POLITECNICO DI TORINO

Master’s Degree in Computer Engineering - Embedded
Systems

Master’s Degree Thesis

Scalar Cryptography Extensions for
STxP5

Supervisors Candidate

Prof. Guido MASERA Marco CHIARLE

October 2024

Abstract

The fast evolution of digital technology has brought in an era where
security is not negligible, especially in the world of the embedded sys-
tems. As Cyber threats are always more sophisticated, the demand for
robust cryptography solutions is increasingly high and the implementa-
tion in software is not fast enough for the embedded systems world. In
this context, the RISC-V instruction set architecture (ISA), with its
open-source form and modular design, presents a fertile ground that it is
perfect for the future development. RISC-V has started in 2010, under
the leadership of Professor David Patterson. RISC-V ISA is completely
free and open-source, and It is based on the Reduced Instruction Set
Computer (RISC) principles. This thesis is focused on the integration
of cryptography extensions within the RISC-V ISA, with the dual
objectives of increasing the security capabilities of embedded systems
and also enhancing the perfomance compared to the simple software
implementations of the algorithms. The development and evaluation of
specialized cryptography extensions for the RISC-V ISA take center
stage, considering the crucial balance between power consumption, area,
and performance. Indeed the thesis presents a comprehensive analysis
of the design, implementation, and optimization of the cryptography
extensions for the RISC-V processor, with a focus on the extended
ISA. Utilizing tools provided by STMicroelectronics, the thesis goes
through the entire process from specification, code writing, analysis
and synthesis to testing, ensuring a comprehensive approach to the
development of cryptography extensions. The outcome of this research
goes over the academic theory, offering a contribution to the field of
embedded system security. The results underline the importance of
the extensions that bring an improvement on the execution speed of
bx for AES algorithm and 2x for SHA-256 and an improvement on
code size of 0.5x for both the algorithms. Thanks to these results, this
work is a base for future STMicroelectronics projects on RISC-V, de-
livering a complete development for secure, efficient, and cost-effective
cryptography implementations within the RISC-V ecosystem.

Table of Contents

List of Tables
List of Figures

1 Introduction
1.1 Context
1.2 Objectives
1.3 Organization

2 Background
2.1 RISC-V . . .
2.1.1 Instruction Set Architecture
2.1.2 Imnstruction Format
2.1.3 RV32I Base Integer Instructions
2.2 Cryptography,
2.2.1 Importance of Cryptography Extensions

3 STxP5 Processor
3.1 STxPbcore
3.1.1 Core Registers.
3.1.2 Control and Status Registers
3.1.3 Pipeline

4 Tools and Workflow
4.1 ASIP Tool
4.1.1 nML and PDG

VII

VIII

=~ W R =

= 00 =3 Ut Ut Ot

15
16
17
17
18

4.2 Workflow

5 Scalar Cryptography Extension
5.1 Specifications L.

5.2

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5

Zbkb - Cryptography Bitmanip instructions
Zbkx - Crossbar Permutation instructions

Zknh - NIST Suite: Hash Function
Zkne - NIST Suite: AES Encryption
Zknd - NIST Suite: AES Decryption

Instruction Hardware Implementation

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
5.2.11
0.2.12
5.2.13
5.2.14
5.2.15
5.2.16
5.2.17
5.2.18
5.2.19
5.2.20
5.2.21
5.2.22
5.2.23
5.2.24

Brevl® . . .

Xperm4
Sha256sigl
Sha2b56sigl
Sha256sumO
Sha2b6suml

Shabl12sigbh
Shabl12sigOl
Shabl2siglh
Shabl2sigll
Shab12sumOr
Shab12sumlr
Shabl2
aesd2esi
aesd2esmi
aesd2dsi ... L.
aesd2dsmi

6 Other Processor Crypto Extension 67

6.1 Intel Processors 67
6.2 Arm Processors 69
7 Simulation and Formal Verification 72
8 Synthesis 78
81 Area Analysis 79
9 Benchmarks 85
9.1 AES algorithm 85
9.2 SHA-256 algorithm 91
10 Conclusions and Future Works 96
A nML & pdg implementation 98
B S-Box 102
C SHA2 103
D AES 105
Bibliography 110

VI

List of Tables

2.1 RISC-V ISA First Version 6
2.2 RISC-V International Ratified Extensions 14
3.1 STxP5 Register File X 22
3.2 Control and Status Registers(CSRs) list 23
5.1 Boyar-Peralta algebraic gate counts Forward Sbox [24] 58
5.2 Boyar-Peralta algebraic gate counts Inverse Sbox [24] . 62
71 CAD Tools 7
9.1 Comparison of SW and HW Implementations for AES-

128 o 89
9.2 Comparison of SW and HW Implementations for SHA-256 94
10.1 Results 97

VII

List of Figures

2.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

RISC-V Instruction Formats 7
STxP5 processor 15
Bytes ordering in memory 16
Simplified STxP5 Datapath 24
Flexibility and Performance Tradeoff 27
ASIP Designer Flow 28
STxP5 Organization Project 30
STxP5 Flow of Design 31
Scalar Cryptography Groups [23] 32
Brev8 Encoding [7] 33
Pack Encoding [7] 33
Packh Encoding [7] 33
Zip Encoding [7] 34
Unzip Encoding [7] 34
Xperm8 Encoding [7]o 34
Xperm4 Encoding [7] 34
Sha256sig) Encoding [7] 35
Sha256sigl Encoding [7] 35
Sha256sum0 Encoding [7] 36
Sha256suml Encoding [7] 36
Shab12sigOh Encoding [7]. 37
Shab512sig0l Encoding [7] 37
Shab12siglh Encoding [7] 38
Shab12sigll Encoding [7] 38

5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
0.35
0.36
5.37
0.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45
5.46
5.47
5.48
5.49
5.50
5.51

Sha512sumOr Encoding [7] 38

Shab12sumlr Encoding [7] 38
AES Encryption [24]o o000 39
Aes32esi Encoding [7]o o000 40
Aes32esmi Encoding [7]o 40
Aes32dsi Encoding [7].o 41
Aes32dsmi Encoding [7]o 41
Brev8 implementation 41
Pack implementation 42
Packh implementation 42
Zip implementation 42
Unzip implementation 43
Xperm8 implementation 43
Xperm4 implementation 44
Sha256sig0 implementation 45
Sha256sigl implementation 45
Sha256sum0 implementation 46
Sha256suml implementation A7
Sha256 implementation 48
Shab12sigOh implementation 49
Shab12sig0l implementation 50
Shab12siglh implementation 51
Shab12sigll implementation 52
Shab12sumOr implementation 53
Shabl2sumlr implementation 54
Shab12 implementation 55
aes32esi implementation 56
Forward AES Affine Transformation. 57
aes32esmi implementation 58
Forward MixColumns Matrix Representation 59
Forward MixColumns Operations 60
aes32dsi implementation 61
Inverse AES Affine Transformation 62
aes32dsmi implementation 63
Inverse MixColumns Matrix Representation 64

IX

5.52 Inverse MixColumns Operations
5.53 aes32 implementation L.

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4
8.5

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

C.1

D.1
D.2
D.3
D.4

Test Flow
SimVision Debug Environment
ChessDE’s Graphical Debugger
Functional Coverage Analysis
RTL Coverage Analysis

Synthesis Flow,
Zbkb Area Analysis L.
Zbkx Area Analysis
Zknh Area Analysis
Zkne+Z7Zknd Area Analysis

Encryption Function
Decryption Function, ..
Macros for AES algorithm
Assembly code of SW implementation
Assembly code of HW implementation
SHA-256 main function
Macros for SHA algorithm
Assembly of a function in SHA-256 Algorithm (HW) .
Assembly of a function in SHA-256 Algorithm (SW) . .

SHA-256 and SHA-512 structure [30]

Key Schedule for AES-128
Fwd Sbox - Precalculated SubByte [31]

Inv Sbox - Precalculated SubByte Inversion [31]
Precalculated T-Table

Chapter 1

Introduction

1.1 Context

The evolution of computer architecture has been characterized by dif-
ferent historical developments. Initially, the computing landscape was
dominated by the x86 architecture, developed by Intel, a complex in-
struction set computing (CISC) design. Another important CISC design
was the 68000 Motorola processor [1]. In any case the x86 architecture
dominated the market area for decades. Intel’s x86 architecture, char-
acterized by its variable-length instructions and multi-cycle operations,
was well-suited to the performance demands of desktops and servers.
Subsequently, a new chapter began with the ARM architecture that
follows the Reduced Instruction Set Computing (RISC) architectures,
characterized by a lighter design due to reduced, fixed instruction and
simplified, single instruction functionality, focusing on low-power de-
vices. Since 1980s a debate has begun between RISC and CISC, trying
to decide which of the two was the best. Despite the two architectures
are very different, with their main implementation focus, both the two
types are present in both the implementation areas|2]. However even if
ARM’s success in the market was incredible, boosted by the emergence
of cellphones in Europe in 1990s, its policy regarding licensing fees, pre-
sented adversities for external’s customization. The model of fees and
restriction on customization was advantageous for ARM but posed chal-
lenges for smaller entities and the academic research community, which

1

Introduction

found themselves constrained by the costs and limitations imposed
by proprietary architectures. During 1990 IBM introduced the IBM
POWER based on RISC architecture [3]. It was in this context, some
years later, that the RISC-V was born in the University of California,
Berkeley in 2010. RISC-V has an ISA based on the principles of the
Reduced Instruction Set Computer (RISC) and stands as a open-source
design. As a open source project, RISC-V, unlike the predecessors, gives
the free availability of the ISA, avoiding the payment of license fees.
The architecture’s simplicity, modularity and openness have not only
taken the attention of academic research but caught also the interest
of company leaders. The open source work is perfectly represented
with the RISC-V International, a collaborative community born in
2015. A big group of stakeholders that works on the RISC-V ISA for
processor design delivering a diverse suite of ratified instruction set
extensions enhancing the architecture’s capabilities and versatility[4][5].
Recognizing the potential of RISC-V, STMicroelectronics decided to
start a project regarding the implementation of an own RISC-V-based
processor aligning their main concepts to the RISC-V International
topics. As in the contemporary digital epoch every embedded systems
are targeted by cybersecurity attacks, and they are particularly vulner-
able to such threats, STMicroelectronics recognized the critical need
of robust cryptography solutions to be implemented. Starting from a
software implementation of the algorithms, STMicroelectronics passed
to dedicated IP integrated at SOC level due to the increasing speed
needed for real-time applications and for embedded systems. In the
context of the RISC-V processor, among all the extensions delivered
by the RISC-V International in their specifications[6], the cryptogra~
phy extensions have been delivered properly concerning the security of
the processor functionality and providing security services in terms of
confidentiality, data integrity, authenticity and non-repudiation. The
cryptography extensions for RISC-V, implementing both Scalar & En-
tropy Source[7] and Vector|[8] operations, are developed to optimize
the performance of cryptography algorithms—fundamental to secure
communication, data protection, and digital authentication. The first
extension aims to improve the architecture’s efficiency in executing

2

Introduction

algorithms such as AES[9], SHA-256[10], SHA-512[10] from NIST, SM3
and SM4 from China, with support across 32-bit and 64-bit imple-
mentations. In a similar manner, also the second extension aims to
improve the design regarding AES and SM2 cryptography algorithms.
The integration of these extensions signifies an important advancement
to reach a certain security within the processor architecture, aligning
to the STMicroelectronics objectives that currently uses dedicated IP
integrated at SOC level to implement this type of algorithms. Indeed
my thesis is centered on the practical implementation of cryptogra-
phy extensions within the STMicroelectronics processor, especially on
Scalar Cryptography Extensions. Through this work, I will explore
the technical challenges and solutions involved in the integration of
the cryptography extensions, evaluate their impact on system perfor-
mance and security, and contribute to the body of knowledge that will
guide future developments in processor architecture and cryptography
computing for STMicroelectronics.

1.2 Objectives

The main objectives are listed below :

1. Get practical with STMicrolectronics tools: familiarizing with soft-
ware and hardware development environments, including compilers,
assemblers, simulators and synthesis tools.

2. Implementation of the RISC-V Scalar Cryptography Extensions|7],
more precisely:

(a) Bitmanip instructions for cryptography: Zbkb extension to
improve the performance of bitwise operations.

(b) Crossbar permutation instructions: Zbkx extension to support
complex bit-level permutations that are used in cryptography
algorithmes.

(c) SHA-256 and SHA-512 instructions: Zknh extension developed
for hashing algorithms that improves the processor’s ability to
perform secure cryptography hashing operations efficiently.

3

Introduction

(d) AES instructions: Zknd and Zkne extensions implementing
the Advanced Encryption Standard (AES) to execute fast and
secure data encryption and decryption.

3. Area and Performance evaluation through:

(a) Synthesis Report: analyzing the impact of the extensions on
the hardware implementations regarding silicon area.

(b) Benchmarks: analyzing the speed and resource utilization dur-
ing the execution of a cryptography algorithm giving an effi-
ciency feedback.

4. Implementation optimization following Area and Performance re-
sults: improving the design to reach the maximum performance
with minimum area and minimum power consumption possible.

1.3 Organization

The thesis is organized as follows:

1. Chapter 1: Introduction

2. Chapter 2: Background
Chapter 3: STxP5 Processor
Chapter 4: Tools and Workflow
Chapter 5: Scalar Cryptography Extension
Chapter 6: Other Processor Crypto Extension
Chapter 7: Simulation and Formal Verification

Chapter 8: Synthesis

© o N o oow W

Chapter 9: Benchmarks

10. Chapter 10: Conclusions and Future Works

4

Chapter 2

Background

2.1 RISC-V

This chapter gives an overview regarding RISC-V architecture, required
to comprehend the context in which this thesis is placed. It begins by
describing the RISC-V Instruction Set Architecture (ISA) with its base
extension and all the other available extensions, highlighting its core
design principles. Moreover, the instruction formats will be analyzed.
Through this chapter, readers will gain the background needed to have
a critical reference point for the subsequent chapters, which fall into
the implementation of cryptography extensions and their integration
into a RISC-V-based processor.

2.1.1 Instruction Set Architecture

The RISC-V processor has three different available versions: 32-bit
(RV32), 64-bit (RV64) and 128-bit (RV128), all are load-store archi-
tectures. It is specified mainly by 2 specifications : the unprivileged
specification [11] (that aims at describing the instructions - encoding
and what they do) and the priviledged specficication [12] (that aims at
describing the exceptions and other control feature). Differently from
previous processors, RISC-V is not defined by a fully specified ISA,
but it consists of a base integer ISA and optional extensions allowing
the modular extensibility of any implementation. The base integer ISA

5

Background

must be present in any implementation and it provides an essential
set of instructions sufficient to provide a minimal target for compilers,
assemblers, linkers, and operating systems[12]. So this base ISA is a
simple starting point ISA around which it is possible to add extensions
incrementing the complexity of the ISA. This extension mechanism
is very useful for developing general-purpose solutions and avoiding
the implementation of useless operations. The extensions defined by
RISC-V ISA in the first version are detailed in Table 2.1. Then, with

Base Integer Extension
Reduced Base Integer Extension
Extension for Integer Multiplication and Division
Extension for Atomic Instructions
Extension for Single-Precision Floating-Point
Extension for Double-Precision Floating-Point
Extension for Compressed Instructions

QO = > L = —

Table 2.1: RISC-V ISA First Version

the birth of the RISC-V International, the development of the ISA
has rapidly progressed providing a huge variety of extensions. All the
new ratified extensions are listed in Table 2.2. Regarding privileged

instruction sets, the ISA can support three different privileged levels
modes [12]:

1. Machine mode (M-mode): the unique mandatory mode, used for
simple embedded systems.

2. User mode (U-mode): used with Machine mode to have a secure
embedded systems.

3. Supervisor mode (S-mode): added to M,U modes to have systems
running Unix-like operating systems.

In addition to the three modes, there is also a fourth mode: the
Debug mode (D-mode), used to support off-chip debugging and/or
manufacturing tests [12].

Background

2.1.2 Instruction Format

The RISC-V architecture uses an efficient instruction format, which
is crucial for the design and implementation of the processor [11].
It is important to underline the absence of status bits as Z (zero), N
(negative), C (carry) in the design of the architecture which It is unusual
but It has been a decision to keep the simplicity and flexiblity of the
architecture. Focusing on the RV32I, the instruction length is fixed
at 32 bits and based on this, there are different formats to describe
the base integer instruction set for the identification and execution of
instructions. These formats are:

R-type: used for register-register operations.

o I-type: used for immediate operations and register loads.
o S-type: used for store operations.

o SB-type: used for conditional branch instructions.

o U-type: used for instructions that load a 20-bit immediate into the
upper 20 bits of a register.

o UlJ-type: used for jump instructions.

eyee |31 - 25|24 _ 2o|19 _ 15|14 - 1z|11 _ 7|6 — o|
Iype | i) | mmitos] | wmmig] | mmio] | st | e | d [opoode |
s-Type | Immitn] | immit05) | rs2 [w1 | wncs | wet] | 0] | opoode |
SB-Type | mmp121 | immitos] | rs2 IR
U-Type | Immian) | Imm[30:20] | immi19:15] | immi14:12) | d | opoode |
Us-Type | Immi20 [iomitos] | i) [it [immp19:45] | w12y | d [opeode |

Figure 2.1: RISC-V Instruction Formats

7

Background

As in figure 2.1, instruction format consists of several key points,
including the opcode, funct3, and funct7, which are fundamental for
identifying and decoding the instruction. Furthermore rsl, rs2, and
rd (5-bit each) represent the addresses of the source 1, source 2, and
destination registers, respectively. So the instruction in the processor
works with the values stored in rsl and rs2 as data inputs and writes
the data output in register rd. Note that rsl, rs2 and rd are in the same
position, in all the formats, to optimize the chip circuitry and increase
efficiency. Furthermore, the imm field provides a binary value directly
embedded within the instruction, with variable length. Therefore it
provides a constant data for immediate operations for which the rs2
register is not needed and sometimes also the rsl register is not needed
as well. Regarding binary values given directly in some instruction
format, the immediate can be also divided in more than one piece. These
variants offer flexibility and adaptability in addressing a diverse range
of computational requirements. Focusing on the registers previously
called, the RV32l has 32 general-purpose registers, denoted as x0
through x31. Each register can store a 32-bit value, aligned with the
32-bit architecture. The large number of available registers can improve
performance through less memory accesses. Another optimization is
the hardwired register x0 to 0 through which the instructions can be
simplified and also the number of needed immediate is reduced. Instead
the RV32E configuration has 16 registers for PPA (Power, Performance,
Area) optimizations.

2.1.3 RV32I Base Integer Instructions

Focusing on the base integer extension, precisely on the RV32I, a variety
of instructions are provided[11]. The available instructions can perform
arithmetic calculations, logical operations, and managing data flow
within a program. Understanding these instructions is necessary, as
they form the basis for more complex algorithms and extensions.

8

Background

Integer Computational Instructions

Integer computational instructions cover principally arithmetic instruc-
tions. These instructions operates on 32 bits integer values stored in
the integer register file. Integer instructions can have three different
formats:

o R-type: R-type instructions involve register-register operations,
where the operation is performed between two source registers (rsl
and rs2), and the result is stored into a destination register (rd).
Operations as ADD, SUB, SLT, SLTU, AND, OR, XOR, SLL, SRL
and SRA are part of this type. For example, the ADD instruction
adds the values in registers rsl and rs2 and stores the result in
register rd. Similarly, the SUB instruction subtracts rs2 to rsl.
SLL,SRL,SRA perform logical left, logical right, and arithmetic
right shifts to the value of rsl by an amount specified by the
lower 5 bits of the value in rs2. Moreover XOR,OR,AND apply
bitwise operations between rsl and rs2. For comparison operations,
SLT (signed) and SLTU (unsigned) compares the content of rs1 with
rs2 and put 1 as result in rd if rsl is less than rs2, otherwise a 0 is
stored. In these specific scenarios, the absence of the status bits is
significant, as the status bit is meant for that purpose.

o [-type: I-type instructions involve register-immediate operations,
where an immediate value (12-bit value) is sign-extended to be
used correctly with the other 32/bit value and then used as one of
the operands in the operation. Instructions as ADDI, SUBI, SLTI,
SLTIU, ANDI, ORI, XORI, SLLI, SRLI, SRAI are included in this
category. The operations performed by these instructions are the
same of the previous with the immediate value instead of the rs2
register.

o U-type: U-type instructions as LUI and AUIPC take part of this
type. LUI performs a load of a 20-bit immediate value into the
upper 20 bits of the destination register while the lower 12 bits are
filled by zeros. Instead AUIPC takes the 20-bit immediate value as
upper bits and filling the other 12 bits with zeros. Then It uses the

9

Background

value as an offset to be added to the program counter (PC) and
loads the result of the addition in rd.

Control Transfer Instructions

Control transfer function, to control the flow of the execution, is divided
in two parts: unconditional jumps and conditional branches. Uncon-
ditional jumps have the JAL instruction which follows the UlJ-type.
This instruction performs a jump using a signed offset, taken from the
instruction, that is added to the program counter(PC) to form the
jump target address. In the meanwhile the instruction can store the
theoretical next address(PC+4) that is the return address in a specific
register rd (x1). There is also the J pseudo-instruction that is a JAL
without storing the return address, and so it in this case the rd is x0. In
addition, the JALR instruction, that follows the I-type format, performs
the jump calculating the target address by adding the 12-bit signed
immediate with the value of the register rs1 and the putting a zero in
the least significant bit of the result. As in JAL, the return address is
stored in a specific rd. Conditional branches use the SB-type format,
and compare the contents of the two register and if the condition is
positive, PC will be updated with the target address calculated by
adding the 12-bit signed immediate to the program counter. The BEQ
and BNE instructions update the PC if the registers are equal or not
equal. The BLT and BLTU instructions update the PC if the first
register is less than the second, using signed or unsigned comparison.
Similarly, BGE and BGEU update the PC if the first register is greater
than or equal to the second, using signed or unsigned comparison.

Load and Store Instructions

Load and store instructions can work on the memory and the register
file. These instructions are used to transfer values between registers
and memory and viceversa. The load instruction, that follows the
I-type format, declare LW[U](32-bit words), LH[U](16-bit half-words),
LB[U](8-bit bytes). These instructions perform a load from memory
to the rd register, in which the memory address is computed with

10

Background

the addition of the value of rsl. With a value of 16-bit or 8-bit, an
extension of zeros is done with -U declared, otherwise a sign-extension
is done. The store instruction, which follows the S-type format, includes
SW (32-bit words), SH(16-bit half-words), SB(8-bit bytes) perform a
store from a register to the memory with address the addition between
rsl and the immediate. Instead the value stored is taken from the
register file with the address rs2.

2.2 Cryptography

The advent of computers, networks and the increased dependency on
digitized information in our society makes information more vulnerable
from cyber-attacks. For this reason, it is important to secure information
systems by protecting data and resources from malicious acts through
cryptography algorithms. Cryptography offers a robust solution for I'T
security by providing security services in terms of confidentiality, data
integrity, authenticity and non-repudiation [13]:

o Confidentiality: Information cannot be accessed by unauthorized
parties. This is accomplished through public key and private-key
encryption.

o Data Integrity: Transmitted data within a given communication
cannot be altered during storage or transmission. This is done
through Hash Functions.

o Authenticity: Ensures that, within a given communication, the
source of information and the information itself are genuine though
digital signatures.

o Non-repudiation: Ensures that neither the sender nor the receiver
of a message can deny transmission. This is achieved via digital
signatures and third party notary services.

In this context cryptography algorithms such as AES (Advanced
Encryption Standard) and SHA-256/512 have an important role in
ensuring the characteristics specified before.

11

Background

2.2.1 Importance of Cryptography Extensions

Implementing cryptography algorithms in software is relatively easy,
but such algorithms are typically too slow for real-time applications,
such as storage device and embedded systems, due to increasing data
rates and complexity of security protocols. For this reason, it be-
comes necessary to implement cryptography algorithms in hardware.
Hardware-based cryptography significantly accelerates the execution
of cryptography algorithms by providing dedicated instructions into
the processor architecture, thus enhancing the overall system perfor-
mance while maintaining high levels of security [14] . In this context,
one notable example is the integration of the RISC-V cryptography
extensions, specifically the scalar cryptography extensions, which have
been designed to support efficient cryptography operations on 32-bit
and 64-bit RISC-V processors. These extensions include specialized
instructions for AES encryption and decryption, as well as SHA-256
and SHA-512 hashing, which are commonly used in securing communi-
cations and protecting sensitive data. There are advantages thanks to
hardware-based cryptography implementations [15]:

o Performance: The instructions can exploit all the capabilities of the
processor, significantly speeding up the cryptography operations.

o Attack surface: The hardware implementation can hide implemen-
tation details and reduce the attack surface.

e Memory: The algorithms in hardware can reduce the code size and
also the data-memory.

All these advantages of the hardware implementation make it a proper
solution to integrate these functions as ISA extensions and so implement
them in hardware. In the case of AES and SHA-256, comparing the
software implementation with the hardware implementation, there is
an improvement of 5x and 2x on speed and 0.5x on program memory,
respectively. Since the instructions are implemented directly in the
processor, there is a disadvantage in term of area, 1.1 kGates for AES
and 0.7 kGates for SHA-256/512 [16] [17] [18]. These are the expected

12

Background

results, all the instructions, that are part of the Scalar Cryptography
Extensions, and all the results will be explained in the next chapters.

13

Background

Zifencei Instruction-Fetch Fence
Zicsr Control and Status Register Instructions
Zicntr Counters
Zihintntl Non-Temporal Locality Hints
Zihintpause Pause Hint
Zimop May-Be-Operations
Zicond Integer Conditional Operations
Zmmul Multiply only
Zawrs Wait-on-Reservation-Set Instructions
Zacas Atomic Compare-and-Swap Instructions
RVWMO Memory Consistency Model
Ztso Total Store Ordering
CMO Base Cache Management Operation ISA
Q Quad-Precision Floating-Point
Zth Half-Precision Floating-Point
Zfhmin Minimal Half-Precision Floating-Point
Zfa Additional Floating-Point Instructions
Zfinx-Zdinx-Zhinx-Zhinxmin Floating-Point in Integer Registers
Zc* Code Size Reduction
B Bit Manipulation
Vv Standard Extension for Vector Operations
Zbkb Bitmanip instructions for Cryptography
Zbkc Carry-less multiply instructions
Zbkx Crossbar permutation instructions
Zk Standard scalar cryptography extension
Zks ShangMi Algorithm Suite
Zvbb Vector Basic Bit-manipulation
Zvbc Vector Carryless Multiplication
Zvkg Vector GCM/GMAC
Zvkned NIST Suite: Vector AES Block Cipher
Zvknhb NIST Suite: Vector SHA-2 Secure Hash
Zvksed ShangMi Suite: SM4 Block Cipher
Zvksh ShangMi Suite: SM3 Secure Hash
Zvkt Vector Data-Independent Execution Latency

Table 2.2: RISC-V International Ratified Extensions

14

Chapter 3

STxP5 Processor

This chapter describes the main characteristics of the STxP5 processor,
recalling some information of the Chapter 2 and giving some other
information. STxP5 architecture is one implementation of the standard
RISC-V free open architecture. STxP5 architecture is shown in Figure
3.1. STxP5 processor is made of 5 main functional blocks :

AHB Slave AHB Master TCDM

TCMP

MMC
PMA
Bytes
Half-Word
Word CSR Core Registers
CLKGEN Registers
STxP5 CORE

ocD

ITC
Figure 3.1: STxP5 processor

o The STxP5 core. It is in charge of fetching STxP5 instructions and
15

STxP5 Processor

executing them.

e The memory controller (MMC). It is in charge of the arbitration
between the instruction fetch and data load/store requests which

are converted into the AHB-lite protocol.

 The interrupt controller (ITC). It provides the possibility of han-

dling interrupts.

e The on chip debug (OCD). It provides the necessary resources and
control for the software debug on the STxP5 HW target.

e The physical memory attributes (PMA). It holds attributes that
are checked by PMA checker and that can raise exceptions when

violated.

In Figure 3.1, it is also shown the possible data types for the STxP5.
The STxP5 provides an efficient support for 8-bit, 16-bit, 32-bit signed
While all computational operations are
performed on 32-bit, the other smaller data types are promoted to
a 32-bit while they are loaded from memory. The 32-bit results are
down-cast when the result is stored into memory. In Figure 3.2 is shown

and unsigned data types.

how the data types are ordered in memory.

Address+n ... Address+4 Address+3 Address+2 Address+1 Address
Byte3 Byte2 Byte1 ByteO
HALFWORD1 HALFWORDO
WORDO

Figure 3.2: Bytes ordering in memory

3.1 STxP5 core

As the objectives of the thesis is regarding the implementation of
different instructions, it could be important to focus on the STxP5 core.

16

STxP5 Processor

3.1.1 Core Registers

STxP5 general purpose register file X can be configured to implement
either 16 or 32 32-bit registers giving the possibility to implement either
RV32I or RV32E base ISA. The register file is a RISC-V standard and
It is described in Table 3.1. As said previously, also here, the register
X0 is hardwired to 0, meaning that it can not be overwritten. The
link register X1 holds the return address of a function call. The stack
pointer X2 must be set to the base address of the stack by software and
it is growing downward. Temporary registers are registers which do not
hold their value across function calls, they must be saved by the caller
before a call if they are later used. Instead the saved registers are saved
by the caller if they are used within the function, their value is thus
held across function calls. X10 and X11 can be used for dual purposes:
function arguments and/or to return function results. Registers X12
to X17 can be used only for function arguments. The register file
configuration interacts with the Application Binary Interface (ABI).
The ABI is a convention that tells how software shall use the registers
during function calls, return address handling and parameter passing
mechanism.

3.1.2 Control and Status Registers

STxP5 supports two privileged modes, so only a subset of the privileged
modes of RISC-V . It implements the Machine Mode (M-mode) that is
the highest privileged mode. This mode has complete authority over
CPU scheduling and configuration. Moreover, execution state of all
exceptions and interrupts is M-mode. The second mode is the User
Mode (U-mode) that is used for conventional usage. So the Supervisor
Mode (S-mode) is not supported. Table 3.2 lists the main Control
and Status registers (CSRs) implemented. The CSRs address space
is sets aside a 12-bit encoding space (csr[11:0]) for up to 4,096 CSRs.
Conventionally, the upper 4 bits of the address (csr[11:8]) are used to
described the read and write accessibility according to the different
privilege levels. More precisely the top two bits (csr[11:10]) indicate
whether the register is read/write with 00, 01, or 10 or read-only with

17

STxP5 Processor

11. Then the other two bits (csr[9:8]) encode the lowest privilege level
that can access the CSR[12].
Therefore for each register, the possible access to the register is given:

e MRW: Machine Read Write.

— Read and Write accesses are supported in Machine Mode.

— Any access to the register in User mode will generate an illegal
instruction exception.

« MRO: Machine Read Only

— Read access is supported in Machine Mode.

— Any access to the register in User mode will generate an illegal
instruction exception.

— Write access to the register will generate an illegal instruction
exception

e RW: Read Write

— Read and Write accesses are supported in User Mode and
Machine Mode.

« RO: Read Only

— Read access is supported in User Mode and Machine Mode

— Write access to the register will generate an illegal instruction
exception

3.1.3 Pipeline

The STxP5 is a 4-stage pipeline implementation of RISC-V and so an
instruction can be executed in a maximum 4 pipelined cycles. The
4-stage instruction pipeline is as follows:

18

STxP5 Processor

« Stagel: Instruction Fetch (IF)

Instruction is predecoded. Predecoding is performed on either the
new 32-bit chunk of data read from memory or on the next 32-bit
chunk read from a 80-bit instruction prefetch buffer. If the 32-bit
correspond to a 32-bit instruction it is registered in the 32-bit
instruction register for the next ID pipeline stage. Otherwise the
16-bit opcode is zero extended before being registered into the
instruction register.

« Stage2: Decode, Operand Fetch (DOF):

The instruction is decoded. Instruction operands are read from
the register file. In case of a load or store instruction, the effective
address (EA) of the data to read or write is computed and registered.
Unconditional branches are providing the relative branch offset to
the control unit in this cycle too

« Stage3: Execute (EX):

The Result of instructions belonging to ALU, SHIFT, MUL instruc-
tion classes is computed and registered. Memory read or write is
performed. If branch condition is true, branch address is sent to
the control unit.

« Stage4: Write Back (WB):

The Result of instructions belonging to ALU, SHIFT, MUL, DIV
instruction classes is written back into the register file. The Result
of Pre and post modifying addressing modes is written back into
the register file. Memory read is completed and the data load from
memory is written back into the register file.

Control Unit

The Control Unit is in charge of managing the datapath throughout its
stages. Given an instruction from instruction register(IR), it generates
the corresponding control word that manages the various registers,
MUXes and other control signals in the datapath. Moreover, the CU

19

STxP5 Processor

interacts with the Hazard Unit (HU), which monitors the pipeline for
potential hazards that could break the flow of instructions. The HU
provides signals to the CU indicating when it is necessary to stall the
pipeline or insert bubbles (NOP operation) instructions to allow time
for data to become available or for previous instructions to complete.

Hazard

The Hazard Unit takes care of detecting data control and structural
hazards in the pipeline and successively dispatching the correct signals
to the CU to indicate where and for how many stages to stall for. If
no hazardous condition is found, the pipeline operates uninterrupted,

maintaining the flow of instruction execution. Three main cases are
covered by the HDU:

o Data hazards : pipeline stalls when an instruction depends on the
result of a previous instruction that has not yet finished, ensuring
correct program execution without data corruption.

o Structural hazards: pipeline has to stall when an instruction needs
an hw resource that is busy by the previous one.

o Control hazards: pipeline has to be flushed because with a jump
or a taken branch, the normal flow of execution is changed.

Forwarding

To mitigate the impact of hazards, for data hazards, techniques such
as forwarding (or bypassing) can be used to pass the result of a compu-
tation directly to a subsequent instruction without writing it to and
reading it from the register file. This is implemented in order to reduce
the need for stalls and keeps the pipeline moving. The Forwarding
Unit detects favourable conditions for source and destination registers
between stages of the pipeline and if they match it forwards operands
where they are needed, skipping the write-back stage. The forwarding
unit helps improving the pipeline performances, reducing the number
of stalls due to hazards in different situations. The situations in which

20

STxP5 Processor

the forwarding can be exploited are when an instruction has already
produced the result without writing that in the register file, and a
following instruction needs the data in the execute stage. The majority
of forwarding paths links write-back stage with the execute stage.

A simplified datapath of the pipeline processor is shown in Figure
3.3

21

STxP5 Processor

32-bit Register File X

Alias name

X0: Zero (hardwired 0) Z€ero
X1: Link register ra
X2: Stack pointer sp
X3: Global pointer gp

X4: Thread pointer tp
X5: Temp t0

X6: Temp t1

X7: Temp t2

X8: Saved register sO
X9: Saved register sl
X10: Fct arg/Ret val a0
X11: Fet arg/Ret val al
X12: Fct argument a2
X13: Fet argument ad
X14: Fct argument ad
X15: Fet argument ad
X16: Fct argument ab
X17: Fet argument a’
X18: Saved register s2
X19: Saved register s3
X20: Saved register s4
X21: Saved register sH
X22: Saved register s6
X23: Saved register s7
X24: Saved register s8
X25: Saved register s9
X26: Saved register s10
X27: Saved register s11
X28: Temp t3
X29: Temp t4
X30: Temp th
X31: Temp t6

Table 3.1: STxP5 Register File X

22

STxP5 Processor

CSR Address Hex | Acc. Name
[11:10] | [9:8] | [7:6] | [5:0]
00 11 | 00 | 000000 | 0x300 | MRW Machine Status (mstatus)
00 11 | 00 | 000001 | 0x301 | MRW Machine ISA and extension (misa)
00 11 | 00 |000100 | 0x304 | MRW Machine interrupt-enable (mie)
00 11 | 00 |000110 | 0x306 | MRW Machine counter enable (mcounteren)
00 11 | 00 | 000101 | 0x305 | MRW | Machine trap vector base-address (mtvec)
00 11 01 | 000001 | 0x341 | MRW | Machine exception program counter (mepc)
00 11 | 01 |000010 | 0x342 | MRW Machine trap cause (mcause)
00 11 | 01 | 000100 | 0x344 | MRW Machine interrupt pending (mip)
11 11 | 00 |010010 | OxF12 | MRO Machine architecture ID (marchid)

Table 3.2: Control and Status Registers(CSRs) list

23

STxP5 Processor

HO134

300030

3un03a

Adonan

ovaaLHM,

nd

PEAERE] m3
£19188 i
i8] § g
“lele|c
BB
8| © g s
$E(s H F
£ 2 — E
] a
= =
g g
< g
S
<
2
dON B[
- A 2 o g
3 3 3 z &
Pl \ :
3 A2 vJ -
H " oy
- ,j
&
PEFE:.
$3% z
283 3 e "
882 R A
S 8
®
3
B
3 5
E 2 z . > EF g 2 2
3 El H 83 3 S]
Il
i3 Ty

Jun Buipsemos

Y

@)
oy
=)

9
10
%
2dN
MO [«

smw‘e xa

aoepBIUL
Wvda

2dN
O [«

IS
T IN

Figure 3.3: Simplified STxP5 Datapath

24

Chapter 4

Tools and Workflow

4.1 ASIP Tool

In the world of data processing, a crucial tradeoff exists between flexibil-
ity and efficiency. The Figure 4.1 shows the different possible solutions
[19]. In the leftmost position, there are general-purpose microproces-
sors that they are the most flexible solution but with the drawback of
low performance and low power efficiency. On the other hand, in the
rightmost solution, hardwired datapaths are the most efficient solution
but with a singular application possible without the possibility to be
adapted to different applications. In between these two, there is the
Application Specific Integrated Processor (ASIP) that offers a balance
between the two parameters. Synopsys’ ASIP Designer is a software
tool for the design and programming of Application Specific Integrated
Processors (ASIPs) [20]. This suite has been developed to support
any user-modeled processor architecture described in nML (notation
Machine Language). The nML language captures both the instruction-
set architecture (ISA) at a high-level and the microarchitecture of a
processor at a Register Transfer Level (RTL). It can be viewed as a
specialized hardware description language, but with additional func-
tions specifically designed to describe processor features for particular
application domain. This language facilitates the modeling and the
optimization of a processor’s architecture. The nML model is the funda-
mental input for ASIP Designer’s retargetable software development kit

25

Tools and Workflow

(SDK). This SDK is a powerful software, It includes an optimizing C
and C++ compiler that enforces the capabilities of the I[SA as defined
in nML, to its fullest potential, with also a linker and an assembler.
The compiler’s ability to exploit the full potential of the ISA is thanks
to the efficacy of ASIP Designer’s Compiler-in-the-Loop design method-
ology. Starting from a code written in C or C++, the behavior of the
processor model can be simulated. This simulation is executed through
a cycle-accurate instruction-set simulator (ISS) within the SDK, plus
a graphical debugger and profiler. The advantage of the of the cycle
accurate simulation, with the retargetable SDK, is the possibility of
tuning the ISA, changing the nML code, and validate it in a next
iteration cycle. Moreover, ASIP tool includes a RTL generator that It
is capable of translating the nML model into a Register Transfer Level
(RTL) model either Verilog or VHDL languages. The generated code is
optimized to achieve good timing performance and power dissipation.
The immediate generation of an RTL model from the nML description
is a cornestone of the Synthesis-in-the-Loop methodology. Indeed, to
perform a deeper analysis of the ASIP’s performance, the RTL can be
synthesized. Thanks to the synthesis, designers can study and evaluate
the power, performance and area (PPA) of the design. As last step,
there is the verification process. The model is tested with user-defined
algorithm written in C or C+4++ on three different levels: firstly the
model is tested on the host compiler, as a reference, after It is tested
with the ISS of the model and, as last level, It is tested with the RTL
Simulator. All the three results will be compared to underline possible
mismatches or full correctness. The full ASIP designer tool flow is given
in Figure 4.2.

4.1.1 nML and PDG

In the design process a processor’s architecture is defined through the
high-level nML language that can described both the instruction-set
architecture and the microarchitecture. The main characteristics are
listed below [21] :

o Primitive data types and primitive operations: They are the core of

26

Tools and Workflow

'Y General purpose
microprocessor ‘
‘ Extensible processor . ASIP

‘ Application-specific
puP/DSP

Programmable
datapath

Application Flexibility

Hardwired
GEYEDEL

Performance Efficiency

Figure 4.1: Flexibility and Performance Tradeoff

the model, they can be standard or user-defined. The primitive data
types are modeled using C++ classes. The primitive operations
are modeled using C++ functions and operators.

o Data storages: All of them must be declared globally with its data
type and address type.

— Static storages: They can store each of its values during several
machine cycles, until They are explicitly overwritten.

x Memories: They are storage elements that usually have the
possibility to store a large number of values at the same
time. Access operations can take relatively long compared
to normal machine operations. In load-store architectures,
memory may only be accessed by special load and store
instructions, not by arithmetic instructions.

27

Tools and Workflow

User-defined
1 algorithm
User-defined Algorithm
l architecture C/C ++

Processor model » Architectural optimization
nML and software development

ig.l\.
ﬁ Optimizing C/C ++ compiler

J |
. FMT| ALU |OPD
Instruction

Synthesizable RTL
set FMT | MPY [OPD Verilog/VHDL
FMT | OPD | SH
I Refinement :
— Debugger Instruction RTL simulator | RTL synthesizer
2) and profiler |l set simulator ves DC/FC/
_ RTL Architect

Virtual prototyping Verification

'8) Hardware generation ESL model Verification model
p ") SystemC SystemVerilog
4) Verification

Hardware generation

) SDK generation

2) Architectural optimization

ASIC
or FPGA

Figure 4.2: ASIP Designer Flow

* Registers: They are accessible in much less time than a
machine cycle. In load/store architectures, arithmetic op-

erations always take their operands from registers and put
their results in registers.

— Transitory storages: They represent buses or wires. They pass
a value from input to output without delay.

x Processor ports: The input and output ports of the processor
modeled by transitories. An input transitory can only be
read and may not be written , while an output transitory
can only be written and may not be read.

x Pipeline registers: Special transitories with delay of one

cycle. These transitories are used to describe multi-stage
actions.

o Functional units: They can optionally be declared. Functional

28

Tools and Workflow

units are just used to group operations that are physically executed
on the same hardware unit.

o Immediate and Hardwired Constants: Every immediate constant
must be declared instead an hardwired constant must not be de-
clared.

o Properties: They are used to specify the special purpose of some
storage elements.

 Instruction-set: It describes the instruction set and the execution
behavior of the processor. It is detailed through several rules with
specific grammar and attributes. Instructions are defined through:

— The ’action’ attribute, which details the concurrent register-
transfer operations for all instructions within the class, orga-
nized into stages of the processor’s pipeline.

— The ’'syntax’ attribute, which outlines the assembly language
representation of the instructions.

— The ’image’ attribute, which specifies the binary encoding of
the instructions.

While nML describes the structural framework of the processor,
the behavior of primitive functions is defined in the PDG (Primitives
Definition and Generation) language [22]. PDG is a hybrid language
combining C and HDL elements like Verilog, used for defining functional
primitives and control units. It utilizes the primitive data types from
nML and enhances them with additional features. The PDG language is
crucial as it avoids inconsistencies and duplication of effort by enabling
the generation of C++, VHDL, and Verilog implementations from a
single definition. It also describes other processor components, such as
the Processor Control Unit and I/O interfaces. In summary, the nML
and PDG languages within ASIP Designer provide a comprehensive
framework for defining a processor’s architecture, from its data types
and operations to its functional units and instruction set, ensuring con-
sistency and efficiency in the design and simulation of ASIPs. Appendix
A gives an example of PDG-nML code.

29

Tools and Workflow

4.2 Workflow

The STxP5 team carries out its IP development in a Linux environ-
ment. The projects managed with the Git version control tool and is
divided mainly into three repositories: architecture, design and ver-
ification. The architecture git repository contains the description of
the different processor blocks, scripts and compilation tools etc. The
design repository contains all scripts, constraint files and tools necessary
for synthesis and performance measurements (PPA) of the processor.
Finally, the verification git as its name suggests, contains the tools
and tests necessary for design verification. These different deposits
constitute a fairly vast environment and complex files. The STxP5
project organization is showed in Figure 4.3.

/ STxP5 Project \
4 N p
B & BB &

nML.PDG & ';‘;'r‘]‘;’p::: Netlist, design Fexit & other
Verilog constraints, gesjgn scripts
tools reports g P

_ Architecture / K Design -/
- N

B @

Cadence tools
for simulation
and debug

\ \ Verification / j

Figure 4.3: STxP5 Organization Project

tests

The implementation of the designs is carried out from nML and
PDG. The files are compiled with Chess (C Compiler), another ASTP
tool. It is possible to do this directly at from command lines or through
internal software called Poker, tool developed by the team. Poker gives

30

Tools and Workflow

the possibility, under a single graphical interface, to configure and build
Processor model, prepare simulation and to run a regression. It is even
possible to consult ASIP documentation via the interface. Poker, by
throwing ChessDE, allows to compile the nML/PDG then generates the
Verilog. This Verilog output is then used in a standard CAD flow to run
simulation (Xcelium rtl simulator), to be synthesized using a targeted
standard cell library (40 nm), to run gate simulation to extract power
estimation. These tasks can be carried out via an online tool called
Jenkins which centralizes, automates and improves the presentation
of the results following the continuous integration strategy. To ensure
the quality of the design, verification work is generally carried out
by an engineer from the ST verification team in collaboration with
the designer. The test plan is to write dynamic and formal tests that
validate the implementation. Dynamic verification ensures that features
have been implemented correctly, while formal verification ensures that
the implementation agrees with the behaviors described by architecture
specifications or protocols. These two methods are complementary to
demonstrate the quality of the design. The STxP5 flow is showed in
Figure 4.4.

alnjoajiyaay

SYNOPsys

B, f — kadencd
E:— —{ Synthesis Power Simulations
Measurements
it —
=5 r’j %
nithesi

Sy reports Gate level Natiis Power reports

Design Verification

\

A

tests aves

Figure 4.4: STxP5 Flow of Design

31

Chapter 5

Scalar Cryptography
Extension

This section explains the hardware architecture of the Scalar Cryptog-
raphy Extension. This extension is divided in more than one group
that They are showed in Figure 5.1. My thesis is focused on the imple-
mentation of the Zkn group except the Zbkc that It is not a priority for
STxP5 in this moment. The Zkn extension is built for Nist algorithhm.

Figure 5.1: Scalar Cryptography Groups [23]

5.1 Specifications

All instructions described herein use the general-purpose X registers, and
obey the 2-read-1-write register access constraint. These instructions

32

Scalar Cryptography Extension

are designed to be lightweight and suitable for 32-bit base architectures
[7].

5.1.1 Zbkb - Cryptography Bitmanip instructions

These instructions are a subset of the Bitmanipulation Extension Zbb
which are particularly useful for Cryptography. There are 5 instruc-
tions that are not present in the Zbb extension, so They have been
implemented and added to the others.

Reverse instruction
e brev8 rd, rs : Reverse bits in bytes, 5.2.
31 20 19 15 14 12 11 7 6 0

011010000111‘ rs ‘101‘ rd ‘0010011
OP-IMM

Figure 5.2: Brev8 Encoding [7]

Packing instructions

e pack rd, rsl, rs2 : Pack low halves of registers, 5.3.

31 25 24 20 19 15 14 12 11 7 6 0
‘ 000 01 0O ‘ rs2 ‘ rs1 ‘ 1 0 0 ‘ rd ‘ 011 00 11
PACK PACK oP

Figure 5.3: Pack Encoding [7]

o packh rd, rsl, rs2 : Pack low bytes of registers, 5.4.

31 25 24 20 19 15 14 12 11 7 6 0

‘0000100‘ rs2 ‘ rs1 ‘111‘ rd ‘0110011
PACKH PACKH oP

Figure 5.4: Packh Encoding [7]

33

Scalar Cryptography Extension

Generalized Shuflle instructions

e zip rd, rs: Zip the registers, 5.5.

31 25 24 20 19 15 14 12 11 7 6 2 10
‘0000100‘01111‘ rs1 ‘001‘ rd ‘00100|11‘

Figure 5.5: Zip Encoding [7]
e unzip rd, rs : Unzip the registers, 5.6.

31 25 24 20 19 15 14 12 1 7 6 2 10
0000100‘01111‘ rs1 ‘101‘ rd ‘00100|11‘

Figure 5.6: Unzip Encoding [7]

5.1.2 Zbkx - Crossbar Permutation instructions

These instructions are useful for implementing SBoxes (Appendix B)
in constant time, and potentially with DPA protections.

o xperm8 rd, rsl, rs2 : Bytes Crossbar Permutation, 5.7.

31 25 24 20 19 15 14 12 1 7 6 2 1 0
‘0010100‘ rs2 ‘ rs1 ‘1[}0‘ rd ‘01100|11‘

Figure 5.7: Xperm8 Encoding [7]

o xperm4 rd, rsl, rs2 : Nibbles Crossbar Permutation, 5.8.

3 25 24 20 19 15 14 12 1 7 6 2 10
‘0010100‘ rs2 ‘ rsi ‘010‘ rd ‘01100|11‘

Figure 5.8: Xperm4 Encoding [7]

34

Scalar Cryptography Extension

5.1.3 Zknh - NIST Suite: Hash Function

These instructions are implemented for accelerating SHA-2 family of
cryptography hash functions. It covers the SHA2-256 functions and
the SHA2-512 functions. Appendix C gives more details on SHA-2
hash family. Two logical functions (not specified) are shared between
SHA-256 and SHA-512 [10].

Ch(z,y,z) = (z ANy) ® (—z A 2) (5.1)

Maj(z,y,2) = (x Ay) ® (xAz2) B (YA =2) (5.2)

SHA2-256 instructions

The SHA2-256 are hash functions that receive an input message with
length n (0 < n < 2%) and generates a 256-bit output message digest.
The 32-bit hash logical functions are [10]:

Y9 = ROTR(z,2) & ROTR(z, 13) ® ROTR(x, 22) (5.3)
Y1 = ROTR(z,6) ® ROTR(x,11) & ROTR(x, 25) (5.4)
0o = ROTR(z,7) ® ROTR(z, 18) & SHR(x, 3) (5.5)
op = ROTR(z,17) @ ROTR(z,19) ® SHR(z, 10) (5.6)
« sha256sig0 rd, rs1 : SHA2-256 Sigma0 instruction, 5.9.
31 30 29 25 24 20 19 1514 12 11 7 6 0
oo o oo o o a0 e] " Joa] wJoTo o e]
Figure 5.9: Sha256sig) Encoding [7]
e sha256sigl rd, rsl : SHA2-256 Sigmal instruction, 5.10.
31 30 29 25 24 20 19 15 14 12 11 7 6 0

‘00|01000‘00011‘ rs1 ‘001‘ rd ‘0010011‘

Figure 5.10: Sha256sigl Encoding [7]

35

Scalar Cryptography Extension

o sha256sumO rd, rs1 : SHA2-256 Sum0 instruction, 5.11.

31 30 29 25 24 20 19 15 14 12 11 7 6 0
‘00|01000‘00000‘ rs1 ‘001‘ rd ‘0010011‘

Figure 5.11: Sha256sum0 Encoding [7]

o sha256suml rd, rs1 : SHA2-256 Suml instruction, 5.12.

31 30 29 25 24 20 19 15 14 12 1 7 6 0
‘00|01000‘00001‘ rs1 ‘001‘ rd ‘0010011‘

Figure 5.12: Sha256suml Encoding [7]

SHA2-512 instructions

The SHA2-512 are hash functions that receive an input message with
length n (0 < n < 2128) and generates a 512-bit output message digest.
The 64-bit hash logical functions are [10]:

5, = ROTR(z, 28) ® ROTR(z, 34) & ROTR(z, 39)
¥, = ROTR(z, 14) ® ROTR(z, 18) & ROTR(z, 41)
00 = ROTR(z, 1) ® ROTR(z, 8) & SHR(z, 7) (

o1 = ROTR(z,19) & ROTR(z,61) & SHR(z, 6) (5.10

Due to the 64-bit nature of the operations and the 32-bit architecture
of the processor, each function is divided into two parts, with each
part processing 32-bit inputs. In the case of Sigma0O function, the
instructions shab512sig0l and sha512sigOh are performed one after the
other. In the same way also the Sigmal function is implemented with
shab12sigll and sigh12siglh. The sequences are showed below:

Sigma0

shabl12sig0l1 tO, a0, al
shab12sigOh t1, al, a0

36

Scalar Cryptography Extension

Sigmal
shab12sigll t0, a0, al
shabl2siglh t1, al, a0

Similarly, the SumO function is performed by two iterations of the
shab12sumOr operation, while the Sum1 function is performed by two
iterations of the shabl12sumlr operation. The iterations are showed
below:

SumO

shab512sumOr t0, a0, al
shab512sumOr t1, al, a0l

Suml
shab12sumlir t0, a0, al

shab12sumlr t1, al, a0

o shab512sigOh rd, rsl, rs2 : SHA2-512 Sigma0 high instruction,
5.13.

31 30 29 25 24 20 19 15 14 12 11 7 6 0
‘01|01110\ rs2 \ rsi ‘0[}0‘ rd ‘0110011

Figure 5.13: Sha512sig0h Encoding [7]

o shab512sig0l rd, rsl, rs2 : SHA2-512 Sigma0 low instruction,
5.14.

31 30 29 25 24 20 19 15 14 12 1 7 6 0
‘01|01010\ rs2 \ rsi ‘000‘ rd |0110011

Figure 5.14: Sha512sig0l Encoding [7]

37

Scalar Cryptography Extension

31

sha512siglh rd, rs1, rs2 : SHA2-512 Sigmal high instruction,
5.15.

30 29 25 24 20 19 15 14 12 11 7 6 0

1|01111| rs2 \ rs1 ‘OGOI rd ‘0110011

31

Figure 5.15: Sha512siglh Encoding [7]

shab12sigll rd, rsl, rs2 : SHA2-512 Sigmal low instruction,
5.16.

30 29 25 24 20 19 15 14 12 11 7 6 0

1|01011| rs2 \ rs1 IOGOI rd ‘0110011

31

Figure 5.16: Sha512sigll Encoding [7]

shab512sumOr rd, rsl, rs2 : SHA2-512 Sum0 instruction, 5.17.

30 29 25 24 20 19 15 14 12 1 7 6 0

1|01000‘ rs2 ‘ rs1 ‘000‘ rd ‘0110011‘

31

Figure 5.17: Sha512sumOr Encoding [7]

shab512sumlr rd, rsl, rs2 : SHA2-512 Suml instruction, 5.18.

30 29 25 24 20 19 15 14 12 1 7 6 0

E

1|01001‘ rs2 ‘ rs1 ‘000‘ rd ‘0110011‘

Figure 5.18: Sha512sumlr Encoding [7]

5.1.4 Zkne - NIST Suite: AES Encryption

The AES algorithmn works on 128-bit block size and three key sizes:
128, 192 and 256 bits. Depending on the key size, the number of
rounds are defined: 10 rounds for AES-128, 12 rounds for AES-192,

38

Scalar Cryptography Extension

and 14 rounds for AES-256. Each round, with the exception of the
first, consists of layers, each layer manipulates all 128 bits of the input
5.19 shows the flow of the encryption algorithm.

Plaintext Primary Key
v v
AddRoundKey [« kO Transform O
~ \4
SubBytes
\4
ShiftRows
Round 1 .
\4
MixColumns
Y Y
AddRoundKey [« ! Transform 1
[SubBytes
\ 4
Roundn A ShiftRows
| }
AddRoundKey |« kn Transform n
\4
Ciphertext

Figure 5.19: AES Encryption [24]

The layers are described below:

e SubBytes: performs non-linear transformation according to the
SBOX lookup table.

39

Scalar Cryptography Extension

o ShiftRows: performs permutation on the data on a byte level.

o« MixColumns: performs a multiplication with a constant matrix

in Galois Field GF(28).
e AddRoundKey: performs the addition of the Round Key.

The instructions are implemented for accelerating the encryption
and key-schedule functions (Appendix D) of the AES block cipher.

o aes32esird, rsl, rs2, bs: AES final round encryption instruction,
5.20.

31 30 29 25 24 20 19 15 14 12 11 7 6 0
‘bs|10001‘ rs2 ‘ rs1 ‘000‘ rd ‘0110011

Figure 5.20: Aes32esi Encoding [7]
o aes32esmi rd, rsl, rs2, bs : AES middle round encryption
instruction, 5.21.

31 30 29 25 24 20 19 15 14 12 1 7 6 0
‘bs|10011‘ rs2 ‘ rs1 ‘000‘ rd ‘0110011

Figure 5.21: Aes32esmi Encoding [7]

5.1.5 Zknd - NIST Suite: AES Decryption

The decryption algorithm has the same structure as the encryption.
However, each layer is replaced by its inverse and so the Byte Substitu-
tion layer becomes the Inv Byte Substitution layer, the ShiftRows layer
becomes the Inv ShiftRows layer, and the MixColumn layer becomes Inv
MixColumn layer. Furthermore the order of the round keys is reversed.
These instructions are implemented for accelerating the decryption and
key-schedule functions of the AES block cipher.

40

Scalar Cryptography Extension

o aes32dsird, rsl, rs2, bs: AES final round decryption instruction,
5.22.

31 30 29 25 24 20 19 15 14 12 1 7 6 0
‘bs|10101\ rs2 rs1 ‘000‘ rd ‘0110011

Figure 5.22: Aes32dsi Encoding [7]
o aes32dsmi rd, rsl, rs2, bs : AES middle round decryption
instruction, 5.23.

31 30 29 25 24 20 19 15 14 12 11 7 6 0
‘bs|10111‘ rs2 ‘ rs1 ‘000‘ rd ‘0110011

Figure 5.23: Aes32dsmi Encoding [7]

5.2 Instruction Hardware Implementation

5.2.1 Brev8

The brev8 instruction reverses the bits in each byte of rs source register
in rd destination register. The Figure shows 5.24 the implementation.

Byte-4 Byte-3 Byte-2 Byte-1
N O Y

Figure 5.24: Brev8 implementation

5.2.2 Pack

The pack instruction packs the lower halves of rsl1 and rs2 into rd, with
rsl in the lower half and rs2 in the upper half. The implementation is
showed in Figure 5.25.

41

Scalar Cryptography Extension

15 0 15 0
Il[ll]llll]Il[lllllllllllllllllllll Illl[I]llllll]l[[lllll[llllll[lll!

i f
| rs1[15:0] rs2[15:0]

8 O A
31 15 0

Figure 5.25: Pack implementation

5.2.3 Packh

The packh instruction packs the least-significant bytes of rs1 and rs2
into the first and second least-significant bytes of rd, respectively. Zero
extending the rest of rd. The implementation is showed in Figure 5.26.

7 0 7 0
ITTTITTTTTTTITITTITITTTITTTITITITITITTITITT] [ITTTTTITITTTITTITITITTTITITTITTITITITITIT]
P

| rs1[7:0]

rs2[7:0]

I
31 15 0

Figure 5.26: Packh implementation

5.2.4 Zip

This instruction places bits in the low half of the source register into
the even bit positions of the destination, and bits in the high half of
the source register into the odd bit positions of the destination. The
implementation is showed in Figure 5.27.

€ ro——

N _]
™

N

o]

|«

Figure 5.27: Zip implemen