, obtaining RAN KPI
readings.

3.2.2 Understanding the example MEC app
Listed below is the example MEC app provided by OAI:

content/chapters/3/docs/example–mec–app.py
1 # Copyright 2023 the OAI−RNIS Authors
2

3 # Licensed under the Apache License , Vers ion 2 .0 (the
4 # " License ") ; you may not use t h i s f i l e except in compliance
5 # with the L icense . You may obta in a copy o f the L icense at
6

7 # http ://www. apache . org / l i c e n s e s /LICENSE−2.0
8

9 # Unless r e q u i r e d by a p p l i c a b l e law or agreed to in wr i t ing ,
10 # sof tware d i s t r i b u t e d under the L icense i s d i s t r i b u t e d on an
11 # "AS IS " BASIS , WITHOUT WARRANTIES OR CONDITIONS OF ANY
12 # KIND, e i t h e r expre s s or impl i ed . See the L icense f o r the
13 # s p e c i f i c language governing pe rmi s s i on s and l i m i t a t i o n s
14 # under the L icense .

22

OpenAirInterface 5G

Figure 3.7: Running containers after deployment of RNIS

Figure 3.8: Successful ping from UE to external data network (ext-dn)

15 # Contact : netsoft@eurecom . f r
16

17 import f l a s k
18 from f l a s k import request , j s o n i f y
19 import socke t
20 import j son
21 import r e q u e s t s
22

23 co l l e c t ed_data = {}
24

25 hostname=socket . gethostname ()
26 ip_addr= " 1 9 2 . 1 6 8 . 7 0 . 1 " #socket . gethostbyname (hostname)
27 port = 30020
28

29 p r i n t (f " Dashboard URL: { ip_addr } :{ port }/ dashboard ")
30

31 ### c r e a t e a s u b s c r i p t i o n f o r r e c e i v i n g l 2 measurements
32 sub_endpoint = " http :// oai−mep . org / r n i s /v2/ s u b s c r i p t i o n s "
33 sub_body ={
34 " c a l l b a c k R e f e r e n c e " : f " http ://{ ip_addr } :{ port }/ s u b s c r i p t i o n s / l2meas −200 " ,
35 " f i l t e r C r i t e r i a N r M r s " : {} ,
36 " subscr ipt ionType " : " NrMeasRepUeSubscription " ,
37 " exp i ryDead l ine " : {

23

OpenAirInterface 5G

38 " nanoSeconds " : 12133423 ,
39 " seconds " : 123124234
40 }
41 }
42 r e q u e s t s . post (u r l =sub_endpoint , j son=sub_body)
43

44 p r i n t (" Subscr ibed to RNIS")
45

46 app = f l a s k . Flask (__name__)
47

48

49 @app . route (’ / s u b s c r i p t i o n s / l2meas −200 ’ , methods=[’POST ’])
50 de f r e c e i v e _ n o t i f i c a t i o n () :
51 i f r e que s t . method == ’POST ’ :
52 content = reques t . get_json (f o r c e=True)
53 p r i n t (content)
54 kp i s = content [" Report "]
55 f o r a id in content [" A s s o c i a t e I d "] :
56 i f a id not in co l l e c t ed_data :
57 co l l e c t ed_data [a id] = {}
58 f o r kpi in kp i s :
59 co l l e c t ed_data [a id] [" kpi "] = kpi
60 r e turn "OK"
61

62 @app . route (’ / dashboard ’ , methods=[’GET’])
63 de f dashboard () :
64 r e turn "<h1> Network Monitoring Dashboard</h1> " + json . dumps(co l l e c t ed_data)
65

66 app . c o n f i g ["DEBUG"] = Fal se
67 app . run (ip_addr , port=port)

Let’s break it down:

• Lines 23-29: host IP address and port are established and the dashboard URL is printed
to console (the dashboard itself is defined in lines 62-64)

• Lines 31-44: creates a RNIS subscription so that the MEC app is able to receive L2
Measurements. CallbackReference specifies the URL where notifications should be sent:
it is set to http://ip_addr:port/subscriptions/l2meas-200 (the endpoint is defined in lines
49-60).
The line "SubscriptionType":"NrMeasRepUeSubscription" means that the RNIS sub-
scription is related to measurement reports (MeasRep) of the UE in the 5G-nr network.
The measurements are not filtered and the deadline of the subscription is specified with the
seconds and nanoseconds fields

• Lines 46-60: the Flask application is initialized and an endpoint is defined in order to
receive the L2 measurements. If a POST request is received (meaning that RNIS has sent
a measurement report to the MEC app), the method receive_notification() is called:
the JSON data of the measurements is first printed to console and then parsed according to
the different UEs (aid - supposedly standing for AssociateId) and the KPIs associated to
the UE. The data is saved in a matrix structure in the variable collected_data

• Lines 62-64: defines the dashboard endpoint to display a network monitoring dashboard
upon a receiving a GET request. Upon receiving such request, the method dashboard() is
called and a simple HTML webpage is returned to the client making the GET request. In
this way, users are able to visualize the network report data through their web browser

24

OpenAirInterface 5G

• Lines 66-67: the app is configured and finally ran on the specified IP address and port

Subsequently, some simple modifications were applied to the example MEC app in order to write
incoming KPIs from RNIS onto a log file; in particular, method receive_notification() was
modified as follows:

1 from datet ime import datet ime as dt
2 currentt ime = dt . now () . i s o f o rmat ()
3

4 [. . .]
5

6 @app . route (’ / s u b s c r i p t i o n s / l2meas −200 ’ , methods=[’POST ’])
7 de f r e c e i v e _ n o t i f i c a t i o n () :
8 i f r e que s t . method == ’POST ’ :
9 content = reques t . get_json (f o r c e=True)

10 p r i n t (content)
11 kp i s = content [" Report "]
12 f o r a id in content [" A s s o c i a t e I d "] :
13 i f a id not in co l l e c t ed_data :
14 co l l e c t ed_data [a id] = {}
15 f o r kpi in kp i s :
16 co l l e c t ed_data [a id] [" kpi "] = kpi
17 #log c o l l e c t e d data
18 with open (" log_ "+ currentt ime + " . j son " , " a ") as j s o n _ f i l e :
19 j s on . dump(content , j s o n _ f i l e)
20 j s o n _ f i l e . wr i t e (’ \n ’)
21 r e turn "OK"

3.2.3 Deployment of OAI-MEP 5G network with nr-UE
The next step is to create the network with real equipment (USRPs) instead of a simulated
environment. The hardware setup is the same as the one presented in section 3.1, with the gNB
laptop also running the OAI MEP framework.

The procedure to achieve the deployment is not presented in the OAI MEP tutorial [12], however
some clues on how to do this are found in the docker-compose-ran.yaml files used in the deployment
of the RAN containers, including the gNB and UE. The main modifications operated to such files
are:

• flag USE_B2XX was set to ’yes’, in order to allow execution on USRP B210 instead of
simulated environment

• The serial of the USRP was obtained through sudo uhd_usrp_probe and substituted in
entry SDR_ADDRS of the .yaml file

• USB access was granted to the container by mounting the volume - /dev/bus/usb/:/dev/bus/usb/.
An important remark is that it seems that the containers are able to access the USB port
of the host computer only if docker is used from command line while Docker Desktop is
closed. Otherwise, the containers are unable to recognize the USRP.

• flag USE_VOLUMED_CONF was set to ’yes’ for the gNB, so that the container may use an
arbitrary .conf file passed from the host. For the UE, the flag was set to ’no’, as the
configuration can be passed directly through the fields already present in the .yaml file
(IMSI, KEY, OPC...)

25

OpenAirInterface 5G

• The gNB .conf file was moved to the blueprints/mep/docker-compose folder and mounted as
volume in the gNB/UE docker container (- ./gnb-n78.conf:/opt/oai-gnb/etc/mounted.conf.
In particular, the gNB used the file gnb.sa.band78.fr1.106PRB.usrpb210.conf (appropriately
renamed to gnb-n78.conf)

The finalized docker-compose-ran.yaml file entries for the gNB and UE are respectively listed
below:

content/chapters/3/docs/docker–compose–ran–USRP.yaml
1 oa i−gnb :
2 image : o a i s o f t w a r e a l l i a n c e / oai−gnb : mep−compatible
3 p r i v i l e g e d : t rue
4 container_name : oai−gnb−usrp
5 environment :
6 RFSIMULATOR: s e r v e r
7 USE_SA_TDD_MONO: ’ yes ’
8 GNB_NAME: gnb
9 USE_B2XX: ’ yes ’ #only needed when us ing B210

10 USE_VOLUMED_CONF: ’ yes ’ #only needed when mounting the c o n f i g u r a t i o n
f i l e

11 TAC: 1
12 MCC: ’208 ’
13 MNC: ’99 ’
14 MNC_LENGTH: 2
15 NSSAI_SST : 1
16 AMF_IP_ADDRESS: 1 9 2 . 1 6 8 . 7 0 . 1 3 2
17 GNB_NGA_IF_NAME: demo−oa i
18 GNB_NGA_IP_ADDRESS: 1 9 2 . 1 6 8 . 7 0 . 1 6 0
19 GNB_NGU_IF_NAME: cn5g−a c c e s s
20 GNB_NGU_IP_ADDRESS: 1 9 2 . 1 6 8 . 7 2 . 1 6 0
21 SDR_ADDRS: s e r i a l =314BCFF #s u b s t i t u t e d s e r i a l o f USRP
22 USE_ADDITIONAL_OPTIONS: −−sa −E −−continuous−tx −−l og_con f ig .

g loba l_log_opt ions l e v e l , noco lor , time , line_num , f u n c t i o n #(B210)
23 volumes :
24 − shared_l ib : / usr / l o c a l / l i b / f l e x r i c /
25 − . / conf / f l e x r i c . conf : / usr / l o c a l / e t c / f l e x r i c / f l e x r i c . conf
26 − /dev/bus/usb / :/ dev/bus/usb/ #(B210)
27 − . / gnb−n78 . conf : / opt / oai−gnb/ e tc /mounted . conf #(B210) c o n f i g f i l e

should be pre sent
28 networks :
29 publ ic_net :
30 ipv4_address : 1 9 2 . 1 6 8 . 7 0 . 1 6 0
31 publ ic_net_access :
32 ipv4_address : 1 9 2 . 1 6 8 . 7 2 . 1 6 0
33 hea l thcheck :
34 t e s t : / bin /bash −c " pgrep nr−softmodem "
35 i n t e r v a l : 10 s
36 t imeout : 5 s
37 r e t r i e s : 5

content/chapters/3/docs/docker–compose–ran–realUE.yaml
1 oa i−nr−ue :
2 image : o a i s o f t w a r e a l l i a n c e / oai−nr−ue : 2 0 2 3 . w06
3 p r i v i l e g e d : t rue
4 container_name : oai−nr−ue
5 environment :
6 USE_B2XX: ’ yes ’ #only needed when us ing B210
7 USE_VOLUMED_CONF: ’ no ’ #only needed when mounting the c o n f i g u r a t i o n

f i l e

26

OpenAirInterface 5G

8 SDR_ADDRS: s e r i a l =314BC7D
9 RFSIMULATOR: 1 9 2 . 1 6 8 . 7 0 . 1 6 0

10 FULL_IMSI : ’208990100001120 ’
11 FULL_KEY: ’ fec86ba6eb707ed08905757b1bb44b8f ’
12 OPC: ’C42449363BBAD02B66D16BC975D77CC1 ’
13 DNN: oa i
14 NSSAI_SST : 1
15 USE_ADDITIONAL_OPTIONS: −E −−sa −r 106 −−band 78 −−numerology 1 −C

3319680000 −−u i cc0 . ims i 208990100001120 −−ue−fo−compensation −−l og_con f ig .
g loba l_log_opt ions l e v e l , noco lor , time

16 volumes :
17 − shared_l ib : / usr / l o c a l / l i b / f l e x r i c /
18 − . / conf / f l e x r i c . conf : / usr / l o c a l / e t c / f l e x r i c / f l e x r i c . conf
19 − /dev/bus/usb / :/ dev/bus/usb/ #(B210)
20 − . / nrue . u i c c . conf : / opt / oai−nr−ue/ e tc /mounted . conf #(B210) c o n f i g f i l e

should be pre sent
21 networks :
22 publ ic_net :
23 ipv4_address : 1 9 2 . 1 6 8 . 7 0 . 1 6 1
24 hea l thcheck :
25 t e s t : / bin /bash −c " pgrep nr−uesoftmodem "
26 i n t e r v a l : 10 s
27 t imeout : 5 s
28 r e t r i e s : 5

Unfortunately, a fully working OAI5G-MEP deployment with nrUE was
never achieved. The nrUE would partially connect to the gNB and RAN KPIs would
be correctly measured, but the UE and gNB could not ping each other as in the RFSim
deployment.

For this reason, the remainder of the thesis will make use of the MEP-less 5G deployment achieved
in section 3.1.

3.2.4 Evaluation of MEP Testbed: Radio Link Measurements
Even though the nrUE and gNB could not ping each other, a simple experiment was conducted:
radio link KPI measurements were taken while progressively increasing the distance between the
USRPs until the two disconnected.
The listing below reports an example of one measurement of one of the KPIs:

1 {
2 " A s s oc i a t e I d " : [
3 " 1 2 . 1 . 1 . 7 "
4] ,
5 " C e l l I d " : 0 ,
6 " Report " : {
7 " r s r p " : {
8 " kpi " : " r s r p " ,
9 " source " : "RAN" ,

10 " timestamp " : 1712674276022358 ,
11 " un i t " : "dBm" ,
12 " va lue " : −86,
13 " l a b e l s " : {

27

OpenAirInterface 5G

14 " amf_ue_ngap_id " : 6
15 }
16 [. . .]
17 } ,
18 " TimeStamp " : 1712674276.0269651
19 }

Figure 3.9: SNR measurements

Figure 3.9 shows the obtained measurements for the signal-to-noise ratio: even though there is a
high volatility in the value, it can be observed that on average the SNR lowers when the user
moves further away from the gNB, which is expected. After around 350 samples were recorded,
the measurement stopped fluctuating and became constant independently of how much further
away the UE travelled, meaning that signal was lost.
Figure 3.10 shows a measurement of the Reference Signal Received Power (RSRP), which refers
to the received power of the 5G Reference Signals (in dBm) withing the frequency bandwidth.
Following information given in table 3.11, the RSRP starts out already in Mid Cell conditions,
plummets at around sample 300 to around −140dBm and subsequently recovers at around
−115dBm (connection was lost in this state).
Figure 3.12 shows the Block Error Rate, which ideally is kept at around 10 % thanks to the
Channel Quality Indicator (CQI) parameter: the UE sends feedback to the gNB about the quality
of the perceived channel (measured using the reference signals), suggesting a transport format.
Unfortunately, both in simulation and with the testbed, CQI is always reported as 0: this would
suggest that the UE is out of range, but this is clearly not the case given the successful real-time
measurement of other radio parameters.
Additionally, it was observed that the Modulation and Coding Scheme (MCS) in DL changes
from 9 to 8 as the UE is moved further away, meaning that a more robust scheme was adopted in
response to the changes in the channel. The MCS in UL remains constantly at 6.

28

OpenAirInterface 5G

Figure 3.10: RSRP measurements

Figure 3.11: [13]

29

OpenAirInterface 5G

Figure 3.12: BLER measurements in DL and UL

30

Chapter 4

PX4 Autopilot

PX4 is an open-source flight control software designed for drones and other unmanned vehicles. It
offers a versatile toolkit for drone developers, enabling them to collaborate and share technologies
to develop customized solutions for various drone applications. [14]

PX4 boasts several features [15]:

• numerous vehicle types including multicopters, fixed-wing aircraft (planes), helicopters,
airships, rovers, boats, submersibles

• high modularity and compatibility with different sensors, flight-controllers and payloads

• powerful flight modes included with safety features

• deep integration with robotic APIs, such as ROS2 and MAVSDK

4.1 System Architecture
PX4 is composed of two primary layers.
The first layer, the flight stack, functions as an estimation and flight control system. The second
layer, the middleware, acts as a general robotics layer that supports various types of autonomous
robots, facilitating internal and external communications as well as hardware integration. [16]

Figure 4.1 presents a typical high-level configuration for a PX4 system, comprising of a few
hardware and software components [17]:

• Flight controller: The central on-board hardware device responsible for controlling the
drone’s flight by processing sensor data and sending commands to the motors, according to
the PX4 flight stack.

• Companion (or mission) computer: It works on-board alongside the flight controller
to handle advanced tasks such as image processing, navigation, and autonomous decision-
making, providing advanced features such as object avoidance and collision prevention. It
usually runs on Linux.

• Ground station: The computer used by the operator to monitor and control the drone. It
typically runs a ground station software (such as QGroundControl) and eventually some
robotics software such as ROS/ROS2/MAVSDK.

31

PX4 Autopilot

• Motors and sensors

• Payload: Any additional equipment carried by the drone for specific missions, such as
cameras, delivery packages, or scientific instruments.

• Application(s): Software that defines the specific tasks and behaviors the drone will
perform

• Middleware: As already explained, software layer that facilitates communication be-
tween the flight controller, companion computer, and other subsystems, ensuring seamless
integration and operation.

• Telemetry Radio / LTE: represents the means of communication between the ground
station and the mission computer. Citing from [16]:

PX4 does not deliver software specifically for LTE and/or cloud integration
(this requires custom development).

Since the thesis involves the usage of 5G instead of LTE, it can be deduced that some
custom setup will be needed

• Drivers: low-level software for the actuators and sensors

Figure 4.1: PX4 flight control system with companion computer

4.2 Software Architecture
The system design adheres to the reactive manifesto [18], striving to be:

1. Responsive: A responsive system ensures timely responses, which are crucial for usability
and utility. Responsiveness helps in quickly identifying and addressing issues, deliver-
ing consistent response times and maintaining reliable service quality. Such reliability

32

PX4 Autopilot

and consistency simplifies error handling, enhances user confidence and promotes further
interaction.

2. Resilient: Resilience ensures that a system remains responsive even when failures occur.
Achieving resilience involves replication, containment, isolation, and delegation. Failures
are confined to individual components, preventing them from affecting the entire system,
while recovery is handled by external components

3. Elastic: An elastic system maintains responsiveness under fluctuating workloads. It adapts
to changes in input rates by adjusting resource allocation. Reactive systems support scaling
by monitoring performance metrics, achieving cost-effective elasticity on standard hardware
and software.

4. Message-Driven: Reactive Systems utilize asynchronous message-passing to create bound-
aries between components, ensuring loose coupling, isolation and location transparency.

In PX4, this translates in having a modular codebase, using asynchronous messages for communi-
cation and making the system resilient to varying workloads. In this regard, the modules exploit
a publish-subscribe message bus named uORB for communication.

4.2.1 Flight Stack
The flight stack is a collection of guidance, navigation and control algorithms
for autonomous drones. It includes controllers for fixed-wing, multirotor and
VTOL airframes as well as estimators for attitude and position. [16]

The diagram in figure 4.2 shows an overview of the flight stack.

Figure 4.2: Overview of the PX4 flight stack

A central component is the controller, which takes as input a setpoint and the estimated state
of the drone and outputs a correction in order to reach the input setpoint. There are controllers
for position, attitude and rate.
The mixer finally translates the corrections into individual commands for the motors.
In this context, the estimated state of the vehicle (to be fed to the controllers) is provided by
estimators, which make use of one or multiple sensor measurements. On the other hand, the
setpoints for the controller are sent either by the on-board navigator or via an RC link.
For what concerns the thesis, it is important to note that the setpoints for the controllers need to
be sent from the ground station via the 5G link to the on-board flight controller module.

33

PX4 Autopilot

4.2.2 Middleware
In general, a middleware acts as a bridge between different software components or systems,
enabling them to communicate and share data seamlessly. It abstracts the complexities of
underlying communication protocols and provides a standardized way for applications to interact.

The middleware of PX4 mainly comprises device drivers for embedded sensors, mechanisms for
communication with external entities such as companion computers and ground stations, and the
uORB publish-subscribe message bus.
Additionally, it features a simulation layer that enables PX4 flight code to operate on a
desktop operating system, allowing it to control a computer-modeled vehicle within a simulated
environment.

uORB Messaging

The uORB (micro Object Request Broker) is an asynchronous publish() /
subscribe() messaging API used for inter-thread/inter-process communication.
[19]

Each of the available uORB topics corresponds to a different type of message that may be sent.
In total, there are more than 100 topic definitions in the PX4-Autopilot repository, and new ones
may be defined by the user if necessary.
An example of a topic is sensor_combined, which carries the synchronized sensor readings of the
complete system. Here is the message definition for such topic:

1 # Sensor r ead ings in SI−uni t form .
2 # These f i e l d s are s c a l e d and o f f s e t −compensated where p o s s i b l e and do not
3 # change with board r e v i s i o n s and senso r updates .
4

5 uint64 timestamp # time s i n c e system s t a r t (
microseconds)

6

7 i n t32 RELATIVE_TIMESTAMP_INVALID = 2147483647 # (0 x 7 f f f f f f f) I f one o f the
r e l a t i v e timestamps i s s e t to t h i s value , i t means the a s s o c i a t e d senso r
va lue s are i n v a l i d

8

9 # gyro timstamp i s equal to the timestamp o f the message
10 f l o a t 3 2 [3] gyro_rad # average angular r a t e measured in the FRD

body frame XYZ−a x i s in rad / s over the l a s t gyro sampling per iod
11 uint32 gyro_integra l_dt # gyro measurement sampling per iod in

microseconds
12

13 i n t32 acce lerometer_t imestamp_re lat ive # timestamp +
acce lerometer_t imestamp_re lat ive = Acce lerometer timestamp

14 f l o a t 3 2 [3] accelerometer_m_s2 # average value a c c e l e r a t i o n measured in
the FRD body frame XYZ−a x i s in m/ s ^2 over the l a s t a c ce l e r o me t e r sampling
per iod

15 uint32 acce l e rometer_integra l_dt # ac c e l e r om e te r measurement sampling
per iod in microseconds

16

17 uint8 CLIPPING_X = 1
18 uint8 CLIPPING_Y = 2
19 uint8 CLIPPING_Z = 4
20

34

PX4 Autopilot

21 uint8 a c c e l e r o m e t e r _ c l i p p i n g # b i t f i e l d i n d i c a t i n g i f the r e was any
a cc e l e r o me t e r c l i p p i n g (per a x i s) during the i n t e g r a t i o n time frame

22 uint8 gyro_cl ipp ing # b i t f i e l d i n d i c a t i n g i f the re was any gyro
c l i p p i n g (per a x i s) during the i n t e g r a t i o n time frame

23

24 uint8 acce l_ca l ib ra t i on_count # C a l i b r a t i o n changed counter . Monotonica l ly
i n c r e a s e s whenever a c c e l e r m e t e r c a l i b r a t i o n changes .

25 uint8 gyro_cal ibrat ion_count # C a l i b r a t i o n changed counter . Monotonica l ly
i n c r e a s e s whenever r a t e gyro c a l i b r a t i o n changes .

The different variables declared carry information from the gyroscope and the accelerometer;
sometimes the reading also includes a relative timestamp, which is taken with respect to the
timestamp declared at the start of the message.

4.2.3 Update Rates
Different components in the PX4 Autopilot system operate at various update rates, depending
on their requirements. Modules within the system rely on data updates from sensors or other
sources and their update speeds are often determined by the drivers managing the sensors.
For instance, Inertial Measurement Unit (IMU) drivers sample raw data from sensors at a high
rate, typically 1 kHz, and after processing (such as integrating the data) they publish it at 250 Hz.
This high-frequency update is necessary for accurate motion tracking. On the other hand, certain
system components, like the navigator, don’t require such frequent updates because their tasks,
such as route calculation or position estimation, don’t need rapid changes. As a result, they run
at a considerably slower update rate to optimize system performance and resource usage.

4.2.4 Runtime Environment
PX4 operates on multiple operating systems that support a POSIX-API, including Linux, macOS,
NuttX, and QuRT. It also requires real-time scheduling capabilities.
Inter-module communication utilizes a shared memory approach through uORB. The entire PX4
middleware functions within a single address space, meaning all modules can access the same
portion of memory.
On Linux or macOS, PX4 operates within a single process, with each module running in its own
thread. [16]

4.3 Simulation Environments
Simulators enable PX4 flight code to operate a computer-generated vehicle within a virtual
environment. You can control this simulated vehicle in the same way as you would a real one,
using tools like QGroundControl, an offboard API or a radio controller/gamepad.
Simulating flight is a fast and safe method for testing changes to PX4 code before conducting
real-world flights. It’s also useful if you do not have a physical vehicle to work with yet, which
unfortunately is the case of the thesis.

PX4 offers both Software In the Loop (SITL) and Hardware In the Loop (HITL) simulations.
In SITL, the flight software runs on your computer, either locally or on another networked ma-
chine. HITL simulation uses a real flight controller board with specialized simulation firmware. [20]

Two examples of available simulators are:

35

PX4 Autopilot

1. Gazebo: it is actively supported by the PX4 development team, it offers enhanced rendering,
physics and sensor modeling capabilities compared to its predecessor Gazebo Classic.
As a robust 3D simulation platform, it is ideal for testing scenarios like object avoidance
and computer vision applications. Gazebo is also well-suited for multi-vehicle simulations
and integrates well with ROS.
The vehicles supported in Gazebo include quadcopters, standard VTOLs and planes

2. jMAVSim: it was previously part of the PX4 development toolchain but was removed in
favour of Gazebo. It is a lightweight, fast simulator specifically designed for simple drone
simulations. It is easier to set up and consumes fewer resources than Gazebo, making it
suitable for testing basic flight control, position estimation, and autopilot tuning

Figure 4.3: Screenshot of a running instance of jMAVSim

4.4 Flight Modes
Flight modes in multicopters are designed to simplify manual flying, automate common actions
such as takeoff and landing, enable autonomous missions, or hand over control to external systems.
This section provides an overview of flight modes specific to multicopters (and helicopters), as
this corresponds to the type of rotorcraft typically used for UAVs.

Flight modes fall into two main categories: manual and autonomous. Manual modes offer varying
degrees of autopilot support when controlling the vehicle via RC sticks or a joystick. Autonomous
modes, on the other hand, allow the autopilot to fully manage the vehicle’s movements and are
most in the interest of the thesis.
Among the autonomous flight modes, Offboard Control is the one adopted for the thesis and will
be discussed in section 4.4.1.
Pilots can switch between these modes using remote control switches or through a ground control
station. Some flight modes require specific pre-flight conditions, such as GPS lock or sensor

36

PX4 Autopilot

availability. PX4 ensures that these conditions are met before allowing a transition to certain
flight modes. [21]

4.4.1 Offboard Control Mode
Offboard mode allows external systems, such as companion computers, to control a vehicle by
providing setpoints for position, velocity, acceleration, attitude, attitude rates, or thrust/torque.
These setpoints can be communicated via ROS2 (adopted for the thesis) or MAVLink.

PX4 requires a continuous "proof of life" signal from the external controller at a minimum rate
of 2 Hz, using MAVLink setpoint messages or ROS 2 OffboardControlMode messages. PX4 will
enable offboard control only after receiving this signal consistently for over one second. If the
signal drops below 2 Hz, PX4 will exit offboard mode and initiate a failsafe action, which depends
on the RC control availability and settings defined by the parameter COM_OBL_RC_ACT.
For ROS2, the external controller proves its presence via OffboardControlMode messages, while
setpoints are published to topics like TrajectorySetpoint.

In addition to providing heartbeat functionality, OffboardControlMode plays two crucial roles.
Firstly, it determines the appropriate level within the PX4 control architecture where offboard
setpoints should be integrated and disables any bypassed controllers. Secondly, it specifies the
required estimates, such as position or velocity, and identifies which setpoint messages are valid
for the situation.
Taking a glance at the message definition for OffBoardControlMode:

1 # Off−board c o n t r o l mode
2

3 uint64 timestamp # time s i n c e system s t a r t (microseconds)
4

5 bool p o s i t i o n
6 bool v e l o c i t y
7 bool a c c e l e r a t i o n
8 bool a t t i t u d e
9 bool body_rate

10 bool thrust_and_torque
11 bool d i r e c t_actuato r

The fields are ordered such that position has the highest precedence, followed by velocity,
acceleration, and other subsequent fields. The first field with a non-zero value determines the
required valid estimate and the appropriate setpoint message for using offboard mode.
For instance, if the acceleration field is the first to have a non-zero value, PX4 will require a
valid velocity estimate from sensor measurements and the setpoint must be provided using the
TrajectorySetpoint message. Examples of other setpoint messages include VehicleAttitudeSetpoint,
VehicleRatesSetpoint and VehicleTorqueSetpoint.

Zooming in on the TrajectorySetpoint message, it supports the following input combinations:

1. Position Setpoint: When the position is specified (i.e., not NaN), non-NaN values for velocity
and acceleration are used as feedforward terms for the inner loop controllers

2. Velocity Setpoint: If velocity is specified (i.e., not NaN) and position is set to NaN, non-NaN
values for acceleration serve as feedforward terms for the inner loop controllers

37

PX4 Autopilot

3. Acceleration Setpoint: When acceleration is provided (i.e., not NaN) and both position and
velocity are set to NaN

All values are expressed in the NED (North, East, Down) coordinate system, with units of meters
(m) for position, meters per second (m/s) for velocity, and meters per second squared (m/s2) for
acceleration. [22]

4.5 PX4-ROS2 Integration
ROS2 is a versatile robotics library that can be used with the PX4 Autopilot, enabling advanced
drone applications. ROS2 has a large and active developer community, providing solutions to
common robotics challenges, and allows easy access to Linux-based software libraries, such as
those used for computer vision.
A key advantage of ROS2 is its deep integration with PX4, enabling the creation of custom
flight modes that function seamlessly alongside internal PX4 modes. It also allows high-rate,
low-latency reading and writing to uORB topics, making it ideal for control and communication
tasks.

The connection between ROS2 and PX4 is facilitated by middleware using the XRCE-DDS
protocol. This middleware converts PX4’s uORB messages into ROS2 messages, allowing direct
interaction between the two systems. The same uORB message definitions are used in ROS2
applications to serialize transmitted messages and deserialize received messages for seamless
communication. [23]

4.5.1 Architecture
The ROS2 application pipeline for PX4 is simplified thanks to the use of uXRCE-DDS (eXtremely
Resource Constrained Environments - Data Distribution Service), a middleware layer that man-
ages communication between PX4 and ROS2. In fact, PX4 uses uORB for messaging to convey
commands and communicate information, whereas ROS2’s default middleware for communication
is DDS (Data Distribution Service).

Figure 4.4: Architecture of the ROS2 integration with PX4

Figure 4.4 shows the architecture for the integration of ROS2 over PX4.

38

PX4 Autopilot

The uXRCE-DDS middleware operates through a client on PX4 and an agent on a companion
computer, the two communicate via serial, UDP or TCP links. The agent serves as an intermediary,
allowing the PX4 client to publish and subscribe to global DDS data.
The uxrce_dds_client is automatically generated and embedded in the PX4 firmware at build
time. It leverages uORB message definitions found in PX4-Autopilot/msg to generate the neces-
sary code for transmitting messages in ROS2.

When building ROS2 applications, it is essential to use the same message definitions that were
employed to create the uXRCE-DDS client in PX4. These definitions can be obtained by cloning
the px4_msgs interface package into the ROS2 workspace, with each branch corresponding to
the appropriate PX4 release.
The micro XRCE-DDS agent, which runs on the companion computer, is independent of the
client-side code. It can be compiled as part of a ROS build or installed separately. While the
PX4 firmware includes the uXRCE-DDS client by default, it must be manually started, except in
simulation environments where it starts automatically.

To control a vehicle using ROS2 applications, these applications subscribe to telemetry topics
from PX4 and publish to topics that trigger actions. For example, the VehicleGlobalPosition
topic provides the vehicle’s global position, while VehicleCommand allows issuing commands like
takeoff or landing.
When working with ROS2, it’s crucial to ensure the correct Quality of Service (QoS) settings for
subscribers. ROS2’s default QoS settings are incompatible with PX4, so using the predefined QoS
profile for sensor data is necessary. However, when publishing from ROS2 to PX4, no additional
settings are required since PX4’s defaults align with ROS2’s.

There are also differences in frame conventions between ROS and PX4. ROS uses the FLU
(Forward, Left, Up) frame, while PX4 follows the FRD (Forward, Right, Down) or NED (North,
East, Down) convention. Converting between these frames requires specific rotations. Similarly,
vectors like those in TrajectorySetpoint and VehicleThrustSetpoint messages must be transformed
before being sent to PX4. To simplify these conversions, the PX4/px4_ros_com library includes
shared utilities, such as frame_transforms, to handle frame transformations between ROS2 and
PX4. [24]

4.5.2 ROS2 Middleware (RMW) - DDS
ROS2 utilizes Data Distribution Service (DDS) as its default middleware, in particular
fast-DDS.
DDS is an end-to-end middleware that facilitates communication between distributed systems.
It operates on a publish-subscribe model: the latter is a messaging pattern which involves
publishers organizing messages into categories that subscribers can receive based on their interests.
This differs from traditional messaging patterns, where publishers send messages directly to specific
subscribers. [25] DDS offers a robust set of features, including a request-response transport and
a distributed discovery system between DDS programs, making it highly fault-tolerant and flexible.

An important fact is that DDS operates on UDP by default. This independence requires
DDS to handle the reliability of the transport. DDS offers extensive configurability through
Quality of Service (QoS) parameters, enabling fine-tuning of communication characteristics.
For instance, users can optimize for low latency by configuring DDS to prioritize speed over
reliability, akin to a UDP protocol. Conversely, in scenarios requiring TCP-like behavior with

39

PX4 Autopilot

enhanced tolerance for prolonged connection losses, DDS allows adjustments to QoS parameters
to accommodate these needs effectively.

Concerning ROS2, the decision to adopt DDS over building a new middleware from scratch was
influenced by several factors: DDS’s comprehensive documentation, recommended use cases, and
standardized API simplify development and maintenance, reducing the amount of code to manage.
Moreover, DDS’s extensive track record in critical applications, coupled with its flexibility and
reliability, aligns well with the requirements of ROS2, ensuring efficient and robust communication
across robotic systems. [26]

Figure 4.5: Main DDS entities and their interaction [27]

The main entities in DDS are displayed in figure 4.5:

• DomainParticipant: This is the entry point for the DDS domain. It represents the
participation of an application in a DDS domain and is responsible for creating and
managing other DDS entities.

• Publisher: A Publisher is responsible for managing DataWriters. It acts as a factory for
DataWriters and controls the flow of data from the application to the DDS domain.

• DataWriter: This entity is used by the application to publish data. It writes data samples
to a specific Topic, which are then distributed to interested subscribers.

• Subscriber: A Subscriber manages DataReaders. It acts as a factory for DataReaders and
controls the flow of data from the DDS domain to the application.

• DataReader: This entity is used by the application to receive data. It reads data samples
from a specific Topic, which are published by DataWriters.

• Topic: A Topic defines the type of data being published and subscribed to. It includes a
name and a data type, which describes the structure of the data.

• QoS (Quality of Service) Policies: These policies control various aspects of data
distribution, such as reliability, durability, and latency. They ensure that data is delivered
according to the specified requirements.

• Domain: A logical partition within which DDS entities operate. It helps in organizing and
isolating different sets of DDS entities. [27]

40

PX4 Autopilot

4.5.3 Discovery of nodes
DDS uses a distributed discovery system by default. This means that each node (or participant)
in the network can discover other nodes without needing a central server. This is achieved
through a process called Simple Discovery Protocol (SDP), where nodes periodically broadcast
their presence and listen for other nodes’ broadcasts.
In particular, for fast-DDS the discovery process consists of two key phases:

1. Participant Discovery Phase (PDP): During this phase, DomainParticipants announce their
existence to one another. Each DomainParticipant periodically sends out announcement
messages that include their IP address and port information, indicating where they can
receive metadata and user data. DomainParticipants in the same DDS Domain match and
connect based on these announcements. By default, these messages are multicast using
well-known addresses and ports. Additionally, the frequency of these announcements can
be customized in the discovery settings

2. Endpoint Discovery Phase (EDP): In this phase, DataWriters and DataReaders within
the DomainParticipants recognize each other. DomainParticipants exchange information
about their respective DataWriters and DataReaders, including details such as the topic
and data type. A match occurs only if both the topic and data type align between the two
endpoints. Once a match is made, the DataWriter and DataReader can begin transmitting
and receiving user data [28]

4.6 Related Works
This section exposes a review of recent research papers that focused on the deployment of 5G-
enabled UAVs and the respective performance analyses.

5G-enabled UAVs for energy-efficient opportunistic networking. [29]
The article examines how 5G-enabled UAVs can be leveraged to create opportunistic networks,
enhancing network resource management, lowering energy consumption and increasing operational
efficiency.
The proposed framework incorporates 5G-enabled drones along with edge command and con-
trol software to develop energy-efficient network topologies. Consequently, UAVs perform edge
computing for optimized data collection and processing. This advancement utilizes cutting-edge
Artificial Intelligence (AI) algorithms to enhance UAV networking capabilities while reducing
energy use.

The employed 5G network is provided by Amarisoft whereas the UAV is controlled by a human
operator using a ground control station. The UAVs and the related software is provided by
Pixhawk 4 (PX4), as in this thesis.

Empirical results demonstrate substantial improvements in network performance with 5G tech-
nology compared to older 2.4 GHz systems. Communication failure rates dropped by 50%, from
12% to 6%. Average round-trip times decreased by 58.3%, from 120 ms to 50 ms (with peaks
up to 75 ms). Data transmission rates surged from 1 Gbps to 5 Gbps, marking a 400% increase.
These findings underscore the significant impact of 5G technology on UAV operations.

5G-Enabled UAVs with Command and Control Software Component at the Edge for
Supporting Energy Efficient Opportunistic Networks. [30]

41

PX4 Autopilot

In the paper, the experimental 5G infrastructure for UAV trials was set up using the 5GENESIS
facility in Athens, equipped with Amarisoft Core Network and PCIe SDR boards for 5G RAN.
A field trial was conducted using a 5G-enabled UAV prototype, which offloaded its flight controller
to the edge of the 5G network; the UAV was controlled via a joystick paired with a ground control
software. This setup allowed low-latency communication and energy-efficient operation.
The results demonstrated successful UAV control over 5G with a low message loss rate of 6%.
The round-trip time for 5G was approximately 50 ms, outperforming the conventional 2.4 GHz
link, which averaged 120 ms. The additional 5G equipment on the UAV did not significantly
affect energy efficiency due to its lightweight design.
In essence, the trial validated the feasibility of controlling UAVs over 5G and showed potential for
future enhancements in energy efficiency through AI-driven optimizations at the network edge.

42

Chapter 5

UAV Testbed Deployment

In order to test the ability of the OAI 5G network to control a UAV, in principle the components
are:

• An application that flies the drone on a certain trajectory by transmitting trajectory
setpoints

• A simulator or a real UAV receiving the trajectory setpoints

• A 5G network through which the communication happens

So the idea is to instantiate a ROS2 node at the edge of the network (the gNB for example) which
communicates through the 5G network towards the simulator (or eventually the real UAV).
This chapter presents the steps that led to the deployment of the UAV testbed, with particular
regard to the issues encountered during the latter and how to solve them:

1. Development of PX4 offboard control application

2. ROS2 middleware issues

3. UAV simulator issues

4. Computer network topology issues

5.1 PX4/ROS2 Offboard Control Application
The first step in order to test the ability of the deployed 5G network to control a UAV is to
develop a suitable benchmark application.

Following the foundations from the example given in the PX4 ROS2 offboard control guide [31],
a simple application that flies the drone in a circle was developed. A circular path was chosen
as it tests the ability of the UAV to maintain a consistent turn radius and handle continuous
yaw adjustments; if the turn radius varies at any point, it means that the UAV is suffering from
trajectory error. However, a limitation of the circular trajectory is that it does not test for
abrupt changes in direction.

The ROS2 offboard control node receives vehicle_local_position messages from Gazebo simu-
lator and outputs trajectory_setpoint messages at a certain publishing frequency (determined

43

UAV Testbed Deployment

by the user): such messages carry velocity setpoints for the UAV, which are used on-board in
order to drive the actuators.

The final version of the code for the controller is reported in appendix A.

The core parts of the application include:

• Timer Callback - executes periodically to

1. Call methods to publish offboard control mode and trajectory setpoint messages
2. Arm the drone after the first 10 cycles (a steady stream of messages needs to be

received by the on-board computer before offboard control can be switched on)
3. (Eventually) change control frequency after a certain time inverval has elapsed: this

was useful when running experiments that sweep control publishing frequency values
4. Manage log files according to control frequency being used, temporarily stop logging

when loss of connection is detected

• Vehicle position subscription callback - updates drone position upon reception of vehicle_local_position
messages and logs it onto the current log file

• publish_trajectory_setpoint() method - publishes velocity setpoints for a (anti-
clockwise) circular path using a discrete-time PID control law:

xd(t) = Rcos(ωt) [m]
yd(t) = Rsin(ωt) [m]
zd(t) = −h [m] (FRD reference frame)

=⇒

ẋd(t) = −Rωsin(ωt) [m/s]
ẏd(t) = Rωcos(ωt) [m/s]
żd(t) = 0 [m/s]

Velocity setpoints in discrete-time with feedback to correct errors:

vx[k] = −Rω sin(ωk

fpub
) + KP ex[k] + KI

qk

i=0
ex[k]

fpub
+ KD(ex[k] − ex[k − 1])fpub [m/s]

vy[k] = Rω cos(ωk
fpub

) + KP ey[k] + KI

qk

k=0
ey [k]

fpub + KD(ey[k] − ey[k − 1])fpub [m/s]
vz[k] = 2(−h − z) [m/s]

Since the thesis’ focus is on the telecommunication aspects of flying the drone, no advanced
techniques for PID tuning were used. The PID was manually tuned to achieve trajectory
tracking at steady state at ω = 2π

10 [rad/s] with a control publishing frequency of 10 Hz:
Kp = 2.5, Ki = 1.7, Kd = 0.8

5.2 ROS2 Middleware Troubleshooting
As of now, OpenAirInterface 5G does not support UDP multicast. However, as previously
explained, multicast is crucial when ROS2 nodes need to discover each other, since the RMW
FastDDS strongly leverages it!
Therefore, an important aspect in ensuring successful communication between the UAV simulator
and the offboard controller lies in the choice of the middleware for communications. The adopted
solution leverages Eclipse Zenoh, which is described in short in the next subsection.

44

UAV Testbed Deployment

5.2.1 Zenoh
Eclipse Zenoh is a robust data management framework that integrates data in motion, data at
rest, and computations. Data in motion refers to information actively being transferred between
systems, applications, or devices, often requiring real-time processing. On the other hand, data
at rest is information stored on various media, such as databases or hard drives, and remains
static until accessed or modified. Zenoh combines traditional publish/subscribe mechanisms with
geo-distributed storage and query capabilities, ensuring efficient data handling. In short, the
main components of Zenoh include:

• Zenoh Router (zenohd): Routes data between nodes and manages storage and queries

• Publishers and Subscribers: Handle data dissemination and reception, akin to DDS
DataWriters and DataReaders

• Storages: Provide persistent data storage.

• Queries: Enable data retrieval in a geographically transparent way, regardless of where
data is actually stored

• Computations: Allow distributed data processing

This architecture is designed for high efficiency and scalability, making it ideal for edge computing
and IoT applications. [32]

5.2.2 Zenoh bridge for ROS2 over DDS
As already mentioned, a solution to the RMW issue leverages Eclipse Zenoh middleware, which
supports TCP connections between nodes. However, even though Zenoh has been officially
adopted as an alternative RMW since September 2023 [33], the integration is still a work in
progress: the only feasible path is to use a Zenoh bridge for ROS2 over DDS. [34]

The bridge serves as a connector between ROS2 and Zenoh, facilitating communication between
the two frameworks. It achieves this by leveraging CycloneDDS to discover DDS entities declared
by ROS2 applications and creating corresponding mirrored entities in Zenoh: for instance, if
a ROS2 application declares a DDS writer, the bridge generates a corresponding DDS reader,
which listens for the data to be sent and passes it to a Zenoh publisher. Conversely, if a ROS2
application declares a DDS reader, the bridge generates a DDS writer which receives data from a
Zenoh subscriber.

The bridge discovers ROS2 Nodes running on the same Domain ID via UDP multicast, as per
DDS specification. Meanwhile, the two bridges may connect through TCP in a peer-to-peer
manner (more complicated topologies involving Zenoh routers and clients are also possible). [35]

In order for this to work, the bridge also maps DDS topics read and written by the ROS2
applications to Zenoh resources, ensuring proper declarations for communication between ROS2
and Zenoh. [36]

The commands involved for the setup of the bridge are listed in section 5.3.

45

UAV Testbed Deployment

5.3 Network topology of UAV Testbed
The obvious next step is to deploy and test the program in different configurations, with the
final goal being to run the offboard controller leveraging the OAI 5G network. In this context,
different deployments of the application were performed:

1. Simulator and ROS node running on the same machine - easiest deployment, can
be performed by following steps in tutorial [37] while replacing the code ran by the example
with the previously described benchmark application

2. Simulator on UE, ROS node on gNB - deployment failed due to UE laptop not being
able to handle simultaneously running OAI-UE software and Gazebo simulator

3. Simulator on third computer connected to UE via ethernet, ROS node on gNB
- final setup, investigated in the following subsection

5.3.1 Finalized UAV Testbed

Figure 5.1: Network topology of the UAV testbed

Fig. 5.1 shows the network topology and the programs being run by each entity, whereas fig. 5.2
represents the system from the point of view of the middleware: the bridges are running on the
gNB and UE and are connected in a peer-to-peer topology.

In summary, the commands to be run on each computer involve:

• gNB:

46

UAV Testbed Deployment

Figure 5.2: Middlewares for communication in UAV testbed

1. Perform system time synchronization using Network Time Protocol (NTP):

1 sudo s e r v i c e ntp stop
2 sudo ntpd −gq
3 sudo s e r v i c e ntp s t a r t

This step is executed on all laptops, as ROS2 messages are lost when the system clocks
are out of sync

2. Deploy OAI5G core network and gNB (version 2.1.0) in band 78 with configuration
file gnb.sa.band78.fr1.106PRB.usrpb210.conf (described in section 3.1)

3. Configure correct routing from gNB towards the UE via the oai-upf

1 sudo ip route add 1 0 . 0 . 0 . 0 / 2 6 v ia 1 9 2 . 1 6 8 . 7 0 . 1 3 4 dev demo−oa i

4. Source the ROS2 environment (including the PX4_ros_com repo local_setup.bash file)
and run the Zenoh/DDS bridge as a peer looking to connect to the UE

1 cd ~/Documents/px4−ROS2_ws/ ;
2 source / opt / ros /humble/ setup . bash ;
3 source i n s t a l l / loca l_setup . bash ;
4 . / zenoh−bridge−ros2dds −m peer −e tcp/<UE IP >:12345

5. Source the ROS2 environment (as in previous step) and proceed to run the offboard
control ROS2 node

1 ros2 run px4_ros_com of fboard_cont ro l

• UE:

1. Perform system time synchronization using NTP as for the gNB
2. Deploy OAI5G UE (version 2.1.0) and make sure it properly connects to the gNB

47

UAV Testbed Deployment

3. Configure routing towards gNB

1 sudo ip route add 1 9 2 . 1 6 8 . 7 0 . 1 2 9 dev oaitun_ue1

4. Source the ROS2 environment and run the Zenoh/DDS bridge as a peer listening on a
designated port

1 . / zenoh−bridge−ros2dds −m peer − l tcp / 0 . 0 . 0 . 0 : 1 2 3 4 5

5. Check that the ROS2 node topics are available at the UE

• Simulator Laptop:

1. Perform system time synchronization using NTP as for the UE and gNB
2. Run µXRCE Agent, which will be discovered by the Zenoh bridge running on the UE

1 MicroXRCEAgent udp4 −p 8888

3. Navigate to the PX4 Autopilot folder (version 1.15.0, git hash
ee2a8c9bda06425c4c78e72455059692309431b1) and run Gazebo simulator (automati-
cally also runs µXRCE Client and connects to the agent) with the default UAV model
(X500 Quadrotor)

1 make px4_s i t l gz_x500

Theoretically, the commands listed above should be enough. However, initially the ROS2
messages did not seem to reach the µXRCE Client and therefore the simulator, even though
messages from the simulator were correctly reaching the ROS2 offboard controller on the
gNB. After a considerable effort, it seems that the cause was that

uXRCE-DDS Agent was not subscribing to the topics pub-
lished by the ROS2 node on the gNB. The way around this is to create
subscriptions manually at the simulator side via ros2 topic echo commands

3. Therefore, 3 additional commands were executed:

1 ros2 t o p i c echo /fmu/ in / offboard_control_mode
2 ros2 t o p i c echo /fmu/ in /vehicle_command
3 ros2 t o p i c echo /fmu/ in / t r a j e c t o r y _ s e t p o i n t

48

UAV Testbed Deployment

Figure 5.3: Picture of the experimental apparatus

49

Chapter 6

UAV Testbed Analysis

This chapter deals with the measurements and experiments performed in order to characterize
the deployed testbed, especially in terms of:

• ROS2 topic throughput - to quantify the networking load on the system

• ROS2 application round-trip time - crucial parameter in determining the responsiveness
and alertness of the UAV

• Trajectory Error - determines how well the UAV is able to follow the predefined circular
trajectory. This parameter was studied as a function of the angular velocity of the UAV
and publishing frequency of the control

6.1 ROS2 topics throughput
First of all, it is important to measure the throughput of the ROS2 topics involved, in order to
quantify the network load being exerted. This can be done via the ros2 topic bw command:

• vehicle_local_position - uplink

• trajectory_setpoint - downlink

• offboard_control_mode - downlink

• ’talker’ topic - downlink

• ’listener’ topic - uplink

Figure 6.1 shows the occupied bandwidth by each PX4-ROS2 topic as function of publishing
frequency of the control, which is in general in the range of 10s of kB/s. As expected, the
bandwidth occupied by trajectory_setpoint and offboard_control_mode messages linearly
increases with control publishing frequency, doubling whenever the publishing frequency is
doubled.
Concerning vehicle_local_position topic, its message frequency is not affected by the control
publishing frequency, therefore the value remains constant at around 20 kB/s.
Lastly, the modified talker node (explained in section 6.2.1) occupies a bandwidth of 290 B/s
when recording RTT one time per second, while the listener 320 B/s.

50

UAV Testbed Analysis

Figure 6.1: ROS2 topic bandwidth vs. control publishing frequency

6.2 ROS2 Application Round-trip Time
Real-time control and predictability are crucial when operating a UAV via ROS2 nodes: the
UAV’s stability and responsiveness depend on timely communication between the ground station
and the UAV.
Round-trip time (RTT) is a measure of communication latency: low RTT ensures that the
control algorithm is making use of close to real-time data. Accurate control relies on predictable
communication delays, allowing control algorithms to make precise adjustments to the UAV’s
flight path.
Additionally, RTT measurements provide valuable diagnostics for network performance, helping
to identify issues like congestion or packet loss, which can then be addressed to optimize the
control system’s effectiveness.

For these reasons, it is important to characterize the testbed in terms of round-trip time (RTT),
especially at the ROS2 application layer, where the control algorithm is located.

Considering the testbed setup, the primary factors affecting RTT in the ROS2 application layer
include:

• Control command processing time: The time required for processing and generating control
commands within the ROS2 node at the gNB

• Zenoh bridge latency at the gNB: The communication delay introduced by the first Zenoh
bridge located at the gNB.

51

UAV Testbed Analysis

• gNB-UE communication latency: The latency in data transmission between the gNB and
the UE during both the uplink and downlink phases.

• Zenoh bridge latency at the UE: The delay introduced by the second Zenoh bridge located
at the UE.

• UE-Simulator communication latency: The time delay in communication between the UE
and the simulator laptop (connected via Ethernet)

6.2.1 Talker/Listener nodes
In order to measure RTT, a modified version of the ROS2 talker/listener nodes was employed:

• Talker: Simulates a message publisher in a ROS 2 system that logs round-trip latencies
between itself and a list of known listeners

• Listener: Simulates a message responder that listens to messages from the Talker and
sends back a response, facilitating the calculation of round-trip latencies

In summary, the communication flow is the following:

1. The Talker node periodically publishes a message containing a timestamp and its name
to the "topic" topic. The period (and therefore the frequency) of the publication can be
modified by the user

2. The Listener node subscribes to the "topic" topic, receives the message, extracts the
timestamp, and publishes a response containing the original timestamp and its own name
to the "response_topic" topic

3. The Talker node subscribes to the "response_topic" topic, receives the response, calculates
the round-trip latency, and logs this data if the connection is active. If no response is
received for a certain time interval, it stops logging until the connection is restored (this
is useful if for some reason the 5G connection is lost). Multiple listener nodes are also
supported, allowing simultaneous measurement of RTT towards different destinations.

The full implementation of the talker and listener nodes can be found in appendix B.

6.2.2 RTT measurements
Figure 6.2 shows 2 plots of RTT measurements over a span of 5 minutes, taking 10 RTT mea-
surements every second and keeping the simulated UAV at the UE in a fixed position compared
to the gNB. Plot (a) refers to the "Gazebo/ROS not running" case, when only the talker and
listener nodes are active without any other load on the network; on the other hand, plot (b) is
for the "Gazebo/ROS running" case, when the whole testbed (including Gazebo simulator and
the PX4 ROS2 node) is deployed.

Both situations encompass variability of the RTT over time, in fact a "spiking" behavior is
observed: the latency spikes, already present in case (a), are a lot more frequent in case (b). In
addition, the height of the peaks drammatically increases, going from 24 ms in case (a) to around
110 ms in case (b)!

The average RTT correspondingly increases, going from 10.9 ms (a) to 42.9 ms (b).

52

UAV Testbed Analysis

The high jitter is detrimental for the control of the UAV, because it produces inconsistent and
unpredictable communication delays, reducing momentarily the accuracy of the control. The
impact of such phenomenon will be quantified in section 6.3, which concerns the trajectory error.

(a)

(b)

Figure 6.2: RTT measurements over 5 minutes

53

UAV Testbed Analysis

6.2.3 Latency Spikes Investigation
It seemed necessary to take a deeper look at what was happening inside the system in order to
try to justify the RTT "spikes". In particular, the objective was to gather information from the
lower layers of the 5G protocol stack, such as a MAC or RLC.

Since there is no official documentation from OAI on how to retrieve such measurements, the first
thing that came to mind was exploiting RNIS, however similar issues as for deploying OAI-MEP
(which uses RNIS) were encountered. Secondly, diving into the OAI logging facility some useful
measurements could be retrived, but the stream of text was several MB/s and it was having an
impact on the performance of the laptops, leading to frequent crashes.

Other solutions were attempted, and finally the E2 Agent came to the rescue.

E2 Agent

The E2 Agent is a network function within the O-RAN architecture that acts as an interface
point between the E2 nodes (such as gNBs, eNBs, and other RAN nodes) and the near-RT RIC
(near-Real-Time RAN Intelligent Controller).
It collects real-time data and metrics from the RAN and sends this data to the near-RT RIC for
processing and analysis. It also receives control commands and policies from the near-RT RIC to
be enforced on the RAN elements.

The tutorial on how to setup the OAI 5G RAN with integrated E2 agent is found at [38].

When building FlexRIC, if the compiler is issuing ’segmentation fault’
errors, the fix is to use exactly CMake v3.15 via update-alternatives tool or
via direct install/downgrade

Once the E2 Agent is successfully setup, different xApps may be started to provide monitoring and
control over the RAN. xApps are specialized software applications that run on the nearRT-RIC
designed to perform various radio network functions, analytics, and control tasks to optimize the
performance of the RAN.
In particular, within the already provided xApps, the (MAC + RLC + PDCP + GTP) monitor
xApp was found to provide a log with a large number of KPI measurements coming from different
layers of the 5G protocol stack.

RAN KPIs Plots

The idea is to perform RTT measurements at the same time as KPI measurements and try to
extract as much information as possible to justify the observed RTT spikes.

The designed experiment involves:

• Length: 5 minutes

• Talker/listener ROS2 nodes measuring RTT 10 times a second (RTT measurement instant
is attributed to starting instant of measurement)

54

UAV Testbed Analysis

• (MAC + RLC + PDCP + GTP) monitor xApp logging RAN KPIs 1000 times a second

• Gazebo Simulator: publishing UAV position 250 times a second. This corresponds to the
frequency at which drivers publish their state to the control in real vehicles

• PX4 ROS2 node: publishing UAV control commands 10 times a second

The experiment was repeat twice, once when Gazebo Simulator and PX4 ROS2 node were not
running (case (a)) and once when they were (case (b)); each of the KPI plots also reports the
correlation coefficient with respect to the RTT measurements and the corresponding p-value.
The obtained graphs for the RTT are already reported in figure 6.2.

Figure 6.3 shows the evolution of the pusch_snr over time, the envelope of the peaks is drawn in
red. The pusch (Physical Uplink Shared Channel) is the channel used for transmitting user data
from the UE to the gNB, therefore pusch_snr is a measure of the quality of transmission of user
data in uplink.
In case (a), a spiking behavior is once again observed: most measurements are between 45 and 50
dB, whereas the negative peaks are at around 32 dB. The correlation with RTT seems to be low;
nevertheless, comparing the instant where the peaks happened:

For case (a), 63% of spikes in RTT happen within 40 ms of a spike in pusch_snr.
For case (b), this percentage lowers to around 20%, so other factors must be at play.

(a) (b)

Figure 6.3: pusch_snr measurements

On the other hand, pucch_snr (fig. 6.3) is a lot more stable around 50 dB, meaning that control
channel conditions are relatively consistent.
Block Error Rate (BLER) represents the percentage of transmitted data blocks that contain
errors and cannot be decoded correctly by the receiver.
Taking a look at figures 6.5 and 6.6, it seems that both the dl_bler and the ul_bler are almost
always zero in (a) but the situation drastically changes in (b): the BLER fluctuates a lot and it
also has some correlation with RTT (ρ = 0.17)!

55

UAV Testbed Analysis

(a) (b)

Figure 6.4: pucch_snr measurements

It seems that the spiking of BLER might induce the tall spikes in RTT (the ones up to 100 ms)
when the UAV testbed is fully deployed. The fact that the BLER is different from 0 only when
the application is interesting, because at the start of the thesis the maximum throughput of the
gNB was tested to be in the 10s of MB/s, so network congestion should not be an issue (the load
is in the kB/s range). For this reason, the increase in BLER might be attributed to the high
CPU load exerted by simultaneously running the OAI 5G network, the Zenoh bridges and having
to pass the ROS2 messages.

(a) (b)

Figure 6.5: Downlink BLER measurements

Figures 6.7 and 6.8 show the log of the cumulative number of PRBs used for retransmissions
in DL and UL. Retransmissions are happening only when the UAV testbed is fully deployed,
therefore when the BLER is also fluctuating, as expected.
The last KPI reported is the transmission buffer occupancy in bytes (fig. 6.9), which reflects
how much data is queued for transmission over the air interface. It can be noted that the metric
almost doubles from (a) to (b); as the buffer fills up, packets have to wait longer in the queue

56

UAV Testbed Analysis

(a) (b)

Figure 6.6: Uplink BLER measurements

(a) (b)

Figure 6.7: Downlink aggregate retransmission physical resource blocks

before being transmitted, which might be one of the reasons why the RTT increases in (b).
From this experiment it is possible to draw that:

• When the UAV testbed is not deployed (case (a)), the observed spikes in RTT happen
mainly due to the spikes in SNR

• When the UAV testbed is deployed (case (b)), the taller and more frequent spikes in RTT
are due to BLER spikes, which induce retransmissions of packets. The variability in BLER
might be caused by the high CPU load exerted when simultaneously running the OAI 5G
network, the Zenoh bridges and having to pass the ROS2 messages.

This evidence is in line with the fact that the employed laptops do not respect the minimum
system requirements to run OAI5G (see section 3.1)

57

UAV Testbed Analysis

(a) (b)

Figure 6.8: Uplink aggregate retransmission physical resource blocks

(a) (b)

Figure 6.9: Transmission buffer occupancy in bytes

6.3 Trajectory Error
Trajectory error refers to the deviation between the UAV’s actual flight path and the desired or
planned trajectory. The trajectory of a UAV is the path it is intended to follow, which can be
defined in terms of position, velocity, and sometimes orientation over time.
Trajectory error can arise due to various factors, such as:

• Communication Delay: Since RTT is not zero, the control algorithm will not be using the
most recent information and commands will be received by the UAV with a certain delay.
This is the most relevant source of error considering the scope of the thesis.

• Actuator Limitations: The trajectory might be impossible to follow for the UAV, which
might happen because the actuators are not able to produce the required level of thrust
within the dynamic constraints of the trajectory

58

UAV Testbed Analysis

• Environmental Disturbances: Such as wind gusts, turbulence, or changes in atmospheric
pressure.

• Sensor Noise: Imperfections or inaccuracies in the sensors used for navigation (e.g. GPS
errors).

• Modeling Errors: Differences between the UAV’s actual dynamics and the model used for
control.

By analyzing trajectory error, we can gauge the effectiveness of the control system, particularly
when dealing with factors like communication delays, actuator limitations, etc. This evaluation is
essential for ensuring safety, especially in environments where precision is critical, such as urban
areas or close to obstacles. Furthermore, minimizing trajectory error contributes to more efficient
flight, reducing unnecessary maneuvers.
Finally, understanding and mitigating trajectory error also allows for the optimization of control
algorithms, sensor processing, and actuator performance, ultimately leading to more reliable and
predictable UAV operations.

As explained in chapter 5, the simulated UAV receives velocity setpoints from the ROS2 node in
order to follow a circular path. An advantage of this shape is that it is particularly simple to
determine how accurately the UAV is following the trajectory:

1. Define the Ideal Circular Trajectory:
Assume the ideal circular path has a center at (xc, yc) and a radius R. The trajectory can
be parameterized in a 2D plane as:

x(t) = xc + R cos(ωt),
y(t) = yc + R sin(ωt),

where ω is the angular velocity (in rad/s) for the circular motion.

2. Determine the UAV’s Actual Position:
Let the UAV’s actual position at time t be (xactual(t), yactual(t)).

3. Calculate the Radial Distance to the Circle’s Center:
For the UAV’s actual position (xactual(t), yactual(t)), compute its radial distance from the
center of the ideal circle:

d(t) =
ð

(xactual(t) − xc)2 + (yactual(t) − yc)2.

4. Compute the Instantaneous Trajectory Error:
The instantaneous trajectory error e(t) at time t is the absolute difference between this
radial distance d(t) and the radius R of the ideal circle:

e(t) = |d(t) − R|

For the evaluated UAV testbed:

• xc = 0 m , yc = 0 m

• Position logging is performed at the PX4 ROS2 node side

59

UAV Testbed Analysis

6.3.1 vs. Angular Velocity
This section is concerned with the evaluation of trajectory error as function of the angular velocity
of the drone while using a constant control publishing frequency. The trajectory to be followed is
as always circular and with a 2 meter radius, the type of control is PID with coefficients set as in
the previous chapter.
The experiments in this and the following sections are performed in 2 situations (represented in
figure 6.10):

(a) ’5G’ case - PX4 ROS2 node running on the gNB, Gazebo simulator running on the
simulator laptop, which is located in a fixed position with respect to the gNB. ROS2
messages have to travel through the OAI 5G network

(b) ’Localhost’ case - PX4 ROS2 node running on the simulator laptop alongside Gazebo.
ROS2 messages are exchanged via the loopback interface. This situation acts as the control
for the experiment and provides the lowest and most stable RTT (optimal control of the
drone)

The methods for the experiment involve:

• Control publishing frequency fpub = 10 Hz or 20 Hz

• Progressive sweeping of values of angular velocity ω, going from 2π
40 (where trajectory error

is negligible) to 2π
4 (where control visibly failed trajectory tracking) with a 2π

80 step

• Each value of angular velocity is kept for 60 seconds before moving to the next one

• Trajectory is logged directly by the PX4 ROS2 node whereas RTT is also recorded every
second via the talker/listener nodes

Figures 6.11 and 6.13 report the average value and the standard deviation of the trajectory error
as a function of the angular velocity of the drone. At a first glance, all curves remain close to each
other until ω = 1.4 rad/s, afterwards trajectory error has a sudden increase and the difference
between ’5G’ and ’Localhost’ cases becomes relevant (at both 10 and 20 Hz control publishing
frequency). For this reason, from now on this velocity will be referred to as the critical speed:

ωcrit = 1.4 rad/s

The error starts to become different from zero at 0.4 rad/s, corresponding to 0.8 m/s of tangential
velocity. The value might be improved by different tuning of the PID constants (which was
not a main focus for the thesis), although it could also be a physical limit of the actuators of
the simulated UAV (if this is the case, modifying the radius of the trajectory might move this point).

What is more of concern for the thesis is the difference between the trajectory error over 5G and
the one over Localhost in figure 6.12. It can be seen that the performance of the 5G case deviates
significantly from the Localhost case starting from the critical speed. In particular there seems to
be a positive peak at the critical speed followed by a valley, both of which are more pronounced
when the control publishing frequency is lower. The full effect of modifying control publishing
frequency will be discussed in section 6.3.2.

The next analysis has to do with the standard deviation of the trajectory error, which quantifies
how consistently the trajectory error is committed. For instance, if the UAV follows a perfect

60

UAV Testbed Analysis

(a) ’5G’ (b) ’Localhost’

Figure 6.10: Reminder of the UAV system configuration

Figure 6.11: Mean trajectory error over 60 seconds vs. angular velocity

circle of radius 3 m instead of 2 m, then the average trajectory error will be 1 m and the standard
deviation will be 0 m. Conversely, if the 3 m circle presents imperfections, meaning that the
distance of the UAV from the origin is variable over time, the standard deviation will be greater
than 0 m.

61

UAV Testbed Analysis

Figure 6.12: Difference between mean trajectory error of 5G case and localhost case

In other words, it measures how close the trajectory is to a circle (with any radius!).

The behavior of the standard deviation of the trajectory error as a function of angular velocity is
similar to the one of the average trajectory error, however the interpretation of the plot differs:
when the UAV reaches the critical speed, the traced path moves farther away from a circle. In
fact, as can be seen in figure 6.15, the trajectory over 5G becomes inconsistent across different
laps, whereas this does not happen for the Localhost case.

6.3.2 vs. Control Publishing Frequency
The second experiment involves keeping the angular velocity constant and varying control
publishing frequency instead.
As observed in the previous section, there seems to be a threshold angular velocity, the critical
speed, after which the trajectory error explodes and the ’5G’ curve becomes distant from the
’LocalHost’ one. This phenomenon is observed at both 10 and 20 Hz control publishing frequency.

A question arises: is it possible to regain control of the UAV at the critical speed by employing a
higher control publishing frequency?
In order to provide an answer, an experiment was set up, similar to the angular velocity one:

• Angular velocity fixed to the critical speed ω = ωcrit = 1.4rad/s

• Progressive sweeping of values of control publishing frequency fpub, going from 5 to 50 Hz
(and eventually up to 250 Hz, equal to the default UAV position publishing frequency in
Gazebo) with a 5 Hz step

• Each value of publishing frequency is kept for 60 seconds before moving to the next one

62

UAV Testbed Analysis

Figure 6.13: Standard deviation of trajectory error over 60 seconds vs. angular velocity

Figure 6.14: Difference between standard deviation of trajectory error of 5G case and Localhost
case

• Trajectory is logged directly by the PX4 ROS2 node whereas RTT is also recorded every
second via the talker/listener nodes (as in the previous experiment)

Figure 6.16 plots the average trajectory error for each value of control publishing frequency.
Trajectory error seems to be improved by increasing fpub only up to a certain point, which is
reached at 10-15 Hz for both cases.

63

UAV Testbed Analysis

Figure 6.15: Trajectory of UAV at the critical velocity, 20 Hz control publishing frequency

Comparing the 5G and Localhost curves, it seems that the two are similar, however the 5G
error is consistently about 1 meter higher than the Localhost one. A similar behavior occurs
when analyzing the standard deviation of the trajectory error (figure 6.17): the Localhost curve
converges to a low value (only a few centimeters) after 15 Hz, whereas the 5G curve is always
higher than 0.8 m, which means that trajectory is remains far away from the ideal circle.

Given this evidence, unfortunately, the 5G the ROS2 node is never able to properly control the
UAV at the critical speed with the deployed PID control algorithm. Further confirmation of this
can be obtained by taking a direct look at the trajectory in figure ??: the path does not resemble
a circle even at 50 Hz control publishing frequency.
Increasing control publishing frequency over 50 Hz up to the simulator publishing frequency (250
Hz) provides delivers comparable or worse performance at critical speed, even when the node runs
on Localhost. This might be due to the PID control loop becoming unstable at higher frequencies,
however this was not investigated further as it is not a main focus for the thesis.
In addition, it was observed that RTT over 5G does not seem to be strongly influenced by the
control publishing frequency: the average over 1200 measurements in a 10 minute time span was
42.69 ms at fpub = 25 Hz and 42.95 ms at fpub = 250 Hz. This is in line with the fact that the
available throughput of the network (around 14.6 MB/s) is much larger than the utilization in
the testbed, which is in the kB/s range.
Similarly, LocalHost RTT does not signficantly vary with control publishing frequency either,
with an average of 0.59 ms throughout the whole frequency range.

64

UAV Testbed Analysis

Figure 6.16: Mean trajectory error over 60 seconds vs. control publishing frequency, ω = ωcrit =
1.4 rad/s

Figure 6.17: Standard deviation of trajectory error over 60 seconds vs. control publishing
frequency, ω = ωcrit = 1.4 rad/s

65

UAV Testbed Analysis

Figure 6.18: Trajectory of the UAV at critical speed, 50 Hz control publishing frequency

66

Chapter 7

Conclusions

The thesis aimed to achieve control of a simulated UAV via an experimental 5G network, exploiting
edge computing to minimize latency.
Unlike previous generations of mobile technologies, such as 4G LTE, 5G provides substantial
advancements that are particularly beneficial for UAV operations: the lower latency and higher
reliability ensure responsive control, which is crucial for maintaining precision during complex
maneuvers in dynamic environments.
The edge computing paradigm has recently emerged as an opportunity for the UAV to outsource
demanding tasks, such as flight planning and control computations, to the network’s edge. By
leveraging edge computing, these computationally heavy operations are processed close to the
UAV, achieving low control latency and longer battery life.

The research carried out in this thesis demonstrates the potential of a 5G-enabled UAV control
system through its detailed implementation, deployment and performance analysis.

Deployment of the UAV testbed involved troubleshooting multiple issues and bugs related to
OpenAirInterface5G, PX4 Autopilot and the ROS2 environments, especially when it came to
communication between the PX4 ROS2 node and the Gazebo simulator. All fixes were docu-
mented for reproducibility purposes.

The analysis involved the characterization of the testbed in terms of round-trip time (RTT),
trajectory error and occupied network bandwidth.
The behavior of the ROS2 application layer RTT was studied, especially when it came to its
variability over time (the ’spiking’ phenomenon). The OAI5G E2 Agent enabled the recording of
network KPIs, which revealed that RTT spikes are mainly caused by the pusch_snr when the
simulator and PX4 ROS2 control node are not running, whereas the worsening of the phenomenon
when the testbed is fully deployed is explained by the variability in BLER, possibly due to
the intense CPU load on the gNB/UE (which, as noted in section 3.1, do not comply with the
minimum hardware requirements to run OAI5G).
Trajectory error between the desired and actual UAV paths was also investigated, in particular
when varying angular velocity over the circular path and control publishing frequency. With
the employed PID position control algorithm, there exists a critical angular velocity at 1.4
rad/s after which control over the UAV is lost and trajectory error over 5G differs greatly when
compared to the low-latency ’LocalHost’ control. For this reason, when following a curved

67

Conclusions

trajectory, tangential velocity shall be kept strictly under 10.1 km/h when planning trajecto-
ries with this specific testbed. With such speeds, a control publishing frequency of 10 Hz is
sufficient and further increases lead to similar or worsened performance in terms of trajectory error.

A main contribution of this research lies in the knowledge gathered in the deployment of the
UAV testbed, especially concerning the establishment of communication between ROS2 and the
UAV simulation environment via the OAI5G custom network. Overcoming bugs was the greatest
difficulty in this work, and the knowledge on how to fix them will speed up future deployments.

Overall, this thesis was able to achieve UAV control via an experimental 5G network, underscoring
the transformative potential of 5G technology combined with edge computing in UAV control
and marking a departure from the limitations of earlier mobile networks.

7.1 Future Works
The main limitations in this study lie in the use of a simulated UAV and in the restricted
computational power of the gNB/UE. The former implies that the experiment may not fully
capture the variability in channel conditions, especially SNR and other environmental factors,
that would naturally occur in real-world scenarios. The latter caused problems in terms of RTT
variability, which should not happen in a state-of-the-art deployment.

Future work could concentrate on repeating the performance evaluation with an actual UAV
and on mitigating RTT variability by applying a URLLC slice to the UAV. In addition, further
investigations on the deployment OAI MEC might be performed and the technology could be
leveraged to further improve UAV control performance. Another direction could be replacing the
velocity control algorithm with one that anticipates the effects of latency and adjusts commands
accordingly.

68

List of Figures

2.1 (a) Enhancement of key capabilities from IMT-Advanced to IMT-2020, (b) Impor-
tance of key capabilities in different usage scenarios 9

2.2 5G system basic overview . 10
2.3 5G system showing the CN functions . 11
2.4 Edge computing infographic [6] . 14
2.5 MEC System Reference Architecture [8] . 15

3.1 Wired connection of USRPs . 18
3.2 GNU radio based spectrum analyzer receiving signal in band n41 19
3.3 Ping UE to ext-dn . 20
3.4 Wireless connection of USRPs . 20
3.5 MEP architecture . 21
3.6 RNIS Architecture as of the time of writing . 22
3.7 Running containers after deployment of RNIS . 23
3.8 Successful ping from UE to external data network (ext-dn) 23
3.9 SNR measurements . 28
3.10 RSRP measurements . 29
3.11 [13] . 29
3.12 BLER measurements in DL and UL . 30

4.1 PX4 flight control system with companion computer 32
4.2 Overview of the PX4 flight stack . 33
4.3 Screenshot of a running instance of jMAVSim . 36
4.4 Architecture of the ROS2 integration with PX4 38
4.5 Main DDS entities and their interaction [27] . 40

5.1 Network topology of the UAV testbed . 46
5.2 Middlewares for communication in UAV testbed 47
5.3 Picture of the experimental apparatus . 49

6.1 ROS2 topic bandwidth vs. control publishing frequency 51
6.2 RTT measurements over 5 minutes . 53
6.3 pusch_snr measurements . 55
6.4 pucch_snr measurements . 56
6.5 Downlink BLER measurements . 56
6.6 Uplink BLER measurements . 57
6.7 Downlink aggregate retransmission physical resource blocks 57
6.8 Uplink aggregate retransmission physical resource blocks 58

69

List of Figures

6.9 Transmission buffer occupancy in bytes . 58
6.10 Reminder of the UAV system configuration . 61
6.11 Mean trajectory error over 60 seconds vs. angular velocity 61
6.12 Difference between mean trajectory error of 5G case and localhost case 62
6.13 Standard deviation of trajectory error over 60 seconds vs. angular velocity 63
6.14 Difference between standard deviation of trajectory error of 5G case and Localhost

case . 63
6.15 Trajectory of UAV at the critical velocity, 20 Hz control publishing frequency . . 64
6.16 Mean trajectory error over 60 seconds vs. control publishing frequency, ω = ωcrit =

1.4 rad/s . 65
6.17 Standard deviation of trajectory error over 60 seconds vs. control publishing

frequency, ω = ωcrit = 1.4 rad/s . 65
6.18 Trajectory of the UAV at critical speed, 50 Hz control publishing frequency . . . 66

70

List of Tables

2.1 5G Numerologies and their corresponding subcarrier spacings 12

3.1 HW and SW details of the laptop running the gNB and CN 17
3.2 HW and SW details of the laptop running the UE 18
3.3 Average throughput over 20 seconds for different configurations [Mb/s] 21

71

Appendix A

Offboard Control C++
Application

content/chapters/5/docs/offboard_control_f_exp.cpp
1 #i n c l u d e <px4_msgs/msg/ offboard_control_mode . hpp>
2 #i n c l u d e <px4_msgs/msg/ t r a j e c t o r y _ s e t p o i n t . hpp>
3 #i n c l u d e <px4_msgs/msg/ vehicle_command . hpp>
4 #i n c l u d e <px4_msgs/msg/ v e h i c l e _ l o c a l _ p o s i t i o n . hpp>
5 #i n c l u d e <r c l c p p / r c l c p p . hpp>
6 #i n c l u d e <rmw/ q o s _ p r o f i l e s . h>
7 #i n c l u d e <s t d i n t . h>
8
9 #i n c l u d e <chrono>

10 #i n c l u d e <iostream >
11 #i n c l u d e <fstream>
12 #i n c l u d e <cmath>
13 #i n c l u d e <l i m i t s >
14 #i n c l u d e <thread>
15
16 u s i n g namespace std : : chrono ;
17 u s i n g namespace std : : c h r o n o _ l i t e r a l s ;
18 u s i n g namespace px4_msgs : : msg ;
19
20 c o n s t double PI = 3.14159265358979323846;
21
22 c l a s s OffboardControl : p u b l i c r c l c p p : : Node
23 {
24 p u b l i c :
25 OffboardControl ()
26 : Node (" o f f b o a r d _ c o n t r o l ") ,
27 timer_ (n u l l p t r) ,
28 offboard_control_mode_publisher_ (n u l l p t r) ,
29 t r a j e c t o r y _ s e t p o i n t _ p u b l i s h e r _ (n u l l p t r) ,
30 vehicle_command_publisher_ (n u l l p t r) ,
31 v e h i c l e _ l o c a l _ p o s i t i o n _ s u b s c r i p t i o n _ (n u l l p t r) ,
32 of fboard_setpoint_counter_ (0) ,
33 radius_ (2 . 0) ,
34 a l t i t u d e _ (5 . 0) ,
35 angular_veloc ity_ (1 . 4 1 3 7 2) ,
36 control_frequency_ (2 5 . 0) ,
37 min_control_frequency_ (1 . 0) ,
38 max_control_frequency_ (2 5 1 . 0) ,
39 control_frequency_step_ (7 5 . 0) ,
40 l o g _ i n t e r v a l _ (6 0 0) ,
41 last_log_time_ (t h i s −>now () . seconds ()) ,
42 last_posit ion_time_ (t h i s −>now ()) ,
43 current_x_ (0 . 0) ,
44 current_y_ (0 . 0) ,
45 current_z_ (0 . 0) ,

72

Offboard Control C++ Application

46 prev_error_x_ (0 . 0) ,
47 prev_error_y_ (0 . 0) ,
48 integral_error_x_ (0 . 0) ,
49 integral_error_y_ (0 . 0) ,
50 l o g f i l e _ (n u l l p t r) ,
51 logging_act ive_ (t r u e) ,
52 l o g f i l e _ i n d e x _ (0)
53 {
54 offboard_control_mode_publisher_ = t h i s −>c r e a t e _ p u b l i s h e r <OffboardControlMode >(" /fmu/ i n

/ offboard_control_mode " , 10) ;
55 t r a j e c t o r y _ s e t p o i n t _ p u b l i s h e r _ = t h i s −>c r e a t e _ p u b l i s h e r <T r a j e c t o r y S e t p o i n t >(" /fmu/ i n /

t r a j e c t o r y _ s e t p o i n t " , 10) ;
56 vehicle_command_publisher_ = t h i s −>c r e a t e _ p u b l i s h e r <VehicleCommand>(" /fmu/ i n /

vehicle_command " , 10) ;
57
58 // Use rmw_qos_profile_sensor_data f o r s u b s c r i p t i o n
59 rmw_qos_profile_t q o s _ p r o f i l e = rmw_qos_profile_sensor_data ;
60 auto qos = r c l c p p : : QoS(r c l c p p : : Q o S I n i t i a l i z a t i o n (q o s _ p r o f i l e . h i s t o r y , 5) , q o s _ p r o f i l e) ;
61
62 v e h i c l e _ l o c a l _ p o s i t i o n _ s u b s c r i p t i o n _ = t h i s −>c r e a t e _ s u b s c r i p t i o n <V e h i c l e L o c a l P o s i t i o n >(
63 " /fmu/ out / v e h i c l e _ l o c a l _ p o s i t i o n " , qos ,
64 [t h i s] (c o n s t V e h i c l e L o c a l P o s i t i o n : : UniquePtr msg) {
65 current_x_ = msg−>x ;
66 current_y_ = msg−>y ;
67 current_z_ = msg−>z ;
68 last_posit ion_time_ = t h i s −>now () ; // Update the l a s t r e c e i v e d message time
69
70 i f (logging_act ive_ && l o g f i l e _)
71 {
72 double timestamp = msg−>timestamp / 1 e6 ; // Convert from microseconds to

seconds
73 ∗ l o g f i l e _ << std : : f i x e d << std : : s e t p r e c i s i o n (6) << timestamp << " , " <<

current_x_ << " , " << current_y_ << " , " << current_z_ << std : : endl ;
74 }
75 }) ;
76
77 auto t i m e r _ c a l l b a c k = [t h i s] () −> void {
78 // Arm and s w i t ch to Offboard mode a f t e r 10 s e t p o i n t s
79 i f (of fboard_setpoint_counter_ == 10)
80 {
81 t h i s −>publish_vehicle_command (VehicleCommand : :VEHICLE_CMD_DO_SET_MODE, 1 , 6) ;
82 t h i s −>arm () ;
83 }
84
85 // Ensure o f f b o a r d c o n t r o l mode i s p a i r e d with t r a j e c t o r y s e t p o i n t
86 publish_offboard_control_mode () ;
87 p u b l i s h _ t r a j e c t o r y _ s e t p o i n t () ;
88
89 // Increment the s e t p o i n t counter
90 i f (of fboard_setpoint_counter_ < 11)
91 {
92 of fboard_setpoint_counter_++;
93 }
94
95 auto now = t h i s −>now () ;
96 auto t i m e _ s i n c e _ l a s t _ p o s i t i o n = now − last_posit ion_time_ ;
97
98 // Check i f we haven ’ t r e c e i v e d p o s i t i o n messages f o r more than 3 seconds
99 i f (t i m e _ s i n c e _ l a s t _ p o s i t i o n > 3 s)

100 {
101 i f (logging_act ive_)
102 {
103 logging_act ive_ = f a l s e ;
104 RCLCPP_WARN(t h i s −>g e t _ l o g g e r () , "No p o s i t i o n messages r e c e i v e d f o r more

than 3 seconds . Stopping l o g g i n g . ") ;
105 }
106 }
107 e l s e i f (! logging_act ive_)
108 {
109 logging_act ive_ = t r u e ;
110 RCLCPP_INFO(t h i s −>g e t _ l o g g e r () , " P o s i t i o n messages r e c e i v e d again . R e s t a r t i n g

l o g g i n g . ") ;

73

Offboard Control C++ Application

111 std : : t h i s _ t h r e a d : : s l e e p _ f o r (std : : chrono : : seconds (2)) ; // wait f o r some time
b e f o r e sending arm command

112 t h i s −>arm () ;
113 s t a r t _ n e w _ l o g f i l e () ;
114 last_log_time_ = now . seconds () ; // R e s t a r t the 60−second timer
115 }
116
117 // Change c o n t r o l f r e q u e n c y every l o g _ i n t e r v a l _ seconds i f l o g g i n g i s a c t i v e
118 i f (logging_act ive_ && (now . seconds () − last_log_time_ >= l o g _ i n t e r v a l _))
119 {
120 last_log_time_ = now . seconds () ;
121 change_control_frequency () ;
122 s t a r t _ n e w _ l o g f i l e () ;
123 }
124 } ;
125
126 timer_ = t h i s −>create_wal l_timer (std : : chrono : : duration <double >(1.0 / control_frequency_

) , t i m e r _ c a l l b a c k) ;
127
128 s t a r t _ n e w _ l o g f i l e () ;
129 RCLCPP_INFO(t h i s −>g e t _ l o g g e r () , " Control f r e q u e n c y : %f Hz" , control_frequency_) ;
130 }
131
132 ~ OffboardControl ()
133 {
134 i f (l o g f i l e _)
135 {
136 l o g f i l e _ −>c l o s e () ;
137 d e l e t e l o g f i l e _ ;
138 }
139 }
140
141 void arm () ;
142 void disarm () ;
143
144 p r i v a t e :
145 r c l c p p : : TimerBase : : SharedPtr timer_ ;
146
147 r c l c p p : : Publ i sher <OffboardControlMode >:: SharedPtr offboard_control_mode_publisher_ ;
148 r c l c p p : : Publ i sher <T r a j e c t o r y S e t p o i n t >:: SharedPtr t r a j e c t o r y _ s e t p o i n t _ p u b l i s h e r _ ;
149 r c l c p p : : Publ i sher <VehicleCommand >:: SharedPtr vehicle_command_publisher_ ;
150 r c l c p p : : S u b s c r i p t i o n <V e h i c l e L o c a l P o s i t i o n >:: SharedPtr v e h i c l e _ l o c a l _ p o s i t i o n _ s u b s c r i p t i o n _ ;
151
152 uint64_t of fboard_setpoint_counter_ ;
153 double radius_ ;
154 double a l t i t u d e _ ;
155 double angular_veloc ity_ ;
156 double control_frequency_ ;
157 double min_control_frequency_ ;
158 double max_control_frequency_ ;
159 double control_frequency_step_ ;
160 double l o g _ i n t e r v a l _ ;
161 double last_log_time_ ;
162 r c l c p p : : Time last_posit ion_time_ ;
163
164 f l o a t current_x_ ;
165 f l o a t current_y_ ;
166 f l o a t current_z_ ;
167 double prev_error_x_ ;
168 double prev_error_y_ ;
169 double integral_error_x_ ;
170 double integral_error_y_ ;
171
172 std : : o fst rea m ∗ l o g f i l e _ ;
173 bool logging_act ive_ ;
174 i n t l o g f i l e _ i n d e x _ ;
175
176 void publish_offboard_control_mode () ;
177 void p u b l i s h _ t r a j e c t o r y _ s e t p o i n t () ;
178 void publish_vehicle_command (uint16_t command , f l o a t param1 = 0 . 0 , f l o a t param2 = 0 . 0) ;
179 void change_control_frequency () ;
180 void s t a r t _ n e w _ l o g f i l e () ;
181 } ;

74

Offboard Control C++ Application

182
183 /∗ ∗
184 ∗ @ b r i e f Send a command to Arm the v e h i c l e .
185 ∗/
186 void OffboardControl : : arm ()
187 {
188 publish_vehicle_command (VehicleCommand : :VEHICLE_CMD_COMPONENT_ARM_DISARM, 1 . 0) ;
189 RCLCPP_INFO(t h i s −>g e t _ l o g g e r () , "Arm command s e n t ") ;
190 }
191
192 /∗ ∗
193 ∗ @ b r i e f Send a command to Disarm the v e h i c l e .
194 ∗/
195 void OffboardControl : : disarm ()
196 {
197 publish_vehicle_command (VehicleCommand : :VEHICLE_CMD_COMPONENT_ARM_DISARM, 0 . 0) ;
198 RCLCPP_INFO(t h i s −>g e t _ l o g g e r () , " Disarm command s e n t ") ;
199 }
200
201 /∗ ∗
202 ∗ @ b r i e f Publ ish the o f f b o a r d c o n t r o l mode .
203 ∗ For t h i s example , only v e l o c i t y c o n t r o l i s a c t i v e .
204 ∗/
205 void OffboardControl : : publish_offboard_control_mode ()
206 {
207 OffboardControlMode msg { } ;
208 msg . p o s i t i o n = f a l s e ;
209 msg . v e l o c i t y = t r u e ;
210 msg . a c c e l e r a t i o n = f a l s e ;
211 msg . a t t i t u d e = f a l s e ;
212 msg . body_rate = f a l s e ;
213 msg . timestamp = t h i s −>get_clock ()−>now () . nanoseconds () / 1 0 0 0 ;
214 offboard_control_mode_publisher_−>p u b l i s h (msg) ;
215 }
216
217 /∗ ∗
218 ∗ @ b r i e f Publ ish a t r a j e c t o r y s e t p o i n t .
219 ∗ For t h i s example , i t sends a t r a j e c t o r y s e t p o i n t to make the
220 ∗ v e h i c l e f o l l o w a c i r c u l a r path at a given a l t i t u d e u s i n g v e l o c i t y s e t p o i n t s .
221 ∗/
222 void OffboardControl : : p u b l i s h _ t r a j e c t o r y _ s e t p o i n t ()
223 {
224 T r a j e c t o r y S e t p o i n t msg { } ;
225 auto now = t h i s −>now () ;
226 double t = now . seconds () ;
227
228 // D e s i r e d p o s i t i o n i n the c i r c l e
229 double x_d = radius_ ∗ cos (angular_veloc ity_ ∗ t) ;
230 double y_d = radius_ ∗ s i n (angular_veloc ity_ ∗ t) ;
231
232 // PID c o n t r o l g a i n s
233 double k_p = 2 . 5 ; // P r o p o r t i o n a l gain
234 double k_i = 1 . 7 ; // I n t e g r a l gain
235 double k_d = 0 . 8 ; // D e r i v a t i v e gain
236
237 // E r r o r s
238 double error_x = x_d − current_x_ ;
239 double error_y = y_d − current_y_ ;
240
241 // I n t e g r a t e e r r o r s
242 integral_error_x_ += error_x / control_frequency_ ;
243 integral_error_y_ += error_y / control_frequency_ ;
244
245 // S a t u r a t e i n t e g r a l e r r o r to avoid windup
246 integral_error_x_ = std : : clamp (integral_error_x_ , −1.0 , 1 . 0) ;
247 integral_error_y_ = std : : clamp (integral_error_y_ , −1.0 , 1 . 0) ;
248
249 // D e r i v a t i v e e r r o r s
250 double d e r i v a t i v e _ x = (error_x − prev_error_x_) ∗ control_frequency_ ;
251 double d e r i v a t i v e _ y = (error_y − prev_error_y_) ∗ control_frequency_ ;
252
253 // V e l o c i t y s e t p o i n t s with feedback to c o r r e c t e r r o r s

75

Offboard Control C++ Application

254 f l o a t vx = s t a t i c _ c a s t <f l o a t >(−radius_ ∗ angular_veloc ity_ ∗ s i n (angular_veloc ity_ ∗ t) +
k_p ∗ error_x + k_i ∗ integral_error_x_ + k_d ∗ d e r i v a t i v e _ x) ;

255 f l o a t vy = s t a t i c _ c a s t <f l o a t >(radius_ ∗ angular_veloc ity_ ∗ cos (angular_veloc ity_ ∗ t) +
k_p ∗ error_y + k_i ∗ integral_error_y_ + k_d ∗ d e r i v a t i v e _ y) ;

256 f l o a t vz = 2 ∗ (− a l t i t u d e _ − current_z_) ; // Maintain c o n s t a n t a l t i t u d e
257
258 msg . v e l o c i t y = {vx , vy , vz } ;
259 msg . p o s i t i o n = { std : : numeric_limits <f l o a t >:: quiet_NaN () , std : : numeric_limits <f l o a t >::

quiet_NaN () , s t a t i c _ c a s t <f l o a t >(−a l t i t u d e _) } ; // Ensure p o s i t i o n i s i g n o r e d
260 msg . yaw = std : : numeric_limits <f l o a t >:: quiet_NaN () ; // Ensure yaw i s i g n o r e d
261 msg . timestamp = t h i s −>get_clock ()−>now () . nanoseconds () / 1 0 0 0 ;
262 t r a j e c t o r y _ s e t p o i n t _ p u b l i s h e r _ −>p u b l i s h (msg) ;
263
264 prev_error_x_ = error_x ;
265 prev_error_y_ = error_y ;
266 }
267
268 /∗ ∗
269 ∗ @ b r i e f Publ ish v e h i c l e commands .
270 ∗ @param command Command code (matches VehicleCommand and MAVLink MAV_CMD codes)
271 ∗ @param param1 Command parameter 1
272 ∗ @param param2 Command parameter 2
273 ∗/
274 void OffboardControl : : publish_vehicle_command (uint16_t command , f l o a t param1 , f l o a t param2)
275 {
276 VehicleCommand msg { } ;
277 msg . param1 = param1 ;
278 msg . param2 = param2 ;
279 msg . command = command ;
280 msg . target_system = 1 ;
281 msg . target_component = 1 ;
282 msg . source_system = 1 ;
283 msg . source_component = 1 ;
284 msg . from_external = t r u e ;
285 msg . timestamp = t h i s −>get_clock ()−>now () . nanoseconds () / 1 0 0 0 ;
286 vehicle_command_publisher_−>p u b l i s h (msg) ;
287 }
288
289 void OffboardControl : : change_control_frequency ()
290 {
291 control_frequency_ += control_frequency_step_ ;
292 i f (control_frequency_ > max_control_frequency_)
293 {
294 RCLCPP_INFO(t h i s −>g e t _ l o g g e r () , " Experiment f i n i s h e d . ") ;
295 control_frequency_ = max_control_frequency_ ;
296 r c l c p p : : shutdown () ;
297 }
298 e l s e
299 {
300 l o g f i l e _ i n d e x _ ++; // Increment the l o g f i l e index only when the c o n t r o l f r e q u e n c y

changes
301 }
302 timer_−>c a n c e l () ;
303 timer_ = t h i s −>create_wal l_timer (std : : chrono : : duration <double >(1.0 / control_frequency_) , [

t h i s] () −> void {
304 // Arm and s w i t c h to Offboard mode a f t e r 10 s e t p o i n t s
305 i f (of fboard_setpoint_counter_ == 10)
306 {
307 t h i s −>publish_vehicle_command (VehicleCommand : :VEHICLE_CMD_DO_SET_MODE, 1 , 6) ;
308 t h i s −>arm () ;
309 }
310
311 // Ensure o f f b o a r d c o n t r o l mode i s p a i r e d with t r a j e c t o r y s e t p o i n t
312 publish_offboard_control_mode () ;
313 p u b l i s h _ t r a j e c t o r y _ s e t p o i n t () ;
314
315 // Increment the s e t p o i n t counter
316 i f (of fboard_setpoint_counter_ < 11)
317 {
318 of fboard_setpoint_counter_++;
319 }
320
321 auto now = t h i s −>now () ;

76

Offboard Control C++ Application

322 auto t i m e _ s i n c e _ l a s t _ p o s i t i o n = now − last_posit ion_time_ ;
323
324 // Check i f we haven ’ t r e c e i v e d p o s i t i o n messages f o r more than 3 seconds
325 i f (t i m e _ s i n c e _ l a s t _ p o s i t i o n > 3 s)
326 {
327 i f (logging_act ive_)
328 {
329 logging_act ive_ = f a l s e ;
330 RCLCPP_WARN(t h i s −>g e t _ l o g g e r () , "No p o s i t i o n messages r e c e i v e d f o r more than 3

seconds . Stopping l o g g i n g . ") ;
331 }
332 }
333 e l s e i f (! logging_act ive_)
334 {
335 logging_act ive_ = t r u e ;
336 RCLCPP_INFO(t h i s −>g e t _ l o g g e r () , " P o s i t i o n messages r e c e i v e d again . R e s t a r t i n g

l o g g i n g . ") ;
337 std : : t h i s _ t h r e a d : : s l e e p _ f o r (std : : chrono : : seconds (2)) ; // wait f o r some time b e f o r e

sending arm command
338 t h i s −>arm () ;
339 s t a r t _ n e w _ l o g f i l e () ;
340 last_log_time_ = now . seconds () ; // R e s t a r t the 60−second timer
341 }
342
343 // Change c o n t r o l f r e q u e n c y every l o g _ i n t e r v a l _ seconds i f l o g g i n g i s a c t i v e
344 i f (logging_act ive_ && (now . seconds () − last_log_time_ >= l o g _ i n t e r v a l _))
345 {
346 last_log_time_ = now . seconds () ;
347 change_control_frequency () ;
348 s t a r t _ n e w _ l o g f i l e () ;
349 }
350 }) ;
351 RCLCPP_INFO(t h i s −>g e t _ l o g g e r () , "New c o n t r o l f r e q u e n c y : %f Hz" , control_frequency_) ;
352 }
353
354 void OffboardControl : : s t a r t _ n e w _ l o g f i l e ()
355 {
356 i f (l o g f i l e _)
357 {
358 l o g f i l e _ −>c l o s e () ;
359 d e l e t e l o g f i l e _ ;
360 }
361
362 std : : s t r i n g f i l e n a m e = " traj_f_ " + std : : t o _ s t r i n g (l o g f i l e _ i n d e x _) + " . t x t " ;
363 l o g f i l e _ = new std : : o f str eam (f i l e n a m e) ;
364 i f (l o g f i l e _ −>is_open ())
365 {
366 // ∗ l o g f i l e _ << " f = " << control_frequency_ << " Hz" << std : : endl ;
367 ∗ l o g f i l e _ << "w = " << angular_veloc ity_ << " rad / s , " << " pub_freq = " <<

control_frequency_ << " Hz" << std : : endl ;
368 ∗ l o g f i l e _ << " timestamp [s] , x [m] , y [m] , z [m] " << std : : endl ;
369 RCLCPP_INFO(t h i s −>g e t _ l o g g e r () , " Logging t r a j e c t o r y to ’% s ’ " , f i l e n a m e . c_str ()) ;
370 }
371 e l s e
372 {
373 RCLCPP_ERROR(t h i s −>g e t _ l o g g e r () , " F a i l e d to open l o g f i l e : %s " , f i l e n a m e . c_str ()) ;
374 }
375 }
376
377 i n t main (i n t argc , char ∗ argv [])
378 {
379 std : : cout << " S t a r t i n g o f f b o a r d c o n t r o l node . . . " << std : : endl ;
380 s e t v b u f (stdout , NULL, _IONBF, BUFSIZ) ;
381 r c l c p p : : i n i t (argc , argv) ;
382 r c l c p p : : s p i n (std : : make_shared<OffboardControl >()) ;
383
384 r c l c p p : : shutdown () ;
385 r e t u r n 0 ;
386 }

77

Appendix B

ROS2 Talker/Listener nodes

B.1 Talker

content/chapters/6/docs/rtt/talker_w_exp.cpp
1 #i n c l u d e <chrono>
2 #i n c l u d e <memory>
3 #i n c l u d e <fstream>
4 #i n c l u d e <iomanip>
5 #i n c l u d e <sstream>
6 #i n c l u d e <map>
7 #i n c l u d e " r c l c p p / r c l c p p . hpp "
8 #i n c l u d e " std_msgs /msg/ s t r i n g . hpp "
9

10 u s i n g namespace std : : c h r o n o _ l i t e r a l s ;
11
12 c l a s s Talker : p u b l i c r c l c p p : : Node
13 {
14 p u b l i c :
15 Talker (c o n s t std : : s t r i n g &name , std : : chrono : : m i l l i s e c o n d s p u b l i s h _ i n t e r v a l)
16 : Node (" t a l k e r ") , talker_name_ (name) , f i l e _ i n d e x _ (0) , t i m e _ s i n c e _ l a s t _ f i l e _ (0 s) ,

last_response_time_ (t h i s −>now ()) , connect ion_active_ (t r u e) , p u b l i s h _ i n t e r v a l _ (
p u b l i s h _ i n t e r v a l)

17 {
18 publ isher_ = t h i s −>c r e a t e _ p u b l i s h e r <std_msgs : : msg : : S tr i ng >(" t o p i c " , 10) ;
19 s u b s c r i p t i o n _ = t h i s −>c r e a t e _ s u b s c r i p t i o n <std_msgs : : msg : : Str ing >(
20 " r e s p o n s e _ t o p i c " , 10 , std : : bind(& Talker : : l i s t e n e r _ c a l l b a c k , t h i s , std : : p l a c e h o l d e r s

: : _1)) ;
21 timer_ = t h i s −>create_wal l_timer (
22 publ i sh_interval_ , std : : bind(& Talker : : t imer_cal lback , t h i s)) ;
23
24 // I n i t i a l i z e l o g f i l e s f o r known l i s t e n e r s
25 c r e a t e _ l o g _ f i l e s () ;
26 }
27
28 ~ Talker ()
29 {
30 f o r (auto & f i l e : l o g _ f i l e s _)
31 {
32 i f (f i l e . second . is_open ())
33 {
34 f i l e . second . c l o s e () ;
35 }
36 }
37 }
38
39 p r i v a t e :
40 void t i m e r _ c a l l b a c k ()
41 {
42 auto now = t h i s −>now () ;

78

ROS2 Talker/Listener nodes

43 std : : o s t r i n g s t r e a m message_data ;
44 message_data << now . nanoseconds () << " " << talker_name_ ;
45
46 auto message = std_msgs : : msg : : S t r i n g () ;
47 message . data = message_data . s t r () ;
48 start_time_ = now ;
49 publisher_ −>p u b l i s h (message) ;
50
51 t i m e _ s i n c e _ l a s t _ f i l e _ += p u b l i s h _ i n t e r v a l _ ;
52
53 i f ((now − last_response_time_) . seconds () > 3 . 0)
54 {
55 i f (connect ion_active_)
56 {
57 RCLCPP_WARN(t h i s −>g e t _ l o g g e r () , " Connection l o s t . Stopping l o g g i n g . ") ;
58 sto p_lo ggin g () ;
59 connect ion_active_ = f a l s e ;
60 }
61 }
62 e l s e
63 {
64 i f (! connection_active_)
65 {
66 RCLCPP_INFO(t h i s −>g e t _ l o g g e r () , " Connection resumed . R e s t a r t i n g l o g g i n g . ") ;
67 s t a r t _ n e w _ l o g f i l e () ;
68 connect ion_active_ = t r u e ;
69 t i m e _ s i n c e _ l a s t _ f i l e _ = 0ms ;
70 }
71 }
72
73 i f (connect ion_active_ && t i m e _ s i n c e _ l a s t _ f i l e _ >= 60 s)
74 {
75 f i l e _ i n d e x _++;
76 c r e a t e _ l o g _ f i l e s () ;
77 t i m e _ s i n c e _ l a s t _ f i l e _ = 0ms ;
78 }
79 }
80
81 void l i s t e n e r _ c a l l b a c k (c o n s t std_msgs : : msg : : S t r i n g : : SharedPtr msg)
82 {
83 last_response_time_ = t h i s −>now () ;
84 auto now = t h i s −>now () ;
85
86 // Extract timestamp and l i s t e n e r name from the message
87 std : : i s t r i n g s t r e a m s s (msg−>data) ;
88 int64_t sent_time_ns ;
89 std : : s t r i n g l i stener_name ;
90 s s >> sent_time_ns >> listener_name ;
91
92 auto round_trip_time = (now . nanoseconds () − sent_time_ns) / 1 e6 ; // c o n v e r t to

m i l l i s e c o n d s
93
94 auto sys_now = std : : chrono : : system_clock : : now () ;
95 auto d u r a t i o n = sys_now . time_since_epoch () ;
96 auto m i l l i s = std : : chrono : : duration_cast <std : : chrono : : m i l l i s e c o n d s >(d u r a t i o n) . count () ;
97 double timestamp = m i l l i s / 1 0 0 0 . 0 ; // Convert m i l l i s e c o n d s to seconds
98
99 i f (l o g _ f i l e s _ . f i n d (l i stener_name) != l o g _ f i l e s _ . end () && l o g _ f i l e s _ [l i stener_name] .

is_open ())
100 {
101 l o g _ f i l e s _ [l i stener_name] << std : : f i x e d << std : : s e t p r e c i s i o n (3)
102 << " Timestamp : " << timestamp << " s , "
103 << " Round−t r i p l a t e n c y : " << round_trip_time << " ms" <<

std : : endl ;
104 }
105 e l s e
106 {
107 RCLCPP_ERROR(t h i s −>g e t _ l o g g e r () , " Log f i l e f o r l i s t e n e r ’% s ’ not open " ,

l i stener_name . c_str ()) ;
108 }
109 }
110
111 void c r e a t e _ l o g _ f i l e s ()

79

ROS2 Talker/Listener nodes

112 {
113 f o r (auto & f i l e : l o g _ f i l e s _)
114 {
115 i f (f i l e . second . is_open ())
116 {
117 f i l e . second . c l o s e () ;
118 }
119 }
120
121 f o r (c o n s t auto &l i s t e n e r : known_listeners_)
122 {
123 std : : o s t r i n g s t r e a m f i l e n a m e ;
124 f i l e n a m e << "RTT_" << talker_name_ << "_to_" << l i s t e n e r << "_" << f i l e _ i n d e x _ << "

. t x t " ;
125 l o g _ f i l e s _ [l i s t e n e r] . open (f i l e n a m e . s t r () , std : : i o s : : out | std : : i o s : : trunc) ;
126
127 i f (! l o g _ f i l e s _ [l i s t e n e r] . is_open ())
128 {
129 RCLCPP_ERROR(t h i s −>g e t _ l o g g e r () , " F a i l e d to open l o g f i l e f o r l i s t e n e r ’% s ’ " ,

l i s t e n e r . c_str ()) ;
130 }
131 e l s e
132 {
133 RCLCPP_INFO(t h i s −>g e t _ l o g g e r () , " Logging l a t e n c i e s to ’% s ’ " , f i l e n a m e . s t r () .

c_str ()) ;
134 }
135 }
136 }
137
138 void s top_l oggi ng ()
139 {
140 f o r (auto & f i l e : l o g _ f i l e s _)
141 {
142 i f (f i l e . second . is_open ())
143 {
144 f i l e . second . c l o s e () ;
145 }
146 }
147 }
148
149 void s t a r t _ n e w _ l o g f i l e ()
150 {
151 c r e a t e _ l o g _ f i l e s () ;
152 }
153
154 r c l c p p : : Publ i sher <std_msgs : : msg : : Str i ng >:: SharedPtr publ i sher_ ;
155 r c l c p p : : S u b s c r i p t i o n <std_msgs : : msg : : Str ing >:: SharedPtr s u b s c r i p t i o n _ ;
156 r c l c p p : : TimerBase : : SharedPtr timer_ ;
157 r c l c p p : : Time start_time_ ;
158 r c l c p p : : Time last_response_time_ ;
159 std : : s t r i n g talker_name_ ;
160 std : : map<std : : s t r i n g , std : : ofstream> l o g _ f i l e s _ ;
161 std : : vector <std : : s t r i n g > known_listeners_ = { " sim " , "UE" } ;
162 i n t f i l e _ i n d e x _ ;
163 std : : chrono : : m i l l i s e c o n d s t i m e _ s i n c e _ l a s t _ f i l e _ ;
164 std : : chrono : : m i l l i s e c o n d s p u b l i s h _ i n t e r v a l _ ;
165 bool connect ion_active_ ;
166 } ;
167
168 i n t main (i n t argc , char ∗ argv [])
169 {
170 r c l c p p : : i n i t (argc , argv) ;
171 auto node = std : : make_shared<Talker >("gNB" , 100ms) ; // Modify the second argument to change

the p u b l i s h i n g f r e q u e n c y
172 r c l c p p : : s p i n (node) ;
173 r c l c p p : : shutdown () ;
174 r e t u r n 0 ;
175 }

80

ROS2 Talker/Listener nodes

B.2 Listener

content/chapters/6/docs/rtt/listener.cpp
1 #i n c l u d e <memory>
2 #i n c l u d e <sstream>
3 #i n c l u d e " r c l c p p / r c l c p p . hpp "
4 #i n c l u d e " std_msgs /msg/ s t r i n g . hpp "
5
6 c l a s s L i s t e n e r : p u b l i c r c l c p p : : Node
7 {
8 p u b l i c :
9 L i s t e n e r (c o n s t std : : s t r i n g &name)

10 : Node (name) , name_(name)
11 {
12 publ isher_ = t h i s −>c r e a t e _ p u b l i s h e r <std_msgs : : msg : : S tr i ng >(" r e s p o n s e _ t o p i c " , 10) ;
13 s u b s c r i p t i o n _ = t h i s −>c r e a t e _ s u b s c r i p t i o n <std_msgs : : msg : : Str ing >(
14 " t o p i c " , 10 , std : : bind(& L i s t e n e r : : l i s t e n e r _ c a l l b a c k , t h i s , std : : p l a c e h o l d e r s : : _1)) ;
15 }
16
17 p r i v a t e :
18 void l i s t e n e r _ c a l l b a c k (c o n s t std_msgs : : msg : : S t r i n g : : SharedPtr msg)
19 {
20 RCLCPP_INFO(t h i s −>g e t _ l o g g e r () , " Received message : ’% s ’ " , msg−>data . c_str ()) ;
21
22 // Extract the timestamp from the r e c e i v e d message
23 std : : i s t r i n g s t r e a m i s s (msg−>data) ;
24 int64_t timestamp ;
25 std : : s t r i n g talker_name ;
26 i s s >> timestamp >> talker_name ;
27
28 // Prepare the r e s p o n s e message
29 auto response_msg = std_msgs : : msg : : S t r i n g () ;
30 response_msg . data = std : : t o _ s t r i n g (timestamp) + " " + name_ ;
31 publisher_ −>p u b l i s h (response_msg) ;
32 RCLCPP_INFO(t h i s −>g e t _ l o g g e r () , " Sent r e s p o n s e : ’% s ’ " , response_msg . data . c_str ()) ;
33 }
34
35 std : : s t r i n g name_ ;
36 r c l c p p : : Publ i sher <std_msgs : : msg : : Str i ng >:: SharedPtr publ i sher_ ;
37 r c l c p p : : S u b s c r i p t i o n <std_msgs : : msg : : Str ing >:: SharedPtr s u b s c r i p t i o n _ ;
38 } ;
39
40 i n t main (i n t argc , char ∗ argv [])
41 {
42 r c l c p p : : i n i t (argc , argv) ;
43 r c l c p p : : s p i n (std : : make_shared<L i s t e n e r >(" sim ")) ;
44 r c l c p p : : shutdown () ;
45 r e t u r n 0 ;
46 }

81

Bibliography

[1] 5G system overview. url: https://www.3gpp.org/technologies/5g-system-overview
(cit. on p. 9).

[2] System architecture for the 5G System (5GS) (Release 18) - V18.4.0. Dec. 2023. url:
https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/23501- i40.zip
(cit. on p. 11).

[3] Carla Fabiana Chiasserini. «Spread Spectrum Techniques». Course: Mobile and Sensor
Networks (2023) - Polytechnic Of Turin (cit. on p. 12).

[4] Roberto Fantini (TIM). «Workshop: Evolution from 4G to 5G». Course: 5G and next-
generation mobile computing (2023) - Polytechnic Of Turin (cit. on pp. 12, 13).

[5] H. Dinh et al. «A survey of mobile cloud computing: architecture, applications, and
approaches». In: (). doi: 10.1002/wcm.1203 (cit. on p. 14).

[6] What Is Edge Computing? 8 Examples and Architecture You Should Know. url: https:
//www.fsp-group.com/en/knowledge-app-42.html (cit. on p. 14).

[7] Wu Hassan Yau. «Edge Computing in 5G: A Review». In: (Aug. 2019). doi: 10.1109/
ACCESS.2019.2938534 (cit. on p. 15).

[8] Mobile Edge Computing (MEC); Framework and Reference Architecture. Group Specification.
2016 (cit. on pp. 15, 16).

[9] OpenAirInterface: A Flexible Platform for 5G Research. url: https://mosaic5g.io/
resources/mosaic5g_oai.pdf (cit. on p. 17).

[10] Luis Pereira. OAI 5G NR SA tutorial with OAI nrUE. url: https://gitlab.eurecom.fr/
oai/openairinterface5g/-/blob/develop/doc/NR_SA_Tutorial_OAI_nrUE.md (cit. on
p. 18).

[11] Creating a Software Radio Spectrum Analyzer. url: https://wiki.gnuradio.org/index.
php/Guided_Tutorial_Hardware_Considerations (cit. on p. 19).

[12] Sagar Arora. OpenAirInterface Multi-access Edge Computing Platform Blueprint. url:
https://gitlab.eurecom.fr/oai/orchestration/blueprints/-/blob/master/mep/
README.md (cit. on pp. 22, 25).

[13] Signal quality [LTE/5G] - LTE and 5G signal quality parameters. url: https://support.
zyxel.eu/hc/en-us/articles/360005188999-Signal-quality-LTE-5G-LTE-and-5G-
signal-quality-parameters (cit. on p. 29).

[14] PX4 Software Overview. url: https://px4.io/software/software-overview/ (cit. on
p. 31).

[15] PX4 Basic Concepts. url: https://docs.px4.io/main/en/getting_started/px4_
basic_concepts.html (cit. on p. 31).

82

https://www.3gpp.org/technologies/5g-system-overview
https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/23501-i40.zip
https://doi.org/10.1002/wcm.1203
https://www.fsp-group.com/en/knowledge-app-42.html
https://www.fsp-group.com/en/knowledge-app-42.html
https://doi.org/10.1109/ACCESS.2019.2938534
https://doi.org/10.1109/ACCESS.2019.2938534
https://mosaic5g.io/resources/mosaic5g_oai.pdf
https://mosaic5g.io/resources/mosaic5g_oai.pdf
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/doc/NR_SA_Tutorial_OAI_nrUE.md
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/doc/NR_SA_Tutorial_OAI_nrUE.md
https://wiki.gnuradio.org/index.php/Guided_Tutorial_Hardware_Considerations
https://wiki.gnuradio.org/index.php/Guided_Tutorial_Hardware_Considerations
https://gitlab.eurecom.fr/oai/orchestration/blueprints/-/blob/master/mep/README.md
https://gitlab.eurecom.fr/oai/orchestration/blueprints/-/blob/master/mep/README.md
https://support.zyxel.eu/hc/en-us/articles/360005188999-Signal-quality-LTE-5G-LTE-and-5G-signal-quality-parameters
https://support.zyxel.eu/hc/en-us/articles/360005188999-Signal-quality-LTE-5G-LTE-and-5G-signal-quality-parameters
https://support.zyxel.eu/hc/en-us/articles/360005188999-Signal-quality-LTE-5G-LTE-and-5G-signal-quality-parameters
https://px4.io/software/software-overview/
https://docs.px4.io/main/en/getting_started/px4_basic_concepts.html
https://docs.px4.io/main/en/getting_started/px4_basic_concepts.html

BIBLIOGRAPHY

[16] PX4 Architectural Overview. url: https://docs.px4.io/main/en/concept/architectu
re.html (cit. on pp. 31–33, 35).

[17] PX4 Architectural Overview. url: https://docs.px4.io/main/en/concept/px4_
systems_architecture.html (cit. on p. 31).

[18] Reactive Manifesto. url: https://www.reactivemanifesto.org/ (cit. on p. 32).
[19] Reactive Manifesto. url: https://docs.px4.io/main/en/middleware/uorb.html (cit. on

p. 34).
[20] Simulation. url: https://docs.px4.io/main/en/simulation/ (cit. on p. 35).
[21] Flight Modes. url: https://docs.px4.io/main/en/flight_modes_mc/ (cit. on p. 37).
[22] Offboard Mode. url: https://docs.px4.io/main/en/flight_modes/offboard.html

(cit. on p. 38).
[23] ROS2. url: https://docs.px4.io/main/en/ros2/ (cit. on p. 38).
[24] ROS2 User Guide. url: https://docs.px4.io/main/en/ros2/user_guide (cit. on p. 39).
[25] Publish–subscribe pattern. url: https://en.wikipedia.org/wiki/Publish%E2%80%

93subscribe_pattern (cit. on p. 39).
[26] ROS on DDS. url: https://design.ros2.org/articles/ros_on_dds.html (cit. on

p. 40).
[27] What is DDS? url: https://fast- dds.docs.eprosima.com/en/latest/fastdds/

getting_started/definitions.html (cit. on p. 40).
[28] Discovery. url: https://fast-dds.docs.eprosima.com/en/latest/fastdds/discover

y/discovery.html#disc-phases (cit. on p. 41).
[29] A. M. Qasim N. H. Jawad. «5G-enabled UAVs for energy-efficient opportunistic networking».

In: Heliyon, 10(12) (2024) (cit. on p. 41).
[30] Koumaras H.; Makropoulos G.; Batistatos M.; Kolometsos S.; Gogos A.; Xilouris G.; Sarlas

A.; Kourtis M.-A. «5G-Enabled UAVs with Command and Control Software Component at
the Edge for Supporting Energy Efficient Opportunistic Networks». In: Energies 2021, 14,
1480 (2021) (cit. on p. 41).

[31] ROS 2 Offboard Control Example. url: https://docs.px4.io/main/en/ros2/offboard_
control.html (cit. on p. 43).

[32] Zenoh. url: https://github.com/eclipse-zenoh/zenoh (cit. on p. 45).
[33] ROS 2 Alternative middleware report. url: https://discourse.ros.org/t/ros- 2-

alternative-middleware-report/33771 (cit. on p. 45).
[34] A Zenoh bridge for ROS 2 over DDS. url: https://github.com/eclipse-zenoh/zenoh-

plugin-ros2dds?tab=readme-ov-file (cit. on p. 45).
[35] Zenoh Deployment. url: https://zenoh.io/docs/getting- started/deployment/

#zenoh-router (cit. on p. 45).
[36] A Zenoh bridge for ROS 2 over DDS. url: https://zenoh.io/blog/2021-04-28-ros2-

integration/ (cit. on p. 45).
[37] ROS 2 Offboard Control Example. url: https://docs.px4.io/main/en/ros/ros2_

offboard_control.html (cit. on p. 46).
[38] E2AP readme. url: https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/

develop/openair2/E2AP/README.md (cit. on p. 54).

83

https://docs.px4.io/main/en/concept/architecture.html
https://docs.px4.io/main/en/concept/architecture.html
https://docs.px4.io/main/en/concept/px4_systems_architecture.html
https://docs.px4.io/main/en/concept/px4_systems_architecture.html
https://www.reactivemanifesto.org/
https://docs.px4.io/main/en/middleware/uorb.html
https://docs.px4.io/main/en/simulation/
https://docs.px4.io/main/en/flight_modes_mc/
https://docs.px4.io/main/en/flight_modes/offboard.html
https://docs.px4.io/main/en/ros2/
https://docs.px4.io/main/en/ros2/user_guide
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://design.ros2.org/articles/ros_on_dds.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/getting_started/definitions.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/getting_started/definitions.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/discovery.html#disc-phases
https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/discovery.html#disc-phases
https://docs.px4.io/main/en/ros2/offboard_control.html
https://docs.px4.io/main/en/ros2/offboard_control.html
https://github.com/eclipse-zenoh/zenoh
https://discourse.ros.org/t/ros-2-alternative-middleware-report/33771
https://discourse.ros.org/t/ros-2-alternative-middleware-report/33771
https://github.com/eclipse-zenoh/zenoh-plugin-ros2dds?tab=readme-ov-file
https://github.com/eclipse-zenoh/zenoh-plugin-ros2dds?tab=readme-ov-file
https://zenoh.io/docs/getting-started/deployment/#zenoh-router
https://zenoh.io/docs/getting-started/deployment/#zenoh-router
https://zenoh.io/blog/2021-04-28-ros2-integration/
https://zenoh.io/blog/2021-04-28-ros2-integration/
https://docs.px4.io/main/en/ros/ros2_offboard_control.html
https://docs.px4.io/main/en/ros/ros2_offboard_control.html
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair2/E2AP/README.md
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair2/E2AP/README.md

	Introduction
	Problem Statement and Research Objective

	5G System Overview
	System Architecture
	RAN fundamentals
	OFDM
	Frequency Ranges and Numerology
	Frame Structure and PRBs
	Physical Channels and Signals

	Cloud Computing and Edge Computing
	Multi-access Edge Computing

	OpenAirInterface 5G
	Deployment of OAI5G network with nr-UE
	OAI MEP
	Deployment of OAI-MEP 5G network with RFsim
	Understanding the example MEC app
	Deployment of OAI-MEP 5G network with nr-UE
	Evaluation of MEP Testbed: Radio Link Measurements

	PX4 Autopilot
	System Architecture
	Software Architecture
	Flight Stack
	Middleware
	Update Rates
	Runtime Environment

	Simulation Environments
	Flight Modes
	Offboard Control Mode

	PX4-ROS2 Integration
	Architecture
	ROS2 Middleware (RMW) - DDS
	Discovery of nodes

	Related Works

	UAV Testbed Deployment
	PX4/ROS2 Offboard Control Application
	ROS2 Middleware Troubleshooting
	Zenoh
	Zenoh bridge for ROS2 over DDS

	Network topology of UAV Testbed
	Finalized UAV Testbed

	UAV Testbed Analysis
	ROS2 topics throughput
	ROS2 Application Round-trip Time
	Talker/Listener nodes
	RTT measurements
	Latency Spikes Investigation

	Trajectory Error
	vs. Angular Velocity
	vs. Control Publishing Frequency

	Conclusions
	Future Works

	List of Figures
	List of Tables
	Offboard Control C++ Application
	ROS2 Talker/Listener nodes
	Talker
	Listener

	Bibliography

