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Abstract

In recent years, the rising global population and the growing demand for food,
coupled with a shortage of human laborers, have placed immense pressure on the
agricultural sector to revolutionize farming operations through advanced technology,
to produce more food, more efficiently and sustainably. In this context, autonomous
harvesting robots have emerged as a promising solution to these challenges.
This thesis focuses on designing a visual servo for apple harvesting using the Kinova
Gen 3 Lite, a 6 Degrees of freedom (DoF) manipulator, equipped with an Intel
RealSense D435i camera mounted on its end effector. The objective is to enable
the robot to accurately identify the target apple and autonomously guide the robot
tool toward it for successful grasping.
To address the problems, the proposed solution comprises two main modules:
one dedicated to visual perception and another focused on manipulator control.
Instance Segmentation is selected as a precise and effective strategy to cope with
target recognition and localization of individual apples. A YOLOv8 Convolutional
Neural Network (CNN) has been trained and fine-tuned to perform this task.
Meanwhile, an Image-Based Visual Servo (IBVS) is employed to control the robot’s
motion efficiently. A comprehensive and integrated pipeline has been developed
to evaluate the individual performances of the two modules and their combined
efficacy. The Kinova robot operates on a stationary basis with static targets. By
real-time inferencing the data stream captured by the RGB-D sensor, the YOLOv8
CNN model detects and segments all apple instances. A selection policy is then
applied to choose the target apple, whose visual features are exploited by the IBVS
for feedback control. Through direct error computation in the image space, this
closed-loop system continuously adjusts the camera motion, thus the end effector
motion, navigating the robot tool to the desired pose. Upon proximity to the
target, an open-loop approach is executed to facilitate apple grasping.
The proposed architecture is fully implemented in Robot Operating System 2
(ROS2), with Python as the primary programming language. Extensive experiments
were conducted using the real robot and mockup apples at PIC4SeR (PoliTo
Interdepartmental Centre for Service Robotics). The results show effective apple
instance segmentation and localization by the network, while the IBVS controller
correctly drives the end effector toward the target.
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Chapter 1

Introduction

In recent years, the increasing global population and the growing demand for food,
combined with a shortage of human labor, have exerted considerable pressure on the
agricultural sector to modernize farming operations through advanced technological
solutions. The goal is to produce more food, in a more efficient and sustainable
manner. Within this framework, autonomous harvesting robots have emerged as a
promising solution to these challenges.

Particularly, autonomous harvesting manipulators are engineered to transform
the harvesting process into a manageable, trackable and customizable operation.
Research in this domain encompasses the development of sophisticated sensors
and algorithms for fruit detection, advanced path planning strategies to approach
targets, innovative obstacle avoidance techniques and refined methods for grasping
ripe fruit without causing damage.

The idea of the thesis originated at PIC4SeR (PoliTo Interdepartmental Cen-
tre for Service Robotics), within a broader initiative aimed at advancing service
robotics to create cutting-edge solutions across various domains, including precision
agriculture, smart urban environments, healthcare, cultural heritage preservation
and space exploration.

Objective of the project

This thesis focuses on designing a Visual Servo for Apple Harvesting using the
Kinova Gen 3 Lite, a 6 Degrees of freedom (DoF) manipulator, equipped with an
Intel RealSense D435i camera mounted on its end effector. The primary objective
is to implement a robust apple identification algorithm, to enhance the robot
with visual perception of the target fruit. Then, the second goal is enabling the
robot tool to autonomously approach the identified apple for completing successful
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Introduction

grasping, by means of a visual controller, exploiting the visual data coming from
the RGBD sensor. The final aim is to create a comprehensive, integrated system
that combines the Vision and Control modules. The complete architecture will be
thoroughly evaluated to assess the individual performances of each module, and
their combined efficacy in executing successful autonomous harvesting operations.

Organization of the thesis work

An overview of the thesis structure is provided, offering a brief description of the
content covered in each chapter.

• Chapter 2 introduces the role of robotics in agriculture, with a particular
emphasis on autonomous harvesting systems. It presents a comprehensive
review of state-of-the-art apple harvesting robots, highlighting innovative
designs from both academic research and startup initiatives.

• Chapter 3 presents the theoretical framework of the system’s key technologies,
covering the implemented visual controller, the Image-Based Visual Servo
(IBVS) approach, as well as the underlying principles of Convolutional Neural
Networks and YOLOv8 architecture.

• Chapter 4 offers an in-depth exposition of the proposed system architecture,
comprising the Vision model and the Visual Controller, detailing how they
work to achieve the desired objective.

• Chapter 5 provides an overview of the software and hardware tools employed
in the system’s development, simulation and testing phases.

• Chapter 6 shows the outcomes of extensive experimental tests carried out in a
realistic environment, providing an analysis of the system’s performance.

• Chapter 7 concludes the thesis by summarizing the key findings and exploring
potential directions for future work.

• The Appendix contains additional insights on topics referenced throughout
the thesis, intended to assist the reader in gaining a deeper understanding.

2



Chapter 2

State of the art

As the global population continues to rise, the demand for food production has
surged correspondingly. This growing demand places immense pressure on the
agricultural sector to produce more food, more efficiently, and sustainably. Tradi-
tional farming methods, reliant on manual labor and extensive use of resources, are
increasingly unable to meet this challenge. Consequently, the agricultural industry
is turning to advanced technologies, particularly robotics, to revolutionize farming
practices.
This chapter explores the current state of smart solutions in agricultural robotics,
with a particular focus on robotic systems designed for the harvesting task.

2.1 Introduction to Agricultural Robotics
In everyday life, robotic solutions are increasingly prevalent across various sectors,
from smart factories and service robotics to autonomous driving. This technological
advancement is also making meaningful inroads into agriculture.
The integration of robots into precision agriculture have boosted efficiency and
versatility, by guaranteeing a continuous work also in labor-intensive tasks; as well
as optimized the use of resources like water and fertilizers, promoting sustainability.
The farming robots are mainly classified according to the task they accomplish [1]:

• Seeding: These machines automate planting seeds and crops. By using GPS,
these robots optimize both depth and space for each planted seed.

• Fertilizing: This role consists of spreading the fertilizer over the entire
cultivated field. The manual work, as well as being intense and difficult, could
lead to irregular spreading. Robots instead act on specific areas: they directly
fertilize the soil or the plant. To achieve so, the robots have proper sensors
and mapping technologies, enabling them to navigate and localize the areas of

3



State of the art

interest.
Some robots deploy pneumatic systems to inject fertilizer pellets into the soil,
while others apply liquid fertilizer by hitting the plants.

• Weeding and Pest Control: These units should be equipped with some
object recognition technologies to first identify the weeds to get rid of and
with some precision tools to remove the weeds from the soil. Since weeds
could be anywhere, robots should be able to extend or shorten their reach:
that’s why mobile and articulated robots are well-suited for this task. To
increase the efficiency of these systems and reduce the operational space of
the machines, the gathered data on the presence of weeds in past weeding
operations is important. In this way, it is estimated where and when they are
most likely to reappear.

• Monitoring and Scouting: Drones or ground robotic machines are deployed
to collect information on plant vitality, soil hydration, and additional key
agricultural indicators.

• Harvesting: These robots aim at picking and placing fruits and vegetables.
They employ sensors and cameras to identify when it’s time to harvest the
fruits and they use arms or other precision tools to delicately collect them
without harming the yield.

2.1.1 Insight on robot models involved in agriculture
As we have described the agricultural operations being automated, let’s now look
into the robot models currently involved in these processes [1]:

• Six-Axis Robots: This kind of robot features a flexible arm with multiple
joints, enabling movement in several directions and access to a broad range
of positions. This extensive articulation and the ability to navigate tight
spaces make it effective in operations requiring intricate movements, like the
harvesting of fruits and vegetables.
Six-Axis Robot’s huge reach enables it to extend over planters or other obstacles
to pick or spray crops effectively.
A key aspect of Six-Axis Robots is the presence of advanced sensors, including
vision systems, guiding them on picking fruits ripe enough to be grasped.
Since they have limited mobility on their own, they are most likely to be used
on robotic transport units (RTUs) or integrated with mobile robots.

• Mobile Robots: Designed with wheels or tracks, they move through fields
and other outdoor settings with ease. Beyond merely transporting other robots
from one location to another, they also perform crop monitoring. Outfitted
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with cameras and other sensors, these robots gather valuable data on plant
health, soil moisture, helping farmers in irrigation, fertilization and various
aspects of crop management.

• Autonomous Tractors: They are valuable tools for planting, fertilizing and
spraying. Equipped with GPS and mapping technologies, these tractors navi-
gate fields at steady speeds and maintain uniform application rates, resulting
in more consistent crop growth and higher yields. The risk of accidents and
crop is way reduced because they can avoid obstacles. Because of their contin-
uous work, they can boost efficiency and cut labor costs for: soil preparation,
tilling, seeding and harvesting.

2.2 Autonomous robots for harvesting
In recent years, significant advancements have been made in the development
of autonomous robots for harvesting a wide range of crops, including apples,
strawberries, grapes and more. These robots are engineered to transform the
harvesting process into a manageable, trackable, and tailorable operation; to acquire,
interpret, and evaluate individual information of the target fruits (maturation
periods, harvest time, fruit position and imperfections); to tackle the challenges
presented by the agricultural environment (such as branch arrangements, foliar
obstruction, and disease infection). By integrating this information with plant
growth patterns and varietal characteristics, the harvesting systems provide valuable
insights to guide agricultural decision-makers in optimizing their operations.
In the context of autonomous harvesting robots, two harvesting approaches have
been developed: selective harvesting and bulk harvesting [2]. The first method
uses a mobile basis on which robotic arms, equipped with a tool for picking and a
camera for target detection, are mounted.
The second method involves shaking the fruit tree so that the fall of target fruits is
caused. However, since this approach exhibits various cons, including the harming
of fruits and canopies and the harvesting of both ripe and immature fruits, it it
less common than the selective harvesting approach [2].
In the following, a dive into the system architecture of robots for selective harvesting
will be presented.

2.2.1 System architecture of harvester robots
We can define harvesting robots as complex systems resulting from the integration
of multiple subsystems [2], including:

• a mobile platform to navigate along the fields;
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• a computer vision system aiming at recognizing the target and perceiving the
environment;

• a control system to achieve the desired movement of the manipulator;

• a kind of box to place the picked fruits;

• one or more robotic arms or manipulators to pick the fruits while avoiding
collisions;

• one or more grippers to grasp the fruit.

2.2.2 Fruit detection: sensors and algorithms
Before an apple can be located and grasped, a robotic harvester must first identify
it accurately, even when faced with challenges such as variability in fruit size, shape
and orientation, along with occlusion by leaves and branches, and changing lighting
and weather.

Sensors

To identify the target and locate it, the harvesters are furnished with either 2D
(two-dimensional) or 3D (three-dimensional) vision sensors.
Among the 2D sensors, we can mention: the RGB (red, green, blue colors) camera,
the IR (infrared) sensor, spectral sensors, or a combination of any of them [3].
By applying traditional ML (machine learning) methods or DL (deep learning)
algorithms, it’s possible to identify the target fruit by analyzing the images recorded
by the RGB camera (sometimes too sensitive to illumination). Spectral sensors
can be used for getting both spectral and spatial information about the fruit by
analyzing the different reflectance patterns at various wavelengths. Thermal sensors,
capturing temperature data, help in distinguishing fruits from the background: as
a matter of fact, fruits tend to absorb and emit more heat than the surrounding
canopies.
For what concerns the 3D imaging sensors, we can refer to: stereo cameras, LiDAR
(Light Detection and Ranging) sensors and RGB-D cameras. Stereo cameras capture
images using two or more RGB cameras placed at a fixed distance apart, then
combine these images to calculate depth through triangulation. While accurate,
this process is slow and requires frequent calibration, limiting its real-time usability.
LiDAR generates 2D or 3D point clouds by using pulsed laser reflections to gather
spatial information. Although LiDAR can be integrated with RGB cameras, the
data fusion is slow, and the high cost of precise LiDARs restricts their use. RGB-D
cameras provide a real-time feed of RGB images blended with depth information,
enabling superior localization accuracy, robustness, and computational efficiency at
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a lower cost than LiDAR. This makes RGB-D cameras highly suitable for practical
applications. However, their performance can decline at close distances or in
extreme weather conditions [2].

ML and DL algorithms for fruit detection

Traditional vision algorithms can analyze and encode features like color, shape, and
texture from images captured by sensors. These features are then processed using
machine-learning (ML) classifiers to recognize and categorize objects. However,
color-based methods often struggle with fruits that have similar colors to leaves,
especially under varying lighting conditions, making them suitable only in controlled
environments. To improve accuracy, other image features such as texture, light
intensity, and edge detection are incorporated to enhance RGB image analysis.
For example, Kang et al. [4, 5] proposed an algorithm that uses hierarchical
multi-scale feature extraction of color and shape, followed by K-means clustering
for classifying regions of interest. This approach, known as multiple feature-based
detection, combines various features into a single data structure for object detection.
Despite these advancements, there remains a gap in real-time detection performance
regarding computational efficiency, accuracy and robustness under natural lighting.
To address these limitations, deep learning (DL) based methods have been developed
as a potential solution.
Among various deep learning approaches, convolutional neural networks (CNNs)
stand out as a supervised method that utilizes convolution and back-propagation to
extract target features, significantly enhancing the accuracy and generalization of
algorithms. Although deep learning can be applied to diverse data types (such as
depth, RGB, and infrared images, or their combinations), to achieve high detection
accuracy, the training process is time-consuming and requires a large dataset of
labeled images [2].

2.2.3 Methods for fruit grasping and end-effector innova-
tions

The design of fruit detachment mechanisms and end effectors is crucial for the
successful harvesting of crops: these components are responsible for gently removing
fruits from plants without causing damage, while also adapting to various fruit
types and sizes. Some detachment methods involve separating the stem from the
branch by applying external force either directly or indirectly to the stem. Five
categories of methods can be listed: stem cutting, stem pulling, fruit twisting,
fruit pulling and vacuum suction. The stem cut and stem pull techniques involve
performing these actions while holding the stem in place. In contrast, the fruit
twist and fruit pull methods apply their respective forces directly to the fruit itself.
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Vacuum-based methods, on the other hand, use suction to remove the fruit without
making direct contact with either the stem or the fruit.
For what concerns the end effector design, the most adopted grippers are: the soft
grippers (mimicking the soft, adaptive touch of human hands, minimizing the risk of
bruising or damaging the fruit), the suction cups (using vacuum pressure to grip the
fruit, effective for fruits with smooth surfaces), claw or pincer grippers (mechanical
grippers designed to hold the fruit securely using a claw-like mechanism), hybrid
designs (deriving from any combination of them) [2].

2.2.4 Obstacles avoidance approaches
The navigation to fruits in a cluttered and dynamic environment while avoiding
obstacles is another major challenge of harvester robots. To address these issues,
several approaches have been proposed, depending on the type of obstacles [2].

• Soft obstacles: To cope with soft obstacles (e.g., leaves and stems), the
solutions involve temporarily clearing the way. Mechanical systems can be
used to move leaves out of the way so that the fruit is visible to the camera
(Harvest CROO Robotics, [6]). Alternatively, robots with dual (or more) arms
can mimic human actions by pushing leaves aside.

• Rigid obstacles: Instead, to cope with rigid obstacles, such as branches or
complex structures, manipulators with multiple degrees of freedom (DOF)
and sophisticated path-planning algorithms are preferred. The number of
DOF can vary among designs, with some using six (for example, [5]), seven,
or even nine DOF. While more DOF can improve maneuverability, they also
add complexity and might reduce overall picking efficiency. To manage this,
vision algorithms are employed to identify and exclude fruits that are too
difficult to reach, assuming that the remaining fruits can be grasped using
straightforward paths.

2.2.5 Evaluation of harvester robots’ performance
To assess the effectiveness of the fruit harvesting robots, three key performance
metrics are used [7]:

1. Harvest Success Rate: this metric measures how many ripe fruits are suc-
cessfully harvested out of the total number of ripe fruits in the canopy. It’s
important to note that this count includes fruits that may have been damaged
during harvesting.

2. Cycle Time: this represents the average duration of a complete harvest cycle,
covering all steps from fruit recognition and localization to path planning,
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grasping, collection, and moving among fruits. Any time lost due to failed
attempts is included if reported.

3. Fruit Damage Rate: this metric tracks the number of fruits that are damaged
during the harvesting process, including damages to the fruit stems, relative
to the total number of ripe fruits identified.

2.3 Innovative harvester robots: cutting-edge de-
velopments from startups and academia

In the following section, several of the most innovative autonomous robots designed
for harvesting will be described. These robots, developed by both leading startups
and academic institutions, highlight the cutting-edge developments driving the
future of automated harvesting.

"An automated apple harvesting robot—From system design to field
evaluation"

This work has been published in 2023 [8]. With the goal of designing a robot
for selective apple harvesting, the proposed unified system includes a perception
component, a low-cost 4 DOF manipulator, a vacuum-based soft gripper, and a
collector to gather and transfer the picked fruits. By fusing the data recorded by
the RGB-D camera and the laser-camera unit, a novel perception DL algorithm can
precisely locate the target apple, achieving millimeter-level localization performance.
The 4 DOF manipulator, with a simple design but high efficiency, approaches the
target object under accurate motion planning and control. The soft end effector,
that grasps the apple, is attached to the vacuum tube’s inlet for gripping fruit: this
design adapts easily to various fruit shapes and orientations, and helps prevent
bruising during harvesting. Finally, the collector fetches the picked fruit. By
evaluating the performances of the robot in two orchards, with two different tree
architectures and leaves distribution, the robot registered respectively 82.4% and
65.2% of successful harvesting rate, with 6 s as average cycle time to pick a fruit.

"A multi-arm robot system for efficient apple harvesting: Perception,
task plan and control"

This work dates back to 2023 [9]. This system integrates a multi-arm robotic
design with a perception system, advanced task planning and control mechanisms.
The system features a perception component that includes a multi-task deep
learning algorithm utilizing stereo vision cameras for precise fruit recognition and
localization despite occlusions and varying lighting conditions. The task planning
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Figure 2.1: Representation of the harvester robot with the 4-DOF manipulator
from [8]

is based on a Markov game framework using multi-agent reinforcement learning
(MARL), which optimizes the harvesting sequence to reduce operational time
and avoid inter-arm collisions. The robot, equipped with four 3-DOF arms and
custom-designed grippers, is capable of efficient fruit picking in complex orchard
environments. Field experiments demonstrated that the proposed system reduced
fruit localization errors by 44.43% and decreased the average cycle time by 33.3%
compared to heuristic-based methods. The robot obtained a harvesting success
rate between 71.28% and 80.45%, with an average cycle time ranging from 5.8 s to
6.7 s, depending on the growth conditions of the apple trees.

Figure 2.2: Representation of the multi-arm harvester robot’s hardware from [9]
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12 arms solution: FFRobots

The FFRobot developed by FFRobotics is an advanced, fully automated robot
designed to address the task of fruit harvesting [10, 11]. This robot features a
platform providing power, moving the machine and holding the fruit collectors;
12 independent robotic arms (six on each side of the basis, positioned at different
heights), each equipped with cameras and grippers that can grasp, rotate, and
cut fruit stems; a unified component to handle and fill the boxes. Guided by AI
and sophisticated vision systems, and developed with ROS, the robot can identify,
locate, and harvest fruits. After the gripper grasps the fruit, each robotic arm
withdraws to the basis of the FFRobot and gently places the fruit onto a conveyor
belt. This belt transports the fruit to a bin located at the bottom of the platform.
The platform, holding three bins, automatically lowers a full bin to the ground and
replaces it with an empty one to continue the harvesting process. After harvesting
the fruits from trees on both sides, the platform moves to the next section and
repeats the process. It continues this cycle until it reaches the end of the row,
at which point it turns and begins harvesting the next row. In a nutshell, the
FFRobot gains a rate of up to 9000 fruits per hour, it can work 20 hours per day,
it typically collects around 90% of the fruit from a tree in an orchard arranged
with fruiting walls, and it causes minimal damage to the fruit, with only about 5%
affected.

Figure 2.3: Representation of the 12 arms FFRobot from [10]
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Flying autonomous harvesters: Tevel

Tevel, developed by Tevel Aerobotics Technologies, represents an innovative system,
specifically tailored for fruit harvesting [12]. This system incorporates flying robotic
drones equipped with high-resolution cameras and sophisticated sensors, featuring
lightweight and aerodynamic design, that enables them to hover and maneuver
precisely and efficiently among the branches of fruit trees. As end-effector, the
drones use a suction cup to pick the fruits, placed at the end of their arm. The
robotic drones are powered by: maneuver algorithms (to optimize the trajectory
planning), balancing algorithms (to counterbalance the forces applied by the
greenery and fruits), AI perception algorithms (for fruit tracking and data fusion),
vision algorithms (to detect the target fruits and the other objects and to classify
fruits according to size and ripeness), harvesting optimization (to manage the
fleet according to gathered orchard data). The robots appear versatile, able of
multi-tasking and handling various fruit types (apples, pears, peaches, apricots,
nectarines, plums, avocados), orchard designs and agricultural platforms. The
system provides real-time information regarding fruit quantity, weight, color grading,
ripeness, diameter, timestamp, geolocation, and it’s able to harvest 24/7. What’s
more, the system is cost-effective and environmentally friendly, reducing food waste.

Figure 2.4: Representation of the flying harvester Tevel from [12]
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Chapter 3

Theoretical Background

This chapter aims to introduce the theoretical foundations on which the designed
architecture comprising visual perception and control for apple harvesting is based.
In the first section, an overview of various methods and techniques used for visual
servoing is presented, with a particular attention on Image-Based Visual Servoing
(IBVS). The second section shifts the focus to the computer vision tasks essential
for the system’s operation, the detection and segmentation of the target object, and
the deep learning architecture (CNN) through which the tasks are accomplished.

3.1 Introduction to Visual Servoing
Visual servoing, also known as vision-based robot control, is a technique that uses
visual information to control the movements of a robotic system [13]. One or
more cameras capture the scene from a starting pose, resulting in the current
image. The desired image is represented by the scene as seen from the desired
camera pose. The basic problem lies in finding a camera motion that guarantees to
move from the initial pose to the desired one, exploiting the time-varying image as
input. Visual Servoing (VS) integrates concepts and methods from several research
areas, including image processing and computer vision to extract visual data and
features from camera, artificial intelligence and machine learning for advanced
image processing and decision-making capabilities, and robotics and control theory
to develop control algorithms for robotic manipulators that continuously update
the robot’s position and orientation based on visual feedback.
Due to its precision and adaptive interaction with the environment, VS has a wide
range of applications across various fields [14], including:

• Medical surgery, assisting surgeons with precise movements during minimally
invasive procedures

13



Theoretical Background

• Autonomous navigation of unmanned aerial vehicles or driverless cars, improv-
ing the safety and reliability of the systems by enabling them to navigate and
interact with their surroundings

• Agriculture, automating tasks like harvesting, planting and monitoring crops
to increase efficiency and yield

• Industrial Automation, enhancing the flexibility and accuracy of robots in
manufacturing processes such as assembly

• Service robotics, improving the performance of robots in domestic and com-
mercial settings, such as cleaning, security and customer service.

By leveraging visual information, visual servoing empowers robots to perform
complex and delicate tasks with a high degree of autonomy and precision, making
it a vital technology in advancing the capabilities of modern robotics.

3.1.1 Classification of Visual Servoing systems: configura-
tions and approaches

Researchers have been exploring visual servoing for more than four decades. But it
was thanks to the advent of high speed processors and cameras that VS systems,
implemented in real-time contexts, have found applications in industry. According
to differences in the configurations and implementations, a sort of classification for
VS systems is proposed in the following [14]:

• Camera configuration: Eye-in-hand vs. Eye-to-hand

• Number of cameras: Mono Vision, Stereo Vision, Multiple Cameras

• Control scheme: IBVS, PBVS or Hybrid

• VS controller: Proportional, Adaptive or Model Predictive Controller

• Image features: Point features, Line features, Image Moments features

3.1.2 Camera setup
Eye-in-hand vs. Eye-to-hand

The first classification of visual servoing systems is based on camera positioning.
Eye-in-hand configuration consists in mounting the camera on the robot’s end
effector. Advantages include the high precision due to the direct and consistent view
of the manipulation area that reduces the risk of occlusions and ensures continuous
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tracking, improved 3D perception. However, disadvantages are limited field of
view, motion-induced artifacts (such as motion blur and perspective changes) and
frequent, complex calibration.
Eye-to-hand configuration fixes the camera in the environment. This setup provides
several pros, including a stable viewpoint, a larger field of view covering the entire
workspace and easier calibration. Its downsides include frequent occlusions from
the robot or other objects, reduced precision for small movements if the camera
is far from the task and complexity in 3D perception, often requiring multiple
cameras or sophisticated algorithms.
The choice between configurations depends on task requirements. Eye-to-hand
is preferable for broad workspace views, multi-robot coordination, or simpler
calibration processes. Eye-in-hand suits high-precision tasks, continuous end
effector tracking and detailed 3D perception [14].

Figure 3.1: Camera configurations for visual servoing from [15]

Number of Cameras

As second way of classifying VS systems is by the number of cameras: Monocular
cameras, Stereo Vision or Multiple cameras, each compatible with eye-to-hand or
eye-in-hand configurations [14, 16].
Monocular camera systems (Single Camera) capture 2D images, providing informa-
tion about the image plane but lacking direct depth perception, requiring techniques
to infer depth. They have a restricted view but faster processing. Depth-Enhanced
Monocular Cameras also include depth sensors, making them ideal for mobile
robots and drones.
Stereo vision systems employ two or more cameras at known distances, calculating
depth via triangulation. They’re rarely used in eye-in-hand configurations due to
narrower field of view.
Multi-Camera Systems utilize more than two cameras to cover a larger area or
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capture different perspectives of the same scene, improving robustness and accu-
racy. Even so, multiple cameras lead to more data to process, requiring efficient
algorithms and powerful hardware for processing [14, 16].

3.1.3 Visual servoing controllers
Proportional, Adaptive or Model Predictive Controller for VS systems

The fundamental controller used across all three visual strategies (IBVS, PBVS,
Hybird) is the proportional controller, which reduces feature errors exponentially.
However, more sophisticated controllers have been developed to address its limita-
tions. Adaptive control estimates unknown or uncertain system parameters, such
as camera calibration or object depth. Robust visual servoing enhances system sta-
bility in the presence of significant calibration errors. Model predictive controllers
cope with system constraints like image boundaries and joint limitations during
robot movement. Non-linear controllers, such as sliding mode control, improve
robustness in feature trajectory tracking [14].

Image Features

An image feature is an interesting characteristic or geometric structure extracted
from an image or scene. Some examples could be: points, lines, ellipses (or other
2D contour). The feature parameter is instead any numerical quantity associated
to the chosen feature in the image plane, such as: the coordinates of a point, line’s
angular coefficient and offset, circle’s center and radius, 2D contour’s area and
center, object’s generalized moments in the image. Using moments avoids the
problem of finding correspondences between points but complicates the control of
all six degrees of freedom of the camera when when used as the sole feature [17].

Control schemes

A further classification of the VS schemes is made on the basis of how the error is
generated. The three most famous architectures are: Position-Based Visual Servo,
Image-Based Visual Servo and Hybrid Visual Servo. As we can see in Fig. 3.2, in
Position-Based Visual Servoing (PBVS), image features are utilized to determine
the current 3D pose of an object. This current pose is then compared with a pre-
defined desired 3D pose to produce a Cartesian pose error signal, which guides the
robot towards the target position. Clearly, to compute the object pose, this strategy
needs an accurate camera calibration (to map the 2D data of the image features to
the Cartesian space data) and the geometric model of the object. The sensitivity
to calibration errors and the 3D pose reconstruction’s computational cost are the
main drawbacks of the PBVS. Furthermore, since there is no control on the image
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trajectory, the PBVS fails when the object looses the camera’s field of view. On

Figure 3.2: PBVS control scheme

the contrary, as we can see in Fig. 3.3, in the IBVS strategy, the error is calculated
directly in the image space: the desired features are compared with the current
features of the object. The motion of the robot aims at overlapping the current
features (thus, what it sees from the camera) with the desired ones. Thus, it’s
almost insensitive to intrinsic/extrinsic camera calibration parameters, it does not
need any geometric model of the object and it presents a lower computational cost
compared with PBVS. The uncontrolled path in 3D space can make the robot move
beyond its allowed joint angles, especially when big turns and moves are needed to
reach the goal. Additionally, this approach is hampered by potential singularities
and possibility of encountering local minima. The hybrid VS scheme combines
the two earlier approaches. It controls the robot by handling the end-effector’s
rotational movement and translational movement separately. Hybrid VS mixes the
best of image-based and position-based methods to enhance control accuracy and
robustness. In this way, the system can effectively manage complex tasks where
both fine rotational adjustments and large translational movements are necessary,
while mitigating issues such as singularities and joint limit violations [14].
Due to its numerous advantages, such as robustness and lower computational cost,
the IBVS (Image-Based Visual Servoing) architecture has been preferred for this
thesis work. Therefore, the following section will provide a detailed analysis of the
steps involved in designing an IBVS controller.
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Figure 3.3: IBVS control scheme

3.1.4 IBVS Controller Design
The goal of IBVS consists of minimizing the following error, defined in the image
feature space:

e(t) = s(m(t), a) − s∗ (3.1)

where:

• m(t): collection of image measurements (the aformentioned image features
parameters);

• s(m(t), a): vector of k visual features, extracted directly from vision data
(e.g., centroid of a detected object, the vertices of the bounding box of the
detected object, and so on);

• a: set of parameters providing additional information about the system
(camera intrinsic parameters in this scheme, to go from image measurements
expressed in pixels to the features);

• s∗: vector of desired values of the features.

Basic assumptions

As previously explained, since a wide variety of control schemes are available, it is
necessary to make certain assumptions about the scheme used in our thesis work:

• Eye-in-hand systems: The camera is attached to a six degree-of-freedom
robot’s end effector and it is treated as a free-moving object.
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• Static targets: The targets are assumed to be motionless, thus s∗ is constant
over time and s varies according to the camera motion.

• Purely kinematic systems: The dynamics of camera motion are neglected;
it is assumed that the camera can precisely carry out the applied velocity
control.

• Perspective projection: The imaging geometry is modeled as a pinhole
camera.

We can then proceed with the discussion by delving into the design of the control
law.

Design of the control law

Given a set of features parameters s =
è
s1 · · · sk

éT
∈ Rk, the equation 3.2

expresses the kinematic differential relationship between the time variation of s
(the motion of features) and the movement imposed to the camera.

ṡ = Lsvc = Ls

C
vc

ωc

D
(3.2)

Here, vc = (vc, ωc) ∈ R6 is the spatial velocity of the camera expressed in the
camera frame Fc , being vc the instantaneous linear velocity of the origin of the
camera frame and ωc the instantaneous angular velocity of the camera frame; Ls,
k × 6 matrix, is named interaction matrix, also known as feature Jacobian related
to s.
By using equations 3.1 and 3.2, we can directly derive the relationship between the
camera velocity and the temporal variation of the error:

ė = Levc (3.3)

with Le = Ls. If we look at vc as the input to the robot controller and aim to
achieve an exponentially decoupled reduction of the error (that is, ė = −λe) , we
derive the following from equation 3.3:

vc = −λL+
e e (3.4)

with L+
e ∈ R6×k, being L+

e = (LT
e Le)−1LT

e , the Moore-Penrose pseudoinverse of
Le if Le is of full rank 6. This approach minimizes both ∥ė − λLeL+

e e∥ and ∥vc∥.
When k = 6 and det L /= 0, it is possible to invert Le, resulting in the control law
vc = −λL−1

e e [13].
In practice, it appears impossible to know exactly either Le or L+

e , leading to an
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approximation or estimation of the Jacobian matrix, denoted by äL+
e .

The control law can be rewritten as [13]:

vc = −λäL+
e e (3.5)

After having obtained the control law for Image Based Visual controllers, we’ll
continue the discussion by analyzing the structure of the Jacobian matrix. To do
this, a brief mention to the pinhole model is following.

Pinhole camera model

The pinhole camera model, originating from the camera obscura described by
Leonardo da Vinci in 1502, represents the simplest camera model. The camera is
conceptualized as a pinhole camera where light passes through a small aperture
and projects an inverted image onto a projection plane. Let’s now focus on the
geometry of this projection. Let’s consider a 3D coordinate system with the origin
at the camera’s pinhole (camera frame). A 3D point with coordinates P = (X, Y, Z)
is mapped onto a 2D image plane with coordinates p = (x, y). The image plane is
located at a focal distance f from the pinhole. By considering similar triangles,
the projection of the point (X, Y, Z) onto the image plane is given by:

x = fX

Z
, y = fY

Z
(3.6)

These equations describe the ideal projection, neglecting geometric distortions or
blurring of unfocused objects. Let’s go on with the representation of the image
plane points in homogeneous coordinates: p̃ = (x′, y′, z′)T . The tilde shows that
the vector is being written in homogeneous coordinates.

p̃ =

x′

y′

z′

 =

fX
fY
Z

 =


f 0 0 0
0 f 0 0
0 0 1 0
0 0 0 1



X
Y
Z
1

 (3.7)

Until now, we have considered the coordinates of the point in the camera reference
frame. The need arises, for example, when there are multiple cameras in a system,
to transform the coordinates into a different reference frame: the world or the
robot RF. If we denote the coordinates in the camera RF with the apex C and the
coordinates in the world RF with the apex 0, we can explicitly state the relationship
between the two reference frames:

P̃0 = T0
C · P̃C (3.8)

where the matrix T0
C is a transformation matrix that converts coordinates from

the camera RF to the world RF.
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Figure 3.4: Central perspective imaging model from [18]

In digital cameras, the image plane is not continuous but organized as a grid of
pixels or photodiodes. These pixels are identified by a two-dimensional vector (u, v)
representing the horizontal and vertical indices of the grid. The pixel at coordinates
(0,0) is located at the top-left corner instead of the center as shown in Fig. 3.4.
The transformation between pixel coordinates (u, v) and image plane coordinates
(x, y) is done as follows:

u = x

ρw

+ u0, v = y

ρh

+ v0 (3.9)

where ρw is the width of a pixel in the image plane units, ρh is the height of a
pixel in the image plane units; (u0, v0) are the coordinates of the principal point
(obtained by intersecting the image plane with the optical axis, the z axis of the
camera RF). By merging Eq. 3.6 and 3.9, we get:

u = fX

ρwZ
+ u0 = fw

X

Z
+ u0

v = fY

ρhZ
+ v0 = fh

Y

Z
+ v0

(3.10)
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It can be written in homogeneous coordinates as well, highlighting that fw and fh

are adimensional quantities, obtained by the division of two distances [mm]:

p̃ =

u′

v′

w′

 =

fw · X + u0 · Z
fh · Y + v0 · Z

Z

 (3.11)

In order to go from the homogeneous pixel coordinates to the non-homogeneous
ones:

u = u′

w′ , v = v′

w′ (3.12)

Now, let’s rewrite the perspective projection transformation in homogeneous coor-
dinates in a linear way:

p̃ =

u′

v′

w′

 =

fw 0 u0
0 fh v0
0 0 1

 ·

1 0 0 0
0 1 0 0
0 0 1 0

 · (T0
C)−1 ·


X
Y
Z
1

 = KN(T0
C)−1P̃0 = CP̃0

(3.13)
where:

• K represents the camera parameters matrix;

• N is termed the projection matrix;

• KN is the intrinsic matrix, establishing the relation between pixel coordinates
in homogeneous form and the spatial coordinates in the camera RF;

• (T0
C)−1 constitutes the extrinsic matrix;

• C = KN(T0
C)−1 is a 3 × 4 homogeneous transformation that maps a point P̃0

in homogeneous world coordinates to its corresponding point x in homogeneous
image RF coordinates.

To conclude, employing the non-linear Eq. 3.12, one can derive the pixel coordinates
(u, v) that correspond to an arbitrary point P0 in world space.

Interaction matrix

Our goal is deriving now the Interaction matrix. As we have stated, the Jacobian
matrix is always related to a particular feature parameter. Since in this thesis
work the coordinates of precise points will be choosen as image feature parameters,
let’s compute the interaction matrix for a single point with coordinates (X, Y, Z).
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Firstly, the computation of time derivatives is needed for x, y. By applying the
quotient rule to Eq. 3.6 [19], we obtain:

ẋ = f
ZẊ − XŻ

Z2 , ẏ = f
ZẎ − Y Ż

Z2 (3.14)

By rewriting Eq. 3.6 as X = xZ
f

and Y = yZ
f

, we can substitute these into ẋ and ẏ,
getting:

ẋ =
˙fX

Z
− xŻ

Z
, ẏ = fẎ

Z
− yŻ

Z
(3.15)

We can now express Ẋ, Ẏ , and Ż in terms of the camera velocity screw vc and
X, Y, Z. By writing the velocity of the fixed point P with respect to the camera
frame [19], we get the equations of Ẋ, Ẏ and Ż:

Ṗ = −v − ω × P

Ẋ
Ẏ
Ż

 = −v − ω ×

X
Y
Z


Ẋ = −vx − wyZ + wzY

Ẏ = −vy − wzX + wxZ

Ż = −vz − wxY + wyX

(3.16)

Going on blending the equations and playing with algebra, we obtain:

ẋ = −f

z
vx + x

z
vz + xy

f
ωx − (f 2 + x2)

f
ωy + yωz

ẏ = −f

z
vy + y

z
vz + (f 2 + y2)

f
ωx − xy

f
ωy − xωz

(3.17)

Finally, the matrix form of the equations is given by [19]:

L =
− f

Z
0 x

Z
xy
f

−f2+x2

f
y

0 − f
Z

y
Z

f2+y2

f
−xy

f
−x

 (3.18)

As a compact form, we can write:

ṡ = L(s, Z)vc (3.19)
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It may be interesting to look at the nullspace of the Interaction or Jacobian matrix
[19]: 
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(3.20)

By intuition, it corresponds to all point movements that cannot be detected by
the camera, for example: the translation and rotation about the projection ray,
the translation and rotation about the y-axis of the camera RF, while maintaining
proper orientation through respectively linear and rotational adjustments [19].
As a result, it’s not feasible to control all 6 DOF for the camera movement using
just one point in the image. A practical approach to address this limitation is to
include more than one image point. It follows that the overall interaction matrix is
obtained by stacking all single point interaction matrices (where the knowledge or
estimate of the depth Zi is needed for each point) [19, 13].

ṡ =

ṡ1(t)
...

ṡn(t)

 =

L1(s1, Z1)
...

Ln(sn, Zn)

vc (3.21)

By adopting this approach, it is required to have at least three image points
(k > 6) to control the 6 DOF. Nevertheless, there are certain setups where L
matrix becomes singular. Additionally, there are four distinct camera poses where
the error e equals zero, indicating the presence of four global minima that are
indistinguishable from one another. Consequently, it is common to use more than
three points in these scenarios [13].

Approximation of the Interaction Matrix

There are several methods for constructing the estimate äL+
e used in the control law

[13, 19]:

1. äL+
e = L+

e : in this construction we use the current depth Zi of each point,
without any approximation. However, in practical situations, these param-
eters must be estimated during each iteration according to pose estimation
techniques, with the risk of an intensive computational load.

2. äL+
e = L+

e∗ : where the matrix L+
e∗ corresponds to the value of L+

e at the desired
position, e = e∗ = 0. Le is kept constant, only the desired depth for each point
must be set, meaning that there is no 3D evolution overall the visual servoing
process and the computational load is reduced.
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3. äL+
e = 1/2(Le + Le∗)+: proposed in [20], as a combination of the previous two,

it requires both the current depth for each point and the desired one. This
approach aims to balance the advantages of the two aforementioned methods
by providing a compromise between accuracy and computational complexity.

The behavior of control schemes can be understood geometrically. For instance,
when using L+

e , the control scheme ensures an exponential decrease of the error
e. The image point trajectories ideally follow straight lines from their initial to
desired positions. Some failures can occur because of incorrect interaction matrix’s
feature choices and column coupling, especially when the rotation between initial
and desired configurations is large. This can lead to a retreating translational
motion along the optical axis and inefficient control for rotations near π radians.
To sum it up, if the error is small, the behavior is locally satisfactory.
Using L+

e∗ results in image motion similar to the previous method and sometimes
it may attenuate the unwanted retreating motion.äL+

e = 1/2(Le + Le∗)+ matrix is the mean of the two matrices. Generally speaking,
the resulting image motion remains consistent, even with large errors [13].

Stability Analysis of IBVS

In order to evaluate the stability of closed-loop VS systems, Lyapunov analysis is
adoperated. As candidate Lyapunov function, the squared error norm L = 1

2∥e(t)∥2

is chosen. Let’s compute its derivative: L̇ = e⊤ė = −λe⊤Le
äL+

e e. Then, the global
asymptotic stability of the system is guaranteed if the sufficient condition holds
[13]:

Le
äL+

e > 0 (3.22)

meaning that we have asymptotic stability when the matrix Le
äL+

e is positive
definite.
For IBVS, which often has more features than the camera’s degrees of freedom
(k > 6), global asymptotic stability cannot be guaranteed. This is because the
product Le

äL+
e may have a nontrivial null space, leading to local minima where

the error does not reduce to zero, despite an exponential decrease in each error
component. Consequently, IBVS can only achieve local asymptotic stability, where
the system may converge to a local minimum rather than the desired configuration.
For further investigation and demonstration of stability analysis of IBVS, we invite
the reader to look at [13].
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3.2 Introduction to Deep Learning methods for
Computer Vision tasks

Computer vision encompasses several crucial tasks that enable machines to interpret
and analyze visual information. Two fundamental tasks in this domain include
Object Detection (OD) and Instance Segmentation (IS).
Object detection involves identifying and localizing objects within an image,
typically outputting bounding boxes and class labels for each detected object.
Instance Segmentation goes a step further identifying objects within an image
but also distinguishing individual objects at the pixel level. Unlike semantic
segmentation, which assigns a class label to every pixel without distinguishing
between different instances of the same class, instance segmentation generates pixel-
level masks, as well as providing the bounding box and class label, for each instance.
The described computer vision tasks can be addressed through various methods,

Figure 3.5: Examples of Object detection, Semantic Segmentation and Instance
Segmentation from [21]

with deep learning techniques, particularly Convolutional Neural Networks (CNNs),
emerging as the most effective. Frameworks like YOLO (You Only Look Once) have
revolutionized these fields by offering real-time performance without sacrificing
accuracy. The following sections will delve into the fundamentals of deep learning,
with a specific focus on CNNs and the YOLOv8 architecture, which has been
employed in this thesis for Object Detection and Instance Segmentation tasks [22].

3.2.1 Artificial Intelligence
It is common to get confused about the concepts related to AI, ML, DL. In this
paragraph, we want to clarify each of these notions.
Artificial intelligence (AI) refers to all technologies allowing computers and machines
to mimic the human intelligence and problem-solving [23]. As shown in Fig. 3.6,
Machine Learning and Deep Learning are two sub-fields of AI.
In particular, Machine Learning is the scientific discipline focused on developing
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Figure 3.6: Artificial Intelligence and its subcategories

algorithms and statistical models that enable computers to execute specific tasks
by learning from data rather than following explicit instructions.
As a subset of ML, Deep Learning teaches computer to process data and create
patterns to use in decision making, by adopting learning models referred as deep
neural networks, which are inspired by the human brain.
The key difference between the two branches lies in the fact that:

• in ML: the feature extraction is performed by a human operator;

• in DL: the feature extraction is accomplished by the deep learning network
itself.

3.2.2 Neural networks
Before diving into CNNs, a brief introduction to Neural Networks is needed. The
origin of these networks dates back to Frank Rosenblatt’s work on perceptrons [24].
Neural Networks are nets of interconnected nodes or artificial neurons in an acyclic
graph, organized in a layered structure, resembling the human brain. The output of
the neurons in one layer becomes the input to the neurons of the next layer, without
forming cycles that loop back to earlier neurons. As already stated, these neurons
are usually arranged in layers, including an input layer, one or more hidden layers
and an output layer. These networks are called Multilinear Perceptron (MLP) or
Artificial Neural Network (ANN). An N -layer network excludes the input layer
when counting layers. A neural network is called deep when it has more than one
hidden layer; otherwise, it is called shallow.
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Figure 3.7: Representation of a 3-layer neural network with three inputs, two
hidden layers of respectively 4 and 4 neurons, and one output layer from [25]

Let’s now delve deeper into the nodes of the artificial networks: the neurons. The
concept of the artificial neuron has evolved significantly over time. Initially, artificial
neurons were mathematical functions designed to imitate the behavior of biological
neurons. The early model, known as the McCulloch-Pitts neuron, used a weighted
sum of inputs followed by a step function to determine the output. This basic
model evolved into the perceptron, introduced by Frank Rosenblatt in 1958. The
perceptron included a threshold logic unit (TLU) which used a linear combination
of inputs and a threshold function to produce binary outputs, enabling it to classify
data into two distinct categories. As neural network research progressed, the
perceptron was extended into Multilayer Networks with Fully Connected Layers
[26]. Mathematically, the neuron applies a nonlinearity (the well-known activation

Figure 3.8: The schematic of a neuron from [24]

function) to an affine transformation. The input features x = (x1, x2, ..., xn) are
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processed through an affine function combined with a non-linearity φ:

T (x) = φ(
Ø

i

Wixi + b) = φ(W · x + b) (3.23)

Here, W are given weights and b is a given bias.
The output of the weighted sum could theoretically be any value in the range
[−∞, +∞], but we aim at constraining the neuron’s output within a specific range,
such as [0,1], in a way that the neuron could be activated (fired) when the output
is greater than a given threshold. That’s the reason why the activation function is
inserted. Various options are available for introducing the non-linearity: they will
be accurately shown in the section about CNN.
Unlike the hidden layers, the output layer typically doesn’t use a non-linearity [24].

The learning process of NNs

In NNs, the weights and biases are known as learnable parameters. Learning in
this context refers to the process of finding the optimal values for these parameters.
This is achieved through a process called training. In 1986, after failing attempts
in finding a proper way to train MLPs, David Rumelhart, Geoffrey Hinton and
Ronald Williams introduced the backpropagation training algorithm [26].

Loss function

Basically, it’s necessary to introduce a measure to evaluate how the network is
tweaking the value of weights and biases, thus how well the neural network’s
predictions match the actual target values. We can employ a cost function and the
goal of training is minimizing this cost function. For a set of training examples, a
popular cost function C(w, b) is the Mean Squared Error (MSE).

C(w, b) ≡ 1
2n

Ø
x

∥y(x) − a∥2 (3.24)

where:

• w and b represent the parameters (weights and biases) of the network;

• n is the total number of training examples x;

• a is the actual output of the network;

• y(x) is the desired output.

The cost function quantifies the discrepancy between the network’s actual output
and the target output for a given input. Since the cost function depends on the
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values of W and b, if it approaches 0 for all training examples, it means that the
learning process is effective and appropriate parameter values have been identified.
To this aim, the minimization problem is solved by the Gradient Descent algorithm.
If we denote with v a generic n-dimensional input array, for small variations of
each variable vj, the variation of the cost function is given by:

∇C ≈ ∂C

∂v1
∆v1 + ∂C

∂v2
∆v2 + . . . + ∂C

∂vj

∆vj + . . . + ∂C

∂vn

∆vn (3.25)

The variation ∇C in C produced by a small variation ∇v = (∇v1, ..., ∇vn)T is:

∇C ≈ ∇C · ∇v (3.26)

with ∇C = ( ∂C
∂v1

, ..., ∂C
∂vn

)T . The algorithm works by iteratively adjusting the
parameters in the direction of the steepest descent of the cost function (negative
∇C). Let’s denote with α a parameter called the learning rate, a hyperparameter
that controls the step size of each update:

∇v = v′ − v = −α∇C (3.27)

By combining the equations 3.26 and 3.27, we obtain:

∇C ≈ −α∇C · ∇C = −α∥∇C∥2 (3.28)

The update rule for the parameters in gradient descent is given by:

v′ := v − α∇C (3.29)

We can extend this rule to the specific case of the weights and biases that we want
to update during the epochs:

w′
j = wj − α

∂C

∂wj

b′
j = wj − α

∂C

∂bj

The concept of gradient descent can be improved by using the stochastic gradient
descent (SGD) technique, which helps in faster convergence. While the traditional
gradient descent involves computing the gradient of the cost function C over the
entire training dataset, SGD accelerates this process by using only a small, randomly
selected subset of the data, known as a mini-batch. This approximation allows for
more frequent updates to the model parameters (weights wj and biases bj).
The update rules in SGD are modified as follows:
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• For weights: w′
j = wj − α ∂C

m∂wj

• For biases: b′
j = bj − α ∂C

m∂bj

where m is the size of the mini-batch. The great advantage is that these updates
are more frequent but less computationally expensive than in traditional gradient
descent, leading to potentially faster convergence and better generalization when
training neural networks [23].

Backpropagation algorithm

The Backpropagation algorithm is nothing more than a Gradient Descent for
the automatic calculation of gradients. It’s able to compute the gradient of the
network’s error with respect to each individual model parameter in two steps: one
forward and one backward. It determines how to adjust each connection weight
and bias term to minimize the error. Once these gradients are obtained, a standard
Gradient Descent step is executed, and this process is repeated until the network
converges to the optimal solution.
Let’s see in details how the algorithm works. For a network architecture with
L layers, let’s suppose that all the weights and biases of the network have been
initialized. A mini-batch of m inputs is randomly selected from the dataset and
the following procedure implements a learning update using the gradient descent
method on that subset [23]:

1. The training data are acquired.

2. For each training input x from the mini-batch:

• it enters the input layer, following the feedforward pass, and it is sent to
all following layers. For each layer l = 2, ..., L:

zx,l = wlax,l−1 + bl

and

ax,l = g[l](zx,l)

are computed till the output, where g[l] is the activation function for layer
l.

• The network’s output error is computed as:

δx,L = ∇aCx ⊙ g′[L](zx,L)

It consists of two terms: the first one expressing how fast the loss function
is influenced by the output activations; the second term evaluates the
variation of g[l] depending on the variation of the input zx,L.
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• The Backward Propagation is done by calculating:

δx,l = ((wx,l+1)T δx,l+1) ⊙ g′[l](zx,l)

with l = L − 1, L − 2, ...,2. In this way, the algorithm measures how
much of the error at each layer is attributed to the connections from the
preceding layer, applying the chain rule repeatedly.

3. The weights and biases are updated with the SGD rules for each layer l =
L − 1, L − 2, ..,2:

wl = wl − α

m

Ø
x

δx,l(ax,l−1)T

bl = bl − α

m

Ø
x

δx,l

Naturally, to effectively implement stochastic gradient descent, an external loop
that generates mini-batches of training examples is also needed, as well as another
loop that iterates through multiple epochs of training.

Let’s point out that this represents the generic working flow of the backprop-
agation algorithm but other versions are available. Further more, the number of
epochs needed to complete the training process depends on the network’s dimension
and other factors affecting the process, such as the learning rate and the mini-batch
size [23].

3.2.3 Convolutional Neural networks
Let’s now introduce a new architecture of feed-forward neural networks: Convolu-
tional Neural Networks (CNNs), also known as convnets, specifically designed to
handle image-like inputs. Traditional fully connected networks can be inefficient in
such cases for two reasons: they introduce a wide number of learnable parameters,
slowing down the learning process, and they fail to account for the spatial structure
inherent in images [24, 27].
Firstly, we’ll explore the three key concepts about CNNs: local receptive fields,
shared weights and pooling. Following that, we’ll provide an overview of CNN
architecture, composed by the following building blocks: Convolutional layers,
Nonlinear activation functions, Pooling layers and Fully Connected layers.

Local Receptive Field

Inputs differ between traditional neural networks and CNNs. While neural networks
process inputs as a flat line of data, CNNs handle inputs as a grid, such as a 28×28
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array of neurons, with each value representing a pixel’s intensity. Unlike fully
connected layers, where each input pixel connects to all hidden neurons, CNNs
associate each hidden neuron with only a small, localized region of the input image,
known as a local receptive field [23]. Now, let’s suppose we have a 5 × 5 local
receptive field of input pixels. Each connection in this window learns a weight, and
the hidden neuron also learns an overall bias. This hidden neuron essentially learns
to interpret its specific local receptive field. In the forward pass, the window is then
slid across the entire input image, with each new position activating a different
hidden neuron in the first hidden layer. Even if illustrated this with a stride of
one pixel, different stride lengths can also be adopted. Stride directly affects the
spatial size of the convolution output. Using larger strides reduces the output’s
dimensions, while smaller strides preserve more spatial details. Although larger
strides lower computational demand and speed up processing, they can also affect
the quality.
In conclusion, the number of neurons in the hidden layer can be calculated as:

nh = W − F − 2P

S
+ 1

where W represents the width of the image, F is the size of the receptive field, S
denotes the stride (or the step size of the sliding window), P refers to the amount
of zero-padding applied to the image. Zero-padding involves adding pixels with a
value of zero along the image’s borders, which helps in controlling the output size
of the layer.

Shared weights

It is important to note that, in the aforementioned case of a local receptive field
with 5×5 input pixels, each neuron in the hidden layer learns 5×5 weights and one
bias. These 5 × 5 weights and the bias will be shared among all the hidden neurons,
meaning that their values remain constant as the receptive field moves across the
input image. That’s the great advantage of CNNs: the learnable parameters are
way reduced with respect to fully connected layers, implying faster trainings and
the opportunity to build deeper networks. The output of the hidden neuron located
at position j, k in the hidden layer can be expressed as:

outj,k = σ(b +
Ø

l

Ø
m

wl,maj+l,k+m)

where:

• b is the bias term

• wl,m are the weights corresponding to the receptive field
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• aj+l,k+m are the input activations over the region of the input image that the
receptive field covers

Intuitively, we can draw as a conclusion that each hidden layer is able to learn a
feature, everywhere in the input image. Thus, CNNs are highly suited for capturing
the translation invariance present in images. To sum it up, we refer to the mapping
from the input layer to the hidden layer as a feature map. The shared weights and
bias constitute a kernel or filter. Since one feature map is only capable of detecting
a single kind of feature, in order to accomplish more complex tasks, we need more
than one feature map: these features maps are stacked to get the output map or
activation volume of the convolutional layer.
As a remark, the term convolution inherits the name from the mathematical
operation. In this context, convolution refers to the process of applying a kernel
(or filter) to the input image to extract features. Mathematically, the convolution
operation involves sliding the kernel across the input image and computing the sum
of element-wise multiplications between the kernel and the portion of the image it
covers. This can be formally expressed as:

(I ∗ K)(x, y) =
Ø

i

Ø
j

I(x + i, y + j) · K(i, j) (3.30)

where I represents the input image, K is the kernel, and (x, y) indicates the position
of the output feature map. The result of this operation is a feature map that
highlights specific features detected by the kernel, such as edges or textures. This
process enables CNNs to efficiently capture and represent spatial hierarchies and
patterns within the image [23, 24].

Nonlinearities

As already mentioned in NNs and CNNs introduction, nonlinearities play a crucial
role: they prevent the networks to barely compute a linear combination of the
inputs. Furthermore, choosing the proper Nonlinear Activation can speed up the
learning process. Let’s delve into some of the most popular ones [24].

• Sigmoid: The activation function is expressed as:

σ(x) = 1
1 + e−x

, x ∈ R

In this case, the output σ(x) ∈ (0,1) for all x ∈ R. Additionally, the sigmoid
function σ is monotone increasing, with limx→∞ σ(x) = 1 and limx→−∞ σ(x) =
0. This property makes it well-suited for producing outputs in the range [0, 1],
such as probabilities or normalized images. However, it’s important to note
that as the input x is far from zero, the neuron saturates, causing the gradient
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of σ(x) with respect to x to approach zero. This hampers optimization, which
is why sigmoid functions are seldom used in the intermediate layers of CNNs.

• tanh: The definition of the tanh is:

tanh(x) = ex − e−x

ex + e−x
, x ∈ R

The output tanh(x) ∈ (−1,1) for all x ∈ R. Also in this case, tanh is monotone
increasing as well and a risk of vanishing gradient is present: that’s why tanh
is not so used in intermediate layers of CNNs.

• ReLU: Expressed as:

ReLU(x) = max(0, x), x ∈ R

It is clear that the derivative of ReLU is ReLU′(x) = 1 when x > 0 and
ReLU′(x) = 0 when x < 0. ReLU activation allows to speed up convergence,
particularly when paired with a well-chosen weight initialization strategy and
learning rate in CNNs.

• softmax: It is defined as:

softmax(x)i := exp(xi)qn
j=1 exp(xj)

, x ∈ Rn

It maps a vector x ∈ Rn into a probability vector of the same length n. By
applying the transformation x → exp(x), it preserves the order of elements,
with subsequent normalization, ensuring the result is a valid probability
distribution. This function is often used in classification tasks after the final
fully connected layer in an n-class problem. However, softmax does not fully
capture prediction uncertainty in cases with noisy labels.

Pooling layers

CNNs contain other particular layers called Pooling Layers. They immediately
follow the convolutional layers. The goal of pooling is condensing and simplifying
the information and reducing the spatial dimensions coming from the convolution.
For example, each unit in the pooling layer might represent a region of 2 × 2
neurons from the preceding layer. There are two common methods for pooling:
max-pooling and L2-pooling. The most common form of max-pooling uses a kernel
size of 2×2 along with a stride of 2. This setup partitions the feature map into
a regular grid of 2×2 blocks and then computes the maximum value within each
block for every input feature. For L2-pooling, we calculate the square root of the
sum of the squared activations within the 2 × 2 region [24, 23].
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Overall architecture of CNN

Now that the main concepts regarding CNNs have been covered, we can take a look
at how the entire architecture is built. A typical CNN architecture typically consists
of several key components: convolutional layers, nonlinear activations, pooling
layers, and finally, fully connected layers. The convolutional layers are responsible
for detecting patterns in the input images, with each feature map capturing specific
visual features. Following each convolution, a nonlinear activation function is
applied to address the problem of vanishing gradients and to ensure that the
network does not merely compute a linear combination of the inputs. Next,
pooling layers are used to condense the most important features identified by the
convolutional layers, reducing the dimensionality and helping to mitigate the risk
of overfitting. Lastly, one or two fully connected layers are added on top of the
CNN. The output of the CNN is flattened and transformed into a single vector,
which is then processed by the fully connected layers to produce the final output
[24, 23].

Figure 3.9: The schematic of a typical CNN from [26]

3.2.4 YOLO - You Only Look Once
The YOLO (You Only Look Once) architecture was developed by Joseph Red-
mon and Santosh Divvala in 2016. It’s one of the most well-known single-shot
object detection algorithms, not primarily for being the most accurate but for its
remarkable speed at the prediction phase. The idea behind YOLO architecture is
to utilize a localized feature analysis approach instead of examining the total image.
YOLO works by splitting the input image into a grid, then predicting bounding
boxes and class probabilities for each cell in the grid. The first goal of this strategy
is to decrease computational requirements and enable real-time object detection:
that’s why it is particularly suited for applications where speed is critical, such as
autonomous driving and real-time video analysis.
The YOLO algorithm follows these steps:

1. The input image is split into an S × S grid. Each grid cell is tasked with
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detecting an object if the object’s center lies within that cell.

2. For each grid cell, B bounding boxes and their associated confidence scores
are predicted. A bounding box is described by five parameters: x, y, w, h,
and confidence. x and y are the coordinates of the center of the bounding box
in relation to the cell, w and h denote the width and height relative to the
full image, and the confidence score indicates both the likelihood of an object
being in that cell and the accuracy of the bounding box prediction.

3. Each cell estimates C conditional class likelihoods, representing the probability
of an object belonging to specific classes, assuming an object is detected within
the cell.

4. At test time, the probabilities of each bounding box containing objects from
various categories are computed by multiplying the confidence score of each
frame with the conditional class likelihoods. The final detection outcomes
are obtained after applying threshold filtering and non-maximum suppression
techniques.

The YOLO framework has evolved over time, with each new version enhancing its
capabilities and addressing previous limitations. The most recent and sophisticated
version, YOLOv8, was created by Ultralytics. This latest variant integrates state-
of-the-art techniques to achieve exceptional results across multiple computer vision
tasks. Beyond its core strength in object detection, YOLOv8 excels in precise
instance segmentation and accurate image classification, showing its versatility and
advanced feature set [28, 22, 29].

Insight on YOLOv8

The architecture of YOLOv8, or You Only Look Once version 8, is a state-of-the-
art object detection model that advances the groundwork laid by earlier models [28].
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Figure 3.10: Architecture of YOLOv8 from [30]

As first big enhancements of YOLOv8 we can mention the modularity and the
scalability of the architecture. The whole architecture can be split in three fun-
damental blocks: the backbone, the neck and the head. The first one aims at
detecting the features from the input images. Then, the neck links the backbone
with the head and allows the feature blending. Afterwards, the head’s role lies in
predicting the bounding boxes, object classes and confidence scores.
YOLOv8 offers the users the great opportunity to choose, among its variant, the
one that best fits their exigencies, in terms of speed and accuracy. The variants
vary from YOLOv8-tiny to YOLOv8x.
YOLOv8 introduces better training methodologies, including the implementation
of Rectified Adam (RAdam) optimization and the option for anchor-based or
anchor-free object detection. These updates lead to quicker training convergence
and improved object detection capabilities.
Furthermore, YOLOv8 offers a versatile configuration system that allows users to
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tweak lots of parameters, including input size, anchor boxes and model complexity,
perfectly tailored to different datasets and application needs.
Now, let’s go deep in the architecture of YOLOv8.

Backbone Network

The core of YOLOv8 architecture is the backbone network. It extracts hierarchical
features from the input image, offering a detailed representation of the visual
information. For instance, it’s able to catch simple patterns in the first layers and
features from different levels of abstraction [31]. The backbone used by YOLOv8
is CSPDarknet53, an evolution of the Darknet architecture: it allows the Cross
Stage Partial networks, improving the learning skills and the efficiency.

Neck

YOLO uses a neck architecture, fundamental for feature fusion and concatenation. It
links the backbone with the head, it provides multi scale information and deals well
with the scalability of objects of different dimensions. What’s more, it incorporates
contextual information that helps in the detection task. Nevertheless, it decreases
spatial resolution and usage of resources, boosting the speed of computation but
compromising the model quality. The Neck gathers feature maps from various
stages of the Backbone and it constructs a pyramid. To this aim, PANet (Path
Aggregation Network), a feature pyramid network, is used by YOLOv8 [31].

YOLO head

The Head of the YOLO architecture is responsible for the network’s output: the
predictions. It forecasts bounding box coordinates, objectness scores, and class
probabilities for each anchor box associated with a grid cell. The anchor boxes are
used to detect objects of different shapes and sizes [31].
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Chapter 4

The proposed Visual Servo
architecture for Apple
Harvesting

The goal of this thesis is the design of a visual servoing system for apple harvesting
for a 6 DoF robot manipulator, equipped with an RGBD camera on its end effector.
The proposed solution involves two main modules: one dedicated to the apples
identification through a YOLOv8 Instance Segmentation model, while the second
one focuses on the robot’s motion control with Image-Based Visual Servo. In this
chapter, a detailed description of the implemented methodologies will be provided.
Firstly, an overview of the proposed architecture, along with its corresponding
block diagram, is presented. Then, a delve into the fine-tuning and the dataset used
to train the YOLOv8 CNN is done. Next, the implementation of the Image-Based
Visual Servoing (IBVS) control strategy is outlined, followed by an in-depth of the
pipeline implementation through a Finite State Machine.

4.1 Block Diagram and System Architecture
In the first place, some assumptions are needed to better frame the problem and
explain the reasons behind implementation choices:

• the 6DOF robotic arm operates on a stationary basis

• the RGBD camera is mounted in an eye-in-hand configuration

• the pinhole model is the camera model employed to describe the mathematical
relationship between the projection of 3D points onto the 2D image plane

40



The proposed Visual Servo architecture for Apple Harvesting

• the targets are supposed to be static

• purely kinematic system: the dynamic of camera motion is neglected; it is
assumed that the camera can precisely carry out the applied velocity control.

In light of these assumptions, we can now observe from 4.1 the block diagram of
the proposed architecture, highlighting the workflow and the interaction among
the subsystems: the robotic arm, the camera, the vision and control algorithms.
The RGB-D camera, mounted on the manipulator’s end-effector, represents a
narrow sight from the robot’s perspective. However, to enhance the robot to
perceive the environment, the visual data are processed by the first main block of
the architecture: the computer vision algorithm, implemented as a ROS2 node. By
employing a YOLO v8 CNN, all apple instances are detected and segmented. Then,
a policy is used to select the target to be reached. The extracted features of the
target are passed to the Image-Based visual controller, which computes the control
law to move the end effector toward the target. As soon as the tool reaches the
closest identifiable (by the camera’s depth sensor) distance, an open loop method
is developed to successfully grasp the apple.

Figure 4.1: Block diagram of the proposed architecture

4.2 Vision block
The Vision Block in the proposed architecture is designed to identify the target,
from the data stream provided by the RGB-D sensor, and extract relevant features
to feed the visual controller. To accomplish this, a fine-tuned YOLOv8 model
for apple instance segmentation has been integrated into the system. A detailed
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explanation of the dataset and the fine-tuning process for training the network is
presented, along with the cost function employed to select the optimal target from
the detected instances.

4.2.1 The proposed methodologies: Instance Segmentation
and Multi-class Classification

To address the challenge of visual perception for the manipulator, the selected
computer vision task is the Instance Segmentation. Unlike basic object detection,
instance segmentation offers more comprehensive and precise information about
objects in the scene, including detailed insights into the location of them, allowing
to orient the choice of the target apple to be grasped. For example, segmentation
helps to distinguish apples based on their shape and degree of occlusion, providing
insights into proximity and overlap with other objects, useful for the purpose of
collision avoidance. To implement the Instance Segmentation model, we opted for
YOLOv8 as efficient, accurate and fast state-of-the-art architecture, particularly
well-suited to meet the real-time requirements of the IBVS controller.
The work involved training and fine-tuning two distinct models with the aim
of selecting the one that demonstrated the best performance in validation and
testing. The first network was tailored for detection and segmentation tasks only.
The second model, in addition to detection and segmentation, was dedicated to
classifying apples based on their level of occlusion, so as to obtain as output not
only the mask and bounding box of the object, but also its class label, useful to
guide the choice of the target while avoiding collisions.

4.2.2 Datasets
Let’s now introduce the datasets used to train the YOLOv8 models.

• For the Instance Segmentation model, the dataset comprises a total of
1156 labeled images. Of these, 1064 images were provided by the PIC4SeR
laboratory where the thesis was conducted, all captured in different apple
orchards. This dataset is comprehensive, featuring images taken from various
perspectives, under different lighting conditions, and with apples of different
colors (red, yellow, combination of the two). Such diversity is crucial for
ensuring proper training of the network. However, the dataset lacked close-up
images of apples, which are essential for enabling the system to effectively
perform the target approach operation. To address this gap, an additional
92 images were sourced online and labeled using the Roboflow platform.
Furthermore, as the initial dataset included annotations in JSON format with
apples categorized into different classes, Roboflow has been utilized to merge
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all images, modify all classes into a single "apple" class, convert the dataset
into YOLO format, and split it into: 809 images for training (70%), 232
images for validation (20%), 116 images for testing (10%). This dataset’s split
guarantees to assess the model performance on unbiased data.

• For the Instance Segmentation and Multi-class Classification, the
aforementioned multi-label dataset, provided by the PIC4SeR, was used. This
dataset comprised five classes: free (’free’), partially occluded (’partially’),
heavily occluded (’heavily’), apple near an obstacle (’Obst_obst’), and apple
near another apple (’Obst_apple’). This dataset was similarly converted into
YOLO format using Roboflow and split into (70%) images for training, (20%)
pictures for validation and (10%) images for testing.

In conclusion, the dataset is exhaustive in terms of lighting conditions, perspectives,
and types of apples that can be found in an apple orchard. Nevertheless, the
network is supposed to perform better in environments similar to apple orchards
compared to other contexts.

Figure 4.2: Example of pictures from the train datasets

4.2.3 Fine-tuning and Training of the models
Below, the training and fine-tuning process is described.

• For the Instance Segmentation model training, the Grid Search technique
has been used to fine tune the pre-trained YOLOv8s-Seg model. The "small"
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model of YOLOv8 has been preferred as a trade-off, to guarantee better
precision with respect to "nano" version, but to run faster than more precise
versions like the "medium" one. The reason of exploiting Grid Search is due
to the fact that the search space is limited and well-understood. Because
of their crucial role in affecting the model’s performance, the optimizer, the
epochs and the learning rate have been selected, through the YOLO API, as
parameters to be varied 4.1. Each hyperparameter influences different aspects
of the training: the learning rate for dictating how quickly the model learns,
the optimizer for controlling how the model’s weights are updated and the
epochs for establishing how many times the model is supposed to pass through
the entire training dataset. Let’s notice that the range of values for the learn-
ing rate was given to cover both conservative (small) and aggressive (larger)
updates to the model weights; whereas the increasing number of epochs would
have been effective to detect the occurrence of underfitting or overfitting.
Let’s point out that, to increase the dataset variability and improve general-
ization, I’ve also applied some data augmentations (e.g., hsv_h, scale, fliplr),
useful to simulate different lighting conditions, object scales and orientations.

• For the Instance Segmentation and Multi-class Classification, two
types of trainings have been performed. However, instead of using Grid Search,
a form of random selection among the learning rate, optimizer, and number of
epochs was employed.

1. Similarly to IS trainings, YOLOv8s-Seg was utilized as pre-trained model.
However, since the learning process was conducted on the multi-label
dataset, the model was learning about predicting the degree of occlusion
the single detected and segmented apple was experiencing.

2. The pre-trained models, to be fine tuned and trained, were selected from
those exhibiting the best IS performances in validation. This second
approach aimed to capitalize on the prior knowledge embedded in the
pre-trained models. Indeed, this choice was motivated by the fact that the
pre-trained weights for IS captured object boundary details and spatial
relationships, then the model could more likely generalize to the occlusion
classification problem.

Thus, basically, the main changes between the trainings of IS and IS with Multi-
class Classification reside in the dataset the network is learning from and in the
pre-trained model to fine tune.
As a final remark, the computational load was alleviated by the fact that the YOLO
API allows you to explicitly set the training device to GPU. This significantly
accelerated the training process, as the GPU is optimized for handling the parallel
computations required for deep learning tasks.
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Hyper-
Parameter Values Set

optimizer {Adam, AdamW, SGD}
n. epochs {100, 150, 200}

learning Rate {0.0001, 0.001, 0.01}

Table 4.1: Hyper-Parameter Configurations explored via Grid Search trainings

4.2.4 Target Apple Selection
On the basis of the YOLOv8 model used for identifying the target apple, two
different target selection policies have been developed.

• For the Apple Instance Segmentation model:

target = arg max
i∈1,...,N

Ai (4.1)

where N is the total number of detected apples, Ai is the area of the i-th
apple’ segmentation mask, target is the index of the selected apple.
This method is straightforward and relies solely on the size of the detected
apples in the image. The largest apple is selected as the target, which is based
on the assumption that the largest visible apple is likely the closest or most
prominent one in the scene. The policy’s key points are the simplicity of
implementation and the computational efficiency. As limitations, we can state
that it doesn’t consider occlusions or the quality (ripe enough or not) of the
apple. By the way, it is well suited for our scenarios where all visible apples
are of similar quality and the closest one is of interest.

• For the Apple Instance Segmentation and Multi-class Classification
model:

target = arg min
i∈{1,...,N}

Ci (4.2)

with
Ci = wa · 1

Ai

+ wc · costclass(Li) (4.3)

Then:

– N is the total number of detected apples.
– Ci is the total cost for the i-th apple.
– Ai is the area of the i-th apple’s segmentation mask.
– Li is the class label of the i-th apple.
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– wa is the weight for the area-based cost (tunable).
– wc is the weight for the class-based cost (tunable).
– costclass(L) is a function that returns the cost associated with class L,

defined as:

costclass(L) =



0 if L = ’Free’
1 if L = ’Partially’
2 if L = ’Obst_apple’
3 if L = ’Heavily’
50 if L = ’Obst_obst’

This second selection policy is more sophisticated, combining information
about both the size and the classification of each apple. It aims to balance
the preference for larger apples with the desire to select apples that are less
obstructed or more easily accessible. Indeed, the inverse of the area (1/Ai)
is used so that larger apples have a lower cost contribution from this term.
Different costs are assigned to various apple states (free, partially obstructed,
etc.), allowing for intelligent selection based on accessibility: the high cost for
’Obst_obst’ could effectively help in collision avoidance with other obstacles
(leaves, branches, for examples). An other key point is the flexibility given by
the weights wa and wc: they allow to adjust the relative importance of size
versus classification.
To sum it up, the cost function approach offers several advantages: it can
prioritize a slightly smaller but unobstructed apple over a larger but heavily
obstructed one, it provides a way to avoid selecting heavily obstructed apples
that might be difficult to interact with and it allows for fine-tuning of the
selection process by adjusting the weights and class costs by experimentation,
depending on the use case. However, it requires a more advanced model
capable of both segmentation and classification. The effectiveness strongly
depends on the accuracy of the classification model.

4.3 Visual servo block
The purpose of the Visual Servo block is to guide the robot’s end effector to the
desired position.
To fulfill the task, an Image-Based Visual Servo (IBVS) has been implemented,
operating at fcontroller = 20Hz. For feedback control, it exploits the visual features
of the target, extracted by the Vision Module at an average inference speed of 5 fps
(fsignal = 5Hz). The controller frequency fcontroller has been set to more than twice
the inference frequency fsignal to ensure that the control action is continuously
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updated with the latest data, thereby maintaining both stability and responsiveness.
The system continues to adjust the robot’s movement so that the target features
(current) overlap with the desired features (set as reference) until convergence.
Once the apple is sufficiently close that RGB-D sensor can no longer provide
depth information, an open-loop strategy is employed to grasp the target. In the
subsequent sections, the robot’s motion control is accurately described.

4.3.1 Control Law Implementation
The IBVS controller was selected as the architecture for guiding the end-effector
due to its robustness in handling the target’s unknown and variable shape, real-time
adaptability, flexibility in trajectory planning and ease of implementation. A key
advantage of IBVS lies in its direct computation of errors based on feature values,
without the need to reconstruct the apple pose.

Visual Features and Parameters

Let’s clearly explain the visual features and feature parameters selected in this
implementation, as well as the current and desired feature sets.

• Visual Features: Extracted by the vision data and computed by the YOLOv8
model, the visual features are the bounding box vertices of the segmented
target apple. Beyond this set of points, another point has been added as visual
feature: the center of the bounding box. Although three points are already
sufficient to control the Kinova 6 DOF [13], a total of five points has been
used to guarantee a more precise control.

• Visual Feature Parameters: The numerical values associated with the five
points is trivially given by their coordinates (u, v), respectively the horizontal
coordinate (in pixels, with the origin at the top-left corner) and the vertical
coordinate (in pixels) of the points.

• Current Features: The current features represent the position of the target
in the image plane, as captured by the sensor. Since the camera is mounted on
the end-effector, the current features can update due to movements of either
the target or the Kinova itself. However, in our project, the target is assumed
to be static (e.g., stationary apples), so the current features update in the
image as the robot moves.
The current visual feature parameter vector is defined as:

s = [u1, v1, u2, v2, u3, v3, u4, v4, u5, v5] (4.4)

where the index i = 1 . . . 5 refers to each point, with i = 5 representing the
center of the bounding box, while i = 1 . . . 4 corresponds to the i−th bounding
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box vertex, ordered clockwise starting from the top-left corner (as shown in
Fig. 4.3). The first four features are provided by the vision module, whereas
the center of the detected object is computed by taking the average of the
horizontal (u1, u3) and vertical (v1, v3) extreme coordinates of the bounding
box (and rounding down the result to the nearest integer):

u5 =
7

u1 + u3

2

8
, v5 =

7
v1 + v3

2

8
(4.5)

• Desired Features: The desired features represent the reference for the control
system. In this scheme, they are kept constant during the operation because
they relate to the position of the target that we aim to achieve with respect
to the end-effector. Specifically, we want the target to be as close as possible
to the tool while ensuring that the depth is captured by the sensor. The
coordinate values were assigned as follows (Fig. 4.3): a mock-up apple was
placed in front of the camera; the bounding box vertex values were printed
to ensure the minimum distance from the target while capturing depth with
the RGB-D camera (150 mm, experimentally determined) and the center
coordinates were computed with 4.5. Thus, we have:

s∗ = [152, 70, 476, 70, 476, 393, 152, 393] (4.6)

Naturally, for targets with shapes and sizes slightly different from the reference
apple used in the experiment, the error may not converge exactly to zero.
However, these variations are taken into account when assessing the error for
convergence.

Figure 4.3: Desired visual features
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Control law implementation

Conversion of the visual parameters from pixel to normalized image
plane coordinates

Although the visual features coordinates are passed through the YOLO model in
pixels, they are then converted into image plane coordinates. By assuming the
pinhole camera model, for each feature, the conversion is done by applying the
perspective projection equations 3.9:

xi = (ui − cx)
fx

, yi = (vi − cy)
fy

(4.7)

where (xi, yi), with i = 1 . . . 5, are the normalized projected coordinates in the
image plane, (ui, vi) are the pixel coordinates in the image, (cx, cy) represents the
principal point of the camera (the image center), fx and fy are the focal lengths of
the camera in pixels.

Error computation

After having converted the visual parameters of the detected target from pixels to
image plane coordinates, the error is essentially calculated as the difference between
the current feature and the desired feature:

e(t) = [xi(t) − x∗
i , yi(t) − y∗

i ]⊤ for i = 1, . . . ,5 (4.8)

resulting in a 10-dimensional vector. Let’s remark that t represents the time
instant when the bounding box is updated by the vision module, (xi(t), yi(t)) are
the current coordinates of the i-th feature point at time t, (x∗

i , y∗
i ) are the goal’s

normalized image plane coordinates of Eq. 4.6, for the i-th feature point.

Update of the IBVS Control Action

If the target object is detected, the error is used for the control action computation,
aiming at driving the tool toward the goal position.
As detailed in chapter 3, the IBVS control law outputs the Cartesian velocity,
expressed in the camera frame, by means of the Interaction Matrix or feature Jaco-
bian related to 4.4. This Interaction Matrix establishes the kinematic differential
relationship existing between the camera velocity and the temporal variation of the
error 4.8, that is how the visual features move as a result of the camera motion 3.3.
Thus, the Interaction matrix Li with i = 1 . . . 5 is constructed for each of the
feature in this way:

Li(t) =
− 1

Zcentroid
0 xi(t)

Zcentroid
xi(t)yi(t) −(1 + xi(t)2) yi(t)

0 − 1
Zcentroid

yi(t)
Zcentroid

1 + yi(t)2 −xi(t)yi(t) −xi(t)

 (4.9)

49



The proposed Visual Servo architecture for Apple Harvesting

The Jacobian matrix is time-variant: it updates as the visual features move in
the image plane, then for any robot’s motion captured by the Vision Module. If
we compare 4.9 with the standard formula 3.18, we get that the factor f (focal
distance) is canceled out due to the conversion of the pixel coordinates into the
image plane coordinates.
Notice that, since the depth cannot be retrieved at the vertices of the bounding box
of a rounded object (which would otherwise tend towards infinity), a reasonable
choice is to approximate the depth of those points to that of the centroid of the
segmented object (Zcentroid).
In the implementation, the centroid is considered as the arithmetic mean position
of all the points in the mask shape provided by the CNN. Its coordinates are simply
computed by averaging all x-coordinates and y-coordinates separately. So, given a
contour represented by a set of points (x1, y1), (x2, y2), . . . , (xn, yn) (output of the
Vision Module), the centroid (xc, yc) is computed as:

xc = 1
n

nØ
i=1

xi

yc = 1
n

nØ
i=1

yi

(4.10)

where n is the number of points in the contour and, xi and yi are the coordinates of
the i-th point. In this way, we are assuming equal weighting for all contour points,
which is appropriate for discrete point sets representing object boundaries.
Next, the overall interaction matrix L(t) is obtained by vertically stacking all the
five visual features matrices:

L(t) =


L1(t)
L2(t)
L3(t)
L4(t)
L5(t)

 (4.11)

Now, to take into account the high variance in the depth measurement Zcentroid

recorded by the RGB-D sensor, we compute the Moore-Penrose pseudoinverse of
the mean of L(t) and Ldes matrices:

Lm
+(t) = 1

2(L(t) + Ldes)+

where Ldes is the overall Jacobian Matrix computed for the desired features and
depth.

Finally, the IBVS control law aiming at nullifying the visual error is:

vcf (t) = −λL+
m(t)e(t) (4.12)
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where vcf (t) is the Cartesian camera velocity, including both the linear and rota-
tional terms, and λ is the proportional gain scalar playing a role in the speed of
convergence of the visual features to the desired ones. It was tuned by a trial-and-
error procedure to balance the convergence (larger λ) and smoothness (smaller λ)
of the action.

Notice that since the Kinova robot is supposed to receive Cartesian velocity
commands in the tool reference frame, a conversion is needed:

vtf = Rtcvcf − Rtc(ωcf × ttc)
ωtf = Rtcωcf

where vtf is the linear velocity in the tool frame, ωtf is the angular velocity in the
tool frame, vcf is the linear velocity in the camera frame, ωcf is the angular velocity
in the camera frame, Rtc is the rotation matrix from the camera frame to the tool
frame, ttc is the translation vector from the camera frame to the tool frame. The
dependence on t was omitted for seeking simplicity. In the implementation, the
matrix Rtc and the vector ttc are extracted by the TF2 module of ROS2.

Smoothing methods

Either any inconsistency of the inference on the detected visual features or the
big variance on depth value can impact a lot on the control action vcf , causing
sudden changes or noise in the velocity command. Thus, as first mean to smooth
and stabilize the camera movement, the EMA (Exponential Moving Average) filter
is used:

vcf = αvcf (t) + (1 − α)vcf (t − 1)
where 0 ≤ α ≤ 1 is the smoothing factor. Instead of directly inferring the new
velocity, this is combined with the velocity computed one iteration before. The α
factor balances the weight of the currently computed velocity over the previously
filtered one. When α is closer to 1, the filter responds more quickly to new changes,
while, when α is closer to 0 the filter responds more slowly to new changes and more
smoothing occurs, reducing noise but potentially introducing lag. The α has been
tuned by trial-and-error procedure trying to find a balance between responsiveness
and smoothness.
Moreover, to further reduce the motion oscillation, a saturation value for the
velocity has been set, tuned during experiments.

4.3.2 Transition from Closed-Loop to Open-Loop Control
Let’s suppose that the current features are correctly converging to the desired
ones. An issue arises when the target object is closer to the camera than the
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minimum detectable range of the RGB-D sensor: the depth Zcentroid is recorded as
0. Reasonably, the sensor is no more able to measure the distance to the object.
This implies a singularity in the interaction matrices L(t), leading to an infinite
values for the camera velocity, thus an unstable control behaviour.

By assuming the proximity to the target when the acquired depth Zcentroid is
lost, the switching to an other control strategy is necessary to grasp the apple.
The proposed solution aims at overcoming the limitation of the visual controller
by implementing an open loop method. The reasons leading to this choice are:
the effectiveness of this mechanism since it is triggered in the precise positioning
achieved by the visual servoing phase that precedes it and the simplicity in its
implementation. An alternative to this would have consisted in reconstructing the
pose and passing it to the MoveIt2 planner to plan the grasping. Nevertheless, this
method increases the computational complexity.

In the implementation of the open loop, the constant Cartesian linear veloc-
ity commands were given to the robot with the intention of accounting for the
misalignment between the origin of the tool reference frame and the origin of the
camera reference frame as shown in Fig. 4.4:

Figure 4.4: Representation of the misalignment between the camera frame
(camera_color_optical_frame) and the tool frame

• the commands are sent to the robot for a fixed open loop duration;

• the centroid of the detected bounding box is converted from pixels to camera
frame, by using 4.7 and multiplying the resulting coordinates in the image
frame by the distance to the center of the apple, experimentally measured
Zcentroid=159 mm. The z coordinate value of the centroid in the camera frame
is trivially Zcentroid=159 mm. Then, by calling TF2, the centroid is converted
to the tool frame, obtaining the 3D coordinates (xtf , ytf , ztf );
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• by applying the equations for uniform rectilinear motion, we send the following
Cartesian commands to the robot in the tool frame:

vx = xtf

∆OL

, vy = ytf

∆OL

, vz = ztf

∆OL

In the implementation, the fixed open loop duration ∆OL is set for how long the
constant velocity is applied. At the end, the gripper is closed by calling a ROS2
server.

4.4 Finite State Machine of the system
A comprehensive and integrated pipeline has been developed to evaluate the indi-
vidual performances of the two modules and their combined efficacy.
The overall system has been modelled as a Finite State Machine (FSM), shown
in Fig. 4.5, dictating the robot’s actions. It has been implemented in ROS2 with
Python.

The system enters the FSM in the WAIT_FOR_TARGET state, where it waits for
a target to be detected. Meanwhile, a specific ROS2 node does the subscrip-
tion to the topic /camera/color/image_raw containing the RGB images recorded
by the camera sensor. Then, the fine-tuned YOLOv8 CNN inferences the vi-
sual data, outputting the mask of pixels for each detected apple instance. Ac-
cording to the selection policy, a single apple is chosen as target and its ex-
tracted features (the bounding box vertices) and the computed centroid are
published respectively on /bounding_box_target and /centroid_target. If no
target is found, the system stays in WAIT_FOR_TARGET state. Otherwise, if the
target apple is found (e.g. if any element of the bounding box array is non-
zero), the system is triggered to pass to the START_CONTROLLER state, where
it checks the depth value of the centroid /centroid_target from the topic
/camera/aligned_depth_to_color/image_raw.
If Zcentroid of the detected target is greater than 0, the target is supposed to
be far so the system enters the CLOSED_LOOP state where the IBVS control
law is computed and the Cartesian velocity commands are published on the
/twist_controller/commands topic.
Either from the START_CONTROLLER state or CLOSED_LOOP state, if Zcentroid is mea-
sured as 0, the object is considered to be near and the system enters the grasping
sequence, switching to the OPEN_LOOP state, where the linear velocity commands
are published on /twist_controller/commands topic for a given open loop dura-
tion. Afterwards, the gripper is closed by calling a ROS2 server, and the grasping
sequence continues with the PLACE state, to drop the object by opening the gripper,
and ends with the RETURN_HOME. Both the motion plans to the placement pose
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and home pose are executed by ROS2 servers utilizing the MoveGroupInterface,
the MoveIt 2 class enabling to control the manipulator move group and plan a
motion.
Let’s remark that during the grasping sequence (OPEN_LOOP, PLACE, RETURN_HOME),
the system executes the state subsequently. Some checks are performed to avoid
the system to leave the sequence: during the open loop, for example, the visual
features of the target are expected to be lost. For this purpose, the method
execute_state_machine(), aiming at handling the states transition, switches to
states WAIT_FOR_TARGET, START_CONTROLLER or CLOSED_LOOP only if the system
has not already entered the grasping sequence. Finally, the RETURN_HOME state is
followed by the WAIT_FOR_TARGET state again, ensuring a continuous harvesting
process.

Figure 4.5: Representation of the Finite State Machine of the system
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Chapter 5

SW and HW tools

This chapter introduces the key components to simulate, test and implement the
robotic system developed in this thesis work. It begins with a brief overview of
robotic systems, setting the stage for a detailed discussion of the specific hardware
and software tools. The hardware section covers the Kinova robotic arm and the
Intel RealSense visual sensor. The software section discusses about ROS2, Gazebo
and MoveIt2. The chapter concludes with an overview of machine learning tools,
including YOLOv8 API and OpenVINO.

5.1 Introduction to robotic systems
A robotic system is an integrated assembly of mechanical, electronic and computa-
tional components designed to perform tasks autonomously or semi-autonomously.
These systems are composed of both hardware (like actuators, sensors, motors,
links and joints) and software elements (comprising the operating system, control
algorithms, simulation tools, ML models) working together to enable the robot to
sense, process, and act in its environment. Robots vary their architecture and func-
tion according to the needs of users and applications, with common configurations
including:

• Industrial Robots: Used in manufacturing for tasks like assembly, welding,
and painting. These robots are typically stationary and operate in highly
structured environments.

• Unmanned Aerial Vehicles: Drones are an example of UAVs. These robots are
used for aerial surveillance, mapping, and even delivery services.

• Humanoid Robots: Robots designed to mimic human movement and interaction,
used in research, customer service and assistive technologies.
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• Mobile Robots: Robots capable of moving through their environment, such as
autonomous vehicles or delivery robots.

In this project, the Kinova Gen3 Lite 6-DOF, equipped with an Intel RealSense
d435i camera as RGBD sensor on its end effector, represents the manipulator where
the visual servoing has been designed on.

5.2 Kinova Gen3 Lite

The Kinova Gen3 Lite is a versatile and lightweight robotic arm designed for
collaborative operations requiring precision, flexibility and ease of integration. As
a six degrees of freedom (DOF) manipulator composed solely of revolute joints, it
is well-suited for tasks in research, education and light industrial automation.

Figure 5.1: Kinova Gen3Lite 6 DOF from [32]

Fig. 5.2 depicts the schematic of the Kinova Gen3 Lite manipulator with all the
dimensions and reference frames shown. Let’s remark that all revolute joints are at
0 position. We can notice that the Kinova Gen3 Lite Gripper, with two fingers,
is attached to the end of the manipulator, allowing it to move and manipulate
objects.
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Figure 5.2: Kinova Gen3 Lite schematic with frame definitions and dimensions in
mm from [33]

The arm features a wide range of sensors like position, current, voltage, temperature,
accelerometer, and gyroscope, enhancing its operational awareness, adaptability
and safe interaction with its environment. It is equipped with actuators and an
embedded controller, ensuring smooth operation with both high-level and low-level
control options. The manipulator operates with a 1 kHz low-level, closed-loop
control system, providing real-time feedback and adjustment. The Gen3 Lite
runs on the Kinova® Kortex™ API software. The connectivity is offered through
USB, Ethernet, and RNDIS (Remote Network Driver Interface Specification).
Furthermore, users can access the Kinova Web App from any desktop, laptop, or
mobile device, making programming and control more efficient and accessible. The
Gen3 Lite integrates with ROS (Robot Operating System), MATLAB, C++ and
Python, offering robust software support for tasks such as motion planning and
object manipulation.
Additionally, its modular architecture allows for easy customization, enabling users
to adapt the robot to specific needs. In Tab. 5.1, the general technical specifications
have been listed and the sensors connected with the robot have been reported [32].
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Specification Value
Weight 5.4 kg
Payload 500 g

Maximum Reach 760 mm
Degrees of Freedom 6

Max Cartesian Translation Speed 25 cm/s
Actuator Joint Range +/- 155 to 160°
Power Supply Voltage 18 to 30 VDC, 24 VDC nominal

Average Power 20 W
Ingress Protection IP22

Operating Temperature 0 °C to 40 °C
Sensors Position, current, voltage, temperature,

accelerometer and gyroscope

Table 5.1: General Specifications of Kinova Gen3 Lite

In table 5.2, the interfaces of Kinova Gen3 Lite have been presented.

Interface Details
Software KINOVA®KORTEX™

Internal Communications 1 x 100 Mbps Ethernet
API Compatibility Windows 10, Linux Ubuntu 18.04, ROS Melodic

Programming Languages C++, Python
Basic Interfaces USB-A, micro USB, Ethernet, Wi-Fi

Control System Frequency 1 kHz
Low-Level Control Position, velocity, current
High-Level Control Cartesian position/velocity, joint position/velocity

Table 5.2: Interfaces of Kinova Gen3 Lite

Since the velocity commands to the Kinova robot will be sent in Cartesian mode
in this thesis work, table 5.3 is particularly useful to get acquainted about the
Cartesian Limitations.

Limit Value

twist limits linear 0.25 m/s
angular 45.8°/s (0.80 rad/s)

Table 5.3: Kinova Gen3 lite Cartesian limitations
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5.2.1 Introduction to Kinova Gen3 Lite Operation
It’s possible to connect the Kinova Gen3 Lite robot to a computer via [33]:

• USB (RNDIS) connection, where the robot’s DHCP server automatically
assigns an IP address to the computer, enabling Ethernet;

• USB Type-A to Ethernet Adapter, allowing the robot to be connected over a
local area network (LAN);

• Wi-Fi, where any device on the same network can communicate with the robot
wirelessly using the assigned IP address.

The Kinova Gen3 Lite robot can be controlled in three different ways through the
PC [33]:

1. using a physical gamepad, like an Xbox controller;

2. through virtual joysticks over a network connection via the KINOVA® KOR-
TEX™ Web App;

3. programmatically via the KINOVA® KORTEX™ API (that is how it occurs
in this project).

KINOVA® KORTEX™ Web App

The KINOVA® KORTEX™ Web App is a user-friendly, web-based graphical
interface that allows users to interact with and control the Kinova Gen3 Lite robot
without needing to write any code.
Among the key features of the KORTEX™ Web App we can find: the real-time
control of the robot through various modes, including virtual joysticks; the possi-
bility to configure robot’s performance settings, safety thresholds, and protection
zones; the monitoring of robot’s system parameters, including sensor data, joint
positions, and operational status; the support to firmware updates [33].

KINOVA® KORTEX™ API

The KINOVA® KORTEX™ API is a powerful tool-set that enables developers
to programmatically interact with and control the Kinova Gen3 Lite robot. In a
structured way, this API provides the access to robot’s functionalities, advanced
customization, automation, and integration of the robot into larger robotic systems
or applications.
Among the essential characteristics of the KINOVA® KORTEX™ API we can
mention: the control of the robot both in Cartesian and Joint-Level commands;
the support for Multiple Programming Languages, including C++ and Python;
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Asynchronous and Synchronous Operations; Low-Level and High-Level Control
[33].

KINOVA® KORTEX™ GitHub Repository

The KINOVA® KORTEX™ GitHub Repository is an open-source resource provided
by Kinova, where developers can access code examples, libraries, and tools related to
the KORTEX™ API. The repository includes: a variety of code examples covering
common tasks such as moving the robot, reading sensor data and implementing
safety features; pre-built libraries and Software Development Kits (SDKs); extensive
documentation that explains how to use the API; packages and examples for
integrating the KORTEX™ API with ROS.
KINOVA® KORTEXTM ROS is the repository that contains ROS packages to
interact with Kortex, simulate and control the robot. Additionally, it provides
support for Gazebo and MoveIt as well. To read more about this, we suggest the
reader to consult [34].

5.3 Intel RealSense D435i camera
Visual sensors are critical components in robotics and computer vision, enabling
systems to perceive and interpret their surroundings: they are able to capture not
only RGB images but also depth information. The Intel RealSense D435i has been
used in this thesis to provide 3D perception.

Figure 5.3: Intel RealSense D435i from [35]

The D435i combines high-resolution depth sensing with an integrated inertial
measurement unit (IMU), offering both visual and motion tracking capabilities [35].
The depth part utilizes active stereo vision technology, where two infrared cameras
work together with an infrared projector to capture depth information. This setup
allows the camera to generate detailed depth maps. The global shutter feature of
the camera ensures the accurate capture of depth data, even when objects are in
motion or the scene is illuminated by different lighting conditions. The inclusion of
an integrated IMU enhances depth sensing capabilities of the D435i by providing
additional data on motion and orientation, which is critical for applications like
SLAM (Simultaneous Localization and Mapping). Developers can leverage the
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RealSense SDK, which provides a powerful API to access and manage depth data,
RGB images, and IMU readings. The D435i is also fully compatible with ROS2,
making it an ideal choice for integrating 3D perception into robotic systems [35].

General information
External dimensions (L × W × H) 90 × 25 × 25 mm
Ideal Range 0.3 to 3 m
Use environment Indoor/Outdoor
Depth
Depth technology Stereoscopic
FOV 87◦ × 58◦

Resolution Up to 1280 × 720
Frame rate Up to 90 fps
Depth Accuracy < 2% at 2 m
Minimum Depth Distance at Max Resolution 28 cm
RGB
RGB technology Rolling shutter
FOV 69◦ × 42◦

Resolution Up to 1920 × 1080
Frame rate Up to 30 fps
Sensor resolution 2MP

Table 5.4: Technical specifications of Intel Realsense Depth Camera D435i

5.4 Robot Operating System
ROS2, the second generation of the Robot Operating System (ROS), represents a
significant advancement in the field of robotics, addressing the growing need for
more robust, flexible and scalable robotic systems. It was created to overcome
the limitations of its predecessor, ROS1. As Fig. 5.4 shows, ROS2 represents a
robot programming middle-ware (meta-operating system), serving as a layer of
software that operates between the operating system (OS) and user applications [36].
This middle-ware facilitates the development and execution of robots by providing
essential tools and libraries, as well as a development methodology that supports
the creation, integration and monitoring of robotic applications. Specifically,
ROS2 includes communication mechanisms for distributed components, compilation
systems and monitoring tools, all of which are open source. Furthermore, ROS2
incorporates a rapid data distribution service, adheres to real-time requirements
and is compatible with various operating systems, like Linux and Windows. The
primary programming languages used are C++ and Python.
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Figure 5.4: Depiction of software layers within a robotic system from [36]

The software packages in ROS2 are developed and maintained by a global community
of developers, including organizations, researchers and hobbyists. These packages
are published in online repositories, most notably on GitHub, where they are freely
accessible to the public.
The packages in ROS2 are organized into distributions, which are collections of
packages designed to work together, ensuring stability and compatibility within
a given version [36]. In this thesis project, ROS2 Humble has been used as
distribution.

Architecture of ROS2

ROS2 is a middle-ware that uses a strongly-typed, anonymous publish/subscribe
model, enabling message exchange among various processes. Any ROS 2 application
can be represented by a Computational Graph, showing the network of its main
components, the Nodes, within the system and the communication links between
them. Let’s now delve into the definition of the fundamental core of ROS2, the
node, and into the paradigms of communications among the nodes [36].

Nodes

The fundamental computational units in ROS2 are referred to as Nodes. They can
be implemented either in C++ or Python. We essentially define the node as an
instance of the Node class [36]. The execution of a node can be categorized into
two primary modes:

• Iterative execution: Here, the node configures a timer linked to a callback
function. The callback function is invoked at a predefined frequency, when it
executes a specific control task.

• Event-driven execution: As suggested by the name, in this case, the node
reacts to events as they occur, then it associates a callback with asynchronous
events.
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The paradigms of communication in ROS2

In ROS2, a node can communicate with other nodes according to three different
paradigms [36].

1. Publication/Subscription: In an asynchronous way, nodes can publish
messages to a topic that reaches its subscriber. If the messages are data
with a well-known structure, specified in a file with .msg extension, the
topic serves as a communication pathway that allows nodes to interact with
one another in a uni-directional manner. Within a node, you can define
publishers and subscribers for a topic. A publisher is a node that transmits
messages to a designated topic, whereas a subscriber is a node that listens for
messages from that specific topic. Multiple nodes can subscribe to the same
topic and, whenever a message is published, all subscribers will execute their
corresponding callback functions [37].

Figure 5.5: Representation of the publisher/subscriber communication paradigm
through topic from [37]

2. Services: Services are another paradigm of communication among nodes:
they involve synchronous mechanism where a node (called client) sends a
request to another node (server) and waits for a response. This type of
communication interface is specified in a file with the .srv extension. Typically,
this bi-directional communication demands a prompt reply to avoid disrupting
the control cycle of the node that initiated the service call [37].
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Figure 5.6: Representation of the client/server communication paradigm through
service from [37]

3. Actions: This third paradigm is well-suited for long-running tasks. Based on
a client-server mechanism, the actions present asynchronous communication.
The client sends a remote procedure call (the goal) to the action server and it
waits without any blocking state. While completing the task, the action server
will periodically publish feedback on a topic about its status. Finally, the
server will reply by sending a result. The file with extension .action contains
all the three components: the Goal, the Feedback and the Result [37].

Figure 5.7: Representation of the client/server communication paradigm through
action [37]
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Transform library Tf2

Tf2 is an efficient and flexible tool in ROS2, designed to keep track of coordinate
frames and manage their transformations over time.

Figure 5.8: Representation of RFs in a robot with Tf2 from [38]

Tf2 operates by storing a series of transformations that describe the positions and
orientations of different Reference Frames (RFs) relative to each other. These
transformations are managed in a hierarchical structure called transformation tree,
which is continuously updated as the robot and its environment change over time.
Each RF is allowed to have only one parent but can be connected to multiple child
frames. If a reference frame is linked to more than one parent, the system will
generate an error.
When a specific transformation is required by a node, the node uses TFListeners.
These objects keep a buffer that stores the most recent transformations and offer
an API that can [38]:

• check if a transformation exists between two reference frames at a specific
time;

• retrieve the rotation or translation between two reference frames at a given
moment;

• convert a coordinate vector from one reference frame to another at a particular
time.

One of the key features of Tf2 is its ability to handle transformations across
both space and time. This means it can account for the fact that the robot and
objects in its environment may be moving, and it can interpolate or extrapolate
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transformations to provide accurate spatial information at any given moment (also
prior to the time of request). Additionally, if two reference frames, e.g. A and
B, are not directly linked, Tf2 can automatically manage the necessary matrix
operations using any intermediate frames that connect them [38].

5.5 Gazebo
The availability of frameworks for the development of robotic systems is as fun-
damental as the availability of robotics simulation tools, allowing us to test the
system in a virtual environment, prior to implementation on physical hardware.
Gazebo is a powerful open-source simulation tool for creating and testing robotic
systems. The framework models both indoor and outdoor scenarios, providing an
artificial environment where robots can be tested under various conditions: complex
terrains, lighting and sensor noise. Additionally, it excels in supporting advanced
physical models, allowing for simulations of dynamics and sensor data. Users can
use the Gazebo API, enabling programmers to extend and tailor the simulator by
implementing new plug-ins (for custom sensors or robot models). Programmers
can create their own worlds and robot models by using the SDF (Simulation
Description Format) and URDF (Unified Robot Description Format) languages.
Both the languages are XML-based format: the first one aims at describing world
properties like physical characteristics, lighting, sensors; the second one is designed
for describing the physical and visual aspects of robots, such as joints, links and
sensors.
One of the key advantages of Gazebo is its integration with ROS/ROS2. Through
this synergy, Gazebo and ROS allow to identify potential system issues, optimize
performance and validate the design [39].

5.6 MoveIt 2
In addition to simulation tools, frameworks for robot motion planning and ma-
nipulation are essential for developing advanced robotic systems. MoveIt 2 is a
state-of-the-art, open-source software framework that provides tools for robotic
motion planning, manipulation, 3D perception, kinematics, control and navigation
[40]. MoveIt 2 supports a wide range of capabilities, including path planning,
collision detection, inverse kinematics, and trajectory generation.
Users can interact with MoveIt 2 through its comprehensive API, which enables
the customization and extension of its functionality to meet specific project needs:
custom motion planners, new sensors or modified kinematic model of a robot can
be integrated.
MoveIt 2 supports both SRDF (Semantic Robot Description Format) and URDF
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formats for describing the robot’s physical and kinematic properties. In particular,
SRDF complements the URDF, expliciting joint groups, robot configurations, colli-
sion checking information and any transforms useful to express the robot’s pose.
Like Gazebo, also Moveit 2 provides the integration with ROS/ROS2 [40].
In this thesis project, MoveIt 2 Humble has been used as distribution.

moveit servo

It’s a Moveit package that allows the user to send realtime end effector velocity
commands to the manipulator.
To use this high-powered tool, it’s only needed to have: URDF and SRDF files
of the robot, a controller receiving joint positions or velocities as input and joint
encorders.
The commands can come from anywhere: joystick, keyboard or other controllers.
The main features of moveit servo include:

• the ability to control the robot both in the task space (Cartesian End-Effector
twist commands) and in Joint space;

• the Collision checking to prevent unsafe motions;

• the Singularity checking;

• the imposition of Joint position and velocity limits;

• the possibility to send inputs as simple ROS messages.

Moveit Servo is very flexible in its development, since it can be launched as a “node
component” or a standalone node [41]. Servo can be included in a node through
the C++ interface as well.
This package has been used to do virtual simulation of the IBVS on the Kinova
robot.

5.7 YOLOv8 API
The YOLOv8 API offers a comprehensive and user-friendly approach to developing
object detection, instance segmentation, classification models, ecc.
As first step, the data preparation is needed. The API expects data to be organized
in a specific structure, usually defined by a YAML file. This file acts as a roadmap,
pointing to the locations of training, validation, and optional test sets. Each set
should contain images along with their corresponding label files, typically in a
simple text format.
Once the dataset is ready, the API provides a suite of methods to interact with
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the model. The training process is initiated through a dedicated method, which
allows for extensive customization. First of all, YOLO offers the possibility to
fine-tune a pre-trained model. All the YOLOv8 segmentation and detection models
have been pre-trained on the dataset COCO, while all the YOLOv8 classification
models have been pre-trained on the dataset ImageNet. The user can select a
pre-trained model from the smaller but faster version (for example, in the specific
case of Instance segmentation: YOLOv8n-Seg) to the bigger but more accurate one
(for example, in the specific case of Instance segmentation: YOLOv8x-Seg). Users
can then fine-tune various hyper-parameters to suit their specific needs, including:
the number of training epochs, batch size, input image dimensions, learning rate,
ecc. The API also supports data augmentation techniques, which can be adjusted
to increase the model’s ability to generalize.
Validation is another aspect handled by the API: it can be run as a standalone
process or integrated into the training loop. Validation also allows for parameter
adjustments.
After training and validation, the API facilitates easy testing and prediction on
new data. Users can apply their trained models to individual images or entire
directories, with control over confidence and IoU thresholds.
Throughout these processes, the API generates a set of results and metrics. During
training, users can monitor various loss values, learning rate progression, and
even visualize training images. Validation results provide critical insights into
model performance, including mean average precision (maP) at different IoU
thresholds, precision and recall values, and confusion matrices. The API supports
the generation of precision-recall curves and feature maps.
Model management is another suit of the YOLOv8 API: it offers straightforward
methods to save trained models and load them later, facilitating further fine-tuning
[29].

5.8 OpenVINO: Accelerating AI Inference

OpenVINO (Open Visual Inference and Neural Network Optimization) is an open-
source toolkit developed by Intel, designed to optimize and accelerate the inference
of deep learning models across a variety of Intel hardware platforms (including CPUs,
integrated GPUs, FPGAs, and VPUs). By converting a model from frameworks
such as YOLO to the OpenVINO format, you can harness its powerful capabilities
to improve performance and efficiency.
The toolkit includes a Model Optimizer, converting models from popular frameworks
into an intermediate representation (IR) format optimized for inference, and an
Inference Engine, executing these optimized models on the target hardware [42].
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5.9 Roboflow
Roboflow is a great framework offering tools for each step of computer vision
pipeline.
Roboflow excels in data management for computer vision projects. It provides
equipments for uploading, organizing, and versioning datasets. Users can easily
import images and annotations from various sources and formats. Then, lots of
robust preprocessing options are available: image resizing, augmentation techniques
and annotation format conversions. In this way, dataset can be suited for different
model architectures.
Furthermore, Roboflow allows users to personally annotate data [43].
In this thesis project, both the data version exportation and the annotation
tools have been exploited to adapt the dataset to YOLOv8 architecture input’s
requirements and to draw the mask of apples in some unlabeled pictures.
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Results

The following chapter presents a comprehensive analysis of the experimental results,
focusing on the performance of the YOLOv8-based Convolutional Neural Network
for instance segmentation, the efficacy of the Image-Based Visual servo and the
overall system architecture.

6.1 Validation process of the Vision model
The objective of this phase was to select the optimal CNN model, from among
those generated during the training process, to perform inference on the RGB data
stream.
The validation process for both the Instance Segmentation (IS) and IS and Multi-
class Classification (MC) models comprised three distinct stages:

1. Initial Analysis: All resulting models underwent a preliminary examination.
The primary screening criteria included:

a) Assessing for overfitting by discarding both models whose validation loss
function didn’t remain above the training loss function and models with
increasing loss function. In this way, we assured that the models weren’t
memorizing the training data but were learning generalizable features.

b) Evaluating performance using the mean Average Precision (mAP) metric,
defined in Appendix D. In particular, for gauging YOLOv8 performances,
the mAP50-95 has been employed: it computes mAP at varying IoU
thresholds, ranging from 0.50 to 0.95, making it more robust compared to
mAP50 because it assesses the model’s accuracy and detection capabilities
across a broader range of precision levels.

2. Prediction on Unseen Data: The networks’ performance was further
assessed by observing the prediction on unseen images and test videos, showing
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the network’s generalization capabilities and robustness when coping with
novel data.

3. Laboratory Testing: Real-time inference tests were conducted in a lab-
oratory setting using a mockup apple. These tests evaluated the models’
performance under two conditions: with a stationary apple and with the apple
moving within the camera’s field of view.

These tests revealed the necessity for model optimization to speed up the real-time
inference: the YOLOv8 models were converted to OpenVINO format, reaching an
average inference rate of 5 fps.

6.1.1 Instance Segmentation model results

Tab. 6.1 shows the results from Grid Search training for the IS model in terms of
precision, recall, mAP. We can observe that the metric values are not too far apart
for each fine-tuned model. (B) refers to "best" performance metric achieved by the
model during the training process, e.g. mAP50-95(B) stands for best mean average
precision at an IoU threshold of 0.5-0.95 achieved by the model during training.
However, three models were selected based on the criteria of the initial analysis,
and trying to choose the best model for each optimizer to examine differences in
prediction: model trained with SGD optimizer for 150 epochs with lr=0.01, model
trained with Adam optimizer for 100 epochs with lr=0.01, and model trained with
AdamW optimizer for 100 epochs with lr=0.01.
Fig. 6.1 shows the mAP50-95(B)’s evolution during the three models’ training
across the epochs: while Adam and AdamW’s mAP function keeps increasing,
SGD remains relatively constant. This is mainly due to the fact that the weight
initialization for the 150 SGD 0.01 model was already good, causing the network
to get stuck in an optimal state.
The prediction on unseen data was not particularly meaningful since all three
models performed quite well.

It was the laboratory testing that ultimately guided the decision in favor of the
SGD model. During the laboratory experiments, it was the only model capable of
correctly segmenting the apple object. Both Adam and AdamW produced inaccu-
rate masks and failed to segment when the object was too close to the camera. The
mask size continuously fluctuated, even when the mock-up apple was stationary.
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IS model precision(B) recall(B) train/mAP50-95(B) train/mAP50(B) val/mAP50-95 val/mAP50

100, Adam, 0.01 0.84013 0.7998 0.68332 0.87258 0.68419 0.8729

100, Adam, 0.001 0.8444 0.82124 0.6936 0.87543 0.69403 0.87551

100, Adam, 0.0001 0.85994 0.80334 0.68001 0.87179 0.6821 0.8693

100, AdamW, 0.01 0.84816 0.81416 0.68751 0.87755 0.68838 0.8778

100, AdamW, 0.001 0.85746 0.81337 0.6961 0.86882 0.6978 0.8689

100, AdamW, 0.0001 0.85757 0.81141 0.68216 0.86901 0.6817 0.8641

100, SGD, 0.01 0.86115 0.80649 0.69307 0.86526 0.69477 0.8655

100, SGD, 0.001 0.86033 0.80098 0.68418 0.86754 0.68281 0.8653

150, Adam, 0.01 0.84919 0.81101 0.68421 0.87469 0.68546 0.8740

150, Adam, 0.001 0.85449 0.81377 0.69091 0.87708 0.69011 0.8748

150, Adam, 0.0001 0.84552 0.80924 0.68959 0.87812 0.69084 0.8764

150, AdamW, 0.01 0.85536 0.81455 0.68962 0.87541 0.69129 0.8758

150, AdamW, 0.001 0.85577 0.80913 0.68902 0.87437 0.69026 0.8745

150, AdamW, 0.0001 0.84481 0.80964 0.68871 0.8773 0.68967 0.8771

150, SGD, 0.01 0.85568 0.81023 0.68649 0.8723 0.6861 0.8696

150, SGD, 0.001 0.84683 0.81141 0.68955 0.87777 0.69023 0.8768

150, SGD, 0.0001 0.84662 0.81062 0.68954 0.87834 0.68966 0.8776

200, Adam, 0.01 0.85983 0.80806 0.68741 0.87135 0.68735 0.8696

200, Adam, 0.001 0.86206 0.81278 0.69088 0.87725 0.69196 0.8739

200, Adam, 0.0001 0.85667 0.80477 0.68872 0.87558 0.68999 0.8741

200, AdamW, 0.01 0.86376 0.80688 0.68696 0.86833 0.68795 0.8661

200, AdamW, 0.001 0.86039 0.81474 0.69089 0.87574 0.69321 0.8715

200, AdamW, 0.0001 0.85562 0.79997 0.68822 0.87513 0.68999 0.8741

200, SGD, 0.01 0.86316 0.80452 0.68799 0.87052 0.68953 0.8683

200, SGD, 0.001 0.86027 0.81065 0.6895 0.87488 0.68985 0.8735

200, SGD, 0.0001 0.85968 0.80551 0.6874 0.87575 0.68884 0.8748

Table 6.1: Results obtained with Grid Search training configurations for IS models
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Figure 6.1: Representation of mAP50-95(B)’s evolution across epochs for the
three IS selected models

Figure 6.2: Example of infer-
ence by ’Adam_100_0.01’ model

Figure 6.3: Example of infer-
ence by ’SGD_150_0.01’ model

Thus, the choice of the YOLOv8 CNN, fine-tuned with SGD optimizer for 150
epochs with 0.01 as learning rate, was made to ensure stable feature extraction for
feeding the IBVS controller.

The Fig. 6.4 represents the results provided by YOLO after the training of
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the chosen CNN: the loss values for various components (Box, Segmentation, Clas-
sification and Distributed Focal Loss) generally have a decreasing trend over the
epochs for both train and validation sets. Even if some fluctuations are visible (e.g.
train/seg_loss), the tiny range of variations indicates that the function remains
quite constant, due to the good weight initialization of the network. To sum it up,
the selected optimal YOLOv8 CNN model for Instance Segmentation task shows:

• train/mAP50(B) = 87.23%;

• val/mAP50 = 86.96%;

• train/mAP50-95(B) = 68.65%;

• val/mAP50-95 = 68.61%.

Figure 6.4: Results provided by YOLO of the IS model trained for 150 epochs
with SGD optimizer and lr=0.01

6.1.2 Instance Segmentation and Multi-class Classification
model results

The aforementioned procedure to select the optimal model among the trained
ones was adopted for YOLOv8 CNN models for Instance Segmentation and
Multi-class Classification tasks too. Tab. 6.2 shows the results of some of
the trained models. As first remark, all models trained on a fine-tuned IS seg-
mentation model, obtained from previous section, got better values in terms of
mAP50-95(B), precision(B) and recall(B), with respect to those models trained
on YOLOv8s-Seg model. This is the reason why only these kind of models
were therefore considered for further analysis. Fig. 6.5 shows the mAP50-
95(B)’s evolution across the training epochs for the four models that were se-
lected after the initial analysis: ’PT_Adam_Adam_200_0.01’ (model trained
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with Adam optimizer for 200 epochs with lr=0.01, using 100,Adam,0.01 as pre-
trained model); ’PT_SGD_Adam_200_0.01’ (model trained with Adam opti-
mizer for 200 epochs with lr=0.01, using 100,SGD,0.01 as pre-trained model);
’PT_SGD_SGD_200_0.01’ (model trained with SGD optimizer for 200 epochs with
lr=0.01, using 100,SGD,0.01 as pre-trained model); ’PT_SGD_AdamW_200_0.01’
(model trained with AdamW optimizer for 200 epochs with lr=0.01, using 100,SGD,0.01
as pre-trained model). Let’s notice from Fig. 6.5 that the mAP50-95(B) function
for ’PT_SGD_SGD_200_0.01’ model stops epochs before than 200th: indeed, to
avoid overfitting, YOLOv8 early ends the training if, after 100 epochs of waiting,
it doesn’t see any improvement in validation metrics.

IS and MC Pre-trained precision recall train val

model model (B) (B) mAP50-
95(B) mAP50(B) mAP50-

95 mAP50

200
Adam
0.01

100
Adam
0.01

0.5986 0.67026 0.49961 0.63121 0.5001 0.6312

200
Adam
0.01

100
SGD
0.01

0.61099 0.6572 0.50009 0.63611 0.5015 0.6359

200
AdamW

0.01

100
SGD
0.01

0.61778 0.65334 0.48578 0.61046 0.4870 0.6090

200
SGD
0.01

100
SGD
0.01

0.6107 0.67301 0.51234 0.6389 0.5135 0.6394

100
Adam
0.01

YOLOv8s-
Seg 0.57396 0.63483 0.47763 0.60288 0.4793 0.60355

200
SGD
0.01

YOLOv8s-
Seg 0.59502 0.63325 0.48035 0.60587 0.48117 0.60519

100
AdamW

0.01

100
Adam
0.01

0.61206 0.66697 0.50123 0.63591 0.5129 0.6367

130
AdamW

0.01

100
Adam
0.01

0.60239 0.67233 0.49899 0.6286 0.50077 0.6279

Table 6.2: Results obtained with various training configurations for IS and MC
models

The prediction on unseen data phase reported that the best models in predic-
tion resulted: ’PT_Adam_Adam_200_0.01’, ’PT_SGD_Adam_200_0.01’ and
’PT_SGD_SGD_200_0.01’.
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Figure 6.5: Representation of mAP50-95(B)’s evolution across epochs for the IS
and MC selected models

Figure 6.6: Exam-
ple of prediction by
’PT_SGD_Adam_200_0.01’
model

Figure 6.7: Exam-
ple of prediction by
’PT_Adam_Adam_200_0.01’
model
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Figure 6.8: Example of prediction by ’PT_SGD_SGD_200_0.01’ model

At laboratory testing with the mock-up apple, the best model at inferencing was
’PT_SGD_SGD_200_0.01’ since it captured the entire mask of the apple even upon
proximity to it. This factor led to the selection of ’PT_SGD_SGD_200_0.01’
as the optimal model configuration for Multi-class Classification and Instance
Segmentation tasks.
Nevertheless, an issue arose both in prediction of unseen videos and in the inference
tests for all MC models, namely the instability of the network to classify the apple
instances frame by frame: the class label assigned to the apple object changed too
quickly.

Figure 6.9: Example of inference by
’PT_SGD_Adam_200_0.01’ model

Figure 6.10: Example of inference by
’PT_SGD_SGD_200_0.01’ model

Fig. 6.11 represents the results provided by YOLO after the training of the chosen
CNN, fine-tuned on the pre-trained IS model (100,SGD,0.01) for 200 epochs with
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SGD optimizer and using 0.01 as learning rate.

Figure 6.11: Results of the IS and MC model trained for 200 epochs with SGD
optimizer and lr=0.01, on the pre-trained 100,SGD,0.01 IS model

Finally, to conclude, the selected optimal YOLOv8 CNN model for Multi Classifi-
cation and Instance Segmentation tasks features:

• train/mAP50(B) = 63.89%;

• val/mAP50 = 63.94%;

• train/mAP50-95(B) = 51.23%;

• val/mAP50-95 = 51.35%.

6.2 Experimental tests on IBVS and overall
system architecture

Extensive experiments were conducted on the overall system architecture, modeled
as a Finite State Machine (FSM) (Fig. 4.5), to evaluate the individual performances
of the Vision and Controller modules and their combined effectiveness.

Experimental setup

A description of the experimental setup follows:

• Kinova Gen3 Lite 6 DoF: operating from a stationary base with static targets;

• Intel RealSense D435i: mounted on the Kinova’s end effector in an eye-in-hand
camera configuration;

• developed ROS2 software architecture: executed on an Intel NUC11PAH-01,
powered by an Intel Core i5-1135G7 CPU;
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• the average inference speed of the YOLOv8 CNN, accelerated by Openvino:
5 fps, which reduces the RealSense frame rate (30 fps) and causes the entire
architecture to operate at 5 Hz;

• as illustrated in 6.12, a realistic scene was recreated at PIC4SeR laboratory
using a plant with leaves, branches, and a lightweight mockup apple, visible
from the robot’s perspective and within its configuration space, to be consistent
with the dataset on which the vision model was trained.

Figure 6.12: Experimental setup for the tests on the IBVS and overall architecture

Experimental tests

Let’s refer to the term scenario as a specific robot joint configuration and a partic-
ular apple position in the scene.
Two types of tests were conducted.

The first set of tests, referred to as Fixed Initial Configuration Experiments,
aimed to quantitatively evaluate the metrics described below in controlled condi-
tions. Consequently, the scenario comprised a fixed starting joint configuration, that
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we can call ’home’ pose, and a variable apple position in the scene for each test. A
total of five tests were performed, each consisting of five attempts under the same
conditions (i.e., ’home’ robot pose and same apple position in the scene) to ensure
repeatability. Test 1 was repeated twice, using both the Instance Segmentation
CNN and Multi-class Classification model, whereas Test 2,3,4,5 employed only the
Instance Segmentation model, which demonstrated superior performance during
Test 1.

The second set of tests, referred to as Variable Initial Configuration Ex-
periments, aimed to assess the system’s robustness and adaptability. A total
of seven tests were conducted, each with five attempts. In this second scenario,
both the initial robot joint configuration and the apple position varied across tests.
This variability allows us to examine how the system performs when starting from
different configurations and how the metrics, such as the Closed Loop Time, Har-
vest Time, and Successful Picking Rate, fluctuate under these dynamic conditions,
providing valuable insights into the system’s flexibility and operational efficiency
in different scenarios.

For each attempt of each test, the FSM was run.
The success of each state of the FSM was evaluated as follows:

• STATE: Closed Loop = SUCCESS only if the IBVS correctly guides the end
effector toward the target;

• STATE: Open Loop Grasping = SUCCESS only if the gripper successfully
picks the apple;

• STATE: Place = SUCCESS if the motion plan to place the apple occurred
without dropping it or encountering singularity.

The evaluation metrics

The metrics used to evaluate the performances of the proposed system for apple
harvesting include:

• Closed Loop Time (CLT) [s], representing the duration from Start
Controller state to the end of Closed Loop (CL) state. The mean and
standard deviation of the CLT were calculated across all successful attempts
in each test, where the CL state ended as expected, with the end effector
toward the target:

µCLT = 1
N

NØ
i=1

ti
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σCLT =

öõõô 1
N

NØ
i=1

(ti − µ)2

where: ti is the CLT for the i-th successful attempt, N is the total number
of successful attempts where the closed loop state was finished as expected,
µCLT is the Mean CLT, σCLT is the Standard Deviation of CLT.

• Euclidean Norm of the Error for Each Feature at Steady State: The
Euclidean norm of the error was computed separately for each feature si’s
projected normalized coordinates in the image plane (Eq. 4.7) at steady state,
that is, at the end of the closed-loop phase. For each test, the norm for the
i-th feature was calculated for each of the five attempts, and then, the mean
and standard deviation of the error norm were then computed across the five
attempts:

|e(∞)|si
=
ñ

e2
xi

+ e2
yi

where exi
= xi(CLT ) − x∗

i and eyi
= yi(CLT ) − y∗

i are the x and y error
components computed between the normalized projected coordinates in the
image plane of the i-th current feature and the i-th desired feature, at steady
state. For each feature si, the mean µ|e(∞)|si

and standard deviation σ|e(∞)|si

of the error norm across all attempts were calculated as:

µ|e(∞)|si
= 1

5

5Ø
k=1

|e(∞)|(k)
si

σ|e(∞)|si
=

öõõô1
5

5Ø
k=1

1
|e(∞)|(k)

si − µ|e(∞)|si

22

where |e(∞)|(k)
si

is the error norm for the i-th feature during the k-th attempt,
and 5 is the number of attempts for each test.

• Harvest Time (HT) [s], defined as the duration from Start Controller
state to the end of Place state. The mean and standard deviation of the HT
were calculated across all successful attempts in each test, where the Place
state was ended as expected, without the occurrence of an early apple drop or
robot singularity:

µh = 1
N

NØ
i=1

hi

σh =

öõõô 1
N

NØ
i=1

(hi − µh)2
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where: hi is the harvest time (from Start Controller to Place state) for the
i-th successful attempt, N is the total number of successful attempts where
the Place state was correctly finished, µh is the Mean HT, σh is the standard
deviation of the HT.

• Successful Picking Rate: This metric is calculated as the ratio of the
number of successful attempts (where the process correctly finishes the Place
state from Start Controller) out of the total number of attempts:

Successful Picking Rate = Nsuccessful

Ntotal

where Nsuccessful is the number of successful attempts, Ntotal is the total number
of attempts.

Tuning Parameters

All experiments were conducted with the following parameter settings:

• λ=1, proportional gain scalar in IBVS control law, playing a role in the
convergence speed, adjusted to optimize the performance;

• fIBV S=20Hz, frequency of the IBVS controller, set to more than twice the 5
Hz vision update rate, to guarantee both stability and responsiveness;

• |vtf |saturated = 0.06 m/s, to minimize excessive oscillations;

• αEMA= 0.8, to ensure a quicker response while smoothing the output as well;

• ∆OL=2.4s, to prevent abrupt accelerations that could excessively push the
lightweight apple;

• wa = 0.4, wc = 0.6: tunable weights of the cost function, chosen to prioritize
the object’s area in order to mitigate the frame by frame classification instability
observed in the Multi-class Classification network;

• the target apple was positioned between 36 cm and 78 cm along the z-axis of
the Kinova tool frame across tests.

6.2.1 Results of Fixed Initial Configuration Experiments
These tests were conducted with a Fixed Initial joint Configuration (qhome), called
home, varying the location of the apple in the scene (resulting in the object seen in
the center of the image, top left, top right, down left, down right).

qhome =
è
−89◦ −22◦ 67◦ −1◦ −116◦ 0◦

é
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The home starting position was chosen to allow the Kinova robot to maneuver
effectively in multiple directions, avoiding singularities.

In the following, the detailed setup and schematic results about the Fixed Initial
Configuration Experiments will be provided.

Figure 6.13: View of the Kinova’s home position from MoveIt 2

TEST 1

CNN model: Instance Segmentation (IS) model
View from RealSense:

Figure 6.14: View from RealSense for Test n. 1 and selected target with IS model

Tab. 6.3 shows the results obtained for each attempt of Test 1. Notice that: A
refers to Attempt, OL_G refers to Open Loop Grasping, CLT refers to Closed
Loop Time, HT refers to Harvest Time, NV stands for ’not valid’.
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Test 1 IS
CL OL_G PLACE

Success CLT Success Success HT

A1 True 10.78 s True True 21.20 s

A2 True 11.00 s True True 21.41 s

A3 True 10.78 s True True 21.17 s

A4 True 10.70 s True True 21.02 s

A5 True 10.37 s True True 20.71 s

Table 6.3: Results of the five attempts for Test n. 1 with IS model

The following graphs illustrate:

• the evolution of the error components on the pixel coordinates u and v for
the five visual features over time computed between the desired constant
features and the current features extracted by the vision module, from Start
Controller state to the end of Closed Loop phase, providing insights into
the controller’s behavior and effectiveness;

• the linear and angular components of the Cartesian velocity over time, output
of the IBVS controller, sent to the robot during the Closed Loop phase.

Each plot includes data from the five separate attempts of the test, allowing for
the assessment of consistency and robustness across multiple trials of the overall
architecture in the same conditions.
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Figure 6.15: Error on feature s1 during
closed loop phase for TEST1 with IS
model

Figure 6.16: Error on feature s2 during
closed loop phase for TEST1 with IS
model

Figure 6.17: Error on feature s3 during
closed loop phase for TEST1 with IS
model

Figure 6.18: Error on feature s4 during
closed loop phase for TEST1 with IS
model
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Figure 6.19: Error on feature s5 during closed loop phase for TEST1 with IS
model

Figure 6.20: Linear velocity during
closed loop phase for TEST1 with IS
model

Figure 6.21: Angular velocity during
closed loop phase for TEST1 with IS
model

It turns out that results of Test 1 achieved with IS model were positive, resulting
in 5 successful attempts out of 5 total. The Instance Segmentation is perfectly
working, feeding the IBVS controller with coherent feature coordinates extraction,
leading to a general error convergence of the features coordinates toward zero over
time. There’s consistency across the five attempts, with minor variations likely due
to slight differences in initial conditions or environmental factors. However, step-like
changes can be observed both in Error evolution and in the Cartesian Velocity
Commands: this is mainly due to the digital implementation of the discrete control
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system and in the relatively slow inference speed of the Instance Segmentation
model with respect to control frequency. Anyway, the Successful Picking Rate (5/5)
across the attempts of Test1 suggests that both the IS model and IBVS controller
worked as intended.

CNN model: Instance Segmentation (IS) and Multi-class Classification (MC)
model
View from RealSense:

Figure 6.22: View from RealSense for Test n. 1 and selected target with IS and
MC model

Test 1 MC
CL OL_G PLACE

Success CLT Success Success HT

A1 True 8.80 s True True 19.18 s

A2 False NV False False NV

A3 False NV s False False NV

A4 True 8.97 s True True 19.46 s

A5 False NV False False NV

Table 6.4: Results of the five attempts for Test n. 1 with MC and IS model

A2 failed the CL phase because the network firstly detected the target seen from
Fig. 6.22 and suddenly switched to the second (hidden) apple as target. After
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that, the robot entered the open loop without reaching the real target apple, since
it found the branch as obstacle ahead. A3 and A4 failed because the MC model
continuously changed the target, leading to the robot being stopped in the wrong
final pose.

Figure 6.23: Error on feature s1 during
closed loop phase for TEST1 with IS MC
model

Figure 6.24: Error on feature s2 during
closed loop phase for TEST1 with IS MC
model

Figure 6.25: Error on feature s3 during
closed loop phase for TEST1 with IS MC
model

Figure 6.26: Error on feature s4 during
closed loop phase for TEST1 with IS MC
model
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Figure 6.27: Error on feature s5 during closed loop phase for TEST1 with IS MC
model

Figure 6.28: Linear velocity during
closed loop phase for TEST1 with IS MC
model

Figure 6.29: Angular velocity during
closed loop phase for TEST1 with IS MC
model

Then, the results of Test 1 with IS and MC model were unsatisfactory, yielding a
lower Successful Picking Rate (2/5) across the attempts of Test1, compared to the
previous case. Although the IS and MC network is able to segment the instances
well, it tends to change the class-label of the instances too quickly. This rapid
change led to variable targets in the cost function, compromising stability. The
extraction of the feature coordinates is thus unstable: in the error and velocity
plots for A3 and A5, noticeable spikes occurred due to the shifting target apple’s
position, resulting in the divergence of the error.
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In conclusion, the network for Instance Segmentation only was selected as Vision
Model to perform inference on the RGB data for the following tests.

TEST 2

CNN model: Instance Segmentation model
View from RealSense:

Figure 6.30: View from RealSense for Test n. 2

Test 2
CL OL_G PLACE

Success CLT Success Success HT

A1 True 8.47 s True True 18.99 s

A2 True 9.00 s False False NV

A3 True 8.98 s True True 19.41 s

A4 True 8.98 s True True 19.98 s

A5 True 9.00 s True False NV

Table 6.5: Results of the five attempts for Test n. 2

In A2, the grasping attempt was unsuccessful due to the end effector’s excessive
forward motion, which, combined with the apple’s minimal weight, caused the
object to move excessively during the picking. In A5, the same situation of A2
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occurred. Initially, the apple was grasped but it slipped from the gripper and fell
before the robot could transition to the placement phase.

Figure 6.31: Error on feature s1 during
closed loop phase for TEST2 with IS
model

Figure 6.32: Error on feature s2 during
closed loop phase for TEST2 with IS
model

Figure 6.33: Error on feature s3 during
closed loop phase for TEST2 with IS
model

Figure 6.34: Error on feature s4 during
closed loop phase for TEST2 with IS
model
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Figure 6.35: Error on feature s5 during closed loop phase for TEST2 with IS
model

Figure 6.36: Linear velocity during
closed loop phase for TEST2 with IS
model

Figure 6.37: Angular velocity during
closed loop phase for TEST2 with IS
model

Based on the plots from Test 2, we can observe some variations in the initial error
of certain features parameters across the different attempts. This discrepancy can
be attributed to the human error in positioning the apple exactly in the same
location for all five trials. Despite these initial differences, it’s important to note
that the error consistently demonstrates a decreasing trend, converging toward zero
in all cases. This convergence indicates that regardless of small initial positioning
inconsistencies, the visual servoing system effectively guides the robot towards the
desired configuration. All velocities tend towards zero by the end of the execution,
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suggesting the robot is slowing down as soon as the current features overlap with
the desired features.

TEST 3

CNN model: Instance Segmentation model
View from RealSense:

Figure 6.38: View from RealSense for Test n. 3

Test 3
CL OL_G PLACE

Success CLT Success Success HT

A1 True 6.50 s True True 17.10 s

A2 True 7.00 s True False NV

A3 True 6.49 s True True 16.99 s

A4 True 6.64 s True True 17.21 s

A5 True 6.00 s True False NV

Table 6.6: Results of the five attempts for Test n. 3

The position of the apple in Test 3 was a bit crucial, due to the vicinity to the
branches. Even though a light collision occurred during A1, it didn’t have an
impact on the tasks completion. On the contrary, in A2, the collision prevented
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the Kinova to place the apple, being blocked by a Safety Failure mechanism. In
A5, the robot failed to exit from the Open Loop Grasping because it stretched too
much to pick the apple and then, from that position, the MoveIt planner wasn’t
able to find the motion plan to reach the placement pose.

Figure 6.39: Error on feature s1 during
closed loop phase for TEST3 with IS
model

Figure 6.40: Error on feature s2 during
closed loop phase for TEST3 with IS
model

Figure 6.41: Error on feature s3 during
closed loop phase for TEST3 with IS
model

Figure 6.42: Error on feature s4 during
closed loop phase for TEST3 with IS
model
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Figure 6.43: Error on feature s5 during closed loop phase for TEST3 with IS
model

Figure 6.44: Linear velocity during
closed loop phase for TEST3 with IS
model

Figure 6.45: Angular velocity during
closed loop phase for TEST3 with IS
model

The error and velocity plots exhibit notable similarity across all attempts, indicating
consistent controller performance. However, A5 stands out due to its shorter closed-
loop phase duration and larger velocity command magnitudes. This behavior
anticipates the system’s entry into the singularity that will block the robot.
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TEST 4

CNN model: Instance Segmentation model
View from RealSense:

Figure 6.46: View from RealSense for Test n. 4

Test 4
CL OL_G PLACE

Success CLT Success Success HT

A1 True 8.07 s True True 18.51 s

A2 True 7.97 s True True 18.70 s

A3 True 8.00 s True True 18.41 s

A4 True 8.04 s True False NV s

A5 True 7.97 s True True 18.41

Table 6.7: Results of the five attempts for Test n. 4

In A5, a hard collision blocked the robot that didn’t reach the place state.
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Figure 6.47: Error on feature s1 during
closed loop phase for TEST4 with IS
model

Figure 6.48: Error on feature s2 during
closed loop phase for TEST4 with IS
model

Figure 6.49: Error on feature s3 during
closed loop phase for TEST4 with IS
model

Figure 6.50: Error on feature s4 during
closed loop phase for TEST4 with IS
model

97



Results

Figure 6.51: Error on feature s5 during closed loop phase for TEST4 with IS
model

Figure 6.52: Linear velocity during
closed loop phase for TEST4 with IS
model

Figure 6.53: Angular velocity during
closed loop phase for TEST4 with IS
model

Also error and velocity plots of Test 4 show the effectiveness of the controller
in achieving error convergence close to zero. The velocity command reduces
progressively as the error diminishes, ensuring smooth deceleration as the target is
approached.
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TEST 5

CNN model: Instance Segmentation model
View from RealSense:

Figure 6.54: View from RealSense for Test n. 5

Test 5
CL OL_G PLACE

Success CLT Success Success HT

A1 True 7.60 s True True 18.30 s

A2 True 8.10 s True True 18.74 s

A3 True 7.99 s True True 18.69 s

A4 True 7.99 s True True 18.60 s

A5 True 8.58 s True True 19.10 s

Table 6.8: Results of the five attempts for Test n. 5
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Figure 6.55: Error on feature s1 during
closed loop phase for TEST5 with IS
model

Figure 6.56: Error on feature s2 during
closed loop phase for TEST5 with IS
model

Figure 6.57: Error on feature s3 during
closed loop phase for TEST5 with IS
model

Figure 6.58: Error on feature s4 during
closed loop phase for TEST5 with IS
model
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Figure 6.59: Error on feature s5 during closed loop phase for TEST5 with IS
model

Figure 6.60: Linear velocity during
closed loop phase for TEST5 with IS
model

Figure 6.61: Angular velocity during
closed loop phase for TEST5 with IS
model

In the error plots of Test 5, it appears that the error on the pixel coordinate u of
the feature s2 and on u of the feature s3 deviates from zero. However, this behavior
could actually be a result of the controller correcting the error on other features.

6.2.2 Summary of Fixed initial Configuration Experiments
Tab. 6.9 summarizes the results of the first set of experiments, conducted in a
controlled environment with Fixed Initial robot Configuration. The findings are
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categorized into observations regarding the Vision Module, the Image-Based Visual
Servo (IBVS) controller and the overall system architecture.

Vision Module Performance

The Vision Module demonstrated great performances during experimental tests.
The Instance Segmentation (IS) model exhibited precise apple segmentation and
stable feature extraction across all trials, resulting in accurate target localization.
The speed and stability of the YOLOv8 architecture, combined with the OpenVino
acceleration, ensured real-time processing without compromising accuracy.

A comparison between the IS model and the Multi-class Classification (MC) model
reveals notable differences. The fine-tuned YOLOv8 model for IS achieved a 100%
success rate (25/25 trials) in entering the Closed Loop state, as evidenced by the
feature error consistently converging to zero. In contrast, Test 1, conducted with
the CNN for both Multi-class Classification and Instance Segmentation, recorded
a significantly lower Successful Picking Rate (SPR) of 40% (2/5), with diverging
error plots. When the same test was performed using the CNN for IS only, the SPR
improved to 100% (5/5), with converging error plots. This suggests that the MC
model requires further refinement before being suitable for practical applications.

Image-Based Visual Servo (IBVS) Controller Performance

The IBVS controller effectively guided the robot’s end effector toward the apple
target when accurate object features were extracted by the Vision Module. Analysis
of the error plots across all tests shows a consistent pattern: features errors began at
non-zero values and converge towards zero over time. The convergence is generally
faster in the initial phase, slowing as the error approaches zero. This behavior is
critical to ensure smooth and precise motion of the end effector during the task.

The Euclidean error norms of the projected normalized coordinates in the im-
age plane at steady state (end of the closed-loop phase), for each feature, are
reported in Tab. 6.10. The lowest error norms, all under 0.3, were achieved in Test
2, where the apple was positioned in the center of the image plane. Interestingly,
this did not directly influence the success of the subsequent open-loop grasping
phase. Tests 1 and 5, which had higher error norms, still resulted in successful
open-loop grasps, while Test 2 experienced two failures despite lower error norms.
This suggests that the grasping phase’s success is less dependent on error norms
and more on other factors, such as the precision of the detected target centroid.

The velocity command data indicate that the linear velocities did not saturate
the imposed limit of 0.06 m/s. The magnitude of the linear velocity components
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(vx,vy,vz) varied depending on the apple’s position, while the angular velocity
components were much smaller (on the order of 10−6 to 10−5) compared to linear
velocities, as expected, to aid in feature alignment. The overall motion remained
smooth, helped by the Exponential Moving Average (EMA) filter, though a step-like
behavior was observed in the velocity plots due to the system’s discrete control in-
puts and difference between the faster IBVS control frequency and slower inference
frequency (updating the control inputs).

The average closed-loop duration (CLT) was 8.44 seconds, with a standard deviation
of 1.422 seconds. This duration varied depending on the apple’s distance from the
tool, with closer targets resulting in faster convergence. However, the duration
was also constrained by the hardware, specifically the CPU-limited inference speed.
During the parameter tuning phase, increasing the gain λ (dictating the IBVS’
convergence speed) led to faster convergence but introduced oscillations and reduced
precision, compromising grasping success. Therefore, a moderate value of λ was
chosen to balance speed and accuracy.

Overall System Architecture Performance

The overall system architecture performed as expected, with the YOLOv8-based
Instance Segmentation model functioning reliably for Visual Perception. By cor-
rectly inferring the RGB data and extracting features for the IBVS controller, the
system achieved a 100% success rate in completing the closed-loop phase. The
IBVS controller consistently positioned the end effector toward the target apple,
regardless of the apple’s position in the scene.

However, the open-loop grasping phase was more sensitive to errors and depended
heavily on the accuracy of the detected target centroid. A more precise centroid
extraction led to more accurate open-loop velocity commands during the grasping
phase. Then, also the grasping phase showed variability depending on the accuracy
of the visual perception.

The overall successful picking rate (SPR) across all tests was 20/25=80%, with
an average harvest time of 19.132 s and a standard deviation of 1.373 s. This
extended Harvest Time is also imputable to the intended pauses between different
operational phases, especially the transition from Cartesian control (used in the
closed-loop and grasping phases) to joint control (used during the placing phase).
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n. CL OL PLACE
succ. CLT succ. SPR HT

1 5/5 (10.726 ± 0.23)s 5/5 5/5 (21.1 ± 0.26)s
2 5/5 (8.87 ± 0.23)s 4/5 3/5 (19.46 ± 0.47)s
3 5/5 (6.52 ± 0.36)s 5/5 3/5 (17.1 ± 0.11)s
4 5/5 (8.01 ± 0.04)s 5/5 4/5 (18.51 ± 0.14)s
5 5/5 (8.05 ± 0.35)s 5/5 5/5 (18.68 ± 0.28)s

mean 25/25 (8.44 ± 1.422)s 24/25 20/25 (19.132 ± 1.373)s

Table 6.9: Results of Fixed Initial Joint Configuration experiments

n. |e(∞)|s1 |e(∞)|s2 |e(∞)|s3 |e(∞)|s4 |e(∞)|s5

1 MC 0.442 ± 0.146 0.397 ± 0.171 0.434 ± 0.04 0.376 ± 0.279 0.378 ± 0.075
1 IS 0.262 ± 0.017 0.367 ± 0.019 0.28 ± 0.013 0.11 ± 0.01 0.236 ± 0.012

2 0.225 ± 0.014 0.239 ± 0.045 0.108 ± 0.03 0.073 ± 0.021 0.115 ± 0.007
3 0.325 ± 0.044 0.171 ± 0.042 0.265 ± 0.043 0.382 ± 0.049 0.292 ± 0.045
4 0.115 ± 0.009 0.268 ± 0.008 0.319 ± 0.013 0.209 ± 0.014 0.207 ± 0.007
5 0.427 ± 0.037 0.326 ± 0.028 0.175 ± 0.024 0.326 ± 0.033 0.301 ± 0.031

Table 6.10: Euclidean norm of the error for each feature at steady state for Fixed
initial Configuration Experiments

6.2.3 Results of the Variable initial Configuration Experi-
ments

To qualitatively evaluate the robustness of the system, additional experiments were
conducted with variable initial robot configurations and variable apple position in
the scene. The results, summarized in Table 6.11, were compared against those
obtained considering only fixed initial configuration.

Tab. 6.13 confirms that the apple’s position in the scene does not significantly
affect the Open Loop Grasping phase, but it does influence the Euclidean error
norm values on the features’ projected normalized coordinates reached at the end
of IBVS Closed Loop phase. Specifically, the error norm is lower when the apple is
already near the center of the image plane, as less correction is required during
the approaching phase. This is particularly evident in Tests 2, 3, and 4, where
the apple was central in the u direction of the image plane, with only its position
along the v direction varying. These tests showed lower Euclidean error norm on
the normalized feature parameters. However, as in other cases, there is no clear
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relationship between the minimum error reached during the Closed Loop phase
and the success of the grasping phase. Even with lower error, successful grasping
remains independent of the error norm achieved at the end of the Closed Loop phase.

By averaging the experimental metrics from both variable and fixed initial robot
configurations as shown in Tab. 6.12, the following results were obtained:

• Successful Picking Rate (SPR): 46/60=76.66% (compared to 20/25=80% in
the Fixed Initial Configuration)

• Closed Loop Time (CLT): 7.47 ± 1.69 s

• Harvest Time (HT): 18.059 ± 3.073 s

These results indicate that the designed visual servo and instance segmentation sys-
tem is robust, as it performs effectively regardless of the robot’s initial position and
the apple’s location in the scene. The slightly reduced SPR (26/35=74.28% if only
considering Variable Initial Configurations experiments and 46/60=76.66% averag-
ing Variable and Fixed Initial configuration experiments, compared to 20/25=80%
in the Fixed configuration tests) remains high and falls within the range of state-of-
the-art systems, which typically achieve SPR values between 60% and 80%. This
suggests that the system maintains a high degree of reliability even under variable
initial conditions.

In terms of Closed Loop performance, the average CLT of (6.78±1.53) s considering
Variable Configuration experiments and (7.47±1.69) s averaging Fixed and Variable
Configuration experiments, is slightly reduced with respect to that of the Fixed
configuration experiments. This strictly depends on the setup and suggests that
the controller’s performance remains robust even when starting from variable robot
positions, confirming the system’s adaptability across varying initial conditions.

The average Harvest Time for Variable Configuration experiments (17.23 ± 3.65) s
and overall variable and fixed configuration experiments (18.059 ± 3.073) s were
slightly reduced, likely due to variations in the end effector’s initial distance from
the apple. Although the overall HT remains higher than the 6 to 8 seconds typically
reported by state-of-the-art systems, the primary constraint is the CPU-limited
inference speed in the Vision Module, which can create a bottleneck during the
Closed Loop phase. Upgrading to a more powerful CPU is expected to significantly
reduce this phase’s duration by speeding up the real-time inference and improving
overall system responsiveness.
In addition, the Open Loop Grasping phase takes time, being currently tuned to 2.4
s to avoid abrupt accelerations and unwanted shifts, which could otherwise displace
the mockup apple and lead to grasping failures. The integration of a motion planner
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by MoveIt 2 would improve the precision of the grasping, particularly by ensuring
smoother movements. Lastly, optimizing the transition from Cartesian velocity
commands to joint velocity commands would reduce the time taken for the placing
phase, thereby further lowering the total HT and improving the system’s efficiency
in pick-and-place operations.

n. JOINT CONF. CL OL PLACE
succ. CLT succ. SPR HT

1 -63°, -18°, 96°,
3°, -100°, -22° 5/5 (5.23 ± 0.832)s 4/5 4/5 (16.525 ± 0.36)s

2 -34°, -15°, 86°,
4°, -85°, 13° 5/5 (6.84 ± 0.641)s 4/5 3/5 (19.66 ± 0.256)s

3 -58°, -34°, 30°,
18°, -91°, -19° 5/5 (4.06 ± 0.413)s 3/5 0/5 NV

4 -59°, -28°, 90°,
5°, -63°, -30° 5/5 (7.62 ± 0.51)s 5/5 5/5 (18.41 ± 0.52)s

5 -44°, -27°, 63°,
22°, -90°, -14° 5/5 (6.03 ± 0.41)s 5/5 5/5 (16.458 ± 0.39)s

6 -30°, -6°, 85°,
1°, -93°, -7° 5/5 (8.31 ± 0.249)s 5/5 5/5 (18.87 ± 0.145)s

7 -71°, -9°, 91°,
-7°, -92°, -9° 5/5 (8.724 ± 0.482)s 5/5 4/5 (19.745 ± 0.514)s

mean 35/35 (6.78 ± 1.53)s 31/35 26/35 (17.23 ± 3.65)s

Table 6.11: Results of Variable Initial Joint Configuration experiments

Tests CL OL PLACE
success CLT success SPR HT

mean of Fix. and Var. Ini. conf. 60/60 (7.47 ± 1.69)s 55/60 46/60 (18.059 ± 3.073)s

Table 6.12: Results of overall experiments
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n. |e(∞)|s1 |e(∞)|s2 |e(∞)|s3 |e(∞)|s4 |e(∞)|s5

1 0.529 ± 0.067 0.275 ± 0.004 0.328 ± 0.011 0.559 ± 0.068 0.401 ± 0.031
2 0.219 ± 0.016 0.181 ± 0.013 0.072 ± 0.015 0.193 ± 0.015 0.075 ± 0.003
3 0.325 ± 0.034 0.194 ± 0.017 0.088 ± 0.008 0.279 ± 0.03 0.146 ± 0.021
4 0.038 ± 0.019 0.1571 ± 0.03 0.265 ± 0.03 0.279 ± 0.014 0.121 ± 0.024
5 0.522 ± 0.073 0.405 ± 0.063 0.223 ± 0.028 0.399 ± 0.036 0.372 ± 0.039
6 0.457 ± 0.087 0.611 ± 0.141 0.494 ± 0.1 0.296 ± 0.007 0.443 ± 0.073
7 0.192 ± 0.018 0.341 ± 0.009 0.325 ± 0.009 0.163 ± 0.016 0.234 ± 0.013

Table 6.13: Euclidean norm of the error for each feature at steady state for
Variable Initial Configuration Experiments
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Chapter 7

Conclusion and Future
Developments

The thesis work aimed at designing a Visual Servo for apple harvesting using
the Kinova Gen 3 Lite robot, equipped with an Intel RealSense D435i camera
mounted on its end effector. The proposed architecture included a Vision Module,
integrating a YOLOv8 fine-tuned Instance Segmentation network, responsible for
apple identification and visual features extraction from the selected target object,
and an Image-Based Visual Servo Block, tasked with guiding the Kinova’s end-
effector toward the target apple by directly computing the error between current
and desired features in the image space.
The proposed architecture was implemented as a Finite State Machine, to evaluate
the performance of individual modules and their combined efficacy. Extensive test-
ing of the system in realistic scenario, recreated at PIC4SeR laboratory, revealed the
following findings. Firstly, the fine-tuned YOLOv8 CNN for Instance Segmentation
outperformed the fine-tuned model devoted to both Instance Segmentation and
Multi-class Classification of apples based on their degree of occlusion. It enabled
accurate segmentation of mockup apples and precise visual feature extraction for
the visual controller. Further refinement of the YOLOv8 CNN for both Instance
Segmentation and Multi-class Classification tasks will be necessary to utilize the
network in practical applications.
Secondly, the IBVS consistently and smoothly navigated the end-effector toward
the target when visual features extraction was accurate and without any loss or
misidentification by the YOLOv8 network. The final open-loop control phase
proved crucial in overcoming the IBVS’s inability to compute the control law when
the target’s depth became undetectable by the RGBD sensor, ultimately leading
to successful grasping.
Lastly, the system fulfilled the complete autonomous harvesting task, achieving the
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competitive Successful Picking Rate (SPR) of 80% in Fixed Initial Configuration
experiments, 74.28% in Variable Initial Configuration experiments and 76.66% when
averaging results from Fixed initial and Variable initial Configuration experiments,
reaching an average Harvest Time of respectively 19.132 ± 1.373 s, 17.23 ± 3.65 s
and 18.059 ± 3.073s. Beyond the achieved goals, the extended harvest time and
collisions as the primary source of failure during testing highlight potential areas
for future developments:

• attempting to considerably accelerate the inference time, e.g. by employing
dedicated GPU, to achieve near real-time control, as the current 5 fps inference
speed is significantly lower than the 30 fps frame rate of the RGB sensor. This
would speed up the convergence of visual control;

• integrating the MoveIt 2 motion planner to execute grasping as soon as depth
is lost by the RGBD sensor and the IBVS control law is no longer computable.
This would significantly enhance the speed and precision of the pick and place
operation;

• incorporating a collision checking and obstacle avoidance model to improve
system efficiency in real-world scenarios.
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Appendix A

Adam optimizer

The Adam (Adaptive Moment Estimation) optimizer is a popular algorithm used
for training deep learning models. It combines the advantages of two other methods:
AdaGrad, which maintains per-parameter learning rates for dealing with sparse
gradients, and RMSProp, which adjusts learning rates based on the average of
recent magnitudes of gradients. Adam computes individual adaptive learning rates
for each parameter by maintaining two moment estimates: the first moment (mean)
mt and the second moment (uncentered variance) vt.
The updates for parameters θ at time step t are computed as follows:

mt = β1mt−1 + (1 − β1)gt

vt = β2vt−1 + (1 − β2)g2
t

where gt is the gradient at time step t, β1 and β2 are the decay rates for the moment
estimates (typically set to 0.9 and 0.999, respectively). To correct for initialization
bias, Adam applies bias correction:

m̂t = mt

1 − βt
1
, v̂t = vt

1 − βt
2

Finally, the parameter update rule is given by:

θt+1 = θt − η
m̂t√
v̂t + ϵ

where η is the learning rate and ϵ is a small constant for numerical stability. Adam
is computationally efficient, has little memory requirement and works well for
problems with noisy or sparse gradients [44].
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Appendix B

AdamW optimizer

AdamW is a variant of the Adam optimizer that decouples weight decay from the
gradient update, addressing a key issue in Adam, where L2 regularization (often
implemented as weight decay) is implicitly applied to both the gradient and the
adaptive learning rates. In AdamW, weight decay is applied directly to the weights
during the update step, without affecting the gradient-based parameter update,
which improves generalization in deep learning models. In AdamW, the parameter
update is modified as:

θt+1 = θt − η

A
m̂t√
v̂t + ϵ

+ λθt

B

where λ represents the weight decay coefficient. This decoupling leads AdamW
to better convergence and improved performance, especially in models with very
deep architectures. The introduction of AdamW has been particularly impactful in
large-scale models like Transformers, where AdamW is now a standard choice for
optimization [45].
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Appendix C

Grid Search

Grid Search is a hyperparameter optimization technique widely used in machine
learning to enhance model performance. The process involves defining a grid of
possible hyperparameter values and then evaluating the model for each combination
of these parameters. By systematically testing every combination, Grid Search
ensures that the best hyperparameters are selected based on a predefined evaluation
metric such as accuracy, F1 score, mean Average Precision, or mean squared error.
However, Grid Search can be computationally expensive, particularly when the
hyperparameter space is large, as the number of combinations grows exponentially
with the number of hyperparameters. This method is particularly effective when
the search space is limited and well-understood, as it guarantees that all possible
combinations are tested, leaving no potential configurations unexplored.
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Appendix D

Metrics for Object Detection
and Classification

• As first main metric to evaluate an Object Detection and Instance Segmentation
model, we find the Intersection over Union (IOU) [22]:

IOU =
area

1
B̂ ∩ B

2
area

1
B̂ ∪ B

2
where B̂ is the predicted bounding box or mask, B is the ground-truth
bounding box or mask, ∩ is the intersection symbol and ∪ is the union symbol.
Fig. D.1 represents the graphical meaning of IOU.

Figure D.1: Representation of Intersection over Union from [22]

• Precision metric aims at measuring how well the model identifies only the
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Metrics for Object Detection and Classification

correct objects in the image and it is computed as [22]:

precision = TP

TP + FP
= TP

alldetections

• Recall metric estimates the model’s ability to correctly detect all the positive
instances from all the actual positive ones [22]:

recall = TP

TP + FN
= TP

allactualboundingboxes

• The mean Average Precision (mAP) indicates if the model is able to correctly
classifying objects across multiple classes: it measures how well the model bal-
ances precision and recall across different classes. In the discrete form, mAP is
computed by averaging the Average Precision (AP) across all object categories.

The Average Precision (AP) for a single class is calculated by summing over
the differences in recall values multiplied by the corresponding interpolated
precision:

AP =
NØ

n=1
(rn − rn−1) pinterp(rn)

where rn is the recall at the n-th threshold, pinterp(rn) is the interpolated
precision at that recall level, N is the total number of thresholds used for
precision and recall computation.

To compute the mAP, we average the AP values over all C object classes:

mAP = 1
C

CØ
i=1

APi

where C is the total number of object classes, APi is the Average Precision
for the i-th class.
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