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Abstract
Urbanloop, founded in 2019, aims to develop an innovative, eco-friendly, fast mobility
solution with minimal environmental impact. This advanced system features a fleet of
self-driving, fully electric pods, designed to transport up to two passengers, operating on
a rail-based circuit. The focus is on scaling the system to medium-sized cities to offer a
new option for public transportation. This work aims to improve the performance of the
control law used to move the pods along the circuit, focusing on enhancing speed and
ensuring passenger comfort. First, a mathematical model based on physical laws will be
presented. This model is then used to design an advanced control algorithm capable of
minimizing travel time and improving performances while being robust to uncertainties.
Specifically, this algorithm is developed by solving two key problems: the generation of a
reference trajectory through an optimization problem, and the application of the Linear
Quadratic Regulator (LQR) method to ensure the system precisely follows this trajectory.
Finally, a comparison between the current heuristic control law and the newly proposed
method is also presented, highlighting key differences and improvements.
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Notation

R Set of real numbers.

R≥0 Set of non-negative real numbers including zero.

R>0 Set of positive real numbers (excluding zero).

N Set of natural numbers including zero.

N>0 Set of natural numbers without zero.

PW(A, B) Set of piecewise constant functions from A → B.

(a, b) Open interval, which includes all x such that a < x < b with a, b ∈ R.

[a, b] Closed interval, which includes all values of x such that a ≤ x ≤ b with a, b ∈ R.

[a, b) Half-open interval, which includes all x such that a ≤ x < b with a, b ∈ R.

(a, b] Half-open interval, which includes all x such that a < x ≤ b with a, b ∈ R.

x ∈ S x belongs to the set S.

∥x∥ Euclidean norm of vector x.

lim
x→a

f(x) Limit of continuous function f at a, where f : Rn → Rm, a ∈ (R ∪ {−∞, +∞})n,
and n, m ∈ N>0.

max
x∈S

f(x) Maximum value of f , when it exists, over the set S ⊆ Rn, where f : Rn → R,
and n ∈ N>0.

min
x∈S

f(x) Minimum value of f , when it exists, over the set S ⊆ Rn, where f : Rn → R,
and n ∈ N>0.

∂f(x,y)
∂x

⃓⃓⃓
(0̄,0̄)

Partial derivative of the differentiable function f with respect to its first argument,
evaluated at the point (0̄, 0̄), where f : Rn → Rm, and n, m ∈ N>0.
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Chapter 1

Introduction

Urban transportation in France faces ever-growing environmental, social, and economic
challenges. Statistics show that over 50% of the French population relies on private cars
daily due to a lack of viable alternatives1. To address this issue and offer a compelling
choice for urban mobility, the Nancy metropolis, the Grand Est region, and the University
of Lorraine are collaboratively developing a novel urban transport system: Urbanloop.

Urbanloop was initiated by Jean-Philippe Mangeot, who successfully gathered engineering
students at the University of Lorraine in 2017 with the goal of creating an optimal mobility
solution using electrical energy. The concept aims to combine the advantages of individual
transport, such as reduced travel time and increased speed, and expand these benefits to
public transport. The core idea involves using electric vehicles capable of transporting
one or two people each, operating on a network of rails to eliminate waiting times and
intermediate stops. In Fig 1.1, a virtual representation of the system is shown, where
multiple vehicles, referred to as pods or capsules, move on rails.

For Urbanloop to achieve these objectives at a large scale, several fundamental challenges
need to be addressed in terms of control, communication and security. In this context, the
«Agence Nationale de la Recherche» (ANR) has funded in 2024 the grant COMMITS2,
which involves three research units, such as LORIA, CRAN, CNAM and of course Ur-
banloop. This internship is part of the COMMITS project and focuses on the automatic
control of a single pod as explained in more detail in the following.

The following sections provide a more detailed overview of Urbanloop, the various objec-
tives of the ANR COMMITS project, and finally, formalize the aims of this internship.

1https://www.francebleu.fr/infos/societe/sondage-municipales-les-francais-veulent-plus-de-place-
pour-la-voiture-et-moins-de-travaux-en-ville-1581433718

2https://commits.loria.fr/fr/
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Introduction

Figure 1.1. Virtual representation of a station of Urbanloop [20].

1.1 Urbanloop
Urbanloop SAS3 was founded in 2019 to develop an innovative, eco-friendly, and fast
mobility solution aimed at minimizing environmental impact. The system employs a fleet
of self-driving pods, as shown in Fig. 1.1, each capable of carrying up to two passengers,
that operate on a network of interconnected loops as depicted in Fig. 1.2. This figure
also shows that each station is a bypass of the main flow of pods.

Figure 1.2. Circuit loops [31].

This cutting-edge system merges the benefits of rail transport, such as low energy con-
sumption, with the convenience of on-demand services, thereby eliminating unnecessary
stops and waiting times for passengers. The primary aim of Urbanloop is not to replace

3https://urbanloop.fr/
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1.2 – ANR COMMITS

existing urban mobility solutions like metros in large cities, but rather to provide a vi-
able alternative to car usage in medium-sized cities by offering an efficient, on-demand
transportation option tailored to the needs of these urban areas.

On May 28 2021, under the supervision of Certifer, world leader in rail certification,
Urbanloop set the world record for the lowest energy consumption per kilometer for an
autonomous rail vehicle, with an impressive energy consumption of only 0.05 kWh/km
(equivalent to 0.0047 cents)4. Given this significant achievement, Urbanloop’s system has
been selected by the French Minister of Transportation to connect the Olympic cycling
venues in Saint-Quentin-en-Yvelines to Paris during the 2024 Olympic Games. For this
event, ten pods operated on a two-kilometer single track loop and more than 65005

passengers used it during the event.

The company’s challenge focus is on scaling the system to meet the increasing demands of
urban areas while upholding its high standards of reliability and maintainability. Sched-
uled for deployment in Nancy in 2026, the Urbanloop system will feature a 4.4-kilometer
loop with 40 pods and a relay connection. Scaling up the Urbanloop transport system to
the size of a city raises several major scientific and technological challenges, that will be
discussed in the next section.

1.2 ANR COMMITS

To facilitate the large-scale implementation of this urban transport model, the ANR
COMMITS project concentrates on the development of efficient and resilient tools de-
signed to manage the system’s infrastructure. This research is crucial for ensuring safe
operation while effectively addressing real-time passenger demands.

From a scientific and technological perspective, these tools will be designed to manage
a network of rail pods that support personal and on-demand mobility. The expected
features include predictive, adaptive, and convergent capabilities, as well as alignment
with communication standards to ensure the safety of capsule control operations.

Objectives The COMMITS project aims to develop a unified communication, control,
and scheduling infrastructure to build a cyber-physical system for managing the Urban-
loop transport network at a large scale. The primary challenge lies in controlling the
entire network while adhering to strict safety, security, and time constraints.

At the city scale, the cyber-physical system must be capable of coordinating a large
number of pods, ranging from around 10 to 4,000, in real-time. The coordination must
encompass several crucial elements. Firstly, passengers must encounter minimal waiting

4https://mines-nancy.univ-lorraine.fr/2021/06/02/urbanloop-bat-le-record-du-monde-la-plus-faible-
consommation-energetique/

5https://www.estrepublicain.fr/transport/2024/08/20/les-capsules-urbanloop-ont-passe-un-premier-
test-grandeur-nature-aux-jeux-olympiques
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times, thereby enhancing the efficiency and convenience of the transport system. In addi-
tion, pods must travel directly to their destinations without making intermediate stops,
ensuring a seamless and uninterrupted journey. Where necessary, the system should fa-
cilitate efficient and contiguous connections to ensure smooth transitions between routes.
Lastly, the system must maintain a high average speed of 50 km/h, ensuring that travel
is rapid and reliable.

Architecture of the system Regarding control systems, unlike conventional rail sys-
tems, Urbanloop requires extreme precision in controlling the trajectories of the capsules.
Moreover, the physics of the pods differ significantly from those of a train. This necessi-
tates the development of efficient and robust control techniques to enable scalability for a
large number of pods. Control techniques developed for road traffic are also not directly
applicable to Urbanloop due to its specific goals (e.g., minimization of waiting time) and
unique characteristics (e.g., rail transport, inability to overtake, etc.). Additionally, the
need to manage interactions with pedestrians presents a new challenge that requires the
development of novel control strategies.

Compared to other pod-based systems, Urbanloop stands out as a unique on-demand
mobility solution on rails. The closest comparable system is urban railway traffic, where
Communication-Based Control Train (CBTC) [12] manages traffic automatically through
continuous communication between the trains and the control system. However, imple-
menting a safe and comfortable mechanism for Urbanloop requires special attention to
the following details:

• solutions must be developed to prevent collisions between capsules and between
pods and pedestrians at circuit intersections;

• a real-time scheduling program is essential for frequently recalculating optimal
schedules and routes;

• the system must handle a large number of capsules with short intervals between
them, necessitating effective management of chain braking mechanisms.

To address these challenges, the Urbanloop system employs a basic centralized CBTC
architecture, where each pod communicates with a central unit. This setup requires
building local controllers, one per pod, to execute the itinerary generated by the scheduler
while adhering to speed and distance constraints relative to other pods.

These local controllers must manage safety and security properties to avoid collisions,
as well as performance metrics such as waiting time and route length. Subsequently, to
build a more reliable system, the centralized setup will gradually become more distributed,
increasing the autonomy of the pods and giving the possibility to handle a large number
of pods.

To enhance the organization of the work plan, the ANR COMMITS project is structured
in different scientific Work Packages. Specifically, the first WP focuses on the development
of the centralized architecture and is subdivided into the following steps:
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1.3 – Internship objectives

WP1.1: Use-case requirements and centralized orchestration system specifications;

WP1.2: Design of centralized orchestration and scheduling;

WP1.3: Reporting on and prototyping the implementation of the local controllers.

In particular, this internship is within WP1.3 as explained in more detail in the next
section.

1.3 Internship objectives

A central component of Urbanloop is the speed controller of each individual pod. The
solution adopted today as deployed for the 2024 Olympic Games relies on a heuristic
design. More precisely, a Proportional-Integral (PI) controller is implemented, whose
gains vary depending on the reference velocity. The tuning of these gains has been done
in an ad-hoc fashion. While this controller is fine for a small number of pods moving
along a single loop, we foresee that its performance may not be compatible for larger
scale scenarios.

In this context, the primary objective of this internship, which took place at CRAN,
is to develop more performant feedback laws in a more systematic manner. We would
like the controllers to be robust to uncertainties such as varying railroad slopes, differing
pod weights (whether the pod is empty or occupied), and external disturbances, while
being performant. By performance, we mean to minimize the travel time while meeting
essential safety constraints for both passengers and the system.

To achieve these objectives, the plan is the following.

1. To construct a faithful mathematical model of the pod based on physical principles,
ensuring it accurately represents the pod’s real-world behavior.

2. To design local controllers, which minimize the travel time, while being robust to
uncertainties.

3. To compare the performance of the existing heuristic control law with the proposed
control law.

The other objectives in terms related to network issues (collision, platooning, (de) inser-
tion etc.) are out of the scope of this internship and will be covered afterwards by the
Agence Nationale de la Recherche (ANR) COMMITS.

1.4 Proposed Approach and Related Systems

To guide the development of our control framework, various classical control methods have
been examined, focusing on automated rail-based systems. Early efforts in this domain
concentrated on integrating automatic time-keeping capabilities into rail systems, with
an emphasis on minimizing energy consumption while adhering to operational constraints
[25].
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Recent advancements in communication, control, and computer technologies [34] have
enabled the integration of Automatic Train Operation (ATO) systems into urban rail net-
works, transitioning from manual to automatic train operation between stations. These
systems dynamically adjust speed and braking based on real-time timetables and optimal
speed profiles derived from sophisticated train behavior models. Before departure, control
algorithms generate a recommended train speed profile that balances travel time, energy
efficiency, speed limits, and safety. Once the train is in motion, a speed controller auto-
matically adjusts commands for acceleration, coasting, cruising, or braking via a feedback
loop, ensuring operational efficiency, passenger comfort, and compliance with speed and
safety constraints. Control techniques like Proportional-Integral-Derivative (PID), Model
Predictive Control (MPC) [9,18,33], and Linear Quadratic Regulator (LQR) [10,21,33],
have been adopted to refine real-time control strategies.

Our approach divides the problem into two key components. First, we generate a reference
tracking profile that meets punctuality requirements while adhering to speed and comfort
constraints. Second, we develop an efficient speed control feedback method to track
the designed trajectory. Specifically, the control method selected is based on the LQR
technique, a classical method suitable for our scenario.

The rest of the report is structured as follows.

• Chapter 2 presents a comprehensive description of the pod, including the construc-
tion of the mathematical model and studies conducted for its validation. Such a
model was not developed by Urbanloop and is thus a first contribution.

• Chapter 3 offers a comprehensive analysis of the implemented control strategy.
It details the control specifications set by Urbanloop and provides an in-depth
description of the reference trajectory generation process. Additionally, it discusses
the proposed control law based on the LQR method, including specifics on tuning
the weight matrices and the results obtained across various reference trajectories.

• Chapter 4 examines the results achieved with the proposed control law applied
to experimental data, and provides a comparative analysis between the heuristic
control law and the proposed LQR approach.
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Chapter 2

Modeling of the pod

This following chapter is organized into three sections. It starts with a comprehensive
description of the Urbanloop system and its capsules, detailing the essential features and
operational aspects relevant to understanding the system’s dynamics.

Next, the chapter presents a mathematical model for the Urbanloop pod dynamics. This
section includes the formulation of equations and the derivation of the model that de-
scribes the behavior and interactions within the system.

Finally, the chapter addresses the validation of the proposed mathematical model. It
covers the methodologies and results used to verify the accuracy of the model using
experimental data and simulations.

2.1 General description

As mentioned in Chapter 1, an Urbanloop network consists of several autonomous pods
running on rails, capable of transporting one or two people each. The capsules are fully
electric and move through interconnected loops, with energy provided by the rails. The
Urbanloop network is designed for daily trips of 1 to 15 km.

The capsules move along a ring-shaped circuit designed for one-way traffic flow. Each
vehicle operates autonomously without onboard personnel and travels in a single direction
during normal operations. However, under specific conditions, capsules may be permitted
to travel in both directions.

Although the capsule may go through multiple stations along the journey, it only stops at
the destination selected by the user. This is made possible by the bypass positioning of
the stations. This approach allows us to avoid stopping at every station, unlike traditional
public transportation such as metros and trams.

Moreover, in contrast to a conventional railway system where a movable switch directs
the train left or right, Urbanloop’s rails are fixed with no moving parts, ensuring safe
and reliable navigation. As illustrated in Fig 2.1, a pod is shown traversing the rails

25



Modeling of the pod

Figure 2.1. View of the rails [24].

at a junction where the direction changes. Urbanloop has innovated with an on-board
switch system for its vehicles, allowing convoys to be managed efficiently without the
need to decelerate at junctions. This streamlined lane management is more resilient to
hazards and demands less instrumentation. Direction changes are executed directly from
the capsule, employing a system of tilters to navigate the vehicle into its designated lane.

2.2 Main Components

The pod, as shown in Fig. 2.2, is designed to transport one or two people and moves
autonomously along the circuit, requiring no interaction from the user. These electrical
capsules are powered by the rails, eliminating the need for on-board batteries. As a
result, the pods can operate continuously, ensuring full-time availability. The following
will comprehensively detail the power supply system, the energy conversion chain, and
the position measurement of the pods along the circuit.

Power Supply System To minimize maintenance costs and environmental impact,
Urbanloop vehicles are powered by very low voltage rails via a sliding contact. Power is
supplied through direct contact with the rails, distributed by power containers positioned
every 500 meters along the track, each providing several kilowatts. This decentralized
system, managed by a peer-to-peer negotiation mechanism, reduces costs and improves
reliability.

The power supply containers connect to the distribution network on one side and to the
rails on the other. The rail power operates at a voltage level of 72V DC, with the two
rails galvanically isolated from the electrical ground. Each vehicle is equipped with a
component known as the shoe, a metallic element that conducts electricity and aligns
with the positive and negative guidance tracks.
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2.2 – Main Components

Figure 2.2. The pod [13].

To power the pods, Urbanloop adopts an innovative solution: the Ground Power Sup-
ply System (GPSS). This system features two aluminum profiles, one positive and one
negative, fitted with stainless steel inserts. Aluminum high conductivity minimizes en-
ergy loss, ensuring efficient power delivery, while stainless steel enhances durability and
prevents corrosion. The GPSS provides a consistent and reliable power feed to the vehi-
cles. An extruded polymer sheath electrically insulates the poles from the environment,
safeguarding against weather and corrosion and ensuring user safety by preventing direct
contact. This system is highly versatile and can be installed on various terrains and
surfaces. Additionally, supercapacitors are present to ensure continuous power supply in
case of disconnection between the skids and the rails.

Energy conversion chain To facilitate the conversion of electrical energy into kinetic
energy for vehicle movement, each pod is equipped with electric motors controlled by a
torque controller. These motors generate torque that directly affects the capsule’s speed
and, consequently, its position. This rotational torque is then converted into propulsion
force through the interaction between the tires and the rails.

The pod includes two 4kW BrushLess Direct Current (BLDC) motors from QS Motor1,
one for each rear wheel. The particularity of BLDC motors comes from the permanent
magnet rotor generating a constant magnetic field [6]. On the stator side, three electrical
phases geometrically spaced by 60◦ are used to create a rotating magnetic field using
alternative current. The rotor is then rotated synchronously with the rotating field.
BLDC motors belong to the class of synchronous motors.

1https://www.qsmotor.com/product/4000w-single-shaft-motor/
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Modeling of the pod

To generate the stator currents, the controller KellyKLS7222H2 is used. It is composed
of:

• a three-phase inverter linking the 72V coming out of the power supply capacitors
to the stator phases;

• a Field Oriented Control (FOC) device [3,14] aiming at controlling the motor torque
by acting on the switches of the inverter.

Given the measured rotor position and stator currents, the FOC relies on the Park trans-
formation [27] on the three-phase frame of the stator toward a two-phase rotating frame,
attached to the rotor. The overall current is then split on the two axes of the frame, lead-
ing to the so-called direct current and quadratic current. By moving the direct current,
we can control the magnetic flux of the rotor whereas the quadratic current impacts the
motor torque. Using PI controllers, the FOC controls precisely the currents and therefore
the magnetic flux and motor torque. More details will be given when detailing the model
in Section 2.3.

Position measurement To implement a system where numerous vehicles interact on
the same network, the capsules must operate in close proximity. This requires extremely
precise control of their speed and position on the track, as well as the ability to facilitate
interactions with very low latency.

Each capsule is equipped with sensors capable of measuring its position and speed with
high accuracy, ensuring an error probability 3 of less than 10−9. The positioning of the
capsules on the network is achieved through a patented system 4 by Urbanloop, which
uses ferromagnetic markers of varying lengths placed along the track every 2 meters.

As a capsule passes over these markers, an inductive sensor, combined with an incremental
sensor on the capsule’s wheel, measures the length of each marker. These markers, func-
tioning like a continuously scanned barcode, allow the system to read several successive
markers to determine the precise position of the capsule on the track.

Using this system, it is possible to determine the absolute position of the pod along the
circuit at every instant.

2.3 Model of the pod dynamics

In this section, we derive a state-space model of the capsule dynamics based on funda-
mental physics principles. We begin by introducing the assumptions made, the variables
and parameters used to accurately describe the model, and then examine the forces acting
on the system.

2https://media.kellycontroller.com/new/Kelly-KLS-HUserManualV1.2-100G-13.pdf
3https://urbanloop.fr/en/notre-technologie/
4https://bul.univ-lorraine.fr/index.php/apps/onlyoffice/s/ETiDxr9NHEZBAgn?fileId=106234105
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2.3 – Model of the pod dynamics

2.3.1 Assumptions

Before proceeding with the analysis, a set of assumptions is established to simplify the
description of the capsule’s dynamic behavior while maintaining its key characteristics.

The capsule is modeled as a point mass, an approach frequently used in train transport
systems [16]. This abstraction facilitates a more manageable mathematical treatment
by concentrating exclusively on the capsule’s translational motion. All four wheels are
considered identical in diameter, material properties, and mechanical behavior.

The motors, located at the rear of the capsule, are assumed to be identical in terms of
power output, control algorithms, and operating conditions. These motors are regulated
by a uniform torque controller, effectively functioning as a single virtual motor. The total
torque generated is the sum of the individual torques produced by each motor, a concept
discussed in more detail in Section 2.3.3.

For the sake of simplification, the capsule’s motion is assumed to be linear, following a
straight trajectory. Consequently, track curvature and transverse inclination are consid-
ered to have negligible impact on the dynamics.

The interaction between the wheels and the track is simplified by assuming no sliding,
meaning the wheels maintain perfect rolling contact with the track. The friction coef-
ficient between the tires and rails is considered constant, directly proportional to the
capsule’s weight. Aerodynamic drag is modeled as proportional to the square of the
capsule’s speed, capturing the increased effect of air resistance at higher speeds [2, 4].
The coefficient of static friction, which governs the initiation of motion, remains constant
regardless of whether the capsule is stationary or in motion.

These assumptions are summarized as follows.

1. The capsule is considered a point mass.

2. All four wheels of the capsule are identical in diameter and characteristics.

3. All motors have identical specifications and controllers, and they operate in the
same manner.

4. For each pod, the two motors are assumed to generate a combined torque that
represents the total contribution of both motors.

5. The capsule moves in a straight line, with turns being gentle enough not to introduce
additional forces affecting its dynamics.

6. Neither the track’s curvature nor its transverse inclination affects the capsule’s
dynamics.

7. The wheels maintain contact with the track without any sliding.

8. The friction between the tire and the rail is proportional to the capsule’s mass.

9. The aerodynamic drag force is assumed to be proportional to the square of the
speed.
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10. The coefficient of dry friction remains constant regardless of whether the capsule is
stationary or in motion.

2.3.2 Variables

To express equations and formulas clearly and concisely, it is necessary to introduce the
mathematical notation that will be fundamental for understanding the concepts. First,
we define several variables:

• y : R≥0 → R is the position of the capsule on the track;

• ẏ : R≥0 → R is its speed along the track axis;

• iq : R≥0 → R is the quadratic current of the motors;

• ξ : R≥0 → R is the state of the integrator of the torque controller.

Thus, at time t ∈ R≥0, the position of the capsule is denoted by y(t), its speed by ẏ(t), the
motor current by iq(t), and the state of the integrator by ξ(t). Based on the assumptions
formulated in Section 2.3.1, we will see further that we need just the following state
variables y, ẏ, iq, and ξ to capture the dynamics of the vehicle.

The position y affects the variable α : R → [−π
2 ; π

2 ] which represents the slope of the track
in radians as a function of the position. The variable α(y) indicates the track inclination
angle relative to the horizontal, with α(y) being positive when the vehicle is moving
uphill. Typically, the slope angle is expressed as a percentage. Figure 2.3 provides an
illustrative example of the pod traveling along a path where the slope angle varies with
position y, showing an angle different from zero.

y(m)

α(%)

0

8

Figure 2.3. Example of a path with positive slope angle.

Since we consider a maximum inclination of 10-12%, in the Appendix A.2 it is possible to
find a table to convert from percentage to radians to degrees. The parameters described
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in the following sections are detailed in Appendix A.1.

2.3.3 Forces Acting on the Pod

The dynamical model of the capsule is derived from the fundamental principle of dynam-
ics. Therefore, we must first perform a balance of the forces in action.

Traction Force The traction force is produced by the wheel motors, which are per-
manent magnet synchronous machines controlled by a torque controller, as detailed in
Section 2.2. These motors are managed in controlled jointly, effectively behaving as a
single virtual motor with a combined torque that is the sum of each motor’s torque. The
electrical components of the motor with its torque controller are illustrated in Figure 2.4.

va, vb, vc ia, ib, icda, db, dciq,r Inverter
Torque

Controller Decoupling T−1(θ)

T (θ)

Electric

dynamics

d∗d

d∗q

dd

dq

θ

id

iq

Figure 2.4. Torque Controller Scheme

The controller’s input includes the reference quadratic current iq,r and the quadratic
current iq. The controller processes these inputs to generate reference duty cycles for
the direct and quadratic axes, denoted as d∗

d and d∗
q . A decoupling block then separates

the duty cycles into direct dd and quadratic dq components, using the axis currents id

and iq as feedback. The inverse Park transformation [27], T −1(θ), where θ is the rotor
angle, is employed to convert the signals dq and dd into three-phase duty cycles da, db,
and dc. These are used to control the three-phase inverter, which then drives the motor
with voltage signals va, vb, and vc.

The total torque Γ is proportional to the quadratic current iq, as expressed by:

Γ = Kµiq,

where Kµ is the torque coefficient. For further details on this coefficient and its derivation,
refer to Appendix A.1, which explains how the torques from each motor are aggregated
into the final torque value. The quadratic current iq depends on the three-phase currents
ia, ib, and ic and the rotor angle θ, through the Park transformation [27]. The dynamics
of the quadratic current iq are described by the following law.

diq

dt
= −R

L
iq + E

L
dq,

4The values of Kµ, R, L, E, Kp, Ki, r, M , g, ρ, Cx, S, vwind are available at Appendix A.1.
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where R and L are the stator resistance and inductance, respectively, E is the supply
voltage, and dq is the quadratic duty cycle. Current regulation is achieved with a PI
controller, described by: {︄

ξ̇ = iq,r − iq

dq = Kp(iq,r − iq) + Kiξ
(2.1)

where ξ is the integrator state, and Kp and Ki are the proportional and integral gains of
the controller, respectively.

Therefore, we obtain

Ftract := Γ
r

, (2.2)

where r is the radius of the wheel, and Γ is the resulting torque from the two motors.

Weight The weight of the capsule affects its movement dynamics, particularly on a
slope. The effect of weight is described by the following equation

P (y) = −Mg sin(α(y)) ∀y ∈ R, (2.3)

where α is the slope angle described in Section 2.3.2, M is the mass of the pod and g is
the gravitational constant.

Weight contributes to the capsule’s movement only when α is non-zero. Figure 2.5 pro-
vides a graphical representation of the weight force as a function of the track’s slope angle
α.

Mg

α(y)

pod

Mg
sin

(α(
y))

Figure 2.5. Weight force P (y) as a function of the slope angle α

4The values of Kµ, R, L, E, Kp, Ki, r, M , g, ρ, Cx, S, vwind are available at Appendix A.1.
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Air Friction Force The air friction on the capsule is given by the following relationship

Fair = −ρCxS (ẏ − vwind)2 , (2.4)

where Cx is the drag coefficient of the capsule, ρ is the air density, S is the frontal area
and vwind is the speed of the wind component along the capsule axis of motion. The drag
coefficient Cx ranges between 0 and 1, a value closer to 0 indicates a more aerodynamic
vehicle.

Dry Friction Force To express dry friction, let us first denote Fres as the resultant
force from all previously mentioned forces, i.e.,

Fres := Ftract + P (y) + Fair, (2.5)

where Ftract, P and Fair are given by (2.2), (2.3) and (2.4) respectively.

Regarding the behavior of the dry friction force, it opposes external forces at zero velocity
as long as it remains below the threshold given by

Fsec,0 := kMg ∈ R≥0, (2.6)

where k is the dry friction coefficient and depends on the type of contact between the two
moving surfaces. If Fres exceeds Fsec,0, the capsule starts moving, and the dry friction
force then opposes the movement with a constant amplitude Fsec,0.

The definition of dry friction is as follows

Fsec(Fres, ẏ) :=

⎧⎪⎨⎪⎩
Fsec,0 ẏ < 0
−sat[−Fsec,0,Fsec,0](Fres) ẏ = 0
−Fsec,0 ẏ > 0

(2.7)

where the saturation function sat is defined by

sat[a,b](x) =

⎧⎪⎨⎪⎩
a x < a
x x ∈ [a, b]
b x > b,

∀x ∈ R. (2.8)

for a, b ∈ R such that a ≤ b.

2.3.4 State Space Representation

With the forces influencing the capsule now analyzed, we can derive its dynamical model.
Based on (2.2)-(2.7), the fundamental principle of dynamics along the capsule’s motion
axis is given by

5The value of k is available at Appendix A.1.
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Mÿ = Γ
r

− Mg sin(α(y)) − ρCxS (ẏ − vwind)2 + Fsec(Fres, ẏ). (2.9)

We define the input of the system as u := iq,r, u ∈ Rnu , and the state vector x ∈ Rnx as

x :=

⎡⎢⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ξ
iq

y
ẏ

⎤⎥⎥⎥⎦ , (2.10)

and z ∈ Rnz signifies the output. Specifically, nx := 4, nu := 1, and nz := 2, making it a
Single Input Multiple Output (SIMO) system.

We can represent the system as, given (2.1)-(2.7)

ẋ = f(x, u, vwind)
z = h(x),

(2.11)

where the function f : Rnx → R defines the field vector, expressed as:

f(x, u, vwind) :=

⎛⎜⎜⎜⎝
−x2

EKi
L x1 − EKp+R

L x2
x4

Kµ

rM x2 − ν(x3, x4, vwind)

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
1

EKp

L
0
0

⎞⎟⎟⎟⎠u. (2.12)

The measured outputs are the velocity and position of the capsule, represented by x3 and
x4 respectively. Thus, the output function h : R2 → R is given by:

h(x) :=
(︄

0 0 1 0
0 0 0 1

)︄
x. (2.13)

System (2.11) is nonlinear due to the inclusion of trigonometric and quadratic terms. The
function ν : R2 → R captures the nonlinear components in the last differential equation
of (2.12):

ν(x3, x4, vwind) := g sin(α(x3)) − Fsec(Fres, x4)
M

+ ρCxS

M
(x4 − vwind)2 . (2.14)

Not only system (2.11) is nonlinear, it is also discontinuous because of Fsec, which justifies
its writing as a differential inclusion. In this context, we consider solutions to (2.11) in
the sense of Krasovskii [8].

34



2.3 – Model of the pod dynamics

2.3.5 Model Reduction

To proceed with the design of the controller in Chapter 3, we propose to simplify the
system (2.11). In these paragraphs, we discuss the process of reducing the dynamical
system described by the equations in (2.11)-(2.14). We exploit for this purpose the fact
that system (2.11) exhibits several time-scales.

Considering the system in (2.11), given that the values of the parameters Kµ, R, L,
E, Kp, Ki, r, M , g, ρ, Cx, S, and vwind are provided in Appendix A.1, and since we
assume a maximum slope of 12% for the angle α(x3), as described in Section 2.3.2, we
can approximate the system as follows.

f(x, u, vwind) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−x2
EKi

L⏞ ⏟⏟ ⏞
≈107

x1 − EKp + R

L⏞ ⏟⏟ ⏞
≈109

x2

x4
Kµ

rM⏞⏟⏟⏞
≈10−2

x2 − g sin(α(x3))⏞ ⏟⏟ ⏞
≈102

+ Fsec(Fres, x4)
M⏞ ⏟⏟ ⏞
≈10−1

− ρCxS

M⏞ ⏟⏟ ⏞
≈10−3

(x4 − vwind)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎝
1

EKp

L⏞ ⏟⏟ ⏞
≈109

0
0

⎞⎟⎟⎟⎟⎟⎟⎠u.

(2.15)

What we observe is that the equations describing the electrical behavior of the system, e.g.
the first two equations, have significantly larger magnitudes compared to the equations
related to the pod dynamics. Specifically, the factors in the second equation, highlighted
in red, are at least seven orders of magnitude greater than those in the fourth equation,
highlighted in blue.

Moreover, system (2.11) is singularly perturbed [22, 26, 29], and the origin of the fast
dynamics is globally exponentially stable. Consequently, we can consider the reduction
of system (2.11) by assuming that the fast variables are constrained on the so-called slow
manifold. The slow manifold technique [22] is employed to reduce the system. This
method is particularly useful when a system has components evolving at different rates.
The slow manifold represents a subspace of the state space where the fast variables are
in equilibrium. Specifically, it consists of the set of points where the velocity of the fast
variables is zero for a given slow state.

Applying the slow manifold technique allows us to reduce the complex system to a simpler
model that captures the essential characteristics of the slow dynamics. Further details
on the application of the slow manifold technique can be found in Appendix A.3.

Based on these observations, we can simplify the model to focus on the slow variables.
The reduced model is represented by

fred(x, u, vwind) :=
(︄

x2
−ν(x1, x2, vwind)

)︄
+
(︄

0
Kµ

rM

)︄
u, (2.16)

where x1 denotes the position of the capsule along the track, x2 represents its velocity,
and u is the reference quadratic current iq,r.

35



Modeling of the pod

The output function for the reduced model is also modified as follows

hred(x) := x. (2.17)

We can concisely represent the reduced model using the following notation

Σ :
{︄

ẋ = fred(x, u, vwind)
z = hred(x). (2.18)

The system described by (2.18) will be crucial for the following steps, including model
validation and the development of the proposed control law.
From now on and for the remaining part of the report, we assume that the fast dynamics
are static, so the dynamics of the pods follow the system described in (2.18).

2.4 Model Validation
The primary objective of this section is to evaluate how accurate the model is in the light
of the available experimental recordings. Firstly, a brief overview of the experimental
data will be provided, followed by a description of the heuristic control law employed for
the tests. Next, the scheme used for model validation will be presented, and the section
will be concluded with a discussion of the obtained results.

To validate the system (2.18), we consider the reduced one (2.16), where x1 and x2
represent respectively the position and speed of the system, while u denotes the control
input associated with the reference quadratic current.

2.4.1 Experimental Data

To conduct various simulations, tests were carried out in Saint-Quentin-en-Yvelines. A
total of 10 tests were performed on different days under varying weather conditions. A
capsule was used on the circuit, with the number of occupants varying between 0, 1,
and 2 individuals. In each test, multiple trajectories between stations were executed to
evaluate the effectiveness of the heuristic control law proposed by Urbanloop in ensuring
the system accurately followed the reference velocity trajectory.

For each test, different informations were collected: logs included the speed reference
of the capsule vref , the pod speed v, the capsule’s position relative to the circuit, the
controller gain values, and flags indicating brake activation. These data were recorded
at a sampling rate of one second. Since multiple trajectories were performed during each
test, data cleaning was conducted to isolate a single test for each trajectory from station
A to station B, resulting in 24 distinct tests. These tests are sorted and labelled from
Test 1 to Test 24.

However, data do not include information on wind speed along the route or the longitu-
dinal slope angle. Therefore, the variables vwind and α(x1) were set to zero for the entire
model validation.
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2.4.2 The Heuristic Control Law

Before proceeding with the model validation, it is important to reconstruct the control
law used to perform the test. Specifically, this control law refers to the PI control method,
which involves both a proportional and an integral gain. However, unlike the standard
PI controller where the gains are fixed, in this approach, the gains vary according to the
system speed v. Figure 2.6 offers a simplified overview of the controller used by Urban-
loop.

p

i

+

+

evref

v

+

−

flag

1
s

Kap

Kai

doutgout

v

v

v

Figure 2.6. PI Urbanloop

The various signals used are as follows:

• vref is the reference speed;

• v is the generated speed of the system;

• e is the difference between the speed reference and the actual speed of the system.
This value is used as input for both the integral and proportional components;

• p represents the actual value of the proportional component, calculated as p :=
Kape, where Kap is the gain for the proportional part of the controller and varies
with the speed of the system v;

• flag is a boolean value initialized to zero; when the mechanical brake is activated,
this value is set to 1, resetting the integral component to zero;

• i represents the value of the integral component. The error e is input to the inte-
grator, which operates as an integrator with reset triggered on a falling edge. If the
value of the flag is equal to 1, the sum within the integrator is reset to zero. Similar
to the proportional component, Kai represents the gain for the integral component;
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• A gain gout, that varies according to the speed of the system v, multiplies the sum
of p + i;

• dout represents the output value, calculated as gout(p + i). This output is a digital
value between -100 and 100.

From now on, we will refer to this control law as the Urbanloop PI control law.

2.4.3 Assumptions and Unknown parameters

To validate the model, several challenges had to be addressed. Specifically, the data pro-
vides a digital value dout as output, whereas the model requires a current value as input.
Due to incomplete and non-reconstructible information about the electrical components,
we opted to simplify the electrical aspects by treating the torque controller as a simple
gain. This simplification was essential because the information related to the effective
construction of the torque controller 6 is reserved and is essentially a black box, making
it impossible to proceed otherwise.

The following scheme 2.7 illustrates the process.

Urbanloop
PI

Unknown

gain
Σ

+

−

iqrvref
dout

x1

x2

Figure 2.7. Closed-Loop Scheme

In Closed-Loop Scheme, we have the following signals:

• vref represents the reference speed value, collected in the data;

• Urbanloop PI represents the heuristic control law, explained in the previous section,
with an output value dout, a digital value ranging from [−100, 100];

• Unknown gain represents the gain value between the control law and the model
input;

• Σ represents the reduced model (2.18);

• x1 and x2 represent the position and speed of the system, respectively.

The value x2 has been used in feedback to calculate the value of the error as (vref − x2)
and this last value has been used as input of the PI controller. The primary purpose of
this approach represented in Fig. 2.7 is to determine the missing gain value. Finding this

6https://media.kellycontroller.com/new/Kelly-KLS-HUserManualV1.2-100G-13.pdf
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gain is crucial to ensure that the model receives a current value as input rather than just
a digital value. To determine the gain value, numerous simulations were performed using
data from all 24 tests to achieve behavior similar to that observed in the experimental
data. Below, we see the results of some tests in Fig. 2.8, 2.9:
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Figure 2.8. Closed-Loop Validation Test 3
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Figure 2.9. Closed-Loop Validation Test 21

The red curve represents the trajectory of the system speed profile x2 generated by (2.16),
while the blue curve shows the trajectory of the system speed collected from the test data
v. To evaluate the mismatch between the graphs, we used the Root Mean Squared Error
(RMSE) as the measurement index. The goal was to identify the gain that minimizes
this value across all tests. For these simulations, we achieved RMSE values of 1.4907 m/s
for Test 3 and 2.5374 m/s for Test 21, using a gain of 1.3. These results are satisfactory,
as the system’s speed closely matches the recorded speed values, despite some minor
discrepancies. The following table 2.1 presents the value of the RMSE obtained for all
the tests.
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Test RMSE [m/s] Test RMSE [m/s]
1 1.4907 13 2.2165
2 1.4702 14 5.8384
3 2.6809 15 2.7706
4 2.6629 16 2.4236
5 1.7129 17 0.7927
6 2.3353 18 2.8910
7 2.1587 19 2.7706
8 2.5183 20 1.8282
9 3.1973 21 2.5374

10 2.2925 22 1.9586
11 2.0488 23 0.3534
12 2.6019 24 1.1932

Table 2.1. RMSE results for Closed-Loop Validation Tests

By analyzing the values reported in Table 2.1, we observe very similar results between
all the tests provided.

Using this approach has been essential in ensuring a properly adapted reconstruction of
the control scheme used, which allows for the correct interpretation of the data. The
main goal was to efficiently reconstruct the control law employed by Urbanloop, with
particular emphasis on determining the value of the Unknown gain that aligns with the
chosen approach.

It is possible that the accuracy obtained in validating these tests may be attributed to the
robustness of the PI controller used by Urbanloop, which appears capable of optimally
correcting the error between the system’s velocity and the reference speed. For this reason,
it is necessary to utilize an Open-Loop (OL) scheme that does not rely on feedback from
the system’s velocity to correct errors. This is feasible because the contribution of the
Urbanloop-designed controller is encapsulated in the value dout, allowing us to effectively
analyze the validation of our model.

2.4.4 Open-Loop Validation Tests

To properly validate the model, we analyze the system using experimental data without
incorporating the system speed in Closed-Loop (CL). What we have is an OL system, as
shown in the following figure 2.10:
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Unknown
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iqrdout
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x2

Figure 2.10. Open-Loop Scheme

The experimental data remain as previously documented. The Unknown gain, determined
from earlier simulations, has been set to a value of 1.3. The model used is (2.18). The
outputs consist of the system’s speed and position.

Using this model to run the simulations, we obtain the following performances:
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Figure 2.11. Open-Loop Validation Test 3
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Figure 2.12. Open-Loop Validation Test 21

The red curve represents the system speed profile x2, while the blue curve shows the
system speed collected from the test data v. The tests yield RMSE values of 20.7261 m/s
for Test 3 and 16.4105 m/s for Test 21, indicating poorer performance compared to
previous tests. For example, in Test 3, after 70 seconds, a noticeable offset appears
between the two curves, leading to a divergence in their behavior. Similarly, in Test 21,
after reaching peak speed, the system speed x2 fails to closely follow the data speed v.
The following table 2.2 presents the value of the RMSE obtained for all the tests.
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Test RMSE [m/s] Test RMSE [m/s]
1 21.1923 13 13.0134
2 6.9164 14 20.0848
3 20.7261 15 15.9893
4 25.8265 16 14.1000
5 12.8602 17 0.9595
6 22.1966 18 15.8211
7 24.3091 19 15.9893
8 7.1043 20 15.7190
9 16.1836 21 16.4105

10 16.2895 22 6.3374
11 4.3203 23 0.5056
12 14.8999 24 6.7729

Table 2.2. RMSE results for Open-Loop Validation Tests

In general, analyzing the different values presented in Table 2.2, we observe varying re-
sults that cannot be considered satisfactory across all tests. In particular, the behavior
observed between the tests conducted in open-loop (OL) and closed-loop (CL) configu-
rations differs significantly, with the OL tests exhibiting worse performance. A potential
explanation for these results may be the neglect of wind power and slope inclination,
which could introduce significant errors in the model’s accuracy.

2.4.5 Final Considerations on Model Validation

The work done to accurately validate the model can still be improved; it is clear that
there are some features to adjust. It is also important to highlight that the informations
related to wind power and the longitudinal inclination of the pod along the track were
missing, so these values have been set to zero, which may explain the mismatch observed
in Fig 2.11 and 2.9.

In general, the variation of the angle can go up to 12% for the considered circuits, so
having an angle different than zero, can significantly change the behaviour of the system.
To illustrate this, simulations have been done by changing the value of α. Figure 2.13
shows the obtained results.
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Figure 2.13. Test 3 with angle slope variation

Using Test 3 as the baseline, this plot illustrates how angle variation can affect the
speed behavior. The blue curve represents the trajectory data speed v, while the other
curves depict the trajectory system speed with different slope angles, (denoted as s.a.),
ranging from -2% to 3%. The simulated angle variation is constant throughout the
entire trajectory. However, in real scenarios, there are segments of the trajectory where
the inclination may differ from zero. These plots demonstrate that the slope angle is
a significant parameter that cannot be ignored during model validation. A worthwhile
approach is to obtain and collect information related to the slope angle for the circuits
under consideration.

Another factor that can significantly affect the behaviour of the trajectory is wind speed.
Similar to the slope angle, simulations have been conducted in Test 3 to observe the
impact of wind, as shown in Fig 2.14.
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Figure 2.14. Test 3 with wind variation

The impact of air friction force must be considered. As for the slope angle, simulations
were conducted assuming a constant wind speed along the entire trajectory, ranging from
−20 km/h to 20 km/h. However, this parameter can vary based on weather conditions
and the direction of the pod along the circuit.

To resume, further work is needed to accurately represent the mathematical model. Sim-
ulations with varying wind speed and slope angle parameters show significant differences
in the system’s behavior, highlighting their substantial impact on performance. To ad-
dress this, it would be beneficial to obtain detailed information about the slope angle
from the circuit used in the tests or to redo the tests while accounting for variations in
wind speed to properly adjust the proposed mathematical model.
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In summary, this chapter has provided a detailed description of the constructed model,
validation tests, and the corresponding results. Looking ahead, it will be important to
gather data on the slope angle of the test circuit and wind speed to further assess the
model’s accuracy.

A promising approach could involve validating the model using the OL scheme. If metrics
like RMSE approach those obtained with the CL scheme, it would suggest that the model
reliably captures the pod’s system dynamics.

Despite some minor discrepancies, the model’s structure is generally well-suited for accu-
rately representing the pod’s behavior. Additional tests, particularly involving changes
in slope angle or wind speed, may necessitate further refinements based on the outcomes.

The subsequent chapter will center on formulating the control strategy. The proposed
algorithm will leverage the mathematical model to generate a reference trajectory tailored
to the system under study. Furthermore, a closed-loop control method will be devised to
guarantee that the system accurately follows this trajectory.
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Chapter 3

Control Design

In this chapter, the specifications set by Urbanloop are formalized as control objectives
for system (2.18).

3.1 Objective and strategy
In this MSc project, we focus on a single pod operating on a loop, with the following
objective.

Control problem Automatically move the pod from an initial resting position to a
desired location in the minimum time, while ensuring comfort and security.

Constraints related to the comfort and the security will be detailed in Section 3.2.

Our approach to solve the control problem is twofold :

1. As a first step, we formalize and solve a minimal time control problem to generate
an optimal reference trajectory that is compatible with the pod’s dynamics (2.18)
as well as additional constraints we will detail in the following. We therefore obtain
a feedforward input which we will refer to as the reference input.

2. Subsequently, given the importance of ensuring consistent performance despite po-
tential disturbances or uncertainties, we aim to design an output feedback law to
ensure the system’s speed closely follows the reference trajectory.

To provide a clearer understanding of the approach, we refer to the block diagram shown
in Figure 3.1 where xf denotes the final state that the pod aims to achieve. The block
G generates the optimal input trajectory u∗ for the pod to follow, as well as the optimal
reference trajectory, denoted as x∗. Furthermore, the block C operates as a feedback
controller, interacting with the system to adjust the action, thereby influencing the input
vector u. Following this, the input to the block Σ (Plant) yields the output vector z, in
accordance with dynamics (2.11). The plant dynamics Σ are then linked back to the block
C to refine the controller’s action based on the pod’s position and velocity information.
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G C Σ
xf x∗, u∗

u z

G : Reference trajectory generator
C : Controller
Σ : Plant
x∗ : Reference trajectory
u∗ : Reference input
xf : Final condition
z : Output State vector

Figure 3.1. Block diagram of the control strategy.

As previously mentioned, through this modular strategy, changes to one of the blocks G
or C do not require changes to the other block: this enables us to address both problems
independently.

3.2 Reference Trajectory Generation

References Various scientific papers and books have been reviewed for the generation
of the speed reference trajectory. Since transportation systems most similar to Urbanloop
are urban railway traffic systems, it has been useful to search for information related to
handling similar ones, such as rail systems. The paper [32] addresses a similar prob-
lem: optimizing a train’s trajectory to minimize energy consumption while considering
constraints related to the train’s speed. Additionally, to adhere to the train’s planned
timetable, it is necessary to minimize delays and respect speed constraints. The problem
is formulated as a multi-phase optimal control problem and solved using the pseudospec-
tral method.

Conversely, the paper [1] analyzes a different system, but the optimization strategy is
particularly interesting due to its similarity to ours. In particular, a convex programming
algorithm is presented to compute the numerical solution for the minimum fuel pow-
ered descent guidance problem associated with Mars pinpoint landing. Specifically, the
problem involves reformulating the trajectory optimization problem, which has noncon-
vex control constraints, as a finite-dimensional convex optimization problem, resulting in
a second-order cone programming problem. Even though, we did not employ convexi-
fication techniques as in [1], this reference has been an inspiring example for the total
discretization method. Further, [19] extensively examines various optimization meth-
ods for generating the optimal trajectory of a train-based system. The authors propose
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energy-efficient control strategies founded on numerical algorithms to compute the opti-
mal trajectory.

In summary, these papers provide valuable insights, particularly regarding the formula-
tion of constraints and the optimization problem. However, it is important to note that,
in our case, the primary objective is to minimize travel time between the start and end
points, rather than focusing on power consumption, as seen in the references analyzed.
Additionally, unlike conventional railway traffic systems, there is no predefined timetable.
Instead, the goal is to find a solution that minimizes arrival time as much as possible,
while accounting for constraints on speed, acceleration, and input, ensuring adherence to
limits and maintaining passenger comfort aboard the pod.

Given the initial and final conditions for the pod, our objective is to generate the reference
trajectory x∗ corresponding to the reference input u∗. The aim is to minimize the travel
time for the pod to reach the final destination at a given velocity. First, we need to
clearly define the initial and final conditions that the system must meet, along with the
various constraints concerning the system’s dynamics, input, and state. Additionally,
we will introduce the cost function associated with this problem. Subsequently, we will
present the solution obtained using the discretization method, accompanied by the results
of simulations conducted in Matlab.

3.2.1 Constraints

In this section, we outline the constraints the solutions (2.18) must satisfy.

Initial condition We define t0 = 0 as the initial instant of time and x0 as the initial
value of the state vector. Assuming that the pod begins its journey from the starting
point y0 with a given velocity v0 ∈ R, we can express the initial conditions as

x(0) = x0 :=
(︄

y0
v0

)︄
, (3.1)

with y0, v0 ∈ R.

Final condition We denote the desired final value of the state vector as xf ∈ Rnx . It
is essential that the pod arrives at the endpoint yf ∈ R with a given velocity vf ∈ R. We
denote the final conditions as follows

xf :=
(︄

yf

vf

)︄
, (3.2)

with yf , vf ∈ R.

It is important to note that the initial and final velocities of the pod are not assumed to
be zero. This requirement ensures that the optimization problem accounts for the optimal
trajectory not only between the initial and final stations but also when the initial or final
position involves a switch for changing the direction on the rail.
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Speed Constraints The pods must adhere to strict velocity and acceleration con-
straints for safety reasons and comfort. Specifically, we must satisfy

Vmin(x1(t)) ≤ x2(t) ≤ Vmax(x1(t)), ∀t ∈ R≥0. (3.3)

where Vmin, Vmax ∈ PW(R,R), where PW(A,B) is the set of piecewise constant functions
from A to B. The vehicle’s speed is generally limited to 50 km/h along the entire route,
regardless of the physical conditions. However, when approaching curves, the speed must
be reduced to 20 km/h to prevent damage to the railway switches. Additionally, there
may be areas where the maximum speed should be further restricted (to 30 km/h for
istance), such as highly populated areas or regions close to the urban center.

These speed limitations are directly linked to the pod’s position within the capsule,
denoted by x1. Therefore, speed adjustments should be made with consideration of the
pod’s exact location on the track.

Acceleration Constraints For acceleration, it is crucial to ensure that its value re-
mains bounded throughout the entire trajectory

Amin ≤ fred2(x, u, vwind) ≤ Amax. (3.4)

Here, fred2(x, u, vwind) := rKµ

M u − ν(x1, x2, vwind) is the second component of the func-
tion fred as defined in (2.16). The parameters Amin and Amax represent the acceleration
constraints, which are essential for meeting the requirements set by Urbanloop and for
maintaining passenger comfort. The values of Amin and Amax can be found in Appendix
A.1.

Current constraints Regarding the reference quadratic current u, it must be bounded
to prevent overloading the system’s actuators.

Iq,rmin ≤ u(t) ≤ Iq,rmax ∀t ∈ R≥0. (3.5)

The values Iq,rmin and Iq,rmax are defined in Appendix A.1.

Dynamic Constraints The system will move according to the dynamics described by
the state equation (2.18). Given this dynamic behavior, we have

ẋ = fred(x, u, vwind) (3.6)

where fred is given in (2.16).
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3.2.2 Cost Function

To formulate the optimization problem, it is necessary to define the cost function to be
minimized. The objective is to minimize the time to bring the capsule from x0 to xf as
already mentioned. The classical way to deal with time minimization is to define the cost
function as follows [7], for any initial condition x0 of the form (3.1), any final condition
xf of the form (3.2), and any measurable control input u in the sense of Lebesgue

C(x0, xf , u) =
∫︂ tf

0
1 dt, (3.7)

subject to
{︄

ẋ = fred(x, u, vwind)
x(tf ) = xf

where tf ∈ R≥0.

3.2.3 Optimal Control Problem

In light of Sections 3.2.1 - 3.2.2, our goal is to address the optimal control problem
outlined by

(u∗, x∗, t∗
f ) ∈ arg min

u,tf

C(x0, xf , u) =
∫︂ tf

0
1 dt (3.8)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = fred(x, u, vwind) (Dynamic Constraint)
Vmin(x1) ≤ x2(t) ≤ Vmax(x1) (Speed Constraint)
Amin ≤ fred2(x, u, vwind) ≤ Amax (Acceleration Constraint)
Iq,rmin ≤ u(t) ≤ Iq,rmax (Current Constraint)
x(tf ) = xf (Final Constraint)

3.2.4 Discretization method

Due to the fact that the state model is non-linear, the optimization problem (3.8) may
be hard to solve analytically. It is therefore possible to use a numeric approach by the
so-called total discretization method [30, Chapter 9] to obtain an approximate solution
to (3.8).

The method consists in employing a numerical integration method to solve the differential
equations. We discretize time using a period T ∈ R>0 applying the direct Euler method:

xi+1 = xi + T fred(xi, ui, vwind), ∀i ∈ N, (3.9)

where xi and ui are defined as xi := x(iT ) and ui := u(iT ). To handle the discontinuity
in the control input, we employ Zero-Order-Hold (ZOH) devices. This approach ensures
that the control input u(t) remains constant between sampling intervals, i.e., u(t) = u(iT )
for t ∈ [iT, (i + 1)T [. As a result, the input is discretized, and the system evolves
with piecewise constant control values within each time step, effectively handling the
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discontinuity by holding the control signal steady until the next sampling instant.
We discretize all the constraints described in (3.8) as follows

Vmin(xi,1) ≤ xi,2 ≤ Vmax(xi,1) ∀i ∈ N,

Amin ≤ fred2(xi, ui, vwind) ≤ Amax ∀i ∈ N,

Iq,rmin ≤ ui ≤ Iq,rmax ∀i ∈ N.

(3.10)

The cost function in (3.7) becomes

C(x0, u, xi) =
k∑︂

i=1

∫︂ ti+1

ti

1 dt =
k∑︂

i=1
T = kT, (3.11)

where k ∈ N. Thus, the problem in (3.8) is modified as

({u∗
i }0≤i≤k∗ , k∗) ∈ arg min

{ui}0≤i≤k,k
C(x0, ui, xi) = kT (3.12)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xi+1 = xi + T fred(xi, ui, vwind) (Dynamic Constraint)
Vmin(xi,1) ≤ xi,2 ≤ Vmax(xi,1) (Speed Constraint)
Amin ≤ fred2(ti, xi, ui, vwind) ≤ Amax (Acceleration Constraint)
Iq,rmin ≤ ui ≤ Iq,rmax (Input Constraint)
x(tk) = xf (Final Constraint)

3.2.5 Optimal solution

The optimal solution to the trajectory generation problem, as formulated in (3.12), is the
optimal discrete iteration k∗ as well as the sequence of inputs {u∗

i }0≤i≤k∗ that minimizes
the cost function C, subject to the dynamic constraints (3.9) and the speed constraints
(3.10). The optimal trajectory x∗(t) is then obtained by applying u∗(t) to the system
(2.16) starting from the initial condition x0. Therefore, the optimal input corresponds to

u∗(t) = u∗
i , ∀t ∈ [iT, (i + 1)T [. (3.13)

To numerically solve the problem using the direct Euler method and perform simulations,
the example provided in [30, p. 214] has been particularly insightful, as it has been
adapted to align with the specific state dynamics and constraints of our system, allowing
us to derive the desired optimal trajectory.

A key aspect of this adaptation is that N , representing the number of intervals, corre-
sponds to the parameter k used earlier in (3.12). The objective is to find the optimal k,
denoted as k∗ = N∗, that effectively solves the problem.
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Looking more closely at the example [30, p. 214], the problem involves the direct
discretization (using fmincon.m in Matlab) of a minimal time problem, described
by the following system:

⎧⎪⎪⎨⎪⎪⎩
x1̇ = x2,

x2̇ = u,

|u| ≤ 1,

where the objective is to minimize the time required to move from the point (0, 0) to
(0, −1). This problem has been casted as:

{︄
x1̇ = x2,

x2̇ = v,

where v is defined as:

v := bu + ν(x1, x2, vwind), b := Kµ

rM
.

In this formulation, unknown parameters and disturbances, such as vwind and α, are
set to zero. Various constraints, including limits on current, speed, and acceleration,
are incorporated into the discretized constraint script. The initial and final conditions
were also modified according to the different scenarios.

3.2.6 Numerical results

Various simulations and tests were conducted using Matlab. Depending on the dynamic
constraints and the number of interval steps, feasible solutions to the problem can be
achieved. Specifically, three distinct cases are analyzed in the following sections, each
highlighting different types of speed constraints and distances to be covered. As men-
tioned in Section 3.2.1, the speed limits could vary depending on the path to be traversed.
Table 3.1 summarizes the key characteristics of these cases, emphasizing the resulting per-
formance metrics, such as final time and average velocity over the entire path.

Case Distance [m] Speed Constraints Tfinal [s] Vmean [km/h]
1 1000 - 85.23 42.20
2 1000 1 turn under 30 km/h 106.53 33.79
3 1500 2 turns under 30 km/h 171.85 31.42

Table 3.1. Summary of cases related to the Generation of the Reference Trajectory.

Case 1 In the simplest scenario, the speed constraints are assumed to be constant
throughout the entire path:
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Vmin ≤ x2(t) ≤ Vmax, ∀t ∈ R≥0.

In this case, the speed is constrained between Vmin = 0 km/h and Vmax = 50 km/h ≈
13.89 m/s.

To analyze this case, the path was discretized into N∗ = 100 steps, starting from the
initial point (0, 0) and ending at (1000, 0). The results are illustrated in Fig. 3.2, which
shows the trajectories for position, velocity, acceleration, and control input, along with
their respective constraints. The optimal time achieved was 85.23 seconds, resulting in a
mean velocity of

vmean = 1000 m
85.23 s ≈ 11.73 m/s ≈ 42.24 km/h.
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Figure 3.2. Reference Trajectory Case 1

Case 2 This case extends the constraints established in Case 1 by incorporating a turn
along the path. During this turn, the maximum speed is constrained to 30 km/h within
a designated area of 250 m. Specifically, the speed limits are defined as follows

• A maximum speed of 50 km/h between 0 and 750 m;

• A reduced maximum speed of 30 km/h ≈ 8.33 m/s between 750 and 1000 m.

The results of this simulation are illustrated in Fig. 3.3. Using a discretization parameter
N∗ = 100 for the entire path, including the segment where the turn occurs, the optimal
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time achieved is 106.53 seconds. The simulation begins at the initial point (0, 0) and ends
at (1000, 0), resulting in a mean velocity of

vmean = 1000 m
106.53 s ≈ 9.39 m/s ≈ 33.79 km/h.
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Figure 3.3. Reference Trajectory Case 2

Case 3 This case introduces two turns along the path, each with a speed limit of
30 km/h over a distance of 150 m. The speed constraints are defined as follows

• A maximum speed of 50 km/h from 0 to 100 m;

• A reduced maximum speed of 30 km/h from 100 to 250 m;

• A maximum speed of 50 km/h from 250 to 1200 m;

• A reduced maximum speed of 30 km/h from 1200 to 1350 m;

• A maximum speed of 50 km/h from 1350 to 1500 m.

The results are summarized in Fig. 3.4. With a discretization parameter N∗ = 100, the
optimal time achieved is 171.85 seconds. The trajectory optimization begins at the initial
point (0, 0) and ends at (1500, 0), resulting in a mean velocity of

vmean = 1500 m
171.85 s ≈ 8.73 m/s ≈ 31.42 km/h.

55



Control Design

0 20 40 60 80 100 120 140 160
0

500

1000

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160

-1

-0.5

0

0.5

1

0 20 40 60 80 100 120 140 160
-200

-100

0

100

200

Figure 3.4. Reference Trajectory Case 3

The generation of the reference trajectory profile yielded promising results. However, de-
termining the optimal number of steps for trajectory simulation can be both challenging
and time-consuming. Variations in the number of steps, N , can significantly impact the
results. Generally, the choice of N∗, and thus identifying the best value for a feasible
trajectory, depends on the total distance to be traversed and the specific speed con-
straints. Consequently, N∗ must be carefully evaluated for each case to ensure accurate
and effective trajectory simulation.

The graphs reveal that although the problem is feasible with the given constraints, the ac-
celeration graph often exhibits chattering effect. This phenomena may affect the comfort
of passengers onboard. To mitigate this issue, it might be useful to impose constraints
on the acceleration variation or to use a smoothing function.

In practical applications, it would be particularly valuable to track the path of interest
with varying curves and speed constraints to determine if a feasible solution can be
obtained with the given resolution. The code is designed to be flexible and can be
adapted to generate real-world paths, incorporating the same turns and constraints along
the track.

3.3 Design of the Control Strategy

Now that we have seen how to generate the reference trajectory and input, we focus on
the design of a Closed-Loop strategy to track the reference trajectory.
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3.3.1 Control Algorithm

In this context, it is crucial to recognize that the proposed mathematical model differs
from the actual system. Consequently, relying solely on an open-loop trajectory, such as
the one discussed in Section 3.2, will not suffice for achieving the desired reference. To
address this, it is essential to implement a closed-loop control law to effectively counteract
any disturbances or modeling errors the system may encounter.

Different sources have been reviewed [10, 21, 33], where the LQR method has been em-
ployed to control various systems. In particular, the reference [33] provides an overview
of the application of different methods in controlling intelligent vehicle lateral dynamics.
For this purpose, several control techniques, including LQR, were developed based on
the path tracking error model. Through simulations conducted in Matlab/Simulink, the
performance of these methods was analyzed.

Our approach adopts a similar strategy by first constructing an error model through
linearization of the system around the reference trajectory. We then apply the proposed
LQR method to this linearized system. This approach is justified by the observation that,
at the initial time, the state of the capsule is closely aligned with the starting point x0 of
the reference trajectory. Consequently, it is reasonable to utilize linearization techniques
in the neighborhood of the reference trajectory.

The schema 3.5 provides further details about the implementation of this control method.

Σ
LQR

u
u∗

x∗ ũ∗

z
+

+

Gxf

x
− +

ε

Figure 3.5. Control Algorithm scheme

The control input u is determined as u := u∗ + ũ∗, where u∗ represents the optimal
control input generated by the reference trajectory, and ũ∗ is an additional control input
designed to enhance stability and performance. The LQR method is employed to design
ũ∗. The input u is applied to the system (2.18), denoted as Σ, which provides feedback
related to the state vector x. This feedback signal is crucial for constructing the error
dynamics ε, defined as the difference between x and the reference state x∗. The desired
performance is that, at the final time specified by the reference trajectory, the difference
between the reference and the system output should approach zero.

To effectively address the reference tracking problem, we analyzed the error dynamics
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of the system given by (2.16), resulting in a linearized model. We then studied the
controllability and observability of the linearized system before applying the method to
the model under study.

3.3.2 Linearization of the error dynamics

As a first step, we aim to transform the reference tracking problem into a problem of
driving the error dynamics to zero. To this end, let us define

ε := x − x∗

ũ := u − u∗,
(3.14)

where ε represents the difference between the state vector and the reference trajectory,
and ũ represents the difference between the input and the optimal input state.

Using (3.14) in (2.11), we obtain the dynamics of ε

ε̇ :=
(︄

−ε2
−ν(ε1 + x∗

1, ε2 + x∗
2, vwind) + ν(x∗

1, x∗
2, vwind)

)︄
+
(︄

0
Kµ

rM

)︄
ũ, (3.15)

where ν is defined as in (2.14). Given that we are considering small oscillations (i.e.,
less than 10◦) of the slope angle that characterizes the weight force, we can approximate
sin(α(x1)) ≈ α(x1), Thus (2.14) can be considered as:

ν(x1, x2, vwind) ≈ gα(x1) − Fsec(Fres, x2)
M

+ ρCxS

M
(x2 − vwind)2 . (3.16)

It is important to note that in the second component of (3.15), it is not possible to
substitute ν(ε1, ε2, vwind) instead of ν(ε1 + x∗

1, ε1 + x∗
1, vwind) − ν(x∗

1, x∗
2, vwind) since the

function ν is a nonlinear function.

To solve this problem, we will study the linearized dynamics of (3.15) at the origin of the
systems defined as (ε, ũ) := (0̄,0).

Linearizing (3.15) around (0̄,0) gives

ε̇ = A(x⋆
2)ε + Bũ, (3.17)

where the matrix A is computed as the Jacobian matrix of the function f(ε, ũ) with
respect to ε, evaluated at the equilibrium point (0̄,0), that means

A := ∂f(ε, ũ, vwind)
∂ε

⃓⃓⃓⃓
(0̄,0)

=

⎛⎝ 0 1
∂ν(ε,ũ,vwind)

∂ε1

⃓⃓⃓
(0̄,0)

∂ν(ε,ũ,vwind)
∂ε2

⃓⃓⃓
(0̄,0)

⎞⎠ (3.18)

and the partial derivative of the function ν(ε, ũ) with respect to ε3, evaluated at the
equilibrium point gives

∂ν(ε, ũ, vwind)
∂ε1

⃓⃓⃓⃓
(0̄,0)

= gα̇(ε1 + x⋆
1) − gα̇(x⋆

1) = gα̈(w1)ε1, w1 ∈ [ε1 + x⋆
1, x⋆

1]. (3.19)
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By applying the Mean Value Theorem [11], the difference α̇(ε1+x⋆
1)−α̇(x⋆

1) can be written
as α̈(w1)ε1, where w1 lies between ε1 + x⋆

1 and x⋆
1. Since ε1 is small, the term gα̈(w1)ε1

becomes negligible. In addition, if the second derivative of the function α(x) is small near
x⋆

1, the curvature α̈(w1) is also small, further diminishing the magnitude of this term.
Therefore, the expression (3.19) can be approximated as zero.

For what concerns the partial derivative of the function ν(ε, ũ, vwind) with respect to ε2,
evaluated at the equilibrium point we have
∂ν(ε, ũ, vwind)

∂ε2

⃓⃓⃓⃓
(0̄,0)

= −1
M

∂Fsec(Fres, ε2 + x⋆
2)

∂ε2
+ 2ρCxS

M
(vwind − x⋆

2) = 2ρCxS

M
(Vwind − x⋆

2)

(3.20)
where the term ∂Fsec(Fres,ε2+x⋆

2 )
∂ε2

, since we are assuming to have strictly positive values
ε2 + x⋆

2 along the defined interval and the function Fsec(Fres, ẏ) (2.7) gives the constant
term −Fsec,0 for positive values of speed, is equal to 0.

After these substitutions (3.19) and (3.20), we can re-write (3.18) as

A =

⎛⎝0 1
0 2ρCxS

M
(Vwind − x2

∗(t))

⎞⎠ (3.21)

. The matrix B is defined as B := ∂f(ε,ũ,vwind)
∂ũ

⃓⃓⃓
(0,0)

and assumes the following values

B =

⎛⎝ 0
Kµ

rM

⎞⎠ (3.22)

At this point, it is extremely important to remark that our linearized system (3.17) is a
Linear Time-Varying (LTV) system, since the matrix A contains a parameter that varies
with respect to the time, i.e. x∗

2(t).

3.3.3 Controllability and Observability Properties

Controllability is a fundamental concept in control system design, ensuring that the
system’s output state can be guided to any desired position in the output space through
appropriate manipulation of the input variables [5].

Observability, on the other hand, refers to the ability to infer the complete internal state
of a dynamic system based solely on its measurable inputs and outputs over time. If a
system is observable, it means that by analyzing the outputs generated in response to
the inputs, one can accurately reconstruct the entire state of the system at any given
moment [22].

In order to study the controllability and observability of the linearized system, we consider
the time-varying parameter x∗

2 as constant. Therefore, we have

A =

⎛⎝0 1
0 2ρCxS

M
(Vwind − x2

∗)

⎞⎠ , B =

⎛⎝ 0
Kµ

rM

⎞⎠ , C :=
(︄

1 0
0 1

)︄
. (3.23)
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Controllability Analysis According to the Kalman criterion [28], a system is control-
lable if the controllability matrix Mc, defined as

Mc :=
(︂
B AB

)︂
, (3.24)

has full rank, which is equal to the order of the system, i.e., nx = 2.

We first compute the product AB as follows

AB =
(︄

0 1
0 2ρCxS

M (Vwind − x∗
2)

)︄
·
(︄

0
Kµ

rM

)︄
= Kµ

rM

(︄
1

2ρCxS
M (Vwind − x2

∗)

)︄
.

Thus, the controllability matrix Mc is

Mc =
(︂
B AB

)︂
= Kµ

rM

(︄
0 1
1 2ρCxS

M (Vwind − x2
∗)

)︄
.

The rank of Mc can be determined by computing its determinant:

det(Mc) =
(︃

Kµ

rM

)︃2
det

(︄
0 1
1 2ρCxS

M (Vwind − x2
∗)

)︄
= −

(︃
Kµ

rM

)︃2
.

Since Kµ

rM /= 0, it follows that det(Mc) /= 0. This implies that Mc has full rank, confirming
that the system is controllable.

Observability Analysis According to the Kalman criterion [28], a system is observable
if the observability matrix Mo, defined as

Mo :=
(︄

C
CA

)︄
, (3.25)

has rank equal to the order of the system, which is nx = 2.

To compute CA, we have:

CA = C · A =
(︄

1 0
0 1

)︄
·
(︄

0 1
0 2ρCxS

M (Vwind − x2
∗)

)︄
=
(︄

0 1
0 2ρCxS

M (Vwind − x2
∗)

)︄
.

The observability matrix Mo is then:
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Mo =
(︄

C
CA

)︄
=

⎛⎜⎜⎜⎝
1 0
0 1
0 1
0 2ρCxS

M (Vwind − x2
∗)

⎞⎟⎟⎟⎠ .

It is straightforward to verify that the rank of Mo is 2. In particular, by examining the
2 × 2 submatrix:

(︄
1 0
0 1

)︄
,

which is clearly of full rank, we can conclude that Mo also has full rank. Therefore, the
system is observable.

The analysis of controllability and observability for the complete model described by
equation (2.12) is provided in Appendix A.4.

3.3.4 The LQR method

The LQR method is a classic optimal control technique used to minimize a quadratic
performance index for linear dynamic systems [23]. This method seeks to minimize (or
maximize) a quadratic cost function that incorporates both system states and control
inputs, weighted appropriately during the design phase according to the given specifica-
tions.

In our scenario, the system to be controlled is described by the state equations

ε̇(t) = A(t)ε(t) + B(t)ũ(t), (3.26)

where ε(t) represents the state vector, A(t) and B(t) are time-dependent matrices char-
acterizing the system dynamics, and ũ(t) is the control input.

The performance measure to be minimized is defined by the cost function:

J = 1
2εT (tf )Hε(tf ) +

∫︂ tf

t0

1
2
[︂
εT (t)Q(t)ε(t) + ũT (t)R(t)ũ(t)

]︂
dt, (3.27)

where H and Q(t) are real symmetric positive semi-definite matrices, R(t) is a real sym-
metric positive definite matrix, and t0 and tf are the initial and final times, respectively.

The solution to this optimal control problem is given by

ũ∗(t) = −R(t)−1BT (t)K(t)ε(t), (3.28)

where the matrix K(t) is determined by numerically integrating the Riccati differential
equation:

K̇(t) = −Q(t) + K(t)B(t)R−1(t)BT (t)K(t) − K(t)A(t) − AT (t)K(t), (3.29)
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with the boundary condition:
K(tf ) = H. (3.30)

To enhance the performance of the LQR method, adjustments to the weights of the
matrices Q and R are required. These matrices have been considered constant across
all trajectories and represent the cost of the state variables and control input, respec-
tively. Furthermore, the weight matrix H is essential for solving the Riccati equation and
determining the matrix K(t).

3.3.5 LQR Method: Implementation and Results

The implementation of this approach in the given system necessitates solving the time-
varying Riccati differential equation through numerical techniques. In this context, the
MATLAB solver ode15s was utilized to integrate the Riccati equation (3.29). The output
of this integration is the time-varying matrix K(t), which is essential in formulating
the optimal control law (3.28). By fine-tuning the weighting matrices Q, R, and H
in accordance with the system’s performance criteria, the LQR controller proficiently
minimizes the cost function while maintaining stability and responsiveness throughout
the variation of the system’s dynamics.

Performance criteria It is essential to highlight the key performance criteria used in
selecting the weights for the matrices Q, R, and H. The primary objective is for the
system to closely follow the reference trajectory from the initial point, x0, to the final
point, xf . Given that the final time represents the arrival at the destination, it is crucial
for the error at this moment, ε(tf ), to be as close to zero as possible. Additionally,
minimizing the error, ε(t), throughout the entire trajectory is important to ensure high
precision in following the reference path. Furthermore, it is important to ensure that the
system adheres to constraints related to speed and control inputs to guarantee safety and
prevent the motors from operating under excessive load.

Tuning The parameters were adjusted to best meet the performance criteria presented
before. Additionally, since the control input ũ∗ only becomes non-zero in the presence
of disturbances and varying parameters, it was crucial to run simulations under these
conditions to thoroughly test the performance of the LQR method. Simulations included
perturbations, such as wind speed vwind, and variations in typically uncertain parameters,
as the slope angle α, and passenger mass Madd, to evaluate the robustness of the controller
against both disturbances and changes in unknown parameters.

The matrices Q, R, and H were chosen after multiple trials, aiming to achieve an error
close to zero at the final time, ε(tf ), ensuring that the system states closely follow the
reference states. Specifically, the following values have been selected.

Q =
[︄
1 × 10−7 0

0 1

]︄
, R = 1, H =

[︄
0.002 0

0 1

]︄
.
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To select the weights of the matrices accurately, they were initially set to one and subse-
quently adjusted based on the results of various simulations. Specifically, it was necessary
to reduce the first weight of the matrix Q to decrease the error related to the position
of the system. Further adjustments were made by reducing the first component of the
matrix H, which improved the results, and then slightly increasing the first weight of Q.
Setting this value too low risks not meeting input constraints. Additionally, performance
can be improved by decreasing the weight related to the speed error state in Q; however,
this results in a smaller reduction in error. Therefore, reducing the positional component
of Q appears to be the optimal choice in this case, as it effectively reduces both position
and speed-related errors.

What is particularly unusual is that, unlike the typical use of the LQR method — where it
is usually necessary to increase the weights of matrix Q to penalize states and thus reduce
state errors — it was necessary in this case to significantly decrease those weights. Indeed,
several simulations conducted using only the linearized model conform to the behavior
predicted by general LQR theory. However, when applying the model corresponding to
system (2.18), it became necessary to reduce these values. A possible explanation could
be that the simplifications made to derive the linearized model introduce substantial
differences between the two models. As the nonlinear contributions are introduced and
varied in the system, it becomes necessary to decrease the weights in matrix Q to achieve
better state error control. Furthermore, it is important to highlight that the states of
position and velocity differ significantly in magnitude: the position state ranges from 102

to 103, whereas the velocity state does not exceed 101. This disparity may also elucidate
the necessity for a substantial reduction of the error position weight of matrix Q.

In particular, to perform this tuning, the cases related to trajectory generation previously
developed in Section 3.2.6 were considered. Simulations were conducted by varying the
previously mentioned parameters.

Results within the Trajectory Cases The results obtained from applying the LQR
method have been analyzed for each Case described before in Section 3.2.6, using the
matrices values specified in Section 3.3.5. The following table 3.2 presents the results
obtained.

Case Input Speed RMSE ϵ1 RMSE ϵ2 ϵ1(tf ) ϵ2(tf )
Constraints Constraints [m] [m/s] [m] [m/s]

1 Respected Respected 12.4102 0.1872 9.8883 -0.6019
2 Respected Respected 7.7580 0.1372 5.2622 -0.6199
3 Respected Respected 9.0035 0.2441 5.1731 -0.1032

Table 3.2. LQR Application Results for the three Cases

The table provides a summary of the results for the three cases, indicating whether
the input and speed constraints were satisfied. It also includes the RMSE values for the
position error ε1 and speed error ε2, along with the final position error ϵ1(tf ) and speed
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error ϵ2(tf ).

In general, the input and speed constraints were met across all cases. For the RMSE
values related to the position error along the trajectory, ε1, a value below 15 meters can
be considered acceptable. The RMSE for the speed error consistently remained low in
all cases, indicating minimal discrepancy between the system’s speed and the reference
trajectory speed. Regarding the final positional error, ϵ1(tf ), a value greater than zero
indicates that the pod stops beyond the final station, while a value less than zero means
it stops before reaching the station. Ideally, values between -5 and 5 meters are preferred,
as this range corresponds to the vicinity of the station. As for the final speed error, ϵ2(tf ),
an acceptable value would be below 5 km/h ≈ 1.4 m/s, as the system is equipped with a
mechanical braking mechanism capable of fully stopping the pod if its speed falls below
5 km/h.

To summarize, these results can be considered satisfactory for the different cases. How-
ever, to fully assess the effectiveness of the controller for the proposed model, it is nec-
essary to introduce perturbations, such as variations in wind speed vwind, or modify
uncertain parameters like the passenger mass Madd or the slope angle α.

Perturbation Analysis and Robustness Testing To evaluate the robustness of the
control law, several tests were conducted for Case 3. Specifically, this case simulates
two turns along a path of 1500 meters, with a total duration of 172 seconds. Various
simulations were carried out under the following conditions:

• One passenger (75 kg) on board;

• Two passengers (150 kg) on board;

• Wind speed of +10 km/h applied between 30 seconds and 70 seconds;

• Wind speed of -10 km/h applied between 40 and 70 seconds;

• Slope angle of +5% applied between 500 meters and 650 meters;

• Slope angle of -5% applied between 500 meters and 650 meters.

Table 3.3 summarizes the results of these simulations for this case.
Disturbances Input Constraints Speed Constraints RMSE ε1 [m] RMSE ε2 [m/s] ε1(tf ) [m] ε2(tf ) [m/s]
Madd = 75 kg Respected Respected 6.7028 0.3820 16.3543 0.3908
Madd = 150 kg Respected Respected 19.6656 0.6840 18.6608 1.0345

vwind = 10 km/h Respected NOT respected (51.5 km/h) 29.8393 0.6684 -3.0673 -0.6549
vwind = −10 km/h Respected Respected 15.0586 0.6193 11.3411 0.3733

α = 5% Respected Respected 59.6996 2.1388 -23.6948 2.1962
α = −5% Respected NOT respected (60 km/h) 47.3496 1.1755 4.1618 -1.1954

Table 3.3. Simulation Results with disturbances/varying parameters on Case 3.

Overall, the input constraints are respected for all the different simulations. However,
the speed constraints were violated in some instances, such as when wind speed was set
to 10 km/h and in the case of a -5% slope angle, where a maximum speed of 60 km/h was
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recorded, exceeding the imposed limit of 50 km/h. For position and speed errors along
the trajectory (RMSE ε1 and ε2), higher values were observed, particularly for the slope
cases. For the final time position error ε1(tf ), large deviations were noted, especially
with passengers on board. Additionally, a significant discrepancy in the final speed error
ε2(tf ) was observed in the case of α = 5%. The most concerning scenarios are those
involving slope angle variations during the path. This is due to the significant influence
of this parameter on the model compared to the other parameters. For example, by ex-
amining the system in (2.15), it is evident that the weight force 2.3.3 contributes more
significantly compared to the other forces in play. These simulation results underscore
certain deficiencies in the current control method when subjected to disturbances and
variations in unknown parameters.

To conclude, this chapter has documented the strategy employed for controlling the cap-
sule, focusing primarily on the approach used for generating the reference speed trajectory
and the feedback control method applied using the LQR method on the linearized system.

The results related to trajectory generation are particularly noteworthy, as it was possible
to construct scenarios that simulate real-world conditions, such as turns along the path,
where speed constraints must be further limited.

Concerning the control method’s performance, the results show good behavior under
nominal conditions. However, when disturbances are introduced or unknown parame-
ters vary, the controller’s performance degrades. In some cases, this leads to significant
deviations, with the pod failing to precisely reach the final station.

A potential solution to this issue involves generating reference trajectories that account
for slope variations. In the current method, the slope angle was set to zero during the
trajectory generation process. By incorporating these slope changes, the system could
improve its overall accuracy and robustness in real-world scenarios. This adjustment
would allow the algorithm to better reflect actual operating conditions, leading to more
reliable trajectory tracking.

The next chapter will focus on reconstructing the reference speed trajectory using ex-
perimental data previously employed for model validation. This process will involve
generating the reference trajectory while ensuring compliance with the constraints ap-
plied in different test scenarios. The LQR control method will then be implemented to
assess its performance, allowing for a comparison between the Urbanloop PI control law
and the proposed control strategy.
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Chapter 4

Simulation Results

In this chapter, we will demonstrate the application of the proposed control strategy, as
outlined in Chapter 3, to the experimental data used for model validation. The objec-
tive is to compare the heuristic control law developed by Urbanloop with the proposed
method. We begin by reconstructing the paths taken by the pod based on the experimen-
tal data, incorporating the associated speed constraints. These constraints will be used
to generate the reference trajectory, as described in Section 3.2. Subsequently, the LQR
method detailed in Section 3.3.4 will be applied to the linearized system. Additionally,
a performance comparison between the heuristic control law utilized by Urbanloop and
the proposed control method will be presented. The chapter concludes with simulation
results to account for disturbances and variations in unknown parameters.

4.1 Implementation of the Advanced Control Algorithm

To evaluate the proposed control method, a thorough analysis of the received data is
essential for accurately understanding the pod’s trajectory and reconstructing the cor-
responding speed constraints. For this purpose, four out of the twenty-four tests were
selected. Using the logs from the experimental data presented in Section 2.4.2, the posi-
tions where the pod made directional changes, such as right and left turns, were analyzed
to reconstruct its trajectory.

These logs offer detailed information about the locations of turns along the path. Gener-
ally, the speed is restricted to a maximum of 50 km/h throughout the trajectory. How-
ever, during turns, specific speed constraints are imposed, limiting the maximum speed
to 20 km/h. The segments with these constraints typically range from 100 to 150 meters
in length.

Table 4.1 summarizes the relevant data for each test, including the total distance, the
reconstructed speed constraints, the final time, and the mean velocity achieved along the
trajectory.
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Test Distance Speed Constraints Tfinal Vmean
[m] [s] [km/h]

9 432 2 turns under 20 km/h 107 14.50
10 703 2 turns under 20 km/h 159 15.9
12 650 1 turn under 20 km/h 131 17.86
13 464 2 turns under 20 km/h 159 10.5

Table 4.1. Informations about trajectories with Speed Constraints for Tests 9, 10, 12 and 13.

4.1.1 Reference Trajectory Generation

Following the reconstruction of the path, the method described in Section 3.2 was em-
ployed to generate the reference speed trajectory for each test. For all tests, the max-
imum speed is set to 50 km/h, except in segments with turns, where the speed limit is
constrained to 20 km/h.

The following table 4.2 summarizes the application of the reference trajectory generation
method for Tests 9, 10, 12, and 13, providing details on the optimal number of steps N∗,
the final time, the mean velocity along the trajectory, and the percentage improvements.
These improvements are calculated based on the difference between the mean velocity
of the trajectories related to the experimental data, shown in Table 4.1, and the mean
velocity achieved using the generated reference trajectory.

Test N∗ Tfinal Vmean Improvements
[s] [km/h] [%]

9 30 69.52 22.37 54
10 60 85.07 28.04 76
12 60 80.36 29.12 63
13 30 60.89 27.43 161

Table 4.2. Informations about the Reference Trajectory Generation for Tests
9, 10, 12, and 13.

By comparing Tables 4.1 and 4.2, the results are quite promising. For each test, the
approach described in Section 3.2 successfully generated feasible trajectories, respecting
the constraints related to speed, input, and acceleration. The results demonstrate that
the generated reference trajectories achieve a shorter final time, allowing the pod to
maintain a higher average speed, compared to the original scenario.

As an example, the graph corresponding to the trajectory of Test 10 will be presented in
detail.

For this particular test, which covers a distance of 703 meters, the following speed con-
straints are considered:

• A turn with a speed limit of 20 km/h ≈ 5.56 m/s between 1 and 42 meters;
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Figure 4.1. Reference Trajectory Generated for Test 10

• A turn with a speed limit of 20 km/h between 580 and 660 meters;

• A maximum speed limit of 50 km/h for all other sections.

Figure 4.1 illustrates the position, velocity, acceleration, and control input profiles, along
with the corresponding constraints. Finding an optimal N∗ that allowed the generation
of a feasible trajectory for each test proved to be time-consuming and required a trial-
and-error approach. This may be attributed to inefficiencies in the solver used.

With the reference trajectory now generated, the next step is to apply the LQR method,
as explained in Section 3.3.4 to assess whether the system can accurately follow the
reference path.

4.1.2 LQR application

For the application of the LQR method, the following values have been used, as detailed
in Chapter 3.

Q =
[︄
1 × 10−7 0

0 1

]︄
, R = 1, H =

[︄
0.002 0

0 1

]︄
.

The following table presents the results obtained by applying the LQR method to the
linearized system across the four Tests.
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Test Input Speed RMSE ϵ1 RMSE ϵ2 ϵ1(tf ) ϵ2(tf )
Constraints Constraints [m] [m/s] [m] [m/s]

9 respected respected 6.8136 0.9927 0.7097 -1.5554
10 respected respected 13.6894 0.3716 10.0975 -0.6942
12 respected respected 8.6185 0.3244 6.1818 -0.7948
13 respected respected 7.4412 0.5543 -3.3351 -1.2505

Table 4.3. LQR Application on Tests 9, 10, 12, and 13.

The table provides a summary of the results for the four tests, indicating whether the
input and speed constraints were satisfied. It includes the RMSE values for the position
error ε1 and speed error ε2, along with the final position error ϵ1(tf ) and speed error
ϵ2(tf ).

As we can observe, the criteria have been largely met: the constraints on both the input
and velocity were respected. The RMSE values for position and velocity are consistent,
and the final time errors can be considered acceptable across all tests.

We now examine the application of the LQR method in more detail for Test 10, shown
in Fig. 4.2. In the illustrated figures, we observe the profiles of position, velocity, the
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Figure 4.2. Application of LQR on Test 10

associated errors for both, displayed on two appropriate metric scales for their respective
magnitudes, and the control input applied to the system.
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Specifically, in the top-left graph, we see the reference trajectory for the position, shown
in light blue as x∗

1, and the actual pod position in dark blue denoted as x1, which closely
follows the reference trajectory with minimal error. Regarding the system’s velocity,
displayed in the top-right graph, the reference trajectory for velocity x∗

2 is shown in orange,
and the pod’s actual speed is in red, denoted as x2. Additionally, the minimum and
maximum velocity constraints are shown in green and blue, respectively. In particular,
the maximum velocity reflects the dynamic constraints related to the presence of turns
in the zones between 0-42 meters and 580-660 meters.

In the bottom-left graph, we plot the errors along the trajectory, with position errors in
blue and velocity errors in red. Lastly, in the bottom-right graph, we observe the control
input, which consists of the sum of the optimal reference trajectory control u∗ and the
control derived from the LQR method, u∗̃. We can see that the input constraints are also
respected.

For Test 10, we will see in detail the comparison between the Urbanloop PI control law
and the proposed one.

4.2 Comparison between PI Urbanloop and the Proposed
Control Algorithm

To effectively compare the two methods, it is important to recognize that the reference
trajectories differ. For Urbanloop’s PI controller, the trajectory is predefined, resulting
in a final time of 159 seconds for Test 10. In contrast, the proposed method reaches the
final station in 90.24 seconds. Consequently, a direct comparison based solely on time
would not be appropriate. Instead, the comparison focuses on the system’s speed relative
to the distance traveled.
Figure 4.3 illustrates this relationship for both methods.

In the figure, the trajectory of the pod using the PI controller is shown in yellow, while
the trajectory using the LQR method is depicted in blue. The minimum speed constraint
is represented in green, and the maximum speed constraints are shown in red, indicated
in km/h. Dynamic speed constraints corresponding to the turns are also illustrated,
specifically between 0 and 42 meters and between 580 and 660 meters.

Notably, the area covered by the red trajectory is larger than that of the blue trajectory,
indicating that the LQR method achieves a higher average speed compared to the PI
method. Specifically, the LQR method yields an average speed of 28 km/h, whereas the
PI method results in an average speed of 16 km/h.

This demonstrates that the objectives are effectively achieved with this control strategy.
Specifically, the capsule is managed within a reduced time frame while adhering to a
range of constraints, including speed limits, input limitations, and passenger comfort
requirements. The control strategy not only optimizes performance but also ensures that
operational constraints are consistently met, highlighting its efficacy in managing the
capsule efficiently.
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Figure 4.3. Comparison between LQR and PI on Test 10

4.3 Analysis of Disturbance Effects and Parameter Varia-
tions

To assess the effectiveness of the LQR method in practical scenarios, such as Test 10,
simulations with varying parameters and disturbances were performed. This test, which
covered a 703-meter path and had a duration of 91 seconds, was evaluated through
multiple simulations in different conditions:

• One passenger (75 kg) on board;

• Two passengers (150 kg) on board;

• Wind speed of +10 km/h applied from 40 to 70 seconds;

• Wind speed of -10 km/h applied from 40 to 70 seconds;

• Slope angle of +5% applied from 200 to 350 meters;

• Slope angle of -5% applied from 200 to 350 meters.

The results of these simulations are summarized in Table 4.4.

72



4.3 – Analysis of Disturbance Effects and Parameter Variations

Disturbances Input Speed RMSE ϵ1 RMSE ϵ2 ϵ1(tf ) ϵ2(tf )
Constraints Constraints [m] [m/s] [m] [m/s]

Madd = 75 kg respected respected 4.9219 0.5769 6.4972 -0.1099
Madd = 150 kg respected respected 15.2494 0.9104 -0.9898 0.3735

vwind = 10 km/h respected NOT respected (52 km/h) 34.5758 0.6922 63.2987 -0.5219
vwind = −10 km/h respected respected 22.8380 1.1403 -50.2185 -0.9257

α = 5 % respected respected 61.0191 2.0345 -100.5502 -0.1471
α = −5 % respected NOT respected (61.31 km/h) 48.5509 1.0231 64.1057 -1.2205

Table 4.4. Simulation Results with disturbances/varying parameters on Test 10.

Analyzing Table 4.4, it is evident that the input constraints were consistently satisfied
across all cases. However, this was not the case for speed constraints. Specifically, when
introducing wind at 10 km/h or a slope of -5%, the maximum speed values exceeded 50
km/h.

For position and speed errors along the trajectory (RMSE ε1 and ε2), higher values were
observed, particularly for the slope and wind simulations. The final time position error
ε1(tf ) showed significant deviations, especially in scenarios involving wind and slope.
These deviations are concerning because positive errors indicate that the capsule will
overshoot the final station, while negative errors suggest that it will not reach the final
destination. On the other hand, the final speed error ε2(tf ) was considered acceptable
across all simulations.

The most critical scenarios involve variations in slope angle and wind power during the
trajectory. In the study case, ensuring that the pod reaches the final destination as spec-
ified by the reference trajectory is essential. The observed errors, particularly the final
time position error ε1(tf ), indicate that the current control method may not be satis-
factory under these perturbations. For managing slope angles, it would be beneficial to
accurately track the path the capsule must follow. This approach could allow for mod-
ifications to the reference trajectory to account for slope variations, improving overall
control effectiveness. Regarding the introduction of wind power, the results indicate a
notable deficiency in reaching the final destination.

In conclusion, this chapter has applied the proposed control strategy to real-world scenar-
ios, such as the ones in the experimental data, comparing it directly with the PI controller
used by Urbanloop to assess potential improvements. Specifically, the proposed control
method demonstrates significant enhancements over the PI controller, allowing the cap-
sule to achieve an average speed between 22 − 30 km/h along the route. However, the
results are less impressive when disturbances or unknown parameter variations are intro-
duced.
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In conclusion, this work has made notable progress towards enhancing the control law for
guiding the pod along the circuit, with a focus on improving speed and ensuring passenger
comfort. The model study and validation have yielded interesting results, highlighting
areas where further modifications are needed. Acquiring more detailed information on
slope variations and wind power along the route is crucial for validating the assumptions
of the constructed model. Additional tests that adjust these factors may reveal the need
for further refinements based on the results obtained.

The control algorithm developed relies on this model, incorporating a reference trajectory
generation capable of addressing various constraints, such as speed, input limits, and
acceleration, to ensure passenger comfort while minimizing the arrival time at the final
destination. The LQR method is employed on the linearized system around the reference
trajectory to ensure the system follows this trajectory effectively.

A comparative study was conducted between the proposed algorithm and the existing
Urbanloop PI controller to evaluate performance differences. The results demonstrate
that the proposed control method significantly enhances performance compared to the
PI controller, allowing the capsule to achieve an average speed of 22 − 30 km/h along the
route.

Regarding the control method’s performance, the results indicate favorable behavior un-
der nominal conditions. However, when disturbances are introduced or unknown parame-
ters vary, the performance of the controller deteriorates, leading to substantial deviations
and, in some instances, failure to precisely reach the final destination.

Future Improvements

The current work highlights several avenues for improvement and further development.
A key step involves conducting additional tests to account for slope variations and wind
power, which will help validate the model under more realistic conditions and refine
necessary adjustments.

The control algorithm, initially developed for the reduced model, should also be tested
with the complete model that incorporates the system’s electrical behavior. It is im-
portant to note that the current control strategy is effective primarily under nominal
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conditions. An alternative approach could involve adjusting the reference trajectory to
account for variations in slope angle and then applying the LQR method to this modified
trajectory. However, this approach may be costly and might not be scalable for different
scenarios. Therefore, exploring alternative control methods, such as MPC or H∞ control,
could provide enhanced robustness to these variations.

Effective testing of these control algorithms will require simulations with the pod on
the actual circuit. A practical approach involves first implementing the reference trajec-
tory generation and then replacing the heuristic PI controller with the proposed control
algorithm.

Furthermore, expanding beyond single-pod scenarios is crucial. When multiple pods
operate on the same circuit, additional challenges such as collision avoidance and inter-
section management must be addressed. Investigating cooperative strategies, potentially
utilizing communication between autonomous vehicles, will be essential for effectively
managing multi-pod operations.
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A.1 Parameters

The table A.5 presents the values and the description of different parameters that char-
acterize the mathematical model.

M Mass of the vehicle with no passengers 950 kg
S Frontal area of the capsule 1.8 m2

Cx Drag coefficient of the capsule 0.8 [-]
ρ Density of air 1.2 kg.m−3

E Motor Supply Voltage 72 V
g Gravitational constant 9.81 m.s−2

r Wheel radius 0.24 m
k Coefficient of dry friction 0.01 [-]
R Stator resistance of the motor 2.1 mΩ
L Stator inductance of the motor 58.2 µH
np Number of pole pairs of the motor 16 [-]
KΦ Electromagnetic flux coefficient 34.1 mWb
Kµ Torque coefficient 1.64 Wb
Kp Proportional gain of the current controller 500 [-]
Ki Integral gain of the current controller 10 [-]
Vmin Minimum speed of the capsule 0 m.s−1

Amin Minimum acceleration of the capsule −1.2 m.s−2

Amax Maximum acceleration of the capsule 1.2 m.s−2

Iq,rmin Minimum reference quadrature current −200 A
Iq,rmax Maximum reference quadrature current 200 A
Madd Mass of the passengers − kg
vwind Wind speed along the direction of capsule movement − m.s−1

Table A.5. Parameters of the model.

The values of the coefficients Kp and Ki have been chosen by looking at the Kelly Con-
troller interface. Since it is programmable, these values can be changed.
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The value of Kµ, denoted as the torque coefficient, is obtained using the formula

Kµ = 3
2np2Kϕ,

where:

• the constant 3
2 originates from the equations derived by Park equations [27];

• np denotes the number of poles in the motor;

• the factor 2 arises we are considering the combined torque from two motors in each
pod;

• Kϕ represents the electromagnetic flux coefficient.

It is important to include an additional term for the mass of the pod, represented by
the variable Madd. Specifically, an individual is assumed to have a mass of 75 kg, and a
maximum of 2 individuals can be hosted per pod.

The variable vwind represents the wind speed in the direction of the capsule’s movement.
Positive values indicate that the wind is opposing the capsule’s direction. This parameter
varies depending on weather conditions and the direction axis of the pod along the track.
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A.2 Conversion table for the slop angle
To convert from degrees to percentage, the following formula can be used:

Percentage = tan(α) · 100

where α is the angle in degrees.

The following table A.6 provides a comprehensive overview of the typical values used for
the case study of the circuits deployed for Urbanloop.

Percentage [%] Radians Degrees [◦]
1 0.01 0.57
2 0.02 1.15
3 0.03 1.72
4 0.04 2.29
5 0.05 2.86
6 0.06 3.43
7 0.07 4.00
8 0.08 4.57
9 0.09 5.14
10 0.1 5.71
11 0.11 6.28
12 0.119 6.84

Table A.6. Conversion table from percentage to radians and degrees.
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A.3 Application of the Slow Manifold Technique

In this appendix, we present the application of the slow manifold technique to simplify
the dynamics of the capsule system of Section 2.3.5.

Firstly, we recall that the input and the state variables of the system are the following:

• u := iq,r is the reference quadratic current,

• x1 := ξ is the integrator state,

• x2 := iq is the quadratic current,

• x3 := y is the position of the capsule along the track,

• x4 := ẏ is the velocity of the capsule.

The dynamics of the system can be expressed as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = −x2 + u,

ẋ2 = EKi
L x1 − (EKp+R)

L x2 + EKp

L u,
ẋ3 = x4,

ẋ4 = Kµ

rM x2 − g sin(α(x3)) + Fsec(Fres,x4)
M − ρCxS

M (x4 − vwind)2 .

(1)

To simplify this system, we apply the slow manifold technique [15], which is a method used
to analyze and reduce systems characterized by multiple time scales. The slow manifold
technique identifies a lower-dimensional subspace where the fast variables equilibrate,
allowing us to focus on the slow dynamics.

We first address the fast dynamics by setting ẋ2 = 0. Solving for x2, we obtain:

ẋ2 = 0 ⇒ x2 =
(︃

Kp + R

E

)︃−1
(Kix1 + Kpu) . (2)

Substituting x2 from (2) into the original system (1) and simplifying using:

a :=
(︃

Kp + R

E

)︃−1
Ki,

b :=
(︄

1 −
(︃

Kp + R

E

)︃−1
Kp

)︄
u.

We obtain the reduced system:

⎧⎪⎨⎪⎩
ẋ1 = −ax1 + bu,
ẋ3 = x4,

ẋ4 = Kµ

rM [ax1 + (1 − b)u] − g sin(α(x3)) + Fsec(Fres,x4)
M − ρCxS

M (x4 − vwind)2 .

(3)
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Next, we simplify by setting ẋ1 = 0, leading to:

ẋ1 = 0 ⇒ x1 = b

a
u. (4)

Substituting x1 from (4) into the reduced system (3), we obtain the further simplified
system:

{︄
ẋ3 = x4,

ẋ4 = Kµ

rM u − g sin(α(x3)) + Fsec(Fres,x4)
M − ρCxS

M (x4 − vwind)2 .
(5)

By applying the slow manifold technique, we have successfully reduced the complexity
of the original system while retaining its essential slow dynamics. The resulting sys-
tem, described by (5), focuses on the slower dynamics of position and velocity, thereby
simplifying the analysis and control design.
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A.4 Controllability and Observability Analysis
In order to study the controllability and observability of the linearized system, we consider
the time-varying parameter x∗

4 as constant.

Therefore, we have

A :=

⎛⎜⎜⎜⎝
0 −1 0 0

EKi
L −EKp+R

L 0 0
0 0 0 1
0 Kµ

rM 0 2ρCxS
M (Vwind − x∗

4)

⎞⎟⎟⎟⎠ , B :=

⎛⎜⎜⎜⎝
1

EKp

L
0
0

⎞⎟⎟⎟⎠ , C :=
(︄

0 0 1 0
0 0 0 1

)︄

(6)
with E, L, Ki, Kp, R, M, r, Kµ ∈ R>0.

Controllability analysis Since controllability is invariant under state-feedback, let us
study the pair (AF , B), where AF := A + BF with F =

(︂
0 1 0 0

)︂
reads

AF =

⎛⎜⎜⎜⎝
0 0 0 0

EKi
L −R

L 0 0
0 0 0 1
0 Kµ

rM 0 2ρCxS
M (Vwind − x∗

4)

⎞⎟⎟⎟⎠ .

The Hautus criteria [17] points out that (AF , B) is controllable if and only if ∀λ ∈ σ(AF ),
rank

(︂
AF − λI B

)︂
= n where n = 4 is the state dimension.

Lemma 1. The following statements are equivalent

• Ki /= R
L Kp and Ki /= −2ρCxS

M (Vwind − x∗
4)Kp;

• the pair (A, B) is controllable.

Proof. Clearly, σ(AF ) =
{︂

0, −R
L ,0, 2ρCxS

M (Vwind − x∗
4)
}︂

so that we need to study the three
following cases:

1. (λ = 0):

(︂
AF − λI B

)︂
=
(︂
AF B

)︂
=

⎛⎜⎜⎜⎝
0 0 0 1

EKi
L −R

L 0 EKp

L
0 0 1 0
0 Kµ

rM
2ρCxS

M (Vwind − x∗
4) 0

⎞⎟⎟⎟⎠
Simple operations on the lines of the above matrix (l1 → l4 → l2 → l1) lead to the
following condition

rank

⎛⎜⎜⎜⎝
EKi

L −R
L 0 EKp

L

0 Kµ

rM
2ρCxS

M (Vwind − x∗
4) 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ = 4

since the above matrix is upper triangular with non-zero diagonal elements.
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2.
(︂
λ = −R

L

)︂
:

(︂
AF − λI B

)︂
=

⎛⎜⎜⎜⎝
R
L 0 0 0 1

EKi
L 0 0 0 EKp

L

0 0 R
L 1 0

0 Kµ

rM 0 2ρCxS
M (Vwind − x∗

4) + R
L 0

⎞⎟⎟⎟⎠
which is rank 4 if and only if Ki /= R

L Kp since E, L, Ki, Kp, R, M, r, Kµ ∈ R>0.

3.
(︂
λ = 2ρCxS

M (Vwind − x∗
4)
)︂

:

(︂
AF − λI B

)︂
=

⎛⎜⎜⎜⎝
−λ 0 0 0 1
EKi

L −λ − R
L 0 0 EKp

L
0 0 −λ 1 0
0 Kµ

rM 0 0 0

⎞⎟⎟⎟⎠
which is rank 4 if and only if Ki /= −2ρCxS

M (Vwind−x∗
4)Kp, since E, L, Ki, Kp, R, M, r, Kµ ∈

R>0.

In conclusion, we can assert that the pair (A, B) is controllable if the following condition
both hold:

• Ki /= R
L Kp ;

• Ki /= −2ρCxS
M (Vwind − x∗

4)Kp.

The values presented above are not particularly restrictive in our case. Specifically, the
first scenario can occur if the parameters Kp and Ki are selected accordingly. The second
scenario is also probable, but since the system will remain in that configuration only
briefly, it may be uncontrollable only for a short period. Consequently, the system’s
configuration will already change by then, implying that these values do not pose any
issues regarding the controllability property of the system.

Observability Analysis According to the Kalman criterion [28], the system is observ-
able if the matrix Mo defined as

Mo :=

⎛⎜⎜⎜⎝
C

CA
CA2

CA3

⎞⎟⎟⎟⎠ (7)

has rank equal to the order of the system, i.e., nx = 4.

Lemma 2. The observability matrix Mo, as defined in (7), is a square matrix of size
4 × 4 and has full rank, i.e., rank(Mo) = 4.
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Proof. To simplify the algebraic manipulation, we reparameterize the matrix A using the
parameters a, b, c, d ∈ R as follows:

A :=

⎛⎜⎜⎜⎝
0 −1 0 0
a b 0 0
0 0 0 1
0 c 0 d

⎞⎟⎟⎟⎠ (8)

where a := EKi
L , b := −EKp+R

L , c := Kµ

rM , and d := 2ρCxS
M (Vwind − x∗

4).

Therefore, we obtain

Mo =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1
0 0 0 1
0 c 0 d
0 c 0 d
ac bc + cd 0 d2

ac bc + cd 0 d2

abc + acd d(bc + cd) − c(−b2 + a) 0 d3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

It is easy to see that the columns of Mo are linearly independent since none of them can
be expressed as a linear combination of the others. Thus, the rank of Mo is equal to 4
for E, L, Ki, Kp, R, M, r, Kµ ∈ R>0.

Based on these conclusions, the observability analysis results are satisfactory, as there are
no identified limitations.
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