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1. Introduction  
 

The never-ending strive of the automotive industry towards improvement has been 
driven, in recent years, by the idea of environmental sustainability, which has reshaped 
the way vehicles are designed and manufactured.  
Improvements on pre-existing technologies’ emissions and the adoption of new, more 
environmentally friendly fuels such as methane and hydrogen are just some of the 
changes introduced. 
To enforce this search for sustainability, different standards have been defined, revised, 
and changed over the years. 
This thesis has been made possible thanks to the collaboration of Metatron S.p.A., a 
world-renowned company specialized in the design and production of pressure 
regulators and Electronic Control Units. 
 

1.1. Company Overview 
Metatron’s history began when, at the start of the 90s, the Fiat Research Centre (CRF), 
sited in Orbassano (Turin), determined that the best way to lower gas emissions for 
internal combustion engines was to use natural gas fuel with “three-way” catalysts. 
To kick off the industrial production of natural gas systems, CRF partnered with Tartarini, 
a Bologna-based firm specialized in “aftermarket” systems for converting gasoline and 
diesel engines to methane. Tartarini managed the production of the system 
components, with “bifuel” for passenger cars and “monofuel” for heavy duty as the 
chosen technologies.  
 
From Tartarini, in 1998, some resources detached to create Metatron, with the goal of 
moving from the “aftermarket” to manufacturing and selling CNG/LNG systems directly 
to OEMs. Metatron became the exclusive supplier of control units and pressure regulators 
for IVECO. 
 
Then, in 2008~2010, Metatron founded a new division in Volvera (Turin), fully dedicated to 
the electronic technologies and applications. This division obtained the technical know-
how in the gas supply field from CRF and went on to develop a secondary control unit for 
the LPG fuelled vehicles of FCA group (Fiat Chrysler Automobiles).  
 
Moreover, since 2010, China has been the main market for Metatron’s pressure regulator, 
for its production of heavy-duty engines, leading the company to open a new office in 
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Shanghai (MAP, Metatron Asia Pacific). In 2014, Metatron acquired Digigroup, a society 
specialized in both development and supply of electronic components for Automotive 
Telematics (ITS) and, the following year, Metatron relocated all the activities concerning 
electronics applications in the Volvera site, founding a new society named Metatronix.  
However, due to the increasing differences between ITS and Powertrain markets, in 2018 
Metatronix was made completely autonomous and, to reinforce the Powertrain group, 
the Metatron Research Centre was created in Volvera. 
 
In 2021, a binding agreement for the acquisition of Metatron S.p.A. was signed by the 
Landi Renzo Group. This would ultimately strengthen and accelerate the group’s strategy 
aimed at reaching a leading position in the supply of systems and components for the 
Natural Gas and Hydrogen Mobility in the Mid & Heavy-Duty segment, which will keep 
on growing in the upcoming years. 
 

 
Figure 1.1 - Metatron Offices 

 

1.2.  Thesis Goals 
Over the years, Metatron has developed an impressive and layered code base,  
ever adapting to the most recent standards and guidelines. However, due to the sheer 
number of these standards, the freedom of interpretation and implementation that they 
allow, and the different applications and customers’ requests, this codebase has 
continued to grow in complexity while maintaining some obsolete functions’ 
predispositions and oversized structures. This is particularly true for what concerns the 
management of the On-Board Diagnostic. 
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The end goal of this thesis work is the redefinition of the diagnostic managers to replace 
the existing ones, overstructured by years of evolving standards and requirements, in 
anticipation of future implementations and porting of the OBD system on different 
boards and applications (not exclusively focused on engine control systems). 
 
Rather than simply refactoring the existing code and processes by removing the 
unnecessary procedures and artefacts dictated by now defunct or changed guidelines, 
for this thesis work we started anew by analysing the requirements of the state-of-the-
art standards for the on-board diagnostic on heavy-duty systems (OBD2, WWH-OBD, 
J1939), while also taking into account the constraints dictated by Euro-VI and China-VI.  
The information gathered by this analysis has then been used to define a set of 
requirements and implement a flexible strategy to handle fault detection collecting the 
information needed by the standards. Great focus has been placed on the abstraction 
of the adopted solutions to best suit the customers' needs and ease of use, and on the 
memorization and communication of the detected faults in accordance with the 
guidelines. 
 
Before tackling the part concerning the OBD we defined an intermediate goal, 
propaedeutic to the work on the diagnostics: the management of non-volatile memory 
(NVRAM). The aim was to develop a way for the management of units to give the users 
the possibility to store and retrieve data from permanent memory with a safe approach. 
As per the other goal, the emphasis went on making the chosen solution as configurable 
as possible for the users.  
 
For both the intermediate and final goals of this thesis, a set of APIs has been developed 
to allow customers to interact with the underlying system in a safe and reliable way.  
As the applications are developed following a Model-Based design, blocks for the 
development environment (MATLAB/Simulink) of the APIs have also been created. In 
addition, blocks with graphical interfaces (masks) to facilitate the modification of 
parameters and the generation of code have been implemented.  
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1.3. Working Environment 
The upcoming paragraphs present a concise summary of the key components 
comprising the development environment, hardware, and tools utilised throughout the 
course of this thesis. 
 

1.3.1. HDS9 
HDS9 is an Engine Control Unit created by Metatron for medium- and heavy-duty 
applications (HDS stands for Heavy Duty System) on methane-fueled engines. It has 
been developed based on the state-of-the-art of the available technology, and it is up-
to-date with the most recent OEMs’ global standards on emissions, on-board 
diagnostics, and safety, such as EU-VI and ISO 26262. 
 

 
Figure 1.3.1 - HDS9 

Thanks to its hardware specifications (described in more details in the “Hardware 
Architecture” chapter) and performances, this ECU has been an ideal platform to test 
and validate this thesis’ work.  
 

1.3.2. MATLAB & Simulink 
MATLAB (a portmanteau of “Matrix Laboratory”) is a numeric computing platform 
developed by MathWorks. It is specifically designed for engineers and scientists to 
analyse and design systems and products. The heart of this environment is the 
homonymous matrix-based programming language, which allows for the natural 
expression of computational mathematics. MATLAB can be used to analyse data, 
develop algorithms and applications, create and study models, and deploy the designed 
systems to embedded devices and enterprise applications. The versatility of use of 
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MATLAB is possible thanks to the possibility of combining the core environment with other 
products, such as Simulink.  
 

Simulink is a widely used technology in the automotive industry, developed by 
MathWorks and incorporated into the MATLAB suite. It is a block diagram environment 
that supports both multidomain simulation and model-based design, enabling, among 
others, system-level design, simulation of both continuous and discrete time systems, 
and automatic code generation. Using this support tool, simulation and validation can 
be executed on the model (MIL) and once this is ready and the behaviour matches the 
expected one, the Embedded Coder will take care of generating the software code 
following the defined specifications for the target HW. The use of these tools helps 
increase productivity and efficiency, enhance modularity and portability introducing a 
separation between model and code, and reduce the chances of human errors.  
 

 
Figure 1.3.2 - MATLAB and Simulink sample screen 

 

1.3.3. LabVIEW 
LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a graphical 
programming environment developed by National Instruments widely used for data 
acquisition, instrument control, and industrial automation. 
LabVIEW is well known for its intuitive programming approach, based on the “G” graphical 
programming language, which enables users to efficiently realise complex test and 
measurement systems by building programs (here called Virtual Instruments, VI) by 
connecting functional nodes on a block diagram. 
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This environment boasts extensive support for connectivity to various instruments, and 
the added functionality of helping the users design an integrated interface for each 
program. 
For the already mentioned qualities and many more, LabVIEW was utilised in this thesis 
to construct automated testing programmes to stress test the built solutions. 
 

 
Figure 1.3.3 - Example of a LabVIEW VI with the generated interface 

 

1.3.4. CANape 
CANape is a tool designed by Vector Informatik for the measurement, runtime 
calibration, flashing, and logging of ECUs and ADAS sensors. It allows users to acquire 
various types of data and calibrate ECU parameters to adapt them to the vehicle. 
CANape supports data analysis, logging, graphical visualisation, and automated report 
generation. It also enables symbolic access to data and functions via diagnostic 
protocol and supports calibration over XCP.  
CANape uses its own scripting language, CASL, similar to the C programming language. 
The incredible versatility of this tool makes it a comprehensive solution for vehicle testing 
and development. 
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Figure 1.3.4 - ECU calibration with CANape 
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1.4. Model Based Design 

1.4.1. General Overview 
Model-Based Design is a key development approach adopted in many engineering 
fields, including automotive, to shape and analyse complex systems. 
It is based on performing simulations in a development environment to analyse the 
behaviour of the real physical system that will have to be built and controlled. The 
physical systems under examination are usually defined as a set of components, each 
of which can be represented by a model, interacting with each other, exchanging 
information, and performing certain tasks. Each component may span a wide range of 
disciplines, such as electrical, mechanical, thermal, hydraulic, pneumatic, optical, or any 
combination of these, ensuring the possibility to model very complex and differentiated 
systems. Depending on the accuracy level of the components’ descriptions, the system 
can be more or less comparable to the original one. In the following picture, a schematic 
reconstruction of the realisation flow of a valid model is shown: 

 
Figure 1.4.1 - Model Building Flow 

The MBD focuses on abstracting from specific technologies through the use of high-level 
languages with a visual approach (e.g., through lines and blocks). Using a graphical tool 
can simplify the development of complex functions, especially in real-word systems, by 
breaking down the model into smaller modules that are easier to understand and 
implement. 
These tools usually provide means of executing the model to perform testing; doing so 
before integration allows to reduce the risks of future issues that would result in greater 
costs and waste of time and resources. 
Once the model behaves as intended, these tools may also generate the code with the 
defined settings (platform, language, and other specifications). This not only allows for 
higher productivity and portability, as only the coder settings need to be changed for 
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different platforms rather than the model itself, but also reduces the introduction of 
coding errors.  
The before-mentioned Simulink is one of the most used tools of this kind. 
To summarise, thanks to the advantages it introduces based on the separation of the 
application and the infrastructure (the concept of “model once, build everywhere”), 
Model-based Design has become more and more popular in the automotive fields. 
  

1.4.2. MBD Flow V-Diagram 
Mode-based Design follows a rigorous workflow composed by different steps, disposed 
in the so-called V-diagram. In the following picture, a generalization of the V-diagram 
applied to the automotive field: 
 

 
Figure 1.4.2 - V Diagram 

 

1. System Requirements 
The first step consists in analysing the system’s requirements and using the results of this 
analysis to redact the System Requirements Document (SRD). This report will not only 
contain a comprehensive description of the analysed system but also a definition of all 
the necessary elements for the correct implementation and operation of the target 
system.  
The document should present a well-defined hierarchical structure to favour 
understandability, starting from the general system requirements at a higher level and 
proceeding towards more detailed and restrictive ‘child’ requirements, each explaining 
in detail the expected behaviour and implementation of a module. 
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As SRD describes the hardware components, such as mechanical or electrical parts, and 
the functions they should perform, a Software Requirements Specifications document 
should be redacted in parallel. Every line of this document should include an identifier, a 
reference to the related system requirement, and a brief description. This structure 
makes it so that each system requirement is linked with one or more software 
requirements, facilitating the workflow. A system requirement will be considered satisfied 
once all its software requirements work properly. To ensure this, different test cases must 
be written and run. 
 

2. System Design 
The second phase of the V diagram goes deeper into the description of all the modules, 
components, and units that make up the system. Starting from the requirements 
document, the engineers analyse the feasibility of the requests, trying to find possible 
solutions and implementation strategies while performing additional estimations such 
as reliability and costs. During this step, it’s still possible to introduce changes to the SRD 
before moving on to the next phases. 
To ensure an optimal system design, one should follow some practices: 

- Communication between the working teams must be present from the beginning, 
even in the preliminary phases. This will consent to arrive at the development 
stages with as clear as possible ideas. 

- The system’s design should be as scalable and modular as possible to reduce 
costs for future improvements, additions, and changes. 

- A simple design is the key to success. 
- Comprehensive and clear documentation is fundamental. 

 
3. Software Design 

This step involves modelling the system as a Platform-Independent Model (PIM) by 
means of an appropriate Domain-Specific Language (DSL), like Simulink, composed of 
blocks close to many domains, such as mechanical and electrical. When the design of 
the whole system is ready, it is possible to simulate it in order to refine it or find alternative 
designs. The possibility to conduct tests on the model, existing entirely inside the 
simulation tool, helps find bugs and issues in the earlier stages of development, thus 
reducing the costs that their correction and identification would require in later stages. 
The iterative phase that includes this and the previous two steps of the V diagram is 
called Model-in-the-Loop testing (MIL). 
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Figure 1.4.3 - MIL Testing 

 

4. Coding 
Once we have made sure that the system behaviour is the expected one, it’s time for the 
generation of the code. This step will produce what will actually run on the target system; 
as such, one should try to optimise the generation parameters for the implementation 
on the desired HW. 
There’s a multitude of tools for automatic code generation, each with its own set of 
languages and customisable parameters, such as the Embedded Coder in Simulink. 
Automatic code generation has the main advantage of erasing the need to update the 
code when the model changes, reducing not only costs and times but also the risk of 
manual coding errors. 
The increasing complexity of modern systems has led to the widespread adoption of this 
type of coding approach, thanks to the before-mentioned advantages. 
 

5. Software Integration 
After the code has been generated, we need to confirm that it works as intended and 
that its behaviour and outcomes match those of the model-in-the-loop phase. 
This verification process, consisting in running the generated code locally to confirm 
whether it is operating as intended, is called Software-in-the-Loop (SIL) and also covers 
the two previous phases. 
If an erroneous behaviour emerges, it means that there was a mistake in either the model 
or the code generation, and they need to be checked and appropriately fixed. 
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Figure 1.4.4 - SIL Testing 

 

6. HW/SW Integration 
After the software has been adequately verified, it is time to integrate the generated code 
into real embedded hardware, e.g., an ECU. The software is then deployed on the target 
hardware and co-simulated with the system model to verify its correctness. 
Additionally, the outcome of this phase must match those of the MIL and SIL testing steps; 
if not, some adjustments must be made. 
This step, with the “Software Integration” one, composes an iterative test phase called 
Processor-in-the-Loop (PIL). Whilst the PIL does not present a real-time testing situation, 
as only the controller is running on the real, embedded target hardware while the rest of 
the plant is being simulated, it is still of fundamental importance as it can help identify 
underlying mistakes before the costs of correcting them grow higher. 
 
 

 
Figure 1.4.5 - PIL Testing 
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7. Vehicle Integration & Calibration 

In this final step, the plant is simulated via a real-time simulator, to produce a behaviour 
as close to the real-world one as possible, e.g., in physical connectivity, I/O, and 
communication protocols. This is the last step before moving to the real system; after 
this test phase, the product can be released and tested in a real-world environment, 
which in the automotive world typically translates to performing vehicle fleet tests to 
ensure that the product meets the requirements. 
Once this last verification session, often referred to as Hardware-in-the-Loop (HIL), has 
been completed, the design phase can be considered done and the production cycle 
can finally begin. 
 

 
Figure 1.4.6 - HIL 
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2. Hardware Architecture 
 

The ECU Heavy Duty System (HDS) is an engine control unit dedicated mainly to 
CNG/LNG-fueled engines with a maximum of eight cylinders to be used for 
commercial/industrial vehicles (Light-Duty and Heavy-Duty vehicles), and for stationary 
units using natural gas to generate electricity. The ECU has the capability to control the 
whole engine. 
 
As an engine control unit, HDS9 is able to control multiple systems, such as the Fuel 
Injection system, the Ignition system, and the Variable Valve Timing system, in order to 
ensure the correct functioning of the internal combustion engine.  
To help perform its duty, the ECU is equipped with different sensors. 
 
The following schematic illustrates the key components of the ECU: 
 

 
Figure 2.1 - ECU block diagram 
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2.1. Inputs 
The ECU presents both Analog and Digital input channels. There are 28 analog input 
conditioning circuits for external sensors, used for temperature, pressure, position, and 
HEGO/UEGO lambda sensors. 
The HDS9 also mounts 15 digital input conditioning circuits for external switches. Each 
input channel can be configured, via software, with a pullup or pulldown resistor 
according to the switch connection to ground or to battery voltage. In addition, two 
specific inputs are dedicated to turning on the ECU when active: the key switch and the 
auxiliary key switch. 
There are also frequency (PWM) inputs, including 5 Hall effect sensors. 
The board also presents some internal sensors for monitoring the on-board temperature 
and pressure. 
 

2.2. Outputs 
The ECU presents both Digital and PWM/Frequency output channels, used to control the 
actuators connected to the ECU. To better adapt to the mounted actuators, both output 
types come in Low Side and High Side channels. 
The digital channels are normally used as ON/OFF outputs and present two reserved 
outputs, specific to the starter command and the pump command. 
Pulse-Width Modulation outputs are generally associated with proportional actuators or 
gauge indicators. 
The board also includes Peak & Hold Injector drivers and Spark drivers for active ignition 
coils, capable of managing up to 8 cylinders.  
In addition, the HDS9 includes two channels for H-bridge actuators.  
 

2.3. Microcontroller 
The HDS9 is equipped with an NXP microprocessor COBRA55 (MPC5777C). 
The MPC5777C Power Architecture MCU is dedicated to industrial and automotive control 
applications requiring advanced performance, timing systems, security, and functional 
safety capabilities. 
 
This microcontroller offers a high-performance multicore design and an industry 
standard eTPU-based timer system. It features a Flash solution allowing for code 
expansion, a security module, and packaging options, as well as the highest level of 
functional safety (ASIL-D) support. 
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Below, a short list of the microcontroller’s main features: 
• 2 x Main Power Architecture z7 cores + 1 x Checker core (lockstep) running the 
same set of operations in parallel to detect and correct possible errors. 
• 1 x Single precision FPU 
• 404 KB System SRAM (+ 192 KB data RAM included in the CPUs) 
• 8 MB on-chip Flash Memory  
• 8 × 64 KB + 2 × 16 KB Data Flash Memory (EEPROM) that can be used to implement 
memory recovery strategies 
• 1 × 64 QADC channels  
• 4 x High Speed CAN for communication 
• 8 x DSPI (4 x SPI, 3 x MSC, 1 x SyncSCI) 
• 3 x eTPU top perform complex timing and I/O operation management 
independently from the CPU 
 

 
Figure 2.3.1 - Microcontroller schematics 

 

2.4. Communication 
The board uses four Controller Area Network (CAN) modules, one of which also supports 
CAN FD extension, for communication with other systems in the vehicles and external 
tools. Each of the available channels serves a different purpose. 
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The CAN 1 channel is used for communication between the ECU and the 
measurement/calibration system, allowing for the reading (measurement) and 
modification (calibration) of ECU signals and parameters. This communication is carried 
out using the XCP protocol to interface with the system’s memory in R/W mode, following 
a master-slave paradigm, where the measurement system (e.g., CANape) assumes the 
master role and the ECU is the one responding to the address-oriented memory access 
requests. This access is, and the correspondences between symbols and addresses are 
defined in an A2L file. This channel can also operate with CAN FD. 
 
The CAN 2 channel is set up to allow intravehicular communication, using the J1939 
protocol. The J1939, designed by the Society of Automotive Engineers (SAE), is an open 
standard for the communication commonly used in heavy-duty vehicles to define the 
information exchange between Electronic Control Units. It operates on the CAN and 
provides standardisation, robustness, and scalability. 
 
The CAN 3 channel is designed to be used for the vehicle diagnostic system. It uses the 
Unified Diagnostic Service (UDS) protocol to detect problems and reprogram the ECU. 
When a malfunction occurs, a new firmware can be flashed to resolve the issue. 
The UDS operates with a client-server paradigm, with the tester issuing requests and the 
ECU responding as the server. By connecting a CAN bus to the OBD2 port, one can start 
a diagnostic session to ensure that the system is working as intended. 
 
The CAN 4 channel, also called “private CAN”, allows for the implementation of a private 
network between the Engine Control Module (ECM) and other engine-related devices. 
 

 

Figure 2.4.1 - HDS9 CAN Connectors 

In addition, the HDS9 presents a LIN transceiver, based on a master-slave 
communication protocol rather than CAN’s broadcast. 
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3. Software Architecture 
 

HDS9’s embedded software architecture follows the separation principles proposed by 
AUTOSAR; the structure is layered in order to standardise functional interfaces to the HW 
platform and at the same time define an architectural reference that could be extended 
to the various operating areas of the software while remaining easily accessible to the 
various technical figures operating on its implementation. 
The modularity of this solution leads to greater portability across different HW platforms, 
as well as the possibility of independent development, testing, and update of every single 
module. 
 

3.1. AUTOSAR Principles 
AUTOSAR is a global partnership of leading firms in the automotive and software industry 
with the aim of developing and establishing the standardised software framework and 
open E/E system architecture for intelligent mobility. 
 
The idea at the base of the AUTOSAR software framework is to improve complexity 
management for integrated E/E architectures by enabling the reuse and 
interchangeability of software modules between OEMs (Original Equipment 
Manufacturers) and suppliers. 
 

 
Figure 3.1.1 - Proprietary vs. AUTOSAR Middleware Approach 
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AUTOSAR offers a comprehensive environment for innovative electronic systems with a 
high focus on performance, safety, and security standards. It does so by adhering to a 
fundamental set of principles: 

• Hardware and software should be widely independent from each other.  
• The development should be distributed and done in parallel, thanks to the 

abstraction between horizontal levels, reducing development time and costs. 
• The reuse of software is the basis for enhancing both quality and efficiency. 

 
The layered architecture that allows for great results following these principles is 
generally designed to support hardware abstraction, scheduling of runnable tasks via 
the OS, communication between applications on the same hardware and over the 
network, and safety and security services in conjunction with diagnosis and diagnostic 
services. 
 

 
Figure 3.1.2 - AUTOSAR layered architecture 

 
The image above depicts an example of a layered software architecture that serves as 
the basis for Metatron's actual structure, as described in the following paragraphs. 
 
Even with all the advantages that AUTOSAR comes with, it still isn’t free of defects: 

• It introduces costs for the license royalties, as only “big players” provide MCAL and 
ECUAL, and for the required configuration tools (which need to be certified). 

• It makes debugging harder and requires constant updates to keep up with the 
new releases, introducing additional maintenance costs. 
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• Reduces the competitive advantage: if everyone uses the same approach, cost is 
the same for all, so those who produce many ECUs and have more spending 
capacity are at an advantage over small to medium players. 

• Low configurability, especially for what concerns the heavy-duty market; AUTOSAR 
drivers and services are generally designed for passenger systems, as the 
production volumes are far higher rather than for heavy-duty systems. 

• Need to define custom and complex drivers to manage chips and application-
specific sensors and actuators. 

• The redundancy of functions and symbols in RTE/MCAL requires high-
performance processors without a real need for them. 

  
For all these reasons, Metatron decided not to directly integrate third-party AUTOSAR but 
rather implement its own structure, following the same principles and philosophy of 
abstraction levels. 
 

3.2. Architecture Levels 
The following image reports the main separation between the Basic Software, also known 
as Firmware, and the Application software. This distinction allows us to abstract the 
control strategy from the real HW solution and the actual implementation. 
 

 
Figure 3.2.1 - HDS9 SW architecture main separation 

 

To preserve the distinction between these two levels, an intermediary layer is added, 
resulting in the three-layer design shown in the following picture:  
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Figure 3.2.2 - HDS9 SW architecture layers 

 

3.2.1. Application Layer (MBSL) 
The highest-level layer implements the code specific to the automotive application. It is 
composed of a set of different software modules, called wrappers, programmed in a 
model-based design fashion, that can communicate with each other by exchanging 
data through means of global variables (called signals). These variables are accessible 
on entry to the module by including the producers’ interfaces, i.e., the file handle. 
 
If the module needs to access resources made available directly from the low level, it 
does so by calling appropriate functions provided by the underlying layer (API Interface).  
While the original paradigm was more akin to a classic get/set approach, in recent years 
Metatron has moved towards more generalised functions that allow for a more flexible 
management of variables, and specialised methods like the one used, in this thesis 
context, for memory access or diagnostic management. 
 
In any case, the API interface is the only means of accessing the underlying 
functionalities. This way, it is sufficient for the application module to include the API 
interface file; moreover, having this single access point compels a complete abstraction 
of the application software with respect to the basic software. Finally, this strategy allows 
for the reuse of the same application software while adjusting the implementation of API 
methods without changing the prototype. 
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3.2.2. Intermediate Layer (API, ASWL, DSWL) 
As previously stated, the goal of this layer is to introduce an abstraction level to better 
separate the platform-independent application software from the hardware-
dependent base-level software. 
 
It does so thanks to this layer’s main component, the API Interface, which is the only 
access point for the application layer and whose methods can directly access the base-
level software modules. In addition, this component also defines routines that the 
operating system calls for the various tasks required by the application, e.g., scheduling 
and I/O operations. This enables a single entry-point for the application software for 
each functionality, avoiding the need to interact with operating system modules. 
 
Another important component of this layer is the Hand Coded Support Functions (ASWL), 
a group of modules that support several applicative functions, communicating directly 
with the basic software or with API Interface software, such as the “xcpmgr” module that 
manages the XCP services or the “J1939” module that implements that specific protocol 
functionalities interacting with the board communication drivers. 
 
This layer is the core of the HDS9 software’s modularity and abstraction, with all the 
advantages that this approach comes with. 
 

3.2.3. Basic Software (BSWL)  
The basic software level aims to provide interfaces to the HW, hiding the details related 
to the physical location of each signal and its implementation while still allowing an easy 
association between interfaces and the relative electrical signals, as expected at the 
connector of the control unit itself. Moreover, it allows for high configurability of the 
devices used to implement such features. 
 
This layer, as the intermediate one, is composed of different sub-layers, each of them 
with a different purpose: 

• The Microcontroller Abstraction Layer (MCAL) is the lowest-level one and the most 
dependent on the MCU in use. It’s a key component, as it contains the actual 
drivers needed to access the peripherals. 

• The ECU Abstraction Layer, just above the MCAL, implements the abstraction of the 
MCAL for the upper layers, providing all the required APIs for the external and 
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internal drivers, so that the upper layers of the ECU are independent of the effective 
HW. 

• The Service Layer, “mounted” on top of the ECU abstraction layer, provides basic 
services for the applications, such as ECU state management, memory and 
communication services, and Operating System functionality. The Operating 
System provides a task switching mechanism that is fully preemptive based on 
the priority scheme, including an idle mechanism (background task), which is 
active when no other system or application functionality is active. No extended 
tasks are managed. Services for critical region protection or resources are 
available. 

All three sub-layers interface with the Complex Driver sub-layer, usually dedicated to the 
implementation of peculiar functionalities involving both the microcontroller and 
external devices on the board. 
  

 
Figure 3.2.3 - HDS9 BSWL internal modules and layers subdivision 

 

3.3. API Design 
As previously stated, the API level makes communication possible between the 
Application layer and the BSWL, providing users with access to the defined C functions. 
These functions are defined in the C file “api.c” and the related header file “api.h” and are 
then imported into Metatron’s Simulink library in the form of function blocks that can be 
used for the model-based design of the application. 
  
API methods are classified according to their functional group in either: 

• Get/set functions, operating on a single variable and following a getter/setter 
paradigm. 
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• Specialised functions, operating on several variables. 
In recent years, Metatron moved from the getter/setter approach with functions specific 
to a single variable towards a strategy focused on more generalised methods that act 
as getter/setter for a certain category of variables and take the target variable as a 
parameter. 
This has been done to further improve abstraction and increase code maintainability 
and readability. Moreover, this generalisation helps minimise the number of API blocks 
imported in Simulink, which can be incredibly useful for creating a clearer workflow for 
the customers that will interface with the library. 
 
In this regard, it is important to cite the work done by L. Zannella, documented in the thesis 
titled “Library definition for an automotive ECU API layer (using Model-Based approach)”, 
which introduced a set of changes and improvements for what concerns the design and 
development process of the APIs and whose work served as the foundation for this thesis. 
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4. Part 1 - Memory Management (NVRAM) 
 

The first step in this thesis work, after studying the system documentation, was the 
definition and implementation of a memory management strategy for the HDS9 non-
volatile memory, here called EEPROM (Electrically Erasable Programmable Read Only 
Memory), focused on increasing the reliability of the system while also defining a more 
general-purpose structure to better suit any customer’s request. 
 
This operation served to form a better understanding of the system and the 
implementation flow, as well as improved memory management, which would be 
needed for the second part of the thesis. 
 

4.1. Strategy 
The first thing to do was to identify a strategy that covered all the given requirements 
and, starting from it, define a flow of actions that would then have to be translated into 
code and function calls. 
The starting requirements were: 

• Manage the memory at startup and shutdown, also taking into account sudden 
shutdowns. 

• Identify possible errors and restore the most recent backup when needed. 
• Implement the stored data structure to be as versatile as possible, to fit any data 

a customer could store. 
• Enable the customers to access the memory for R/W operations. 
• Avoid overcomplicated strategies (a.k.a., follow the KISS principle). 

 
The chosen strategy is based on employing two of the memory modules available on 
the device; the basic idea is to alternatively select one module or the other at startup 
and then store the values on the other module at shutdown. On the next activation of the 
system, the last written module will be selected to read the stored values and load them 
into the volatile memory. 
 
With this approach, we ensure that a module will always contain the previous backup of 
the memory state, and we will be able to retrieve that data in case of issues with the 
latest loaded module. In addition, we had to cover the possibility, however remote, of 
both memory modules malfunctioning at the same time. 
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To detect whether a module’s backup was corrupted or not, we needed a consistency 
check function. This would have to be computed on the data stored in the memory 
module at the shutdown and then stored with them inside the module. 
 

 
Figure 4.1.1 – NVRAM shutdown strategy 

 
At startup, the system would recompute the consistency check on the data stored in the 
selected module. In addition to the user-inserted data, the module would also contain 
the number of times the memory has been rewritten. This value can be used to 
determine the module to read from. 
 
In case of a mismatch between the newly computed value and the one stored at the 
previous shutdown, the system would try to select the other module containing the last 
backup, again performing this check. In the unfortunate case in which the second 
module was also corrupted, a default set of values would replace the memory module 
contents. 
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Figure 4.1.2 – NVRAM startup strategy 

 

In terms of the format of the data that the users would be able to store into the NVRAM, 
our focus went again to looking for the simplest and most flexible strategy. In the end, we 
decided to opt for a simple array-like structure, whose fields would be of the most 
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general type that the board could support (that is, the largest memory-wise) and whose 
length could be regulated by the user with ease. 
 
While this solution allows for more adaptable and efficient storage management, it does 
have some drawbacks; in particular, adopting this approach would require users to 
convert the types they want to store in order for them to fit correctly and be retrieved 
later. 
 
At the same time, as the users would need to correctly manage the form of the inserted 
data, they could perform optimisations (such as storing multiple Boolean values as an 
array of bits in a single entry) that could greatly improve the usage of the memory, thus 
making it less of an issue and more of an occasion. 
 
The final point that our strategy tried to cover was the optimisation of the access 
operations; as per the previous requirements, we looked for a solution that could be both 
efficient and generic while keeping it as simple as possible. Starting from the designed 
memory structure, we decided to go with direct access R/W operations. This solution 
introduced a compromise between efficiency and user-demanded tasks, as they would 
have to know the exact position (index) of the value to change/retrieve in the memory 
structure. As you will see in the implementation paragraphs, however, it is possible to 
introduce some workarounds to reduce the burden on the user. 
 
Basically, as we decided to follow an approach focused on simplicity and flexibility, we 
had to move part of the management into the hands of the users, with the aim of 
improving the platform flexibility. 
 

4.2. Implementation 
In this section, we’ll describe how the strategies illustrated in the previous paragraphs 
have been implemented in the system via C coding. All the structures, variables, and 
functions present in the following paragraphs are located in the “api.h” and “api.c” files 
previously mentioned in the “Software Architecture” chapter of this thesis. 
 

4.2.1. Memory Structure 
As previously stated, we decided to store the user-defined data inside a simple array-
like structure. The size of this array can be defined by the user by changing the value of 
the #define DATA_EE_ARRAY_SIZE (here set by default to 2048). The operations 
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involving this array use the defined value, thus allowing for a single-point change to 
adapt the whole code. 
 

 
Figure 4.2.1 - NVRAM array size #define 

 
Simply using an array wouldn’t provide us with the information required by the strategies 
underlined in the previous paragraphs. As such, a wrapper structure, tDataEeMod, has 
been defined in order to neatly pack the user’s data array together with both the 
checksum value and the counter of the number of times the module has been rewritten. 
Note that this wrapper is completely transparent to the users. 
 

 
Figure 4.2.2 - NVRAM wrapper structure 

 

As seen in the picture above, the selected type for the user-defined data array, the 
variable u32EeData, is a 32-bit unsigned integer. As explained in the “strategy” section, 
this allows us to store the highest variety of values, gifting us the outmost flexibility 
without impact on system performance, as the microcontroller registers are native 32-
bit.  
 
The variable used to store the computed checksum, usrEeDataCks, is of the type tCks, 
defined in the base-level software precisely for this kind of value. 
 
Lastly, as we estimated that a value of 16 bits might not suffice to maintain the counter 
of the writings performed on the modules for all the possible applications of the system, 
we chose to define the timesRewritten field of the struct as a 32-bit unsigned integer. 
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Each memory module presents an associated tDataEeMod structure, as shown in the 
following picture: 

 
Figure 4.2.3 - Modules' structures declaration 

 

The two modules’ structures are declared inside of a ‘#pragma section “.eeram”’ 
directive. This compiler-specific C construct is used to instruct the compiler to place 
certain code or data into a specific memory section. In this case, the data contained 
inside the “.eeram” sections of the memory will be the one to be physically stored inside 
the NVRAM modules at shutdown via some base-level software methods. 
 
The actual read/write operations are performed on temporary structures stored in the 
system’s RAM rather than on those in the “.eeram” sections, for multiple reasons, from 
speed to the need to reduce the number of writings on those sectors. The declaration of 
those in-RAM structures can be seen in the previous image. 
 

4.2.2. Read & Write Operations 
Although multiple modules are present, there can only be a single active module at any 
time. The operations of retrieving and storing data done by the user can only be 
performed on this active module. 
 
The active module identifier is stored inside the activeEeMod variable, of type tEeMod. 
The tEeMod is an enumerative type containing the identifiers of the available modules 
(here ModA and ModB). By default, the active module is ModA. 
 

 
Figure 4.2.4 - NVRAM modules enumerative tEeMod 
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Figure 4.2.5 - Declaration of activeEeMod with default value 

The two operations available to users via API are the get and set of data in a given 
position. Both APIs require the index in the memory array of the value to read or write, 
passed as the 16-bit unsigned integer parameter named u16slotID. We opted to leave 
the association between value and index to the users in order to provide higher efficiency 
via direct indexed access. The index parameter is stored on 16 bits, as it has been found 
to be the best trade-off between the amount of data usually required by the users and 
the number of available memory entries in the modules. 
 
Both the APIs return an 8-bit unsigned integer value to report a possible error code, 
although at the moment only two values (success and generic error, respectively, 0 and 
1) are available. 
 
The read API is API_EEPROM_getData, which also takes as a parameter the pointer to a 
uint32_T variable, u32eData, where to store the value read at the given index, as the 
return value of this function is used to indicate the presence of errors. 
 
The function starts by calling the Operating System API API_OS_LockOS before entering 
the critical section, in order to avoid race conditions. This BSWL ensures that only one task 
will be operating inside our critical region. 
 
The function then proceeds by checking three conditions: whether the active module is 
ModA, that the data inside the module is not corrupted (bsDataEeModAValid data 
validity flag), and that the passed index does not exceed the memory array size defined 
as DATA_EE_ARRAY_SIZE. In the event that all the conditions are satisfied, the value of the 
ModA struct’s u32EeData field at the given index is stored via the pointer passed as a 
parameter, and the return value (variable u8RetVal) is set to 0. 
 
In the event that one or more of those conditions fails, the function proceeds to check 
the ModB using the corresponding data validity flag and the same check on the index. In 
case of success, the value at the chosen index in the ModB structure’s array is written to 
the given pointer. 
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In the eventuality that the checks on both ModA and ModB fail, the return value is set to 1 
to signal a generic error, and the value pointed by u32eData is set to zero. 
 
Before returning the value to the caller, the function releases the lock on the critical 
section, calling the API_OS_UnlockOS method provided by the operating system. 
 

 
Figure 4.2.6 - API_EEPROM_getData 

 

The write API, API_EEPROM_setData, takes as parameters both the index and the 32-bit 
unsigned integer value, u32eData, to be written at the given position.  
 
As in the getter function, this setter first locks the system, calling the OS-provided 
API_OS_LockOS to prevent races, and then starts performing the checks on the active 
module and the validity of the passed index. 
 
It is important to note that the control over the validity of the data contained in the 
module, via the bsDataEeModAValid and bsDataEeModBValid flags, is not performed in 
this case. This was a deliberate choice, as that check is used to avoid trying to read 
corrupted data. For how this system was implemented, new data can be written using 
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this set function, but they cannot be read until a subsequent shutdown-startup 
sequence is performed, in which the data have been correctly stored and read. 
 
In the case of successful checks, the passed data is stored in the active module’s user-
data array at the given position. The return value is then set to 0 to mark the absence of 
errors. 
  
As in the previous function, in the case of failed checks, the return value is set to 1 to 
indicate a general error. 
 
The function then releases the lock via API_OS_UnlockOs and returns the error-
signalling value. 
 

 
Figure 4.2.7 - API_EEPROM_setData 

 
For the aim of this Thesis, the code has been designed to work for only two modules. In 
the case of the expansion of the system to work with a greater number of memory 
modules, however, it would be possible to adapt the code shown by following some 
simple steps: 

• Add the identifier of the new modules to the tEeMod enumerative. 
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• Define the corresponding tDataEeMod wrapper structures in a #pragma session 
“. eeram”. 

• Modify the setData and getData to perform the check on the passed index at the 
beginning of the function, allowing to introduce both a more specific error code 
and reduce the critical section protected by the OS API. 

• Change the if/else constructs in setData and getData with a switch construct on 
the active module value. 

  

4.2.3. Startup 
To implement the defined startup strategy, it has been necessary to define a well-
structured flow of calls starting from pre-existing functions and routines while adding 
new methods and functionalities. A simplified summary of the final flow can be seen in 
the picture below: 
 

 
Figure 4.2.8 - NVRAM startup function calls flow 

 

The first function called, API_OS_Init, is the initialisation routine of the operating system 
at API level.  

 
The API_OS_Init starts by calling the API_EEPROM_init. 
 

 
Figure 4.2.9 - API_OS_Init calling the next function 
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The API_EEPROM_init function checks the state of the EDATA component after power-on, 
detecting abnormal power-offs and indicating the need to reset EEPROM data to its initial 
settings. The body of the function can be split into three parts, each performing different 
duties: 

• Via some base software functions, the code sets the anomalous power-off flags 
and initialises the power-off counter, used by the “save” procedure. 

• The system tries to read the status of the NVRAM via the BSWL function 
NVRAM_Read. In case of error (E_NOT_OK) or mismatch of the boot key, the 
system tries to rewrite the EEPROM with the NVRAM_Write.  

• The function calls the utility for selecting the active module, 
API_EEPROM_selectActiveModule(), and then proceeds to call the function for 
initialising the data from the EEPROM, API_EEPROM_initData(). 
 

The API_EEPROM_selectActiveModule is a utility function for determining which of the 
available modules is to be selected as the active one. It is a pretty straightforward 
comparison between the modules’ timesRewritten fields, although it does perform a lock 
to avoid possible races on those fields. 
 

 
Figure 4.2.10 - API_EEPROM_selectActiveModule 

 
The final procedure called by the API_EEPROM_init is API_EEPROM_initData, whose job 
is to validate the content of the read module, switch to the other module(s) in case of 
issues, and reinitialise the defined structure with the default value, if necessary. 
 
Depending on the active module selected via the utility function, 
API_EEPROM_selectActiveModule, the code sets the module’s corresponding data 
validity flag and then checks that the module status is valid (an additional check to 
those in API_EEPROM_init) and that the stored checksum equals the one computed at 
this moment.  
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The current checksum is calculated via BSWL function, which also takes as input the 
DATA_SIZE_MOD, defined in “api.h”. In case of an invalid state or mismatch of the 
checksum, the Boolean tryOtherMod is set to true. 
 

 
Figure 4.2.11 - DATA_SIZE_MOD 

 
If the tryOtherMod flag is set to false, the procedure simply terminates, as it means that 
the data inside the memory module structure is valid and ready to operate. 
 
Otherwise, we check that the other module (e.g., ModB if ModA was the active one) is 
operating and its data are valid, performing the same checks done on the active module. 
In the event of the validity of the data contained in the other module’s structure, we 
simply copy that backup into the active module’s in-RAM structure. 
 
If the remaining module’s data fails the checksum comparison, all the structures are 
initialised with default values contained inside the xDataEeModInit constant, and the 
data validity flags for both modules are set to 0, in order to signal to read operations the 
presence of an error (as seen in the previous paragraphs). 
 

These functions have been designed to be completely transparent to the user; the 
average customer should not be worried with how the system performs the setup of the 
memory and the various checks and should only interact with the NVRAM system through 
the setData and getData APIs.  
For testing purposes, however, two more functions directly accessible at model-based 
software level have been developed, respectively to verify the selected module and to 
force the reset of the data stored in the NVRAM: API_EEPROM_getActiveModule and 
API_EEPROM_forceReset. 
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Figure 4.2.12 - Additional functions for testing purposes 

 

4.2.4. Shutdown 
To implement the shutdown strategy, it was required to introduce a method that would 
be called during the system's shutdown, that is, when the Key-Off procedure is called by 
the OS. This procedure is in charge of performing the preparation for the power-off 
routines, among which API_EEPROM_save is the one that actually implements the 
shutdown strategy seen in the “Strategy” section. 
 
The API_EEPROM_save, similarly to the previous methods, performs its operations based 
on the active module. First, it copies the current data from the active module’s in-RAM 
structure into the other module's “.eeram” data structure. This way, the current active 
module data will be used as a backup. 
  
The function then proceeds to increase the counter of the number of times that the other 
module has been rewritten and goes on to compute the checksum and store it inside 
the module’s structure. 
  
Once the data has been copied from the RAM into the “.eeram” section structure, and the 
fields have been updated, the system invokes the base software EDATA_Save method, 
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which will then be the one to actually write the values in the “.eeram” sections into the 
physical modules. 
 

 
Figure 4.2.13 - API_EEPROM_save 
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4.3. Tests setup 
After the implementation was deemed complete, it was time to run stress tests on the 
board mounting the new code. To do so, we decided to make use of LabVIEW for its 
capability to manage multiple tools that could be useful to our cause, as well as the 
possibility to graphically build programs that would allow us to automate this kind of 
testing. 
 
In the following picture, a simplified scheme of the setup used for the tests is shown: 
 

 
Figure 4.3.1 - Test setup schematics 

 

The components appearing in the schematic are: 
• Power Source: the board’s power supply. 
• Board: model HDS9 v2, mounting the NVRAM-management code in addition to the 

model-based generated code specific to the application.  
It presents a digital relay used to simulate the key-on/key-off command via a 
physical switch. For this test, the switch has been disconnected to be able to pilot 
the relay using the digital output of a CompactDAQ.  
It communicated via CAN with the PC on the CAN port #2. 

• PC: a laptop running Windows 10 as the operating system, mounting LabVIEW to 
execute the tests’ Virtual Instruments (VI).  
It also run PCAN-View by PEAK System, a software used to read and send CAN 
messages with ease, providing multiple representation options (decimal, hex, 
etc.) and other useful functionalities. 
It was connected to the board via a PEAK Dongle, a PCAN-USB adapter used for 
CAN communication, and to the DAQ. 
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• CompactDAQ with Digital I/O: a well-renowned data-acquisition tool, used for its 
portability and flexibility, produced by National Instruments.  
The module used presented various digital I/O pins, one of which was piloted by 
the LabVIEW VI created for the specific test.  
It is used to pilot the ‘key’ relay of the board to study the system’s behaviour for 
high numbers of key-on/key-off cycles. 

• LED: used to give immediate visual feedback of the operating state of the system. 
Piloted by the same output pin of the DAQ that piloted the relay. 

 
In the following picture, it is possible to identify the power source (on the background, 
with a black and a red banana plugs), the board (on the left), and the open relay (on the 
right) with the yellow cable used to pilot it via the DAQ (not in picture). 
 

 
Figure 4.3.2 – Board, relay and power source 

 
The next two sections (4.4 and 4.5) will illustrate in more detail the code for the two main 
tests, with detailed descriptions of both the Simulink and LabVIEW models, while also 
providing a general introduction to the test program’s behaviour. 
 
Both tests were designed to perform computations, store them in the memory module, 
shut down the system, restart it, and either directly verify the expected results or simply 
write the read values to a file to be verified externally (via data sheet evaluation). 
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4.4. Test #1 – Mem Test 
The first test, also called “Mem Test", used an application program, built via model-based 
design using Simulink. This application took a maximum and a minimum value via CAN, 
computed the next step of a function limited between these two values, and stored the 
current value into a new entry of the memory array, treating it as a cyclic structure. 
 
The application then communicated, again via CAN, the last written position of the 
memory’s array, the written value, the slope (positive or negative) of the function, and 
the number of startups of the system since the test started. 
 
The six main values that the system had to store were:  

• the number of startups as an integer value, N_ACC. 
• the last written position as an integer value, LAST_POS. 
• the last written value as a floating-point value, LAST_VAL. 
• the slope of the step function as a Boolean value, SLOPE. 
• the read maximum as a floating-point value, MAX. 
• the read minimum as a floating-point value, MIN. 

To provide easier access to these values’ reserved positions in the memory array, a 
custom enumerative was introduced in the code, with labels associated with the values.  
 

 
Figure 4.4.1 - Enumerative of the main values for the first test 

 
In addition, the program also computed the battery power and temperature read by the 
corresponding on-board sensors and transmits them via CAN, to monitor the board’s 
operating conditions. It also read the currently active memory module, although this 
information was not communicated actively via CAN by the application but read directly 
through CANape. 
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Aside from simply testing the capability of the system to correctly store and read the 
information for large numbers of startup and shutdown cycles, both tests were also 
designed to study the effectiveness of the strategy selected for the storage format of the 
values. 
In other words, we wanted to save as many different types of values as possible to be 
able to verify the ease of use of the data type conversion methods and ensure that it 
would not be a burden for the eventual users. 
 
For the longest execution of this test, the following values were used: 

• DATA_EE_ARRAY_SIZE: set to 256. As six of them were reserved for the values 
seen before, the number of steps of the function that could be stored, called N, 
equals 250. 

• MAX: sent via CAN, set to 0.04. 
• MIN: sent via CAN, set to 0.02. 
• Minutes between reboots: 1 minute. 

 
The application was executed every 100 [ms]. At each iteration, the value for the next step 

was computed using the formula  𝑆𝑡𝑒𝑝 =  | (𝑀𝐴𝑋 – 𝑀𝐼𝑁
𝑁

) |. 

To determine the slope of the function, the following equation needed to be solved at 
every execution:  
 

𝑆𝑙𝑜𝑝𝑒 = [(𝐿𝑎𝑠𝑡 𝑉𝑎𝑙𝑢𝑒 −  𝑆𝑡𝑒𝑝) > 𝑀𝐼𝑁 && (𝐿𝑎𝑠𝑡 𝑉𝑎𝑙𝑢𝑒 +  𝑆𝑡𝑒𝑝) < 𝑀𝐴𝑋]?  𝑙𝑎𝑠𝑡_𝑠𝑙𝑜𝑝𝑒

∶  [(𝐿𝑎𝑠𝑡 𝑉𝑎𝑙𝑢𝑒 +  𝑆𝑡𝑒𝑝) > 𝑀𝐴𝑋?  𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒 ∶  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒]; 
 
where “Last Value” is the last computed value, “Step” is obtained with the previous 
formula, and “positive_slope” and “negative_slope” correspond to Boolean 1 and 0 
values. 
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4.4.1. Simulink 
The program for the tests was built following a model-based approach using Simulink. 
In this section, the key blocks of the application will be shown and described. 
 

 
Figure 4.4.2 - Mem Test Model 

The picture above shows the first level of the “Mem Test” application model, where we 
can vertically distinguish two parts: the section above, showing an ‘if’ construct block, 
piloted by a zsMEM_RESET constant (whose value can be changed via CANape for 
testing purposes), and the part below, where temperature and battery power are 
detected. 
 
The section below gets the two readings as Volt values, then performs a conversion on 
the temperature using a lookup table from the tension to a Celsius value and writes both 
variables into a CAN message via the C2TX_MEMTEST_ADD_ON block (after having 
converted them in a suitable format). 
 
The first part pilots two subsystems: the Mem_Test subsystem and the Mem_Reset one. 
While the reset subsystem simply calls the utility function API_EEPROM_forceReset to 
clean the active module’s memory structure, the test one contains the actual core of the 
application, as visible in the following pictures. 
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Figure 4.4.3 - Simulink subsystem Mem_Test 

As shown in the picture above, the first level inside the Mem_Test subsystem contains 
the C2RX_MEMTEST_REQ block (on the left), used to read from the oncoming CAN 
messages the maximum and minimum values, along with some additional information. 
 
One of those pieces of information, C2RX_MEMTEST_REQ_Status, is used to pilot an ‘if’ 
condition subsystem (on the right). This way, the subsystem will only be executed when 
the message is actually received, avoiding spurious executions. The remaining parts of 
the CAN message are directly fed to the subsystem, a full picture of which can be seen 
in the next image. 
 

 
Figure 4.4.4 - Mem_Test main subsystem 

Once again, it is better to visualise the different parts that make up this model to have 
an easier understanding of it. 
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The first part is the one dedicated to the management of the CAN inputs: the Min and 
Max values received are stored inside the respective positions in the memory structure, 
using the setData function blocks and then the step is computed using the formula 
already seen. 
 

 
Figure 4.4.5 - Min and Max input management 

All of this is contained in the Input_Management subsystem, in the bottom-left corner. 
 
In the top-left part of the subsystem, the last written position is read from the memory 
(Read_Last_Pos block) using getData, and then its value is used to retrieve the last 
written value and to compute the next position to write into. The new position is then 
stored using setData in the Store_Last_Pos block. 
 

 
Figure 4.4.6 - Last Position retrieval part 

 

The old value is then used, together with the step, Max, and Min computed by 
Input_Management, to obtain the new slope of the function following the formula shown 
before. The computed slope value is stored in memory inside the Store_Slope block, 
using a setData function block. 
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Figure 4.4.7 - Slope computation 

 
The final part of the subsystem computes the new value, adding or subtracting (based 
on the slope) the step from the old value, and stores the result at the new position in the 
memory structure. It also compacts the slope and the memory module flag into a single 
8-bit value (basically, an array of bits) after shifting the module’s flag by 1 bit. 
 

 
Figure 4.4.8 - Mem_Test final steps 

 
The model then assembles the last written position, the newly computed value, the 
module and slope “8-bit array”, and the number of startups (N_Acc) and writes them 
into a new CAN message thanks to the C2TX_MEMTEST_RES. 
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To compute the N_Acc, the Read_N_Acc subsystem checks whether this is the first time 
the code has been executed since the last startup. If that is the case, the model retrieves 
the value for the number of startups saved in memory, increments it by one, then stores 
it back. If this is not the first execution of the code, the system simply reads the stored 
value. 
 

 
Figure 4.4.9 - Subsystem for reading and computing the number of startups (N_Acc) 

 
As can be seen from the pictures above, the model and its subsystems make use of 
many different data types (booleans, integers on different numbers of bits, floating and 
fixed-point values). This was deliberately done to test the impact of the chosen 
implementation strategy, which requires the homologation of the various data types into 
32-bit unsigned integers to store them and their reconversion to use them. 
 

4.4.2. LabVIEW 
As previously mentioned, we have developed LabVIEW Virtual Instruments to automate 
the tests. This test's LabVIEW program had to produce the CAN messages containing Max 
and Min, store the board’s responses, and manage the reboot of the board piloting the 
DAQ. 
 

 
Figure 4.4.10 - LabVIEW VI interface for the first test 
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To simplify the choice of the values and introduce a way to check the correctness of the 
ongoing tests, a Graphical User Interface (GUI) has been built, as visible in the previous 
picture. 
 
The GUI can be used to select the Max and Min values to send, the number of minutes 
between reboots, the CAN baud rate and bus, and the DAQ output port. Moreover, it 
shows the number of startups, the last written position and value, the readings for battery 
power and temperature, the currently active memory module, and the slope of the 
function. 
 
The virtual instrument “behind the mask” can be divided into 3 parts: an initialisation part, 
the main body, and a termination part. 
 
The first part is executed only once, at the beginning of the test, and has the duty to set 
up the system for the oncoming operations. 
 
First of all, it creates a new, empty queue of CAN messages to store the ones received 
from the board. It then assigns the queue as the destination for the CAN-read 
instruments while uninitialising (to clear up any remnants of earlier tests) and 
reinitialising the chosen CAN channel with the appropriate baud rate (both of which are 
supplied via GUI). 
 
The program then resets a couple of variables used by the other parts and prepares the 
files that will be used to record the values read by the CAN messages. It opens a “RES” 
file to record the main values read from the memory and an “ADDS ON” file for the values 
of power and temperature. It proceeds by writing on each file a header line with the 
columns' names. For the “RES” file, the header contained N_Acc, Memory Module, Slope 
Positive, Last Pos, and Last Value. For the other file, the only two columns were Battery 
Pwr(V) and Temperature(°C). 
 
The instrument goes on to initialise the DAQ digital output channel to control the board’s 
switch. 
 
Lastly, it uses the now-initialised DAQ to turn on the board. 
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Figure 4.4.11 - LabVIEW VI initialization part 
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The second part of the instrument is a set of four loops, each managing a different task. 
 
The first loop waits for a specified amount of time (here, 150 [ms]) to avoid oversaturating 
the channel and then writes a message (ID: 0x170) containing Min and Max. 
To do so, it takes the values from the controls as singles, applies the resolution 
(multiplying for 100), and splits the values into 8-bit parts, inverting the bit order (as the 
board expects INTEL endianness).  
It then sends the CAN message on the channel initialised in the first part. 
 

 
Figure 4.4.12 - First loop, to send the message 

 

The second loop manages the enqueuing of the received messages with the expected 
IDs (0x171 for the “RES” messages, 0x172 for the “ADDS ON” ones).  
 
It uses counter variables to ensure that only one message per type is stored every 10 
seconds. The queue is shared between the two types of messages; however, the counters 
are distinct.  
 
The current values of the counters can be seen in the GUI under the names “Res_Write 
every 10s” and “Add_Ons every 10s”. 
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Figure 4.4.13 - Second loop, for the case of an "ADD ON" message 

 

The third loop is the one that reads the messages from the queue, interprets the contents, 
converts them into the expected format, and records them in the corresponding file 
based on the message’s ID. Depending on the message’s ID, the operations performed 
differ. The loop is executed every 1 second. 
 
In the case of ID: 0x171, “RES” message, it reads the first two bytes as one uint16 (N_Acc), 
the third byte as a boolean array (of which only the first two positions are used, for the 
memory module and the slope), and the fourth byte as a uint8. The last four bytes are 
recombined into an int32, which is then multiplied by the precision to obtain the desired 
value (a fixed point on 32 bits with 10-5 precision). 
 

 
Figure 4.4.14 - Third loop, with a message with ID 0x171 
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For an ID equal to 0x172, the program reads the first 4 bytes as battery power (V) and the 
other four as temperature (°C). The bytes are recomposed as int32 and then multiplied 
by the desired accuracy (0.01). 
 

 
Figure 4.4.15 - Third loop, with a message with ID 0x171 

In every occurrence of “byte recomposition", the values are reordered, as the board 
produces them in INTEL endianness while LabVIEW expects them to be Big-endian. The 
values obtained are then converted to strings and printed to the file. 
 
The fourth loop is the one responsible for rebooting the board. After the period of time 
selected using the GUI, it sets the digital output on the DAQ to zero, awaits 5 seconds, and 
then sets the output back to 1, thus shutting down and turning the board on again. 
 

 
Figure 4.4.16 - Fourth loop, to reboot the board 

 

The final part of the virtual instrument is executed only once, just like the first, at the end 
of the tests, that is, when the tester pushes the stop button on the GUI. This action stops 
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all the loops seen before and moves the execution of the program to this last part, 
although not immediately, as the current iterations of the loops will continue normally. 
 
The tasks of this part are all related to the clean-up of the instrument; it uninitialises the 
CAN channel, resets the stop button, and turns off the board. It also shows any error that 
has been produced so far by the system. 

 
Figure 4.4.17 – LabVIEW clean-up part 
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4.5. Test #2 – Mem Check 
As the first test, the second one, called “Mem Check”, used a combination of a program 
built following a model-based approach using Simulink, a LabVIEW virtual instrument 
specifically built to automate this test, and datasheet analysis tools such as Microsoft 
Excel. 
 
As in the other test, the aim was to perform repetitive read and write memory operations, 
study the feasibility of the selected approach, test the burden on eventual users for the 
modelling process, and verify the reliability of the memory management strategy when 
subjected to repeated and sudden shutdowns.  
 
The application designed for the second test takes two inputs via CAN, VAL and REPS. It 
then computes N values to store in the memory structure’s array and calculates a 
checksum using part of those values. Both the N values and the checksum are stored in 
memory.  
 
In addition, the system also communicates the number of messages sent since the last 
startup, the currently active memory module, and the “exceed flag”. The last two are 
actually sent together as an array of bits. The exceed flag is set to 1 once the number of 
startups is greater than N. 
 
As in the previous test, the system transmits an additional CAN message containing 
information on the battery power and the CPU’s temperature to keep the operating 
conditions in check. 
 
This time, the total number of cells has been extended up to 2048, but, as in the previous 
test, some entries of the array are reserved for certain values and indexed using an 
enumerative, tEeEntry, for simplicity. This leaves us with N (= 2043) remaining cells. 
 

 
Figure 4.5.1 - Enumerative of the main values for the second test 
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The five main values that the system had to store, corresponding to the tags of the 
enumerative, were: 

• the number of startups as integer values, N_ACC. 
• the number of messages sent since the last startup, N_MESS. 
• the VAL read via CAN as a 32-bit fixed-point signed with 10-5

 precision, VALUE. 
• the number of cells for block used for the checksum computation (see later), read 

via CAN, as a 16-bit unsigned integer REPS. 
• the checksum value as a 32-bit fixed-point signed with 10-5

 precision, CRC. 
 
The values to store in the N memory cells are computed as follows: 

• The first OFF (𝑁_𝐴𝑐𝑐 % 𝑁) cells are filled with their index plus OFF. 
• The following Q (𝑁 −𝑂𝐹𝐹) cells will contain either 𝑉𝐴𝐿 + 𝑐𝑒𝑙𝑙_𝑖𝑛𝑑𝑒𝑥 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 or 

−(𝑉𝐴𝐿 + (𝑐𝑒𝑙𝑙_𝑖𝑛𝑑𝑒𝑥 − 𝑅𝐸𝑃𝑆) ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛), in an alternate fashion, in groups of REPS 
values each. 

 
The checksum CRC is computed on the last X (𝑄 % (2 ∗ 𝑅𝐸𝑃𝑆)) cells as the sum of the 
values contained in those cells. If it is the first time that the program has been executed 
since the last startup, it will actually use the values stored since the previous shutdown, 
and thus the first computed CRC after a startup should equal the last one stored before 
turning off the board. The computation of the checksum can be summarized with the 
following formula: 

{
 
 

 
 

∑ 𝑉𝐴𝐿 + 𝑖 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑁

𝑖 = 𝑁−𝑋

, 𝑋 < 𝑅𝐸𝑃𝑆

∑ 𝑉𝐴𝐿 + 𝑖 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 𝑁−𝑋+𝑅𝐸𝑃𝑆

𝑖=𝑁−𝑋

 − ∑ 𝑉𝐴𝐿 + 𝑖 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑁−𝑅𝐸𝑃𝑆

𝑖 = 𝑁−𝑋

 , 𝑅𝐸𝑃𝑆 ≤  𝑋 <  2 ∗ 𝑅𝐸𝑃𝑆

 

 
For the longest execution of this test, the parameters selected were: 

• VAL: sent via CAN, set to 10-5. 
• REPS: sent via CAN, set to 3. 
• Minutes before reboot: 1 minute. 
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4.5.1. Simulink 
As in the previous case, the test application was built following a model-based approach 
using Simulink. 
  
The first level of the model, named “MemCheck100ms” as it was executed in the 100 [ms] 
task of the operating system, is the same as in the previous test: 

• An ‘if’ construct block, piloted by the zsMEM_RESET constant, whose value can be 
changed via CANape, leads to two subsystems: the Mem_Check subsystem and 
the Mem_Reset one. The Mem_Reset functions similarly to the previous test, while 
the Mem_Check serves as the central component of the application. 

• A section identical to the one in the previous program gets the battery voltage 
and temperature as Volt values, performs a conversion on the temperature using 
a lookup table from the tension to a Celsius value, and writes both data into a CAN 
message via the C2TX_MEMTEST_ADDS_ON 

 
The subsystem piloted by the ‘if’ case is actually a wrapper subsystem, composed of two 
distinct parts that converge into the real Mem_Check block.  
The section above uses the C2RX_MEMTEST_REQ block to read the VAL and REPS from 
the oncoming CAN messages. The status of the CAN channel is used to pilot another ‘if’ 
statement to ensure that the rest of the system won’t operate in case of errors with the 
CAN.  
The lower part of the subsystem performs the computation of the checksum CRC and 
the current N_Acc via the CRC_Computation subsystem and the Read_N_Acc one. 
 

 
Figure 4.5.2 - Mem_Check CAN message and CRC computation wrapper level 
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The CRC_Computation subsystem takes as input the operating system’s 100 [ms] 
counter. The value of the counter is then used to decide whether this is the first execution 
of the subsystem since the last startup.  
 

 
Figure 4.5.3 - CRC computation subsystem 

This check is made because, in the case of the first execution, the CRC used will be the 
one stored in memory before the last shutdown, retrieved via a simple getData. 
 
The subsystem for executions beyond the first one is more complex, as it needs to 
calculate all the data required by the checksum computation formulas seen before. 
 

 
Figure 4.5.4 - CRC computation, for executions beyond the first 
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The subsystem can be divided into two parts: the first one, where the values needed for 
the formulas are computed, such as OFF, Q, and X, and a second part containing the 
finite state machine used to fill the memory cells with the values that will then be 
summed to obtain the CRC. 
 
In the first part, REPS is read from the memory (rather than via CAN) and so is N_Acc. 
These two values are then used in a chain of blocks to produce OFF, then Q, and 
eventually X. This final variable, along with N and the number of reserved positions (a.k.a., 
the number of fields in the tEeEntry enum, called RES_POS in the picture below), are fed 
to the FSM. 
 

 
Figure 4.5.5 - Finite State Machine used for the CRC values 

The FSM itself is quite simple; its only task is to fill a temporary array with the values read 
from memory. This array will then be passed to a Sum Simulink block to compute the 
CRC, and the obtained value will be stored, using a setData block, into the reserved 
position of the memory structure. 
 
Going back to the level above, the Read_N_Acc subsystem operates in the same way as 
the homonymous subsystem from the previous test program; depending on whether it 
is the first execution or not, it either increases the stored value N_Acc or simply reads it 
from memory. The only difference here is that the output of the CRC_Computation 
subsystem passes through this block without any changes to ensure that this block is 
executed after the CRC one. 
 
The N_Acc along with the computed CRC, the current 100 [ms] counter value, and the 
VAL and REPS read from the CAN message, are sent in input to the actual Mem_Check 
block. 
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Figure 4.5.6 - Mem_Check core subsystem 

This is the core subsystem of the model; it can be split into two main parts, each of which 
can be separated into more sections. 
 
The upper part is the one dedicated to computing the new values to store in memory; it 
is comprised of an Input_Management block, a finite state machine to compute the 
array of new values, and a section to store those values using another FSM. 
 

 
Figure 4.5.7 - The three sections of the upper part of Mem_Check 

 
The Input_Management subsystem (on the left) is used to handle the conversion of VAL 
and REPS read from the CAN message and store them in memory. It is structured like the 
homonymous block in the previous test (except it does not present the Step 
computation). The system then computes OFF and feeds it, along with N, REPS, and VAL, 
to a finite state machine. 
 
The FSM (in the middle), implemented via a Chart block, computes the N values to store 
in memory using the formulas seen before. As with the FSM in the previous test, this one 
is simple and mostly used to speed up the making of the program due to time 
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constraints. It implements two loops, one to fill the first OFF cells and one to compute the 
remaining Q values. It does so by using the two formulas seen in the introduction to this 
test and a support variable switchCounter to decide when REPS cells have been filled 
and switch to the other formula for the values of the next REPS cells. 
 

 
Figure 4.5.8 - FSM to compute the new values 

These N total values computed by the FSM are stored in a temporary array that is then 
output by the FSM final state. The Chart block also produces the last written value of the 
array, as zsLastWrittenArrayValue, for testing purposes. 
  
The right-most part of the section contains the FSM used to store the computed values. 
It also presents a set of blocks used to read a given position of the array stored in 
memory, used only to perform checks via CANape at runtime for debugging purposes. 
 
The FSM implements a simple loop to call the setData C function on each of the N entries 
of the array. It takes as inputs the array of new values, N, and the number of reserved 
positions in memory for the main fields, RES_POS. 
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It was simply used to speed up the implementation process of the test program. It is 
implemented in a separate Chart block from the previous FSM to improve readability and 
allow for a better debugging and monitoring experience. 
 

 
Figure 4.5.9 - FSM to store the new values in memory 

 

The second part of the Mem_Check core subsystem is used to compute the components 
of the outgoing CAN message: the checksum, C2TX_MEMTEST_RES_Checksum, the 
number of messages sent since the last startup, C2TX_MEMTEST_RES_N_Mess, the array 
of bits containing the active module flag and the exceed flag, 
C2TX_MEMTEST_RES_Exceed, and the number of startups, C2TX_MEMTEST_RES_N_Acc. 
 

 
Figure 4.5.10 - Lower part of Mem_Check 

 

The left-most blocks of this part are used to set the exceed flag by confronting N with the 
N_Acc read at the upper level of the model. The flag value is then OR-ed with the shifted 
flag for the active memory module to produce a value that will be treated as an array of 
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bits, corresponding to the C2TX_MEMTEST_RES_Exceed field of the CAN message. The 
N_ACC used for these operations is also set as a field for the CAN message. 
 
The C2TX_MEMTEST_RES_N_Mess field is computed by the Read_N_Mess block, which 
takes as input the value of the 100 [ms] task counter.  
This block‘s internal structure is the same as the one presented by the N_Acc block: a 
first level containing an ‘if’ structure, piloting two subsystems. However, in this case, the 
subsystem that increments the value under consideration is the one piloted when the 
counter’s value is above 1, as the N_Mess value should increase with each sent message, 
that is, each iteration of the system.  
Moreover, the subsystem executed when the value of the counter equals 1 does not read 
the value previously stored in memory, as it was for N_Acc, but rather resets that value 
to 1, to signal the beginning of a new cycle of messages with the new startup. 
 

 
Figure 4.5.11 - Read_N_Mess subsystem's else condition block 

 
The last field for the outgoing CAN message corresponds to the checksum, CRC, received 
from the upper level of the model. 
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4.5.2. LabVIEW 
The LabVIEW virtual instrument designed to automate this test had to send the defined 
VAL and REPS to the board via CAN, store the values received from the board in the 
correct files, and manage the reboot cycles of the system. 
 
As before, we designed a GUI to simplify the selection of the parameters and to have a 
way to check the current status of the system at a glance. 
 

 
Figure 4.5.12 - LabVIEW VI interface for the second test 

 

The GUI can be used to select the VAL and REPS values to send, the number of minutes 
between reboots, the DAQ output port, and the CAN baud rate and bus.  
Moreover, it shows the number of startups, the readings for battery power and 
temperature, and the number of messages sent since the last startup.  
It also shows the currently active memory module and the exceed flag using LEDs. A red 
led marks, when turned on, the presence of a mismatch between the expected 
checksum and the one read from the board (both can be read using the CRC and 
Expected_CRC fields of the GUI). 
 
The strategy of the virtual instrument can be split into three phases, as in the previous 
test: an initialization phase, a set of loops managing the actual test’s body, and a clean-
up phase. 
 
The first part is executed only once, at the beginning of the test, to set up the system for 
the oncoming operations. This part is essential identical to the other test’s, except for the 
different names used for the files’ headers. 
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It starts by creating a new, empty queue of CAN messages to store the ones received 
from the board. It then assigns the queue as the destination for the CAN-read 
instruments, uninitialising (to clean up any leftovers from previous tests) and 
reinitialising the selected CAN channel with the appropriate baud rate (both of which are 
supplied via GUI). 
 
The program proceeds to reset the counter variables used by the loops and starts 
operating on the files that will be used to record the values received via CAN.  
It opens a “RES” file to record the main values read from the memory and an “ADDS ON” 
file for the values of power and temperature.  
It proceeds by writing on each file a header line with the columns' names. For the “ADDS 
ON” file, the only two columns were Battery Pwr(V) and Temperature(°C). For the other 
file, the header contained N_Acc, Memory Module, Exceed Flag, N Mess, and CRC. 
 
The instrument goes on to initialise the DAQ digital output channel to control the board’s 
switch and uses it to turn on the board. 
 
The main part of the virtual instrument is made of four loops: one to manage the writing 
of the CAN messages sent to the board, another to receive the messages from the board 
and insert them in the correct queue, a third to take the enqueued messages and 
interpret and record them, and a last loop to manage the reboot of the board. 
 
The first loop writes a message, with ID 0x170, containing VAL and REPS, to send to the 
board.  
It takes the VAL from the “value” field of the GUI as a single-precision value, applies the 
resolution (multiplying by 105, inverse of precision), and then splits the value into 8-bit 
parts, inverting the byte order (as the board expects INTEL endianness). It then takes the 
REPS from the corresponding GUI’s field as a 16-bit unsigned integer, splits it, and inverts 
the byte order. 
The loop then waits a specified amount of time (here, 150 [ms]) before executing again 
to avoid overloading the channel. 
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Figure 4.5.13 - First loop, to send the VAL and REPS message 

 
The second loop manages the enqueuing of the received messages with the expected 
IDs (0x171, 0x172). It uses counters to ensure that only one message per type is stored 
every 10 seconds. 
The queue is shared between the two types of messages; however, the counters are 
distinct. 
 

 
Figure 4.5.14 - Second loop, enqueuing a message with id 0x171 

 

The third loop is executed once every second to read from the queue and write the 
message to the corresponding file based on the ID. 
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For the 0x171 messages, it reads the first two bytes as uint16 (N_Acc), the third byte as a 
boolean array (of which only the first two positions are used, for the memory module and 
the exceed flag), and the fourth byte as a uint8 N_Mess. These values are shown on the 
GUI in the form of LEDs (exceed flag, memory module) or directly as numeric values. 
  
The last four bytes of the message are recomposed as a single 32-bit unsigned integer 
and then multiplied by the precision (here, 10-5) to obtain the checksum, CRC, as single-
precision with the desired accuracy. 
 
In every occurrence of byte-recomposition, the bytes are reordered, as the board 
produces them in INTEL endianness while LabVIEW expects them as Big-endian. The 
values obtained are then converted to string and printed to file. 
 

 
Figure 4.5.15 - Third loop, when reading 0x171 messages 

 
The obtained CRC is then compared with the CRC computed by means of a sub-virtual 
instrument that takes VAL, REPS, and N and returns the expected CRC. 
  
The checksum is computed following the same process done on the board; it starts by 
computing OFF from N and N_Acc, then Q, and subsequently X. At this point, the board 
and the LabVIEW program diverge: while the board computes the sum of values in 
memory, the virtual instrument is forced to compute the remaining values one by one. It 
does so by implementing the formulas seen before, with a case for when X is lower than 
REPS and another for when X is included between REPS and twice that. 
  
In the event of a mismatch between the received CRC and the one computed by 
LabVIEW, a red light on the GUI is turned on. 
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Figure 4.5.16 - Checksum computation sub-instrument 

 
For the 0x172 ID case, it reads the first 4 bytes as battery power (V) and the other four as 
temperature (°C). The bytes are recomposed as 32-bit signed integers and then 
multiplied by the desired accuracy (0.01). Finally, they’re recorded in the “ADDS ON” file. 
The scheme is identical to the one from the previous test. 
  
The fourth loop is the one responsible for rebooting the board. It sets the digital output 
on the DAQ to zero, awaits 10 seconds and then sets the output back to 1, thus shutting 
down and turning on again the board. Once again, it is identical to the corresponding 
one seen in the previous case. 
 
As with the initialisation section, the third part of the virtual instrument is executed only 
once, at the end of the tests, once the tester pushes the stop button on the GUI. This will 
terminate all previous loops and switch the program execution to this final section, 
though not instantly, as the current iterations of the loops will continue normally. 
This part's tasks are all connected to instrument cleanup; it uninitialises the CAN channel, 
resets the stop button, and powers down the board. It also displays any errors generated 
by the system thus far. 
Just like the initialisation part, this section’s scheme is identical to the corresponding one 
in the previous test. 
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4.6. Results and considerations 
The two tests, “Mem Test” and “Mem Check”, were executed, respectively, for 8 hours and 
4 days, for a total of around 500 and 6000 startup cycles. This roughly equals an 
estimated usage of 2 and 20 years’ worth of workday stress that are quite common 
durabilities for an Heavy Duty vehicle application. 
 
In addition to the data saved to file by the LabVIEW virtual instruments, data recordings 
were also performed using CANape, which provided an additional visual representation 
of the running tests. 
 

 
Figure 4.6.1 - "Mem Test" CANape acquisition screen 

 

 
Figure 4.6.2 - "Mem Check" CANape acquisition screen 
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The recorded material was then used to produce graphs illustrating the behaviour of the 
system to analyse it and identify possible errors. Different values were studied together, 
like the active memory module and the N_Acc, to better detect issues that could go 
unnoticed on their own.  
Save for the initial debug phase, as expected, once the programs were tuned up, the 
behaviour recorded during the tests matched the expected one. 
 

 
Figure 4.6.3 - Example of the extracted data in graph form, comparing the behaviour of the slope and the last value 

 
For the aim of this Thesis these tests have been considered sufficient to provide us with 
a general insight into the eventual solution’s strengths and shortcomings, such as 
the use of enumeratives to directly index the memory cells.  
The “reserved positions", associated with enum labels, allowed for a mnemonic link that 
proved to be quite useful during the modelling phase. However, it would certainly come 
in handy to have a way to set up the model’s components when having to work with 
enums, as manually inserting them could be tedious. 
In the second part of this thesis, a more extensive use of enumeratives to favour 
immediate understandability of the code will be combined with the usage of custom-
made Simulink support tools, such as masks, to reduce the workload linked with this 
strategy. 
 
In conclusion, by working on this aspect of the thesis, it was possible to acquire a 
comprehensive understanding of the system, code, processes, and tools. This knowledge 
was essential for efficiently addressing the second and last part, centred around the On-
Board Diagnostic. 
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5. Part 2 – Diagnostics (OBD) 
 

On-board diagnostics (OBD) is an automotive term referring to a vehicle's self-
diagnostic and reporting capability. OBD systems give the vehicle owner or repair 
technician access to the status of the various vehicle subsystems. 
 

The second and main part of this thesis work was the redefinition of the on-board 
diagnostic strategies already present on the HDS9 board.  
The goal was, once again, to produce a solution as versatile as possible and less complex 
than the current one while following the most prominent guidelines of the automotive 
sector. 
  
The first step to reaching the goal was to analyse how the current system performs the 
OBD, focussing on the general adopted strategy while avoiding the actual 
implementation so as not to influence possible future choices. 
  
After that, it came time to study the standards and guidelines currently in use to better 
define the set of characteristics and requirements that the OBD system should meet. 
  
Once the requirements were well defined, it was time to re-design the strategy and its 
components, starting with the diagnosis flow. 

 

 
Figure 5.1 – Diagnostic System architecture showing modules interactions 
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After a general design of the global strategy, the work moved to the refining and 
implementation of the single component. 
As the realisation of the various parts went on, mindful of what was learnt from the work 
on the NVRAM, a little time went to the design and implementation of Simulink masks to 
facilitate the work and the models’ setup. 
 
Following the well-known V-Shape approach, the components were tested as single 
modules (unit testing); as the components were finished, they were tested combined 
(integration testing). To perform the tests, various Simulink models were designed and 
loaded onto the board (Hardware in the Loop). 
Not only that, but the core part of the OBD system, the error validation finite state 
machine, named ADIA (Automatic DIAgnosis), was tested on pre-existing small projects 
thanks to the collaboration of Metatron’s designers (real-case usage). This provided 
important information on both the behaviour of the final strategy under working-level 
stress and eventual compatibility issues with other base-level software and APIs of 
Metatron’s products. 
 
The following paragraphs will provide a more detailed description of the examined 
standards, the diagnosis strategy adopted, and the design and implementation of its 
various components. 
 

5.1. Standards & Diagnostic Requirements Introduction 

5.1.1. Introduction to the standards 
On-board diagnostics has many upsides: it helps with emission controls, ensuring that 
vehicles comply with emission regulations by monitoring and reporting on the 
performance of emission-related components, supports vehicle maintenance, 
improving performance and longevity, and increases safety by detecting and reporting 
on critical issues that may affect the safety of the vehicle and its passengers. 
 
The amount of diagnostic information provided via OBD has varied greatly since its 
introduction in the early 1980s versions of on-board vehicle computers; early versions of 
OBD would simply turn on a malfunction indicator light if a problem was detected but 
would not provide any additional information about the nature of the issue. 
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Modern OBD implementations use a standardised digital communications port to deliver 
real-time data, as well as a standardised series of diagnostic trouble codes, or DTCs, to 
quickly identify and remedy malfunctions within the vehicle.  
 
With the growth in the amount of information that OBD systems are able to provide, the 
need for standardising the communication of this information has also increased. 
To address this need, various standards have emerged over the years, starting with OBD-
I in the 1980s, which laid the groundwork for electronic diagnostics in vehicles. 
This was followed by OBD-II in the mid-1990s, born in the United States, which introduced 
a more uniform and comprehensive approach, including standardised connectors, 
protocols, and diagnostic trouble codes. EOBD is the European equivalent of OBD-II. 
 
Different protocols for different markets cause incompatibilities. The same wave of 
standardisation of automotive components that witnessed the advent of AUTOSAR and 
Unification of Diagnostic Services (UDS), pushed by organisations like ISO and SAE, 
established the harmonisation of the OBD protocols as the next logical step. 
The World Wide Harmonised On-Board Diagnostics (WWH-OBD), based on the OSI 7-
layers model, was conceived as an answer to this growing need for harmonisation. 
 
Another set of standards for diagnostics (and communication) among vehicle 
components is SAE J1939. Developed by the Society of Automotive Engineers (SAE), it is 
less focused on emission-related diagnostics and global standardisation than WWH-
OBD and more tailored for heavy-duty vehicles with a broader scope of diagnostic 
capabilities. 
 
Vehicle manufacturers are obligated to implement a WWH-OBD capable diagnostic 
system. As such, the HDS9 ECU implements both the OBD services, with both protocols 
J1939-73 and ISO 15765 (UDS), and the EOBD ones, with the WWH-OBD protocol (ISO 
17145). However, only the WWH-OBD protocol is fully available, while UDS and J1939 
(specific for heavy-duty systems) have only the main services implemented. 
 
A fundamental concept of on-board diagnostics used for the before-mentioned 
protocols are the diagnosis lines: electrical or functional diagnoses associated with a 
system component or system functionality. A diagnosis line is identified by a Diagnostic 
Trouble Code, usually referring to the component or function under test (SAE code 
number) and the kind of malfunction/ symptom (FTB). WWH-OBD introduces the Unified 
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DTC format and provides ways to map from other DTC formats into this one in the ISO 
27145-2 document. 
 

 
Figure 5.1.1 - Mappings to Unified DTC format 

 
The J1939 protocol also uses DTCs, although with a slightly different structure from the 
one seen until now, as they are typically 4 bytes divided as follows: 

• Bytes 1-2: Suspect Parameter Number (SPN), which identifies the specific 
parameter or component that has an issue. 

• Byte 3: Failure Mode Indicator (FMI), which describes the type of failure (e.g., short 
circuit, open circuit). 

• Byte 4: Occurrence count or additional context about the fault. 
 

As with OBD and EOBD, WWH-OBD implements diagnostic services using UDS protocols 
over CAN. The reserved CAN channel for this kind of communication on the HDS9 is CAN3, 
and the HDS9 is able to automatically detect the protocol to be used once a diagnostic 
tool is connected to CAN3 and the connection is started. 
The HDS9 also implements some diagnostic services for DM standards using the J1939 
bus on the HDS9-CAN2 channel to make some diagnostic information available. 
 
In addition to the mandatory implementation of WWH-OBD, all the new vehicle 
registrations for heavy-duty vehicle must conform to the requirements of the Euro-VI 
(European market) or China-VI (Chinese market) emissions standard starting in 2014. 
 
Euro VI and China VI are emission standards aimed at reducing pollutants from heavy-
duty vehicles. Euro VI, implemented in the European Union, sets strict limits on nitrogen 
oxides (NOx) and particulate matter (PM) emissions.  
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It incorporates real-driving emissions (RDE) testing and portable emissions 
measurement systems (PEMS) to ensure compliance under real-world conditions.  
 
China VI, on the other hand, is a two-phase standard implemented nationwide in China. 
The first phase, VI-a, is largely equivalent to Euro VI, while the second phase, VI-b, 
introduces even more stringent requirements.  
China VI combines best practices from both European and U.S. standards (such as CARB, 
California Air Resources Board), with additional measures like remote emission 
monitoring.  
 
Both standards aim to address severe air pollution issues by enforcing stricter limits on 
NOx and PM emissions and promoting the use of cleaner technologies in heavy-duty 
vehicles. To do so, these standards include comprehensive OBD guidelines.  
The On-Board Diagnostics systems in Euro VI vehicles are designed to ensure 
compliance with emission standards throughout the vehicle's lifespan by continuously 
monitoring the performance of emission-related components and, if a fault is detected, 
triggering a warning light on the dashboard while storing a Diagnostic Trouble Code 
(DTC) that can be read with an OBD scanner. 
China VI has OBD guidelines comparable to Euro VI but with additional features 
customised to local standards, such as remote emission monitoring capabilities that 
allow authorities to follow vehicle emissions in real time. 
 

5.1.2. Introduction to the requirements 
The before-mentioned standards are made of multiple sections, called in different ways 
(e.g., part, annex), and exist in different versions as they are periodically updated. 
For this thesis, the parts and versions that were studied to design the proposed strategy 
and its implementation were: 

• WWH-OBD: ISO 27145-4:2016 
• J1939: J1939DA, January 2020 revision 
• Euro VI: Addendum 48, Regulation No. 49, Revision 7 
• China VI: GB 17691-2018, Annex F 

Out of all of them, the main sources for the requirements were the Euro VI and China VI 
documents. 
 
The main requirements extracted from the documents and used as the basis for the 
design of the system were inherent to: 

• DTCs formats 
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• Classifications of different fault types 
• Differential memorisation and management of the various classes of faults 
• Mandatory engine data to store in the presence of certain fault types (freeze 

frame) 
• Mandatory memory operations, both automatic and on external tool requests 
• Memory behaviour for certain requests based on the stored fault classes 
• Timings and periods of the Malfunction Indicator Lamps (MIL) for the different 

types of faults and depending on the engine status 
 

These must be added to all the requirements proper to the actual Metatron system, that 
is to say, all those linked to the pre-existing code structure (architectural requirements), 
the underlaying base-level software, and the final process with which the users are able 
to utilise the provided APIs for the model-based design of their own applications. 
 
Further elaboration on the requirements will be included in the subsequent sections in 
which they have been implemented. 
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5.2. Diagnosis Flow 
As stated in this chapter’s introduction, this part's work started with the analysis of the 
OBD as it already existed on the HDS9 system, without looking at its implementation but 
analysing the general strategy adopted. 
 
The existing strategy adopted a well-refined flow of actions, from the detection of a 
possible issue to the activation of recovery actions. For each diagnosis line, 
corresponding to a possible fault (a combination of a component and a specific 
malfunction), fault management followed this process, with each part tailored to the 
specific parameters of the fault. 
 
The diagnosis flow started with the board’s hardware sensors and actuators that read 
the physical values and could communicate them to the fault test check routines. 
These user-defined routines, which could be enabled via certain customised conditions, 
took those values, compared them with the user-defined expected values, and produced 
an error code. 
These error codes were then fed to the finite state machine for the filtering and 
validation of the error code, the ADIA. The automaton updated its status and managed 
the activation of the recovery and the management of the error memory and the 
lamps. 
The actual implementation of the recovery strategies was delegated to the user, with the 
ADIA simply setting the global flags (recovery lines) to pilot those recovery functions. 
The error memory and the MILs were comprised in the same step of the flow. Moreover, 
they were actually embedded into the ADIA, rather than simply having them piloted by 
it. 
 
To this flow of actions conducted at runtime by the system to perform the OBD, we must 
also add the tedious and time-consuming steps that were needed by the customers to 
define the parameters for the system to use: 

1. Update the various spreadsheets containing the parameters of the diagnosis line 
to modify and the ones related to the recovery lines to activate when that fault is 
detected. 

2. Execute the macros on those spreadsheets to produce parameter “dataset” files, 
used to update the calibration dataset of the ECU. 

3.  Load those files onto the board and test them. 
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Aside from the parameters set, the actual diagnosis flow as defined was a solid starting 
point that only needed a few tweaks.  
As always, the focus was on improving the modularity of the system and increasing its 
usability. To do so, the flow was changed to split the error memory and the MIL 
management. The separation between the finite state machine and these two was also 
increased, although this can only be seen at the implementation level.  
 
The resulting diagnosis flow can be seen in the following picture, where the parts that 
include user-defined functions are encircled by a dotted line: 
 

 
Figure 5.2.1 - Diagnosis flow 

 
The process of defining the parameters for the diagnosis lines has also been simplified 
with the introduction of Simulink mask blocks that can be used to intuitively select the 
preferred values for the single fault. 
This solution removed the need for external spreadsheets to produce the “dataset” files 
to map the parameters to the various automata and instead incorporated their selection 
at the model-based design level. 
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5.3. ADIA Finite State Machine 
The filtering and validation finite state automaton is the core of the whole diagnostic 
process, as it performs several tasks ranging from the corroboration of the fault’s 
presence to the management of the memorisation of its information and the activation 
of the recovery procedures. 
 
Due to the strategic importance of this component, to protect the company’s know-how, 
many implementation details of this section will be left out. 
 

5.3.1. Requirements 
Starting from the documents (both regulations and Metatron’s own internal 
documentation), we collected the following set of requirements linked to the diagnosis 
line: 

• Each fault (seen as a combination of the component and the specific 
malfunction) should have its own associated DTC. 

• Each detected malfunction should exist in a defined state; according to the WWH-
OBD standard, the available states are:  

o NO ERROR: the fault is not active, nor has its presence been detected. 
o PENDING: the fault’s presence has been detected, but the system is not yet 

sure whether it has been a false positive due to some electrical spikes. 
Some filtering/debouncing is needed. 

o CONFIRMED AND ACTIVE: the system has determined the detected fault to 
be actually present after a certain time in the pending status has passed. 
The fault has been stored in the error memory along with a snapshot of the 
current engine status, called freeze frame.  

o PREVIOUSLY ACTIVE: the fault is no longer active, but its presence is still 
recorded in memory. A malfunction must remain in this status for a 
determined number of warm-up cycles before being automatically erased 
from the error memory. 

• A fault determined to be in the active state must be stored in the error memory. 
This memory must be of the non-volatile type. 

• Certain faults must be permanently stored in memory once detected as active. 
This means they shall not be erased via external tools or on memory reset until the 
system itself has determined that the fault is no more. 

• Each fault must be categorized into one of the available classes: A, B1, B2, and C: 
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o Class A faults are linked to emissions-related problems, signal 
malfunctions that could raise emissions levels, and are typically required to 
be monitored continuously. These codes are crucial for meeting 
environmental regulations. 

o Class B1 DTCs focus on performance issues that could affect the vehicle’s 
drivability or safety. Although less critical than Class A, they still need 
attention and may involve problems with sensors, actuators, or other 
performance-related components. 

o Class B2 DTCs address non-critical issues that don't immediately impact 
safety or emissions but may point to potential problems, assisting in 
diagnosing and tracking the vehicle’s condition over time and supporting 
proactive maintenance. 

o Class C DTCs are manufacturer-specific codes offering additional 
diagnostic details. Unlike standardised codes, they vary across 
manufacturers and usually pertain to features or systems unique to a 
specific brand or model.  

• Faults belonging to different classes will make the system behave differently. More 
details on this topic can be found in the requirements subsections of the Error 
Memory and Freeze Frames and MIL Management paragraphs. 
 

5.3.2. Strategy 
As previously stated, to perform the validation of the presence of a fault, the selected 
strategy was to use an automaton. For each diagnosis line, then, a set of parameters had 
to be defined to allow the correct functioning of the line’s FSM. 
 
Originally, the strategy made use of a spreadsheet with a row for each diagnosis line. The 
columns of these rows included various fields connected to the fault at various degrees, 
ranging from the global ID to the lamp settings when the fault was active. Among these 
parameters, there were many connected to the ADIA, and even some that were used for 
the symbolic mapping once the spreadsheet had been converted and loaded on the 
board. 
 
The first step to outline the new strategy was to discard all those parameters that were 
only loosely related to the ADIA or the fault’s classification and keep the most important 
ones; this would help to increase the modularity of the system by better dividing the 
various parts of the diagnostic flow.  
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From the original parameters present in the spreadsheets (~30), the only ones that 
directly belonged to the diagnosis line and thus were preserved were: 

• The identifier of the fault inside the system, a.k.a. the name of the diagnosis line 
• The class of the fault 
• The fault’s severity 
• Whether to make it a permanent entry in memory or not 
• The DTC code, in J1939 and WWH-OBD format 
• The list of recovery lines to activate when the fault is detected 

 
Other parameters that were preserved, although separately from the diagnosis line, were 
the thresholds used by the fault’s ADIA to change from one state to another, that is, the 
number of times that the ADIA must receive an “error signal” or must pass without such 
a signal to change the ADIA's internal status.  
In addition to those, the parameter to select the step by which to increase the threshold’s 
counter was also kept. The presence of this parameter allows the customer to better 
regulate the amount of time the fault has to be detected to change status. 
 
Originally, the ADIAs had many more parameters. This overabundance of parameters 
was partially due to the fact that the previous strategy was comprised of different types 
of ADIAs, and each diagnosis line had a corresponding ADIA of one of those types (A, B, 
C, D). 
 
The size of these finite state machines grew from the D class moving to the A, with a 
growing number of available states used to perform debouncing and refiltering 
operations. 
As the states used by the ADIAs did not always correspond to those required by the 
guidelines, a mapping was introduced to convert the additional states to the expected 
ones, increasing the complexity of the system. 
For example, the largest FSM, those of class A, were composed of nine states, that is, five 
intermediate states in addition to the ones provided for by the standards. 
 
To reduce the complexity of the original strategies, it was decided to converge all the 
different types of ADIAs into a single one that was able to manage all the requirements 
expressed by the consulted guidelines. As such, the starting point was not the existing 
ADIAs but the Euro-VI and China-VI documents that were used to determine the states, 
the conditions to move from one state to the other, and the events that such transitions 
brought along. 



85 

 

 
After producing a basic finite state machine with this procedure, we went back to 
reanalyse the pre-existing ADIAs types to look for specifications related to Metatron’s 
projects that were not present in the standards, selecting only those needed and 
discarding remnants from previous projects that went unused for a long time. 
  
The final automata designed to perform the filtering and validation of the fault codes, 
manage the events triggered by the detection of such codes, and overall make up the 
core of the whole diagnostic system has four states: NO_FAULT, PENDING, 
CONFIRMED_AND_ACTIVE, and PREVIOUSLY_ACTIVE.  
 

 
Figure 5.3.1 - New FSM scheme, extremely simplified to protect the actual know-how 

 
Initially, the ADIA begins in the NO_FAULT state. When the ADIA receives in input a 
message with a fault code, it increases its own fault counter and then moves to the 
PENDING state.  
 
From here, if it receives a message containing a STATUS_OK code, it decreases the 
counter and, if it reaches zero, goes back to the NO_FAULT state.  
If instead the ADIA receives messages containing fault codes, it increases its counter and, 
if it reaches a first threshold, tries to store the fault in the error memory and to move on 
to the CONFIRMED_AND_ACTIVE state.  
During this transition, the recovery actions related to the ADIA’s fault are activated, if any, 
and the counter value is set to a second threshold. 
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Once the ADIA is in the CONFIRMED_AND_ACTIVE state, on each message received 
containing an error code, the counter will be reset to the value of the second threshold. 
If the received message does not contain an error code, the faultCounter will be 
decreased by one unit, and if the counter reaches zero, the ADIA’s state will be updated 
to PREVIOUSLY_ACTIVE, and the error memory entry for the fault will be updated with the 
new status of the malfunction. Moreover, all the currently set recovery lines for the fault 
should be turned off after having made sure that no other active fault concerns them. 
 
While the ADIA is in the PREVIOUSLY_ACTIVE state, receiving a sufficient number of error 
codes will bring it back to the previous state. 
From the PREVIOUSLY_ACTIVE state, the ADIA has only two ways to go back to the 
NO_FAULT state: by external intervention with a diagnostic tool or when the system itself 
decides that the fault is no more. This second event happens when either a certain 
number of hours with the engine running (engine hours) without incurring the fault again 
have passed or after a given number of warm-up cycles have been completed without 
the fault returning active. According to the Euro-VI and China-VI standards, these equal 
200 hours and 40 cycles. 
When the ADIA moves to the NO_FAULT state, the corresponding entry in the error 
memory is erased. 
 
It is important to note that, although each ADIA could theoretically receive in input 
different error codes and thus manage different malfunctions for a single component, 
the adopted strategy was to instantiate an ADIA for each specific combination of 
components plus malfunction. A diagnosis line in the system describes a component 
and one of the fault modes associated with it.  
This choice was made because, while the other option saved more memory, this was 
closer to what the analysed standards and guidelines described. It also comes with the 
added benefits of making it easier to add a new diagnosis line and making it simpler to 
manage the identification of faults at the code level. It also simplified the task of 
discerning when two distinct faults occurred for the same component. 
 
After the system’s startup, the ADIAs had to restart where they stopped last time; thus, 
there was a need for a way to save the data of the ADIA at shutdown and reload them 
afterwards. Moreover, as we strived for the increase of the degrees of separation 
between the various components of the diagnostic system, we had to find a way to 
maintain the link between the diagnosis line and its ADIA, which was originally 
established via the parameters of the two. To solve these two needs, we came up with 
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the idea of a single structure containing all the ADIAs that could be indexed using the 
global IDs of the diagnosis lines.  
 
Studying the Euro-VI and China-VI guidelines’ documents, we also determined that the 
FSM should be in charge of managing the counters linked to the different classes of 
active faults; thus, the implementation of the ADIAs would also have to manage this task. 
These counters are used for the management of the malfunction indicator lamps and 
for some diagnostic requirements dictated by the documents. 
 
Before moving on to the “implementation” part, the strategy defined until now can be 
summed up as: 

• A diagnosis line is defined as a component and a single, specific malfunction. 
• Each diagnosis line has a class, a severity, and other details. It is identified with its 

global ID. 
• For each diagnosis line, there is an automaton, ADIA, in charge of filtering and 

validating the presence of the fault. These ADIAs should be instantiated at model 
level and executed on differently timed tasks depending on the needed update 
frequency. 

• The input to the ADIA is obtained by a user-defined function that confronts the 
expected value of a certain measure with the actual one detected by sensors 
and produces an error code if this value is out of the intended range. 

• The ADIA receives this value and updates its internal state, which corresponds to 
the fault state and can be any of four options. 

• While updating its state, the ADIA also manages the error memory and the 
recovery lines (through APIs). It also manages certain counters used, for 
instance, by the MIL management and for other safety requirements linked to the 
classification of the active faults. 

• All the ADIAs data are contained in a single structure, and the ADIA is linked to its 
diagnosis line via indexing. 
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5.3.3. Implementation 
The first step of the implementation was the definition of the memory structures to host 
all the diagnosis line data and their corresponding ADIA’s. To follow the same simple but 
efficient approach, more important than ever seen the number of R/W operations done 
on these structures at runtime, we opted to go with two parallel arrays, indexed using the 
global ID of the fault. The size of these arrays is determined by the #define directive 
N_DIAGLINES, which must be equal to the number of labels of the tDiagLineFault 
enumerative. This enum’s values correspond to the global IDs and internal names of the 
faults.  
 

 
Figure 5.3.2 – Tentative faults of the tDiagLineFault enumerative, in api.h 

 

Both N_DIAGLINES and the entries of the enumerative can be modified by the users to 
suit their needs, with the only requirement being that the #define equals the enum’s size. 
As such, there are no strict rules to define the format of the labels’ names, but the form 
used for this thesis work was “DLF” (as in diagnosis line fault), followed by an indication 
of the component (e.g., INJP1 standing for injector 1), again followed by a term to define 
the malfunction (e.g., OVRL to indicate an overload), with the three terms connected by 
underscores. 
 
The use of this enumerative to index both ADIAs and diagnosis lines’ data sprouted from 
the observations on the results of the first part of the thesis and facilitate the 
management of the system at model level. 
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The tDiagLine structure defines the items that make up the array of diagnostic lines, each 
of which contains data from a single diagnosis line. 
 
The first field of the struct is a boolean which determines whether the cell of the array is 
currently being used by the system. This field is needed because there could be 
instances in which the entry of the enumerative does exist, and thus so does the array 
cell, but in the system the fault is not being used and there is no diagnosis flow 
associated with that fault. This simple flag can then be used to skip these unused entries 
for certain computationally expensive operations, optimising the process. 
 
The second field simply contains the global ID, the tDiagLineFault enum label, to identify 
the entry when the indexing correspondence cannot be used. 
 
While the two fields above are determined by the system and cannot be modified by the 
user, the remaining six are calibratable and correspond to the parameters of the 
diagnosis line obtained by the requirements studies. 
The first of them can assume one of the values defined in the tDIAGDtcClass 
enumerative. It defines the class of the fault, and it is used to perform some class-specific 
operations, such as certain lamp activation or different behaviours in the error memory. 
 
The second calibratable field introduces the severity level of the fault, which can be used 
to prioritise a fault instead of another, for instance, to decide which one to preserve in the 
memory error. The possible values are listed in the tDIAGDtcSeverity enumerative. 
 

 
Figure 5.3.3 - Class and severity enumeratives, in api.h 
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A fourth, boolean field is used to mark the fault as a permanent entry in the error memory, 
regardless of its class. It can only be used to force a fault to be stored as permanent, not 
to prevent it; as per Euro-VI and China-VI guidelines, class A entries will always be saved 
as permanent faults, and so will class B1 faults after a certain amount of active time. 
 
The next two fields are used to store the DTC of the fault as read using external diagnostic 
tools. The final decision was to provide support for both J1939 and WWH-OBD standards, 
as the first is the main standard for heavy-duty vehicles, while the other is the 
harmonised standards and provides a well-defined way to map these DTCs to other 
standards. 
 
The last field is an array of bytes used to list the flags of the recovery lines to activate 
once the fault passes in the confirmed and active status. More information will be 
provided in the “Reaction Manager” section. 
 
Each entry of the FSM array is a structure containing the information of the ADIA. Each of 
those ADIA is associated with the diagnosis line in the previous array at the same index 
as the FSM. 
 

 
Figure 5.3.4 - Diagnosis lines and ADIAs arrays relation 

 

The first field is the internal state of the ADIA, which corresponds to the fault’s status. Its 
possible values are defined in the tDiagADIAState enumerative and correspond to the 
ones seen in the “Strategy” section, with the addition of an “error state”. 
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Figure 5.3.5 - ADIA states 

The order of the labels in the enum is not random but follows the WWH-OBD guidelines 
for the values of the state on two bits. 
  
The second field is the counter variable, which is increased or decreased depending on 
the message received by the ADIA. Its value is used to determine whether the ADIA should 
change state by comparing it with the thresholds seen in the “Strategy” section. 
  
While the two mentioned fields are values strictly internal to and manipulated by the 
ADIA, the remaining five are calibrations corresponding to the parameters of the ADIA. 
  
The first of these values is the user step, which can be used by the calibrators to define, 
when combined with the thresholds and the periodic task of the board’s OS in which the 
ADIA is executed, the time required for a detected fault to enter a certain status. 
  
The next three fields are the thresholds used by the ADIA to move from a state to another, 
while the last field is a flag to determine whether an active fault should be devaluated 
(i.e., moved to the previously active status) after a whole operating sequence without 
the error presenting itself. When this flag is set to true, a confirmed and active fault will 
be set in the previously active status at the system’s startup rather than restarting in the 
confirmed state. 
 
The contents of the diagnosis lines and ADIAs arrays are initialised at startup with their 
respective initialisation functions, invoked by an ON Init wrapper procedure once the 
method responsible for the initialisation and the checks on the system NVRAM, 
API_EEPROM_init, has terminated. This order of execution is necessary as the wrapper 
function also reads from the NVRAM for the error memory and the initialisation of the 
ADIAs.  
The init procedure is in turn called by the operating system initialisation function. 
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The diagnosis lines initialisation function simply sets up the cells of the respective array 
with default values. All the actual values of the fields are read at runtime from the 
calibrations of the model used to set up the diagnosis lines, through set APIs, and 
facilitated by the mask. As none of these values may change during the operational life 
cycle of the system, they do not require to be stored in NVRAM to perform Read/Write 
operations. 
 
On the other hand, the ADIAs do require to have some information stored in the NVRAM, 
mainly the current state and the last value of the fault counter. The initialisation function 
of the ADIAs reads these two values from the ones stored in memory, while the other 
fields are initialised with default values and will receive the actual values at runtime, 
similarly to the diagnosis lines. 
 
The runtime management of the diagnosis lines and the associated ADIAs is performed 
through the wrapper function API_DIAG_DiagLine_ADIA_Mngr. This API is the single 
access point through which a user can model the behaviour of a single ADIA and its 
diagnosis line. Although it is designed to be used inside the mask block, it is also made 
available directly as a Simulink block in case the user might want higher control over its 
inputs (e.g., to use calibrations during the test phases). 
 
The function takes in as parameters all the calibratable values of the diagnosis line and 
ADIA structures and returns the state of the ADIA computed during this execution of the 
wrapper or a generic error (ADIA_ERROR). Additionally, the function requires as inputs 
the global ID of the diagnosis line, the ‘enable automaton’ flag to disable the execution 
of the FSM when required, and of course the fault code produced by the fault check test 
routine. 
 
Although the function only returns a generic error to avoid bloating the ADIA states 
enumeratives and does not require the use of additional variables for each ADIA at the 
model-based design level, it also stores the more precise error inside a global array to 
improve the debugging and testing experience. This array has been defined using 
certain directives that make it possible to observe it at runtime using CANape. 
 
The function’s code can be divided into two parts for easier understanding. The first part 
starts by checking the validity of the given ID (immediately returning an error if the 
position is invalid) and then cleans up any previous error in that position of the global 
array. 
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It then goes on to mark the entry in the diagnosis line array as being used and calls a 
‘set’ function to store the diagnosis line’s parameters in the same position of the array. In 
case this function returns an error, it is stored in an entry of the before-mentioned global 
error array, and the manager function returns the generic error. 

 
In the second part of the function, the ‘set’ procedure for the ADIA is invoked, and then a 
check is performed on the passed ‘enable automaton’ parameter; if the flag is set to true, 
the Automa function is called to actually execute the FSM with the given error code as 
input. 
Finally, if the function arrived here without encountering errors, it retrieves the current 
state of the ADIA (and thus, of the fault) and returns it to the caller. 
 
 

 
Figure 5.3.6 - Specific errors produced by the manager's inner functions, in api.h 

 
The first function called by the manager to set the values of the diagnosis line performs 
some additional checks: it verifies that the given ID is valid, that the selected entry is 
being used, and that no other entry already uses the given DTC codes.  
 
The function setting the ADIA values follows the same principle, copying the given values 
into the entry’s fields while performing additional checks. 
 
The Automa, called by the manager function after having set both the ADIA and the 
diagnosis line’s values, implements the finite state machine whose state graph was 
shown in the “Strategy” section. It is the core of the fault management system, as it not 
only performs filtering and validation on the “punctual faults” it receives as input, 
updating its and the fault’s state, but it also calls the APIs for the management of the 
recovery actions and the error memory, in addition to managing the system variables 
used for the MIL. 
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The automaton function takes in input just two parameters: the global ID of the diagnosis 
line and the fault message. The first operation the function performs is verifying that the 
received ID is a valid one. It then retrieves the corresponding ADIA’s information. 
 

The second part of the function is where the finite state machine is actually implemented, 
performing different operations depending on the state of the ADIA and the received 
input. There are a total of five cases: no-fault, pending, confirmed and active, previously 
active, and the default error state. 
  
Barring the default case, which is used to manage unforeseen errors and simply returns 
an error message, the first case is also the simplest and corresponds to the no-fault state 
of the FSM model. In case the received message shows that a punctual error was 
detected, it increases the automaton’s internal counter of fault detections by a user-
defined amount and updates the state to the Pending one. 
 

The Pending case reacts to an ‘error-free’ input message by decreasing the inner 
counter and moving the ADIA’s state back to No fault once it reaches zero. 
 
In case of a different message, the counter is increased, and its value is confronted with 
the first threshold. If the value equals or exceeds the threshold, a key set of instructions is 
executed to set the state to confirmed and active and insert the fault in the error memory 
(more information on how this works can be found in the implementation part of the 
“Error memory” paragraph). 
 
If it fails to insert the fault in the error memory, e.g., because it was full, the event is 
signalled updating the entry of the global error array, and a fallback strategy is adopted 
to allow, on the next execution of the automaton, to immediately retry the insertion in 
memory without having to wait again to reach the first threshold. 
 
In case the insertion was successful, the function calls three other APIs: one that manages 
the activation of the recovery lines, one to fill the freeze frame associated with the newly 
inserted fault (more information on this can be found in later paragraphs), and one to 
manage the activation of the flags of faults happening in the current operating 
sequence. As required by the Euro-VI and China-VI guidelines, the activation (even 
momentary) of certain classes of faults during an operating sequence is information to 
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be shared via external tools and used internally for the management of the OBD system 
(e.g., for the MIL).  
 
The third case of the automaton function, associated with the Confirmed and active 
state, presents an ‘if-else’ structure like the previous case, with calls to the recovery and 
error memory APIs. 
  
If the received message does not contain an error code, the function decreases the 
counter, and after a number of calls without errors equal to the second threshold, it calls 
the function to update the error memory entry with the new state. It also updates the 
ADIA’s internal state, moving to the Previously active one. At this point, if the memory 
update was successful, the system updates the counters of active class B1 and B2 faults, 
if needed. The automaton then calls the API to update the recovery lines to remove the 
contribution of this fault. 
  
In case the received message did contain an error code, the error memory entry is still 
updated to keep track of the inner counter value, but there is neither a state change nor 
an update of the recovery lines. 
 
The last case corresponds to the Previously active state of the automaton. 
  
If the received message is not an error one, the function retrieves the position in the error 
memory of the fault and then goes on to check if the amount of time passed since the 
fault entered the Previously active state is greater than the standard-defined amount 
saved in the bsENGINE_HOURS calibration or if the remaining number of warm-up cycles 
that the fault has to spend in the error memory is zero. 
 
The number of hours passed is computed using the timestamp of when the fault reached 
the state, stored in the error memory, and compared with the current time value 
maintained at the system level. This time value was implemented using a global variable 
and by creating specific APIs to manage its updating and readings. These functions were 
needed as it was peremptory to avoid race conditions on this variable, so a simple direct 
access to it wouldn’t suffice. To compute the passing of a warm-up cycle, as the 
definition might differ from one manufacturer to another, a simple set of variables and 
APIs, called by the user-generated code, has also been implemented. 
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The result of these computations is stored in a global variable and is conducted in such 
a way to take eventual overflows into consideration. 
  
If the condition on the warm-up cycles or the one on the engine hours is verified, the state 
is reverted to the No fault one, and the entry in the error memory is cleaned using the 
proper API. 
 
When the received fault message contains an error code, the function increases the 
counter, then checks whether its new value equals or surpasses the third threshold. In 
that case the state is set back to Confirmed and active, and the error memory entry is 
updated with the new state. 
  
Then, if the error memory update was successful, the same operations seen in the 
transition between the Pending and Confirmed and active states are called, updating 
system counters, freeze frames, and active recovery lines. 
 
To recap, the strategy was implemented by defining two parallel arrays containing the 
diagnosis line and the ADIA information. These arrays are indexed using the global ID of 
the fault, defined as labels of an enumerative. 
 
The user-modifiable data of both the diagnosis line and the ADIA are read at runtime 
from the model-based generated code and are passed to the manager function, which 
returns the new ADIA’s state, calls two other APIs to set the received data for the diagnosis 
line and the ADIA, and then calls the function implementing the finite state machine.  
 
The automaton function implements the various states of the FSM and calls the APIs 
related to the management of the recovery lines and the error memory. 
 
The system keeps track of the errors happening during this whole process with a global 
array called that can be checked using CANape to have a visual, real-time feedback 
during testing and debugging. 
 
Both the diagnosis lines and the ADIA’s structure are initialised with default values during 
the system’s startup. The ADIA’s state and inner counter are retrieved from the non-
volatile memory instead. 
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In addition, system-level variables and related APIs have been implemented for the 
management of the time passed for a fault in a certain state, the completion of a warm-
up cycle, and other standard-required information such as the number of active faults 
of a certain class (also useful for the MIL management). 
 

 
Figure 5.3.7 - One of the additional functions implemented, her the one for the Warm-up cycle completion, in api_diagobd.c 

 

5.3.4. Mask 
Although the original amount of information required to the customer to define the 
parameters of a diagnosis line and its ADIA was greatly reduced, it was still a lot of values 
to set, especially considering the large number of fault lines a system might have. 
 

Had we kept the original strategy of using external spreadsheets with macros to compile 
the parameters in a suitable format for the board, our goal of simplifying the system 
could not have been considered to be achieved. There was a need for a way to easily set 
the required values that was already integrated into the design workflow. 
 
The solution was to design a certain kind of Simulink block, a mask, to then insert into 
Metatron’s library for the customers to use.  
 
A Simulink mask is a block that provides a graphical interface to the user to define the 
block’s parameters. Depending on how the mask code was implemented, these 
parameters will then be used to generate or update the inner model of the mask. 
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The mask’s GUI is split into three parts. The first one is a drop-down menu to select the 
fault that shows the list of the IDs available in the system. The list is actually the 
tDiagLineFault enumerative, which can be modified to include new diagnosis lines or 
remove preexisting ones. The script used for the mask reads directly from the api.c file 
that contains the enumerative. The second part contains all the parameters seen for the 
diagnosis line: class, severity, permanent, DTCs, and recovery lines array (here called 
GRECs, from Global RECovery). The third part allows to set the characteristics of the ADIA, 
that is, the user step, the three thresholds, and whether to “devalidate” the fault after a 
key cycle.  
 
The mask generates or updates the model upon clicking the CREATE button of the GUI.  
 

 
Figure 5.3.8 - The diagnosis line and ADIA mask, with (right) and without (left) the recovery lines array open 

 
The designed mask had to take the values previously mentioned for both the diagnosis 
line and the ADIA and generate a model, internal to the mask.  
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The model had to contain the inserted values in the form of Simulink signals that could 
be interacted with, as calibrations, using CANape, and the function block for the manager 
API seen before.  
 
The generated model also contains the blocks needed to perform certain conversion 
operations on the inserted data to make them suitable for the API, as the data format 
used by Simulink does not always directly correspond to an actual C data type. 
 
The generation of the model would also change the mask block, creating two input ports 
to read the enabling flag and the fault message and an output port for a signal 
containing the current state of the ADIA. 
 

 
Figure 5.3.9 - The internal model of the mask 

 
To define the behaviour of the mask, a MATLAB script, DIAG_LINE_MANAGER.m, has been 
designed.  
 
The mask block contains a few lines of code that reads the data inserted into the mask’s 
fields and prepares them, then calls the first function of the script. 
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The main function of the script, DIAG_LINE_MANAGER, receives as inputs the block and 
the parent block, performs various checks on the inserted parameters, detaches the 
mask’s block from the library in order to modify the block’s contents, and then calls the 
remaining functions, in this order: Port_keeper, DIAG_LINE_params, ADIA_params, 
Sys_Setup. 
 
The Port_keeper function is used to temporarily save the current ports connected to the 
block and restore the connections after the remodelling has happened. 
  
The DIAG_LINE_params and ADIA_params functions are used to generate the Simulink 
signals and store them in the model’s data dictionary. The format for the variable names 
will be “ds” plus the ID plus “_” followed by the parameter’s name, or “ds” plus the ID plus 
“_” followed by “ADIA” and then by “_” and the parameter’s name. Thanks to the 
hierarchical structure used by the data dictionaries in Metatron’s projects, this standard 
naming ensures that if the same diagnosis line is being defined somewhere else in the 
various models, an error will be generated. 
 
The Sys_Setup function is the one in charge of actually building the model. It starts by 
disconnecting the ports and clearing up the model, and then goes on to create each 
block and connect them. Once the building phase is finished, it reconnects the ports 
saved using the Port_keeper function and then calls the Beautifier function, which 
repositions the various components one-by-one to obtain a more comprehensible 
model (visible in Figure 5.3.9). 
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Figure 5.3.10 - The DIAG_LINE_MANAGER.m file, with the various functions used by the script 
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5.4. Reaction Manager 

5.4.1. Requirements 
Differently from the previous modules, the reaction manager does not derive from 
external guidelines nor standards. The set of requirements upon which the reaction 
strategy has been designed all came from Metatron’s internal documents and previous 
strategies. 
 
The only actual requirement was the need for simplification of the pre-existing 
implementation, in line with the rest of the work done on the system. 
 

5.4.2. Strategy 
The adopted strategy consists in entrusting the implementation of the recovery functions 
to the users, who will design them at higher levels, while the system simply activates the 
flags (recovery lines) to indicate the need for those functions to operate. 
 
To do so, two things are needed: a way to associate a certain fault to one or more 
recovery lines and a way to manage the activation and deactivation of the correct lines 
depending on the various faults’ states. 
 
The association between a diagnosis line and its activated recoveries is made possible 
at the time of the definition of the Simulink mask for the fault and the ADIA, where a set 
of fields are available to select the recovery lines (Figure 5.3.8). 
 
This set of fields is a transposition of the structure used for the management of the 
various lines: a table composed of 16 rows, each of which contains 8 cells. This table is a 
single, global structure that can be seen as a matrix of bits, with each cell corresponding 
to a flag that marks whether that recovery line should be active or not. 
 
The mask can be used to select the cells of this global table when the fault is active by 
inserting a value between 0 and 255 on each line. The ‘1’s of the binary form of this value 
should be seen as the active recovery lines of the table’s row. 
 
The activation of the recovery lines should happen while the associated fault is 
determined to be confirmed and active. Once the fault changes state, those lines should 
be turned off if no other currently active fault is associated with them. As the activation 
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and deactivation of the recoveries is heavily dependent on the transition between the 
states of the faults, their management has been assigned to the ADIAs. 
 

 
Figure 5.4.1 - Examples of active recovery lines flags ('x') in the global structure when a fault with the given lines is active 

 
At model level, it will be necessary to have a way to read a given flag from the global 
structure in order to activate the associated recovery function. 
 

5.4.3. Implementation 
All the code produced for this part was contained in the api.h, api_diagobd.h, and 
api_diagobd.c files. 
 

The structures to associate the diagnosis lines with their recovery lines have already 
been shown in the previous chapters: they’ve been implemented as an array of 
N_GREC_LINES (here, 16) 8-bit entries, the GREC_Array field of the tDiagLine structure. 
 
The global table of the recovery lines flags has been implemented in a similar fashion, 
except it has been declared as a global variable, btActiveGRECs, rather than a field of a 
struct. 
As some recovery functions might have to operate before the models that define the 
values of the diagnosis lines (which include the recovery lines to activate), this global 
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table has an in-NVRAM counterpart, where it is copied from and to at startup and 
shutdowns, stored in the error memory. 
 
The number of rows of the table is determined by the #define N_GREC_LINES, while the 
number of cells in each row, i.e., the number of bits, is written in the #define 
N_GRECS_PER_LINE (here, 8). 
 

 
Figure 5.4.2 - The global recovery lines table, with special comments to make it visible on CANape, in api_diagobd.c 

 
The first function related to the recovery lines is API_DIAG_GREC_activateGRECs, which 
takes the ID of the fault whose lines must be activated. It is called by the ADIA when it 
moves from the Pending state to the Confirmed and active one.  
The function simply performs a bitwise ‘or’ between the global table and the diagnosis 
line’s field. 
 

 
Figure 5.4.3 - API_DIAG_GREC_activateGRECs, in api_diagobd.c 

 

When an ADIA moves to the Previously active state, all the recovery lines that were 
activated by the fault must be turned off, except for those that are being piloted by other 
currently active faults. To do this, the ADIA invokes the 
API_DIAG_GREC_recomputeGRECs function, passing it the fault’s ID. 
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This function zeroes the global table, then scans the error memory array looking only for 
the currently used entries, i.e., those with the bInit flag at true, whose ADIA is currently in 
the Confirmed and active state. Whenever the function finds one of these entries, it 
updates the global table, as seen in the API_DIAG_GREC_activateGRECs function. We 
scan the error memory rather than the diagnosis lines array, as it contains fewer entries 
and only the faults currently in the memory can activate the recovery lines. 
 

 
Figure 5.4.4 - API_DIAG_GREC_recomputeGRECs, in api_diagobd.c 

 

The remaining function associated with the recovery lines is also the only one that is 
exported to model level and made available in the Simulink block library: 
API_DIAG_GREC_getEntry. This API allows to retrieve the value of a single entry of the 
table, passed as a parameter.  
 
The function starts by checking that the given index is a valid one, that is, included 
between zero and N_GREC_LINES* N_GREC_PER_LINES.  
It then goes on to store in the support variable tmpMasked the result of a logical 
operation: the bitwise ‘and’ between the indexed value and a ‘1’ left shifted by a certain 
amount.  
 
The correct flag position is computed by performing an integer division (given index over 
N_GRECS_PER_LINE), while the amount to shift the ‘1’ is obtained using the modulo 
operator on the same values. 
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This way, tmpMasked will contain a non-zero value if and only if the chosen cell 
contained a ‘1’.  
 
The function then returns the result of the comparison, ‘tmpMasked > 0’. 
 

 
Figure 5.4.5 - API_DIAG_GREC_getEntry, in api_diagobd.c 

  
The returned value can then be used to pilot the recovery functions defined by the user.  
In the following picture, an example of implementation using Simulink that pilots the 
enabled subsystems implementing the functions, using the value returned by the 
API_DIAG_GREC_getEntry block. 
 

 
Figure 5.4.6 - Example of usage of the recovery lines system with Simulink 
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5.5. Error Memory and Freeze Frames 
Detecting the presence of a fault is not sufficient: some faults might happen only under 
rare conditions, some might be flickering, others might be due to multiple factors, yet 
another might prevent the vehicle from circulating safely, and so on. 
  
Recovery actions performed onboard might help mitigate the issue, but as the 
complexity of the systems grows, so does that of the faults. 
  
For these reasons, it is important to gather as much information as possible whenever a 
fault presents itself and to store that information in a permanent way so that it could be 
used afterwards to perform checks and reparations. 
 

5.5.1. Requirements 
Both Euro-VI and China-VI directives include a set of various information that an OBD 
system should provide when interrogated with external tools. These details are related to 
the single fault, to the whole system, and to the engine status when a fault is confirmed. 
 
We call the set of this information “Error Memory” and the subset of it corresponding to 
the snapshot of the engine when a fault is inserted into the error memory “Freeze 
Frames”. These data must be stored in a non-volatile memory, as they must be 
accessible even after a system’s shutdown and must also follow certain rules for what 
concerns their storage and availability. 
 
As said, the guidelines define the information to store for three main categories: system, 
fault, and freeze frame. 
 
For the system, the regulations required to be available were: 

• The amount of time since the last reset (clean-up) of the system, in hours. 
• The number of warm-up cycles completed since the last clean-up. 
• The number of hours during which the engine has operated while a Class B1 

malfunction was active. 
• The number of engine hours passed with a continuous MIL and the cumulative 

number of hours of continuous MIL. 
 
 
For the faults, the information to be made available were: 
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• The number of active faults of a certain class. 
• All the currently active faults of a class. 
• All the previously active faults of a given class. 

 
When it came to a single fault, the required details were: 

• The fault’s DTCs. 
• The class of the fault. 
• The current state of the fault. 
• The number of times the fault went back to Confirmed and active after having 

become Previously active. 
• Whether the fault happened in the last operating sequence. 
• The number of consecutive warm-up cycles since the fault entered the 

devalidated state. 
• The freeze frame associated with the fault. 

 
The Euro-Vi and Cina-VI guidelines also define various rules on the behaviour of the 
system for what concerns the mentioned information; for instance, “if and when” a value 
stored in memory can be reset, via external tools or directly by the system. The B1 hour 
counter, for example, increments itself every 1 hour of uptime as long as a class B1 fault 
is active. If it passes a certain number of hours and there are no more active B1 faults 
(due to being erased by tools or no longer existing), the guidelines require the counter to 
be set to a given value. The standard also defines the number of continuous operating 
sequences without B1 faults needed to reset the counter. 
 
Another rule concerns how to behave when trying to store a new fault in case of full 
memory, based on the class of the faults and other factors. Different fault classes have 
different priorities during memorisation; for instance, a class B2 entry in memory shall 
not be replaced by a class C fault. In cases of equal class, the diagnosis line’s defined 
severity shall be used. If the severities are equal too, the oldest entry shall be preserved. 
 
The documents also include various sets of information about the engine to be stored 
along with a fault in the error memory, the freeze frame. This information is divided into 
mandatory and optional and can be seen as a snapshot of the system at the time of the 
fault’s confirmation. This set of data must be retrieved when the OBD system is required 
to provide the information of a fault using external tools. 
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While for the previous requirements, such as the fault classes, the number of hours to 
reset the B1 counters, or the number of warm-up cycles that a fault must remain in the 
Pending status before being automatically erased from the error memory (40 cycles), in 
the case of the fields of the freeze frames the two documents had different requests, at 
least at first glance. 
 
Before moving on to the design of the strategy to manage the error memory, a work of 
unification of the requests had to be carried out, with particular attention to freeze 
frames. The final set of engine information is the following: 
 
Mandatory 

Calculated Load (engine torque as % of maximum torque available at current speed) 
Rotatory Engine speed 
Engine coolant temperature  
Barometric pressure (either directly measured or estimated) 
Air intake volume (read by air mass flow sensor) * 
DPF differential pressure *                                                         
SCR catalyst inlet temperature *                                                    

 
*Only if the system is equipped with the needed sensor. Otherwise, it could be possible 
to use the indirect, calculated value. 
 
Optional 
- Rotary speed and load information of the selected engine 

Driver’s demand engine torque (as % of maximum engine torque) 
Actual engine torque (as % of max engine torque, e.g. calculated from commanded 
injection fuel quantity) 
Time elapsed since engine start                                                    

 
- Any information of validate or invalidate emission or OBD system 

Fuel level (e.g. % of the nominal capacity of the tank) or tank fuel pressure 
Engine oil temperature  
Vehicle speed  
Engine control computer system voltage (for the main control chip) 

 
 
 
 



110 

 

- Information for determination or calculation, if installed on the engine 

Absolute throttle position / intake air throttle position                          
Diesel fuel control system status in case of a close loop system 
Fuel rail pressure                                                                 
Injection control pressure                                                         
Representative fuel injection timing (beginning of first main injection)  
Commanded fuel rail pressure (the set value)  
Commanded injection control pressure (the set value)  
Intake air temperature                                                             
Environmental air temperature                                                      
Super/Turbocharger inlet temperature                                               
Super/Turbocharger outlet pressure                                                 
Change air temperature (if post intercooler)  
Actual boost pressure (supercharger) 
Air flow rate from mass air flow sensor                                            
Commanded EGR valve duty cycle/position                                            
Actual EGR valve duty cycle/position                                               
PTO status (active or not active)  
Accelerator pedal position                                                         
Redundant absolute pedal position                                                  
Instantaneous fuel consumption                                                     
Commanded/target boost pressure (if boost pressure used to control turbo ops) 
DPF inlet pressure                                                                 
DPF outlet pressure                                                                
DPF delta pressure                                                                 
Engine-out exhaust pressure                                                        
DPF inlet temperature                                                              
DPF outlet temperature                                                             
Engine-out exhaust gas temperature                                                 
Rotatory Turbocharger/turbine speed                                                
Variable geometry/section turbocharger position                                    
Commanded variable geometry/section turbocharger position                          
Wastegate valve position                                                           

 

To recap, the study of the guidelines document of Euro-VI and China-VI determined the 
set of requirements on both the data to store and the behaviour of the system regarding 
those data and laid the foundations for the design of the error memory strategy. 
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5.5.2. Strategy 
As expected, this section was probably the one that took the most from the first part of 
this thesis work on the NVRAM management. Many of the strategies and the insight 
developed during that phase were improved and reused here, starting with the 
separation between the data stored in the NVRAM and the one directly manipulated 
during the system’s operation. 
 
All the main structures and variables used had to be duplicated or at least compacted 
into secondary structures that were only used to store the data at the shutdown and 
reload them at startup. 
 
For this reason, the strategy adopted had to be split into three phases: startup, operating, 
and shutdown.  
 
At startup, it was essential to ensure that the stored data were not corrupted before 
restoring them as needed. Only the data necessary to meet the requirements were 
saved from the diagnosis line; not all data were stored. The values that needed to be 
reloaded into the ADIA included only the state and the fault counter. Additionally, other 
data that had to be read from memory and restored included various time counters, the 
counter for operating sequences, and the active recovery lines. 
 
The ’operating’ part of the strategy is the most complex, as it not only defines the 
behaviour of the system for the single faults to insert, update, or remove from the error 
memory but also the management of all other ‘accessory’ data required by the 
guidelines and Metatron’s documentation: active fault counters, timers, freeze frames, 
key devalidation, and so on. 
 
The insertion of a new fault in the error memory happens when the state of the fault’s 
ADIA passes from Pending to Confirmed and active. 
If the error memory is full, we look for an entry with lower class than the new fault’s, or 
lower priority in case of class equivalence, to substitute. 
The timestamp is used to ensure that, ceteris paribus, in case of a substitution of an entry, 
the newest entries are swapped out rather than the oldest, as per guidelines.  
If it fails to insert, the ADIA remains in the Pending state to try again next time. While this 
could create some potential issues, the relatively contained number of entries in the error 
memory and the low probability in normal working conditions of having too many 
contemporary faults mitigate the drawbacks of this solution. When inserting the new 
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fault, it must be marked as a permanent failure code if the permanent flag is set for that 
specific diagnosis line, if the fault is of class A, or if it's of class B1 but it has been active for 
more than 200 hours. 
 
When the fault passes from the Confirmed and active state to the Pending one, its 
corresponding entry in the error memory is updated; a timestamp must be associated 
with it, and we must also mark the number of warm-up cycles that the fault spends in 
the memory while in the Previously active state. 
The warm-up cycles counter will start at the maximum value (by the guidelines, 40) and 
will be decreased by one each time the system completes a warm-up cycle while the 
fault is in the mentioned state. 
Whenever the fault’s ADIA moves back to the Confirmed and active state, the warm-up 
cycle counter will freeze, and the counter for the occurrences of 'going back to active' is 
updated. 
The counter will be reset to the maximum value once the fault moves back to the 
Previously active state. At the same time, the timestamp will be updated with the most 
recent value. 
 
For the removal of an entry in the error memory, if the entry is a Permanent Failure Code, 
it cannot be removed by means of external tools, but only after the system itself has 
deemed the fault repaired. 
Non-permanent failure codes can always be removed by external tools. 
Any type of failure code can be erased automatically if the fault has been in the 
Previously active status for at least 40 warm-up cycles or 200 engine operating hours. 
Rather than increasing a time counter for each entry of the memory with every hour 
passed, the timestamp associated with the entry will be confronted with the system’s 
current time. 
  
As the mentioned insertion, update, and deletion operations are highly dependent on the 
faults’ states and their transition, the management of such operations will be conducted 
by the ADIAs. 
 
The standards define the possibility to devalidate an entry (from Confirmed and active 
to Previously active) after a whole operating sequence without the error presenting itself 
has passed.  
The pre-existing strategy of allowing this for certain entries using a flag 'keyDeval' for the 
diagnosis line has been kept. This requires ways to compute the passing of an operating 
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sequence; as the definition of it is not standardised, the most functional solution is to let 
the users determine when one has been completed, simply providing them with an API 
able to coordinate the set of operations related to its passing. 
 
For each fault inserted into the error memory, a corresponding freeze frame is stored 
when that fault passes to the Confirmed and active status (either from Pending or 
Previously active). The implemented solution consists of a global freeze frame that is 
constantly updated with the needed information, and once there’s the need to store a 
snapshot of the system for a fault’s insertion, the global freeze frame is stored in the 
memory structure associated with the fault. As the faults’ memory error entries are 
separated from their freeze frames, the APIs will need to ‘reconnect’ them before 
returning them neatly packed to the users. 
This general freeze frame must be updated before the execution of any ADIA and should 
be updated using a function generated via model-based design by the customers 
rather than with a function directly implemented by Metatron at lower levels.  
The necessity of leaving the updating of the freeze frame to the users comes from the 
fact that while the guidelines define the various fields of the freeze frames, not all those 
data are available on every system, and thus the selection of the data is left to those who 
better know the vehicles where the code will run: the vehicle’s manufactures. 
To simplify the management of the freeze frame and its fields at the model level, a 
Simulink mask, similar to the one used for the diagnosis lines and the ADIAs, has been 
designed. 
 
For the management of counters linked to the B1 class faults, the strategy follows step by 
step what required by the Euro-Vi and China-VI documents: when a B1 fault is stored, if it 
is the first, a counter must be initialized to record the number of hours during which the 
engine has operated while a class B1 malfunction was present.  
If no B1 are detected or all have been erased the counter will freeze, otherwise the counter 
will increment the counter every 1 hour of operativity.  
If the counter passed 200h and there are no more B1 (due to being erased by tools or no 
longer existing), set it to 190h.  
When no Class B1 failure has been detected in 3 continuous operation sequences (this 
value is defined by the standard, but for the thesis scope it has been implemented as a 
parameter that can be defined by the customer), the B1 counter shall be reset to 0. 
 
Given the need for precise time counters, the designed strategy must also include ways 
to update and read these timers, taking into account events like overflows. 
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In addition to the various ways to create, update, and erase the data, the system must 
provide interfaces to allow the users, or external diagnostic tools, to access these data. 
 
For the last part of the strategy, the ‘shutdown’, the system simply has to copy the 
contents of the structures and variables from the volatile memory into others created 
especially for the NVRAM. 
 

5.5.3. Implementation 
All the code produced for this part was contained in the api.h, api_diagobd.h, and 
api_diagobd.c files. 
 

The data structure of this part is similar to the one adopted in the first part of this thesis, 
with a mirroring of variables and structures between the NVRAM and the volatile memory.  
To implement the non-volatile part, we made use of the ‘#pragma section ".eeram"’ 
directive, as seen before.  
 

 
Figure 5.5.1 - Data structures in the ".eeram" section, in api_diagobd.c 

 
The bsDiagEePROM is a struct of type tDiagEEPROM that is used to store in NVRAM the 
set of system variables like counters and timers that must be restored during the 
initialisation of the system. This struct does not present a direct correspondence with a 
variable in the volatile memory but rather encapsulates many different values with its 
fields (whose names correspond to the variables in the volatile memory).  
 
This solution has the double advantage of being both more compact and easier to read 
while analysing the code and allowing for the computation of a checksum value on the 
whole set of variables to control the validity of the data at initialisation time. In case of 
mismatch of the checksum, the choice can be to either simply replace the whole 
contents of the struct with default values or perform more sophisticated strategies like 
the one explored in the first part of this thesis. 
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The fields of the tDiagEEPROM can be divided into four groups, depending on where their 
volatile counterparts are used.  

 
Figure 5.5.2 - tDiagEEPROM structure, in api.h 

The first group is used to manage the information on the B1 and B2 classes. This group’s 
fields include: 

• bsCurrentTime, keeps track of the seconds passed since the last reset of the OBD 
system. 

• bsB1MainCnt and bsB1SecCnt, the timers to count the time passed while a B1 fault 
was active. The bsB1SecCnt has a 10 [ms] precision, and it’s used to update the 
bsB1MainCnt, which has a precision of 1 hour. 

• bsB1ActiveFaults and bsB2ActiveFaults, the counter that marks the number of 
currently active faults of class B1 or B2. 

• bsB1OpSeq and bsB1B2OpSeq, keep track of the number of continuous operating 
sequences without active faults of B1 or B2 classes. 

 
The second group is the one gathering the counters and timers used for the MIL 
management. More detailed information will be provided in the MIL chapter. 
 
The third group contains two values that have general validity for the OBD system: the 
counter of the warm-up cycles, bsWucSinceClean, and the timer to keep track of the 
working engine hours, bsHoursSinceClean. Both entries restart to count whenever a 
clean-up happens. 
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The final group, made up of a single entry, does not actually correspond to any system 
variable but rather is the field where the checksum computed at the shutdown is stored. 
This value will then be read at startup time and compared with the new checksum 
computed over the readings of the other fields of the struct. A mismatch between the 
two checksums indicates a corruption of the stored data. 
 
In the ".eeram" section, after the error memory structure, we can find the corresponding 
NVRAM entry for the recovery lines table, btDiagEePROM_GREC, whose utility has already 
been discussed in the previous chapter. 
  
After that array, we find another one, btDiagEePROM_Faults, used to store the data of 
the faults inserted into the error memory. Its volatile memory counterpart is 
bvErrMemFaults. Both arrays have ERR_MEM_SIZE entries, where the value of 
ERR_MEM_SIZE is given by a #define directive in api_diagobd.h that has been put equal 
to 16 based on the average number of entries of OBD error memories. 
  
Each entry is of tDiagFaultRecord type and contains information from the diagnosis line, 
the ADIA, and some useful for the management of the entry in memory. 
 

 
Figure 5.5.3 - tDiagFaultRecord structure, in api.h 

 
The majority of the fields connected to the diagnosis line and the ADIA can be found with 
the same name in the respective structures.  
The u8KeyDevOpSeqClass field, instead, is a new 8-bit unsigned value that is used to 
encapsulate different information: the bit #0 is used to mark whether the fault happened 
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in the last operating sequence, the bit #1 marks whether the entry can be devalidated at 
key on, following the previously explained strategy, and the remaining bits are used to 
store the class (3 bits should suffice, as there are 5 possible values for the class 
enumerative). It's used to manage the Key Devalidation procedure. 
The last three fields of the struct are used to keep count the times the fault went back to 
be Confirmed after having entered the Previously active state (u16TimesReConf field), 
keep track of the number of warm-up cycles spent in the Previously active state 
(warmUpCycle field), and keep track of when the fault entered the Previously active 
state (timestamp field). 
 
The btDiagEePROM_FrzFrames is a parallel array to the faults one that contains the 
freeze frames associated with the fault with the same index in btDiagEePROM_Faults. Its 
volatile memory counterpart is btErrMemFrzFrames.  
 
Each entry of btDiagEePROM_FrzFrames is a freeze frame, implemented as an array of 
tDiagFFEntry. The btDiagEePROM_FrzFrames array’s size is the same as the faults array’s, 
ERR_MEM_SIZE, while the single freeze frame is FF_N_FIELDS long. The freeze frame 
length selected for this thesis work, 64 cells, corresponds to the number of labels of the 
tDiagFFField enumerative. 
 
This enumerative contains the totality of the possible fields required by the Euro-VI and 
China-VI guidelines, including both mandatory and optional entries. In addition to those 
fields, seventeen additional labels have already been placed in anticipation of future 
additions wanted by the customers. This enumerative should be used to allow for easier 
indexing of the fields of a single freeze frame. 
 
The tDiagFFEntry, which implements a single field of a freeze frame, is a struct with only 
two fields: a boolean flag bAvailable and an unsigned 16-bit value, u16Value. The flag 
ensures that the freeze frame’s field is actively being used and does not just contain 
random values. This is useful, as although there are many fields available for the freeze 
frame, not all the systems are able to provide the required information for all those fields; 
through the use of the appropriate API and a Simulink mask (see later), it is possible to 
select only the desired fields. 
  
As all the freeze frames contained in the error memory are copies of the global freeze 
frame, bvGlobalFF, it is sufficient to manipulate the entries of that freeze frame to ensure 
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that the ones stored in the error memory will contain the desired fields with the correct 
values. 
 

 
Figure 5.5.4 – The tDiagFFField enumerative used to index the fields of the freeze frames, in api.h 
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The choice of reducing the connection between a fault in the error memory and its freeze 
frame to a purely logical one through indexing rather than encapsulating the freeze 
frame inside of the tDiagFaultRecord structure was made with the idea of improving the 
access speed of the system in mind. 
 

 
Figure 5.5.5 - Visual representation of the logical link between the faults and the freeze frames structures 

 
Similarly, the idea behind storing the global recovery lines table rather than the single 
table for each diagnosis line was made to both speed up the process and reduce the 
amount of non-volatile memory required. 
 
Now that we’ve seen the data structures used to implement the strategy, let’s examine 
the functions that operate on these structures. 
 
The initialisation of the structures starts with the already mentioned API_DIAG_OnInit. 
This function begins by calling the API_DIAG_initFromEEPROM procedure, which loads 
the values into the volatile memory from the NVRAM correspondents.  
 
It operates by computing the checksum on the fields of the error memory structure and 
comparing it with the checksum stored in the structure. The function verifies the validity 
of the EEPROM entries using the base-level software APIs, EDATA_GetValidState and 
EDATA_CalcDataChecks. If the two values do not correspond, it loads the default values 
in the NVRAM structures. It then goes on to copy the data from the NVRAM into the volatile 
memory. 
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Figure 5.5.6 - API_DIAG_initFromEEPROM, in api_diagobd.c 
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Once the variables and structures have been initialised with the data read from memory, 
the system can go on and operate normally. The ‘operating’ part of the strategy includes 
both ADIA-related tasks and periodical tasks. 
  
The first of the periodic tasks is API_DIAG_updateCurrentTime, which is called by the 
operating system’s API_OS_Task1s. The function simply increases the bsCurrentTime 
global variable, avoiding race conditions. Along with the update function, two other 
methods have been defined to instantiate and read the variable’s value: 
API_DIAG_initCurrentTime (used when resetting the system after a memory failure) 
and API_DIAG_getCurrentTime. 
 
Another periodical task is the one that manages the counters and timers related to the 
class B1 faults. The API_DIAG_B1_cntrManager is called by the operating system’s 
API_OS_Task10ms task. 
  

 
Figure 5.5.7 - API_DIAG_B1_cntrManager, in api_diagobd.c 
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The function starts by checking whether there are any active B1 faults. 
  
If that’s the case, it increases the secondary timer, bsB1SecCnt, by one. Then, if the 
counter equals or exceeds the value of bsSECONDS_PER_HOUR (defined as a calibration 
for testing purposes) and thus an hour has passed, the secondary counter is reset while 
the main one, bsB1MainCnt, is increased by one unit. After that, the bsB1MainCnt value is 
compared to the bsB1_HOURS_TO_PERMANENCE threshold, by standards 200 hours, 
and if the two values are the same, all the currently active B1 faults in the error memory 
are marked as permanent failure codes. 
  
In case that no B1 fault is currently active, the function directly checks whether the 
bsB1MainCnt counter exceeds the bsSECONDS_PER_HOUR threshold and, in that case, 
resets the secondary counter and sets the main counter to bsB1_CNT_INIT_VAL, which 
by standards should be 190 hours. 
 
Another function that allows to manage different variables of the system, but is not part 
of the periodic tasks, is the one to signal the completion of a single operating sequence: 
API_DIAG_completeOperatingSequence. This API is exported at model level to allow the 
users to design the signalling of the passing of an operating sequence, as the definition 
of it is not standardised and thus must be delegated to the manufacturer. 
 
The API_DIAG_completeOperatingSequence is actually a wrapper function that calls 
three other methods: API_DIAG_A_opSeqManager, API_DIAG_B1B2_opSeqManager, 
and API_DIAG_KeyDevalManager. 
 
API_DIAG_A_opSeqManager is used to manage the counters for operating sequences 
without continuous MI faults for the MIL. A more detailed description will be provided in 
the lamp management chapter. 
 
API_DIAG_opSeqManagerB1B2 is used to manage the counter of operating sequences 
without B1 and B2 faults. It checks that no active B1 faults are present and that none 
occurred since the last time the operating sequence function has been called.  
It does so by checking that the counter dsB1ActiveFaults equals 0 and the same is true 
for the flag bB1FaultOccurred. 
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Figure 5.5.8 - API_DIAG_B1B2_opSeqManager, in api_diagobd.c 

 
If the conditions hold true, it increases dsB1OpSeq by one, and it also checks if no B2 
happened nor is any active (checking the bB2FaultOccurred flag and the 
dsB2ActiveFaults counter), and in that case increases the dsB1B2OpSeq (that will be 
used for the lamps); otherwise, it sets dsB1B2OpSeq to 0. 
  
If any of the conditions is false, the function sets the dsB1OpSeq and dsB1B2OpSeq to 0. 
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If the dsB1OpSeq has reached the calibratable threshold dsOP_SEQ_B1_THR (by 
standards, 3), the function resets the B1 time counters to 0. 
Finally, the API sets the two flags bB1FaultOccurred and bB1B2FaultOccurred to 0 if the 
corresponding counter is equal to 0 (it is implied that no faults of that type are currently 
active). 
 
The last function called by the API_DIAG_completeOperatingSequence wrapper, 
API_DIAG_KeyDevalManager, manages the devalidation of error memory entries whose 
ADIAs have the bKeyDeval flag set to true.  
 
The ‘key devalidation’ strategy works like this: 

1. When a fault is added to the error memory, the u8KeyDevOpSeqClass field is set 
to |000|DTC_CLASS(3bit)|KeyDev(1bit)|1|, taking the DTC_CLASS from the diagnosis 
line and the KeyDev bit from the ADIA. This happens inside the function to insert a 
new entry in the error memory, API_DIAG_ErrMem_insert. 

2. When an entry goes back from Previously active to Confirmed and active, or when 
it remains in Confirmed, the API for the update of an entry is called, and the 
u8KeyDevOpSeqClass field is reset to |000|DTC_CLASS(3bit)|KeyDev(1bit)|1|. 

3. When an operating sequence has passed (signalled using the completeOpSeq 
API) or when the key-off routine is executed, the system calls the 
API_DIAG_KeyDevalManager function. 

 
This function runs through the array of faults in the error memory, and for each of the 
active entries, it checks the u8KeyDevOpSeqClass of that entry. It reads each subfield of 
the value by performing a logical operation: 

• Bitwise ‘and’ with 0x01 to read the value that indicates whether the fault happened 
in the last operating sequence. The result is stored in the support variable 
inLastOpSeq. 

• Right shift by 1 position followed by a bitwise ‘and’ with 0x01 to check that the entry 
has an active ‘KeyDev’ flag. The result is stored in keyDev. 

• Right shift by two positions followed by a bitwise ‘and’ with 0x07 to check the three 
bits that indicate the fault’s class. The obtained value is stored in kdClass. 

 
The function then checks which of the entries is currently active and that keyDev is set to 
one before proceeding. If that’s the case, the function sets the first bit of the 
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u8KeyDevOpSeqClass to 0, to mark that the fault hasn’t happened yet in this new 
operating sequence, by applying a bitwise ‘and’ between the field and the value 0xFE. 
 
In addition, if inLastOpSeq was already at zero, which means that the fault did not present 
itself in the last operating sequence, the function sets the atLeastOne variable to true 
and updates the state to Previously active and the faultCounter to 0 for both the entry 
and the ADIA. It then updates the active fault counter of the devalidate fault’s class. 
 
If the state of one or more entries might have changed, and thus atLeastOne is set to 
true, the function calls the API to recompute the active recovery lines, 
API_DIAG_recomputeGRECs. 
 

 
Figure 5.5.9 - API_DIAG_KeyDevalManager, in api_diagobd.c 



126 

 

An additional API used at the model level to signal a specific event is the one responsible 
for managing warm-up cycles: API_DIAG_completeWarmUpCycle. This function 
simply sifts through the bvErrMemFaults array looking for faults in the Previously active 
state. Once one of such faults has been found, the function decreases the entry’s field 
that indicates the number for the remaining warm-up cycle before being removed from 
the error memory. Once it finishes analysing the entries, the function increments the 
global counter bsWucSinceOBDClean, marking another completed warm-up cycle 
since the last OBD reset, and then returns the number of modified entries. 
 
Other functions that could be considered directly under control of the user, i.e., APIs 
exported at model level, are those connected to the management of the freeze frames. 
More precisely, the functions that can be used to update the contents of the global freeze 
frame, whose data will be copied in the error memory when a fault reaches the 
Confirmed and active state. 
 
The available functions to update the contents of the global freeze frame are 
API_DIAG_FFMngr and API_DIAG_updateFFEntry. The first one allows to update the 
whole freeze frame with a single call, while the latter works on a single field of the freeze 
frame. 
 
API_DIAG_FFMngr takes as inputs an array of FF_N_FIELDS 16-bit unsigned values and an 
array of FF_N_FIELDS/8 8-bit unsigned entries. The second array works as an array of 
arrays of flags, with 8 flags per row. This was originally done to save space. The function 
then updates every field of the freeze frame with the value and the availability bit read 
from the entries of the input arrays in the same position (after having computed the 
value in the ‘availability flags’ array applying a set of bitwise transformations). 
 
API_DIAG_updateFFEntry provides a more direct and punctual approach, and it’s the 
function used by the ‘Freeze Frame mask’. The function takes as parameters the value of 
the field and the validity flag, along with the enumerative to index the freeze frame field, 
and then simply assigns the first two to the corresponding fields of the indexed 
tDiagFFEntry. 
 
The last function related to the freeze frames is the one used to copy the global freeze 
frame into the new freeze frame in the error memory, API_DIAG_fillFreezeFrame, called 
by the ADIA when moving to the Confirmed and active status. 
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Figure 5.5.10 - API_DIAG_FFMngr, API_DIAG_updateFFEntry, and API_DIAG_fillFreezeFrame, in api_diagobd.c 

 
As stated in the ‘strategy’ section of this chapter, the ADIA doesn’t simply manage the 
copy of the global freeze frame but is also responsible for the insertion, update, and 
erasure of the faults into the error memory. 
 
The function for the insertion of the faults is API_DIAG_ErrMem_insert and is called by 
the ADIA when passing from the Pending status to the Confirmed and active one. It takes 
as input the ID of the fault to insert and returns either the position where it has been 
inserted or the size of the error memory faults array, ERR_MEM_SIZE, if it failed to find an 
entry. 
 
The API_DIAG_ErrMem_insert function can be separated into three parts: the part where 
we look for an empty entry, the case in which we have to try to find an occupied entry, 
and the part where the fault is inserted into the array. 
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The first part simply consists in a ‘for’ loop that sifts through the error memory faults array 
and stops whenever it finds an empty entry, i.e., an entry whose bInit field is set to false. 
 

 
Figure 5.5.11a - First part of API_DIAG_ErrMem_insert, in api_diagobd.c 

 
The second part is executed only if no empty slot was found, as that means that the 
counter used in the first part’s loop reached ERR_MEM_SIZE. In this case, we look for the 
best position to replace; we try to find either an entry with a lower class or one with the 
same class but with higher severity.  
Whenever a suitable entry is found, we check that its timestamp is the greatest found so 
far. In this way, we’ll replace the newest suitable entry, preserving the older ones as per 
guidelines. 
At the end of this part, we’ll either have found the best position where to insert the new 
fault, or we’ll still have the loop index equal to ERR_MEM_SIZE. 
 

 
Figure 5.5.11b - Second part of API_DIAG_ErrMem_insert, in api_diagobd.c 
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The last part of the function is only executed if a valid position has been found in the 
previous steps. The function checks whether the found position contains a B1 or B2 class 
fault in the Confirmed and active state, and in that case decreases the corresponding 
counter. 
The function then goes on to acquire the lock on the critical section, where it will copy or 
create the required data to store in the error memory entry.  
It then releases the lock and returns the found position. 
 

 
Figure 5.5.11c - Final part of API_DIAG_ErrMem_insert, in api_diagobd.c 

 

The next function called from the ADIA is the one responsible for the updating of an entry 
in the error memory. The API_DIAG_ErrMem_updateEntry takes in input the ID of the 
fault and its new state and returns the position of the updated entry (or ERR_MEM_SIZE if 
something went wrong). 
 
Before doing anything, the function calls another method, API_DIAG_ErrMem_getIndex, 
which returns the position of a fault in the error memory given the ID.  
This simple function cycles through the error memory faults array and returns the first 
position containing a used entry with the given ID or ERR_MEM_SIZE if it fails to find one. 
It is also used in the function to initialise the ADIAs at startup, by the ADIA while in the 
Previously active state before trying to move to the No error state, and in the API used to 
retrieve the freeze frame of a given fault. 
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Moving back to API_DIAG_ErrMem_updateEntry, if the getIndex returned a valid value, 
the function goes on reading the current system time calling API_DIAG_getCurrentTime 
and then proceeds to obtain a lock to safely update the entry. 
The update depends on the new state of the fault; if it is Confirmed and active, the 
function first checks that the old state was Previously active, in which case increases the 
entry’s u16TimesReConf field, then goes on to update the u8KeyDevOpSeqClass field and 
the entry’s state. 
If the new state is Previously active, the function simply assigns the read time value as 
the new timestamp, resets the counter for the entry’s warm-up cycles, and updates the 
entry’s state. 
In any other case, it simply updates the state of the entry. The function then updates the 
entry’s fault counter and, if the fault class is B1 and the bsB1MainCnt is greater than 200 
hours, updates the ‘permanent’ flag. 
The function then releases the lock and returns the updated index. 
 

 
Figure 5.5.12 - API_DIAG_ErrMem_updateEntry, in api_diagobd.c 
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The last function used by the ADIA to manage the faults in the error memory is the one 
to erase them, API_DIAG_ErrMem_eraseEntry. This function directly takes in input the 
index of the error memory entry to remove. To optimise the process, rather than cleaning 
up the whole structure, the function simply sets the bInit field of the entry to false, as it is 
the flag that is checked from all the other functions to see whether the entry is valid or 
not. 
As always, before modifying the structure in the error memory, the function obtains a lock 
on the critical session and releases it once done. 
 
Along with all these functions that implement the correct behaviour of the error memory 
in the OBD system, other APIs have also been created to satisfy the requirements defined 
by the Euro-VI and China-VI on the possible requests from external tools.  
 
The list includes: 

• API_DIAG_OBDClean, which cleans up the error memory and certain counters. It 
erases (i.e., sets bInit to false) all the non-permanent entries of the error memory, 
recomputes the recovery lines table, resets the readiness and continuous MI 
counter (not the cumulative one) used by the MIL management, resets the 
counters for the hours and the warm-up cycles since the last cleanup, and 
updates the counters for the active faults calling the 
API_DIAG_MIL_readDiagInfo10ms function. 

• API_DIAG_getB1HourCntr, which returns the hour counter of B1 faults. 
• API_DIAG_getHoursSinceLastOBDClean, which retrieves the hours passed since 

the last OBD cleanup by an external tool. 
• API_DIAG_getWUCSinceLastOBDClean, which returns the number of warm-up 

cycles that have passed since the OBD was last reset with an external tool. 
• API_DIAG_getActiveFaultsCntOfClass, which computes the count of active 

faults of a given class. 
• API_DIAG_getActiveFaultsOfClass, which returns the active faults of a given 

class and stores them in the array passed by parameter, returning the number of 
read elements. 

• API_DIAG_getPreviouslyActiveFaults, which retrieves the previously active faults 
and stores them in the array passed by parameter, returning the number of read 
elements. 

• API_DIAG_getFreezeFrame, which returns the freeze frame (all fields) of the fault 
with the given ID, storing it in an array passed as a parameter, and returns whether 
the fault and the corresponding freeze frame were in memory. 
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The last set of functions created for the management of the error memory were those 
regarding the ‘shutdown’ strategy. Similarly to the ‘startup’ functions, the first link of the 
function chain is called by a task of the operating system, API_OS_KeyOffRoutine. This 
OS procedure calls the API_DIAG_OnKeyOff function before invoking the already seen 
API_EEPROM_save.  
 
The API_DIAG_OnKeyOff is a wrapper for both the before-mentioned 
API_DIAG_KeyDevalManager and the API_DIAG_prepareStoreEEPROM function. The 
latter is the one responsible for copying the values from the volatile variables and 
structure into their NVRAM counterparts. It also computes the checksum and stores it into 
the bsDiagEePROM structure’s bsCRC field, using the EDATA_CalcDataChecks base-
software function. 
 

 
Figure 5.5.13 - Parallels between the startup and shutdown procedures for what concerns the error memory 
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5.5.4. Freeze Frame Mask 
To manage the global freeze frame at model-based software level, a new Simulink mask 
has been implemented. The mask can be used to select the fields of the freeze frame 
that shall be filled by the system and will produce a block that will take as input the values 
for the selected fields, and only those. 
 
The GUI of the mask is divided into six tabs: 

• Mandatory fields 
• Mandatory fields when present1 
• Optional 1, 2, and 3 
• Optional custom 

 
Each tab contains fields belonging to a different category seen in the requirements part, 
to facilitate the selection of distinct entries. A field can be selected or deselected simply 
by checking the box next to the name. 
 

 
Figure 5.5.14 - Two tabs of the mask's GUI 

 
1 It could be a measure from a real sensor (if present) or from a virtual one (by model). 
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The fields’ names are taken directly from the api.h file, from the labels of the tDiagFFField. 
To add a new field, one can simply go and change the reserved positions of the enum 
(those named FF_FUTURE_USE_N) or directly add others. In case of addition of entries, 
rather than replacing them, the user must also remember to update the #define 
FF_N_FIELDS with the new number of fields. 
 
Once the desired fields have been selected, pressing the GENERATE button on the GUI will 
update the mask’s block to include the new input ports, one for each chosen field. 
 

 
Figure 5.5.15 - Example of block with four fields selected, with its input ports connected with the appropriate sources 

 

The mask uses three scripts: one for the initialisation, one to generate the block’s internal 
model, and one to update the block’s appearance based on the selected fields. 
 
The initialisation script, mskFreezeFrameInit, reads the fields from the library file and 
automatically checks the mandatory fields. 
 
The script used to generate the block’s subsystem, mskFreezeFrameGenerate, is made 
up of five different functions. The homonymous mskFreezeFrameGenerate is the one 
called from the block and pilots the execution of the other four. 
It starts by invoking the Port_Keeper function to temporarily save the already existing 
connections. 
Then computes the array of flags for the selected fields using the 
computeAvailableArrays function, returning a boolean array with ‘true’ for the selected 
fields’ positions. 
The main function will then clear the block’s internal model and call the ManageEntries 
function. For each ‘true’ flag in the array, the function will create four components: a 
constant block containing the enumerative label of the field, an input port to read the 
field’s value from, a constant block for the availability flag of the freeze frame entry, and 
the API block of the API_DIAG_updateFFEntry. It will then connect each of the first three 
blocks to the correct input port of the API block. 
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Once the ManageEntries has finished, the main function will call the Beautifier method, 
which will improve the placement of the generated blocks in order to make the model 
more pleasing to the human eye for understandability reasons. 
 

 
Figure 5.5.16 - Example of the generated internal model 

 
For what concerns the usage of the freeze frame management system, the suggested 
strategy consists in designing a single model containing the mask with the selected 
fields and converging the various input signals for the freeze frame entries to that single 
model. The model’s code should then be placed into a periodic task of the operating 
system, making sure that it gets executed before any ADIA does, as to ensure that the 
freeze frame is updated in case of insertion in the error memory. 
 
This isn’t the only way, as many strategies are possible using the provided APIs, but it 
should be considered the most efficient one, as it introduces a single point of 
management. It is also the strategy adopted in the sample application developed for 
testing purposes. 
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5.6. MIL Management 
The Malfunction Indicator Light is a key component of OBD, as it not only allows the drivers 
to immediately notice if a fault presents itself, but it is also useful to the technical 
personnel to discern the severity of the fault even before the usage of external tools. 
 

5.6.1. Requirements 
For the definition of the requirements for this topic, the focus went to the WWH-OBD, Euro-
VI and China-VI documents.  
 
The extracted requirements included constraints on the timing and behaviour of the 
lamp, the conditions for its activation and deactivation, and the information on the MIL 
status that the system must be able to provide.  
Other requirements, such as the colour of the indicator, went ignored as not inherently 
regarding the software part. 
 
The WWH-OBD MIL management defines the behavioural constraints of the indicator 
differently depending on whether the engine is on or off.  
 
Another distinction in the indicator functioning is given by the readiness status of the 
system. The readiness of the OBD (On-Board Diagnostics) system refers to the status of 
various self-diagnostic tests, also known as readiness monitors, that the computer 
performs to ensure the emissions control systems are functioning correctly. Although the 
documents do not specify any constraint on these monitors, they do define the different 
behaviour of the MIL depending on the completion of such tests. 
 
Each combination of engine status, readiness status, and active fault classes determines 
the MIL status and produces a different on/off pattern of the light, whose timings and 
durations are precisely defined by both Euro-VI and China-VI guidelines. 
 
The regulations define four operating modes for the MIL: no active DTC, On-demand, 
Short, and Continuous.  
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Figure 5.6.1 - Examples of the required behaviours and timings of the MI under different conditions 

 
As the base for the requirements was the harmonised OBD, the final implementation 
doesn’t make any distinction between discriminatory and non-discriminatory systems 
and uses the discriminatory approach for the engine on status. For non-discriminatory 
screens, the Continuous mode is applied regardless of the fault's class. 
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A summary of the lamp’s timing for each activation mode is the following (higher 
number equals higher precedence over the other modes): 

• Mode 1: Absence of malfunction (No Dtc MI) 
o The MIL will flash 1 time (1s): ON(1s) + OFF(5s) + ... 

• Mode 2: On-demand MI 
o Engine Off: the MIL will flash 2 times: ON(1s) + OFF(1s) + ON(1s) + OFF(5s). 
o Engine On: the MIL will stay on (non-discriminatory systems) or off 

(discriminatory systems). 
• Mode 3: Short MI 

o Engine Off: the MIL will flash 3 times: ON(1s) + OFF(1s) + ON(1s) + OFF(1s) + 
ON(1s) + OFF(5s). 

o Engine On: the MIL will stay on (non-discriminatory systems) or will be ON 
(15s) and then stay off (discriminatory systems). 

• Mode 4: Continuous MI 
o Engine Off: the MIL will stay on. 
o Engine On: the MIL will stay on. 

 
For what concerns the required information related to the MI that the system must 
provide, the list includes: 

• MIL status. 
• Readiness of the diagnostic system. 
• Number of hours passed with a continuous MI since the last time that the MIL was 

activated. 
• Cumulative number of engine hours with an active continuous MI. 
• Confirmed and active faults of every class. 
• Permanent failure codes. 
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5.6.2. Strategy 
The original logic for the management of the MIL went basically untouched, as it already 
followed almost step-by-step what was required from the regulations. The main focus 
was once again to simplify it while still satisfying all the requirements. 
 
Due to the complexity of the system caused by the high number of variables and 
different conditions to keep track, the adopted strategy made use of finite state 
machines. The first step was to redraw these automa, discarding the unneeded 
intermediate states. 
 
The final result is a hierarchical structure of FSMs that is able to manage the behaviour 
of the malfunction indicator just as required by the guidelines. 
 
The hierarchy starts with the automaton used to discern between the engine’s status. 
The FSM contains three states: an initialisation state, used only to set up the variables 
before entering the actual states, an ‘engine not ignited’ state, and an ‘engine ignited’ 
state. Both the engine states correspond to an automaton. 
The FSM enters one of the two engine states depending on whether a global flag is set. 
The flag must be set at MBS level through the use of an API.  
The automaton moves from one state to the other with the changing of the global flag. 
In addition to the first flag, a second one is needed for the transition from the ‘ignited’ to 
the ‘not ignited’ state to avoid resetting the MIL for ‘Start and Stop’ systems. 
 

 
Figure 5.6.2 - FSM for the engine states 
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The ‘engine off’ FSM is the largest of the bunch, as it counts a total of five states, with two 
of them being automata themselves. The flow of the automaton is linear, with each state 
being reached sequentially without backward branches from a state to the previous 
ones. 

 
Figure 5.6.3 - FSM for the engine not ignited 
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The first state is the BulbTest, where the MIL is kept on for 5 seconds. Once the timer 
reaches the correct value, the FSM moves on to the next state. 
 
The second state is Separator1, where the light is kept off. Once the timer registers that 
10 seconds have passed, the next state is reached. 
 
The third state, Readiness, is actually a finite state machine with two possible states, 
Ready and NotReady. The state of this FSM is determined based on the value of the 
global readiness flag. If the flag is set to 1, the Ready state is selected, and the light is kept 
on for 5 seconds. Otherwise, the NotReady state, which implements the flickering of the 
light thanks to another sub-FSM, is chosen. 
 

 
Figure 5.6.4 - FSM for the Readiness state 

 

After 5 seconds have passed, the ‘not ignited’ FSM enters the Separator2 state, which will 
turn off the light for 5 seconds before moving to the last state. 
  
The final state, FaultClass, is the FSM that governs all the other FSMs implementing the 
MIL behaviour based on the active faults: in case of class A faults or class B1 faults with 
more than 200 engine hours, the selected state will be ContinuousMI. 
When the previous conditions are not verified but the last active class A or B1 fault 
happened in the last 3 operating sequences (as per the guidelines), or if there are 
currently active B1 or B2 faults, the ShortMI state will be selected. 
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If all the before-mentioned cases failed and there is any active class C fault, the 
OnDemandMI state will be chosen. 
Lastly, if none of the previous conditions are true and there is no currently active fault, the 
NoDtcMI state will be the active one. 
Every 5 seconds, the state will be recomputed to be up to date with the current system’s 
status. 
 

 
Figure 5.6.5 - FSM for the FaultClass state 

 
The ContinuousMI state does not correspond to an FSM, as it simply means that the light 
will be kept on. 
  
The ShortMI state is instead implemented with an FSM with two states. 
The first state, Blinking, is also a finite state machine that alternates between the two 
internal states MIOn and MIOff to blink the lamp, passing from one state to the other 
every second. 
After 5 seconds have passed, the ShortMI automaton moves to the Off state, which lasts 
for 5 seconds, in which the indicator remains off. 
  
The OnDemand FSM works in the same way as the ShortMI one, but the Blinking state only 
lasts for 3 seconds. This means that in a cycle there will be only two ‘on’ peaks, against 
the three of the short activation mode. 
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Figure 5.6.6 - FSM for the ShortMI state, almost identical to the OnDemandMI automaton 

 
The remaining state, NoDtcMI, also corresponds to a simple FSM with two states: Blink, 
lasting for 1 second, with the light on, and Off. 
 

 
Figure 5.6.7 - FSM for the NoDtcMI state 

 

The last automa is the one describing the behaviour of the system when the engine is 
already ignited. The automa works as follows: 

• If there are class A errors or class B1 errors and the B1 meter has reached 200 hours, 
the indicator light mode is the fourth, that is Continuous MI, and the indicator light 
is continuously activated. The automaton state is called ContinuosMI. 

• If the Short MI mode has not been activated yet and 15 seconds still haven't passed 
since the engine started: if in the not ignited phase the indicator was in the Short 
state, or if 3 operating sequences have not yet elapsed since the last continuous 
mode MI was switched on or since the last de-validation of a class B1 or B2 fault, 
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then the indicator light mode is the third one, i.e., Short MI, and the indicator is kept 
active for 15 seconds. This corresponds to the ShortMI state of the automa. 

• If the short MI mode has already been activated, or type B1 or B2 faults are present, 
or if 3 operating sequences have not yet elapsed since the last continuous mode 
MI was switched on or a class B1 or B2 fault was last de-validated, then the 
indicator is set to the third mode, but the lamp is still kept off because the first 15 
seconds since the engine started have already passed. This corresponds to the 
sub-state Short of the MIOff. 

• If class C faults are present, the indicator shall be set to the second mode, namely 
On-demand MI, but the lamp shall still be kept off. This can be seen in the 
OnDemand sub-state. 

• If none of the previous cases happened, the indicator mode is the first, a.k.a., No 
Dtc MI, while the lamp is kept off. 

 

 
Figure 5.6.8 - FSM for the engine ignited 

 
The designed finite state machines require support for the counters and the checks on 
the active faults to work. Additionally, the strategy requires functions to set the state of 
the engine and mark the passing of the operating sequences. As already shown, the 
operating sequence management has been handed to the users; both the engine status 
and the system readiness have been treated similarly, providing APIs to manage them 
at the model-based software level. 
  



145 

 

5.6.3. Implementation 
While the implementation of this part did not require any particular data structure, it does 
make use of many variables, and they also occupy some of the entries in the error 
memory tDiagEEPROM structure. The values that must be stored in order to retrieve them 
after a shutdown are: 

• The continuous MI fault absence operative sequences counter, bsAOpSeq. 
• The resettable Continuous MI time counter with hourly precision, bsContMICntEE, 

and its support counter with 10 [ms] precision with carry-over, bsContMISecCntEE. 
• The non-resettable cumulative MI hour counter, bsContMICumCntEE, and its 

support counter with 10 [ms] precision and carry-over, bsContMICumSecCntEE. 
• The counter for the operating engine hours without continuous MI, bsOpACntEE, 

and its support counter with 10 [ms] precision and carry-over, bsOpASecCntEE. 
• The flag that shows whether the readiness monitors have been completed at least 

once since the last reset via external tools, osReadiness. 
 
In addition to these fields and their volatile memory counterparts, there are other 
important variables for the implementation of the strategy, namely the counters of the 
number of active faults for each class, the flags to mark whether a fault of a certain class 
happened in the current operating sequence, the flag for the engine ignition, and the 
variables containing the states of the automata used. 
 
The state variables are the one for the engine state FSM, osDiagEngFSMState, the one for 
the engine not ignited FSM and for its sub-FSM FaultClass, osDiagEngNotIgnFSMState 
and osDiagEngNotIgnFltClss. 
  
The first state variable’s type is the enumerative tDIAGEngState, which simply contains 
the three states init, ignited, and not ignited. 
 
The second and third variables share the tDIAGEngNotIgnState enum as their type. The 
labels of this enumerative are split between the four states of the main FSM and the 
states of the sub-FSM. 
 
Although an enumerative for the engine ignited FSM states was originally designed, the 
implementation chosen for that automaton does not require a state variable, and the 
enumerative was consequently discarded.  
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Figure 5.6.9 - Enumeratives for the types of the state variables, in api.c 

 
Other support variables include the timers used by the automa, osMIDisplayTimer1 and 
osMIDisplayTimer2. 
 

Besides the error memory structure, another piece of the implementation that includes 
a part useful to the MIL management has already been shown, the 
API_DIAG_A_opSeqManager. This wrapper API includes a call to the function that 
manages the counter of operating sequences without continuous MI activations, 
API_DIAG_A_opSeqManager.  
 
The function increments the bsAOpSeq counter when the engine is ignited and the MIL 
has not been activated in continuous mode during the current operating sequence, up 
to a certain threshold (according to the standards, 3). If the presence of a continuous MIL 
was registered (the bsContMILWentOn flag was set), instead it resets the counter. In 
addition, it also resets bsContMILWentOn if the continuous MIL is currently off. 
 
Another function that has already appeared but is mostly important for the MIL 
management is the API_DIAG_MIL_readDiagInfo10ms function, that is called by 
API_DIAG_OBDClean. The function is used to fill the counters of the numbers of different 
types of Currently active faults in the error memory. It works by simply sifting through the 
error memory fault array and updating the counter based on the current entry class and 
state. 



147 

 

Apart from being called by the clean function, this method is also periodically invoked by 
the OS routine API_OS_Task10ms to keep the counters updated for the MIL. 
 
Another function called by the API_OS_Task10ms task, after 
API_DIAG_MIL_readDiagInfo10ms, is API_DIAG_opHoursManager. This procedure is 
designed to manage the counters used as timers for the engine hours passed with and 
without continuous MI.  
 

 
Figure 5.6.10 - API_DIAG_opHoursManager, in api_diagobd.c 
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The function is split into two parts with an ‘if-else’ construct: 
• If the continuous MI is on, i.e., if the osContMIFIg flag is set, the function increases 

the secondary counters bsContMISecCntEE and bsContMICumSecCntEE. It then 
goes on to check if either of them reached an hour, and in that case resets the 
counter in question and increases the corresponding primary counter (either the 
resettable bsContMICntEE or the cumulative bsContMICumCntEE). 

• If the continuous MIL isn’t on and the engine is ignited, the function increases the 
secondary counter bsOpASecCntEE and then checks whether an hour has passed 
on it. If that is the case, the secondary counter is reset and the main counter 
bsOpACntEE is increased; then, if enough hours have passed (by regulations, 200 
hours), the function resets the counters for the operating hours with continuous 
MI, bsContMISecCntEE and bsContMICntEE. 

 
All the previous functions are used to support the ones implementing the FSM shown in 
the ‘Strategy’ section. 
  
The function API_DIAG_MIL_EngineFSM implements the first state machine, which 
switches between engine ignited and non-ignited states. Differently from what 
happened with the ADIAs, here there is a single call to this function, and it is embedded 
in the code and not up to the user. The function is called by the operating system’s task 
API_OS_Task10ms after all the other procedures have been executed in order to have all 
the variables (timers, counters) correctly updated. 
 
Moreover, the API_DIAG_MIL_EngineFSM function has the task of invoking the other two 
main FSMs and does so depending on its internal state. The three possible states of the 
machine have been implemented using a ‘switch’ construct on the state variable 
osDiagEngFSMState. 
 
If the variable’s value is ENG_STATE_INIT, which corresponds to the default initialisation 
value at startup, the function checks the flag osEngineIgnited, which marks whether the 
engine is ignited or not, and that can be set via the API_DIAG_setEngineIgnited API. 
If the flag is set to zero, the function initialises the osMIDisplayTimer1 with the 10 [ms] OS 
timer read at the beginning of the function, then sets its state variable to the 
ENG_STATE_NOT_IGN and initialises the state variable of the not ignited FSM with the 
ENG_NIGN_STATE_BULBTEST state. 
If the flag is equal to 1, instead sets the osMIDisplayTimer1, changes its state variable to 
ENG_STATE_IGN, and turns off the lamp. 
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Figure 5.6.11a - The ‘init state’ case of API_DIAG_MIL_EngineFSM, in api_diagobd.c 

 
If the state variable is set to ENG_STATE_NOT_IGN, it starts by checking the engine ignited 
flag and, if it has been set, updates the osMIDisplayTimer1 counter, resets the engine not 
ignited state variable to the ENG_NIGN_STATE_BULBTEST value, turns off the lamp setting 
osMILCmd to false, and finally changes its own state variable’s value to ENG_STATE_IGN. 
Regardless of whether the previous actions have been taken or not, the function then 
calls the API_DIAG_MIL_EngineNotIgnitedFSM method, implementing the not ignited 
FSM. 
  
The ENG_STATE_IGN switch case starts by checking if the engine ignited flag has been 
reset to zero, and in that case initialises the osMIDisplayTimer1 with the current value of 
the 10 [ms] timer, then updates the FSM state variable to ENG_STATE_NOT_IGN. Note that 
the additional check done for ‘Start and Stop’ systems is not done in the state-switch 
condition, but rather it is implemented in the API for the engine ignited flag, 
API_DIAG_setEngineIgnited, that checks the value of the calibratable flag 
osEN_ENG_NOT_IGN to decide if it is possible to go back to the not ignited status. 
Independently from the results of the flag check, the FSM executes the function 
implementing the engine ignited state machine, API_DIAG_MIL_EngineIgnitedFSM. 
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Figure 5.6.11b – The ‘engine state’ cases of API_DIAG_MIL_EngineFSM, in api_diagobd.c 

 

The API_DIAG_MIL_EngineNotIgnitedFSM function implements the engine not ignited 
state machine using a ‘switch’ construct with five cases plus the default one. The FSM 
moves from one state to the next once the difference between the current OS 10 [ms] 
time counter and the osMIDisplayTimer1 is greater than a certain threshold, which 
depends on the current state. Each of these thresholds is a calibratable variable with the 
default value provided for by the guidelines. 
 
The first case, ENG_NIGN_STATE_BULBTEST, simply keeps the MIL on, setting osMILCmd to 
true. Once the threshold osBULB_TEST has been reached, it turns off the MIL, updates the 
time counter with the current value, and moves to the next state, 
ENG_NIGN_STATE_SEPARATOR_1. 
 
The ENG_NIGN_STATE_SEPARATOR_1 case keeps the MIL turned off and, once reached 
the os1ST_SEPARATOR time threshold, updates the main time counter and the 
secondary one (osMIDisplayTimer2), turns on the MIL, and prepares the FSM for the next 
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state, updating the state variable’s value to ENG_NIGN_STATE_READINESS. Additionally, 
it also prepares the readiness sub-FSM by setting its state variable, 
osDiagEngNotIgnSubState. 
 

 
Figure 5.6.12a - First two cases of the API_DIAG_MIL_EngineNotIgnitedFSM function, in api_diagobd.c 

 
The ENG_NIGN_STATE_READINESS case implements a sub-automaton with three states. 
The first state is reached if the readiness flag has been set using the 
API_DIAG_setDiagsReady API, and it simply turns on the MIL. 
The other two states are used to produce a blinking effect, turning the MIL on and off and 
moving from one state to the other when the difference between the secondary time 
counter and the current OS time is greater than 0.5 seconds. 
The function then uses the main counter to check if the osREADINESS_BIT threshold has 
been reached before moving to the next state. 
  
The following case, ENG_NIGN_STATE_SEPARATOR_2, works exactly as the previous 
separator state except for the use of a different threshold, os2ND_SEPARATOR. 
The lamp remains off for the whole duration of the state, then the machine moves to the 
next state, which implements the FaultClass sub-FSM, setting both the engine not ignited 
state variable and the sub-automaton state variable’s values to 
ENG_NIGN_STATE_FAULTCLASS. 
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Figure 5.6.12b - Readiness FSM and the second separator case of API_DIAG_MIL_EngineNotIgnitedFSM, in api_diagobd.c 

  
The ENG_NIGN_STATE_FAULTCLASS case implements the FaultClass FSM seen in the 
‘Strategy’ section. To determine which of the possible states the machine should enter, a 
first part performs a set of checks on various conditions, using an ‘if-then-else if’ 
structure to ensure that the most severe conditions have priority. 
  
The first check is performed for the Continuous MI mode, and if it is successful, the 
activation mode (osMILActMode) is set to 0x3, the lamp is turned on, the sub-machine 
state variable is set to ENG_NIGN_STATE_FAULTCLASS_CNT, and the 
API_DIAG_activateContinuousMI function is called. This function is used to reset all the 
various counters that kept track of certain events without continuous MI activations and 
sets the osContMIFIg and bsContMILWentOn flags. 
 
The next check is for the Short MI activation mode, and if the conditions are verified, the 
function turns off the MIL, sets the activation mode to 0x2, updates osMIDisplayTimer1 and 
osMIDisplayTimer2 to use them in the Short MI FSM, and sets the sub-FSM state variable 
to ENG_NIGN_STATE_FAULTCLASS_SHRT. 
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The third check is done for the On Demand MI mode and initialises the same variables 
but sets the activation mode to 0x1 and the sub-state variable to 
ENG_NIGN_STATE_FAULTCLASS_DMND. 
  
If none of the previous checks passes, the function updates osMIDisplayTimer1, turns off 
the lamp, sets the activation mode to 0x0 (No DTC), and sets the sub-state to 
ENG_NIGN_STATE_FAULTCLASS_NODTC. 
 

 
Figure 5.6.12c - FaultClass section to determine the sub-FSM state in API_DIAG_MIL_EngineNotIgnitedFSM, in api_diagobd.c 

 

The second part of the case is what actually implements the FaultClass FSM, using a 
‘switch-case’ construct on the osDiagEngNotIgnFltClss state variable. 
 
The first case of this switch is ENG_NIGN_STATE_FAULTCLASS_CNT, and it simply keeps 
the lamp on. 
 
The second case defines the MIL behaviour for the Short MI activation mode, and id uses 
a ternary variable, osDiagEngNotIgnSubState, to determine whether blink the lamp or 
keep it off. For the blinking, the secondary time counter is used, while the main time 
counter, osMIDisplayTimer1, is used both to keep the light off for 5 seconds after blinking 
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and to move back to a new state by returning to the first part of the 
ENG_NIGN_STATE_FAULTCLASS case. 
 

 
Figure 5.6.12d - The first two states of the implemented FaultClass FSM in API_DIAG_MIL_EngineNotIgnitedFSM, in api_diagobd.c 

 
The third switch case, i.e., when the osDiagEngNotIgnFltClss variable assumes the value 
ENG_NIGN_STATE_FAULTCLASS_DMND, is used to implement the OnDemand MI 
activation mode. It exploits the same ternary variable of the previous case and works in 
the same way, but with slightly different timings (as the MI must blink twice rather than 
thrice per cycle). 
  
The last case, ENG_NIGN_STATE_FAULTCLASS_NODTC, still uses the same ternary 
variable osDiagEngNotIgnSubState but only needs two values, as the lamp must blink 
only once. For this reason, unlike the two preceding states, it only uses the 
osMIDisplayTimer1 counter for both the MIL and to move to the other states (by returning 
to the first part of the ENG_NIGN_STATE_FAULTCLASS case). 
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Figure 5.6.12e - The last two states of the FaultClass FSM and the last lines of the ‘engine not ignited’ FSM, in api_diagobd.c 

 
The FSM for the engine ignited is implemented in the API_DIAG_MIL_EngineIgnitedFSM 
function. As expected from the FSM graphs shown in the ‘Strategy’ section, this function’s 
structure is far simpler than the engine not ignited one. It does not require a personal 
state variable anymore because it is sufficient to keep track of the combination of the 
activation mode and the osMIDisplayTimer1 to produce the required MIL behaviour. 
The implementation is similar to the first part of the FaultClass section of the engine not 
ignited function, with a set of mutually exclusive conditions checked with an ‘if-elsif’ 
construct. 
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The first condition is the one used for the Continuous MI activation on the class A faults 
and the class B1 with more than 200 hours. The verification of the condition sets the 
activation mode variable to 0x3, turns on the light, and calls 
API_DIAG_activateContinuousMI. 
 
The second condition is used for the part of the Short MI mode during which the lamp is 
kept on. The function checks that the osB1EngOnFlag is still off and that the first 15 seconds 
(osB1_ENGINE_ON) since the system’s startup haven’t already passed. It also checks 
that either the activation mode is already 0x2 or that it still hasn’t passed a guidelines-
defined number of consecutive operating sequences without class A or B1 faults. 
If the conditions are respected, the lamp is turned on, the mode is set to 0x2, the 
osB1EngOnFlag that indicates the lasting presence of class B1 faults is set to true, while 
the flag for Continuous MI, osContMIFIg, is set to false. 
 
The third set of conditions is the one that determines the behaviour of the lamp in Short 
MI mode after the first 15 seconds of operation. The condition is verified if either one of 
the following checks is true: 

• The flag osB1EngOnFlag is set. 
• The number of consecutive operating sequences without continuous MI 

activation, bsAOpSeq, is lower than the value defined by the regulations, 
bsOP_SEQ_A_THR (i.e., 3). 

• The number of consecutive of consecutive operating sequences without active B1 
or B2 faults is lower than their respective thresholds (i.e., 3). 

• The number of active faults of class B1 or B2 is greater than zero. 
If the conditions are cleared, the function sets the activation mode to 0x2, and then, if the 
required amount of time (osB1_ENGINE_ON) has already passed, the MIL is turned off, 
and so is the osContMIFIg. 
 
The final ‘else’ of the construct contains the code for all the sub-states if the MIOff state 
of the original engine ignited FSM. Just like the previous case, it sets the osMILCmd and 
osContMIFIg flags to false, then sets the activation mode to 0x1 or 0x0 depending on 
whether there are active faults of class C or not. 
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Figure 5.6.13 - API_DIAG_MIL_EngineIgnitedFSM, in api_diagobd.c 

 
The functions seen until now are used to manage the status of the MIL, modifying its 
parameters, namely the activation mode and the on/off status, acting on system 
variables. To allow these variables to pilot the actual lamp, two APIs have been 
programmed: API_DIAG_MIL_getMILCmd and API_DIAG_MIL_getMILActMode. 
  
In addition, to satisfy the requirements on the information that the OBD system must be 
able to provide, APIs to read the resettable continuous MI hour counter and the 
cumulative one have also been introduced: API_DIAG_MIL_getContMICntr and 
API_DIAG_MIL_getCumulContMICntr. 
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5.7. Example Applications 
To ensure that the implemented solutions worked as intended, an example application 
has been developed in parallel with the implementation of each component of the 
diagnosis flow, and an additional ‘Demo’ application has been created once the work 
has been completed. This allowed to perform parallel testing, as new parts were 
implemented, as well as integration testing, ensuring that the pre-existing code’s 
behaviour was not altered in the process.  
 

5.7.1. Parallel Test Models 
The designed application implements the totality of the blocks required for the diagnosis 
flow, from the detection of the fault to the activation of the recovery lines. The models 
also simulate the work of external tools to read the values contained in the error memory.  
 
To facilitate the testing, temporary APIs (enclosed in red squares in the following images) 
have been created to allow, through the use of CANape, the visualisation of certain data 
that wouldn’t normally be accessible during the system operation. As these functions 
were developed alongside the solution, some of those debug-only APIs covers the same 
scope of certain APIs provided for the external tools. 
 

 
Figure 5.7.1 – The model for testing the fault management 

 
The first model shown is called ADIA_Test100ms. It was used to test the ADIA 
implementation, the correct insertion in memory of a fault’s own data, and the 
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consequent activation of the recovery lines. It was also used to test the mask block. The 
generated code was executed in the operating system routine API_OS_Task100ms. 
The ‘normal’ model parts include: 

• A constant block for the calibration zsVOLT_IN, used to manipulate the input value 
read from the sensors. In the final test, the calibration was replaced with a digital 
input in order to manually create an open circuit fault. 

• The Fault_Check_Test_Routine subsystem, that takes the signal outputted from 
the constant block, zsReadVolt, compares it to a threshold, and returns an error 
code when the value is below the threshold. 

• The diagnosis line and ADIA mask block, with the mask opened in Figure 5.7.1, with 
the selected fault ID being DLF_PWRGND_SGND. The block takes as input the 
enable signal, obtained from the calibration zsAUTOMA_ENABLE, and the result of 
the fault check routine, in the signal dsDLF_PWRGND_SGNDPtErr. The value 
returned from the ADIA manager is stored in the signal 
dsDLF_PWRGND_SGNDErrSt, not visible in the picture as it is inside the mask 
block. 

 
The parts of the model used for testing purposes are: 

• On the top-left of the picture, four enabled subsystems, each piloted by a different 
calibration, and each one containing a different API block:  

o Piloted by the calibration dsDO_WARMUP_CYCLE, calls the API for the 
completion of a warm-up cycle. 

o Piloted by dsDO_OPSEQ_DECR, enables the API block for the completion of 
an operating sequence. 

o Piloted by dsDO_ERR_MEM_RESET, uses a testing-only API to reset the 
whole error memory. 

o Piloted by dsDO_CURR_TIME_RESET, uses a testing-only API to reset the 
system timers. 

• On the top-right, the ErrMem_Entry subsystem uses various testing-only 
functions to read the various fields of an entry of the error memory faults array 
given its index, and the associated signals. Just below it, the testing-only 
API_DIAG_DEB_getCurrentTime is used to read the current time of the system and 
output it to the dsCurrentTime. 

• At the bottom of the picture, the GREC_Read subsystem uses the API block to read 
a recovery line given its index, API_DIAG_GREC_getEntry; although this block is 
available under normal circumstances, the read value of the lie should pilot a 
recovery function, not implemented here. Next to it is the debug-only function 
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block to read the current value of the fault counter of an ADIA, given the ID of the 
ADIA’s fault. 
 

 
Figure 5.7.2 - The model to test the B1 and B2 counters, ADIA_B1B2Test100ms 

 

The second model introduced is the one used to test the correctness of the 
implementation of the B1 and B2 faults’ timers and counter, ADIA_B1B2Test100ms. 
  
The non-testing part of the model is the same as the previous image, with the set of 
blocks used to define a diagnosis line and feed to its ADIA the result of a fault check 
routine. Having both this model and the previous one allowed to validate the solution 
with multiple faults of different classes present at the same time. 
  
The testing component for this model, B1B2_Checks, is a subsystem that contains 
various testing-only API blocks that allow to read the following information: 

• The number of active faults of classes B1 and B2. 
• The main and secondary counters for the time passed with an active B1 fault. 
• The number of continuous operating sequences without active B1 or B2 faults. 
• The flags used to check if a fault of one of those two classes went to the Confirmed 

and active state during the current operating sequence. 
 
As one might notice, some of the testing APIs provide information that should be 
obtainable through the functions written for the external tools. This is because, while 
these test models were created hand in hand with the solutions they tested, the tools 
were one of the last topics covered.  
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This had the beneficial effect of having already a solid base to start from when 
implementing the tool’s API: the test functions. 
 

 
Figure 5.7.3 - The model for testing the Freeze Frame setup mask, FF_Test10ms 

 

The third model, FF_Test10ms, was created to put to the test the freeze frame system 
and the mask to setup the global freeze frame. The freeze frame management, 
although designed with the other parts of the error memory, was actually implemented 
later than the rest; here’s why it was only tested with the third Simulink model. 
  
The actual system part is only the mask block for the global freeze frame (with the open 
GUI in Figure 5.7.3), with just the four mandatory fields selected and with the 
corresponding ports piloted by four calibrations: dsCALC_LOAD for the engine torque, 
dsROTATORY_ENG_SPEED for the rotatory speed of the engine, dsENG_COOL_TEMP for 
the coolant temperature, and dsBAROM_PRESS for the estimated barometric pressure. 
Using calibrations simplified the tests and allowed us to check if the freeze frames 
copied in memory changed along the global one. 
  
The test-only part was a set of blocks used to read the value of a freeze frame field, 
given its enumerative label, of a fault in a certain position in the error memory, where 
the position was directly passed with the dsFF_ERR_MEM_POS calibration. There was 
one of these blocks for each of the mandatory fields, and each had its own output 
signal to visualise it on CANape. 
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Figure 5.7.4 - The model to test the APIs available for the external tools, TOOL_Test1s 

 

As previously stated, the majority of the APIs for the external diagnostic tools were the 
last to be developed, and many used the previously mentioned test-only functions as a 
base. The model designed to test these APIs is TOOL_Test1s, partially visible in Figure 
5.7.4.  
 
The model simply uses the given APIs to check the information that an OBD system is 
required to provide as per regulations. The only additional components are the ‘If Action’ 
subsystems used for those APIs that return an array and the number of found elements, 
such as API_DIAG_getActiveFaultsOfClass, API_DIAG_getPreviouslyActiveFaults, 
and API_DIAG_getFreezeFrame. In those cases, the model used a conditional 
subsystem that, if the number of retrieved elements was greater than zero, a subsystem 
was executed to sift through the returned array looking for a specific entry. The entry to 
find was determined using a calibration; in the following image, dsTOOL_FFPOS. 
 

 
Figure 5.7.5 - Example of 'If action' subsystem in the TOOL model 
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5.7.2. Demo application 
The Demo application was designed to analyse the process from a user's perspective, 
following the complete flow of the diagnostic functions, starting with the definition of a 
fault check routine and ending with the execution of the recovery function. 
 
The application works by detecting the presence of an open circuit on a PWM output 
piloting a LED. The open load will be produced by the tester by disconnecting the 
controlled pin on the board’s Break-Out Box (BOB). 
Once the fault check routine detects the presence of the open circuit, it issues an error 
message that gets fed to the diagnosis line’s mask block. Once this fault gets elaborated 
from its ADIA and becomes confirmed, its recovery lines will be activated. One of these 
recovery lines will pilot a recovery function. In the meantime, another LED will work as the 
MIL. 
 

 
Figure 5.7.6 – The board’s BOB with the two LEDs, red for the MIL and blue for the piloted pin 

 
Aside from the model that contains the global freeze frame mask, the demo required two 
other models. 
 
The first one was used to generate the output to pilot the LED on the observed pin, making 
use of the Metatron Library’s API_PWMOUT_setPeriodAndDuty to determine the 
parameters for the PWM signal. 
 
The second, and main, model implemented the various parts of the OBD diagnosis flow 
and was called Demo_App100ms.  



164 

 

 
Figure 5.7.7 - DEMO application 

 
The main model was divided into three parts, that can be distinguished in Figure 5.7.7, 
from top to bottom: a first part inherent to the fault, a middle part for the MIL, and the 
bottom part used for the recovery function. 
 
The first part included both the fault check routine and the diagnosis line block. The 
routine was simply an API that listened to the PWM pin and returned either a 
DIAG_STATUS_OK message or the detected fault. 
 

 
Figure 5.7.8 - Fault check routine for the DEMO application 

The middle section made use of the MIL APIs to read the status of the system’s variable 
associated with the lamp being on or off. The read value was then fed to Metatron’s 
API_DOUT_setDigOut block, to pilot a digital output pin connected to a LED. This way, the 
system simulated an actual indicator lamp, giving visual feedback to the tester. 
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The last part operated on the recovery lines; once the open load fault reached the 
Confirmed and active status, its associated recovery lines would activate. The recovery 
line in the position defined by the calibration dsDEMO_GREC_POS was used to pilot the 
‘Recovery Function’ subsystem. Inside of it, the recovery line’s value would be used to pilot 
another digital output, and the value could be checked either on CANape by reading the 
associated signal or by connecting to the digital output the LED that had been 
disconnected from the PWM pin to create the fault. 
 

 
Figure 5.7.9 - Recovery function for the DEMO application 

 

5.7.3. CANape visualisation and results 
All the tests were conducted with the use of the CANape tool. This program not only 
allowed to watch the system variables values in real time, but thanks to the possibility of 
changing the calibrations at runtime, it also made it possible to efficiently trigger the 
various cases, e.g., it provided a way to modify the class of a fault without the need for 
rebuilding the code from the model, and it made it possible to shorten the required 
amount of hours to trigger certain events. 
 
For each of the models/diagnosis flow parts, a CANape tab was created to put together 
all the calibrations and signal readings for a certain component of the solution in order 
to facilitate the study of the behaviour of each piece. 
  
Thanks to the graphical visualisation of the variables and their history, CANape allowed 
for a better understanding of the system response and timings. 
 
For example, it was particularly useful to visualise the MIL patterns; although the ‘Demo’ 
application included a LED that operated as the MIL, it was somewhat difficult to precisely 
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discern the timings of the LED’s blinking on the naked eye; having it reproduced on a 
timed graph on CANape facilitated the analysis. Moreover, the possibility provided by 
CANape to record the data and reproduce them later came in handy, i.e., to ensure that 
the required timings were being respected without having to focus solely on that during 
the tests. 
 

 
Figure 5.7.10 - CANape screen of an ongoing test, with the Demo tab open 

 
Another instance in which CANape’s graphical representation came in handy was to 
better visualise the active recovery lines; when the number of active faults with different 
associated lines grew, so did the difficulty to read the values. CANape’s visual 
representation of the recovery table’s rows in binary format (the rows of empty circles 
on the right in Figure 5.7.10) helped greatly at this juncture. 
 

For what concerns the results obtained from these models, the designed strategy 
appears to be solid, and the implemented system respects the required behaviour 
imposed by the standards and the regulations. 

The applications, although quite simple, allowed to check all the functionalities that had 
been implemented. Even so, the simple study of the system behaviour through these 
applications is far from the intensive testing that the found solution would require, like 
the one seen in the first part of this thesis. 
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To support the testing part, the ADIA and recovery lines management code has been 
integrated into a pre-existing project in the hope of verifying its functioning in a more 
work-intensive environment. So far, after some tweaking required to correctly integrate 
the code with a different version of the BSWL, the system seems to work as intended.  
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6. Conclusion 
 

During this thesis work, several key milestones were achieved, laying a solid foundation 
for future projects. 
 
First, a major accomplishment was the simplification of the system architecture and the 
fault’s diagnosis flow. By refining these aspects, we ensured a more streamlined and 
efficient system that can be implemented with fewer complications, removing the need 
for external tools to perform the system’s setup. This resulted in a reduction in the 
possible error points and overall setup times, which contributes to better performance 
and a more reliable platform. 
 
Moreover, modularity was a core design objective. The pre-existing code has been 
almost completely redone from scratch, with the idea of improving the separation of 
concerns among the various components. By increasing the modularity of the system, 
we are not only catering to the current needs but also creating the possibility for future 
implementations across different ECUs, applications, and newer standards. 
 
Another significant improvement was the introduction of more user-friendly interfaces 
through Simulink masks, offering users a simpler and more intuitive way to interact with 
the system. This eliminated the need for the tedious and error-prone process of manually 
editing external files, compiling them, and loading them into the system. This 
enhancement is expected to improve usability and reduce the complexity of system 
operation, with a consequent reduction of both error points and required time. 
 
Of course, a key aspect of this work was ensuring that the system adheres to modern 
OBD standards. By guaranteeing conformity and compliance, we position the system for 
broader adoption across the heavy-duty automotive industry that relies on stringent 
adherence to the diagnostic standards for fault detection and reporting. 
 
The final result has allowed the company to evaluate the impacts of a potential 
modification to its diagnostic set. There are, however, some areas requiring further 
development: 

• The protocol integration with the Basic Software Level remains to be completed. 
This is a critical step toward ensuring seamless communication between different 
system layers and enhancing the system’s overall functionality. 
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• Additionally, finding a suitable pilot project to fully test the system’s capabilities in 
a real-world environment is a priority. Although part of the system has already 
been exported to a pre-existing project, a pilot project would provide invaluable 
insights, validate the system’s performance, and uncover potential areas for 
further optimisation. 

 
If integration is pursued, additional work will be required to incorporate these modules. 
This will also involve a thorough review to ensure regulatory compliance by removing 
configurable features that were originally added to simplify, automate, and speed up the 
testing process. 

 
In summary, this thesis has successfully covered all the key points originally proposed to 
update and simplify the memory management and the OBD strategy of Metatron’s 
system. Although some areas could still use some development, the work done thus far 
sets a strong base for future enhancements and implementations. 
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