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1 Introduction

1.1 A new CNRS laboratory

The study of this subject through my internship was mainly carried out at the new International Research
Laboratory (IRL), Institut Franco-Argentin de Dynamique des Fluides pour l’Environnement (IFADyFE) in
Buenos Aires, Argentina. This institut is the fruit of over 40 years of scientific collaboration between French
and Argentine researchers in fluid mechanics. Opened in January 2024, it is a fluid mechanics research centre
with environmental applications at the heart of today’s concerns. This INSIS-CNRS IRL is a joint project
with CONICET and the University of Buenos Aires (UBA) and will help to strengthen this international
collaboration. Among others, the laboratory is interested in a wide variety of natural phenomena involving
the movement of fluids: in oceans, atmosphere, rivers, glaciers, volcanoes, permafrost, groundwater, etc.
These studies are essential for understanding the Earth’s climate system and for predicting the effects of
natural disasters, which are multiplying and intensifying as a result of ongoing global warming.

1.2 Subject under study : the permafrost

The permafrost is a subject of physics of soils, it refers to ground a permanently frozen on top of which rests
an different layer of soil which is frozen or thawed in part depending on the season. Permafrost exists at high
latitudes and altitudes and covers 20% of the Earth’s surface (see Fig.1). The surface layer is called ”active”
layer (see Fig.2) and is sensitive to changes in temperature, freezing in winter and thawing in summer. The
movement of a solidification front in the ground modifies its structure and can lead to underground flows
that alter its stability and, in particular, cause specific macroscopic shapes to appear on the surface. Climate
change is causing permafrost to melt, lead to specific macroscopic events that are that appear on landscapes
and ecosystems (see Fig.3). These events are becoming increasingly frequent and are having an important
impact on infrastructure in these areas.

Moreover, it is important to notice that since the laboratory is new, there were no equipment when I
begun my internship. I had to find alternative solutions and improvise with the resources available, as well
as taking the necessary steps to obtain the necessary equipment and carry out the experiments successfully.
What’s more, the subjects of study is also new and my experiment was still to be built up.

Figure 1: Main regions of the
Earth underlained by permafrost
[10]

Figure 2: Extreme seasonal tempera-
ture profile as a function of depth in
periglacial ground [4]

Figure 3: Example of a pat-
terned ground on the surface of
a periglacial ground from [8]

Studying the active layer is interesting to understand how heat transfers and phase changes change the
structure of soil. Since this layer is composed of a complex frozen mixture of soil, rock, water and organic
matter, the heat transfers modify the quantity of water in this medium and make the overall structure of
the soil unstable, in particular by changing the distribution of the granular medium. Thus, it is impor-
tant to study, through fluid dynamics, this phenomenon and the impact of frost stress on soil structure to
understanding the solidification processes and interactions between soil components.
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2 The theoretical models

The first subject of interest will be the study of the solidification front dynamic in a porous media which
can model the soil behavior. Thus, we are going to concentrate on characterising the speed of the growth
of this solidification front in a 2-phase medium subject to freezing. We will deal with the Stefan problem
(see section 2.1), a fundamental concept in the study of phase change phenomena, offering insights into how
materials undergo a phase transition in response to thermal conditions.

The second subject of interest will be to study the emergence of instabilities on the solidification front
during its growth, and the appearances of channels of liquid in the medium. We will deal with the concept of
Mullins-Sekerka instabilities (see section 2.2) wich represent a fundamental aspect of solidification dynamics,
influencing the microstructure and properties of solidified materials.

By these two studies we try to understand the influence of solidification on the structure of the soil and
to observe the relative movements between the grains, the ice, the water and polutants inside the water.

2.1 Heat transfert and Stefan problem

To study phase transitions in matter, we deal with the Stefan problem [11] which caracterises the freezing
front propagation dynamics for a one-dimensional liquid system. It is a particular kind of boundary value
problem, for a system of partial differential equations, in which the boundary between two phases can move
with time as shown on Fig.4. We will derive below the most general case of a 2-phase system of a solid phase
in contact with a liquid one and lying on a cold substrate.

In our case, we are dealing with a layer of ice resting between a semi-infinite solid substrate and a semi-
infinite water, a case on which a variant of the Stefan problem exists [14][12] and our goal here is to find its
solution.

It is important to notice that Cp∆T is small compared with the latent heat L, so the energy needed to
bring the water to 0 degrees is neglected. It is therefore assumed that the water is already at 0 degrees, so
there is no flow in the water. So by considering only the 1-D heat equations in the substrate and in the ice :

(ρCp)k
∂T

∂t
= λk

∂2T

∂z2
(1)

with the subscript k being s for the substrate at the bottom (z ≤ 0), i for the solid ice (z ≤ h(t)), and
l for the liquid water (h(t) ≤ z). The parameters ρ, Cp and λ are respectively the density, heat capacity
and heat conductivity for our material. Now we deal with the different temperatures at the boundaries of
the phases. The discontinuity of heat fluxes due to latent heat at the ice-water interface is expressed by the
Stefan condition. In our case, here we are omiting the flux in water and get :

ρsL
dh

dt
= λs

∂T

∂z
(h−, t) (2)

λs
∂T

∂z
(0−, t) = λi

∂T

∂z
(0−, t) (3)

λi
∂T

∂z
(h(t)−, t) = ρiL

dh

dt
(4)

Test Deff,solide ≈ 4.5 ·Deff,ice Deff = 2 · St ·D
with L the latent heat of solidification of the water.
Similarity analysis shows that this diffusive problem exhibits a self-similar structure. In this case, the

solidification front location follows also a square-root in time law, showing the diffusive property of the
dynamics. Consequently, the growth of the freezing layer follows the classical diffusive dynamics : h(t) =√
Deff · t. The coefficient Deff is the effective diffusion coefficient that depends on the temperatures at the

boundaries and the thermal properties of the ice [6]. Our goal is to compute Deff with unit coefficient :
square metre per second m2/s.

4



Figure 4: Summary of the model hypotheses: A finite layer of solid lies between the semi-infinite melt
(z > h(t)) and the semi-infinite substrate (z < 0). The temperature of the whole melt is set constant at
the melting point (T = Tm), while the temperature of the substrate tends to TS when z → −∞. The
temperature in the solid phases is given by a set of two heat equations, with a specific diffusion coefficient
Dk for each phase, coupled by the temperature and heat flux continuity at z = 0. At the solidification front
(z = h(t)), the Stefan condition imposes the downward thermal flux to be equal to the latent heat liberated
by the freezing (figure from [13]).

Introducing the self-similar variable in the set of equations 1, 4 which are also shown in Fig. 4, we obtain
the following solutions for the temperature field:

T (z, t) = T0 + (T0 − Ts) · Erf
(

z

2
√
Dst

)
for z ≤ 0 (5)

and

T (z, t) = T0 +
es
ei
(T0 − Ts) · Erf

(
z

2
√
Dit

)
for 0 ≤ z ≤ h(t) (6)

where es,i =
√

λs,iρs,iCp,s,i are the effusivities 1 of the substrate and the solid, and T0 the contact
temperature at the solid-substrate interface, a constant in time in this self-similar framework. T0 is an
integration constant to be determined by the boundary conditions. Then, by imposing the Stefan condition
at z = h(t), we obtain the following transcendental equation [13]:

St =

√
πβ

2
· exp

(
β

4

)
·
(
ei
es

+ Erf

(√
β

2

))
(7)

with β defined as β =
Deff

Di
and St the Stefan number defined as St =

Cpi(Tm−Ts)
L . This last equation 7

has to be solved numerically.

2.1.1 Quasi-static resolution of Stefan problem

This problem can be solved in the quasi-static approximation. Our solid phase is assumed to rest on a
substrate at temperature Ts constant and the liquid phase is assumed to have a uniform 0◦C temperature.
The Stefan condition is then the same as eq.4 at the interface. Then, eq.1 can be rewritten as :

∂T

∂t
= Di

∂2T

∂z2
(8)

1The effusivity of a material is the physical quantity that witnesses both its heat capacity and its ability to diffuse it.
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In the quasi-static approximation, the temperature in the media does not depends on the position so we
get :

∂T

∂t
= 0 (9)

∂2T

∂z2
= 0 (10)

By solving this second derivative equation we get :

∂T

∂z
= K1 → T = K1 · z +K2 (11)

By considering the boundary conditions and considering a substrate at -10◦C :

T =
∆T

h
· z − 10 (12)

Then eq.4 can be expressed in the quasi statique approximation as :

ρsL
dh

dt
= λs

∆T

h
→ ρsL

λs∆T
hdh = dt (13)

Since ∆T/h ∝ dh
dt , the dynamic propagation of the front over time is inversely proportional to the height

of the front, hence the square-root growth that will follow later. After integration of eq.13 we get :

L
Cp ·∆T ·D

h2

2
= t (14)

with the diffusion coefficient :

D =
λs

ρsCp
(15)

Then we get the Stefan number :

St =
(Cp ∗∆T )

L
(16)

Finally, we can solve eq.14 and express the height of the front as the square root of the Stefan number
St, the diffusion coefficient for ice Di and the time t :

h(t) =
√

2 · St ·Di · t (17)

2.2 Mullins-Sekerka instabilities

The Stefan problem describes the propagation of a planar front. For certain conditions, this front is unstable
and instabilities can develop. The most common one is called the Mullins-Sekerka instabilities, named after
the mathematicians that solved the problem historically.

During the solidification of a liquid, the interface is generally subject to various forces and influences of
different parameters, such as the temperature gradient and the diffusion of impurities or chemical compounds.
Mullins-Sekerka instabilities describe how small perturbations on this interface can grow and lead to irregular
shapes or pattern-forming process in solidification [3].

In our experiment, which we will describe in detail below in sec.3, we freeze water mixed with a coloured
tracer, fluorecein with his local concentration C(z, t) depending on position and time.As the solidification
front passes through the porous medium, the freezing of water will form a pure ice. The pollutant is thus
expelled from the solid to the layer ahead of the freezing front, modifing the local concentration C(z, t) of
fluorecein.
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In the Mullins-Sekerka instabilities for a flat interface between a liquid phase and a solid phase, the
equation for the temperature [7] in the media as a function of concentration C(z, t) simplified reads :

T (z, t) = Tm +m ∗ Cfluo (18)

where:

• T (z, t) is the temperature at position z and time t.

• Tm is the melting temperature of the pure substance.

• m is a constante.

• Cfluo is the concentration at position z and time t of fluorecein.

This eq.18 shows that the higher the concentration of fluorescence in water, the lower its melting tem-
perature (liquid form at lower temperature) and therefore the front will propagate more slowly at this point
[9]. This relation between local temperature and concentration leads to destabilisations of the front that we
develope in sec.4.2.2. This phenomenon is analogous to that of brine discharge, where seawater freezes by
expelling the salt it contains [15].

3 The experimental setup

The experiment consists of freezing a mix of ceramic grains immerged into water with fluorescein. It is
contained in a cell placed on a cold substrate and cooled from below. We want to measure the dynamics of
the rise of the ice front as well as the final structure of the column shown in Fig.6. The grains are Microblast
Electrofused ceramic beads, the fluorescein is in the form of sodium salt. The rectangular cell is made of 3
plexiglas sides and a microscope slide for the front side, forming a cell of dimension : 2.57cm of width, 1.5
cm for the thickness and 5cm of height. The cell is equipped with a double-glazed as front screen shown
in Fig.5 to prevent condensation forming on the glass, which would create a blurred layer on the glass that
would hide the column of grains behind. This double glazing is made up of 2 microscope slides of 1mm
thickness and spaced by a 0.5mm thick rubber electrical sheath. The double glazing and the cell are sealed
with sealant. It is important to note that the formation of condensation on the glass was the major problem
in this experimental set-up. The choice of double glazing was made after numerous tests were carried out to
avoid this condensation (see 7.2 for more details).

Figure 5: Final double glazing cell of 0.7 cm of thickness

The cold source is provided by a peltier device which is a thermoelectric module that is a stable cooling
source. It is connected to a control software plugged to power supply. The peltier has a cold side that
provides the desired temperature for the experiment and removes the heat from the opposite side. The heat
released by the peltier is evacuated by a heat exchanger immersed in an ice bath as it is shown on Fig.6.
To evacuate the heat and ensure that the temperature supplied by the peltier remains stable, the ice bath
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should not be above 5 degrees Celsius.

Our approach will be to vary several parameters :

Parameters Values
Ceramic grain size 125-250 µm and 250-425 µm
Peltier temperatures -5◦C, -10◦C, -15◦C
Fluorescein concentration
in water

0.3 g/L, 0.6 g/L, 1.2 g/L, 2 g/L

Table 1: Summary of experimental parameters

The room temperature was 20◦C. The fluorecein plays the role of a tracker since it appears yellow when
the mix with the grains is liquid and orange when the mix is solid as we can see in the schematic cell of Fig.6.

Before each series of measurements, when the grains are placed in the cell, I carefully tamp the mixture to
compact the grains in order to reduce the volume and increase the apparent density. This is done in order to
obtain samples with a controlled and uniform compacity from one experiment to the next. By tamping the cell
before each experiment, I aim to standardise the geometry of the samples, thereby minimising experimental
variations due to differences in bulk density or grain arrangement.

Figure 6: Scheme of the experimental setup

The method finally adopted is that of the 0.7 cm double-glazed cell combined with soap on the outer pane
of the double-glazed cell and a brush to remove the frost excess when necessary. We use soap prevents fogging
mainly by reducing the surface tension of the water and creating a uniform film that prevents condensation
into small droplets. In addition, the ice/water tank was covered with plastic to prevent evaporation from the
tank.
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4 Experimental results

4.1 Height of the front

In the context of permafrost, a first study of a complex media made of foam, which are gas bubbles trapped
in a liquid under solidification, was investigated in the group of research [2]. The dynamics of this structure
can be compared to that of a mushy layer containing solid crystals surrounded by interstitial liquid [5]. In
this previously cited article, the analysis of the solutions of the perturbative equations to determine stabil-
ity leads to a theoretical model describing the instabilities and variations in the structure during solidification.

The study about foam [2] is proposing an analytical theory applied to the foam and led to a resolution of
the Stefan equation allowing to caracterise the dynamics of the front in this case. We found a dynamic in the
square root of time while taking into account the thermal parameters of the two media and the arrangement
of the bubbles in the diffusion coefficient.

The next idea is to see if this ’continuous medium’ approach is valid for granular materials. We now
need to solve this problem by not just having a liquid medium but rather a medium that mixes grains and
water. This granular medium gives us a microscopic structure and interaction mechanisms closer to those of
soil. Thus, it was decided to study ceramic grains of various sizes immersed in water and characterise their
behavior under controled temperature of freezing.

The image sequence of Fig.12 shows the propagation of the solidification front for our experiment. We
are measuring the solidification front growth in time for a fix substrate temperature, a chosen size range of
grains and a concentration of fluorecein in water. The front position is measured every 20 second. Thus, we
can see how the column of grains placed on the cold substrate reacts to solidification, on the Fig.12 below.

Figure 7: 0 sec
Figure 8: 100
sec

Figure 9: 200
sec

Figure 10: 300
sec

Figure 11: 400
sec

Figure 12: Exemple of front growth for grains of 120-180 µm at -15◦C at with a concentration of 2 g/L of
fluorecein

Thanks to the properties of fluorecein, the solidification front stands out and appears orange contrasting
with the yellow liquid phase. We are using a local threshold method on the green channel of RGB images
to localise the front2 (see 4.2.1). We can see that the entirely liquid column at 0sec becomes increasingly
orange as the solidification front progresses upwards. We expect to find a time-root behaviour as expressed
in section 2.3.

2In fact, Orange is a combination of red and green, with the red component generally higher than that of green. The
brightness difference between liquid and frozen foam gives an uncertainty for the measurement
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Figure 13: Growth of the freezing front for Ts = −10◦C,R = 250-425 µm and concentration of fluorecein of
1.2g/L and compared to the water growth of the freezing front (green line)

In Figure 13, we plot in blue the position of the ice front as a function of time and we plot in orange
the curve h(t) =

√
0.65 · t. We can see that the front grows has a square root behavior during the first 1000

secondes and then the dynamique is slowing and does not follows anymore a square root increase. We are
expecting the front rise to follow a power law dynamic as a square root of time h(t) ∝

√
t.

The light-orange zone represents the uncertainty of the automated measurements. The green line is the
result of the 1D model for pure water, and the green line is a 0.65 power-law fit of the experimental data.
If the dynamic follows in fact the square root behavior, we expect in a log-log scale representation that the
height of the front to have a first polynomial behavior.

Figure 14: Growth of the freezing front for Ts = −10◦, R = 250-425 µm and concentration of fluorecein of
1.2g/L and compared to the water growth of the freezing front (green line) in logarithmi scale

10



We can see that our measurements follow a power law behavior as it can be approximated by a straight
line in log-log representation (red line in Fig.14).

We can compare the dynamic of our front with the one of a simpler system with a front solidification
growth that we can derive. The reference will be the quasistatic front growth of pure ice derived in section
below. This ice dynamique is calculated at 0◦C as follows :

The latent heat of fusion is given by:
L = 333 kJ · kg−1 (19)

The specific heat capacity of ice is:

Cp = 2.06 kJ · kg−1 ·K−1 (20)

The thermal diffusion coefficient of ice is Di = 1.2. The Stefan number associated is then :

St =
Cp∆T

L
(21)

Putting eq.21 back into eq.17 we get effective diffusion coefficient for ∆T = 10◦C:

Deff,i = 2 ∗ St ∗Di = 0.144m2/s (22)

Thus, the effective diffusion coefficient in our experiment Deff,exp is much greater than that of ice since :

Deff,i < Deff,exp (23)

So our medium of immersed grains diffuses heat more quickly than pure ice. The difference in dynamics
can be explained by the fact that ceramic grains have a diffusion coefficient D = 1.95m2/s [1] which is higher
than the water one. This ifference can explain the faster front growth of mix of water and grains with respect
to the growth of the pure ice of Fig.13 and Fig.14.

In the contrary and as a comparaison, in the study of the foam [2] it was shown that the system was
less diffusive than the water. This would be explained by the fact that the air inside the foam reduces the
capacity for heat exchange with the cold substrate.

4.2 Channels and instabilities

4.2.1 Image analysis

The analysis of solidification in the cell is carried out using a Nikon D800E camera with a 200mm zoom. A
photo in RGB is captured every 20 seconds. To stop the presence of channels in the frozen zone, the image
ImageJ is used for cropping and separation of the red, green and blue color channels, and after a contrast
adjustment. The aim is to highlight the fluorescein channels for better identification by eyes. In the figure
below Fig.19 we can see that extracting the blue channel is crucial to see well the fluorecein channels.
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Figure 15: Blue channel on
which we can see the fluorecein
channels

Figure 16: Green channel with-
out visible fluorecein channels

Figure 17: Red channel without
visible fluorecein channels

Figure 18: RGB image where
you can already see a little the
fluorecein channels

Figure 19: Example of splitting channel for a cell with grains of size 125-250 µm at -15◦C for a fluo concen-
tration of 2 g/L presenting fluorecein channels

When the colour channels of an image are extracted, each color channel (red, green and blue) shows the
respective intensities of that colour in each pixel of the image. Orange has little or no blue component. The
colours on a screen are created by combining different intensities of red (R), green (G) and blue (B). The
colour orange is mainly composed of red and green, with little or no blue. So orange areas in an RGB image
appear dark in the blue channel because there is little blue contribution.

All the experiments do not let to an appearance of fluorecein channels as we can see on the images below
:
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Figure 20: Blue channel Figure 21: Green channel Figure 22: Red channels

Figure 23: RGB image

Figure 24: Example of splitting channel for a cell with grains of size 125-250 µm at -15◦C for a fluo concen-
tration of 0.3 g/L not presenting fluorecein channels

We can see on the images above how look the bulk when there are no fluorecein channels.

4.2.2 Creation process of channels and phase diagram

As mentioned before, our experiment consists in freezing a cell placed on a peltier element, filled with
ceramic grains of a single size, immersed in water and mixed with a dye (fluorescein powder suspended in
water, colloidal mixture). This dye gives a yellow colour to the mixture and becomes more orange as it
becomes more concentrated.

Ice expels impurities when it solidifies. So the solutes, in this case, the fluorescent particles present in the
freezing water, are expelled from the forming ice to the liquid above it. The ceramic grains are too heavy
to be expelled. Some of the fluorecein then concentrate in particular zones forming microscopic channels in
the ice. We can suppose that these traces of the dynamics of solidification might be due to Mullins-Sekerka
instabilities [3] (see sec.2.2). In the figures Fig.4.2.2,4.2.2 below, we can see the process of channel formation.
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Figure 25: Schematic arrangement of a directional-solidification. experiment [9]

A zoom at the interface would give a better view of the the phenomenon involved. The figure below shows
the origin of the channels and highlights their periodicity with a wave length λ.

Figure 26: Cellular interface in directionally solidifying sample. The solidification front is moving in the
positive-z (upward) direction and λ is the perturbation wave length [9]

The speed of the front can slow down enough at this point to be below the critical speed that causes the
Mullins-Sekerka phenomenon. This irregularity will evolve into a well towards which the nearest particles
will be conducted, further accentuating the attraction process. The solidification front continues to rise in
the cell on either side of this well, which is over-concentrated in dye particles and becomes a channel as
the ice advances around it. These channels of water over-concentrated in ice appear more orange than the
surrounding mixture of grains and ice. So the inhomogeneity of colour is an indicator of the flow of pigment
molecules in the channels. However, a slight increase in the concentration of water at a point on the front
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will lead to irregularity and instability at the solid-liquid interface. We then have highly concentrated flows
of water towards the solidification front. The increase in the melting point of liquid in the channels is what
keeps them in the liquid phase. There is an equilibrium between the concentration and the local temperature
in the channels and it no longer freezes, so the concentration will be directly given by the temperature.

Now let’s if we look closer to the arrangement of the canals we can spot some periodic setting.

Figure 27: Image cell with grains of size 125-250 µm at -15◦C for a fluo concentration of 2 g/L presenting
fluorecein channels with a wave length λ

Looking at the distribution of the channels in the cell of Fig.4.2.2, we can guess that they seem to be
distributed according to a certain periodicity. It would be interesting to take this analysis further and look
for a characteristic wave length in the continuation of the study of solidification and compare it with the
Mullins Sekerka one.

Experiments to see the presence of channels have been started before my internship by my research
group. Under certain conditions of propagation speed of the front and size of the ceramic grains, we observe
an expulsion with different behaviours. My contribution was to fill up a size range of grains by testing new
sizes which had not been tested : 125-250 µm and 250-425 µm. To characterise the conditions of appearance
the the fluorecein channels, we draw a phase diagramm of their presence depending on the bead range sizes
and the concentration of fluorecein in the water. The measurements already done appear with a a solid black
outline and mine appear with a dots outline on the phase diagram shown below.
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Figure 28: Phase diagram showing the results of my experiments (dotted lines) and those already carried out
by the team (solid lines).

We can see on the phase diagram that there is a region where the parameters are favorising the appearance
of canals. This zone covers ranges of size from 63µmto425µm for fluorecein concentration from 0.6g/Lto2g/L.
A further study of the dynamic of the fluxes between water grains and fluorecein would help to understand
this phenomenon and see how relevant the mullins sekerka model is to our experience.
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5 Freezing water with fluorecein

Figure 29: Pure water with fluo
channels Figure 30: Figure 31:

Figure 32:

Figure 33: channels

Figure 34: Figure 35:
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6 Conclusion

In this course I studied the characteristics of a model soil subjected to solidification, which is comparable to
the active layer associated with permafrost. My first area of interest was to characterise the dynamics of the
solidification front and, more precisely, the growth as a function of time. I found that the front height of my
model soil grows as a square root of time with an diffusif coefficient bigger than the one of water. The mix
of water and grains due to the better diffusive caracteristics of the grains. Secondly, I focused on the study
of the front instabilities pattern. I completed the phase diagram, started by my team, of the presence of
channels in the solide phase with the 2 new ranges of grains size. An area stands out in the phase diagram
where the parameters appear to be conducive for the creation of channels. For a further study, would be
interesting for the first study of the front growth to find analytically the exact coefficient of the mix of water
and grains and compare it with the experimental one. Concerning the second study about instabilities, we
could look at the periodicity of the channel and relate it with the theoretical Mullins-Sekerka instabilities
pattern wave length. Finally, this experience in the new IFADyFE laboratory not only strengthened my
technical skills, but also my ability to solve problems independently and innovatively and discuss with the
other labs to compensate for the lack of equipment in this laboratory in development.

7 Annexe

7.1 More on the experimental Setup

Figure 36: Photo of the experiment

Figure 37:

7.2 Solutions to condensation

The problem of condensation was at the heart of a large part of my work placement. To understand the
context, the new ifadyfe premises are in blind rooms with no windows and far from all sources of outside air.
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Ventilation is used to renew the air. What’s more, the premises are not equipped with a column of dry air,
which would have solved the problem more easily.

Below, I detail the different solutions I tested. For each of them, I had to find out how it worked, find a
supplier to buy it and evaluate its effectiveness on several experimental manipulations.

Method Efficiency / Comments

Spit and Soap Works but requires regular manual applica-
tions

Aquarium with Silica gel and fans Unable to prevent humid air from entering the
aquarium; needed to regularly add new ice
cubes by opening the aquarium

Spray dry air aerosol bomb Convenient hand-held bomb with short-lived
effects

Dry air with pump and filter Technically challenging to implement

Dehumidifier Similar to the aerosol bomb

Anti-condensation spray Had no effect

Anti-condensation liquid Condensation gathered into droplets that
needed to be regularly absorbed with paper
or a brush

Anti-condensation film Similar to the anti-condensation liquid

New, more ventilated room No noticeable change

Brush / absorbent paper Tedious, moves the cell and impractical as one
must be careful not to obstruct the camera
which takes an image every 20 seconds

Covered tank Effective

Fans Not effective

Double-glazed cell 2 sizes were tested: 0.7cm (work well) and 1
cm (does not work)

Table 2: Methods to prevent condensation
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Figure 38: Some prototypes of double glazing cells
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