
POLITECNICO DI TORINO
Master degree course in Computer Engineering

Master Degree Thesis

Reinforcement Learning
Framework for RISC-V Functional

Verification

Supervisors
Prof.ssa Mariagrazia Graziano
Prof. Maurizio Martina
Dr. Andrea Marchesin
Dr. Michele Caon

Candidate
Marco Rosa Gobbo

ID: s309578

Academic year 2023-2024

Summary

Verification in the context of digital design is the process of testing and validating
the behavior of a system before it gets released or deployed. This is a fundamen-
tal part of the design process, often taking more than half of the development
time due to the complexity of reaching complete coverage. Traditional verifica-
tion techniques, such as directed testing and constrained random testing, often
fail to capture critical edge cases in complex systems. To address this gap, this
thesis explores the application of Reinforcement Learning (RL) for the functional
verification of RISC-V cores, which are becoming increasingly popular, specifically
through the automatic generation of assembly code to enhance test coverage. This
investigation begins by building a test-bench for RISC-V cores intended to be as
implementation-independent as possible using the Universal Verification Method-
ology (UVM) in SystemVerilog (SV) and Spike instruction set simulator as the gold
model. The test-bench is then translated into a Python-based environment using
the PyUVM library and Verilator as the simulator to enable an open-source setup.
This facilitates the integration with the rest of the components needed in the flow,
such as the custom instruction generator and the coverage collection, providing a
flexible framework for closed-loop instruction generation and core state observation.

We introduce at this point the RL agent to guide the instruction generator
based on coverage metrics and Central Processing Unit (CPU) state (e.g., register
file and program counter). Because of the action space being so vast and never
tackled before by other research works, the first agent implementation involves a
custom-built RL agent, relying on Gymnasium to have a standard API towards
the environment. It uses a deep Q-learning agent based on Neural Networks as
the function approximators, divided in a state encoder and specialized child Neural
Network (NN) to avoid the explosion of the Action space size. The second approach
uses StableBaseline 3 (SB3) library that provides established RL algorithms, includ-
ing Proximal Policy Optimization and Multi-Input Policy. For both cases different
state vectors and reward functions are experimented with.

Finally, we compare the post-training results obtained by the RL agent to the
average coverages obtained by requesting random instructions to the instruction
generator. The first agent approach does not show any improvements due to the
NN not converging, caused by a naive implementation of the neural networks which

2

leads to exploding weights and the loss values not decreasing. The second, SB3
approach, shows encouraging results. For instance, with 100 requests to the in-
struction generator (ca. 200 assembly instructions), an average coverage increase
of 4.2% is observed compared to the random generation. The RL agent is able to
generate diverse instruction sequences that stress different areas of the processor
and show the presence of data dependencies in the generated code, thanks to the
reward function promoting these behaviors.

The work done provides a solid foundation for future research while already
having tackled some of the implementation options that showed a more efficient
approach. The fully open-source nature of the framework represents a performant
and versatile basis to further explore other machine learning approaches compared
to proprietary solutions.

3

Acknowledgements

First and foremost, I would like to thank my parents, the two people who have
always been by my side and offered support at every moment. I also extend my
gratitude to my aunt for her constant interest in both my academic and personal
career. I thank all my friends who patiently endured my ever-changing moods and
pessimistic outlooks on a daily basis.

A heartfelt thank you to the PhD students without whom this work would not
have been possible: Vincenzo, Flavia, Andrea, and Michele. I am also grateful to
Professor Graziano and Professor Martina, through whom I had the opportunity
to undertake this thesis.

4

Contents

List of Tables 7

List of Figures 8

1 Introduction 11
1.1 Motivation . 11
1.2 Historical notes on verification . 14

1.2.1 State of the art for verification 15
1.2.2 Beyond UVM . 17

1.3 Historical notes on Machine Learning 17
1.4 Thesis organization . 18

2 Background 19
2.1 UVM . 19

2.1.1 UVM motivations . 19
2.1.2 UVM structure . 19
2.1.3 UVM Communication . 21
2.1.4 UVM Phases . 21
2.1.5 Additional UVM features . 22
2.1.6 UVM good practices . 22

2.2 Spike and reference model . 22
2.2.1 Spike . 23

2.3 Open source verification . 23
2.3.1 Verilator . 23
2.3.2 Fusesoc, Edalize and the build tools 24
2.3.3 Python verification . 24

2.4 RISC-V . 25
2.4.1 CVE2 core . 26
2.4.2 Instruction extensions . 26

2.5 Reinforcement learning . 27
2.5.1 Deep Reinforcement Learning 30
2.5.2 Stable baseline 3 and Proximal Policy Optimization 32

5

3 Implementation 35
3.1 UVM Test-bench . 35

3.1.1 UVM Environment . 37
3.1.2 Software, Compilation, and Handling 41
3.1.3 Spike ISS . 43

3.2 Coverage and metrics collection . 44
3.2.1 First, closed source, approach 45
3.2.2 Final open source based coverage collection 46

3.3 Reinforcement Learning agent and environment 47
3.3.1 Environment . 48
3.3.2 Agent . 51
3.3.3 Stable Baseline 3 implementation 54

3.4 Instruction Generation and Test Function 55
3.5 Complete simulation environment 57

4 Results 59
4.1 RISCV test bench . 59
4.2 Reinforcement learning training . 60

4.2.1 First custom agent approach 60
4.2.2 Stable baseline 3 approach 61

4.3 Coverage results . 64

5 Conclusions and future work 69

6 Appendix: Code 71

6

List of Tables

3.1 Action types. 49
3.2 Reward calculation . 50
3.3 State vector components . 51
3.4 Custom agent parameters. 54
4.1 Average coverage results. 64
4.2 Coverage table with respective values 66
6.1 Gymnasium Application Programming Interface (API) 75

7

List of Figures

1.1 Mean time spent for verification compared to design. Source: Wilson
Research Group and Mentor. 12

1.2 Transistor count for CPUs over the years. Data source: Wikipedia [1] 12
1.3 Relationship between time to market revenue and cost. Source: Tc-

gen [2] . 14
1.4 RISCV-DV architecture. [3] . 16
2.1 UVM TB structure, source: UVM cookbook [4]. 20
2.2 UVM hierarchy [5]. 21
2.3 Cocotb DUT interaction, source: CocoTB [6]. 25
2.4 CVE32E20 Core, source: OpenHW [7] 26
2.5 Agent-Env interaction. 28
2.6 Rectified Linear Unit (ReLU) (left) and leaky rely (right) activation

functions. 30
3.1 OBI standard for the LSU, source: OBI manual [8]. 36
3.2 Core test-bench. 37
3.3 First version of the RL environment with a custom agent. 48
3.4 Composition of the state vector . 49
3.5 Complete program flow. 58
4.1 Main MLP weights. 61
4.2 Reward of the custom agent. 61
4.3 Training reward. 62
4.4 Explained variance over episodes. 63
4.5 Entropy loss over episodes. 63
4.6 Coverage progression in the two cases. 65

8

Acronyms

MLP Multi-Layer Perceptron

SB3 StableBaseline 3

TB Test-Bench

SV SystemVerilog

ML Machine Learning

UVM Universal Verification Methodology

OVM Open Verification Methodology

RL Reinforcement Learning

MDP Markov Decision Process

SDF Standard Delay Format

HDL Hardware Description Language

RTL Register Transfer Level

IP Intellectual Properties

TLM Transaction-Level Modeling

CSR Control Status Registers

DUT Device Under Test

ISS Instruction Set Simulator

ISA Instruction Set Architecture

NN Neural Network

OOP Object Oriented Programming

9

DB DataBase

CER Combined Experience Replay

PRB Prioritized Replay Buffer

TD Temporal Difference

API Application Programming Interface

PPO Proximal Policy Optimization

FIFO First In First Out

FSM Finite State Machine

PC Program Counter

UCDB Unified Coverage DataBase

GUI Graphic User Interface

ALU Arithmetic logic unit

SW Software

ASM Assembly

CPU Central Processing Unit

OBI Open Bus Interface

GPU Graphics Processing Unit

EDA Electronic design automation

TCL Tool Command Language

PSL Property Specification Language

SVA SystemVerilog Assertions

WB Weights and Biases

ReLU Rectified Linear Unit

10

Chapter 1

Introduction

The growing number of extensions and the modular nature of RISC-V cores brought
to light the limitations of traditional verification methods when the addition of new
instructions requires a rapid re-verification of the core. This thesis, starting from
a more traditional UVM test-bench wants to explore the use of machine learning
and in particular reinforcement learning to aid in the creation of test programs for
the functional verification of the cores. In this introductory chapter the motivation
behind this work as well as some notes on the history that led up to the current
state of the art in the verification field.

1.1 Motivation
Verification plays a crucial role in the design of digital systems, often consuming
more than half of the total design time [9] as it can be seen in fig. 1.1.

The complexity of modern digital systems has grown exponentially over the
years, with many designs now incorporating billions of gates, Moore’s remains true
for the number of transistors used in a chip [10], in fig. 1.2 we can see how this is
true not only for CPUs but for the other designs too. This increased complexity
has made the verification process more challenging and time-consuming. Engineers
must meticulously test every aspect of the system to ensure that all components
work together seamlessly and that the system as a whole performs as expected un-
der all possible operating conditions. The substantial time devoted to verification
is justified by the potentially catastrophic consequences of errors in the design or
microarchitecture. Fixing issues after an Integrated Circuit (IC) has been manu-
factured or deployed can be extremely costly, both in terms of financial resources
and damage to a company’s reputation. One of the most famous cases was the bug
that afflicted the Pentium 4 divisor and that highlighted issues in the verification
process [11]. In some critical applications, such as medical devices or automotive
systems, errors could even lead to life-threatening situations. Therefore, thorough

11

1 – Introduction

Figure 1.1: Mean time spent for verification compared to design.
Source: Wilson Research Group and Mentor.

Figure 1.2: Transistor count for CPUs over the years. Data source: Wikipedia [1]

verification is essential to catch and correct any issues before they can cause harm or
financial loss. Verification occurs at multiple levels throughout the design process.
It begins with the verification of individual components and modules, progresses

12

1.1 – Motivation

to the integration of these components, and ends with system-level verification.
This multi-level approach ensures that not only do individual parts work correctly,
but they also function properly when integrated into the larger system, this is be-
coming more and more important as Intellectual Propertiess (IPs) get reused for
multiple projects. Traditional verification methods, such as directed testing and
constrained random testing, have been the workhorses of digital system verifica-
tion for a long time. Directed testing involves creating specific test cases to verify
particular functionalities or corner cases of a design. This approach is precise and
targeted but requires significant manual effort to create comprehensive test suites.
Verification engineers must anticipate potential issues and create tests to expose
them, which becomes increasingly challenging as system complexity grows. Ran-
dom testing, given enough time, is the most complete verification method, the
problem being that the time required explodes with size of the device to test, in
this case, constrained random testing still generates a large number of random test
cases but within specified constraints that limit the number to the interesting sce-
narios. However, it may still miss rare corner cases and can be inefficient in terms
of the number of tests required to achieve adequate coverage. While these meth-
ods have served the industry well, they are showing their limitations with bigger
and more sophisticated designs. In this thesis, we are working with a CPU core, a
prime example of a complex digital design, more specifically, with a small RISC-V
core. The emergence of the RISC-V architecture has added a new dimension to
the verification challenge. RISC-V has gained significant traction in the proces-
sor design landscape, largely due to its open-source nature and modular design.
These characteristics allow for rapid innovation and customization, but they also
introduce new verification complexities. RISC-V’s modular approach means that
cores can be customized with various optional extensions and custom instructions,
while this flexibility is a strength of the architecture it also multiplies the number
of possible configurations that need to be verified. Each combination of exten-
sions and custom features potentially introduces new interactions and edge cases
that must be thoroughly tested. As RISC-V cores find applications across a wide
spectrum, from tiny embedded systems to high-performance computing, the verifi-
cation requirements become even more diverse. The open-source nature of RISC-V
also means that many different organizations and individuals are developing cores
and extensions, as opposed to the standard cores provided by ARM or other IP
producers. These cores often incorporate advanced features such as out-of-order
execution, speculative processing, and complex cache hierarchies. These features
create a vast state space of possible behaviors, making it extremely difficult for tra-
ditional methods to achieve exhaustive verification. This variety and modularity
together with increasing time-to-market importance, fast but reliable verification
gains more importance, as shown in fig. 1.3 all the time that can be saved translates
to possible earnings [12].

13

1 – Introduction

Figure 1.3: Relationship between time to market revenue and cost. Source: Tcgen
[2]

Perhaps most critically, the classic methods mentioned before may fail to uncover
subtle corner cases or rare scenarios that could lead to critical failures in the field.
Such scenarios might only occur under very specific conditions that are hard to
anticipate or reproduce in a test environment. While this promotes innovation,
it also raises the importance of robust, standardized verification methodologies to
ensure interoperability and reliability across the ecosystem.

1.2 Historical notes on verification
Originally, for simple circuits, the verification process was relatively straightfor-
ward, consisting in engineers manually writing the input vectors for the test. As
designs became more complex, this manual approach quickly proved inadequate
[13]. The advent of Hardware Description Language (HDL) like Verilog and VHDL

14

1.2 – Historical notes on verification

in the 1980s marked a significant shift in both design and verification method-
ologies. These languages allowed engineers to describe hardware at a higher level
of abstraction and enabled the use of simulation for verification. Engineers could
now write test-benches in the same language as the design, providing a more in-
tegrated and scalable approach to verification. The 1990s saw the introduction
of coverage-driven verification, a concept that emphasized measuring the com-
pleteness of verification efforts. Tools emerged that could analyze code coverage,
providing metrics on how thoroughly a design had been tested. This shift from a
purely functional verification approach to one that also considered coverage marked
a significant advancement in the field. As we entered the 2000s, the exponential
increase in design complexity led to the development of constrained random testing.
This technique allowed engineers to generate large numbers of random test cases
within specified constraints, helping to uncover corner cases that might have been
missed by manually created tests. The ability to automatically generate diverse
test scenarios greatly expanded the scope of verification efforts. In the mid-2000s
assertion-based verification was introduced, where engineers could embed checks
directly into their designs or test benches. Languages like Property Specification
Language (PSL) [14] and SystemVerilog Assertions (SVA) [15] were developed to
support this methodology, allowing for the automatic detection of violations during
simulation. At this point, an additional level of abstraction was introduced through
the collaborative efforts of Mentor Graphics and Cadence Design Systems, leading
to the development of the Open Verification Methodology (OVM), an interoperable
SystemVerilog-based verification framework. OVM provides a standardized library
of base classes, enabling users to build modular and reusable verification environ-
ments. In these environments, components communicate using Transaction-Level
Modeling (TLM) interfaces. This approach promotes both intra- and inter-company
reuse by offering a common methodology, with classes that support the develop-
ment of stimulus sequences and facilitate the reuse of components from block-level
to system-level verification. The next step and current industry standard is the
UVM that has been introduced and standardized by IEEE, it’s an extension of
OVM. UVM [16] that further refines the concepts of modularity and reuse, of-
fering enhanced features for stimulus generation, coverage, and transaction-level
modeling, making it the industry-standard methodology for creating scalable and
reusable verification environments.

1.2.1 State of the art for verification
As UVM has already been consolidated in the verification panorama new tools
and methodology are being built as an addition of substitution to it. This can be
considered the state of the art for verification in the case of complex digital systems
such as RISC-V cores, these tools do not overlap completely with what is then going
to be proposed in the thesis but are what is being used in the industry at the moment

15

1 – Introduction

The officially used tools for Open-HW cores, of particular interest since in the thesis
the device tested is a core from group (a non-profit organization developing open-
source cores), employ "smart" random instruction generators capable of creating
coherent instruction sets, but the generation parameters are still manually set.
The following frameworks are the most used and that have support for a number
of cores.

RISCV-DV

RISCV-DV is an open-source instruction stream generator for RISC-V processors,
part of Google’s DV project aimed at providing a complete verification infrastruc-
ture for RISC-V cores. Built on an SV/UVM infrastructure, it supports a wide
range of RISCV extensions that are going to be explained more in detail in the
background chapter section 2.4, including RV32IMAFDC and RV64IMAFDC in-
struction sets, multiple privileged modes (Machine, Supervisor, and User), page
table randomization, privileged Control Status Registers (CSR) setup randomiza-
tion, trap/interrupt handling, and more. The system can be easily customized
via YAML files, as shown in fig. 1.4. Generated instructions are fed to both an
Instruction Set Simulator (ISS) and the Device Under Test (DUT), with outputs
compared at the end of the simulation. Functional coverage can be collected di-
rectly from the ISS, simplifying DUT test-bench development. The project supports
various ISS and Register Transfer Level (RTL) simulators, configurable via YAML
files. At its core, RISCV-DV uses a Python-based random instruction generator
built on PyVSC, a library for random stimulus generation and coverage collection.

Figure 1.4: RISCV-DV architecture. [3]

FORCE-RISCV

FORCE-RISCV an open-source random instruction generator for RISC-V proces-
sors, is part of the OpenHW Group. It uses randomization to generate valid test

16

https://github.com/openhwgroup/force-riscv

1.3 – Historical notes on Machine Learning

sequences by selecting instructions, registers, and addresses. The generation flow
is controlled through a set of python APIs, with output provided as standard .elf
and assembly files. FORCE-RISCV supports numerous RISC-V Instruction Set
Architecture (ISA) features, including RV64G, RV32G, V extension 1.0, RISC-V
privileged ISA (U, S, and M privilege levels), and various virtual memory systems
(Sv48, Sv39, Sv32) [17]. It also offers fast exception handling, non-trivial excep-
tion handlers, full privilege mode switching support, and multiprocess/multithread
instruction generation. The generator incorporates an ISS to model instruction
behavior. After generating each instruction, it’s executed on the ISS, and FORCE-
RISCV updates the appropriate architectural state based on the output.

riscvISACOV

The riscvISACOV [18] project aims to provide a common infrastructure for func-
tional coverage of RISC-V cores. As the ISA is consistent across cores, the coverage
model can be shared, although interrupt handling, exceptions, and CSR registers
may vary between cores. Led by Imperas and following the OpenHW ARVM-
Functional Coverage project, riscvISACOV is not a complete verification environ-
ment but significantly aids test-bench development by providing the coverage com-
ponent.

1.2.2 Beyond UVM
In recent years, Python and Cocotb (coroutine-based co-simulation test-bench) have
emerged as a valid alternative to the standard SV based test-benches in hardware
verification, offering flexibility and ease of use compared to traditional method-
ologies like UVM. Cocotb is a Python-based framework that allows users to write
test benches in Python, while co-simulating with HDLs simulators. This approach
makes use of Python’s simplicity and rich ecosystem, enabling faster test develop-
ment and higher productivity. Cocotb also facilitates the integration of high-level
software testing practices into hardware verification, allowing for more efficient
testing, faster iterations, and greater accessibility for software engineers involved in
hardware verification.

1.3 Historical notes on Machine Learning
Thanks to the enormous quantity of data and computing power available in recent
years, machine learning has evolved exponentially [19] transforming from a theoret-
ical concept to a cornerstone of modern computing. The real research in machine
learning began in the 1980s, as researchers looked for better ways to model learning
algorithms. Early work, such as neural networks had difficulties in achieving prac-
tical success due to limited computational power and the lack of sufficient data.

17

https://www.cocotb.org/

1 – Introduction

However, the 1990s saw a shift towards more robust statistical methods like deci-
sion trees and support vector machines, which provided more reliable performance
across various tasks.

The 2000s marked a turning point with the rise of big data and improvements
in hardware, which made it feasible to train complex models on vast datasets.
The resurgence of neural networks, particularly deep learning, played a pivotal
role. Innovations in training techniques, such as back-propagation, allowed neural
networks to solve more intricate problems. Deep neural networks are used nowadays
to solve complex problems as predicting the structure of proteins, autonomous
driving, image recognition and natural language processing.

A particular branch that is then going to be explored more in detail in the
background and implementation sections is reinforcement learning, which, in
recent years, has gained significant attention, especially with the integration of deep
learning techniques. The success of algorithms like Deep Q-Networks and models
such as AlphaGo [20] demonstrated the potential of reinforcement learning to solve
complex, decision-making problems in dynamic environments. These developments,
along with advancements in areas like unsupervised learning and transfer learning,
have established machine learning as a critical tool in various fields ranging from
healthcare to autonomous systems and of particular interest for us in verification
where for example can be used to cluster the violations discovered in a design and
get to the root cause [21].

1.4 Thesis organization
Having now introduced the arguments that are going to be developed here is how
the thesis is going to be organized: in the background chapter an overview of the
theory leveraged to construct the framework that is needed to have a complete
vision of the thesis can be found, more specifically we are going to look at UVM,
the open source scene in verification, the RISCV ISA, what reference model we
are going to use and finally some reinforcement learning and in general machine
learning bases. The implementation chapter is divided into 5 sections, going over
the coding of the base test bench as a standalone unit, how we collected the coverage
values, the different implementations of the RL agent and environment, our custom
instruction generator, and finally how the whole is glued together in the simulation
environment. As for the results chapter, we take a look at 3 main points: how
the base test benched performed, if and why the RL agent converged to meaningful
results, and lastly how well it performed compared to random instructions. Finally,
in the conclusions, we are going to look at the problems, solutions and possible
future work regarding this project.

18

Chapter 2

Background

In this chapter an introduction to all the major concepts and technologies needed
to understand what the thesis is built on is illustrated, ranging from the tradi-
tional UVM methodology to the Machine Learning (ML) models then used in the
implementation.

2.1 UVM
2.1.1 UVM motivations
As mentioned in the introduction UVM is an IEEE standard to implement a
methodology for verifying digital circuit designs. This standard is implemented
via different libraries, the most used one being the Accellera System Verilog one,
supported in the latest versions of most HDL simulators. This implementation
consists in a set of base classes with methods defined in it, from which the System
Verilog verification environment can be developed by extending the base classes.

2.1.2 UVM structure
Figure 2.1 shows the most important components of a typical UVM test-bench.
Going from the bottom up we have the DUT, which is the entity that is actually
being tested throughout, usually written in in Verilog or other HDLs. The I/O of
this device is described at the signal level and for this reason the Interfaces are
introduced, a way to translate the signals into more abstract transactions. From
the test-bench side ideally only sequence_items are seen, they will represent a set
of inputs or outputs of the DUT. The sequence used depends on the test and could
be a fixed one as well as a sequence able to adapt and respond to signals read by
the Monitor coming from the device under test. These packets are sent to the DUT
via the Driver, which asks the Sequencer for the next sequence item to be driven.
The driver translates the information from the more abstract Transaction Level

19

2 – Background

Figure 2.1: UVM TB structure, source: UVM cookbook [4].

used in the packets to the actual signals to drive the DUT. The Sequencer is the
component that is in charge of the scheduling of the sequence items, it can be seen
as a sort of arbiter that decides which sequence item to send to the driver. The
Monitor is a passive component that samples the signals of the DUT and creates
the relative transaction items, as opposed to the driver here it’s going from the
lower signal level of the interface to a more abstract transaction level of the items,
that are then used by the coverage and scoreboard components. A reference model
to compare our DUT to is required in the framework as well, this is called the
predictor and can be implemented in various ways, for example writing it directly
in SytemVerilog or using an external function in C [22] or another source like a
simulator that emulates the desired behavior of the DUT. The Scoreboard is the
component that compares the results of the DUT with the ones obtained from the
reference model.

Moving to a different view of the test-bench in fig. 2.2 a hierarchy of the UVM
classes can be seen.

The Agent is a collection of the sequencer, driver and monitor and it is used to
simplify the instantiation of the test-bench. The Environment is the top-level com-
ponent that instantiates all the agents and the scoreboard and it is the component
that is instantiated in the test-bench, this can be seen more clearly in fig. 2.2. The
Test is the component that drives the environment and it is the one that is created
in the test-bench. This hierarchy allows having for each "Top" test-bench a set of
Tests with their relative sequences and different environments as to maximize the
reuse of code.

20

2.1 – UVM

Figure 2.2: UVM hierarchy [5].

2.1.3 UVM Communication
Communication is handled through a combination of hierarchical structuring, stan-
dard interfaces and transaction-based communication. The standard interfaces de-
fine a set of methods, signals and transactions that allow components to exchange
information in a consistent manner. Components connect to each other through
these ports and exports which in TLM act as interfaces between modules and han-
dle communication at a higher abstraction level, typically in terms of transactions
rather than individual signals declared within the components themselves. Trans-
actions are the fundamental units of communication in UVM, each represents a
piece of data that is sent from one component to another through the interface
communication channels. UVM components can also use event notification mech-
anisms and callbacks to communicate, for instance, a monitor might raise an event
when a certain condition is observed and a scoreboard might register a callback on
that event to process the data.

2.1.4 UVM Phases
All the components derived from uvm_component go through a predefined set of
phases, that act as a synchronization mechanism during the simulation. The phases
are defined as callbacks so the components can do work in the callback phase period.
Methods that do not consume simulation time are the functions and the methods
that do are tasks. The phases can be grouped into three main categories:

1. Build and connect phases: in this phase the components are created and

21

2 – Background

the connections between them are established. The build phase is the first
phase that is executed and it is executed in a top-down order. The connect
phase is used to set up the connections between the components, this is done
bottom-up.

2. Run phase: actual time-consuming simulations, it runs in parallel with the
other run-time UVM phases.

3. Clean-up phases: here the data from the scoreboard is extracted and com-
puted, the check on the outputs is performed and the results are printed out.

2.1.5 Additional UVM features
On top (or in parallel) to the already described classes there are additional features
provided by the UVM library to help the verification process. The UVM Factory
mirrors the Object Oriented Programming (OOP) concept of a factory, it can be
used to create and configure objects at run-time to be able to override the default
configuration of the test-bench. The UVM Database provides an interface for
the resources facility, it simplifies the passing of data between components and it
is used to store the configuration of the testbench. All operations related to the
database are static, in the DataBase (DB) the resources are stored by a given name
(or type) and they can be retrieved by the same name (or type) in the correct scope.

2.1.6 UVM good practices
Being a mature methodology UVM has a set of best practices that are recommended
to be followed to maximize the efficiency of the verification process. Some may feel
like over-complications but they are generally useful to avoid common pitfalls and
to make the code more readable and maintainable.

2.2 Spike and reference model
A general problem in verification is what to consider "known good" especially in
not trivial cases such as a CPU core. Usually there are different possibilities such
as comparing to an already existing and proven design, writing a model at a higher
abstraction level or using formal methods to verify the correct result. In the case of
a core writing a model to emulate the whole behavior of it becomes a challenging
task and prone to error, for this reason one can use an ISS to abstract the correct
behavior the core should have when provided with code. ISSes are not cycle accurate
but work with the minimum granularity of a single instruction (commit) so they
are not usable in case of extensive verification of the sub-modules of a core but in
case of functional verification (as is going to be our case) they are the ideal choice.

22

2.3 – Open source verification

2.2.1 Spike
Spike [23] is one of the most widely used, open-source ISS that can be found. It
acts as a reference model for the RISC-V ISA (Instruction Set Architecture) and
is developed by the RISC-V Foundation, it’s mainly used for testing, simulating,
and verifying the functionality of RISC-V processors, and it provides a platform for
running RISC-V programs without requiring actual hardware. It supports all the
official ISA extensions mentioned in the previous sections and over that the excep-
tions and interrupts. It comes with a debugging mode for step-by-step simulation
of a program and new instructions can be easily added to the set of supported ones.

2.3 Open source verification
For software, open source means that the source code is free for anyone to see,
modify and improve, in the last years such software has started to appear in hard-
ware design and verification too, comprehensive guides and resources can easily
be found, for example this list that groups together verification frameworks and
tools available currently. As mentioned in the introduction Python as a verifica-
tion language is gaining traction in the verification community and along with it
open-source alternatives for RTL simulators are getting more popular.

2.3.1 Verilator
Verilator is one of the aforementioned powerful, widely-used free and open-source
tools designed for high-performance simulation of digital circuits described in Sys-
temVerilog and Verilog. It translates HDLs designs into C++ or SystemC, creating
models that can be executed faster than traditional interpreted simulators. This
speed is especially useful in large, complex designs or when performing extensive
regression testing, as the generated models can take advantage of multi-threading
and optimized execution paths [24]. One of the key advantages of Verilator is
that it often rivals, or even surpasses, the performance of proprietary simulators.
This makes it highly attractive for projects where licensing costs and scalability
are concerns. Verilator cycle-based simulation methodology is ideal for certain use
cases, though it does fall short in features typically found in event-driven simu-
lators. For example Standard Delay Format (SDF) annotation, which is used to
back-annotate timing information from synthesis or place-and-route tools into the
simulation, which is crucial for timing-aware verification. This happens to not be
a problem for our scope while the issues emerge for two different aspects:

• Incomplete UVM support: since Verilator’s support for UVM is still under
development, it means one needs to create the test bench outside of Sys-
temVerilog.

23

2 – Background

• Limited coverage capabilities: while Verilator offers basic coverage support,
it doesn’t match the options provided by commercial tools like QuestaSim.
In scenarios where achieving and tracking functional coverage is a primary
requirement, Verilator might require additional manual effort or external tools
to fill this gap.

2.3.2 Fusesoc, Edalize and the build tools
Historically and still today, the development of hardware design flows heavily relies
on the use of custom scripts, often written in Tool Command Language (TCL)
or bash, to manage the compilation, simulation, and synthesis. TCL scripts pro-
vide designers with flexibility and control over tool flows. However, they also come
with challenges. Handwritten scripts are often difficult to maintain, error-prone,
and tightly coupled to specific tools, limiting portability and reuse across differ-
ent projects and environments. As projects grew in complexity, the need for more
standardized, scalable, and modular approaches became evident. TCL and other
scripting languages lacked native support for package management and dependency
tracking, making it hard to manage IP blocks and external libraries in larger designs.
Furthermore, the manual nature of script-based workflows can introduce inconsis-
tencies, as different teams or individuals might use slightly different scripts or con-
figurations for the same project. This led to the development of more sophisticated
build systems and automation frameworks, which aim to provide a higher-level ab-
straction over the low-level tool invocations that TCL scripts typically handled.
FuseSoC [25] and Edalize emerged as part of this evolution. FuseSoC, as a pack-
age manager and build system, abstracts much of the scripting FuseSoC in setting
up toolchains and managing dependencies. Edalize, as the backend tool driver,
replaces custom scripts with a uniform interface for various Electronic design au-
tomation (EDA) tools. Together, they offer a solution that not only automates the
flow but also ensures portability, reusability, and ease of integration across multiple
tool environments. In the context of this thesis Fusesoc is going to be used for
the compilation, simulation and handling of the Verilator outputs simplifying the
overall flow compared to the combination of bash scripts used initially.

2.3.3 Python verification
Python as a verification language alleviates the lacking support of UVM in Verilator.
As mentioned in the state of the art in the last years Python verification has started
to gain traction, this is due to multiple reasons, that can be summarized in:

• Being Python a highlevel language means that it is easier to write and read
than other languages like SystemVerilog or VHDL.

• Python is a generalpurpose language, which translates to a wider range of

24

2.4 – RISC-V

applications where it can be used, allowing additional features to the Test-
Bench and the model.

• Writing reference model for complex DUTs is easier in Python thanks to the
highlevel constructs and the vast number of libraries available.

But how can the Python test bench interact with the DUT? Here is where the
CocoTB library comes in. Cocotb is a co-routine-based co-simulation library for
writing Python test-benches for VHDL and Verilog. It is a wrapper around the
simulator that allows the Python code to interact with the device we are testing;
it’s completely free and open-source (BSD license) and it offers built-in support for
integration with continuous integration tools like Jenkins, GitLab, etc.

Let’s briefly see how a Cocotb test-bench works: as it can be seen in fig. 2.3
there is no need for any user-written wrapper code on the HDL side, Cocotb drives
stimulus onto the inputs of the DUT and monitors the outputs directly from python.
The HDL code instantiation has to be handled externally by the simulator. Then
the test is just a Python function, the await keyword is used to pass the control
back to the simulator to advance the simulation time when the python code is not
executed. A single test can spawn multiple co-routines that can run concurrently
and independently thanks to the start and start_soon function calls.

Figure 2.3: Cocotb DUT interaction, source: CocoTB [6].

2.4 RISC-V
RISC-V is an open standard of instructions, ISA, based on the Reduced Instruc-
tion Set principle. The project, born in 2010 at Berkeley University [26], is now
a significant player in the hardware industry. It has grown into a robust and ver-
satile architecture, supported by a global community of researchers, developers,
and companies. RISC-V offers several advantages, such as simplicity, modularity,
and extensibility, making it suitable for a wide range of applications from embed-
ded systems to high-performance computing. The open nature of RISC-V allows

25

2 – Background

for innovation and customization, promoting a collaborative environment where
advancements in processor technology can be shared and utilized widely.

2.4.1 CVE2 core
This is the core we mainly used during the development of the test-bench, it’s one of
the smallest OpenHW cores, forked from the Ibex core. It targets low-cost embed-
ded applications and is based on a two-stage pipeline. The cores we are verifying
come from the OpenHW group, a non-profit organization where both hardware and
software designers work together to develop open-source cores, the related software
and tools. The core is heavily parametrizable and can support Integer (I), Embed-
ded (E), Integer Multiplication and Division (M) and Compressed (C) extensions.
In fig. 2.4 the block diagram of the core is shown, the source code for it can be

Figure 2.4: CVE32E20 Core, source: OpenHW [7]

found in the relative Github page.

2.4.2 Instruction extensions
The RISV isa includes the ability to add in a modular way different sets of instruc-
tions, depending on the needs of the core. The base fundamental instruction is the
"I" (integer) set, then we have the most and officially defined extensions:

• M (integer Multiplication and Division)

26

https://www.openhwgroup.org/
https://github.com/openhwgroup/cve2

2.5 – Reinforcement learning

• A (Atomic instructions)

• F (Single Precision Floating Point)

• D (Double Precision Floating Point)

• C (Compressed Instructions)

• G (General purpose)

• V (Vector Extension)

• B (Bit Manipulation)

• Zifecei (Instruction Fetch Fence)

• Zicsr (Control Status register Instructions)

This modularity is a great strength of RISCV but on the other hand poses a
problem for the test-bench construction, since if we want an agnostic test bench
able to test different cores it has to be able to support these different types of
instructions without major changes in the flow and configuration.

2.5 Reinforcement learning
RL is a branch of machine learning where an agent learns by interacting with
its environment [27]. Unlike supervised learning, where the model learns from
a dataset of labeled examples, or unsupervised learning, which seeks to uncover
patterns in unlabeled data, reinforcement learning involves an agent that must make
decisions and learn from the consequences of its actions. The key characteristics
that distinguish RL from other learning paradigms are:

• The system operates in a closed loop, where the agent’s actions influence the
environment and vice versa.

• The agent receives no direct instructions on which actions to take, learning
instead from trial and error.

• The delayed consequences of actions, where the effects may unfold over ex-
tended periods, complicate the learning process.

The system operates in a closed loop, where the agent’s actions influence the envi-
ronment and vice versa. The agent receives no direct instructions on which actions
to take, learning instead from trial and error. The delayed consequences of actions,
where the effects may unfold over extended periods, further complicate the learning
process.

27

2 – Background

At the core of RL, a learning agent interacts with the environment in pursuit
of a goal. The agent observes the current state of the environment, selects actions
that affect the environment, and receives feedback in the form of rewards. The
challenge lies in determining which actions lead to the best long-term outcomes.

Figure 2.5: Agent-Env interaction.

This paradigm is particularly distinct because, unlike supervised learning where
the agent is provided with correct outputs for given inputs, in RL, there is no
such supervisor to guide every action. Similarly, it differs from unsupervised learn-
ing, which focuses on finding hidden structures in data. Instead, RL focuses on
maximizing a reward signal, a numerical value that indicates success.

One of the central challenges in RL is balancing exploration and exploitation.
The agent must exploit actions that have proven effective in the past, but it must
also explore new actions that could potentially yield better rewards. Various strate-
gies, such as the ϵ-greedy policy, Upper Confidence Bound (UCB), and gradient-
based methods using the softmax function, address this balance by encouraging
exploration in different ways. In reinforcement learning, the unpredictability of ac-
tions means that the agent must continuously monitor the environment and adjust
its strategy accordingly. The main elements of RL beyond the agent and environ-
ment can be summarized as follows:

• Policy: the strategy that the agent uses to determine the next action based on
the current state, ranging from a simple look up table to a complex algorithm

• Reward signal: a scalar feedback signal that the agent tries to maximize re-
ceived from the environment

28

2.5 – Reinforcement learning

• Value function: a function that estimates the expected cumulative reward of
a state, what is "good" in the long run so we seek states that have high value
over a high immediate reward

• Model: a model of the environment that allows the agent to predict the next
state and reward, some RL algorithms don’t need a model of the environment
and just follow the trial and error approach

More in detail at each time step (t = 0,1,... or some arbitrary successive stages)
agent and environment interact and the agent receives some representation of the
state of the environment and based on that chooses the next action from the set
of actions possible from that state. In the next time step the agent receives a
numerical reward as a consequence. In each time step the agent has a mapping
from states to the probabilities of selecting one of the possible actions. The general
rule is that anything outside the agent is considered part of the environment, so
the agent is the only part that can be modified to improve the performance of the
system.

The reward signal is the way to communicate to the agent which is the final
objective so one must take care of not rewarding intermediate situations that may
lead the agent to focus on the latter rather than the final goal. The rewards are
computed in the environment since the boundary between the agent and environ-
ment can be put in such a way that the rewards are always external in some way.
This avoids the situation where the agent simply decrees that the reward has been
received and the problem is solved. While this is true the agent is also free to have
some kind of internal reward signal defined by itself.

The agent goal is to maximize the cumulative reward it receives in the long
term, in general we want to maximize the expected return where the return Gt is
a specific function of the sequence of rewards received. The simplest case is when
the return is just the sum of the rewards. This makes sense when there is an actual
final step, so each episode ends in its terminal state after which there is a reset.
But if the interaction between the agent and environment goes on indefinitely we
need to introduce the concept of discounting: the agent tries to choose action so to
maximize the sum of the rewards it will receive in the future.

Keeping track of all the state information from the past is not feasible in most
cases, for this reason we look for signals that are able to inform the agent about the
current state in a comprehensive way so as to take the correct action. This type
of property is the Markov property. A state is Markov if based on the information
of only the current state the agent can take the same decision as having the full
history of the past states. Even if this is not always possible it is appropriate to
think of the state as an approximation of a Markov state. A Markov Decision
Process (MDP) is RL task that satisfies the Markov property [28]. Solving a RL
task translates to finding a policy that is able to achieve a high reward in the long
run. For finite MDPs we can define an optimal policy as the one that achieves the

29

2 – Background

highest expected return for all states.

2.5.1 Deep Reinforcement Learning
Finding the action-reward function is the main goal of reinforcement learning, but
in many cases the state space is too large to be able to store all the values in a
table. In this case we can use function approximation to estimate the value of
the state. Neural networks are a good choice for this task since they are able to
approximate any function. [29] . We now have a brief look at neural networks
in the particular case of Multi-Layer Perceptron (MLP), a type of NN consisting
of fully connected neurons that utilize a nonlinear activation function. One of its
main characteristics is being able to distinguish data that is not linearly separable
when using at least three layers. The choice of the activation function mentioned
before is fundamental in the behavior of the network and can improve the gradient
vanishing problems common to deep neural networks. As concluded in [30] usually
there is no single answer to which is best but the process requires lots of trial and
error and observation of the training. Two of the most common thanks to their low
computational cost are the Relu and Leaky Relu These are defined in the following
way:

Figure 2.6: ReLU (left) and leaky rely (right) activation functions.

Another important problem in MLPs is the initialization of weights, which can
significantly affect the learning process. Poor weight initialization can lead to issues
like vanishing or exploding gradients, slowing down convergence or causing insta-
bility during training. One common approach is Xavier [31] initialization, where
weights are scaled according to the size of the input layer to keep the variance
of activations similar across layers. Another is Kaiming initialization [32], which
is particularly useful when using ReLU activation and scaling weights to prevent

30

2.5 – Reinforcement learning

gradient issues in deep networks. Proper weight initialization helps ensure that gra-
dients flow efficiently during back-propagation, improving the stability and speed
of learning in deep MLPs. For our context, reinforcement learning, using activation
functions like ReLU and Leaky ReLU can help stabilize the learning process, espe-
cially when training deep networks for function approximation. As neural networks
are used to approximate the state-action value function, these activation functions
allow for more efficient back-propagation and avoid the stagnation of learning that
can happen with the gradient vanishing issue.

But how are these Multi-Layer Perceptrons used in the RL agent? In reinforce-
ment learning, MLPs are commonly used within Actor-Critic and Deep Q-learning
frameworks. In the latter architectures, two distinct networks operate together: the
actor network, which determines the policy by mapping states to actions, and the
critic network, which evaluates the action taken by estimating the value of the
state. As for the latter (deep Q-learning), the agent seeks to learn the Q-function
Q(s,a), which represents the expected future reward of taking action aa in state ss,
and then acting optimally from that point onward The Q-function approximates
the optimal action-value function using a deep neural network. As seen in Playing
Atari with Deep Reinforcement Learning [33] a common use is the use of MLPs
to approximate Q-values in Q-learning algorithms. The Bellman equation is typ-
ically used to derive the optimal Q-values, and gradient-based methods such as
Adam optimization [34] are applied to minimize the loss between predicted and
target values. One problem that emerges with deep reinforcement learning is the
sampling inefficiency of it [35], a possible solution is the one we are going to see
next.

Replay buffer

The main idea behind replay buffers is to train the agent with the transitions
sampled randomly from a buffer, where a transition is defined as the quadruple
(s,a,r,s’), so the current state, action, reward and next state. At each step the
current transaction is inserted in the buffer to be later sampled. so that the same
experience can be used multiple times during the training, requiring fewer samples.
Behind the replay buffer we have a quite big field of research since its size and
way of storing the relevant experiences are crucial for the correct training of the
network. Large replay buffers are usually involved in RL problems but this can
hinder the performance, a number of solutions for this problem have been proposed
like the Combined Experience Replay (CER) [36] where when sampling a batch
of transitions we add the latest experience too to the batch. One other notable
improvement is the Prioritized Replay Buffer (PRB) [37], which extends the
replay buffer by prioritizing experiences based on their importance, typically de-
termined by the Temporal Difference (TD) error. This is done by assigning each
experience e in the replay buffer a priority p. If this is based on the TD error,

31

2 – Background

we have p = |δ| + ϵ, where δ is the TD error and ϵ is a small positive constant to
ensure no experience has zero priority. The probability of sampling an experience
is then given by pα/

q
pα, where α is a hyper-parameter that controls the degree

of prioritization. The idea is that experiences with high priority are sampled more
frequently, allowing the agent to learn more from them. The TD error is calculated
as δ = r + γV (s′) − V (s), where r is the reward, γ is the discount factor, V (s) is
the value of state s, and V (s′) is the value of the next state s′.

2.5.2 Stable baseline 3 and Proximal Policy Optimization
Stable baseline 3

SB3 is a popular open-source library for reinforcement learning in Python. It pro-
vides a set of reliable implementations of state-of-the-art reinforcement learning
algorithms, built on top of the PyTorch deep learning framework. SB3 is designed
to be user-friendly and modular, making it accessible for both beginners and ex-
perienced researchers in the field of reinforcement learning. It offers a clean and
consistent API across different algorithms, allowing users to easily experiment with
and compare various RL methods [38].

Proximal Policy Optimization

Proximal Policy Optimization (PPO) involves two neural networks: the Policy
(πθ(a|s)), which outputs the probability distribution of the actions given a state,
and the Value network (Vϕ(s)), which estimates the expected return of a state [39].

The objective in PPO is to maximize the expected reward while ensuring that
the new policy doesn’t deviate too much from the old one. This is achieved via
a surrogate objective function that includes either clipping or reduction of the
term. For the clipped one, letting θ old be the parameters of the policy before the
update and θ be the parameters after the update, we have that the ratio r(θ) =
πθ(a|s)/πθold(a|s) is used to compare the new and old policy. The clipped surrogate
objective is then: (clip(r(θ), 1 − ϵ, 1 + ϵ)At)]) , where At is the advantage function
at time t, and ϵ is a hyper-parameter that controls the clipping range.

The training process proceeds in the following loop:
1. Data collection: Run the current policy on the environment and collect a set

of trajectories (each trajectory is a sequence of states, actions, rewards, and
next states).

2. Advantage Estimation: Compute the advantage estimates At for each time
step.

3. Policy update: Use the collected data to update the policy network. The PPO
algorithm updates the policy by maximizing the clipped surrogate objective
function using stochastic gradient ascent.

32

2.5 – Reinforcement learning

4. Value Function update: Simultaneously, update the value network by mini-
mizing the loss between the predicted value and the observed return. The
value loss function is the mean squared error between the predicted value and
the target value.

In the implementation chapter the PPO model is going to be used in combination
with the MultiInputPolicy, which is designed to handle multiple input spaces. In
our case, this is needed because of the mix of one-hot encoded and float values that
form the observation space.

33

34

Chapter 3

Implementation

3.1 UVM Test-bench
The initial implementation of the core test-bench was written in traditional Sys-
temVerilog. However, when it became necessary to integrate the complete flow
with repeated simulations to facilitate the training of the RL component, it be-
came apparent that using QuestaSim for simulation was not feasible due to its
long initialization times and difficulties in interacting with it from external scripts.
Consequently, the decision was made to transition to Verilator, which offered faster
initialization but lacked UVM support. As a result, Python, and in particular the
CocoTb library, was adopted as the preferred language for the test-bench.

Using only CocoTb would have meant discarding UVM, along with all the stan-
dardized methods widely used in the verification ecosystem. Fortunately, there
are open-source projects available that implement UVM classes and interfaces as
Python libraries. In this context, pyuvm, introduced in the background chapter,
was chosen. It leverages CocoTb for simulator interaction and implements the most
commonly used parts of UVM, while benefiting from Python’s looser typing and
non-parameterized classes.

Pyuvm introduces several quality-of-life improvements, such as the automatic
registration of components with the factory and the use of Python’s logging system
instead of the UVM reporting system. The documentation explicitly states that
less frequently used parts of UVM, such as the resource database and some of the
more uncommon ports, were not implemented.

In the code provided in the appendix listing 6.3, the Driver class demonstrates
the primary features of PyUVM and CocoTb. The interface singleton is retrieved
and used to communicate with the DUT, and, as in SystemVerilog, clock edges can
be awaited (in this case using a custom function in the virtual interface to wait
for a specified number of clock cycles). PyUVM provides predefined phases that
can be overridden. The driver responds to core requests via two functions: one
for data and one for instructions. The data function is more complex, as it must

35

3 – Implementation

both store and load data, while the instruction function merely provides requested
instructions. Both functions adhere to the Open Bus Interface (OBI) standard,
illustrated in fig. 3.1, and follow the request/response/valid sequence. Integrating
these components is not straightforward. While Fusesoc (and indirectly Edalize)
supports CocoTb, it does so only in the latest development version of Edalize.
Additionally, a modification to the sim.py script in Edalize is required, as CocoTb
libraries that should be loaded at runtime are instead checked at compile time by
the linker. This issue is resolved by adding the -Wl,–unresolved-symbols=ignore-all
flag to the LDFLAGS in the sim.py script. More details on the solution can be
found in this Github issue. Once configured, the flow operates similarly to a classic
SystemVerilog test-bench, and from the user’s perspective, the use of Python and
Verilator for the test-bench is transparent.

Figure 3.1: OBI standard for the LSU, source: OBI manual [8].

36

https://github.com/olofk/fusesocotb/issues/2#issuecomment-2304435492

3.1 – UVM Test-bench

3.1.1 UVM Environment

Figure 3.2: Core test-bench.

The structure of the UVM test-bench is nearly identical between Python and the
SystemVerilog implementations, as depicted in fig. 3.2.

Unlike a traditional UVM test-bench with predefined sequences and a sequencer,
an interactive approach is employed. The driver responds directly to core requests,
sourcing from two distinct models: one for data memory and one for instruction
memory. By utilizing UVM transaction-level modeling [40], transport ports facili-
tate communication between the driver and the memory components, enabling data
or instruction requests and waiting for corresponding responses. An example of a
data memory model is provided below:

37

3 – Implementation

Memory models

async def transport(self, data_req):
s = core_data_item("s")
data_address = int(data_req.data_addr.value)
data_bytenable = int(data_req.data_be.value)
data_writedata = int(data_req.data_wdata.value)
data_readdata = 0

self.verbose_test = ConfigDB().get(None, "", "VERBOSE_TEST")

if data_req.data_we.value == 1:
for i in range(0, int(self.DataWidth / 8)):

if data_bytenable & (1 << i):
wdata = (data_writedata >> (8 * i)) & 0xff
self.memory[data_address + i] = wdata

else:
if data_address + i in self.memory:

wdata = self.memory[data_address + i]
else:

wdata = 0
else:

Read operation
for i in range(0, int(self.DataWidth / 8)):

if data_address + i in self.memory:
data_readdata |= (self.memory[data_address + i] << (8 * i))

else:
data_readdata |= (0 << (8 * i))

if self.verbose_test:
self.logger.info(f"Data request: data we: {data_req.data_we.value}
address:
{hex(data_address)}, bytenable: {hex(data_bytenable)}, writedata:
S{hex(data_writedata)}, readdata: {hex(data_readdata)}")

s.data_rdata = data_readdata
return s

Source Code 3.1: Source code of the memory model.

Initially, the instruction memory is loaded from a .vmem file generated by obj-
dump from the ELF file. For data memory, byte-addressability is required, based

38

3.1 – UVM Test-bench

on the byte enable signal from the core. While this feature is easier to imple-
ment in SystemVerilog due to built-in bit-oriented variables, it can be achieved in
Python through bit-wise masks. As seen in the code, the class implements the
transport method, which handles bi-directional data communication between two
components.

Monitor

To maintain the black-box approach, the core is monitored exclusively through
writes and reads to the data memory. The monitor observes only the interface
signals related to the data memory and generates packets, which are then sent to
the scoreboard via the analysis port. On the other hand, the Spike output is parsed
to extract only the data memory transactions, which are written to a file. This file
is subsequently read by the predictor components, which push the data packets
to the scoreboard’s First In First Out (FIFO) queue. Additionally, the monitor
detects writes to a particular address, the one predefined for Spike to signal the
end of the program. This is utilized to drop the objection in the run phase of the
monitor, transitioning to the UVM check phase, where the scoreboard compares
the packets from the model and the DUT.

..
if await self.vif.read_data_req() and int(await self.vif.read_data_we()) == 1:

seq = core_item("seq")
seq.data_addr, seq.data_we, seq.data_wdata, seq.data_be,
seq.data_rvalid, seq.data_req = await self.vif.read_data_interface()
seq.instr_addr, seq.instr_req, seq.instr_rdata =
await self.vif.read_instr_interface()
self.ap.write(seq)
if await self.vif.read_data_addr() == 0x20008
and await self.vif.read_data_wdata() == 1:

self.logger.info(
f"Simulation stopped as the data write to address 0x20008 with value 1"
)
self.drop_objection()
break

...

Source Code 3.2: End of simulation check.

39

3 – Implementation

Items

Three distinct items are utilized: two handle data and instruction requests and
responses, each containing all the necessary OBI signals. The third item, fsm_item,
is used in the monitor to store the current and next states observed from the control
unit Finite State Machine (FSM), which are then sent to the coverage class.

Interface

In the PyUVM implementation of the UVM test-bench, an interface is employed to
define methods for reading signals from the DUT. These methods group together
signals related to the data or instruction sections. Similarly, write functions are
defined for use by the driver. A useful method defined in the interface is the one
that waits for a predetermined number of clock cycles. Additionally, the reset
function is implemented ere and invoked at the start of the simulation.

Predictor

The predictor ingests the output of the Spike simulation to create data items, which
are then transmitted to the scoreboard through a dedicated port so to be compared
to the items coming from the DUT.

Driver

The driver module was previously discussed as an example for pyUVM. The no-
table point is that it monitors the interface to determine when to send data or
instructions, in accordance with the OBI protocol mentioned earlier.

Coverage Class

The coverage class, an uvm_subscriber, implements the write port required to re-
ceive instruction and FSM items from the monitor. The instructions are decoded
by differentiating between compressed or non-compressed types. By analyzing OP-
CODE and FUNC fields, the original instruction can be reconstructed, along with
the registers involved. Although this decoding could be performed on the instruc-
tion generator side, the current implementation is more general and can work with
any code provided. The coverage is checked by comparing sets of observed instruc-
tions against a reference set that contains all instructions of the given type.

Scoreboard

The scoreboard is a conventional one, implementing two write FIFOs: one for the
monitor and the other for the reference model (the predictor). Before comparing
the address and content of the data packets, the scoreboard applies the appropriate

40

3.1 – UVM Test-bench

mask to the data. This is necessary because the core only transmits the complete
word when writing to memory, even for half-word or byte writes. The mask is
applied based on the byte enable bits sent along with the data.

for i in range (0,4):# range is
temp = 0
if (int(dut_data.data_be.value)) & (1 << i):

temp = (int(dut_data.data_wdata.value) >> (8 * i)) & 0xff
else:

temp = 0
dut_wdata = (temp << (8 * i)) | dut_wdata

Source Code 3.3: Scoreboard masking.

Agent and Environment

The agent and environment classes are grouped together, as their primary function
is to build the sub-components and connect them in the relevant phases.

Test

The test is the top-level entity of the test-bench, where the environment is instan-
tiated, and the verbose mode variable is set. During the run phase, the clock is
initiated using the Cocotb method call.

3.1.2 Software, Compilation, and Handling
As mentioned earlier, the instruction memory model in the test-bench needs to be
loaded with the software to be run for the test. This software, whether written in
assembly or compiled from C, must be formatted in a binary format compatible
with the core’s instruction memory. The following GCC-copy command is used in
the Makefile, in combination with the sed command, to add the correct starting
address for the code at the beginning of the file:

(OBJCOPY) --reverse-bytes=4 --verilog-data-width=4 -I binary -O verilog $^ $@
sed -i '1s/^.*$$/@00100000/' $@

Source Code 3.4: GCC commands for instruction .vmem file creation.

41

3 – Implementation

The bytes are reversed because the core expects the data in a Little-Endian
format. The data width specifies the number of instructions per line in the output
file, which is a .vmem file that will be read by the test-bench to load the memory
model.

For the base test-bench, there is also an option to pre-load the data memory
with content. The following Makefile recipe handles this process:

$(OBJCOPY) --dump-section .data=$(@:.data.vmem=.data.bin) $^
$(OBJCOPY) --dump-section .rodata=$(@:.data.vmem=.rodata.bin) $^
cat $(@:.data.vmem=.rodata.bin) >> $(@:.data.vmem=.data.bin)
$(OBJCOPY) --reverse-bytes=4 --verilog-data-width=4 -I binary -O verilog
$(@:.data.vmem=.data.bin) $@
rm -f $(@:.data.vmem=.data.bin) $(@:.data.vmem=.rodata.bin)
sed -i '1s/^.*$$/@00140000/' $@

Source Code 3.5: GCC commands for data .vmem file creation.

This recipe dumps both the .data and .rodata sections into separate binary files,
concatenates them, and converts the file to a .vmem format, cleans up temporary
files and inserts the starting address for the data memory. The starting addresses
are defined in the linker file, which is used by GCC during compilation:

OUTPUT_ARCH(riscv)
MEMORY
{

ram : ORIGIN = 0x00100000, LENGTH = 0x30000 /* 192 kB */
stack : ORIGIN = 0x00130000, LENGTH = 0x8000 /* 32 kB */
data : ORIGIN = 0x00140000, LENGTH = 0x20000 /* 128 kB */

}
/* Stack information variables */
_min_stack = 0x2000; /* 8K - minimum stack space to reserve */
_stack_len = LENGTH(stack);
_stack_start = ORIGIN(stack) + LENGTH(stack);
_entry_point = _vectors_start;
ENTRY(_entry_point)

Source Code 3.6: Section of the linker script.

As shown above, the _entry_point is defined, which is where the processor is
expected to fetch the first instruction. The _vectors_start is located in the vector

42

3.1 – UVM Test-bench

section of the linker script, which points to a location in the crt0.S file containing
the following code:

.section .vectors, "ax"

.option norvc

.org 0x00
j _start
.org 0x100
.rept 15
j trap_handler
.endr

Source Code 3.7: Vector section of the crt0.

This section disables compressed instructions and jumps to the start of the crt0
routine, which resets all registers to zero and sets the core in vector mode for trap
handling. This is needed since the Spike simulation adds some initial instructions
that modify the content of the registers. After that sets the core in vector mode
instead of the default direct for trap handling and loads into the mtvec register
the trap_handler address, where the trap handler is just a routine that calls the
dump_register function and then terminates the simulation:

li t0, 0x00000000
csrw mstatus, t0
li t2, 0x100100
csrw mtvec, t2

Source Code 3.8: Setting the core to vector mode.

At the end of the test program’s assembly file, a call to the register dumping
function is included. This is a crucial aspect of the methodology used to compare
the DUT with the reference model. By writing all register contents into memory,
the data can be accessed and observed via the chip interface.

3.1.3 Spike ISS
The Spike ISS is employed as the reference model for the core. The simulator ac-
cepts the input elf file generated from the assembly code and runs using the debug
and log-commits options to produce an output file that logs all committed instruc-
tions and memory transactions. The latter is especially important, as it serves as

43

3 – Implementation

the basis for comparison with the results gathered in the scoreboard. The simulator
is launched prior to the actual DUT simulation and does not operate in lock-step
with the DUT, as such synchronization would require probing internal core signals,
violating the principle of maintaining an RTL-independent test environment.

Memory regions and the initial Program Counter (PC) value can be passed to
Spike through arguments, which is necessary to synchronize the behavior of Spike
with that of the DUT. Additionally, the assembly code must zero out all core regis-
ters via software because Spike, which does not run the code bare-metal, introduces
extra instructions prior to executing the user program. This can potentially lead
to behavior discrepancies between Spike and the DUT.

Spike also recognizes the end of a user program through a specific write to a
designated address. This write operation must be included in all test assembly
programs and is used by the test-bench to determine when the simulation can be
stopped.

As Spike is open-source, modifications to its source code are possible. Such
modifications were made to alter the simulator’s behavior, specifically to enable
the printing of all register file contents at each committed step. This feature is
particularly useful for creating RL states later in the process.

3 0x0010034e (0xcb610113) x2 0x00138000
(spike) core 0: 0x00100352 (0x022000ef) jal pc + 0x22
core 0:
zero: 0x00000000 ra: 0x00100356 sp: 0x00138000 gp: 0x00000000
tp: 0x00000000 t0: 0x00000000 t1: 0x00000000 t2: 0x00100100
s0: 0x00000000 s1: 0x00000000 a0: 0x00000000 a1: 0x00000000
a2: 0x00000000 a3: 0x00000000 a4: 0x00000000 a5: 0x00000000
a6: 0x00000000 a7: 0x00000000 s2: 0x00000000 s3: 0x00000000
s4: 0x00000000 s5: 0x00000000 s6: 0x00000000 s7: 0x00000000
s8: 0x00000000 s9: 0x00000000 s10: 0x00000000 s11: 0x00000000
t3: 0x00000000 t4: 0x00000000 t5: 0x00000000 t6: 0x00000000

Source Code 3.9: Spike log example.

3.2 Coverage and metrics collection
A fundamental part of the flow is the creating of a coverage report so to have a
metric of how effective the test program being run is. This is done in different ways,
depending on the open or closed approach.

44

3.2 – Coverage and metrics collection

3.2.1 First, closed source, approach
The primary metric provided by QuestaSim to assess the effectiveness of testing is
code coverage. While code coverage does not directly indicate the correctness of
the design, it provides insights into how thoroughly the code is exercised during
test execution. A high level of code coverage, often approaching 100%, is typically
required, and this metric is generally achievable with a well-constructed test suite.
The code coverage provided by QuestaSim is divided into several categories:

• Statement coverage: counts the execution of each statement on a line indi-
vidually, even if there are multiple statements on a single line.

• Branch coverage: it measures the percentage of branches in the code that
have been executed. This can be an "if/then/else" or a "case" statement.

• Condition coverage: can be considered an extension of branch coverage,
analyzes the decision made in "if" and ternary statements.

• Expression coverage: similar to condition coverage, it analyzes the expres-
sion on the right-hand side of assignment statements.

• Toggle coverage: it measures the percentage of toggles in the code that have
been executed. A toggle is a signal that changes its value. This can be very
expensive in terms of simulation time.

• FSM coverage: it measures the percentage of states, transitions and paths
in the FSMs present in the code that has been executed.

• SystemVerilog class coverage: it measures the percentage of classes, meth-
ods and statements in the SystemVerilog classes that have been executed.

The flow to collect the coverage is the following:

1. Compile the design with the coverage option enabled, actually the +cover
argument is added to the optimization phase (vopt).

2. Enable the coverage collection during the simulation via the coverage opttop
argument.

3. Save the collected data in a .ucdb file on simulation exit.

4. Run the simulation.

Questa can be configured to collect coverage for only a subset of the source code
by specifying, during the compilation phase, the coverage argument for the modules
of interest. A subset of modules can similarly be specified via the +<selection>
modifier. Coverage data can be dynamically saved during different test runs, not
only at the end of the simulation.

45

3 – Implementation

The Unified Coverage DataBase (UCDB) file serves as the single repository
where all the coverage data is stored. Once saved, the coverage can be analyzed us-
ing the Graphic User Interface (GUI), either during an active simulation or through
post-processing.

During the optimization process, non-essential parts of the design (e.g., code
that is never called) can be removed, which can lead to faster simulation times
but may cause an apparent decrease in coverage. The GUI provides the ability to
observe which lines of code are excluded from coverage. By default, Questa applies
a balanced level of optimization, though this can be customized via the coveropt
option. Code that is optimized out does not count towards possible hits and thus
does not impact the coverage calculation.

3.2.2 Final open source based coverage collection
As highlighted in the test-bench section, the transition to open-source tools like
Verilator introduces certain limitations, particularly regarding coverage capabilities.
Although Verilator supports toggle and line coverage, it lacks a critical feature:
FSM coverage, which is essential for thorough verification.

To address this limitation, it is necessary to break the black-box approach previ-
ously maintained and observe some internal signals within the core. For example, it
becomes essential to monitor the registers within the Control Unit, which represent
the internal state. This information is integrated into the corresponding test-bench
module and reported at the end of the simulation.

Verilator provides line coverage data in the form of a text-based output, spec-
ifying each code line and the number of times it has been activated. This format
is easily parsed, and by using a bash script, a report is generated. The report is
organized by the core’s main units and serves as input for the ML component of
the flow. For example, this process produces the following results for the CVE2
core:

• Arithmetic logic unit (ALU) line coverage

• compressed decoder line coverage

• controller line coverage

• core line coverage

• counter line coverage

• control status registers line coverage

• CSR handling line coverage

• decoder line coverage

46

3.3 – Reinforcement Learning agent and environment

• fetch FIFO line coverage

• decode stage line coverage

• fetch stage line coverage

• load store unit line coverage

• multiplier/divider line coverage

• prefetch buffer line coverage

• register file line coverage

Additionally to these coverages, the functional ones are included too, looking at
the type of instructions that are sent to the core. This is done as mentioned in the
test-bench section via the monitor and the corresponding coverage class, moreover,
here the dependencies are checked:

• R type functional coverage

• I type functional coverage

• RM type functional coverage

• S type functional coverage

• B type functional coverage

• U type functional coverage

• J type functional coverage

• C type functional coverage

• Register dependencies functional coverage

All the coverages at the end of the simulation cycle are collected and organized in
a single file so to be then easily processed by the ML part of the flow.

3.3 Reinforcement Learning agent and environ-
ment

In the following sections the Agent and Environment structures will be described
as well as their interactions, which can be summarized as in fig. 3.3.

47

3 – Implementation

Figure 3.3: First version of the RL environment with a custom agent.

3.3.1 Environment
As discussed in the introduction to Reinforcement Learning, the two key compo-
nents in this framework are the Agent and the Environment. In the initial imple-
mentation, this division was followed using the Python package Gymnasium, which
provides standardized templates for classes and methods to ensure a structured
approach.

For the Environment class, the core methods are step() and reset(). The re-
set() method initializes and cleans the environment at the start of each simulation,
while the step() method defines the environment’s dynamics, determining how it
responds to actions taken by the agent. Additionally, the class includes attributes
like action_space and observation_space, representing the range of possible actions
and observations that the agent can execute and perceive.

In the initial tests, the observation space consisted of the following data:

• The difference between the current value of the RF and the values from the
previous step.

• All the separate coverage values, both in absolute terms and their differences
from the previous step.

• The differences between the last five instruction actions and the previous five.

All these values are either normalized between 0 and 1 or, in the case of the
last instructions, one-hot encoded into Numpy vectors. As for the expected actions
(action space they are displayed in table 3.1.

48

3.3 – Reinforcement Learning agent and environment

Action name Description Number of choices
instr_type The instruction type

(group).
14

dst_reg The destination regis-
ter.

32

src_reg1 The first source regis-
ters.

32

src_reg2 The second source reg-
isters

32

imm_val The immediate value
(group)

5

imm_use Whether the instruc-
tion is intended as
an immediate type or
not.

2

Table 3.1: Action types.

Initially, the actions were one-hot encoded, as the Q-values from the MLPs
were already represented in a standard encoded format for simplicity. In the latest
version, the PPO model outputs actions directly decoded from this one-hot format.
At the beginning of the process, the reward function was a weighted average of
the coverage values, with extra rewards for detecting failures (such as mismatches
between the gold model and the DUT), since bug discovery is a key objective of
the test-bench. Over time, this reward function was enhanced to include rewards
for specific events, resulting in the final one that is summarized in table 3.2.

Lastly, for the state the information found in table 3.3 is provided to the agent,
in the third column the standard Gymnasium data structure used is specified. This
forms the state vector that can be seen in fig. 3.4.

Figure 3.4: Composition of the state vector

In the step() method, instruction generation is the first task, accomplished by

49

3 – Implementation

Type of reward Explanation
Additional reward in case
of reaching predetermined
coverage goals (0.70, 0.71...
and so on.).

To provide additional incen-
tives in case of higher cover-
ages.

For register dependencies
detected between the previ-
ous and current instruction
issued.

Since this might not directly
effect the overall coverage.

No identical instruction in
the last 5.

To try and maximize the in-
struction coverage.

If the content of the regis-
ters used is zero, there is a
negative reward.

Repeated operations using
zero value are less inter-
esting from the verification
standpoint.

The average coverage
is used as a base for
all the previous to be
added/subtracted.

The basic metric that we are
most interested in.

Table 3.2: Reward calculation

invoking the relevant function and passing the action values. The returned instruc-
tion(s) are then inserted into the test_function.S file via another method. During
this process, the current instruction count is updated based on the number of in-
structions returned by the generator. The previous instruction is then updated,
and the list containing the last five instruction types is shifted accordingly.

Once the setup is complete, the actual simulation is initiated using a script that
handles software and RTL compilation, the Spike run, and the RTL simulation while
parsing the coverage values. Exception handling is critical at this stage, particularly
for scenarios where Spike or the simulation does not conclude properly. The Python
sub-process package is used to set timeout values for both processes. If an exception
occurs—whether due to timeout, GCC compilation errors, or a mismatch between
the DUT and Spike—the output is logged in an error file. Depending on the
situation, training is either halted, or the current step is completed, and the done
flag is set.

After the simulation, the Spike log is parsed to extract register file values, which
are normalized between 0 and 1 from their original 32-bit format. Coverage values
are also extracted from the coverage report file, and previous values are updated
after rescaling. At this point, termination conditions for the episode are evaluated.
These include reaching an average coverage value greater than 95%, hitting the

50

3.3 – Reinforcement Learning agent and environment

State component Description Shape (Data type)
program_counter The PC of the core af-

ter the last generated in-
struction.

Box(low=0,
high=1, shape=(1,),
dtype=float)

last_instructions Set of the last 5 instruc-
tion groups

Box(low=0,
high=1, shape=(5,),
dtype=float)

destination_register The destination register
of the last instruction, to
help with the dependen-
cies.

Box(low=0, high=1,
shape=(32,), dtype=int)

registers All the registers content . Box(low=0, high=1,
shape=(32,),
dtype=float)

coverages all the different covareges Box(low=0, high=1,
shape=(25,),
dtype=float)

avg_coverage The average coverage,
the same one we use for
the reward.

Box(low=0,
high=1, shape=(1,),
dtype=float)

Table 3.3: State vector components

maximum instruction count for the episode, or encountering a mismatch between
the DUT and the gold model. Another condition for termination is the execution
of an illegal instruction or memory access. In such cases, the exception handler is
triggered, and no further instructions are executed beyond the illegal one.

Finally, the differences between the previous and current state variable values
are computed and concatenated with the coverage values to form the state vector.
This state vector, along with the reward, the done flag, and additional information
(such as the normalized average coverage for logging), is returned to the agent.

3.3.2 Agent
Custom implementation

The focus is now shifted to the Agent, where the actual learning part of the pro-
cess occurs. This class receives the observation space and action sizes from the
environment and constructs networks with the appropriate input and output sizes.

The initial implementation of the agent was a custom design utilizing a deep
Q-learning approach. A deep neural network, built using the pytorch library in
Python, was employed to predict the Q-values of the potential actions. This MLP

51

3 – Implementation

was structured into a primary larger network and six smaller networks dedicated to
generating the Q-values for the six distinct actions. This was done so to not make
the size of the Q-values space explode.

The various neural networks were implemented using the sequential mode of-
fered by pytorch, facilitating the definition of the interconnected layers and their
activation functions. This structure enabled the writing of the forward method,
which connects the main encoder network to the specialized child networks.

For reference in constructing the agent, an existing implementation was utilized
as an example. This code was a modified version of the implementation described
in the paper Playing Atari with Deep Reinforcement Learning [33], where RL is
applied to learn how to successfully play seven Atari games using screen captures of
the gameplay as input. While the environment in this context is significantly differ-
ent, the general structure of the agent provided a solid foundation. Key components
borrowed from the paper included the optimal action-value function adhering to the
Bellman equation and the loss function, defined as the mean squared error between
the predicted Q-values and the target Q-values.

The agent was trained using the Adam optimizer, and loss was back-propagated
through the network. Managing the combined loss from the six sub-networks during
back-propagation to the main network posed challenges. Ultimately, a custom
LeakyReLU class was defined to scale down the gradients from the sub-networks
by a factor of six, preventing them from overshadowing the main network.

The following snippet illustrates the custom LeakyReLU implementation:

class LeakyReLUCustom(nn.LeakyReLU):
def __init__(self, negative_slope=0.01, inplace=False):

super(LeakyReLUCustom, self).__init__(negative_slope=negative_slope,
inplace=inplace)

def backward(self, grad_output):
return grad_output / 6

Source Code 3.10: LeakyRelu implementation

52

3.3 – Reinforcement Learning agent and environment

And how the loss is calculated:

def compute_loss(model, replay_buffer, batch_size, gamma):
state, action, reward, next_state, done = replay_buffer.sample(batch_size)
state = torch.FloatTensor(np.float32(state)).to(device)
next_state = torch.FloatTensor(np.float32(next_state)).to(device)
action = torch.LongTensor(action).to(device)
reward = torch.FloatTensor(reward).to(device)
done = torch.FloatTensor(done).to(device)

main_output_old, *q_values_old = model(state)
main_output_new, *q_values_new = model(next_state)

losses is a list of losses for each sub-net
losses = []
for i, (q_values_old_sub, q_values_new_sub)
in enumerate(zip(q_values_old, q_values_new)):

sub_action = action[:, i]
q_value_old = q_values_old_sub.gather(1,
sub_action.unsqueeze(1)).squeeze(1)

q_value_new = q_values_new_sub.max(1)[0]
expected_q_value = reward + gamma * q_value_new * (1 - done)
loss = (q_value_old - expected_q_value.detach()).pow(2).mean()
losses.append(loss)

return losses

Source Code 3.11: Loss calculation.

As for the neural networks themselves, the main one was composed of three fully
connected layers expanding the state space, while the sub-networks were composed
of five fully connected layers, gradually reducing the size down to the different
action sizes. Again, from the paper, the idea of the replay buffer was taken. This
is a memory that stores the last N transitions to have a more diverse training set.
The replay buffer was implemented as a deque, and sampling was done randomly.
The replay buffer aimed to break the correlation between the samples to have more
stable training. Moreover, the buffer increases sample efficiency since the same
sample can be used multiple times. In our case, a memory size of 1024 and a batch
size of 32 were used. The epsilon-greedy policy was used to balance the exploration
and exploitation of the agent, with epsilon decreasing over time. During the various
iterations, different activation functions, as well as weight initializations, were tried,
resulting at the end with the use of LeakyRelu since the networks were growing in

53

3 – Implementation

depth and so the problem of the vanishing gradients appeared, and the Kaiming
initialization was used for the weights. In the table 6.1 the final parameters tried
are summarized.

The last addition to the custom agent was the Prioritized Replay buffer, already
coverd in the background chapter, Unfortunately, this did not improve the training
and was discarded, highlighting the probability in the construction of the agent
estimator itself.

3.3.3 Stable Baseline 3 implementation
The initial custom implementation of the agent did not yield meaningful improve-
ments in coverage when compared to random generation. This lack of success can be
attributed to insufficient experience in tuning a complex agent capable of managing
a vast observation space and, particularly, a large action space. Consequently, the
decision was made to transition to a well-established library like Stable Baselines
3.

While the overall flow, as illustrated in Figure fig. 3.5, remains the same, the
implementation of the agent undergoes significant changes. The library offers a
range of agent implementations, with the primary requirement being adherence to
the Gymnasium standard interface for the environment. This condition imposes
that the agent can call the following functions within the environment:

Method Description
init(self, arg1, arg2, ...) Defines the action_space and observation

space as gym.spaces objects.
step(self, action) Used for advancing the episode step by

step, has to return: observation, reward,
terminated, truncated, info.

reset(self, seed=None,
options=None)

Used to reset the environment at the be-
ginning of the episode, has to return ob-
servation, info.

render(self) used only in the case of visual representa-
tion of the environment.

close(self) closes the environment at the end of the
episode.

Table 3.4: Custom agent parameters.

With an environment that adheres to the required methods, the custom envi-
ronment can be instantiated and wrapped in a Monitor object. This enables the
logging and recording of rewards and other metrics using Weights and Biases (WB)

54

3.4 – Instruction Generation and Test Function

for tracking purposes. The code for environment instantiation is as follows:

def make_env(log_dir):
env = core_sim_env(instr_number = config["instr_number"],
step_number = config["step_number"])

env = Monitor(env, log_dir)
return env

Source Code 3.12: Environment instantiation in the agent.

The PPO model, in combination with the MultiInputPolicy, is used to handle
the multiple input spaces. This is necessary due to the observation space comprising
both one-hot encoded and float values.

Stable Baselines provides custom callbacks, which are passed to the training
or evaluation function. These callbacks serve multiple purposes, such as saving
the model and logging the training data via the Weights and Biases API, which
provides tracking and visualization for machine learning projects. An example of
custom callbacks for saving the model is included in the appendix listing 6.1. The
info data structure contains the additional information returned by the environment
at each step.

3.4 Instruction Generation and Test Function
A fundamental part of the environment flow is translating agent actions into actual
instructions to append to the test function program. To accomplish this, existing
instruction generators were initially explored, specifically Force RISC-V [17]. This
generator features a C++ back-end for instruction generation and a Python front-
end, where the user configures the generation process. The Python file requires
the user to define the sequence(s) class with the appropriate generation method.
Instructions are predefined based on the architecture and can be retrieved through
predefined sets or custom dictionaries. These dictionaries contain the instructions
and their associated weights, which determine the probability of selecting the next
instruction during generation. The dictionaries themselves can be placed into a
higher-level map, introducing an additional layer of weighting to select different
instruction subgroups. The main sequence can consist of multiple sub-sequences,
which can be either user-defined or sourced from a pre-defined library. This de-
sign allows for flexible switching between different generator behaviors during the
program generation process.

Ultimately, a custom Python script was developed to handle this process be-
cause of the complete control required over the generated instructions. The

55

3 – Implementation

script receives six actions from the agent: instruction type, rd, rs1, rs2, imme-
diate, choose_immediate, and number_instructions. The core of the script in-
volves a switch-case structure that organizes the instructions into groups corre-
sponding to the first action provided. These groups are not a one-to-one match
with standard RISC-V instruction sets but represent simplified and sometimes
overlapping categories. As of the latest version, the groups include: LOGIC,
SHIFT_LEFT, SHIFT_RIGHT, ADD_SUB, MUL, DIV, REM, LOAD, STORE,
JUMP, BRANCH_EQ_NE, BRANCH_LT, BRANCH_GE, LOAD_IMM, and
ILLEGAL_INSTR. These groups can be adjusted based on how granular the con-
trol needs to be. Bias can be introduced towards specific instructions by including
them in multiple groups (e.g., LOAD_IMM is also part of the ALU group as ADDI).

Instruction generation begins with a random selection from the chosen group,
followed by filling in the fields with the provided action values. Different instruction
types come with specific constraints, such as register limits or immediate ranges,
which are managed through specialized classes for each RISC-V instruction group.
Each class ensures that the generated instruction adheres to the constraints based
on the input values. For example, I-type instructions are restricted to a specific
immediate range. The agent does not provide the exact value for the immediate,
but instead indicates a general group (e.g., large, small, or zero), which must be
accounted for during generation.

For Jump, Branch, and Load/Store instructions, additional considerations are
made to ensure valid memory access or address jumping. For these instructions,
auxiliary instructions are generated to preload valid values into the relevant reg-
isters. Constraints are then applied to the requested action to ensure that the
preloaded registers and immediate values are used.

For the Jump instruction, a dynamically generated label is needed, along with
a small random number of NOP instructions between the jump and the label. The
same process applies to Branch instructions, which behave similarly to Jump but
do not save the return address in the link register. For Jump and Link instructions,
a single dummy target can be fixed in the test code, as the return address is saved
in the link register, allowing the flow to resume from there.

The source code in listing 6.2 demonstrates this behavior for Jump, Branch, and
memory instructions.

If the agent requests an illegal instruction, the generator returns a .word
0x00000000 instruction. This instruction will be accepted by the compiler but
will cause an illegal instruction fault during execution. To generate a misaligned
instruction, a more complex sequence is required. This involves creating a code
area misaligned to 2 bytes (or in other words, aligned to 1 byte), followed by a
jump to this misaligned region. The instruction set returned includes the necessary
compiler directives for alignment and the jump to the misaligned area.

56

3.5 – Complete simulation environment

3.5 Complete simulation environment
To ensure the correct operation of the simulation and the RL flow, a combination
of Python scripts, Makefiles, and core files are employed. The RL environment
directly interacts with a Python script that resembles a Makefile in structure, or-
chestrating the RTL compilation, Software (SW) compilation, and the Spike and
RTL simulations. Since the primary difference between runs is the software loaded
into memory, the RL environment utilizes functions from the instruction generator
(as described in the previous section) to generate valid instructions from the agent.
These instructions are then inserted into the test program using another script,
placing them before the register dumping function and after the last inserted in-
struction. In the case of environment resets, instructions are inserted in a way that
cleans the environment.

The coverage results provided by Verilator are parsed within the aforementioned
Python Makefile using a series of scripts that also combine the functional coverage
results from the UVM test bench. Additionally, another script is used to parse
the Spike log, extracting only the register contents representing the core state.
Simultaneously, memory writes are isolated for the UVM test bench to verify the
correctness of the simulation.

The Python Makefile, through the subprocess library, handles the output parsing
from various commands, allowing the detection of errors or timeouts that may occur
during simulation. Custom exceptions, defined in a separate file, manage error
reporting. If an exception occurs—whether due to a timeout, an error in the SW
or RTL compilation, or a core misbehavior compared to the reference model during
the simulation—the exception, the last instruction appended, and the stdout/stderr
are logged into a file and reported in the terminal.

In fig. 3.5 the overall division of the scripts is depicted, following the numbering
on the scheme we have:

1. Agent and Environment interaction, already discussed via the step function.

2. The call to the simulation handler inside the step function of the Environment.

3. The exception system, all the exceptions raised are passed up the level until
they reach this point.

4. Again the environment calling the instruction generator and inserter to append
the new instruction to the test code.

5. The auto-generated code that already includes the dump register function and
the CRT0.

6. The code can be compiled creating the vmem and elf files for Spike and the
actual simulation.

57

3 – Implementation

7. Spike simulation occurs guided by the simulation handler.

8. RTL simulation is handled via Fusesoc.

9. Coverage reports from the test-bench and core status from Spike are parsed
and fed back to the environment.

Figure 3.5: Complete program flow.

58

Chapter 4

Results

4.1 RISCV test bench
The first result to analyze is the contribution of the test bench itself. As discussed
in the introduction, building a verification framework is inherently complex, and
doing so in Python with the limited online resources available for pyUVM added an
extra layer of difficulty. However, the results have been successful. The current test
bench allows for writing code in either C or assembly, compiling it, and generating
the necessary .vmem files to load into the test bench memory emulators. From
there, the test bench runs the tests, comparing the results with those from the
Spike simulation. This flow fully supports C programs, including those that allocate
constants and other variables in data memory.

157.00ns INFO [uvm_test_top.core_env.core_fsm_coverage]: Coverage percentage: 17.14%
157.00ns INFO [uvm_test_top.core_env.core_func_coverage]: R type coverage: 0%
157.00ns INFO [uvm_test_top.core_env.core_func_coverage]: I type coverage: 22%
157.00ns INFO [uvm_test_top.core_env.core_func_coverage]: RM type coverage: 0%
157.00ns INFO [uvm_test_top.core_env.core_func_coverage]: S type coverage: 0%
157.00ns INFO [uvm_test_top.core_env.core_func_coverage]: B type coverage: 0%
157.00ns INFO [uvm_test_top.core_env.core_func_coverage]: U type coverage: 100%
157.00ns INFO [uvm_test_top.core_env.core_func_coverage]: J type coverage: 50%
157.00ns INFO [uvm_test_top.core_env.core_func_coverage]: C type coverage: 29%
157.00ns INFO [uvm_test_top.core_env.core_func_coverage]: Dependency coverage: 42%
157.00ns INFO cocotb.regression core_test passed
157.00ns INFO cocotb.regression
**
** TEST STATUS SIM TIME (ns) REAL TIME (s) RATIO (ns/s) **
**
** core_test.core_test PASS 157.00 0.10 1566.08 **
**
** TESTS=1 PASS=1 FAIL=0 SKIP=0 157.00 0.31 510.54 **
**

Source Code 4.1: PyUVM output.

In listing 4.1 the pyUVM test bench generates an output similar to a standard

59

4 – Results

System Verilog implementation, providing comparable information even though it
is using the python logging system and not the UVM reporting one. The coverage
class reports results through the reporting system, and the outcomes are verified
against the predictor (Spike), with the passing of the test asserted. The pyUVM
library allowed for a more efficient writing process of the test bench core compared
to the verbose nature of System Verilog, while still maintaining the UVM infras-
tructure. Although simplified in some aspects, as discussed in the background and
implementation chapters, it remains effective. On the simulation side, compared
to the traditional closed-source approach (e.g., QuestaSim), a notable speed-up
was observed in simulation iterations after the initial compilation of the Verilog
files, thanks to Verilator. This enhancement was crucial for integrating the RL
environment, which demands thousands of simulation restarts during training. Ad-
ditionally, the reporting and scripting infrastructure built around the test bench
efficiently logs exceptions and tracks the status of the RL agent model during re-
peated simulation cycles.

4.2 Reinforcement learning training

4.2.1 First custom agent approach

As discussed in the RL implementation chapter, the initial custom agent approach
failed to demonstrate any consistent improvement in the reward, and more critically,
the neural network weights either exploded or remained constant. This behavior
indicates a fundamental flaw in the implementation or the approach to the problem
itself. In fig. 4.1, the training of the main neural network diverges rather than
converging to smaller values, which is typical in a correct learning process for a
NN. The intensity of the blue color is directly proportional to the number of
weight values found in that range, and as it can be seen as the number of episodes
increases, the number values diverge. A similar pattern is observed in the child
MLPs and their biases, highlighting a significant issue with the training process.
This divergence likely stems from a combination of improper weight initialization,
an excessively high learning rate, insufficient regularization, or even an incorrect
problem formulation.

60

4.2 – Reinforcement learning training

Figure 4.1: Main MLP weights.

The result of this faulty learning can be seen in the reward (fig. 4.2) that comes
from the environment, not increasing but moving randomly during the episodes.

Figure 4.2: Reward of the custom agent.

4.2.2 Stable baseline 3 approach
We now move to the SB3 implementation of the agent,

61

4 – Results

Figure 4.3: Training reward.

in fig. 4.3 the zoom-in of the first 1000 episodes (WB mistakenly defines them as
"steps") of training of the RL neural network for a 50 instruction code generation
is shown. As it can be seen there is a growth of the average reward over the course
of the episodes. Weights&dBiases provides other metrics such as the explained
variance, measured as:

1 − [V ar]([empirical_return] − [predicted_value])
[V ar]([empirical_return])

that shows how well the prediction of the model explains the variance of the actual
data fig. 4.4, a value of 1 is the best possible result.

62

4.2 – Reinforcement learning training

Figure 4.4: Explained variance over episodes.

All the above point to a correct training of the NN on which the agent is based,
which in turn results in an increasing coverage as it is going to be discussed in the
next section. A more common metric that can be observed is the entropy loss of
the PPO in the network, fig. 4.5, this is going towards lower (absolute) values as
the training progresses as opposed to the loss function in the custom agent where
it would fluctuate randomly.

Figure 4.5: Entropy loss over episodes.

63

4 – Results

4.3 Coverage results
Now that it has been confirmed that the underlying NN is learning during train-
ing, it is necessary to compare the results to determine if there was an actual
improvement in the coverage of the core. The obvious baseline for comparison is
the instruction generator that was developed, used in a completely random man-
ner, i.e., simply requesting random instruction/sets of instructions up to the same
amount requested by the RL algorithm.

In the following table, both the average value of 20 different randomly generated
codes and the maximum value are shown to display both a best-case scenario,
where the random generation chooses a diverse set of instructions and registers,
and a mean case, which can be expected when running the random instruction
generator a single time. For the mean, the standard deviation is also reported,
providing an idea of how much the coverage changes from one random run to the
next.

In this first table, only the average coverage value between all the different
functional and code coverages is considered. A deeper analysis of the individual
coverages will follow.

of Agent
actions.

Avg. coverage
of random ap-
proach

Std. Dev
of random ap-
proach

Best cov.
of random
approach

RL result af-
ter training

50 65.62% 1.46 68.53% 69.49%
100 70.00% 0.70 71.64% 74.24%
10000 (1
run)

— — 74.42% —

Table 4.1: Average coverage results.

The number of actions corresponds to the number of steps in one episode, and
one action may generate more than one instruction due to jump, branch, and mem-
ory actions, which consist of multiple instructions, as explained in the instruction
generator section. For context, requesting 10,000 actions (resulting in 18,000 in-
structions) from the instruction generator produced coverage almost identical to
that of the RL method with just 100 actions. The number reported is referred to
a single run since the large number of requested instructions smoothed the results.

Another interesting metric is the progression of coverage as new instructions are
appended to the test program in both the random and RL cases. This demonstrates
how the random approach, after reaching around 70% coverage, almost plateaus
taking a large number of instruction (as mentioned in the case of the 10000 requests)
to grow near the RL result. Since randomly selecting instructions that specifically
target uncovered cases becomes more difficult, further improvements in coverage

64

4.3 – Coverage results

rely solely on chance, as expected from a random generation method.

Figure 4.6: Coverage progression in the two cases.

The analysis of individual coverages presented in table 4.2 (specifically for the
best RL result) reveals that even with the best-performing generated software some
coverage values remain relatively low. Starting with the coverage metrics that
exhibit higher values, functional coverage is predominantly influenced by the agent’s
ability to request instructions, as its coverage values directly reflect the instruction
type. In contrast, register dependencies present a more significant challenge, as the
algorithm must recognize that subsequent instructions using the same destination
and source registers contribute to an increase in this coverage metric. The situation
is further complicated for compressed-type instructions, as the ability to compress
an instruction by the compiler depends on its specific construction (e.g., registers,
immediate values), leading to lower coverage.

In terms of FSM coverage, the issue arises because the status of the core remains
unchanged after a reset and the initiation of instruction fetching; since all instruc-
tions are valid, there is no way for the core to transition out of the "DECODE"
state. When examining line coverage, the low values primarily result from code
not executed by the current instruction set configuration (IMC) and previously
mentioned cases not covered, such as those in state machine code. A significant
portion of the total lines of code is dedicated to managing exceptions and corner
cases that typically do not appear in normal, valid code. Functional coverage can

65

4 – Results

Coverage Name Cov Value
ALU line coverage 40.00%
Compressed decoder line coverage 45.87%
Controller line coverage 36.80%
Core line coverage 83.10%
Counter line coverage 77.78%
Control status registers line coverage 35.34%
CSR handling line coverage 80.00%
Decoder line coverage 51.81%
Fetch FIFO line coverage 100.00%
ID stage line coverage 85.29%
IF stage line coverage 80.49%
Load store unit line coverage 42.00%
Multiplier/divider line coverage 97.30%
Prefetch buffer line coverage 95.24%
Register file line coverage 100.00%
FSM coverage of the controller unit 17.14%
R type functional coverage 90.00%
I type functional coverage 88.89%
RM type functional coverage 100.00%
S type functional coverage 100.00%
B type functional coverage 100.00%
U type functional coverage 100.00%
J type functional coverage 100.00%
C type functional coverage 37.50%
Register dependencies functional cov. 71.43%

Table 4.2: Coverage table with respective values

achieve high coverage in simpler modules or those performing specific operations,
such as the multiplier module.

Attention now turns to the actual assembly code generated by the algorithm.

..
LA x8, _stack_start
LB x12, 4(x8)
BGE x8, x2, target_branch67
target_branch67:
XORI x19, x8, -676
BGEU x8, x3, target_branch70
ADDI x0, x0, 0

ADDI x0, x0, 0
target_branch70:
LA x8, _stack_start
SB x8, 4(x8)
LA x8, _stack_start
LW x23, 4(x8)
LA x8, _stack_start
SH x21, 4(x8)

66

4.3 – Coverage results

REM x12, x8, x8
LA x8, _stack_start
SH x8, 4(x8)
LA x8, _stack_start
SW x3, 4(x8)
REMU x3, x26, x2
BLT x8, x5, target_branch86
ADDI x0, x0, 0
ADDI x0, x0, 0
ADDI x0, x0, 0
ADDI x0, x0, 0

target_branch86:
BLT x8, x2, target_branch92
ADDI x0, x0, 0
target_branch92:
LA x8, _stack_start
SH x3, 4(x8)
SRAI x3, x8, 24
LA x8, _stack_start
SH x3, 4(x8)
BEQ x8, x2, target_branch100
...

Source Code 4.2: ASM automatically generated code.

As it is apparent from the previous Assembly (ASM) code generated the RL
agent has effectively learned to have a very differentiated set of instructions and,
thanks to the custom rewards, a number of register dependencies are present too.
An example of how the instruction generator handles branches and jumps can be
seen, the addi x0,x0,0 instructions inserted are the nop instructions used to ran-
domly offset the destination from the jump branch or jump instruction. Moreover,
the dynamically generated labels for the branches are present.

67

68

Chapter 5

Conclusions and future work

The Python test bench for the RISC-V architecture has been a successful imple-
mentation. Python demonstrated itself as a viable alternative to System Verilog
while still keeping the UVM standard, offering a more streamlined coding experi-
ence and a range of features that prove its flexibility as a programming language.
Furthermore, the structure of the Test-Bench (TB) enabled the testing of the core
using only the standard interface provided, without necessitating direct engagement
with the source RTL (aside from the FSM coverage). During the development of
the test bench, a collateral benefit was the exploration of automation in the com-
pilation and simulation processes, which pointed out interesting edge cases when
using Fusesoc in conjunction with PyUVM and Cocotb.

In the context of Reinforcement Learning, a modest improvement in code qual-
ity was observed such as the 4.2% higher coverage for the same number of requests
and the fact that with those 100 requests the RL generated code is able to match
the very long (10000 requests) case. The most significant achievement was the
establishment of an integrated environment and simulation workflow capable of ex-
ecuting requested actions, generating valid instructions, simulating their execution,
and verifying the correctness of results. This process also included the collection of
necessary information to inform the RL environment and provide relevant core-state
data to the agent. This accomplishment required extensive scripting and experi-
mentation and was aided by the addition of a reporting system for any exception
in the flow.

However, certain challenges were encountered during the project. One major
issue was the size of the state space; even when restricting the analysis to a subset
of instructions, the potential combinations of instructions, registers, and immediate
values expanded dramatically, complicating the training process. Additionally, to
achieve comprehensive coverage of the RTL code, it would be essential to incor-
porate exceptions and interrupts into the generated instructions. This raises the
question of how to manage episodes that would inevitably be truncated as a result
of such inclusions. A potential solution could involve generating distinct sections

69

5 – Conclusions and future work

of code separately, ensuring that those likely to trigger exceptions are placed at
the end of the test program. This would facilitate the normal execution of other
instructions before encountering the exceptions.

The reward function plays a crucial role in any RL problem and requires careful
calibration to highlight specific aspects of the generated code. It was observed
that additions to the reward function, which incorporated additional bonuses or
penalties not directly related to the core coverage, do not necessarily correlate with
improvements in coverage metrics so need to be chosen with care depending on what
aspects of the core one is interested in testing more. The training was accelerated
utilizing a Graphics Processing Unit (GPU); however, further acceleration could
be achieved through the parallelization of multiple training sessions initialized with
different random seeds.

The work conducted establishes a solid foundation for future research, having
already addressed several implementation strategies that demonstrate a more effi-
cient approach. The fully open-source nature of the framework offers a performant
and versatile basis for exploring various ML methodologies. This flexibility will
facilitate continued advancements in the field, allowing for the investigation of ad-
ditional techniques and innovations.

70

Chapter 6

Appendix: Code

class save_coverages_values(BaseCallback):
def __init__(self, verbose=1):
super(save_coverages_values, self).__init__(verbose)
clean the file
with open("coverages.txt", "w") as f:
f.write("")
def _on_step(self) -> bool:
if self.locals['dones'][0]:
info = self.locals['infos'][0]
with open("coverages.txt", "a") as f:
f.write(f"Coverages at step {self.num_timesteps}:")
f.write(f"{info['coverages']}\n")
print(f"Savings coverages at step {self.num_timesteps}")

return True

Source Code 6.1: Example of custom callback for stable baseline

...
elif instruction_type == STORE:
return_instrs = []
rs1 = generate_rd(rs1_act)
if rs1 == 0:
rs1 = 1
la_instr = f"LA x{rs1}, _stack_start"
return_instrs.append(la_instr)
s_instr = random.choice(list(STORE_bin))

71

6 – Appendix: Code

s_instr = S_type_instruction(instr=s_instr, rd_act = rd_act,
rs1_act=rs1, imm_act=imm_act, force_imm=4)

return_instrs.append(s_instr)
return return_instrs
elif instruction_type == JUMP:
instr = random.choice(list(J_type_bin))
if instr == 'JAL' and rd_act == 0:
return_instrs = []
jal_instr = J_type_instruction(instr, rd_act, rs1_act, imm_act)
return_instrs.append(jal_instr)
for i in range(0, random.randint(0, 8)):
nop_instr = I_type_instruction('ADDI', 0, 0, 0, None)
return_instrs.append(nop_instr)
return_instrs.append("target:")
return return_instrs
elif instr == 'JAL' and rd_act != 0:
jal_instr = J_type_instruction(instr, 1, rs1_act, 0)
return jal_instr
elif instr == 'JALR':
return_instrs = []
la = "LA x2, target_jal"
return_instrs.append(la)
jalr_instr = J_type_instruction(instr, 1, 2, 0)
return_instrs.append(jalr_instr)
return return_instrs
elif instruction_type == BRANCH_EQ_NE:
return_instrs = []
instr = random.choice(list(BRANCH_EQ_NE_bin))
b_instr = B_type_instruction(instr, rs1_act, rs2_act, instr_count)
return_instrs.append(b_instr)
for i in range(0, random.randint(0, 4)):
nop_instr = I_type_instruction('ADDI', 0, 0, 0, None)
return_instrs.append(nop_instr)
return_instrs.append(f"target_branch{instr_count}:")
return return_instrs

Source Code 6.2: Section of the instruction generator source code

class core_driver(uvm_driver):
def __init__(self, name, parent):

72

6 – Appendix: Code

super().__init__(name, parent)

def build_phase(self):
self.transport_data = uvm_blocking_transport_port("transport_data", self)
self.transport_instr = uvm_blocking_transport_port("transport_instr", self)
self.vif = core_interface()

async def start_of_simulation_phase(self):
self.vif.dut.rst_ni.value = 0
await cocotb.start_soon(self.vif.reset())
await self.vif.reset()

async def run_phase(self):
await self.start_of_simulation_phase()
cocotb.start_soon(self.drive_data())
cocotb.start_soon(self.drive_instr())
await self.drive_data()
await self.drive_instr()

async def drive_data(self):
await self.vif.wait_clock(1)
while True:
await self.vif.write_data_interface(data_rvalid=0, data_rdata=None,
data_gnt=1)
if await self.vif.read_data_req():
data_req = core_data_item("data_req")
data_req.data_addr, data_req.data_we, data_req.data_wdata,
data_req.data_be, _, _ = await self.vif.read_data_interface()
data_resp = await self.transport_data.transport(data_req)
if data_req.data_we.value == 0:
await self.vif.write_data_interface(data_rvalid=1,
data_rdata=data_resp.data_rdata, data_gnt=1)
else:
await self.vif.write_data_interface(data_rvalid=1,
data_rdata=0, data_gnt=1)
else:
await self.vif.write_data_interface(data_rvalid=0,
data_rdata=None, data_gnt=None)

await self.vif.wait_clock(1)

async def drive_instr(self):

73

6 – Appendix: Code

while True:
await self.vif.write_instr_interface(fetch_enable=1,
instr_gnt=1, instr_rvalid=0, instr_rdata=None)
if await self.vif.read_instr_req():
await self.vif.write_instr_interface(fetch_enable=1,
instr_gnt=1, instr_rvalid=1, instr_rdata=0)
instr_req = core_instr_item("instr_req")
instr_resp = core_instr_item("instr_resp")
instr_req.instr_addr, _, _ = await self.vif.read_instr_interface()
instr_resp = await self.transport_instr.transport(instr_req)
await self.vif.write_instr_interface(fetch_enable=1,
instr_gnt=1, instr_rvalid=1, instr_rdata=instr_resp.instr_rdata)
else:
await self.vif.write_instr_interface(fetch_enable=1,
instr_gnt=1, instr_rvalid=0, instr_rdata=None)
await self.vif.wait_clock(1)

Source Code 6.3: Source for the driver class.

74

6 – Appendix: Code

Parameter Description
EPISODES = 1500 Number of episodes that compose the

training process.
BATCH_SIZE = 32 Number of samples taken from the replay

buffer at each iteration.
GAMMA = 0.99 The factor that determines how much fu-

ture rewards are taken into account.
EPS_START = 0.99 Starting value of epsilon, the factor that

determines the exploration-exploitation
trade-off.

EPS_END = 0.01 Minimum value that epsilon can reach.
The lowest exploration rate achievable.

EPS_DECAY = 15000 Decay factor for epsilon, a higher value
means slower decay.

INITIAL_MEMORY = 40 Minimum sample size stored in the replay
buffer before starting to sample and back-
propagate.

MEMORY_SIZE = 1024 Size of the replay buffer.
MLP parameters
MAIN_HIDDEN_SIZE_0 =
256

First hidden layer of the main MLP, ex-
panding the state space.

MAIN_HIDDEN_SIZE_1 =
512

Second hidden layer of the main MLP,
continuing the expansion of the state.

MAIN_OUTPUT_SIZE =
1024

Third and last layer of the main MLP.

SUB_NET_SIZE_0 = 512 Output size of the first layer of the mul-
tiple sub-networks, from here we start de-
creasing the size.

SUB_NET_SIZE_1 = 256 As in the main MLP we are expanding
the size in these layers we are gradually
reducing the size again to the action size.

SUB_NET_SIZE_2 = 128 As before, still reducing the size.
SUB_NET_SIZE_3 = 64 Fourth layer of the sub-networs, still re-

ducing the size.
SUB_NET_SIZE_4 = 32 Last layer before the output one, size al-

most matching the Q-values then needed.
Optimizer parameters
MAIN_LR = 0.03 Learning rate for the optimizer (Adam in

this case). This controls how much the
model’s weights are updated during each
training step. A high learning rate can
lead to faster convergence but may also
cause instability, while a lower learning
rate ensures smoother updates.

Table 6.1: Gymnasium API

75

76

Bibliography

[1] Wikipedia, Transistor count.
URL https://en.wikipedia.org/wiki/Transistor_count

[2]

[3] T. Liu, R. Ho, U. Jonnalagadda, Open source risc-v processor verification
platform (2019).
URL https://riscv.org/wp-content/uploads/2019/12/12.10-16.
10b-Open-Source-Verification-Platform-for-RISC-V-Processors.pdf

[4] Siemens, Uvm cookbook (2018).
URL https://verificationacademy.com/cookbook/
uvm-universal-verification-methodology/

[5] O. Group, Uvm hierarchy (2024).
URL http://vlsi4freshers.com

[6] Cocotb, Cocotb documentation (2024).
URL https://docs.cocotb.org/en/stable/

[7] openhwgroup, Cve2 (2024).
URL https://github.com/openhwgroup/cve2

[8] OpenHW, Obi lsu manual (2024).
URL https://cv32e40p.readthedocs.io/en/latest/load_store_unit.
html#load-store-unit

[9] Siemens, The 2020 wilson research group functional verification study (2021).
URL https://blogs.sw.siemens.com/verificationhorizons/2021/01/
06/part-8-the-2020-wilson-research-group-functional-verification-study/

[10] DesignReuse, Transistor count trends continue to track with moore’s law
(2020).
URL https://www.design-reuse.com/news/47652/
transistor-count-trends.html

77

https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor_count
https://riscv.org/wp-content/uploads/2019/12/12.10-16.10b-Open-Source-Verification-Platform-for-RISC-V-Processors.pdf
https://riscv.org/wp-content/uploads/2019/12/12.10-16.10b-Open-Source-Verification-Platform-for-RISC-V-Processors.pdf
https://riscv.org/wp-content/uploads/2019/12/12.10-16.10b-Open-Source-Verification-Platform-for-RISC-V-Processors.pdf
https://riscv.org/wp-content/uploads/2019/12/12.10-16.10b-Open-Source-Verification-Platform-for-RISC-V-Processors.pdf
https://verificationacademy.com/cookbook/uvm-universal-verification-methodology/
https://verificationacademy.com/cookbook/uvm-universal-verification-methodology/
https://verificationacademy.com/cookbook/uvm-universal-verification-methodology/
http://vlsi4freshers.com
http://vlsi4freshers.com
https://docs.cocotb.org/en/stable/
https://docs.cocotb.org/en/stable/
https://github.com/openhwgroup/cve2
https://github.com/openhwgroup/cve2
https://cv32e40p.readthedocs.io/en/latest/load_store_unit.html#load-store-unit
https://cv32e40p.readthedocs.io/en/latest/load_store_unit.html#load-store-unit
https://cv32e40p.readthedocs.io/en/latest/load_store_unit.html#load-store-unit
https://blogs.sw.siemens.com/verificationhorizons/2021/01/06/part-8-the-2020-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2021/01/06/part-8-the-2020-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2021/01/06/part-8-the-2020-wilson-research-group-functional-verification-study/
https://www.design-reuse.com/news/47652/transistor-count-trends.html
https://www.design-reuse.com/news/47652/transistor-count-trends.html
https://www.design-reuse.com/news/47652/transistor-count-trends.html

BIBLIOGRAPHY

[11] D. Price, Pentium fdiv flaw-lessons learned, IEEE Micro 15 (2) (1995) 86–88.

[12] K. S. Pawar, U. Menon, J. c. k. h. Riedel, Time to market, Integrated Manu-
facturing Systems 5 (1994) 14–22.
URL https://api.semanticscholar.org/CorpusID:110293977

[13] Y. Caspi, Hardware functional verification – present and future (2013).
URL https://research.ibm.com/haifa/conferences/hvc2013/present/
YuvalCaspi_HVC-2013-tutorial.pdf

[14] SemiconductorEngineering, Property specification language (2024).
URL https://semiengineering.com/knowledge_centers/languages/
property-specification-language/

[15] chipverify, System verilog assertions (2024).
URL https://www.chipverify.com/systemverilog/
systemverilog-assertions

[16] S. Qamar, W. H. Butt, M. W. Anwar, F. Azam, M. Q. Khan, A comprehensive
investigation of universal verification methodology (uvm) standard for design
verification, Proceedings of the 2020 9th International Conference on Software
and Computer Applications (2020).
URL https://api.semanticscholar.org/CorpusID:219132594

[17] OpenHWGroup, Open source risc-v processor verification platform (2023).
URL https://github.com/openhwgroup/force-riscv

[18] Imperas, riscvisacov.
URL https://github.com/riscv-verification/riscvISACOV

[19] M. I. Jordan, T. Mitchell, Machine learning: Trends, perspectives, and
prospects, Science 349 (2015) 255 – 260.

[20] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, D. Hassabis, Mastering the game of go
without human knowledge, Nature 550 (7676) (2017) 354–359.
URL https://doi.org/10.1038/nature24270

[21] Synopsys, Enhancing chip verification with ai and machine learning (2022).
URL https://www.synopsys.com/blogs/chip-design/
enhance-chip-verification-with-ai-and-machine-learning.html

[22] S. Konale, N. Rao, C-based predictor for scoreboard in universal verification
methodology, in: 2014 International Conference on Advances in Engineering
& Technology Research (ICAETR - 2014), 2014, pp. 1–5.

78

https://api.semanticscholar.org/CorpusID:110293977
https://api.semanticscholar.org/CorpusID:110293977
https://research.ibm.com/haifa/conferences/hvc2013/present/YuvalCaspi_HVC-2013-tutorial.pdf
https://research.ibm.com/haifa/conferences/hvc2013/present/YuvalCaspi_HVC-2013-tutorial.pdf
https://research.ibm.com/haifa/conferences/hvc2013/present/YuvalCaspi_HVC-2013-tutorial.pdf
https://semiengineering.com/knowledge_centers/languages/property-specification-language/
https://semiengineering.com/knowledge_centers/languages/property-specification-language/
https://semiengineering.com/knowledge_centers/languages/property-specification-language/
https://www.chipverify.com/systemverilog/systemverilog-assertions
https://www.chipverify.com/systemverilog/systemverilog-assertions
https://www.chipverify.com/systemverilog/systemverilog-assertions
https://api.semanticscholar.org/CorpusID:219132594
https://api.semanticscholar.org/CorpusID:219132594
https://api.semanticscholar.org/CorpusID:219132594
https://api.semanticscholar.org/CorpusID:219132594
https://github.com/openhwgroup/force-riscv
https://github.com/openhwgroup/force-riscv
https://github.com/riscv-verification/riscvISACOV
https://github.com/riscv-verification/riscvISACOV
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://www.synopsys.com/blogs/chip-design/enhance-chip-verification-with-ai-and-machine-learning.html
https://www.synopsys.com/blogs/chip-design/enhance-chip-verification-with-ai-and-machine-learning.html
https://www.synopsys.com/blogs/chip-design/enhance-chip-verification-with-ai-and-machine-learning.html

BIBLIOGRAPHY

[23] Spike (2024).
URL https://github.com/riscv-software-src/riscv-isa-sim

[24] E. Ham, Y. Jeon, J. Lim, J.-H. Kim, Verilator-based fast verification method-
ology for ble mac hardware, in: 2023 International Conference on Electronics,
Information, and Communication (ICEIC), 2023, pp. 1–3.

[25] O. Kindgren, Fusesoc.
URL https://fusesoc.readthedocs.io/en/stable/user/overview.html

[26] A. Waterman, Design of the risc-v instruction set architecture, 2016.
URL https://api.semanticscholar.org/CorpusID:63861396

[27] F. Wörgötter, B. Porr, Reinforcement learning, Scholarpedia 3 (2019) 1448.

[28] C. C. White, D. J. White, Markov decision processes, European Journal of
Operational Research 39 (1) (1989) 1–16.
URL https://www.sciencedirect.com/science/article/pii/
0377221789903482

[29] K. Arulkumaran, M. P. Deisenroth, M. Brundage, A. A. Bharath, Deep re-
inforcement learning: A brief survey, IEEE Signal Processing Magazine 34
(2017) 26–38.
URL https://api.semanticscholar.org/CorpusID:4884302

[30] Bio-inspired Neurocomputing, Springer Singapore, 2021.
URL http://dx.doi.org/10.1007/978-981-15-5495-7

[31] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, in: Y. W. Teh, M. Titterington (Eds.), Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics,
Vol. 9 of Proceedings of Machine Learning Research, PMLR, Chia Laguna
Resort, Sardinia, Italy, 2010, pp. 249–256.
URL https://proceedings.mlr.press/v9/glorot10a.html

[32] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification (2015). arXiv:1502.
01852.
URL https://arxiv.org/abs/1502.01852

[33] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
M. Riedmiller, Playing atari with deep reinforcement learning (2013). arXiv:
1312.5602.
URL https://arxiv.org/abs/1312.5602

79

https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://fusesoc.readthedocs.io/en/stable/user/overview.html
https://fusesoc.readthedocs.io/en/stable/user/overview.html
https://api.semanticscholar.org/CorpusID:63861396
https://api.semanticscholar.org/CorpusID:63861396
https://www.sciencedirect.com/science/article/pii/0377221789903482
https://www.sciencedirect.com/science/article/pii/0377221789903482
https://www.sciencedirect.com/science/article/pii/0377221789903482
https://api.semanticscholar.org/CorpusID:4884302
https://api.semanticscholar.org/CorpusID:4884302
https://api.semanticscholar.org/CorpusID:4884302
http://dx.doi.org/10.1007/978-981-15-5495-7
http://dx.doi.org/10.1007/978-981-15-5495-7
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602

BIBLIOGRAPHY

[34] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization (2017).
arXiv:1412.6980.
URL https://arxiv.org/abs/1412.6980

[35] M. M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth-Nelson, C. Blundell, D. Has-
sabis, Reinforcement learning, fast and slow, Trends in Cognitive Sciences 23
(2019) 408–422.
URL https://api.semanticscholar.org/CorpusID:122539846

[36] S. Zhang, R. S. Sutton, A deeper look at experience replay (2018). arXiv:
1712.01275.
URL https://arxiv.org/abs/1712.01275

[37] T. Schaul, J. Quan, I. Antonoglou, D. Silver, Prioritized experience replay
(2016). arXiv:1511.05952.
URL https://arxiv.org/abs/1511.05952

[38] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, N. Dormann, Stable-
baselines3: Reliable reinforcement learning implementations, Journal of Ma-
chine Learning Research 22 (268) (2021) 1–8.
URL http://jmlr.org/papers/v22/20-1364.html

[39] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy
optimization algorithms (2017). arXiv:1707.06347.
URL https://arxiv.org/abs/1707.06347

[40] Transaction level modeling (2024).
URL https://verificationguide.com/uvm/uvm-tlm/

80

https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://api.semanticscholar.org/CorpusID:122539846
https://api.semanticscholar.org/CorpusID:122539846
https://arxiv.org/abs/1712.01275
http://arxiv.org/abs/1712.01275
http://arxiv.org/abs/1712.01275
https://arxiv.org/abs/1712.01275
https://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.05952
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://verificationguide.com/uvm/uvm-tlm/
https://verificationguide.com/uvm/uvm-tlm/

	List of Tables
	List of Figures
	Introduction
	Motivation
	Historical notes on verification
	State of the art for verification
	Beyond UVM

	Historical notes on Machine Learning
	Thesis organization

	Background
	UVM
	UVM motivations
	UVM structure
	UVM Communication
	UVM Phases
	Additional UVM features
	UVM good practices

	Spike and reference model
	Spike

	Open source verification
	Verilator
	Fusesoc, Edalize and the build tools
	Python verification

	RISC-V
	CVE2 core
	Instruction extensions

	Reinforcement learning
	Deep Reinforcement Learning
	Stable baseline 3 and Proximal Policy Optimization

	Implementation
	UVM Test-bench
	UVM Environment
	Software, Compilation, and Handling
	Spike ISS

	Coverage and metrics collection
	First, closed source, approach
	Final open source based coverage collection

	Reinforcement Learning agent and environment
	Environment
	Agent
	Stable Baseline 3 implementation

	Instruction Generation and Test Function
	Complete simulation environment

	Results
	RISCV test bench
	Reinforcement learning training
	First custom agent approach
	Stable baseline 3 approach

	Coverage results

	Conclusions and future work
	Appendix: Code

