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Abstract
Recently, cybersecurity attacks has become increasingly complex, with an increase
in automated attacks and vulnerabilities exploitations in web applications. Online
threats, such as bots or Cross-Site Scripting (XSS) attacks, represent new challenges
for data or user protection. Since the birth of the OWASP Top 10 in 2003, XSS
attacks have always remained firmly planted in their report. Starting from 2021,
XSS attacks have been included in a more general category called "Injection", which
includes other threats such as SQL injection. In the 2023 report, the category
dedicated to Injection is in third place. In addition, according to the Imperva 2023
report, 49.6% of Internet traffic is composed of bots. Of these, 32% are bad bots,
that perform automated tasks with malicious intent, such as extracting data from
websites without permission to reuse them and gain a competitive advantage.

Improvements in machine learning, particularly through unsupervised and su-
pervised learning techniques, have opened up new solutions for the detection and
prevention of these cyber threats. Past researches have identified machine learning
models for detecting bot-generated traffic and for detecting XSS attacks, already
demonstrating the potential of these tools. However, implementing these technolo-
gies requires a robust and flexible infrastructure, capable of handling large amounts
of data and providing adequate computing capacity.

The aim of the following thesis is therefore to implement an architecture on the
Amazon Web Services public cloud, to enable the use of machine learning models
for the detection of automated bots and XSS attacks. The use of cloud computing
offers several advantages, such as scalability, the availability of on-demand resources,
and the ability to integrate different services together. This architecture aims to
combine the strengths of unsupervised and supervised machine learning techniques
with the computational capabilities offered by cloud platforms, providing a scalable
solution for web application security.

In this thesis, a cloud architecture will be examined to implement a threat detec-
tion system based on machine learning, including the analysis of each architectural
component, the integration with other related cloud services, and the integration
with a proprietary tool for the defense of web applications. Furthermore, the
effectiveness of this architecture will be evaluated on real use cases, in terms of
model accuracy but also in terms of execution time.

The result of this research is an architecture developed entirely within the Ama-
zon AWS cloud, consisting of the Amazon MSK, Amazon ECS, Amazon SageMaker
and Elastic Cloud services, capable of obtaining predictions for bot detection, which
for detection of XSS attack attempts. With the resulting architecture, the average
latency time for bot detection is 40.56 seconds, obtained by analyzing about 13,000
sessions, and the average latency time for XSS attack attempt detection is 11.23
seconds, for about 1-2 suspicious requests.
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Chapter 1

Introduction

In today’s world, informatization covers every aspect of society, transforming the
way we interact, communicate and do business. Technology has enabled global
connectivity, where information and services are accessible anywhere, anytime.
According to DataReportal’s Global Overview Report 2024 [1], more than 66% of
the world’s population uses the Internet, and 69.4% own a mobile device.

This increase affects not only the common people but also companies, and the
digitization process has a strong impact on their businesses. In fact, according
to Flexera 2023 report [2], digital transformation is a high priority for 74% of
companies, up from 56% in 2021. In addition, 64% [3] of companies believe
they need to implement new digital businesses to stay ahead in the race among
competitors.

In this context, web applications have become critical for businesses. They are
not just storefronts, but enable them to provide services, manage operations, and
interact with customers more quickly and flexibly. For example, many companies
implement Customer Relationship Management (CRM) systems to collect, analyze
and manage customer data, thereby improving customer loyalty.

However, new security challenges emerge as more digital technologies become
available and in use. Cybersecurity has assumed a crucial role in protecting systems,
networks and data from a wide range of threats. The ENISA Threat Landscape [4]
2024 report highlights how cyber threats continue to evolve, with increasingly
complex attacks. Major threats include ransomware attacks, which continue to
affect a wide range of industries, with 18% of commercial service companies and
17% of manufacturing companies, or DDoS attacks, which are the most frequent
threat, but also data threats such as data breaches: nearly 20.000 data breach
incidents were identified in 2024.

The data from this report offer a clear picture of the growing importance of
security solutions such as Web Application Firewalls (WAFs). These firewall
components are specifically designed to monitor, filter, and block HTTP requests
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Introduction

that pass to and from web applications, protecting the company’s IT infrastructure
from a wide range of threats.

Web applications are a main target for cyber attacks, as they are publicly
accessible and often handle sensitive data and critical business transactions. In
particular, companies operating in sectors such as e-commerce, finance and telecom-
munications, where operational continuity and data protection are essential, rely
on WAFs to ensure that their applications are defended from common attacks
like Cross-Site Scripting (XSS) and other forms of injection attacks. However, a
growing challenge that WAFs must face is detecting and mitigating malicious bots.
Bots, often used to automate fraudulent operations, can cause significant damage
to web applications. This automated software can be employed for activities such
as web scraping, illegally extracting information from websites, or click fraud, which
manipulates traffic metrics by generating false clicks on advertisements.

The WAF acts as a barrier that separates web applications from potential
external threats by analyzing each request and response to detect known malicious
patterns or suspicious behaviour. Thanks to custom rules and advanced algorithms,
the WAF can identify and block attack attempts before they compromise the
integrity or availability of the applications.

This solution represents an essential component for many companies seeking
to maintain high-security standards, protecting not only their data but also the
brand’s reputation. Indeed, a security breach can have devastating consequences,
not only in terms of direct financial losses but also in terms of user trust and damage
to the company’s image. Implementing a WAF offers a first line of defense and
allows companies to maintain strict control over who can access their applications
and which requests are permitted.

In recent years, traditional threat detection methods based on static rules and
signatures have proven increasingly ineffective. Attackers, using bots and advanced
techniques, manage to modify their behaviour and vary their attack patterns to
bypass these static defenses. Predefined rules are designed to detect known threats
but are ineffective in recognizing new attack variants or anomalous behaviors that
do not follow predefined models.

For this reason, adopting machine learning (ML) techniques has become a
fundamental part of the development of modern WAFs. ML technologies allow
security systems to learn from data continuously, improving their ability to detect
zero-day attacks and suspicious behaviors that do not match predefined signatures.
Unlike traditional methods, machine learning models can analyze vast amounts of
data in real time to identify hidden patterns and correlations between seemingly
unrelated activities, which allows emerging threats to be detected proactively.

Thanks to its dynamic nature, machine learning allows WAFs to continually
adapt to new threats, improving over time through the analysis of constantly
updated data. This flexible approach reduces false positives, a common problem in
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rule-based methods, increasing operational efficiency and the precision of threat
detection.

However, integrating machine learning into WAFs also presents challenges,
such as the need for large amounts of data to ensure accurate decision-making
and manage the computational power required for processing. Data quality also
becomes crucial: models trained on incomplete or non-representative data can lead
to inaccurate results. For this reason, it is essential to integrate ML systems with
constant validation and updating mechanisms.

Cloud computing has become an essential solution to address these challenges,
The cloud offers the infrastructure necessary to handle growing volumes of data and
to leverage on-demand computing power without the limitations imposed by local
hardware resources. Thanks to the elastic scalability of the cloud, machine learning
models can be trained on very large datasets and updated frequently, adapting to
new threats in real time.

Furthermore, access to globally distributed data via cloud platforms enables
WAFs to leverage information from various sources, improving the accuracy of the
models. Cloud service providers, such as Amazon Web Services (AWS) or Microsoft
Azure, offer specific tools for data management and processing, integrated with
machine learning algorithms already optimized for their platforms. This simplifies
the implementation of advanced models and reduces development time.

The cloud also facilitates the automation of updates: machine learning models
can be trained and retrained automatically based on new data, ensuring that threat
detection rules remain constantly updated. This continuous updating capability is
critical in a context where cyberattacks are constantly evolving.

Another advantage is the global distribution of resources: cloud-based WAFs can
distribute the workload evenly, ensuring optimal performance even during traffic
spikes. This reduces the risk of slowdowns or service interruptions, thus increasing
system reliability.

In this context, my thesis aims to contribute to developing a scalable cloud
architecture that enables the integration and makes machine learning models for
bot detection and the prevention of XSS attacks production-ready. In particular,
the architecture uses Amazon MSK, ECS and SageMaker to provide an end-to-end
solution capable of detecting anomalous behaviour and potential attacks promptly
and accurately.

This architecture will be integrated into Mithril [5], a web application security
service developed by AizoOn Technology Consulting, a global technology consulting
company structured in different market areas and divisions, including Cybersecurity.
Mithril is a web application security service designed to protect websites and web
applications from various threats and attacks. It offers a comprehensive Web
Application and API Protection (WAAP) service that extends beyond traditional

3



Introduction

Web Application Firewalls (WAF) capabilities. Mithril integrates several cloud-
based solutions, including WAF deployment, bot mitigation, DDoS protection, and
API security, ensuring robust website security. The designed system leverages cloud
processing platforms to manage real-time data flows and ensures that ML models
are continuously updated and adaptable to new threats.

My work differentiates itself from existing contributions by focusing on the
flexibility and scalability of the system, integrating machine learning capabilities
into a cloud infrastructure that can be easily adapted to different business needs.
Integrating a proprietary enterprise tool also improves the protection of web appli-
cations from evolving and sophisticated threats, ensuring proactive and continuous
protection.

1.1 Problem Statement
The proposed solution aims to develop a scalable and flexible architecture based on
AWS cloud, designed to make machine learning models production-ready, specifically
developed for detecting requests generated by bots and attempts at XSS attacks.
As mentioned before, these models will be integrated within the WAAP Mithril
project.

The solution requires the following key features and requirements:

• Batch traffic processing: Batch processing is a way to analyze large volumes
of data as a group by performing operations that accept a set of data as input,
and produce a set of data as output. The system must be able to receive
and manage traffic in batch mode, which is essential for a certain type of
preprocessing.

• Stream traffic processing: Stream processing is a method of processing
continuous streams of data and obtaining the results within a short period of
time. The system must also be able to analyze traffic in stream mode.

• Input data transformation: The collected data must be processed and
transformed into the formats required by the preprocessing steps.

• Data storage for retraining: Processed data must be stored so that it can
be reused for future model retraining, ensuring a continuous improvement in
detection capabilities.

• Automated inference: The system must automatically perform inference
on the collected data, providing real-time or near-real-time predictions from
machine learning models used in bot detection and XSS detection.
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• Results storage: Predictions must be stored in a readable and consultable
database for analysts, accompanied by useful information to interpret the
results and make informed decisions.

• Low-latency performance: The architecture must guarantee low execution
times while maintaining high accuracy levels.

• Easy results readability for SOC analysts: The results must be easily
accessible and consultable by SOC (Security Operation Center) analysts, who
will be able to examine the predictions and react promptly to detected threats.

1.2 Thesis Structure & Objectives
This thesis is structured to guide the reader through the various phases of the re-
search, from problem analysis to the implemented solution. Each chapter addresses
a key aspect of the project, offering a clear and progressive view of the technologies
used, the machine learning models developed, and the proposed cloud architecture.

Chapter 2, dedicated to the Background, explores the theoretical foundations
of machine learning applied to the two models developed. It also provides an
overview of the relevant security techniques and the cloud context, along with a
description of the proprietary tools in which the solution will be integrated.

Chapter 3 focuses on Related Work, analyzing similar solutions proposed by
other competitors and reporting contributions from the scientific literature that
have influenced the development of the solution presented in this thesis. A general
overview of the components used in the architecture will be shown.

Chapters 4 and 5 describe in detail the cloud architecture to achieve the thesis
objective, delving into improvements implemented in the preprocessing phases of the
machine learning models. Additionally, the process of integrating the architecture
within the WAAP Mithril project is illustrated, with particular attention to the
interaction between the detection models and the proprietary security system.

Chapter 6 is dedicated to results, execution times and model performance are
presented, accompanied by a detailed cost analysis of the AWS cloud infrastructure
used for the proposed solution.

Finally, Chapter 7 is dedicated to Conclusions and Future Works; possible
future improvements to the architecture are identified, suggesting avenues for
optimizing the solution and for further technological developments.

This research developed an architecture entirely based on the AWS cloud,
using several services, including Amazon MSK as a message broker, Amazon ECS
for hosting the containers needed for preprocessing, and Amazon SageMaker for
obtaining inferences. An average latency time of 40.56 seconds was obtained for
bot detection, analyzing about 14,000 sessions per batch. For XSS detection, the
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average latency time was around 11.23 seconds, analyzing only the requests tagged
as malicious by the WAF.
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Chapter 2

Background

2.1 Internet Robots
In the modern digital landscape, bots - automated software programs - play a
significant role in web traffic. Used for a wide range of activities, bots can be
both beneficial and harmful. Good bots, like those employed by search engines
to index websites or compare prices in e-commerce, are essential for the efficient
functioning of the web. However, there are also malicious bots, responsible for
harmful activities such as web scraping, click fraud, and DDoS attacks.

Malicious bots, which are becoming increasingly sophisticated, represent a grow-
ing threat to the security of web applications. The figure 2.1 shows the difference
between good bots and bad bots. These automated software programs can disguise
themselves as legitimate users [6], perfectly imitating human behaviors and by-
passing traditional security measures. Using advanced techniques, such as headless
browsers that execute JavaScript and simulate page rendering, bots can bypass
detection systems like CAPTCHA and IP blacklists. This evolution makes
traditional detection methods, which rely on static rules, increasingly ineffective.

In addition to their technical sophistication, malicious bots can compromise
website performance by consuming bandwidth and resources, slowing response
times, and increasing operational costs. These bots can also violate data security
by carrying out credential stuffing attacks, where they automatically attempt
to access user accounts using combinations of usernames and passwords. This
seriously threatens the privacy and security of personal or financial information.

From a commercial standpoint, malicious bots can distort marketing metrics
by generating fake clicks on online ads, causing click fraud. This practice skews
traffic analysis and results in significant financial losses for companies that use
pay-per-click advertising models.

A critical aspect of malicious bots is their ability to hide their origin by using
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dynamic IP addresses or proxy networks [7], making detection even more
challenging. This camouflage makes distinguishing bots from legitimate users
difficult, as IP-based detection methods alone are no longer sufficient. Furthermore,
advanced bots can replicate complex behaviors, such as mouse movements or
seemingly random navigation paths, to avoid detection by traditional technologies.

Several advanced detection techniques have been developed to address the
growing threat posed by bots. One common approach is behavioral analysis [8],
which monitors user behavior (e.g., mouse movements, interactions, and response
times) to detect suspicious patterns that differ from typical human behaviour.
However, while useful, this technique is not always sufficient to identify the most
sophisticated bots.

Another frequently used technique is rate limiting [9], which restricts the
number of requests made by a single IP address or user within a given time frame.
This measure is particularly useful for mitigating DDoS attacks and reducing the
volume of bot-generated traffic.

The most recent evolution in bot detection is the application of machine
learning techniques. These techniques allow for analysing large volumes of data
and identifying hidden patterns that traditional methods fail to detect. Thanks
to their ability to continuously learn, machine learning models improve over time,
adapting to new bot behaviors and offering a proactive and scalable solution to
the problem. Additionally, the use of honeypots - digital traps design to lure
malicious bots - helps identify and study their behavior, further enhancing defense
capabilities.

Figure 2.1: Good bots vs bad bots [10]
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Figure 2.2: Stored XSS attacks example [12]

2.2 Cross-Site Scripting
Cross-Site Scripting (XSS) is one of modern web applications’ most widespread and
insidious vulnerabilities. It occurs when an attacker manages to inject malicious
code into a web page, code that is then executed by an unsuspecting user’s browser.
This type of attack exploits the trust a user places in a legitimate website by
manipulating how the content is presented or processed.

XSS attacks occur because of a lack of validation or sanitization of user-supplied
input. When a web application accepts data from the user and embeds it into pages
without adequate security measures, it creates an opportunity for attackers to
insert arbitrary code. This code is executed within the security context of the Web
site, giving the attacker access to sensitive information or the ability to manipulate
the page behavior.

There are mainly three types of XSS attacks [11]: stored, reflected and DOM-
based.

1. In the case of stored XSS, shown in Figure 2.2,the malicious script is
permanently stored on the application server, such as in a database, comment
field, or user profile. When other users access the page containing the malicious
code, their browser executes the script, allowing the attacker to steal data or
perform other malicious actions. A typical example is when an attacker posts
a blog comment containing malicious JavaScript code; any user viewing that
comment will unintentionally execute the script in their browser.

2. Reflected XSS occurs when the malicious script is reflected off the web

9
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Figure 2.3: Reflected XSS attacks example [12]

server, such as in a search page or, error messages, or any other response
that includes some of the input sent to the server as part of the request. An
example of this attack is shown on Figure 2.3. These attacks are delivered to
victims via another route, such as in an e-mail message. When a user clicks
on a malicious link, the injected code travels to the vulnerable website, which
reflects the attack back to the user’s browser. The browser then executes
the code because it came from a “trusted” server. A common example is a
phishing link that leads to a legitimate site but with parameters manipulated
to execute malicious code.

3. DOM-based XSS occurs entirely on the client side when the application’s
JavaScript code manipulates the Document Object Model (DOM) in an
insecure manner using untrusted data, see Figure 2.4. This type of attack does
not involve the server in the script injection phase, making it more difficult
to detect with traditional server-side security measures. For example, a web
application could use document.write() or directly modify the HTML of the
page with data from the URL without sanitizing it, allowing arbitrary code to
be executed.

XSS attacks can have significant consequences. Attackers can steal authentica-
tion cookies, allowing them to impersonate victim users and gain access to their
accounts. They can dynamically manipulate the content displayed to the user,
inserting false or misleading information. In addition, users can be redirected to
phishing sites or pages that distribute malware. Attackers can read data displayed
on the page, such as personal information or payment details. They can perform
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Figure 2.4: DOM-based XSS attacks example [12]

unauthorized operations on behalf of the users, such as sending messages or making
transactions.

Over the years, numerous real-world cases of XSS attacks have had a significant
impact. In 2010, an Australian teenager discovered an XSS vulnerability inside
Twitter [13]. By posting special tweets, the hacker could get other Twitter users
to execute arbitrary code when they moved over the messages. Even if the attack
was harmless, this opened the door to exploiting the vulnerability widely. In 2021,
a DOM-based XSS was hidden inside PayPal’s code [14], which allowed attackers
to execute arbitrary code in order to steal data or take control of the device.

Preventing XSS attacks presents several challenges. Input validation is complex;
with the increasing complexity of Web applications, ensuring that all input is prop-
erly validated and sanitized is an ongoing and challenging task. Using third-party
frameworks and libraries can introduce vulnerabilities that are not immediately
obvious, as one does not always have complete control over the external code. In
addition, attackers are continually developing new methods to bypass existing
security measures, evolving their techniques and exploiting new vulnerabilities.

To mitigate XSS attacks [15], it is critical to apply strict validation measures on
all data provided by users. Using whitelists to define which characters or strings
are acceptable can help prevent the insertion of malicious code. Before inserting
dynamic data into web pages, appropriate encoding should be applied based on the
context to neutralize potential malicious code. Implementing a Content Security
Policy (CSP) can limit the sources from which the browser can load resources and
execute scripts, preventing the execution of unauthorized code. It is advisable to
choose frameworks and libraries that offer built-in protections against XSS, such
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as automatic data escaping.
With the increasing adoption of single-page applications (SPAs) and the intensive

use of client-side JavaScript, the attack surface for XSS is expanding. Emerging
technologies such as WebAssembly [16] and integrating advanced APIs require
special attention to security. In addition, the expansion of the Internet of Things
(IoT) and the development of mobile applications introduce new contexts in which
XSS can occur, necessitating the need for continuous evolution of defense strategies.

2.3 Machine Learning models
2.3.1 Machine Learning fundamentals
The use of machine learning techniques in the context of cybersecurity offers
solutions that are dynamic and adaptable to the ever-changing scenarios in which
it operates.

Machine Learning is a branch of Artificial Intelligence that aims to learn from the
data it receives as input and make decisions without being explicitly programmed.
Machine Learning algorithms use mathematical models to detect patterns in the
data.

Based on the task these algorithms have to perform, they are divided into two
categories: supervised and unsupervised machine learning. Supervised machine
learning algorithms learn from a labelled dataset, that is, a dataset in which data
are associated with correct answers. In this way, the algorithm will later be able
to identify other data, with the labels specified in the training phase. A common
use of supervised learning is where past data are analyzed to predict future events
based on the probability that they are similar to previous ones. Unsupervised
learning involves unlabeled data, thus leaving the algorithm to search for patterns
that relate to the input data. These types of algorithms are commonly used for
transactional data and to identify anomalies. Hybrid approaches also exist: this
is the case with semi-supervised algorithms. Small amounts of labelled data are
combined, forming the base learner. Unlabeled data, which are easier and less
expensive to obtain, are added to these. Finally, there are reinforcement learning
models, based on the concept of rewards and penalties: with each action performed
by the agent, the environment provides a reward or penalty. The agent’s goal is to
maximize the sum of the rewards.

Machine Learning has found fertile ground in many different areas, and its
ability to analyze large amounts of data to make predictions has made it a very
versatile tool. In the field of healthcare, for example, ML is used to improve disease
diagnosis by analyzing medical images to detect anomalies. Still, it is used in the
field of finance to analyze millions of transactions in real-time with the goal of
detecting potential fraud.
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Using Machine Learning in cybersecurity is increasingly relevant to protect
computer systems from sophisticated attacks: they can analyze large amounts of
data to identify suspicious behavior, such as lateral movements within a network or
attempted DDoS attacks. They are particularly effective at detecting bot-generated
traffic, distinguishing legitimate and malicious traffic through analysis of user
behavior. It can also analyze files and programs for typical characteristics of
malware, allowing it to detect variants that escape classic signature checks. In
this, Deep Learning is best suited for its ability to analyze execution patterns or
binary signatures, without the need for predefined signatures. Finally, machine
learning can identify anomalous patterns, such as exploit attempts or the insertion
of malicious code within a Web page through the analysis of Web requests.

2.3.2 Bot detection model [17]
In the context of analyzing web client interactions with a website, it is essential to
be able to distinguish between human and bot behaviour. Client interactions with
a website are represented as sessions, defined as a sequence of HTTP requests from
a client during a single visit. Since HTTP is stateless, session information is not
stored in access logs, making heuristics necessary to identify sessions.

The commonly adopted methodology for identifying sessions involves grouping
HTTP requests based on the same IP address and user agent, using a timeout-based
approach to split the clickstream into multiple sessions. However, this technique
has clear limitations, particularly in determining the appropriate time threshold
for separate sessions. Typically, a threshold of 30 minutes is adopted, but this is
not sufficient for longer sessions or continuous browsing behavior. For this reason,
a dynamic threshold has been introduced: if the number of requests is below a
predefined limit, the 30-minute threshold is maintained. Once this limit is exceeded,
the threshold is extended to 60 minutes, allowing for a more accurate handling of
longer sessions.

Before applying machine learning models, data must be preprocessed to be ready
for analysis. Preprocessing involves several steps:

Data Normalization: Since models like K-Means are sensitive to feature scale,
all numerical features are standardized using scikit-learn’s StandardScaler. This
process makes the data comparable, reducing the risk of features with very different
values (such as total number of requests against the average time between requests),
that influences the model.

Text Processing (User Agent): The User Agent, a string describing the device
and browser used to make the requests, is transformed into a numeric representation
using the Bag of Words (BoW) technique through CountVectorizer class. This
allows this textual feature to be included in the model, representing it as a numeric
vector.
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The features extracted from HTTP requests represent different aspects of web
sessions and are essential for detecting suspicious behavior. The main features used
are listed below:

• User Agent: The User Agent is represented in numerical form using the Bag
Of Words, allowing us to analyze information about the device and browser
used during the session.

• Total number of requests: Indicates how many requests were made during
a session. A high number of requests can be indicative of bot activity, such as
data scraping or DDoS attacks,

• Total volume of data transmitted: Measures the amount of data sent
from the server to the client. Malicious bots can generate a disproportionate
volume of data compared to legitimate users.

• Average time between requests: Indicate the average interval of time
between two consecutive requests. Bots tend to make requests much faster
than human users.

• Standard deviation of time between requests: Measures the variability
in the time between requests. Low variability suggests that requests were
made automatically at regular intervals, which is typical for bots.

• Nightly request rate: Calculates the percentage of requests made between
2:00 AM and 6:00 AM. A high percentage of nightly traffic may reveal auto-
mated activity.

• HTTP error rate (codes >= 400): HTTP errors can be generated in
greater quantities by bots, which often send invalid requests or fail to complete
operations correctly.

• GET, POST, and HEAD request rate: Analyzes the use of different
HTTP methods during a session. Bots tend to generate abnormal percentages
of GET (to extract information) and POST (to send data) requests.

• Session width and depth: Width measures how many distinct pages were
requested during a session, while depth indicates how deeply a user explores
site sections. Bots tend to explore in a more predictable and less varied manner
than human users.

• Null Referrer Request Rate: Bots tend to make direct requests to servers
without going through other pages, resulting in a high percentage of null
referrer requests.
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Cluster algorithms were used to analyze web sessions and identify anomalous
behaviors that could indicate the presence of bots. Specifically, DBSCAN and
K-Means algorithms were implemented and compared. After several experiments,
the K-Means algorithm proved to perform significantly better than DBSCAN and
was therefore selected.

The Elbow Method and silhouette score analysis were used to determine the
optimal number of clusters. The Elbow Method identified the point at which
adding additional clusters no longer significantly improved the partition quality,
while the silhouette score measured the cohesion and separation between clusters.
After applying both techniques, an optimal number of 12 clusters was chosen.

2.3.3 XSS detection model [18]
XSS attacks often exploit the way web applications handle user input in HTTP
requests. Malicious payloads are inserted into the request parameters, and then
processed by the application. A model has been developed that can identify the
presence of payloads with XSS injected into any request body. Obviously, the data
cannot be processed in a raw way but must be preprocessed to allow the extraction
of features.

DECODING. The initial payload is subjected to a decoding process managed
by a Decoder block that supports different decoding methods. This block detects
the presence of one of the supported decoding methods. When an encoding type is
detected, the block decodes the payload and reprocesses the decoded text. The
recursion ends when the text remains unchanged, i.e., no other encodings are
present.

GENERALIZATION. Next, the payload goes through a Generalization
block, which takes the taker of removing excess whitespaces, converting all text
to lowercase, removing HTML comments and deleting punctuation and repeated
characters.

TOKENIZATION. After the payload has passed under the Generalization
block, it proceeds to the Tokenization block where further refinements take place.
Here, non-visible characters are removed, and the payload is divided into a list of
tokens. This list is fundamental because the analytical techniques and machine
learning models depend on it to extract significant passages and make predictions
with increased accuracy. The Figure 2.5 shows the model workflow.

Finally, we proceed with the extraction of the features. In the case of XSS
detection, two models were developed: one specific to analyze the JavaScript code,
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Figure 2.5: XSS detection model workflow

and the other optimized to analyze the HTML code. For this reason, there are two
sets of features.

The list of features for the JavaScript model is as follows:

• PayloadLength: Length of the payload, in logarithmic scale.

• Document: Represents the call to the document object representing the web
page.

• jsObject: Recognizes JavaScript object literals, for example key: value.

• jsAttr: Recognizes JavaScript attribute references, for example .attribute.

• jsMethods: Identifies calls to JavaScript methods, for example .method(.

• cookie: Identifies calls to cookie.

• structural: Number of punctuation characters used.

• structComb: Counts combinations of punctuations used.

• sensitiveWords: Contains a list of words commonly found in malicious
payloads.

• closeB: Counts the number of closing parentheses.

• openB: Counts the number of opening parentheses.

Regarding the features of the HTML model, there are some slight differences:

• PayloadLength: Length of the payload, in logarithmic scale.

• HtmlTag: Recognizes HTML tags.

• HtmlAttr: Recognizes HTML attributes.
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• ExtLink: Search for external links called by src or href attributes.

• ExtJs: Search for scripts inside the payload.

• sensitiveWords: Contains a list of words commonly found in malicious
payloads.

• closeB: Counts the number of closing parentheses.

• openB: Counts the number of opening parentheses.

Finally, the features are normalized, so that each feature contributes equally to
the analysis and modeling.

For this task, the chosen model is an OCSVM (One-Class Support Vector
Machine). This model is particularly suitable for anomaly detection scenarios like
the current one, where the goal is to distinguish regular behavior from anomalous
one (attack attempts). OCSVM is particularly useful when you have a dataset
where the classes are strongly unbalanced (the number of entries labelled LEGIT
is much more than those labelled anomalous).

The main goal of OCSVM is to find a hyperplane that maximizes the margin.
The margin is the distance between the decision hyperplane and the closest positive
class data point. Once the hyperplane is found, the model can be used to classify
new data points. The distance between a data point and the decision hyperplane
is calculated, which is compared to the margin. Data points within the margin
are considered anomalous, while those outside the margin are considered normal
(legit).

2.4 Web Application Firewall
A Web Application Firewall is a sub-category of firewalls that filters, monitors,
and blocks HTTP traffic to and from a website. By inspecting the traffic, WAFs
can protect business-critical applications and web servers from threats such as
zero-day attacks, distributed denial-of-service (DDoS), SQL injection, and cross-site
scripting. Protection occurs by applying a set of rules to an HTTP conversation.
These rules cover the most common attacks.

A WAF can be either a virtual or physical device, but also in the form of a
plugin. It is implemented in front of web applications and analyzes bidirectional
HTTP traffic, detecting and blocking any malicious elements.

One of the main challenges of traditional web application firewall technology is
that security teams must constantly analyze and optimize a set of rules to reflect
changes in applications, emerging threats, and updates to WAF solutions.

When a firewall is not configured correctly, it can issue an increasing number
of warnings and alerts. Suffering from alarm fatigue, security teams may have
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difficulty by distinguishing false positives from real attacks. Fearing that their
inability to effectively configure rules might disrupt business operations, security
teams often remove protections and accept a weakened security posture.

There are 3 main types of web application firewalls: WAF appliances, host-based
WAFs, and cloud WAFs.

• WAF appliances, typically hardware-based, can be installed locally using
dedicated resources, and can be placed as close as possible to the target
application to reduce latency. Most hardware-based WAFs allow for copying
rules and settings between devices to support large-scale deployments in
enterprise networks. The downside is that they require a large initial investment
in addition to ongoing maintenance costs.

• Host-based WAFs can be fully integrated within the code of the target web
application. The advantages of this deployment model include much lower
costs and better customization. However, they are more complex to implement,
requiring the installation of specific libraries on the application server and
relying on the web server’s resources to function effectively.

• Cloud-based WAFs are a cost-effective option that provides a turnkey WAF
solution, with no upfront investment and quick deployment. They are typically
subscription solutions and only require a DNS configuration to be applied to
start working. They have access to constant threat intelligence and can also
offer managed services to help you define security rules and respond to attacks
as they happen.

WAFs can operate according to whitelists, i.e. allowing only recognized traffic,
or according to blacklists, i.e. blocking traffic that matches any attack patterns or
security rules.

The problem with rule-based WAFs is that they require very high maintenance.
organizations must meticulously define rules to match their application patterns,
which may change over time. This also makes it more difficult to deal with evolving
threats: new threats may require new rules.

The figure 2.6 shows a general schema of a WAF Workflow.

2.5 Cloud Computing & Amazon Web Services

2.5.1 Cloud Computing
NIST [20] provides an official definition of cloud computing, highlighting its main
characteristics and service models. It defines five key features: on-demand self-
service, which allows users to manage resources themselves without interaction
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Figure 2.6: How the WAF works [19]

with the provider; large-scale network access, with resources accessible via
Internet through standard clients; shared resource pooling, which involves
dynamic sharing of physical resources among multiple through a multi-tenant
model; rapid elasticity, which allows resources to be expanded or reduced flexibly
as needed; and measurable service, with automatic monitoring of resources to
ensure a payment model based on actual usage.

NIST outlines three main service models. IaaS (Infrastructure as a Service)
provides basic resources such as virtual servers, storage and networking. The
PaaS (Platform as a Service) provides a platform for application development
and deployment while fully managing the underlying infrastructure. Finally, SaaS
(Software as a Service) offers ready-to-use applications accessible via the Internet,
with infrastructure management delegated to the vendor. See figure 2.7 for a recap
schema of the service models.

Four deployment models are also defined: the public cloud, where infrastructure
is commercially provided to multiple users; the private cloud, intended exclusively
for a single organization; the hybrid cloud, which combines public and private
cloud resources; and the community cloud, which shares infrastructure among
organizations with similar goals.

2.5.2 Amazon Web Services
Amazon Web Services (AWS) was launched by Amazon in 2006 as an on-demand
cloud services platform for businesses and individuals. The idea behind AWS
was to offer on-demand IT infrastructure, eliminating the need for companies to
invest in expensive hardware and in-house server management. Initially, AWS
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Figure 2.7: Cloud computing service models [21]

offered core services such as Amazon S3 for object storage and Amazon EC2
for scalable computing power. These services allowed companies to quickly launch
applications and manage variable workloads without large upfront investments.
Over the year, AWS has greatly expanded its portfolio, introducing a wide range
of services, including managed databases (such as Amazon RDS), data analytics
tools, artificial intelligence, Internet of Things, Advanced Security, and Developer
solutions.

AWS has consolidated its position as a leader in the cloud computing industry
through its comprehensive offerings and continuous innovations. In 2023, AWS was
recognized by Gartner as one of the strategic cloud platforms of choice, confirming
its important to business and institutions globally. The platform offers scalability,
flexibility and a wide range of services. Gartner’s latest Magic Quadrant [22],
shown in figure 2.8, highlights AWS’s leadership due to its ability to execute and
strategic vision completeness. AWS has maintained leadership for over a decade
because of its ability to adapt to customer needs and constantly innovate with new
services. In addition, AWS continues to demonstrate the importance of security
and compliance in the cloud, offering robust solutions that enable organizations
to comply with global security and privacy regulations. This focus on severity
has made AWS a primary choice for regulated industries such as finance and
government.

AWS’s global architecture [23] consists of three main elements: regions, avail-
ability zones, and edge locations, design to provide high availability, resiliency, and
low latency. Regions are geographic areas that contain two or more Availability
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Figure 2.8: 2023 Gartner Magic Quadrant [22]

Zones, each operating as an isolated data center. Each Availability Zone (AZ) is
connected via low-latency networks but is physically separated to provide redun-
dancy in case of failure. This isolation of availability zones allows highly reliable
and fault-tolerant applications to be built. Currently, AWS offers more than 30
regions worldwide, with more than 100 availability zones distributed among them.
Edge locations are points of presence located near end users and play a crucial
role in improving the performance of services such as Amazon CloudFront, a
Content Delivery Network (CDN) that reduces latency, enabling faster access to
data. AWS uses more than 400 edge locations globally.

Geographic resilience is critical to ensure that applications remain operational
even in the event of failure or natural disaster in a specific region. Distribution across
multiple availability zones and regions provides critical redundancy that protects
applications from unforeseen events. AWS enables real-time disaster recovery,
allowing companies to replicate data and operations across multiple regions, thereby
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reducing the risk of downtime. Latency and performance are equally important
characteristics, especially for applications that require fast response times. AWS’s
global network, with its regions and edge locations, minimizes the physical distance
between end users and servers, ensuring ultra-low response times. This geographic
distribution reduces data transmission bottlenecks and ensures that applications
remain fast and responsive, regardless of user location. The figure 2.9 shows how
spread is the AWS Architecture.

Figure 2.9: AWS Global Architecture [24]

2.6 Architecture Overview
In this section, we will discuss about each component of the developed architecture.

2.6.1 Apache Kafka
Apache Kafka [25] is a distributed platform for acquiring, storing and processing
real-time data streams. It is designed to handle large volumes of data generated
continuously from thousands of sources, with the capabilities to process that data
sequentially and incrementally. Data streams, also called streams, are produced
by devices or applications that simultaneously send data records, and Kafka is
optimized to handle these continuous influxes.

Kafka provides three key features:

1. Publishing and subscribing to streams of events (records) in real-time.
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2. Durable and reliable storage of these events in the order in which they are
generated

3. Processing of these streams as they occur or retrospectively

These capabilities make it ideal for building stream-matching data pipelines and
creating real-time streaming applications. The combination of messaging, storage
and processing allows the management of historical data and real-time streams
with a single scalable solution.

Kafka is a distributed system consisting of servers and client communicating
through a high-performance network protocol (TCP). It can run on various envi-
ronments, such as bare-metal, virtual machines and containers, in both on-premise
and cloud environments.

• Servers (Brokers): Kafka servers form a cluster that can span multiple data
centers or cloud regions. Some of these servers act as brokers, storing and
replicating data, while others run Kafka Connect for continuous integration of
data to or from other systems, such as relational databases or other Kafka
clusters. This distributed architecture ensures high availability and fault
tolerance, because if one of the servers fails, the others take over the workload.

• Clients: Kafka’s clients enable the creation of distributed applications that
read, write and process event streams in a parallel, fault-tolerant manner.
Kafka provides clients with various programming languages, including Java,
Scala, Python, Go and C/C++, as well as a REST API. These clients enable
applications to process real-time data efficiently, even during network failures
or hardware problems.

In Kafka, data is treated as events, which record the fact that “something has
happened”. Each event has a key, value and timestamp, as well as any metadata.
Producers are applications that publish events to Kafka, while consumers are those
that subscribe to and read those events.

Events are organized into topics, which can be thought of as folders in which
data are stored. A topic in Kafka can have multiple producers and consumers,
and events are not deleted immediately after being read, unlike many traditional
queues. Data in a topic can be read as often as necessary, and Kafka allows you to
configure how long events should be kept.

Topics are divided into partitions, which allow data to be distributed across
different Kafka brokers, improving scalability. Events with the same key are written
to the same partition, ensuring that consumers read events in the same order as
they were written.

To ensure reliability, Kafka supports replication of data between multiple brokers
and even between different geographic regions or data centers. Each partition can

23



Background

have multiple replicas, which means that even in the event of a failure, the data
remains accessible. For example, in a production environment, a typical replica
has a factor of 3, which means there are 3 copies of the data distributed across
different brokers, ensuring continuity of service.

Kafka combines two messaging models:

1. Queuing, which allows traffic to be distributed among multiple consumers,
improving scalability;

2. Publish-Subscribe, which allows multiple consumers to read the same message.

This hybrid model, based on a partitioned log, allows Kafka to combine the benefits
of both systems while providing scalability and reproducibility.

Kafka proves particularly useful in contexts where large volumes of data need to
be managed in real-time. It is ideal for creating data pipelines that need to move
and process data reliably and scalably. Some typical scenarios include:

• Integration of heterogeneous systems: Kafka acts as an intermediary, facilitat-
ing the exchange of data between different applications;

• Real-time processing: In applications such as network monitoring, Kafka
enables analysis and processing of data as it is generated;

• Streaming pipelines: Kafka is used to build streaming pipelines that col-
lect, process and distribute data to different systems, making it ideal for
microservice-based architectures.

Kafka thus offers a complete solution for managing data in motion, combining
publishing, archiving and event processing in a highly scalable and distributed
platform. Its flexible architecture can handle a wide range of workloads, ensuring
business continuity even in high traffic or server failure scenarios.

2.6.2 Amazon MSK
Amazon Managed Steaming for Apache Kafka (Amazon MSK) [26] is a
fully managed service that enables enterprises to build and launch Apache Kafka-
based applications for real-time data stream processing. Amazon MSK simplifies
the entire Kafka cluster lifecycle, managing both control-plane operations (such as
cluster creation, update and delete) and data-plane operations (such as streaming
data production and consumption).

Amazon MSK runs open-source versions of Apache Kafka, ensuring compatibility
with existing applications, tools, and plugins without the need for application code
changes. This offers broad flexibility and allows companies to leverage the Kafka
ecosystem without having to directly manage the underlying infrastructure.
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The Amazon MSK architecture is based on a number of key components that
ensure scalability, resilience, and service reliability:

1. Broker nodes: When an MSK cluster is created, you can specify how many
broker nodes you want for each availability zone. Brokers are responsible
for managing streaming data traffic and event persistence. Each broker in
Amazon MSK can be configured to operate in high availability, with at least
one broker per availability zone.

2. Zookeeper nodes: Amazon MSK also creates and manages Zookeeper nodes,
which act as distributed coordinators. Apache Zookeeper synchronises brokers
and maintains data consistency within the cluster, ensuring reliable and
redundant coordination.

3. Producers and consumers: Amazon MSK users can leverage Apache Kafka
data-plane operations to create topics, publish data, and consume events in
real-time. Amazon MSK enables interaction with the cluster via Kafka’s
native API, providing a seamless experience for producers and consumers.

4. Cluster operations: Amazon MSK allows Kafka clusters to be managed
through the AWS Management Console, AWS Command Line Interface (CLI),
or SDK APIs. These tools provide a full range of operations for cluster
control and configuration, allowing you to easily scale and monitor your Kafka
infrastructure.

One of the main advantages of Amazon MSK is its ability to automatically handle
failures and ensure system reliability. Amazon MSK is designed to recognize and
handle common failure scenarios, automatically initiating recovery procedures to
maintain cluster uptime. When an error occurs at the broker level, Amazon MSK
can mitigate the impact of the error by replacing the existing one, while reusing
the previous broker’s storage to reduce the amount of data to replicate.

These automated fault management minimizes the impact on system availability
by limiting it to the time required to detect and correct the problem. After recovery,
producer and consumer applications continue to communicate using the same IP
addresses as previous brokers, ensuring continuity of operations without requiring
significant manual intervention.

2.6.3 Amazon ECS
Amazon Elastic Container Service (Amazon ECS) [27] is a fully managed
container orchestration service that enables easy deployment, management and
scaling of containerized applications.
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As a fully managed service, Amazon ECS incorporates AWS operational and
configuration best practices. It is integrated with both AWS and third-party tools
such as Amazon Elastic Container Registry and Docker. This integration allows
to focus more on building applications rather than managing the environment. Is
it possible to run and scale container workloads across AWS regions, both in the
cloud and on-premises, without the complexity of managing the control plane.

Amazon ECS consists of three main levels:

1. Capacity: the infrastructure on which containers run;

2. Controller: deploys and manages applications running in containers;

3. Provisioning: the tools used to interface with the scheduler in order to deploy
and manage applications and containers.

The Amazon ECS Capacity represents the infrastructure where containers run,
offering several options:

• Amazon EC2 instances in the AWS cloud: is it possible to select the
type and the number of instances, managing sizing directly.

• Serverless with AWS Fargate in the AWS cloud: AWS Fargate is a
serverless computation engine that eliminates the need to manage servers,
sizing or container workloads.

• On-premises virtual machines or physical servers: Amazon ECS sup-
ports registration of external istances, such as on-premises servers or virtual
machines, within the ECS cluster.

The Amazon ECS scheduler is the software responsible for managing applications.
The figure 2.10 illustrates the application life cycle and interaction with Amazon

ECS components: It is critical to design applications so that they can run in
containers. A container is a standardized unit of software development that includes
everything needed to run the applications, such as code, runtime, system tools, and
libraries. Containers are created from a read-only template called image. Images
are generally built using a Dockerfile, a simple text file that contains instructions
for creating the container. Once built, images are saved in a registry, such as
Amazon ECR [28], from which they can be downloaded.

After creating and storing the image, a Task definition is established. The Task
definition consists of a schema of the applications, represented by a file in JSON
format that describes the parameters and one or more containers that make up the
application. For example, it may specify the image to be used, operating systems
parameters, which containers to implement, which ports to open for the application,
and which data volumes to associate with the containers.
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Figure 2.10: Amazon ECS lifecycle [27]

Once the task is defined, it is deployed as a service or task on the cluster. A
cluster is a logical grouping of tasks or services running on the capacity infrastructure
registered in the cluster.

A task is an instance of a task definition within the cluster. It is possible to run
a task independently or as part of a service. Using an Amazon ECS service, it is
possible to execute and maintain the desired number of tasks simultaneously in an
Amazon ECS cluster. Suppose one of the tasks fails or stops for any reason. In
that case, the Amazon ECS service scheduler starts another instance based on the
task definition, ensuring that the desired number of tasks are maintained in the
service.

The container agent runs on each instance within the cluster. This agent sends
information about running activities and container resource utilization to Amazon
ECS. It also starts and stops activities whenever it receives a request from Amazon
ECS.

2.6.4 Amazon SageMaker
Amazon SageMaker [29] is a fully managed machine learning service. It provides
a user interface for running machine learning-related workflows, making its tools
available in multiple integrated development environments (IDEs). Amazon Sage-
Makers offers a number of tools and services that enable one to follow the entire
lifecycle of a machine learning model.

The figure 2.11 shows the lifecycle of a machine learning model.
For what concerns the first phase, that is, the generation of training data, there

27



Background

Figure 2.11: Machine learning model lifecycle [29]

can be several usage scenarios:

1. For those who prefer a graphical interface, SageMaker offers the Data Wran-
gler service within Amazon SageMaker Canvas. SageMaker Canvas is
a code-free development environment design that allows non-expert users to
create, use and train machine learning models. Data Wrangler, on the other
hand, is responsible for preparing the data and manipulating the datasets
before using them in Canvas.

2. Using Amazon SageMaker Studio, it is possible to connect to an SQL
database such as Amazon RDS or a data warehouse such as Amazon
RedShift to run SQL queries and have the results directly in a Jupyter
Notebook, so the data can be manipulated using Python and Pandas.

3. For those who need to work with map-reduce programming paradigms or use
frameworks such as Apache Spark, Amazon SageMaker Studio is integrated
with Amazon EMR service, a fully managed cluster that enables distributed
workloads.

Regarding the training phase, Amazon SageMaker offers several pre-trained
algorithms and models that are ready to use, making available both supervised and
unsupervised algorithms as well as algorithms for textual analysis of documents or
image processing.
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Finally, the last step in the life cycle concerns the deployment of the model.
The microservice that takes care of this is called AWS SageMaker Inference.
Even in the case of simple inference, we fall into three use cases:

1. Model deployment in a low-code environment: In this case, it is possible
to use the Amazon SageMaker JumpStart service through the SageMaker
Studio interface, without the need for complex configuration.

2. Using code to deploy machine learning models with greater flexibility:
The ModelBuilder class of the SageMaker Python SDK can be used to do
this, allowing granular control over various settings, such as instance types,
network isolation and resource allocation.

3. Machine learning models on a large scale: To do so, use the AWS SDK
for Python (Boto3 [30]) and AWS CloudFormation, an infrastructure as
Code (IaC) tool for automating resource management.

The present research falls into a hybrid use-case because the Python Boto3 SDK
will be used to deploy the model without the usage of the ModelBuilder class as
it involves the use of pre-trained SageMaker models, but an ad-hoc Model type
object will be created for both bot detection and XSS detection.

SageMaker offers several inference options:

1. Real-time inference: Ideal for interactive workloads, with low latency
requirements.

2. Serverless inference: Useful for those who do not have to manage the
infrastructure underlying the model. This option is ideal for those intermittent
workloads where there are idle periods and can tolerate cold starts.

3. Asynchronous inference: This option puts incoming requests into a queue
and processed asynchronously. This option is ideal for those who need to
handle large payloads.

The schema in figure 2.12 shows the different deployment options.
Finally, AWS SageMaker offers the ability to monitor and optimize the costs of

the tools used:

• With SageMaker Neo, is it possible to optimize model code so that it
performs better, minimizing computation costs.

• Using Autoscaling, it is possible to adjust the resources allocated to endpoints
in a coherent way respect the amount of incoming traffic, optimizing costs.
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Figure 2.12: Model Deployment Options [29]

2.6.5 Amazon ElastiCache
Amazon ElasticCache [31] is a service that simplifies the management of an
in-memory data store in a cloud environment. It offers a high-performance caching
solution, eliminating the complexity associated with implementation. It is possible
to implement a serverless caching mechanism or create your own cluster, more
flexibly.

ElastiCache Serverless allows you to create a cache in high reliability in less than
a minute, eliminating the need to size instances or configure nodes and clusters. In
addition, ElastiCache Serverless removes the need to manage memory sizing, as
the service itself monitors memory in use, network bandwidth and CPU utilization,
automatically scaling when necessary. It then offers a simple endpoint to make
contact, making the entire infrastructure underneath transparent.

If granular control over the cluster is needed instead, it can be designed from
scratch. ElastiCache allows you to choose the node type, number, and geographic
location among the different AWS Availability Zones. However, it continues to be a
fully managed service, so hardware provisioning, monitoring, replacing nodes when
they fail, and patching continue to be transparent.
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Related Works

Web application security has recently gained significant importance, mostly because
of the increase in complex assaults like DDoS, SQL injection, and Cross-Site
Scripting. Web application firewalls have rapidly evolved in response, particularly
with the incorporation of cutting-edge technology like machine learning. To detect
new threats and zero-day assaults, a number of open-source and commercial
firewalls (WAFs) have started utilizing deep learning-based engines. This reduces
the dependence on static rules and increases the accuracy of identifying aberrant
behavior.

3.1 Commercial WAFs
The cloud services provider that facilitates and secures web services, Akamai
Technologies [32], announced in March 2024 that they had added features to
their WAF, such as Browser Impersonation Detection, which uses machine learning
to deepen browser behaviors, reducing false positives and improving the detection
of malicious bots. A new feature named AkaNAT was also published in March
2024; it deals with identifying shared public IPs, or IP addresses linked to several
users or devices. They used an XGBoost classifier and a new machine-learning
technique to accomplish this. The dataset consisted of a list of IP addresses with
binary labels (1 for shared IP and 0 for unshared IP).

Another web security competitor, Imperva [33], also employs machine learning
in a number of ways in their security solutions. For example, their CounterBreach
function allows them to monitor user behavior using behavioral patterns and
identify departures from those patterns. They can also identify APBs (Advanced
Persistent Bots) in this way.

For several of its WAF features, like evaluating abnormalities in traffic, detecting
DoS attacks at the application layer (layer 7 of the ISO/OSI stack), and detecting
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anomalies through behavioral monitoring of legitimate user-generated traffic, F5
also employs machine learning models. Lastly, it employs a machine learning
technique in its API endpoint discovery function to identify abnormalities in API
behavior and prevent unauthorized usage of JWT tokens.

Lastly, leading companies like Palo Alto and Fortinet also use machine learning
in their web application security solutions.

Through its Fortiweb Cloud [34], Fortinet primarily use machine learning to
safeguard APIs, but it also leverages Support Vector Machine algorithms to examine
traffic profiles and identify sophisticated bots by contrasting unusual activity with
typical user behavior.

Palo Alto Networks uses machine learning and threat intelligence with its
Prisma Cloud [35] to detect threats and identify different MITRE ATT&CK
strategies. The same basic idea underlies both phases of use: Prisma Cloud learns
each customer’s cloud environment’s typical network behavior in the first phase,
then efficiently detects network irregularities and zero-day assaults while reducing
false positives. Furthermore, it allows users to explicitly select the trade-off between
false positives and false negatives based on their security requirements.

Transparency in technical specifics regarding the implementation of proprietary
WAFs like FortiWeb, F5, and Imperva is sometimes limited, despite the potential
and effectiveness of machine learning in these systems. Companies typically just
supply generic information; it rarely includes detailed insights into algorithms,
performance benchmarks, or open comparisons that may be used to confirm their
offerings’ real efficacy or efficiency. This occurs because the technology in question
are proprietary, and the corporations are not inclined to provide technical details
that would provide rivals in the cybersecurity space with a competitive edge.

3.2 Open Source WAFs
Several open-source alternatives provide greater transparency into the setting of
the machine learning models employed as well as how they operate.

One of the most widely used open-source web application firewalls is Mod-
Security [36], which is renowned for its capacity to defend against various web
application threats, including those that rank in the top 10 in OWASP. The project
was initiated by Trustwave in 2002, but OWASP acquired it in February 2024. The
core of ModSecurity is the Core Rule Set (CRS), which is a collection of known
threat signatures gathered by the OWASP foundation. The majority of open-source
WAFs follow this set of rules. The guidelines are meant to recognize particular
kinds of attacks. Every rule has a unique number that corresponds to the particular
assault class. There are severity and paranoia levels linked to rules. The rules that
are enabled are chosen based on the level of paranoia. The CRS has four paranoia
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levels, and each rule has a corresponding paranoia level. Lastly, a severity level—a
positive integer value that denotes the degree of hazard associated with an HTTP
request—is also assigned to each rule.

A previous attempt [37] was made to develop a machine learning model in a
different container than the one hosting the ModSecurity engine, in an attempt to
merge the Core Rule Set and machine learning techniques. Due to communication
overhead, there is an additional latency; however, the model is loaded and created
only at server startup, rather than for each request. An Isolation Forest algorithm
was employed in that endeavor. The integration was carried out as follows:

1. A LUA script takes care of getting the useful information from the engine and
creates a POST request with that information in the body, sending it to the
ML server.

2. The ML server would receive the information in the body, create features and
pass them to the pre-trained machine learning model. The model’s response
was returned to the Lua script using two HTTP status code: 200 for normal
requests, 401 for attacks.

However, because it was unable to raise the CRS’s performance, this endeavor did
not yield the expected outcomes.

OpenAPPsec [38] is an open-source security project developed by Checkpoint
specifically for cloud environments. It leverages machine learning to detect and
stop attacks, including those from the OWASP Top 10. According to its white
paper, the project’s machine learning-based engine, which operates in two stages,
is the brains behind it. Phase 1 of the learning process involves the learning engine
looking for attack indicators in the HTTP request. Every indicator comprises a brief
sequence that suggests a possible resemblance to HTTP requests that are exploited
to compromise security. Based on millions of benign and malicious requests, a
supervised machine learning model is used to evaluate HTTP requests, identifying
indicators, and assigning them a statistical probability score that indicates their
likelihood of being a component of an attack. Phase 2 involves further analysis
of requests deemed suspicious by phase 1 in a second engine. The objective is to
eliminate the likelihood of false positives and increase the certainty that the request
is an attack. This is accomplished by taking into account the environment in which
the WAF operates, including the application’s layout and how users interact with
it. An unsupervised machine learning model that is continuously updated in real
time depending on incoming traffic is then used to conduct the evaluation. The
flow of the architecture is shown in figure 3.1. Following the subsequent phase, the
second engine generates additional scores by thoroughly examining the payload,
parameters, URL, and user reputation, as shown in the table 3.1.

In conclusion, proprietary WAFs have adopted machine learning techniques;
nonetheless, a drawback is the absence of performance benchmarks and transparency.
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1-10
Higher is less suspicious

User Reputation score
Did user already show suspicious behavior like send-
ing requests to non-typical URLs?
Did user already send suspicious requests before?

1-10
Lower is less suspicious

Payload score
Indicators appearing in the request represent the
likelihood of an attack.

1-10
Lower is less suspicious

URL score
The system learns if the URL is prone to attacks or
false positives and also learns to offset the overall
score accordingly.

1-10
Lower is less suspicious

Parameter score
The system learns if the URL is prone to attacks or
false positives and also learns to offset the overall
score accordingly.

1-10
Lower is less suspicious

Combined total score

Table 3.1: OpenAPPsec - Second engine score computation
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Figure 3.1: OpenAPPsec architecture flow [39]

Open source solutions, on the other hand, are more flexible, but they still have
potential for development, particularly when it comes to large-scale integration
with cloud technologies and latency reduction, which is the focus of this study.

3.3 Real-time ML pipeline framework
The management of real-time data streams has grown in significance in recent
years, particularly with the emergence of concepts like smart cities and the Internet
of Things (IoT). Implementing scalable solutions now faces a critical challenge:
integrating continuous data streams with artificial intelligence and machine learning
models.

Within this framework, Martín et al. [40] present Kafka-ML, an open-source
framework that makes it possible to manage ML/AI pipelines by taking advantage
of real-time data streams through Apache Kafka, which functions as a distributed
messaging system for managing real-time inference as well as model training.
Although static file systems are not needed, the data is temporarily kept in Kafka’s
distributed logs to provide durability and the ability to continue the operation in
case of a mistake. This eliminates the requirement for persistent data lakes by
enabling the scalable and realistic training and deployment of ML models using
data streams. The use of containerization technologies like Docker and Kubernetes,
which offer high availability, fault tolerance, and simplicity of deployment in a
production setting, is one of the main contributions of Kafka-ML. Additionally, the
platform provides an easy-to-use Web interface enabling users to oversee an ML
model’s lifespan, from training to inference.

Data are transmitted to a Kafka topic, a channel where messages come from
heterogeneous sources, such IoT devices or corporate applications. Multiple con-
sumers can be used by Kafka for the same topic, enabling different ML models to
receive the data stream.

Docker containers are used to handle the machine learning models and other
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Figure 3.2: Kafka-ML pipeline [40]

Kafka-ML components. This containerized methodology provides application
isolation, portability, and on-premises or cloud deployment options. The models
are made robust to failures and scalable to the amount of the data stream by using
Kubernetes to coordinate the execution of the containers.

The Kafka-ML framework, shown in figure 3.2 allows for real-time model training
utilizing data obtained from streams of data that are transmitted to Kafka. Parts
of the data stream are separated for training and, if needed, evaluation. Moreover,
the framework supports the usage of flow control through control messages that
instruct the model on which parts of the flow to utilize for validation and training.
Models may be updated continually as fresh data come in this way.

A model may be used for real-time inference in a production setting once it
has been trained. Inference occurs when the model processes fresh data received
through an input Kafka topic, outputs its predictions in a different output Kafka
topic, and repeats the process. Applications that require the forecasts’ outcomes
can subscribe to this output topic and get the conclusions instantly. Because
Kafka-ML can handle many replications of the inference process and divide the
load across numerous copies of the model, this technique is very scalable.

Furthermore, Kafka-ML is modularly constructed, enabling users to add other AI
and machine learning tools to the framework. Even though it supports well-known
frameworks like TensorFlow at the moment, it is made to support more technologies
in the future, making it appropriate for various uses in fields like industrial data
analysis and the Internet of Things.

Therefore, Kafka-ML represents an innovative approach that addresses the
current challenges of real-time data management in the ML/AI context, offering
itself as a viable alternative or supplement to existing solutions.
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Chapter 4

Methodology

This chapter describes the architecture developed to enable the implementation of
Machine learning models on the cloud, with a focus on integration with real-time
data streams. The architecture is designed to meet the scalability, flexibility and
automation requirements of modern distributed machine learning systems, with a
focus on two use cases: bot detection and XSS detection.

The adopted framework involves using Amazon Managed Streaming for Apache
Kafka (MSK) as a distributed messaging system, Amazon Elastic Container Service
(ECS) for container orchestration and execution, and Amazon Sagemaker for ML
model inference. These components work synergistically to ensure efficient real-time
data management, improving the system’s scalability.

The following section details each architecture component, highlighting their
role and how they interact to meet design requirements.

4.1 Architecture implementation
This chapter will be structured as follows: initially, the individual components will
be analyzed in detail, and then they will be integrated to obtain an overview of
the architecture. The components that will be analyzed are Amazon Managed
Streaming for Kafka, Amazon Elastic Container Service, Amazon SageMaker and
Elastic Cloud, with brief references to Amazon ECR, Amazon S3 and Amazon
ElastiCache.

4.1.1 Amazon MSK
The MSK implementation was designed as the central point for managing data
flows between the various services. Specifically, MSK acts as a message broker
to ensure efficient and asynchronous communications between the Amazon ECS
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containers, which host the model preprocessing services, and the WAF engine,
which sends HTTP requests passing through it to the broker.

Amazon offers two modes for cluster creation: Serverless and Provisioned. This
project’s provisioned option was chosen to provide more flexibility and control
over resources. This approach allows fine-tuning of configurations and resource
provisioning compared to the Serverless model, where AWS automatically manages
capacity.

Regarding the version of Kafka, version 3.5.1 was selected and released on
September 6, 2023. The community currently supports this version and guarantees
regular updates for at least 12 months, with the possibility of future deployments via
the AWS console. Regarding broker configuration, these are run on EC2 instances
within Amazon MSK. It was chosen to use instances of type kafka.t3.small, which
offer 2 vCPUs, 2 GB of RAM and up to 5 Gbit network bandwidth. Brokers
were distributed across two availability zones to provide greater resilience and
redundancy, with one broker per zone.

Each broker was configured with 25 GB of space on the storage side, based on an
estimated traffic volume of around 50 GB per day in the production environment.
Finally, some additional properties were set to optimize broker behaviour. Specifi-
cally, the log.retention.bytes property was enabled, with a value set to 16GB, to
manage log retention and ensure that the expected storage capacity is not exceeded.

4.1.2 Amazon ECS
As specified in the previous architecture overview related to Amazon ECS, to
proceed with the implementation, it is necessary to:

• Prepare a Docker container that contains business logic;

• Prepare a Dockerfile

• Build a Task Definition needed by Amazon ECS

• Provision resources and proceed with deployment

Docker container preparation will be divided into two separate subsections, each
dedicated to a different machine learning model. The first part will focus on the
integration and the working-logic of preprocessing for bot detection model, while
the second part will cover preprocessing for XSS attack detection model.

Docker container for bot-detection

Regarding preparing the Docker container for preprocessing for the bot detection
model, it is necessary to group HTTP requests from the WAF engine to ensure
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proper operation. For this purpose, the Kafka broker was used as a temporary
buffer. The preprocessing code is executed every 5 minutes, allowing a significant
volume of HTTP requests to accumulate before reading them from Kafka.

To connect to Kafka, a consumer was configured via the KafkaConsumer object,
defined into kafka-python library. The main parameters used are shown below:

• group_id: identifies the consumer group to which the client belongs, for
managing the distribution of messages among members of the same group. In
this case, the value was set to 1.

• auto_offset_reset: set to earliest, ensures that if there is no previous offset,
the consumer reads data from the first available message in the topic.

• enable_auto_commit: the flag was enabled to allow the consumer to automat-
ically update the offset of messages already enabled.

• max_poll_records, fetch_min_bytes, fetch_max_bytes and max_partition
_fetch_bytes have been configured so that at each fetch from the broker, as
many messages as possible are read.

According to this configuration, it is possible to retrieve up to 40.000 requests per
iteration of the code.

The previous research, which developed the preprocessing and subsequent ma-
chine learning model, had the already structured HTTP requests dataset as input.
Because of this, it was necessary to adjust the data from how it arrived in Kafka to
make it consistent with what was developed before. Specifically, in the dataset of
the first research, each individual entry was accompanied by information about the
geolocation of IP addresses. To achieve the same result, I obtained this information
through the use of the GeoLite2-city database from MaxMind [41], an intelligence
project specializing in geolocation and fraud detection. It is a binary database,
which makes it compact and quick to query.

In this way, I was able to obtain the information needed to reconstruct the
Pandas DataFrame coherently. This DataFrame includes the following fields:

• @timestamp: timestamp of when the request occurred;

• customer: name of the company to which the traffic belongs;

• region_code: country of the IP address from which the request started, in
ISO 3166-2 format;

• real_client_ip: IP address from which the request started;

• service_id: identification code of the contacted upstream;
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Figure 4.1: Complete session - Example A

• request_header: header in JSON format of the HTTP request;

• request_method: HTTP method of the request;

• request_uriPath: URI path of the HTTP request;

• response_header: header in JSON format of the HTTP response;

• response_http_code: HTTP code of the response;

• response_ua: User-Agent header of the client that made the HTTP request.

After building the DataFrame, is it possible to proceed to preprocessing and creating
sessions.

In this regard, an important contribution has been made concerning the creation
of sessions: thus, having a batch approach for a continuous data flow, it may
happen that at iteration t+1 sessions have been fetched that belong to the sessions
identified and defined at iteration t.

For this reason, the concept of incomplete session was defined: At the
n-th code execution, a session s, made by HTTP requests r1, ..., rx, is defined
incomplete if the last session rx is not older than a first threshold a and if the
time between the requests r1 and rx is not below than a second threshold b

Here, the mathematical description of this new criteria:

Given a session s = r1, r2, . . . , rx, then s is incomplete if and only if
rx.timestamp() > a & (rx.timestamp() − r1.timestamp()) < b

In example A (figure 4.1), session A is complete because the second threshold is
met, rx.timestamp() > a and rx.timestamp() −r1.timestamp() > b

In example B (figure 4.2), session B continues to be complete because, even if
the second requirement is not met, still rx.timestamp() < a.

Finally, in example C, shown in figure 4.3, session C is invalid because rx.timestamp()
< a and rx.timestamp() −r1.timestamp() < b, so the session is not large enough,
nor old enough, to be considered valid for the processing.
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Figure 4.2: Complete session - Example B

Figure 4.3: Incomplete session - Example C

According to this criterion, at iteration t1, the session s that is defined as incom-
plete is sent to a temporary, Redis-based database using the AWS ElastiCache ser-
vice. Redis is an extremely fast in-memory key-value data structure store. The key
consists of a string of the type: BD-<real_client_ip>-<user_agent>-<service_id>,
to avoid duplicates and different sessions with the same key. The value consists of
a string representation of the session itself. At the next execution of the code, it
is checked whether the session s2 has the same key as one of those on Redis: if
so, the two sessions are merged, and the condition is re-checked. Also, a timeout
mechanism was implemented on the entries that exists on Redis, so that upon its
expiration the sessions are automatically considered valid.

Before proceeding with inference, we send the newly processed dataset to an S3
bucket, a low-cost object storage. In this way, the data processed at each iteration
is not lost, but can be re-used to perform a subsequent retrain of the model.

Having then the dataset available to send to the SageMaker endpoint, we can
proceed to inference. When finished, the predictions obtained as a response from
the SageMaker endpoint are enriched with the previous computed features and
additional information (like the percentage of 200 HTTP code and the percentage
of 403 HTTP code) before being sent to the Elasticsearch database, which we will
discuss later.
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Docker container for XSS detection

Unlike the container responsible for bot detection, the code was scheduled to be
launched once every 2 minutes to be more responsive.

The goal of the model responsible for XSS attack detection is to detect any
false positives generated by the WAF engine. The dataset the machine learning
model needs, consists of a list of payloads. Therefore, after fetching from the Kafka
broker (with group_id equal to 2, to be discriminated from the other containers),
incoming logs were filtered, taking into account only those tagged as malicious by
the WAF engine. Next, the payload was extracted from the logs and added to a
list, which will then be processed using the steps mentioned before.

Finally, as with bot detection, the processed payloads will be sent to the Amazon
SageMaker endpoint, and the results will be written to the Elasticsearch database,
enriched by the features extracted for that entry, the malicious payload either in
normal form (as it comes from the logs) or in generalized form.

To make the program executable, it is necessary to prepare a Dockerfile, build
the docker image, and load it into a Docker registry. For this purpose, the Amazon
Elastic Container Registry (ECR) service, a fully managed docker image
registry, was chosen. With Amazon ECR, the user simply needs to specify the
name of the registry to be created and use the aws cli to be able to proceed with
pushing the image using the command.

docker push <ADDRESS_AMAZON_ECR>/<docker_image_name>:<tag>
Please refer to Appendix A for the complete example of the Dockerfile used for

these containers.
As mentioned earlier, the task definition consists of a JSON object that defines

how to execute a task within the Amazon ECS. Please refer to Appendix B for an
example of a task definition.

4.1.3 Amazon SageMaker
AWS SageMaker was used only in the third phase of the lifecycle of the machine
learning model: for the generation of training data, AWS services were not wide
enough to handle a data stream. As for the training phase, it was impossible to
use made available by AWS because the task considered in this research is very
specific; moreover, previous research already made the models available.

SageMaker was configured to interact with Docker containers to execute inference
code. A persistent endpoint was created to get one or more predictions at each
invocation, using SageMaker’s hosting services.

For model inference, SageMaker launches the container using the command:
docker run <image_name> serve
According to this syntax, a Python script must be named “serve” inside the
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docker container, which is responsible for deploying a Web Server end exposing
two endpoints.

For model loading, AWS suggests specifying the ModelDataUrl or S3DataSource
parameter when using the CreateModel API, which is required for creating the
Model object. SageMaker copies model artifacts from the specified S3 bucket to
the /opt/ml/model directory of the container.

For this research, it was decided to load model artifacts directly inside the Docker
container, especially for bot detection, as it is also necessary to use a second artifact,
comprising the bag-of-words DataFrame. This solution was adopted because
concatenating the dataframe with the bag of words and the session dataframe is
far more performant than repeated computation of the bag of words, each time the
inference endpoint is called.

To obtain inferences, the client sends a POST request to SageMaker endpoints.
SageMaker forwards the request to the container, and returns the inference result
from the container to the client. To receive inference requests, the container
must have a web server listening on port 8080 and accept POST requests to the
/invocations endpoint and accept GET requests to the /ping endpoint.

After the container is launched, SageMaker sends periodic GET requests to the
/ping endpoint. In the simplest case, the container must respond with HTTP
status code 200 and an empty body. This way, SageMaker recognizes that the
container is ready to accept inference requests on the /invocations endpoint.

According to these criteria, a Docker container structured in the following way
was created:

\opt\
program\

nginx.conf
predictor.py
serve
wsgi.py

ml\
bow_df.joblib
model.joblib

The serve script does nothing more than launch nginx and gunicorn. Nginx,
a famous HTTP proxy server, simply listens on port 8080 and forwards requests to
gunicorn. The latter, whose full name is Green Unicorn, is an HTTP server that
implements WSGI (Web Server Gateway Interface), a standard for communication
between web servers and Python. It also gives the ability to handle multiple
processes to balance the load of requests, improving performance.

The back-end, as anticipated, consists of a Python application written using
the Flask web framework, a simple and flexible Python module that allows web
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applications to be built quickly and efficiently. Obviously, the key component of the
back-end is the prediction system based on the different machine learning models.

To manage the loading and usage of the model, the Singleton pattern was
adopted. This creational design patterns ensures that the machine learning model
is loaded only once and shared among all subsequent requests. Specifically, the
model is loaded into memory only the first time it is invoked, and all subsequent
calls reuse the same model instance, thus avoiding unnecessary overhead due to
repeated loading. The Singleton pattern is implemented in the ScoringService
class, which handles the loading and usage of the machine learning model. That
class consists of three basic elements:

• Class attribute model: attribute shared by all instances of the class and
initialized to None.

• Method get_model(): method responsible for loading the model. It checks
whether the model class attribute has already been loaded: if it is None, then
the model is loaded directly from the container file system using the joblib
library; if it has already been loaded, than it simply returns the existing model.

• Method predict(): method that is responsible for doing the prediction and
returning the results.

Therefore, the /ping route simply calls get_model() to load the model artifact
returning status 200 if the operation was successful or 404 if the model was not
loaded correctly. The difference between the two specific endpoints for bot detection
and XSS detection lies precisely in the /invocations route, which actually contains
the business logic of inference.

As for bot detection, all that is done is to retrieve the payload from the request
body and save it as Pandas DataFrame, to be passed to the predict method of the
ScoringService class. Here, the data frame is prepared consistently with what
the model expects to then obtain the clustered partitioning of the data. Next, for
each cluster, it assigns the label Bot/Human based on the majority of user agents
in that cluster. Finally, it returns the label assigned for each session.

As for XSS attack detection, however, the working principle is slightly different.
Actually, each request receives two predictions, one according to the model whose
features belong to the HTML domain and the other according to the model whose
features belong to the JS domain. The decision in classifying whether the traffic is
lawful is made by checking the individual predictions: if at least one of the two
predictions classified the request as unlawful, then the request is indeed unlawful.
In addition, considering that AWS SageMaker exposes an endpoint, reachable
directly via a URL, it is possible to move the preprocessing logic of XSS detection
to the WAF engine, so that data processing can then be achieved in streams and
no longer in batches.
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Figure 4.4: Amazon SageMaker endpoints

To start the build process, it is necessary to prepare a Dockerfile again. The
staring images were Ubuntu 22.04, to which the above-mentioned tools and Python
libraries needed to run the back-end were added. The build images were then
uploaded to the docker registry hosted on Amazon ECR, named mithril-ml-
bot-detection and mithril-ml-xss-detection. Again, please refer to Appendix
C for the Dockerfile definition.

To complete the inference endpoint deployment process, it is necessary to
create the Endpoint Configuration object, in which the type of endpoint (whether
provisioned or serverless) and any production variants are specified. For research
purposes, for both models, resources were chose to be statically provisioned, choosing
the instance ml.t2.medium, with 2 vCPUs and 4GB of RAM. The production
variants are the models with which this type of configuration is associated. Thus, the
production variants were the templates for each Endpoint Configuration object to
be associated with the individual endpoint. Again, the two Endpoint Configuration
objects were created via the AWS SDK.

Finally, it was possible to create the endpoint itself, again through the AWS
SDK, which was sufficient to specify the name of the endpoint configuration to
assemble everything and thus create the two endpoints ready to be invoked.

The figure 4.4 shows the two created endpoint.

4.1.4 Elastic Cloud
Elastic Cloud is a fully managed cloud platform that provides the Elastic Stack
in SaaS, including tools such as Elasticsearch and Kibana.

Elasticsearch is the core of the Elastic stack. It is a multi-node distributed
search engine whose functionality is exposed entirely through a RESTful interface.
It is possible to send data in the form of JSON documents using APIs or possible
collectors such as Logstash or, within AWS services, using services such as Amazon
Kinesis Data Firehose.

A key aspect of Elasticsearch is its ability to scale horizontally, thanks to
the concept of indexes and shards. An index in Elasticsearch is a collection of
documents (e.g., logs from the same source), and it can be split into multiple
shards. Shards allow Elasticsearch to distribute data among multiple nodes in
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Figure 4.5: Kibana dashboard for bot-detection index

Figure 4.6: Kibana dashboard for xss-detection index

the cluster, balancing the load and improving the performance. Each primary
shard can have one or more replicas, ensuring high data availability. When sending
data to Elasticsearch, data management within the different shards is completely
transparent to the user.

Kibana, on the other hand, is Elastic’s data visualization and user interface
tool. It allows users to explore the data stored in Elasticsearch through dashboards,
queries, and graphics. Creating correlation rules highlighting any cause-and-effect
relationships from different log sources is also possible.

The two containers responsible for sending the result obtained write to two
different indexes in Elasticsearch, bot-detection and xss-detection.

Two dashboards, shown in figure 4.5 and figure 4.6, have been set up to collect
and display data on each entry received. These dashboards allow SOC analysts
to monitor not only the predictions generated by the models, but also to obtain
additional insights to evaluate the consistency and significance of the information
displayed.
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Figure 4.7: Final architecture schema

Having analyzed the individual components, we can now examine the flow of
data within the architecture. The figure 4.7 is an illustration of the path the data
follows, from the time it is sent to the Broker to the final stage of processing.

As shown in the image, the flow starts from the WAF engine, which not only
parses the HTTP requests it receives, but also sends the logs produced to Amazon
MSK (Kafka).

ECS containers, using two different group_ids so that they operate independently,
read logs from the Kafka broker to initiate preprocessing of each task.

Regarding bot detection, grouping into sessions is a key preprocessing step.
When the computation is complete, invalid sessions are temporarily sent to the
Amazon ElastiCache service; valid sessions, on the other hand, are sent to the
SageMaker endpoint to receive the prediction.

In contrast, for XSS detection, preprocessing is simply done, and then contacting
its related SageMaker endpoint to receive the predictions.

Finally, after both ECS containers have received the predictions, the results are
sent to the Mithril Elasticsearch database.
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Chapter 5

Cost Analysis

When implementing a cloud-based architecture, one of the considerations to be
made is the costs associated with each individual service. This is a key factor in
determining the feasibility of the solution, especially in public clouds like AWS.

In the following chapter, we will elaborate on each component’s costs, get a
general overview, and then evaluate possible optimisation strategies in the Future
Works section. For this research, the region of use is eu-central-1 (Europe -
Frankfurt). Estimated costs vary by region of use.

5.1 Amazon MSK
As for the Amazon Managed Streaming for Apache Kafka service, you pay
an hourly rate for using the Apache Kafka broker instance, with rates varying
based on the size of the broker instance and based on the number of brokers. In
addition, storage price is also considered: it is calculated by adding up the GB
for which provisioning was done per hour and dividing by the total number of
hours per month. No charge is made for data transfer between cluster nodes, but
standard AWS charges will be made for data transfer to and from Amazon MSK
clusters (inbound and outbound traffic).

Below are the basic points for making calculations:

• The hourly price of instance kafka.t3.small is 0.0526 USD.

• The price per GB per month for primary storage is 0.119 USD.

• As mentioned earlier, 25GB of storage is associated for each broker, so that,
with retention configured, about 20 hours of logs can be maintained.

• The WAF engine (also hosted in AWS), in 24 hours, produces about 28GB of
logs. In 30 days, about 900GB of logs are produced.
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• No transfer costs are charged to and from the AWS cloud since this is intra-
region traffic, so the costs are equal to 0

According to these assumptions, the monthly price for Amazon MSK service is:

• Broker: 2 instances ∗ 0.0526 USD ∗ 730 hours in a month = 76.80 USD/month

• Storage: 2 broker nodes ∗ 25GB ∗ 0.119 USD = 5.95 USD/month

For a total of 103.23 USD/month.

5.2 Amazon ECS
There are two different billing models for Amazon ECS, depending on whether the
Fargate or EC2 usage model was chosen.

For this research, container deployment via Amazon ECS was chosen using the
AWS EC2 model. In this, it was possible to monitor resource utilization and have
more flexibility.

Several payment options are available for EC2 instances:

• On demand. On-demand instances allow you to pay for processing capacity
consumed per hour or per second.

• Saving Plans. This is a flexible model, offering lower prices than those
derived from on-demand pricing in exchange for a definite commitment to use
over a one-year or three-year period. AWS offers three types of Saving Plans:

1. Compute Saving Plans: automatically apply to EC2 instance usage re-
gardless of instance family or size, and also apply to AWS Fargate or
AWS Lambda usage.

2. EC2 Saving Plans: this type of saving plan provides the lowest prices,
guaranteeing savings of up to 72%, in exchange for a commitment to use
these instances within a Region.

3. Amazon SageMaker Saving Plans: flexible pricing model, exclusive to
Amazon SageMaker.

• Reserved Instances. It is often used when the workload and computational
demand are constant and predictable. This billing model saves up to 75%,
and is based on 3 key points:

1. The instance attributes, i.e., the type of instance, the Availability Zone it
belongs to, and the type of platform in use on that EC2 instance.

49



Cost Analysis

2. The service commitment time: you choose how long to commit with
payment; it can be for 1 year or 3 years

3. Type of payment chosen: again, it is possible to choose between full
upfront, in which the full cost of the expense is advanced, partial upfront,
in which a short down payment is made and then a constant payment
over the life of the commitment, no upfront i.e., no down payment.

• Spot Instances. These types of instances leverage unused resources from the
AWS cloud at a discounted price (up to 90% off), but with the risk that AWS
will terminate the instance if the resources are requested by other on-demand
instances.

For this research, it was chosen to create EC2 instances with on demand
payment model, since this is an experimental phase and it might have happened
that the type of instance would have to be changed, choosing one with more
resources.

To estimate the price of an EC2 instance according to the on-demand payment
method, we need to take into consideration:

• Hourly price of the chosen instance: for both machines, a t4g.medium
instance was chosen, with 2 vCPUs and 4GB RAM, whose hourly cost is
0.0384 USD.

• Storage associated with the instance: for both machines, and for the pur-
poses in use, minimum storage was chosen, equal to 10GB (without any
snapshot/backup), with a price of 0.95 USD/month.

Therefore, the total price of each estimated instance is about 28.03 USD/month
for the instance, and about 0.95 USD/month for storage, for a total of 28.98
USD/month.

Considering both instances, one for bot-detection, the other for XSS detection,
the total price is about 57.96 USD/month.

5.3 Amazon ElastiCache
Again, is it possible to use Amazon ElastiCache with the serverless option, or by
creating a cluster, flexibly managing each node individually. For this research, the
serverless model was chosen. Regarding Amazon ElastiCache serverless billing,
two key factors should be considered:

1. Archived data: archived data is billed in gigabyte-hours, with a price of 0.151
USD/hour.
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2. ElastiCache Processing Units (ECPUs): serverless ElastiCache requests are
paid in ECPUs, a unit of measure that includes both vCPU time and data
transfer. Reads and writes require 1 ECPU per kilobyte of data transferred,
with a price of 0.0041 USD/million ECPU

In this research, at steady state, there are about 10,000 entries on Amazon Elas-
tiCache, with a total weight of about 9.50 MB. In addition, about 1,500 valid
sessions are reclaimed from ElastiCache with each code launch, and as many are
pushed, a total of about 3,000 requests are made to ElastiCache, with each batch
processing the bot-detection.

In terms of price, this corresponds only to 110.45 USD/month, corresponding
to an available cache of 1 GB (minimum amount offered by the service), covering
about 36,000 requests to and from ElastiCache.

5.4 Amazon SageMaker
Again, there are two pricing models for Amazon SageMaker: on-demand or with a
saving plan, mentioned earlier, in which the user guarantees fixed resource usage
for one to three years in exchange for savings of up to 64%.

For the same reasons discussed in Amazon ECS, this research needed to have
flexibility on resources, so the on-demand usage (and payment) plan was chosen.

Amazon SageMaker’s on-demand billing is based on 3 points:

• Type of instance chosen: as mentioned in the previous chapter, an instance
ml.t2.medium was chosen for both endpoints, with an hourly price of 0.064
USD

• Associated storage quantity: The storage price of the SageMaker endpoints is
0.167 USD/month. The two endpoints do not have large storage needs, so
only 4GB per endpoint was chosen.

• Data processing: we consider a price of 0.016 USD per GB of traffic, both
incoming and outgoing. Given such a low unit price, the total price for data
processing can be considered negligible.

According to these considerations then, each SageMaker endpoint will cost about
46.08 USD/month for the instance and 0.68 USD/month for storage, for a total
price of 46.75 USD/month.

The price should be considered doubled, since there are two SageMaker endpoints
(one for bot detection, the other for XSS detection), for a total price of 93.5
USD/month.
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5.5 Elastic Cloud
For this research, it was decided to use an ad-hoc instance of Elastic Cloud to
facilitate later the integration of the dashboards shown above within Mithril.

Elastic Cloud billing is based on the hardware profile that is intended to be used.
A hardware profile is a mixture of virtual storage, RAM and vCPU. The profile
consists of several resources, each associated with each individual component of the
Elastic stack. Needing only to display the data in the appropriate format, the only
tools in the Elastic stack used were Elasticsearch and Kibana, sized minimally
to reduce costs.

• Elasticsearch: only one hot node was chosen, with a single availability zone,
possessing 80 GB storage, 1 GB RAM and up to 2 vCPUs (instance type:
aws.es.datahot.i3en).

• Kibana: again the associated resources are minimal, with 1 GB RAM and up
to 6.4 vCPUs, on a single availability zone (instance type: aws.kibana.c5n)

Therefore, considering this configuration, the hourly price is 0.0346 USD, for a
total of 25.25 USD per month.

5.6 Total costs
The only component that remained excluded from this analysis is the bucket S3
in which the subsequent training data for the bot-detection model is saved. This
is because the bucket usage is extraordinarily low, and the billing price (0.0245
USD/GB) can be considered negligible. In conclusion, the studied and implemented
architecture, with the assumptions and estimates listed above, has a monthly cost
of approximately 390.39 USD/month
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Results

In this chapter, the results obtained from this research will be analyzed. Hardware
resource utilizations will be shown for each component of the architecture. Not
having the systems overloaded is important for both batch and stream data
processing; therefore, resource sizing must be accurate.

Finally, the results in terms of latency of the data flow from input by the WAF
engine to writing to the Elasticsearch database will be shown.

6.1 Network Usage

Monitoring network traffic is crucial as it helps to understand how the system
uses network resources, especially in distributed architecture contexts such as in
this research. If network usage saturates the available bandwidth, performance
degradation may occur. During the testing and monitoring phase, the implemented
architecture received a variable amount of traffic, characterized by very high initial
peaks at the beginning, followed by a decrease, indicating that the network traffic
is quite irregular due to variable workloads. As we can see from figure 6.1, the
number of received packets starts to grow more gradually and steadily, due to the
increase in load during the working day. Finally, at the end of the day, the number
of received packets starts to decrease.

6.2 Amazon MSK

As for MSK, CPU, RAM, storage, and network utilization will be analyzed in
detail.
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Figure 6.1: Daily usage of Network (Received Packets)

CPU

CPU utilization refers to the percentage of processing capacity utilization to run
processes. In Amazon MSK, the CPU is used to handle data flow and message
processing. High CPU utilization indicates that the system is processing a high
volume of data. It is a key metric for assessing the efficiency of the Kafka broker: if
it is constantly under stress (high utilization rate), then bottlenecks or slowdowns
may occur. As can be seen from the graph in the figure 6.2, CPU utilization
fluctuates regularly over time, with small spikes approaching 10%, correlated with
duty cycles from the Kafka broker. A cyclic pattern of CPU utilization is present
due to constant daily workflows. CPU utilization is around 5-6%, suggesting that
the system still has sufficient capacity to handle additional workloads, a positive
factor for performance and scalability.

RAM

RAM usage is critical to the proper functioning of MSK, as Kafka loads temporary
data and operations involving topics and messages in transit into memory. Insuffi-
cient RAM can cause slowdowns, as it would mean that data must be written to
disk. Optimal RAM management allows Kafka to process messages more efficiently,
preventing it from swapping frequently, dramatically slowing down the execution
flow. The graph in figure 6.3 shows very stable RAM utilization, standing at about
1 GB throughout the monitoring period. This shows that the architecture is well
balanced in terms of memory and that MSK does not undergo significant changes
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Figure 6.2: Amazon MSK: Weekly usage of CPU(%)

Figure 6.3: Amazon MSK: Weekly usage of RAM (GB)

in workload such that it needs to be used more. No noticeable spikes in RAM
utilization are observed, an indication that the allocated memory is sufficient to
handle the workload. Considering that RAM utilization remains constant and does
not exceed 1GB, memory utilization is efficient, with no waste.
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Figure 6.4: Amazon MSK: Weekly usage of Storage (%)

Storage

Finally, storage on MSK represents the physical space on which data, including
Kafka message logs, are stored. As a system based on continuous logging of
messages, storage is critical to ensure that all messages are retained for as long
as necessary to be processed by consumers later. It is also important for the
temporary persistence of messages: Kafka allows messages to be reprocessed in
the event of failure, and efficient storage allows for greater resilience and security
in handling data in transit. The graph in figure 6.4 shows regular oscillations in
disk utilization, with values ranging between 74% and 76%. These oscillations are
due to Kafka writing log operations, and subsequent deletion due to configured
retention. This behavior reflects the natural operation of Kafka, which handles
logs cyclically, deleting messages only when they have been compacted into chunks.
Despite the fluctuations, the overall storage utilization remains within a moderate
range, indicating that Kafka is managing disk space efficiently, without excessive
accumulation of data that could lead to disk saturation.

6.3 Amazon ECS
In this section, an analysis of the use of Amazon ECS container resources specific to
bot detection and XSS detection will be presented. Again, the key components to
be monitored, to assess the efficiency of the architecture, are the CPU and RAM.

CPU

CPU utilization represents one of the key metrics for monitoring the performance
of containers managed by Amazon ECS. It is needed to monitor the computational
resources used by containers to execute the workload. In this context, it is essential
to keep track of this metric to ensure system scalability and efficiency. Regarding
bot detection, the figure 6.5 shows peak CPU utilization reaching 60%, alternated
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Figure 6.5: Bot detection: Weekly usage of CPU (%)

Figure 6.6: XSS detection: Weekly usage of CPU (%)

with periods when it drops dramatically to very low values. This is because, as
has been known, the workload is intermittent. Regular spikes indicate that the
system is entering high load phases related to preprocessing and clustering activity
in sessions. Despite regular spikes, CPU utilization does not become saturated,
indicating that the system has room to handle more intense workloads, and there
are no obvious signs of CPU overload. As for the container responsible for XSS
detection, however, as we can see from figure 6.6, CPU utilization is maintained
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Figure 6.7: Bot detection: Weekly usage of RAM (%)

between 1.8% and 2.2%, demonstrating the model’s lightness. No significant spikes
are observed, indicating that the system is not subjected to sudden intensive
processing demands, so the container is not facing bottlenecks or situations where
there is a shortage of resources. Therefore, it can be said that the container hosted
on ECS is correctly sized.

RAM

RAM utilization is the other key metric for monitoring the performance of containers
managed by Amazon ECS. Proper monitoring of this resource helps ensure that
containers have enough memory to perform their task without slowdowns or errors
due to its deficiency. In the bot detection container (figure 6.7), RAM utilization
remains constant, hovering around 80%. This indicates that the system uses
a significant part of the available memory, but without reaching critical levels.
Although RAM usage is high, it does not approach saturation, but code optimization
techniques can still be considered to reduce its usage. In contrast, the graph in
figure 6.8 represents the RAM utilization over time for the container responsible
for XSS detection preprocessing. RAM utilization remains constant between 10%
and 12%. The system handles a light workload. There are no significant spikes
or dips in RAM utilization, which means that the container handles a very stable
workload over time.
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Figure 6.8: XSS detection: Weekly usage of RAM (%)

6.4 Amazon SageMaker
Regarding SageMaker, the CPU utilization, RAM, latency of each model will be
analyzed in detail. Next, the number of times the endpoint is contacted, and the
size of the dataset at each iteration will be shown. Finally, an overview of the
execution time of the entire data stream.

CPU

The CPU is the core of the computational process. Whenever the machine learning
model is invoked, the CPU handles the operations necessary to perform inference.
In Amazon SageMaker, CPU utilization is closely related to the speed at which a
model can process data. If the CPU is overloaded, the inference time increases,
slowing down the performance of the model. As can be seen from the bot detection
graph in figure 6.9, the CPU utilization trend is intermittent, with frequent periods
when CPU utilization near 0%. This is the expected behavior, as the model is
invoked non-constantly, for the batch processing mentioned earlier. The graph
shows some peaks in utilization, with the highest reaching about 9%. This is
caused by times when the model had to process large volumes of data (when the
incomplete session timeout was triggered, for example). In each case, the low CPU
utilization is under-loaded relative to the available CPU resources, thus indicating
that the resources are oversized relative to the actual load. As for XSS detection
on figure 6.10, on the other hand, CPU utilization remains practically zero, with
values less than 0.25%. This happens because of the filters that are applied on

59



Results

Figure 6.9: Bot detection: Weekly usage of CPU (%)

Figure 6.10: XSS detection: Weekly usage of CPU (%)

upstream requests, sending to the endpoint only those that have been tagged as
XSS by the WAF engine.

RAM

RAM is essential for loading and handling temporary data. When a machine
learning model is invoked, data must be loaded into memory before being processed.
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Figure 6.11: Bot detection: Weekly usage of RAM (%)

The amount of RAM required varies with the dataset’s size, the model’s complexity,
and the batches processed. The graph in figure 6.11 indicates that RAM utilization
is stable for bot detection, hovering around 50-60% No significant spikes above
60% are seen, implying that the model has not reached the maximum available
RAM limit. This is good, as it suggests that the system does not risk running out
of available memory during inference operations. The model can be run without
the risk of performance degradation. RAM utilization around 50-60% indicates
that the resources are appropriately sized for the current workload. If the model
were loaded with more data, there would still be sufficient space to handle it. For
XSS detection on figure 6.12, on the other hand, similar to CPU utilization, RAM
utilization is also minimal, for the same reasons mentioned above. RAM utilization
is consistent with the amount of data the model receives when invoked.

Latency

Latency measures the time between the moment the model is invoked and the
moment it provides a response (inference). It is a key metric for quality of service.
Latency is critical for measuring model efficiency in real-time. A model with
low latency responds quickly and can be used in critical contexts, just like bot
management. For bot detection, model latency varies significantly (figure 6.13),
ranging from very low values to peaks exceeding 5 seconds. This variability depends
on the workload, which is often erratic because of the way sessions are created.
There is no clear trend of latency stabilization over time, indicating the need
for better model optimization to ensure more stable performance. Much better,
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Figure 6.12: XSS detection: Weekly usage of RAM (%)

Figure 6.13: Bot detection: Weekly latency (s)

however, is the latency in the model related to XSS detection, in figure 6.14. It
fluctuates between 2.5 ms and 4.5 ms, thus keeping within a narrow range. This
indicates that the model responds fairly stably. A latency of this range indicates
good model efficiency, especially if the goal is to ensure fast responses in security
scenarios, such as XSS attack detection.
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Figure 6.14: XSS detection: Weekly latency (ms)

Number of messages per SageMaker Invocations

The number of messages per invocation refers to the amount of data in the dataset
that the model must process each time it is invoked. It thus represents the amount
of work the model has to deal with per request. The number of entries directly
affects the model’s resources. Optimizing the number of entries per invocation
balances resources and performance, allowing the model to handle variable loads
efficiently. The graph in figure 6.15 shows variability in the number of messages
received over a 24-hour period. This variability is due to the way sessions are
grouped, which is often irregular. In any case, predicting web traffic trends is
a challenge. There is a period of particularly heavy traffic between the lowest
point and the highest peak on the graph. This maximum traffic phase is simply
related to a time slot of heavier web traffic. The graph reflects the need for the
system to be able to handle spikes in activity. We have seen that they do not affect
computational resources, so overall, the architecture meets its objectives.

Regarding XSS detection on figure 6.16, on the other hand, the model is not
invoked often precisely because of the filters that are applied upstream within the
ECS container. This greatly reduces the number of payloads to be analyzed: as
shown, 1 to 4 messages are analyzed per invocation.

6.5 Architecture Latency and Model Performance
In this section, the general latency of the whole architecture will be analyzed,
specifically for bot detection and XSS detection.

63



Results

Figure 6.15: Bot detection: Number of sessions sent to SageMaker

Figure 6.16: XSS detection: Number of requests sent to SageMaker

The graph in figure 6.17 shows the overall latency of the architecture, specifically
for bot detection

The graph shows significant variations in latency, with values ranging from a low
of 20 seconds to peaks exceeding even 60 seconds. These spikes suggest that there
are times when the architecture is under particularly heavy workloads, specifically
when batch processing is done. Due to this type of processing, we also see a
cyclic pattern in latency, precisely due to batch data handling, where the system is
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Figure 6.17: Overall latency: bot detection

Figure 6.18: Overall latency: XSS detection

subjected to heavier loads at certain times. Although there are moments of high
latency, the system does not achieve excessively long response times (100 seconds),
which shows that the architecture can still maintain an acceptable performance
level.

With respect to XSS detection (figure 6.18), on the other hand, the latency is
mostly between 10 and 15 seconds, with slight fluctuations, indicating that the
architecture can respond quickly and stably. No significant latency spikes are
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present, which means the architecture is appropriately sized, and no bottlenecks
are present. Moreover, low variability is a positive sign, as it indicates that the
architecture can handle the load predictably and reliably.

The results obtained regarding the performance of machine learning models were
in accordance with expectations. Regarding bot detection, the k-means cluster
algorithm has shown high effectiveness in correctly grouping sessions into clusters.
Specifically, out of a sample of 200 sessions analyzed, SOC analysts confirmed that
96.05% of the sessions identified as bots by the algorithm actually corresponded
to bots. This result underscores the model’s accuracy in accurately distinguishing
legitimate from malicious sessions.

Regarding the detection of XSS attack attempts, the main objective was to
identify any false positives among requests marked as malicious by the WAF engine.
Analyzing a sample of 500 requests tagged as potential XSS attacks by the engine,
the machine learning model identified 12 false positives, i.e., requests that, although
tagged as malicious, were correctly labelled as lawful. This result highlights the
model’s effectiveness in refining classification and reducing the risk of errors in
threat identification.
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Chapter 7

Conclusions and Future
Works

The main objective of this thesis was to design and implement a cloud architecture
capable of detecting bots and XSS attack attempts using machine learning models.
In addition, such an architecture had to be easily scalable, and integrable within the
Mithril WAAP context. To this end, an entirely AWS cloud-based architecture was
developed, using several services, including Amazon MSK for managing message
flows, Amazon ECS for running the containers responsible for preprocessing each
model, and Amazon SageMaker for implementing the models themselves.

Regarding bot detection, the k-means clustering algorithm was employed to
classify web traffic sessions into the appropriate clusters. On a sample of 200
sessions, SOC analysts confirmed that 96.95% of the sessions labelled as bots
were actually bots. The XSS attack detection algorithm played a crucial role in
identifying false positives among requests tagged as malicious by the WAF: the
model identified 12 false positives, i.e., requests that were mistakenly tagged as
malicious but were actually from legitimate users.

The cloud architecture proved efficient in terms of resource utilization. Resource
monitoring (CPU, RAM, network, and storage) showed well-balanced utilization
that met expectations, with overall architecture latency for both components
remaining stable and low. In particular, the average latency for bot detection
remained between 20 and 30 seconds, while for XSS attack detection, it was below
15 seconds.

This work has made a significant contribution by demonstrating how machine
learning models can be used to improve web application security. The cloud-based
implementation made the architecture scalable and flexible, allowing it to handle
high traffic volumes effectively. The reduction in false positives, particularly for
XSS attacks, demonstrates the practical value of this approach in cybersecurity,
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with significant spin-offs for companies wishing to improve the protection of their
web services.

For future developments, the following evolutionary lines can be considered:

• To greatly lower latency, the session concept used for this research should be
revised: it could greatly help if WAF used a session cookie to automatically
recognize requests with the same cookie.

• In this regard, it would certainly be helpful to optimize the code that deals
with the preprocessing of bot detection, replacing the GeoLite-City2 binary
database in a lighter and more flexible one, perhaps in CSV format and with
the information strictly necessary for geolocation.

• Making XSS attack detection in real-time: thus avoiding the use of Amazon
MSK and Amazon ECS for message fetch and preprocessing, directly tasking
the WAF engine and contacting the SageMaker endpoint directly.

• Building a training pipeline: having saved the data on persistent storage
such as Amazon S3, you now have easy access to the data. In this sense,
appropriately modifying the SageMaker endpoint to also accept requests to
re-train the model and use it in subsequent inferences is definitely a viable
option.

• Cost optimization: in this regard, it might make sense to use a single endpoint
for both models, further exploiting the potential of Amazon SageMaker.

• Finally, an update of the machine learning models, replacing the two indi-
vidual algorithms in a single neural network capable of performing double
classification.
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Appendix A

Dockerfile for ECS
(bot-detection)

Listing A.1: Dockerfile object for bot-detection ECS
1 FROM ubuntu : 2 2 . 0 4
2

3 MAINTAINER Damiano Fer la <damiano . f e r la@aizoongroup . com>
4

5 RUN apt−get update && apt−get i n s t a l l −y \
6 python3 \
7 vim \
8 dos2unix \
9 cron \

10 python3−pip \
11 && apt−get c l ean \
12 && rm −r f / var / l i b /apt/ l i s t s /∗
13

14 RUN mkdir −p /app
15

16 RUN pip −−no−cache−d i r i n s t a l l kafka−python−ng pandas geo ip2
pycountry r e d i s sagemaker boto3 e l a s t i c s e a r c h

17

18 WORKDIR /app
19

20 CMD [ " sh " , "−c " , " python3 . / ent rypo int . py " ]
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Appendix B

Task Definition for ECS
(bot-detection)

Listing B.1: Task Definition Object for bot-detection ECS
1 {
2 " taskDefinitionArn ": "arn:aws:ecs:eu -central -1: XXXXXXXXX

:task - definition /bot -detection - preprocessing :3",
3 " containerDefinitions ": [
4 {
5 "name": "bot - detection ",
6 "image": "mithril -bot - detection : latest ",
7 "cpu": 0,
8 " portMappings ": [
9 {

10 "name": "bot -detection -container -443-tcp
",

11 " containerPort ": 443,
12 " hostPort ": 443,
13 " protocol ": "tcp"
14 }
15 ],
16 " essential ": true,
17 " environment ": [
18 {
19 "name": "BROKER -KAFKA -IP",
20 "value": "XX.XX.XX.XX"
21 },
22 {
23 "name": "MITHRIL -REDIS -IP",
24 "value": "XX.XX.XX.XX"
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Task Definition for ECS (bot-detection)

25 },
26 {
27 "name": "MITHRIL -EC -IP",
28 "value": "XX.XX.XX.XX"
29 },
30 {
31 "name": "MITHRIL -EC -TOKEN",
32 "value": " XXXXXXXXXXXXXXXX "
33 },
34 {
35 "name": "MITHRIL -SM -IP",
36 "value": "XX.XX.XX.XX"
37 },
38 {
39 "name": "MITHRIL -SM -TOKEN",
40 "value": " XXXXXXXXXXXXXXXX "
41 }
42 ],
43 " mountPoints ": [
44 {
45 " sourceVolume ": "bot - preprocessing -

volume ",
46 " containerPath ": "/ app",
47 " readOnly ": false
48 }
49 ],
50 " volumesFrom ": [],
51 " logConfiguration ": {
52 " logDriver ": " awslogs ",
53 " options ": {
54 "awslogs -group": "/ ecs/mithril -bot -

detection ",
55 "awslogs - region ": "eu -central -1",
56 "awslogs -stream - prefix ": "ecs"
57 }
58 }
59 }
60 ],
61 " executionRoleArn ": "arn:aws:iam:: XXXXXXXXX :role/

ecsTaskExecutionRole ",
62 " networkMode ": " awsvpc ",
63 " revision ": 3,
64 " volumes ": [
65 {
66 "name": "bot - preprocessing - volume ",
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Task Definition for ECS (bot-detection)

67 "host": {
68 " sourcePath ": "/ ecs/data"
69 }
70 }
71 ],
72 " status ": " ACTIVE ",
73 " requiresCompatibilities ": [
74 " FARGATE "
75 ],
76 "cpu": "2048",
77 " memory ": "5120",
78 " runtimePlatform ": {
79 " operatingSystemFamily ": "LINUX"
80 },
81 " registeredAt ": "2024-05-19T12:24:07.462Z",
82 " registeredBy ": "arn:aws:iam:: XXXXXXXXX :user/ damiano .

ferla",
83 "tags": []
84 }
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Appendix C

Dockerfile for SageMaker
(bot-detection)

Listing C.1: Dockerfile object for bot-detection SageMaker endpoint
1 FROM ubuntu : 2 2 . 0 4
2

3 MAINTAINER Damiano Fer la <damiano . f e r la@aizoongroup . com>
4

5 RUN apt−get −y update && apt−get i n s t a l l −y −−no−i n s t a l l −recommends \
6 wget \
7 python3−pip \
8 python3−s e t u p t o o l s \
9 nginx \

10 ca−c e r t i f i c a t e s \
11 vim \
12 dos2unix \
13 && rm −r f / var / l i b /apt/ l i s t s /∗
14

15

16 RUN pip −−no−cache−d i r i n s t a l l j o b l i b ==1.3.2 pandas ==2.2.0 numpy
==1.26.3 s c i k i t −l e a rn ==1.4.1. post1 user_agents f l a s k gunicorn

17

18 ENV PYTHONUNBUFFERED=TRUE
19 ENV PYTHONDONTWRITEBYTECODE=TRUE
20 ENV PATH="/opt/program : ${PATH}"
21

22 COPY . / Container / d e c i s i o n _ t r e e s / /opt/program
23 COPY . / Container /model/ /opt/ml/
24 RUN dos2unix /opt/program/∗
25 RUN dos2unix /opt/ml/∗
26 WORKDIR /opt/program
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