
Master Photonics for Security Reliability and Safety (PSRS)

A DEEP LEARNING APPROACH FOR PREDICTING
TRANSMISSION SPECTRA OF METASURFACES

Master Thesis Report

Presented by

Md Imran Hossain

and defended at

University Jean Monnet

04 September 2024

Academic Supervisor: Professor, Carlo Ricciardi
Host Supervisor: Professor, Humeyra Caglayan

Jury Committee:
Professor, Nathalie Destouches, University Jean Monnet
Professor, Matthieu Roussey, University of Eastern Finland
Professor, Jean‐Philippe Colombier, University Jean Monnet





A DEEP LEARNING APPROACH FOR PREDICTING
TRANSMISSION SPECTRA OF METASURFACES



Abstract

Metasurfaces, ultrathin 2D structures, havedrawn considerable attention in recent years
due to their applications inmanyfields. Themetasurface is a subwavelength‐engineered
structure with unique electromagnetic properties and exceptional light‐matter interac‐
tions. Recent research indicates that metasurfaces are a good fit for studying the polar‐
ization conversion of electromagneticwaves. In search of polarization conversion to any
arbitrary angle, we have considered taking advantage of deep learning to investigate the
field thoroughly. In recent years, the contribution of deep learning in optics and photon‐
ics has been undeniable. This work presents a neural network miming a conventional
numerical simulator like Ansys Lumerical FDTD. We have introduced a neural network
based on ResNet‐18 to predict the transmission spectra of Gold metasurfaces within
the 1200 to 1700 nm region. The model is trained with thousands of simulated data
of metasurfaces with varied geometries. The model can accurately predict the trans‐
mission spectra within a couple of milliseconds. Evaluation of 150 datasets shows that
the model has an average prediction accuracy of 85.27%. The model aims to present a
time‐efficient method for investigating polarization conversion metasurfaces.
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1 Introduction

Polarization is a fundamental characteristic of light. The orientation of the oscillating
electric field of an electromagnetic wave describes the polarization of light. Due to its
intrinsic characteristics, polarization of light is extensively explored in integrated optics
[1], light‐matter interaction [2], imaging [3], quantum optics[4], nonlinear optics [5],
wireless communication[6], and sensing applications [7]. Precise control and manipula‐
tion of polarization are important in many optics and photonics devices since they have
a high degree of freedom when controlling electromagnetic waves. A perfect polariza‐
tion converter can transform an electromagnetic wave with an unspecified polarization
into a clearly defined one. Conventional instruments such as wave plates and polariz‐
ers handle the polarization of light as though it is constant throughout the beam rather
than concentrating on particular segments; they collectively modify the entire beam’s
polarization. This simplifies polarization management by treating the light beam as a
single, homogeneous unit for large‐scale modifications [8]. Birefringent materials like
calcite are commonly used to make traditional wave retarders. These materials have
different refractive indices for optical transmission, which results in a phase difference
between two perpendicular axes. Unfortunately, this technique typically requires an
optical channel long enough to collect the phase difference, leading to large, unsuitable
wave retarders for advanced applications that call for small optical elements. Further‐
more, material limitations limit the operational wavelength range of conventional wave
retarders, impeding the development of contemporary optical technologies [9].

Considering the above fact, metasurface can be a promising candidate for developing
polarization rotators. Metasurfaces consist of subwavelength resonance units arranged
in a two‐dimensional planar structure. By adjusting the characteristics of these units,
such as geometry and size, metasurfaces can control how light interacts with them,
enabling precise modulation of electromagnetic wave properties like amplitude, polar‐
ization, and phase [10]. Despite having the ability to possess desired light‐matter inter‐
action, we have not been able to take full advantage of metasurfaces. A perfectly en‐
gineered metasurface can produce various optical and electromagnetic functionalities
over any frequency spectrum. However, such a well‐designed metasurface is not easy
to achieve. Predicting a material’s optical characteristics and approximate structure in‐
volves sophisticated repetitive computations because the generalized theory cannot re‐
solve the complex physical principles that characterize these light‐matter interactions at
the nanoscale [11]. Designing these metasurfaces requires knowledge of handling elec‐
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tromagnetic simulation software and an understanding of electromagnetic optics. In
addition, human error is a natural part of the classic metasurface design process. Also,
it demands an extensive parameters sweep of the geometry and material properties
based on a trial and error method that takes hours of simulations.

Implementing machine learning in optics and photonics has recently drawn consider‐
able attention and has been labeled AI in photonics. Metasurfaces are also not excluded
from the coordination of Machine Learning, especially Deep Learning. It is possible
to predict the geometry of the metasurfaces and their corresponding electromagnetic
features without extensive computation of Maxwell’s equations by using deep neural
networks[12, 13]. These frameworks could be a potential approach to investigate the
polarization conversion metasurface.

1.1 Polarization of Lights

As it is known that polarization of light refers to the orientation of the electric field based
on the amplitude and phase distribution of the electric field between two orthogonal
directions, the polarization of light can be classified into several types, such as

• Linearly polarized light

• Circularly polarized light

• Elliptically polarized light

To understand the polarization closely, let’s consider a plane wave propagating in the
z‐direction at the speed of light, considering the electric field‐

E⃗ = E⃗0e
i(k⃗·z⃗−ωt) (1.1)

As E⃗0 is orthogonal to the propagation direction so, E⃗0 = (Ex, Ey, 0) and complex
amplitude Ex and Ey has both magnitude and phase. Thus results in writing Ex =

|Ex|eiϕx , Ey = |Ey|eiϕy .

Firstly, the plane wave can be considered linearly polarized if the phase difference be‐
tween Ex and Ey becomes zero. If any of the orthogonal components of the elec‐
tric field become zero, this can still be identified as linearly polarized but in a specific
direction. For instance, if Ey = 0, Ex ̸= 0 then E⃗ = E0x̂e

i(k·z−ωt), this can be
called linear polarized in the x direction (x‐polarized). Similarly, Ex = 0, Ey ̸= 0 then
E⃗ = E0ŷe

i(k·z−ωt), this can be called linearly polarized in the y direction (y‐polarized).
For better understanding, x‐polarized and y‐polarized light is illustrated in Figure 1.1[14].
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Figure 1.1: Orientation of the electric field for the x‐polarized(right) and y‐polarized(left) light.

Secondly, The plane wave can be considered as circularly polarized if the magnitude of
the electric field’s orthogonal components become equal (Ex = Ey) and constantly
maintains a quarter wavelength out of phase (ϕx−ϕy = 2π

λ
λ
4 ). During the propagation

along the z‐direction, if the phase difference is π
2 , the polarization(E) rotates clockwise

in the x − y plane, which is called Left Circularly Polarized (LCP). Similarly, if the phase
difference is−π

2 , the polarization (E) rotates counterclockwise in the x−y plane, which
is called Right Circularly Polarized (RCP). LCP and RCP light is shown in Figure 1.2[15] to
visualize properly.

Figure 1.2: Orientation of the electric field for the circularly polarized light.

Lastly, if theEx andEy are not equal inmagnitude andpossess a phase difference(∆ϕ ̸=
0 ̸= π

2 ), themagnitude of the polarization(E) varies as it rotateswithinx−y plane, from
the z‐direction the orientation of the changing electric field resulting in ellipse, so this
is called elliptical polarization. In Figure 1.3[14], elliptical polarization is illustrated for
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better conceptualization.

Figure 1.3: Orientation of the electric field for the elliptically polarized light.

1.2 Physics and Applications of Metasurface

A metasurface can be considered a bulk metamaterials’ two‐dimensional (2D) coun‐
terpart. Metasurfaces, or planar metamaterials with subwavelength thickness, com‐
prise stacks of single or few layers of planar structures. Metamaterials are synthetic
materials designed to possess characteristics not present in ordinary materials. Rather
than their content, the structure of these materials gives them their distinctive quali‐
ties. Metamaterials are three‐dimensional (3D) structures. They are typically composed
of repeating unit cells smaller than the wavelength of the electromagnetic waves they
interact with. Metamaterial exhibits exceptional electromagnetic properties, and their
permittivity and permeability are derived from their structure orientation rather than
the material itself[16], artificial magnetism, negative permittivity, and negative per‐
meability have been noted in fabricated metamaterials along with negative refractive
index[17]. Russian physicist Victor Veselago first proposed the idea of metamaterials in
1968. Many typical electromagnetic properties could be reversed by materials with a
negative refractive index, according to Veselago’s theory[18]. Early in the new millen‐
nium, British scientist Sir John Pendry contributed to the field’s development of the the‐
oretical framework and practical designs for metamaterials. Specifically, Pendry and his
associates presented the notion of achieving negative permeability and negative permit‐
tivity by artificially structured materials, including split‐ring resonators, which resulted
in the creation ofmetamaterials with negative refractive indices[19]. From then until to‐
day, metamaterial has been used in assorted engineering applications counting perfect
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lens [20], invisible cloak[21], antenna[22], sensor [23], holography [24], absorber[25],
etc. However, the large losses, considerable dispersion related to resonant responses,
and difficulties in fabricating nanoscale 3D structures pose significant challenges to the
practical implementation ofmetamaterials and the need to ensure the structure is bulky
enough to aid essential properties like refractive index, permeability, and permittivity
[26]. Meanwhile, the effective permittivity, permeability, and refractive index in meta‐
surfaces are less significant since the subwavelength thickness adds a small propagation
phase.

On the other hand, the surface or interface reflection and transmission, together with
their amplitude, phase, and polarization states that come from the customized sur‐
face impedance, are greatly influential[27]. Metasurfaces can be easily fabricated by
lithography and nanoprinting techniques, including stacking single or few planar struc‐
tures. The extremely thin thickness in the direction of wave propagation can signifi‐
cantly reduce undesired losses with the help of appropriate material and metasurface
structures. Metasurfaces have a wide range of fruitful applications including flat optics
[28], beam steering [29], holography[30], polarization control[31], wavefront shaping
and manipulation[32], sensing and imaging[33], etc. All things considered, metasur‐
faces can get beyond bulk metamaterials while having strong enough interactions with
incident waves to produce exceptionally useful characteristics.

1.3 Deep Learning in Optics and Photonics

In the past few decades, novel approaches to manipulating light‐matter interactions
have beenmade possible by developing constructed photonic structures, including plas‐
monic nanostructures, metamaterials, and photonic crystals. These developments have
made a wider range of applications and new device designs possible. Structural designs
are crucial whether we are talking about single plasmonic nanostructures, metamateri‐
als, or photonic crystals made of metallic or dielectric building block arrays. Tradition‐
ally, numerical simulation techniques or physics‐based approaches have governed the
design of photonic structures[34]. We must frequently adjust the shape and rerun sim‐
ulations to get closer to the desired responses. This process mainly depends on prior
expertise with the design templates; due to time and simulation power limitations, only
a few design parameters are changed in finding the ideal structure. However, these
methods frequently have trouble with intricate geometries and need a lot of iterations
to produce the desired results.

By effectively navigating vast design spaces and identifying counterintuitive solutions,

5



deep learning, a subset of machine learning, provides a data‐driven methodology that
can supplement conventional techniques. With its sophisticated tools for developing,
evaluating, and optimizing optical systems, deep learning has significantly impacted op‐
tics and photonics. It has transformed many photonics research fields in recent years,
including wavefront shaping, device optimization, material design, and image process‐
ing. Deep learning is used in photonics to solve complex design problems. When de‐
sired optical properties are specified initially, and the model creates a structure that
satisfies those requirements, it is used in the inverse design of photonic structures[35].
Polarization conversion is especially useful for enhancing the function of components
like waveguides and photonic crystals for applications like filtering and light trapping.
Deep learning also expedites the creation of metasurfaces, which are two‐dimensional
structures that control light at a subwavelength scale, by forecasting their optical per‐
formance in a matter of minutes rather than weeks[36]. In addition, deep learning
has brought diversity and more rapid progress in metasurface design and optimization
[37], optical image processing and microscopy[38], optical communication and signal
processing[39], ultrafast optics and spectroscopy[40], opticalmaterial discovery[41] and
so on.

Optics and photonics now have exciting new opportunities because of deep learning but
also some challenges. One reason is that large amounts of data are typically complex for
these models to learn from in highly specialized fields like photonics. Neural networks
are also frequently called “black boxes” because it can be challenging to grasp their
inner workings and how they connect to the physical phenomena under study[42]. This
can make it difficult to understand why they make certain judgments. Also, training
these models might take a lot of processing effort, making them resource‐intensive.
In photonics and optics, deep learning has enormous potential despite these obstacles.
We can anticipate seeing increasingly complex optical systems and technologies that are
more effective and capable of entirely new things as technology develops. Advances are
being made possible by the combination of machine learning and photonics.

1.4 Objective

Our main research goal is to control the polarization of light to any arbitrary angle using
fabrication‐friendly metasurfaces. The polarization conversion of the transmitted light
that passed through themetasurfaces will be investigated in the optical communication
wavelength region (1200‐1700 nm). We will introduce a deep learning framework that
will generate a combination of metasurface unit cells to serve the desired functionali‐
ties. A compositional pattern‐producing network(CPPN)[43] will be trained with thou‐
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sands of geometric data with the help of Wasserstein generative adversarial networks
(WGAN)[44]. The network will read the pixel coordinates of the input geometries and
will predict compositions for those pixels to compose new geometry to gain the design
objective. TheWGANwill guide the network in composing real images like the input ge‐
ometries. Since the network will generate hundreds of compositional metasurfaces and
it is necessary to check the validity of those generated patterns, numerical simulation is
needed to be performed on those metasurfaces. Designing those generated metasur‐
faces and simulating them with commercially available simulators would take months
of labor and require professional expertise. At this level, a framework would be needed
to design and simulate those complex structures in short timescales to investigate their
light‐matter interactions. In this work, we particularly focus on developing a neural net‐
work simulator that mimics the behavior of a numerical simulator for a particular de‐
sign objective. More precisely, a neural network was built to read the metasurfaces
and predict the corresponding transmission spectra within the optical communication
wavelength region.
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2 Background and Literature Review

Neural networks have proven to be effective tools for forecasting intricate physical phe‐
nomena as the field of photonics expands. Metasurfaces present a viable avenue for ad‐
vances in photonics and optics because of their ability to alter light at exceedingly small
subwavelength scales. Researchers can anticipatewith accuracy how light interactswith
these metasurfaces by utilizing deep learning models. This improves our understand‐
ing of how electromagnetic waves interact with sophisticated materials and expedites
design. In this study, we will cover important research that uses deep learning to an‐
ticipate behaviors in optics and photonics, and we will investigate the fundamentals of
neural networks, with a specific focus on convolutional neural networks (CNNs).

2.1 Analysis of Recent Studies

An et al. present an accurate yet greatly shortened characterization time‐to‐resolution
metasurface modeling method based on deep learning in their research[45]. They have
proposed a CNN‐based predicting neural network(PNN) that has the ability to predict
transmission spectra for unscripted forms of metasurfaces within 5 µm to 10 µmwave‐
length regions. Different periodicity, a range of refractive indices, different geometric
patterns, and various thicknesses of the metasurface are introduced to the model to
make the model applicable to a wide range of metasurfaces. This approach can antic‐
ipate the spectral response for a broad range within a short period that outperforms
the traditional numerical solver with a great deal of time. This work focuses on pre‐
dicting not only amplitude but also the phase that allows the researcher to study phase
gradient meta‐optical devices. They performed the training on PNN with randomly de‐
signed 100,000 free‐form metasurfaces with randomly associated parameters within a
specific range. To generate label datasets, Finite ElementMethod(FEM) is used to simu‐
late those patterns numerically. The training accuracy of the model was checked based
on the MSE loss, which was comparatively low. Though they trained the model with
four different parameters, the number of varied geometry was smaller in the datasets.
Authors have claimed that the proposed model is easily transferable to different areas
of physics where quick and precise modeling is needed to establish a connection be‐
tween a large as well as complex parametric space and associated physical phenomena.

An interesting deep‐learning method is presented by Roberts and Hedayati in their re‐
search [46] to predict the structural color of the plasmonic metasurfaces. Frequency‐
selective absorptions and scattering result in structural color in specially designedmeta‐
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surfaces. The main idea of this research is to predict the wavelength that is collectively
reflected from those metasurfaces that give the appearance of different colors. The
model presented in the article can predict the structural color withmore than 96% accu‐
racy and dramatically less computational time than a numerical solver like Ansys Lumer‐
ical FDTD. Instead of playing with different geometries, this method works on a single
geometry with various thicknesses and diameters that cover a wide spatial range in nm.
Constant periodicity was used for the metasurfaces in order to preserve viewing angle
independence and minimize parameters in the neural network model. The techniques
described here offer a generalized way for deep learning‐based complicated metasur‐
face design in addition to the evolution of specific metasurface models.

In this article[36], a quick and effectiveway tomodelmetasurface andmap the structure
to predict S‐parameter is presented, called REACTIVE. Additionally, it demonstrates the
benefits of automating the design process to make it more effective, efficient, time and
computationally resource‐efficient. The average accuracy is recorded at 76.5% while
the model works considerably well on 30% datasets. The design approach consists of
an 8x8matrix framewhere 1 indicates the existence of copper and 0 indicates the space
is blank. CST MWS has been used to simulate the generated pattern to create a set of
metasurface and label data to train the REACTIVE model. According to the authors, The
advantage of using REACTIVE is that it can automatically create the metasurface struc‐
ture, freeing engineers to focus on their design goals instead of the other intricate design
process.

Complex all‐dielectric metasurface modeling is demonstrated by Nadell et al. utilizing
deep neural networks, with inputs being the geometry of the metasurface and the un‐
derlying physics information[47]. The deep neural network is composed of a series of
fully connected layers that are fed by the geometric datasets. The model serves as an
optimizer rather than a universal simulator for specific design tasks. The process con‐
cerns keeping themetasurface structure similar and varying the height and radius of the
cylindrical shapes and lattice period. Within the range of 0.8 to 1.5 THz, the model is
able to predict the frequency‐dependent transmission spectra precisely.

Lastly, based on deep convolutional neural networks, forward prediction for random
metasurfaces operating at terahertz (THz) is presented in this article[48]. The neural
network can efficiently predict the amplitude and phase reflected from the metasur‐
faces within 0.2 to 2 THz. A 5x5 matrix is used to create about 70,000 metasurfaces to
train the neural network to predict the amplitude and phase response while keeping
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the other structural parameters constant. Though the number of metasurfaces is enor‐
mous, all the patterns generated look similar to a 5x5 QR code. Over the 10,000 test
datasets, the average MSE loss for the amplitude and phase prediction was calculated
0.0011 and 0.0113 respectively. According to the authors, the prediction executes in 3
ms, which is 40,000 quicker than the conventional numerical solver.

2.2 Analysis of Key Findings

Following a thorough review of recent studies using a deep learning‐based methodol‐
ogy, we have found that most of the work focuses on amplitude response prediction.
Somework focuses on both amplitude and phase prediction in the GHz and THz regions.
Different research groups have investigated both the reflection mode and transmission
mode thoroughly. We have found some research concerning the optical communica‐
tion wavelength in this domain. The number of work that focuses on various geometric
data rather than parameter optimization is few, and the number of geometries in the
datasets lacks diversity in their pattern. Themodel training and response time in unseen
data prediction are also key factors. One of the key issues we have addressed is that the
metasurface generation is not convenient with a 5x5 or 8x8 matrix combination, which
reduces the degree of freedom in generating random and complex structures. Most of
the work is based on CNN and fully connected layers. Improving prediction accuracy can
still be done when datasets have a variety of shapes. There is plenty of scope to work
on deep learning‐based forward prediction of the transmission spectra in optical com‐
munication wavelength. Based on recent studies, it is worth mentioning that the deep
learning‐based approach is more efficient and less time‐consuming while maintaining
less computational resources.

2.3 Background Study

Convolutional neural networks, or CNNs, are a particular class of artificial neural net‐
works that have gained popularity for their ability to analyze structured input, such as
images[49]. CNNs are flexible and can be used for a variety of other data analysis and
classification applications, even though they are primarily recognized for image process‐
ing. Consider CNNs to be a specific type of Artificial Neural Network (ANN) built to
identify patterns in visual data, textures, or even the spatial relationships between such
patterns. CNNs are very good at jobs like image analysis because of their capacity to
recognize complex patterns. However, their usefulness goes beyond just images; they
are also extensively employed in natural language processing[50], medical imaging[51],
and video recognition[52]. CNNs process incoming data by sending it via multiple hid‐
den layers and then fully linked layers, enabling the network to convert the input into
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useful outputs. A CNN turns out to be a strong and effective method for handling this
type of image data processing, considering our requirement to examine 2Dmetasurface
images and extract intricate information in order to forecast transmission spectra.

2.3.1 Convolutional Layer

The core component of a CNN is the convolutional layer, which uses the convolution pro‐
cess to identify local patterns in the data. This layer generates feature maps by scanning
the input data using tiny filters, or kernels. These maps draw attention to significant de‐
tails such as forms, textures, and edges[53]. In essence, the kernels are tiny matrices
that traverse the data, carrying out calculations at every location. The stride determines
the amount of movement the kernel makes each time. These kernels typically come in
3x3, 5x5, or 7x7 sizes, and the edges of the image are frequently padded as they travel
over the data grid. This guarantees that no details are lost at the borders and that the
kernels can adequately cover the whole input region. The procedure yields a feature
map that effectively captures the salient features of the input data.

2.3.2 Activation Function

Neural networks require activation functions to introduce non‐linearity, which enables
the networks to recognize and interpret complex patterns in the input. These functions
allow the network to simulate non‐linear relationships when applied element‐wise to
the outputs of convolutional layers. The sigmoid, tanh, and ReLU activation functions
are frequently found in CNNs. Among these, the Rectified Linear Unit (ReLU) is notably
well‐liked for CNNs in deep learning. Positive inputs are processedwithoutmodification,
whereas negative inputs are set to zero. ReLU is a highly effective method for train‐
ing deep networks because of its simplicity, which helps prevent the vanishing gradient
problem. On the other hand, it can occasionally result in the “dying ReLU” problem, in
which neurons stop responding to negative inputs. As its output can be understood as
probabilities, the sigmoid function, on the other hand, compresses input values into a
range between 0 and 1. This makes it ideal for tasks like binary classification. Despite
this, the training process may be slowed down by the sigmoid’s propensity for vanishing
gradients, particularly for inputs that are far from zero. This is improved by the hy‐
perbolic tangent (tanh) function, which centers the output around zero and squashes
inputs into a range between ‐1 and 1. This frequently results in faster convergence dur‐
ing training. Tanh is vulnerable to the vanishing gradient issue, just like sigmoid. Tanh
is a good option for the output layers since it naturally falls inside the complex number
range that our design operates with, which is ‐1 to +1[54].
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2.3.3 Pooling Layer

CNNs require pooling layers in order to minimize the spatial size of feature maps. This
reduces the number of parameters and computational load. In addition to increasing
the model’s efficiency, this helps avoid overfitting. Furthermore, pooling layers confer a
trait called translational invariance, which makes the network more adept at identifying
features wherever they occur in the input[53]. Max pooling and average pooling are the
two commonly used pooling strategies. Max pooling reduces the size of the data while
highlighting the most noticeable characteristics by choosing the highest value within a
narrow slidingwindow across the featuremap. In doing so, dimensionality is decreased,
yet important information is retained. The featuremap is representedmore broadly and
smoothly when average pooling is used to calculate the mean value within the window.
Both the degree of downsampling and the resolution of the final pooled feature map
are influenced by the stride andwindow size parameters, which govern this process and
control how the pooling window moves across the feature map.

2.3.4 Batch Normalization

In deep learning, batch normalization is a technique that scales and modifies the acti‐
vations of a preceding layer’s output to normalize it. Neural network training is greatly
accelerated and stabilized by this approach. Normalization involves dividing the result
by the batch standard deviation after deducting the batch mean from the activations.
In order to standardize the input for the following layer, this step makes sure that the
activations have a mean of zero and a standard deviation of one. Following normaliza‐
tion, the data is subjected to learned scaling and shifting parameters, which preserve
the network’s ability to depict intricate patterns in spite of the normalization. Batch
normalization has significant advantages; it lessens internal covariate shift or the vari‐
ation in the network activation distribution brought about by parameter adjustments.
Higher learning rates can be used as a result of this reduction, which may accelerate
convergence[55]. Furthermore, batch normalization serves as a regularizer, which fre‐
quently eliminates the need for further regularization methods like dropout. Batch nor‐
malization facilitates the construction of more resilient and effective neural networks
by stabilizing the training process and allowing for higher learning rates.

2.3.5 Fully Connected Layer

Dense layers, also known as fully connected layers, are crucial components of neural
networks, particularly CNNs, which are usually positioned near the conclusion of the
architecture. These layers create a web of connections by connecting each neuron in
one layer to each neuron in the next. In order to help the network produce its final pre‐
dictions, this structure enables the network to integrate and combine the complicated
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characteristics that the prior convolutional and pooling layers had taught it. Each neuron
in a fully connected layer has a unique set of weights and a bias, which aremodified dur‐
ing training in response to variations between the target and the expected output[53].
Backpropagation, which teaches the network to minimize errors, facilitates this correc‐
tion. These neurons’ outputs are subjected to non‐linear activation functions, such as
tanh, sigmoid, or ReLU, to aid in the model’s learning of intricate patterns in the data.
The last fully connected layer in classification tasks often generates a set of scores, each
of which indicates the likelihood that the input is a member of a particular class.

2.3.6 Forward Propagation

In neural networks, forwardpropagation is the process bywhich input data travels through
the network layer by layer to produce an output. This procedure is necessary for both
estimating the loss during training as well as for making forecasts. The input layer is the
first layer that receives and transfers raw data, such as text, photos, or numbers, to the
subsequent layer. Every layer of the network changes the data as it moves across it.
Filters extract significant information from images, like edges and textures, using con‐
volutional layers. Thus, the network can capture more intricate patterns by introducing
non‐linearity by applying activation functions. The next step in pooling layers is to re‐
duce the amount of data, which reduces computing overhead and lessens the sensitivity
of the model to slight changes in the input. The data is gradually refined by repeating
this process with every layer until it reaches the output layer. This is the last predic‐
tion the network makes; for classification tasks, this might be a list of probabilities that
indicate the likelihood of each potential class.

2.3.7 Backpropagation

An essential component of neural network training is backpropagation, which modifies
the model’s weights and biases in response to output errors. The first step in the pro‐
cedure is to compute the loss, which is the difference between the target values and
the network’s anticipated output. Different loss functions are used depending on the
job, such as Cross‐Entropy Loss for classification andMean Squared Error for regression.
This loss provides a quick overview of the network’s performance. The gradients, which
indicate the relative contributions of each weight and bias to themistake, are then com‐
puted by backpropagation. Backpropagation computes these gradients for each layer
by going backward through the network and applying the chain rule. In essence, the
gradients aid in determining the amount and direction of change that each parameter
should undergo in order tominimize the loss. Weights and biases in the network are up‐
dated using this data by optimization techniques such as Adam, RMSProp, or stochastic
gradient descent (SGD). This process is done numerous times, enabling the network to
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increase its accuracy as it learns from its errors progressively. In this sense, backpropa‐
gation powers neural network learning by continuously improving the model’s internal
parameters to comprehend and forecast the data it has been trained on.

2.3.8 Loss Function

The difference between the expected output and the target values is measured quanti‐
tatively using a loss function. The loss function ensures that the network’s predictions
get more accurate by directing the optimization process during training by offering an
objective criterion to minimize. Cross‐entropy loss and Mean Squared Error (MSE) are
two of the most widely used loss functions. For regression tasks, where the objective is
to predict continuous values, MSE is commonly utilized. MSE calculates the average of
the squared differences between the predicted values (Ê) and the actual values (E), as
described by the equation 2.1.

MSE =
1

n

n∑
i=1

(Ei − Êi)
2 (2.1)

In this formula, n represents the number of data points,Ei denotes the true values, and
Êi stands for the predicted values. By squaring the differences, MSE ensures that larger
errors are penalized more heavily, which drives the network to improve its predictions.
Once the loss is computed, backpropagation is employed to minimize it. During back‐
propagation, the gradients of the loss function concerning each network parameter are
calculated using the chain rule. These gradients indicate the direction and magnitude
of the change needed for each parameter to reduce the loss.

2.3.9 Optimizer

Optimizers are essential to neural network training because they adjust the network’s
parameters to minimize the loss function and enhance the performance of the model.
AdamW is a well‐liked optimizer that stands out for its reliability and effectiveness. By
separating weight decay from gradient updates, AdamWenhances regularization by im‐
proving upon the traditional Adam optimizer, which modifies the learning rate for every
parameter based on the first and second moments of gradients. Better management of
overfitting is made possible by this, resulting in more stable training. For any optimizer,
the learning rate is critical; too high or too low might cause instability in the training
process and poor convergence. The capacity of AdamW to modify the rate of learning
for every parameter guarantees amore rapid and effective convergence. Other optimiz‐
ers, such as RMSProp, function well for problems involving recurrent neural networks
because theymodify the learning rate in response to recent gradient magnitudes. How‐
ever, SGD adds noise to its parameter updates and updates them using a fixed or de‐
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caying learning rate. This can aid in faster convergence, but it also necessitates careful
adjustment of the learning rate to prevent divergence or sluggish progress[56].
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3 Methodology

The goal of our work is to build a neural network simulator to mimic the numerical sim‐
ulator like FEM (Finite Element Method), FIT (Finite Integration Technique), and FDTD
(Finite‐Difference Time‐Domain). Indeed, it is not practical to mimic the whole simula‐
tor, which has thousands of associated parameters. Our target is to predict transmission
spectra (complex electric field) of the Gold metasurface for specific wavelength regions.
The purpose of this neural network simulator is to predict transmission spectra of spe‐
cific metasurfaces within a short period, whereas numerical simulators take hours to
simulate. This approach will lead us to a time‐convenient solution for other related re‐
search domains. The approach is as follows: a metasurface with a specific design will be
passed through a neural network, resulting in transmission spectra of that metasurface
within a couple of milliseconds. The overall process is illustrated in Figure 3.1.

Figure 3.1: Process flow to predict transmission spectra of a metasurface through a neural net‐
work.

The main concern with any neural network is how the feature data and label data are
introduced to the model. In our case, we wanted to predict the transmission spectra of
2D metasurfaces.

Before beginning the process, it is better to address all the parameters we are working
with. The dimension and material properties of the substrate where the metasurface
will be placed are fixed for all the metasurfaces, so we do not need to consider the sub‐
strate parameters. The metasurfaces are made of Gold with a fixed thickness. So, we
don’t need to be concerned about the metasurface’s material properties and thickness.
As we change the shape or pattern of the metasurface thousands of times, we may
think about the metasurface as a 2D image. In short, a 2D image of a metasurface will
be passed through a neural network, predicting the transmission spectra of the meta‐
surface associated with the 2D image. Generally, training a neural network is related to
thousands of training data that match the real case scenario. So, we also need training
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datasets containing various metasurface and their simulated transmission spectra. The
details of the training datasets will be discussed in the following section.

It is well known that a Convolution Neural Network(CNN) is a good image classifier[49].
CNNs are configured to exploit the spatial structure of the images. It uses convolutional
layers to learn image features, including patterns, edges, and texture. It can read the
specific features from the image and make decisions accordingly by coordinating the
label data. Although CNN is superior to image classification, it faces some issues like
vanishing gradients, and slow learning, also deeper network has the risk of overfitting.
In this work, instead of using CNN, we will use Residual Network(ResNet), a special type
of CNN that addresses the issues that CNN can not resolve properly.

3.1 Residual Network (ResNet)

Residual Network(ResNet) is a special Convolutional Neural Network (CNN) that treats
vanishing gradient problems effectively. In ResNet, information passes through the
residual blocks, which consist of the convolutional layer, activation function, and pool‐
ing layer. Generally, when a neural network goes deeper, the gradients become very
small during the backpropagation due to the passage of numerous layers[57]. The term
here, the gradient becomes so small after passing multiple layers, is called the vanish‐
ing gradient. What is the gradient? The gradient is the derivative of the loss function
concerning the network parameters. Network parameters refer to weights and biases
of the network where weights are associated with the connections between neurons
in the adjacent layers, and bias is associated with each of the neurons. This vanishing
gradient causes issues with the model learning process, where the model learns very
slowly or, in severe cases, doesn’t learn at all. This vanishing gradient leads to issues
like degradation, where the Shallow network learns better than the deeper network.
Still, in theory, the deeper network can learn more complex features. ResNet addresses
this problem by introducing residual blocks and residual connections (Skip connections)
to the network. Another problem that ResNet addresses for the shallow network is the
early drop of the loss function in the first couple of epochs and a negligible drop in the
loss function for the rest of the epoch.

3.1.1 Residual Blocks and Residual Connection

A residual block or ResNet block is a package of internal layers and residual connec‐
tions. Internal layers include a convolutional layer, batch normalization, and activation
function[57]. Convolutional layers perform convolution operations to extract features
from the input layer. Based on the network operation and architecture, these convolu‐
tion kernels can be the size of 3x3, 1x1, or both. To stabilize and accelerate the training,
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batch normalization is applied after the convolution layer to normalize the activations.
Further, to learn complex patterns in the input data, a ReLU(Rectified Linear Unit) is
applied after the batch normalization to introduce non‐linearity to the model. After
passing through the internal layers, the output of the internal layers performs element‐
wise summation with the actual input through the skip connection. Further, a ReLu is
applied to the summation to feed into the next ResNet block. The detailed architecture
of the ResNet block is presented in Figure 3.2. The reason behind the use of the skip
connection between blocks is that input data arrive at the later layer of the network
and make their inputs more meaningful[57]. Also, loss gradient to arrive at the earlier
layers of the network and make their updates more meaningful. In other words, the
layers will pass their data forward within each block normally, but they will have a new
type of connection between blocks. The connection works by combining input to the
block and output to the block, giving two different paths of data to follow.

Figure 3.2: Residual block with a residual connection.
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To combine the output of the block with the input of the block, a specific method needs
to be followed, and it should be a simple function that passes gradients along undis‐
turbed. One solution can be tensor input and tensor output and add them element‐
wise; the other is to concatenate those tensors. The result is now a network that is built
out of a residual block. The skip connection will accelerate training and make the loss
graph decay slowly with the number of epochs, not a huge drop in the first couple of
epochs.

There is another kind of ResNet blockwhere, instead of using the direct skip connection,
the actual input passes through a 1x1 convolution layer. The reason behind using a 1x1
convolution layer in the pathway of skip connection is to solve the shape mismatch of
the input and output of the residual block. The details of this ResNet block are presented
in Figure 3.3.

Figure 3.3: Residual block with a residual connection passes through 1x1 convolution layer.

When inputs are added to the output of the first block, due to the convolutional oper‐
ation in the ResNet block, the channel of the input or the height and width of the input
may get changed based on the kernel size, padding, and stride value. This mismatch
will lead to an error during the addition or concatenation process. So, some operation
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is needed to reshape the inputs or only add the inputs to a part of that block’s output.
It’s more complicated when the block contains a convolution layer. It is not wise to con‐
strain the depth of all later layers based on the channels in the input, and it is necessary
to make sure that the height and width of the convolution layers are combined with the
height and width of the input. So, to use residual blocks, usually, it is desired to have
some special case for getting the shape of the input to match up with the shape for the
first block, and then it is needed to make sure that subsequent blocks have a common
shape so that this sort of problem is minimized [58]. This is why 1x1 convolution is used
in the pathway of the skip connection to increase or decrease the number of channels
and use appropriate padding and stride to preserve the height and weight of the input.

3.1.2 ResNet Architecture

We have considered ResNet‐18 in our neural network simulator to train the input data.
The input data will be passed through a series of convolution layers before passing
through an average pooling layer. It is called ResNet‐18 because a total number of 18
layers take part in the operation. Four consecutive residual blocks are placed one after
another in the network architecture. Each block consists of convolutional layers, batch
normalization, and non‐linear activation with the shortcut connection from the input to
the block to the output. The network starts with a 7x7 convolution layer with stride two
and padding three, followed by 4 residual blocks, before reaching the average pooling
layer. The detailed network flow is presented in Table 3.1.

Layer name Output size 18‐layer
Convolutional Layer 1 64× 64 7x7,64, stride=2, padding=3

Residual Block 1 64× 64

[
3× 3, 64
3× 3, 64

]
× 2

Residual Block 2 32× 32

[
3× 3, 128
3× 3, 128

]
× 2

Residual Block 3 16× 16

[
3× 3, 256
3× 3, 256

]
× 2

Residual Block 4 8× 8

[
3× 3, 128
3× 3, 128

]
× 2

2× 2 Adaptive Average Pool (2,2)

Table 3.1: ResNet‐18 architecture with each block’s convolutional layers.

It is reasonable to expect that networks built out of residual blocks will be easier to
train. The first biggest advantage of a residual block is that the computing function is
augmenting the existing data. Since the input is being passed along and will still be
available to the later layers in the network, the job of the first block ( Residual Block 1)
is no longer to figure out everything important about the input that needs to be passed

20



along but rather to figure out what information it can add on top of the input to make
subsequent processing easier. This sort of function tends to be much easier to learn
because the block doesn’t have to start by figuring out what information the input con‐
tains; instead, it starts by passing along all of the input and barely modifying it. Suppose
concatenation combines the block output with the actual input through the shortcut
connection. In that case, the input is passed along unchanged in addition to whatever
the block outputs are. Still, even if addition is used instead of concatenation, the lay‐
ers are initialized with random weights. Those weights tend to be small and centered
around zero, meaning that what is added is initially close to zero. The information that
is passed initially is relatively unchanged. So, each block has a simpler task to learn, and
each block has access to better information from which to learn. Another advantage of
using the ResNet architecture is that the gradients have much shorter paths to follow
to get to each network layer. Since each block has one path that goes through its layers
and one path that goes around them, the gradients will flow along both of those paths,
and this means any layer in the network now has a relatively short path by which loss
gradients can arrive and usefully update what that layer is updating. Therefore, in the
initial epochs of the training, when the information coming along the path that goes
through all of the layers is relatively informative. But still, useful updates can be gotten
out of the shorter paths and decrease loss immediately. In addition, the later blocks in
the network start computingmore andmore useful functions, and the information com‐
ing along this path will get more and more informative. Thus, the gradients continue to
decrease and aid in faster training. Lastly, residual blocks have an additional advantage
of modularity. It can be seen from Table 3.1 that each of these blocks has essentially
the same structure, and all the blocks are short‐circuited in the initial training. Adding
more blocks and building a deeper, more robust network is relatively easy.

Residual blocks are not the only element in the network architecture, after the aver‐
age polling layer all the neurons are flattened and then fed into fully connected layers.
In the simulator network architecture, two fully connected layers have been used to
make the final decision. The complete process flow of the neural network is illustrated
in Figure 3.4. The flattened layer’s primary objective is to transform the convolution
layer’s multidimensional output into a 1D vector. This conversion is necessary for the
fully connected layers, which take a 1D vector as input, whereas convolution layers take
a 2D image or matrix grid as input. In our case, we used a grayscale 64x64 pixel im‐
age as input with a single channel. The number of channels increased while passing
through the convolution layer and series of residual blocks, and the spatial dimension
was reduced gradually. How the spatial dimension of the input image gets changed
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along with the number of channels is also shown in Figure3.4, mentioned below each
of the process blocks, and the comment mentions the output of that particular process
block. The spatial dimension remained similar for the first 2 layers because the earliest
layers aim to collect low‐level features like edges, corners, and textures, and the spa‐
tial dimensions are broad. Preserving more significant spatial dimensions makes sense
because these attributes are still strongly related to the spatial arrangement of pixels.
The network collects more abstract properties as it moves through its layers, such as
higher‐level patterns and object pieces.

Figure 3.4: Complete diagram of the neural network based on the ResNet‐18 architecture

By decreasing the spatial dimensions, the network concentrates more on the character‐
istics than their precise position. In the meantime, the network can represent a more
extensive range of these intricate properties by increasing the number of channels. If
the spatial dimensions are not lowered as the network gets deeper, the computational
and memory needs will increase quickly. Processing larger feature maps requires more
computing power. The network gains efficiency and can support deeper topologies with
less resource consumption as the spatial size is reduced. The network has no informa‐
tion loss when the spatial dimensions are reduced. Instead, by adding more channels,
the network can record more feature representations at every point in the condensed
spatial space. In other words, the network learns richer, more detailed features within
smaller regions as the spatial dimensions decrease because of the deeper featuremaps.
The size of the input tensor that passed through the ResNet‐18 is 1x64x64, and the out‐
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put tensor after the ResNet blocks is 128x2x2. These multidimensional tensors are flat‐
tened to 1D tensors to feed to the decision‐makers, which is called a fully connected
layer. The 1st fully connected layer receives 512 neurons from the flattened layer, and
based on the features of those neurons, it passed 256 neurons to the next fully con‐
nected layer. Out of those 256 neurons, the final fully connected layer passed 128
neurons as an output where 64 neurons corresponded to the real part and 64 neurons
corresponded to the imaginary part of the complex label data.

3.2 Datasets Generation Process

The most crucial part of any deep neural network is to create a dataset by which a deep
neural network will be trained. Before that, it’s necessary to identify what kind of data
is needed to fulfill the network’s input and output. As the main goal of our model is to
predict the complex electric field that is transmitted through a metasurface, the model
should learn the trends, how the metasurface interacts with the incident electric field,
and let a portion of the electric field pass through the metasurface. The interaction
between the metasurface and the electromagnetic wave is quite unpredictable in the
nanoscale and is dependent on the incident electromagnetic wave’s wavelength as well
as themetasurface’s design, shape, size, thickness, andmaterial properties and is calcu‐
lated by solving Maxwell’s equation applying on the entire metasurface. To mimic the
behavior of a numerical simulator, we need thousands of metasurfaces and their corre‐
sponding simulated results to pass through the neural network, learn the complexity of
a numerical simulator, and predict the transmission electric field.

So, the main idea is to design a metasurface, simulate the metasurface using the An‐
sys Lumerical FDTD simulator, and save the transmission electric field to feed the deep
neural network. But here, we are not talking about a singlemetasurface. We need thou‐
sands of metasurfaces with different designs, sizes, and shapes and the corresponding
simulated results to forecast the behavior of metasurfaces through deep neural net‐
works. Designing and simulating those metasurfaces one by one is not a practical so‐
lution and would take months of labor. We have discovered a way to design a large
number of metasurfaces with diversity in their architecture and a way to simulate them
together within a short period. The flowchart in Figure 3.5 demonstrates the steps to
create a complete single dataset from designing to simulate the metasurface.

We have used some algorithms to automatically generate metasurface unit cells with
diverse functionality. The process will be discussed in detail in section 3.2.1. We took
a top view of a 2D metasurface and converted the image into a 64x64 pixel grayscale
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Figure 3.5: A process flow to generate a complete training dataset.

image. We normalized the pixel value to 0 and 1. We mapped the image so that the
shape of the metasurface, which is made of Gold (Au), holds 1 in the 64x64 image, and
free space holds 0. So, each pixel results in a square of length 5.3 nm on top of the
substrate. Based on the pixel mapping, the metasurface is printed on the substrate.
We also integrate MATLAB with the Lumerical FDTD to design the metasurface pixel‐by‐
pixel to perform the numerical simulation and save the transmission spectra. We will
also discuss the process in detail in section 3.2.2.

3.2.1 Metasurface Generation Method

Since a 64x64 pixel grayscale image will lead to a metasurface, We have introduced var‐
ious 2D geometry in the datasets that include circles, sectors, complementary sectors,
rectangles, triangles, ellipses, hexagons, crosses, rings, split‐rings, L shapes and Lunes
of different sizes and shapes. We have created an algorithm to deal with these kinds of
shapes, where we applied the formula to create those shapes. The algorithm generates
those shapes from smaller to larger scales and shifts and rotates the shape within the
64x64 pixel map. The datasets created from the algorithm are presented in Figure 3.6.

We have also introduced another algorithm, which made presenting the 2D geometry
with a formula quite difficult. The algorithm takes an RGB image of the geometry and
converts it to a 64x64 pixel grayscale image. It extracts the geometric feature from the
image and scales the geometry present in the image from smaller to larger size, similar
to the previous algorithm it also shifts and rotates the geometry within the 64x64 pixel
map. The most significant advantage of this algorithm is that it can create any shape
and design of your choice to make it suitable for generating a metasurface. Some of the
user‐defined geometry created from this algorithm is shown in Figure 3.7.

Lastly, to introducemore variety in the dataset, we have created another algorithm that
creates completely randompolygons, and the complexity of the polygon is controlled by
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Figure 3.6: Geometries generated from the algorithm using specific formulas .

the number of vertices randomly chosen between 5 and 10. The radius of each vertex
from the center is randomized, making each polygon unique. This algorithm provides
some unique datasets with random architecture. Some sample from the random gen‐
erator is shown in row 6 in Figure 3.7.

The main goal behind those algorithms was to introduce thousands of metasurfaces
with sharp edges and complex geometry to the neural network. Because sharp edges
and complex geometries offer good light‐matter interaction and can alter the transmis‐
sion of the incident light [13]. We wanted our model to learn those complex features
during the training to better respond to any arbitrary shape of themetasurface unit cell.
Further, we introduced theMNIST datasets[59] to themodel; sinceMNIST datasets con‐
sist of numbers from 0 to 9 and all of them are handwritten digits, this creates variance
to the datasets, and those numbers have sharp edges and complexity in the shape that is
useful for the neural network to learn complex feature. A few samples from the MNIST
datasets are shown in Figure 3.8.

Overall, we have generated 8508 datasets for the neural network that we fed to Lumer‐
ical FDTD with the help of MATLAB to print the metasurface from the 64x64 pixel map
to the Lumerical software, simulate the shape, and save the corresponding results.
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Figure 3.7: Geometries generated from images and random polygon generator.

3.2.2 Metasurface Simulation Method

We have integratedMATLAB with the Lumerical FDTD to simulate the metasurfaces and
obtain the transmission spectra numerically. Instead of designing themetasurfaceman‐
ually and simulating it, we wrote a MATLAB script to create all the metasurfaces and
simulate them all together one after another. The complete process is shown through
a flowchart in Figure 3.9

Firstly, we import themetasurfaces as a 64x64matrix of zeros and ones in a text file that
containsmultiplemetasurfaces row‐wise. We define the substrate dimensions, material
properties, metasurface thickness, and material properties globally. The source wave‐
length span of 1200 nm to 1700 nm was considered a plane wave source. Using a loop
each time, the script reads a 64x64 matrix and prints a rectangle where 1 is present in
thematrix, and as a result, all the rectangle combines a completemetasurface structure.
A boundary condition is applied on the unit cell along with a transmission monitor that
records the transmitted complex electric field from 16 points of the wavelength span.
Then, the complex electric field is saved in a text file. The script checks if it is the last
metasurface and runs all the metasurface 2 times, first with the perfect x‐polarized light
and then with the perfect y‐polarized light. We divided themetasurface batch by batch,
containing around 1000 metasurfaces. It took almost 12 hours to simulate a batch with
an Intel Core i7 8th generation 32 GB CPU machine. The details of the scripts are pro‐
vided in Appendix A.
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Figure 3.8: Some geometries from the MNIST datasets

3.3 Global Design and FDTD Simulation

The global design includes the substrate dimension and material properties, as well
as the metasurface’s material properties and thickness. During the design and simu‐
lation process, this parameters were kept constant. We have chosen SiO2 as a sub‐
strate material[60]. The length and width of the substrate is 340 nm. The height of the
substrate is 300 nm. On the other hand, the material chosen for the metasurface is
Gold[60], and the thickness of the metasurface is 50 nm. The parameter list is shown in
Table 3.2.

Parameter L h t Wavelength Span
Value (nm) 340 300 50 1200‐1700

Table 3.2: Global Parameter list for metasurface unit cell

Ametasurface unit cell with the given description is shown in Figure 3.10. We say these
parameters are a global cause except for the metasurface shape and geometry change
in every simulation. It was mentioned earlier that we have used Ansys Lumerical FDTD
to simulate the metasurfaces numerically. Let’s discuss the simulation process in more
detail. FDTD is a popular method for simulating the interaction between the electro‐
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Figure 3.9: Illustration of the process flow to simulate metasurfaces with the help of MATLAB
and Ansys Lumerical FDTD

magnetic wave and materials of different topologies. FDTD is used in a wide range of
phenomena in optics and photonics, includingwaveguides, photonic crystals, diffraction
gratings, ring resonators, metasurfaces, etc[61]. FDTD operates by solving the Maxwell
equation over the simulation region[62]; it describes the dynamics of E‐field and H‐field
on any photonics device. In a simpler manner, when any device is numerically calcu‐
lated, it solves for the permittivity and electric currents to get the E‐field and H‐field re‐
sponse of the device. Permittivity describes how thematerials are arranged in space and
the electric currents (moving charges) that resemble the electromagnetic wave injected
into the device. Our metasurface unit cell is a computational domain in Figure 3.10.
FDTD will discretize the whole area into thousands of small cubes called Yee cubes[63]
and then describe the fields in the discrete lattice form of this cube. The electric field
is distributed on the edge of the Yee cube, and the magnetic field is distributed on the
surface. The length of the Yee cube depends on the wavelength of the incident elec‐
tromagnetic wave. Generally, it is considered λ/20, and the maximum length is consid‐
ered λ/5; the smaller the cube, the finer the results, but the smaller cube takes a longer
time and requires large computational memory. In Ansys Lumerical, it is considered the
mesh size. We have used the mesh accuracy index 2, a moderate mesh accuracy where
10 mesh cells are used in the computational region for minimum wavelength. Since we
will simulate thousands of metasurfaces, we have used a moderate index value consid‐
ering the simulation time.

We have used a plane wave as a source to radiate the computational domain. Pre‐
liminary the metasurface unit cell is illuminated with the perfect x‐polarized light and
further with the perfect y‐polarized light. A boundary condition is set around the com‐
putational domain so that after the interaction of the plane wave with the computa‐
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Figure 3.10: Demonstration of a metasurface unit cell

tional domain, no wave can come back and interfere with it again. A Perfect Matched
Layer(PML) is applied on both the +z and ‐z directions of the computational domain.
PML is a specially designed absorber that can absorb electromagnetic waves from any
angle of incidence. In general, the thickness of this PML is 10 times of the Yee cells. As
themetasurface is a periodic array ofmetasurface unit cells of a similar kind, it is not nec‐
essary to simulate all the unit cells, so the x and y are kept periodic in the boundary con‐
dition. In short, the plane wave source is kept above the metasurface unit cell. A mon‐
itor is placed below the unit cell to record the transmitted electromagnetic wave from
the metasurface. The monitor computes the Poynting vector flux that passes through
the monitor plane as a function of frequency. To avoid computational difficulties in the
neural network, we recorded the transmission spectra for 16 wavelength points within
the wavelength range of 1200 nm to 1700 nm.
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4 Results and Discussion

To simulate awide rangeofmetasurfaces in a short period, wehave introduced aResNet‐
18‐based neural network simulator. The neural network takes a 64x64 pixel grayscale
image of a metasurface and predicts the complex electric field transmitted. The neu‐
ral network is trained based on the Gold metasurface to anticipate the transmission
spectra within the optical communication wavelength. Thousands of simulated data
are used to train the model, which can predict the transmission spectra with consid‐
erably high accuracy. The purpose of the neural network is not to take the place of
the traditional numerical simulator like Ansys Lumerical FDTD but rather to introduce
a time‐convenient approach to serve the related research goal. As mentioned before,
a Compositional pattern‐producing Network (CPPN) will be built in the future with the
help of a Generative Adversarial Network (GAN) to produce a metasurface that serves
a specific purpose, as an example rotation of the polarization state of the incident light
to any arbitrary choice of polarization. This CPPN will generate a compositional image
of metasurfaces with the combination of two or three metasurfaces to obtain a specific
transmission profile. Since the CPPN will generate hundreds of compositional patterns
to simulate those patterns quickly and obtain the transmission spectra, this ResNet‐18‐
based neural network simulator will be used. The detailed training process and perfor‐
mance of the simulator network will be discussed in the later sections.

4.1 Training Process

The training of the neural network was performed on the 7522 datasets. During the
training, the batch size of the data to train in each load was 16, and every time, the
data was shuffled randomly so that the neural network could not memorize the data
and alter the prediction. The training process was performed on 100 epochs. The train‐
ing took roughly forty minutes and was conducted on an RTX 5000 16 GB GPU com‐
puter. The number of epochs counts is how many times the neural network will see a
single dataset during the entire training period. Consequently, during the training ses‐
sion, which spans 100 epochs, the model will handle 471 batches of data per epoch and
complete 47,100 iterations overall. The neural network is trained with each batch and
updates the gradient through backpropagation.

The learning rate used during the training is 0.0001. Learning rate plays a very impor‐
tant role in the training process; after calculating the error between the actual data and
predicted data, it updates the gradient by the step size of the learning rate. To obtain a
minimum loss, the value of the learning rate is crucial. If the learning rate is high, the
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model parameters change too fast, and the minimum point can be overshot. The pa‐
rameters will oscillate around the minimum error or may diverge. Though the training
process will be faster, the prediction will not be accurate. The training process will be
sluggish if the learning rate is too low. It may become stuck in local minima due to the
delayed parameter updates, which prevents the model from reaching the global opti‐
mum. We set a learning rate that leads us to not too slow convergence tominimum loss
and faster training. The hyperparameters of the model during the training are shown in
Table 4.1.

Hyperparameter Value
Number of Epochs 100
Learning Rate 0.0001
Batch Size 16
Optimizer AdamW

Activation Function ReLU
Loss Function MSE Loss

Table 4.1: Hyperparameters used in the training process

A widely used activation function ReLU is used to introduce non‐linearity to the model,
non‐linearity helps the model to learn complex functions to capture the patterns in the
datasets. AdamW is used in our model as an optimizer, an improved version of Adam
optimizer. In ResNet, the AdamW optimizer improves on the Adam optimizer by sep‐
arating weight decay from the gradient updates. This allows for enhanced regulariza‐
tion and generalization. Large, complex networks are a good fit for AdamW because of
its adjustable learning rates, which stabilize training and speed up convergence. Faster
training and better performance are achieved by its decoupled weight decay, which suc‐
cessfully guards against overfittingwhile guaranteeing effective and stable optimization.
The loss is calculated based on the mean‐squared error (MSE) loss, as discussed earlier.
The network’s target was to predict the complex label data. It separately predicts the
real and imaginary parts of the complex label data. The MSE loss over the number of
epochs for the real and imaginary parts is shown in Figure 4.1 and 4.2 respectively.

Figures 4.1 and 4.2 both demonstrate how the training dataset’s and validation dataset’s
real and imaginary portions of the loss graph have the same appearance. It is evident
that since the real and imaginary components are being predicted by the same neural
network model at the same time and processed by the same network layers, there may
be significant similarities in the learning dynamics between the two. As a result of apply‐
ing identical weights and procedures to each, the loss for each section should naturally
follow a similar trajectory. Additionally, the real and imaginary sections of the model
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Figure 4.1: Training loss and validation loss over the number of epochs for the real part of the
complex electric field

are treated symmetrically using the same MSE loss function, and the optimization pro‐
cess almost perfectly matches how these components were handled. As a result, the
loss behavior for the real and imaginary sections was similar throughout epochs.

Figure 4.2: Training loss and validation loss over the number of epochs for the imaginary part of
the complex electric field

The model is rapidly identifying essential properties from the data in the early stages,
as evidenced by the substantial drops in training and test losses, the blue and orange
lines in Figure 4.1 and 4.2 indicate the training and validation loss respectively. The
model’s ability to learn efficiently is primarily attributed to ResNet‐18’s inventive use
of residual connections, which prevent issues with gradients decreasing along the lay‐
ers. The model appears to have reached a state of generalization to previously unseen
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data when, after approximately 30 epochs, the validation loss begins to level off and
settle. Additionally, the model is becoming more adept at fitting the training data with‐
out overfitting, as seen by the steady decline in training loss. A significantly positive
development is the narrow difference between test and training losses. This indicates
that ResNet‐18’s design effectively balances regularization and complexity, allowing the
model to manage real and imaginary parts without experiencing overfitting or noise. As
a whole, this graph indicates that ResNet‐18 is a reliable option for complex label data
prediction.

4.2 Performance on Validation Datasets

After completion of the training, the performance of themodel is validated with the val‐
idation datasets. It consists of 836 datasets that didn’t take part in the training session
of the model and were chosen randomly from the data loader. The scatter plots in Fig.
4.3 and 4.4 display the relationship between the actual data and predicted for the real
and imaginary part of the complex electric field, respectively. Each figure consists of
four subplots where the subplot shows the prediction statistics for the Eij; here, i rep‐
resents the polarization state of incident light, and j represents the polarization state of
transmitted light. We have presented the prediction statistics for Exx, Exy, Eyy, and Eyx
separately for the complex electric field’s real and imaginary parts. In the scatter plot,
the red dots represent the actual label data obtained by the FDTD simulation, and the
green dots represent the corresponding predicted data obtained by the neural network
simulator.

For the model to be completely accurate, all green dots should ideally fall exactly on the
red dots along the diagonal of the subplots. However, accurate forecasting is unattain‐
able in real‐world situations. Most of the green dots in the subplots for both the real
and imaginary parts closely trail the red dots, indicating that themodel’s predictions are
generally accurate and fit the data well. If we look closely at the subplot a) and c) for
both Figure 4.3 and 4.4, for Exx and Eyy, most of the green dots remain very close to the
red dots. This indicates that the model’s prediction is quite good if the incidence and
transmitted light have a similar polarization state. Although there is some dispersion, it
is not too problematic because the model identifies the key trends in this data. On the
other hand, for Exy and Eyx in the subplot b) and d) for both the real and the imaginary
parts, it seems the predicted green dots are more scattered around the red dots in the
diagonal line. The predictions are still largely accurate since the points mostly follow
the red line’s trend. Still, the spread shows that the model performs a little worse when
the transmitted and incident light have polarization states that are rotated 90 degrees.
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Figure 4.3: Actual vs predicted statistics on validation datasets for the real part of the complex
electric field. a) incident as x polarized and transmitted as x polarized b) incident as x polarized
and transmitted as y polarized c) incident as y polarized and transmitted as y polarized d) incident
as y polarized and transmitted as x polarized

The Exy and Eyx components of the data may have higher variability, or the model is
less sensitive to particular features; it might be more difficult for the model to capture
the complexity of the data in these areas.

After close observation of the actual and predicted Exy and Eyx data for both real and
imaginary parts, we have found that a large number of metasurfaces have the value
of the complex electric field for both real and imaginary parts between 0 and 0.1 and
their structures are more symmetric that means most of those metasurface can’t ro‐
tate the polarization state of the incidence light by 90 degrees. The geometry of the
nanostructures in a metasurface intended to interact with x‐polarized light is impor‐
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Figure 4.4: Actual vs predicted statistics on validation datasets for the imaginary part of the
complex electric field. a) incident as x polarized and transmitted as x polarized b) incident as x
polarized and transmitted as y polarized c) incident as y polarized and transmitted as y polarized
d) incident as y polarized and transmitted as x polarized

tant in determining whether the polarization of the transmitted light will rotate by 90
degrees, changing from x‐polarized to y‐polarized. Because they disrupt the symme‐
try between the x and y axes, asymmetric designs like split‐ring resonators, elliptical
nanoantennas, and L‐shaped structures can produce this polarization shift. By creating
an asymmetric reaction to the electric field of the incident light, these forms success‐
fully couple the x‐polarized light into a y‐polarized state. Conversely, symmetric shapes,
such as squares, rectangles, or circles, keep the original polarization since they inter‐
act with light in all directions equally. As a result, they do not change the polarization
state. Thus, a 90‐degree rotation in polarization can only be achieved by structures that
introduce asymmetry; very symmetric designs cannot cause this kind of alteration. But
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where is the issue if the metasurface doesn’t alter the polarization state? As mentioned
earlier, a considerable number of the real and imaginary parts of Exy and Eyx stay be‐
tween 0 and 0.1. We range the data to four decimal points that lead us to 0.0000 to
0.1000. For instance, in actual data like 0.0001 or 0.0010 the prediction is bad because
when dealing with very small numbers, even slight errors in the model’s prediction can
appear significant relative to themagnitude of the value. For instance, a small deviation
from 0.0010 to 0.0015 represents a 50% error, which is proportionally large. Because of
this, the model cannot predict smaller values with the same level of accuracy as it can
larger ones, for which the relative error would be substantially lower. This issue might
be resolved if the data collection had two decimal point values.

The general pattern is nevertheless the same in all eight subplots of Figure 4.3 and 4.4.
Though some fine‐tuningmay be necessary to address themore complex features of the
Exy and Eyx components, the model generally predicts each component well. When
generating somewhat correct predictions for most of the data, the ResNet‐18 model
seems to be learning effectively overall.

4.3 Performance on Test Datasets

We have created a total of 8508 datasets. Before beginning the training process, we
removed 150 datasets from the main datasets to create a test dataset; in these 150 test
datasets, we tried to keep all types of geometries, at least one from each kind. The
model has never seen these test datasets during training or validation. The purpose be‐
hind creating this dataset is to do a final evaluation of the model’s prediction accuracy.
The true value and predicted value on the test datasets are shown in Figure 4.5 and 4.6
using scatter plots where Figure 4.5 represents the real part and Figure 4.6 represents
the imaginary part of the complex label data. Similar to the validation datasets, the
red dots represent the true value obtained by FDTD simulation, and the green dots rep‐
resent the predicted value obtained by the neural network simulator. In both figures,
subplots a,b,c, and d represent Exx, Exy, Eyy, and Eyx, respectively.

Looking at these scatter plots, which compare the actual and predicted values for 150
test datasets, the model is performing quite well. The green dots, representing the
model’s predictions, closely follow the red dots, representing the actual data. The pre‐
dictions for the Exx and Eyy label data are particularly accurate, with most points clus‐
tering tightly around the red dots, indicating that the model is capturing these parts of
the data very well. On the other hand, for the Exy and Eyx label data, there’s a bit more
scatter in the predictions. While the model still follows the overall trend, it struggles
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Figure 4.5: Actual vs predicted statistics on test datasets for the real part of the complex electric
field. a) incident as x polarized and transmitted as x polarized b) incident as x polarized and
transmitted as y polarized c) incident as y polarized and transmitted as y polarized d) incident as
y polarized and transmitted as x polarized.

slightly more with these components.

However, the fact that the model is still fairly accurate for these trickier parts is promis‐
ing. Overall, the model seems to generalize well to new, unseen data, maintaining the
solid performance we observed in the validation stage, especially for the Exx and Eyy la‐
bel data, while handling themore challenging Exy and Eyx reasonably well. This demon‐
strates that themodel has effectively transferred from the training and validation stages
to the testing stage.

4.4 Evaluation of The Model

An accuracy test was performed on the test datasets. To avoid the complexity in the
calculation, we performed the accuracy test on the absolute value of the complex elec‐

37



Figure 4.6: Actual vs predicted statistics on test datasets for the imaginary part of the complex
electric field. a) incident as x polarized and transmitted as x polarized b) incident as x polarized
and transmitted as y polarized c) incident as y polarized and transmitted as y polarized d) incident
as y polarized and transmitted as x polarized

tric field. The model’s average prediction accuracy is 85.27%, and the average distance
between the actual and predicted data is 0.0359. The maximum accuracy was found to
be 97.56%, and the minimum accuracy was found to be 44.60%. The average accuracy
could have been high if we had set the label data to two decimal points; the reason
behind this is mentioned in the earlier section. To check the performance of the model
on individual datasets, we plot the actual and predicted values against the wavelength
span. This approach shows how themodel performs as a neural network simulator on a
single metasurface unit cell. In all the figures presented below from Figure 4.7 to Figure
4.15, the solid lines represent the actual value simulated by the FDTD method, and the
dotted lines represent the predicted value by the neural network simulator.
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4.4.1 Performance on Regular Datasets

Regular datasets are the standard geometries that are essentially employed asmetasur‐
face unit cells for a variety of research purposes in several research articles [64, 65, 66,
67]. The datasets comprise hundreds of these geometries to make the neural network
simulator aware of the situation and what types of geometries it will deal with.

In Fig. 4.7, we have compared the actual and predicted transmission spectra for a nano
ellipse metasurface unit cell. Instead of showing the complex electric field, we have
presented the amplitude and phase of the transmitted electric field. Subplot 4.7(a) rep‐
resents the magnitude, and subplot 4.7(b) represents the phase. We can observe how
closely the model’s predictions match the actual transmission coefficients in the first
plot on the left. The black circles display the projected Exx values, while the red line
represents the actual Exx values. The graph shows that themodel follows the real curve
rather well despite occasional minor variations, especially after the initial drop. The
blue circles show the expected Exy values, whereas the green line shows the actual Exy
values. Once more, the model performs pretty well, but there is some variation in how
closely it resembles the real curve, particularly at the shorter wavelengths.

Figure 4.7: Transmission spectra of elliptical metasurface. a) Actual and predicted amplitude of
Exx and Exy b) Actual and predicted phase for Exx and Exy.

The phrase comes into focus in the second plot on the right 4.7(b). In this case, the
red line shows Exx’s actual phase, while the black circles show its anticipated phase.
Across the wavelength range, the predictions match the real data rather well, including
catching the notable phase shifts. The blue circles indicate the expected phase for Exy,
whereas the green line shows the actual phase. The model has several discrepancies,
especially at abrupt phase transitions, even though it appears to represent the overall
trend of the phase shifts for Exy.

39



In Fig. 4.8, we have compared the L‐shapedmetasurface unit cell’s actual and predicted
transmission spectra. Plotting the transmission coefficient begins with the graph on the
left 4.8(a). The black circles represent the model’s predictions, while the red line tracks
the actual values of Exx. Although there are some small variations, especially in the
areaswhere the curve bends, we can see that the predictions generallymatch the actual
data. The blue circles represent the model’s predictions, while the green line shows the
actual values of Exy. In this case, the projected values flatten down compared to the
actual curve in the middle wavelength region, where the model has greater difficulty
capturing the variances. Though there is a difference in the actual and predicted values,
the predicted values followed the trends well.

Figure 4.8: Transmission spectra of L shape metasurface. a) Actual and predicted amplitude of
Exx and Exy b) Actual and predicted phase for Exx and Exy.

Moving on to the plot 4.8(b), which depicts the phase, for the phase Exx, the actual
and predicted values matched well. A slight inaccuracy appears at the beginning of the
phase of Exy; the phase transition doesn’t fit well, but the rest of the prediction shows
a good approximation of the actual data.

Fig. 4.9 presents a circular split ring metasurface. It can be seen from the subplot 4.9(a)
that for both Exx and Exy, the predicted value fits nicely with the actual data. But for
the Exx, the predicted value is slightly red‐shifted, still following the actual trend.

Examining the phase response across the wavelength range, plot 4.9(b) shows some in‐
teresting behavior. Exx and Exy exhibit strong phase shifts, with the largest fluctuation
occurring at lower wavelengths (about 1250 nm). The phase shifts get smoother and
more gradual as the wavelength grows. The overall trend in both cases follows a dimin‐
ishing phase shift with increasing wavelength, with a few notable peaks and troughs,
despite variations between the actual and projected phases.
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Figure 4.9: Transmission spectra of circular split ring metasurface. a) Actual and predicted am‐
plitude of Exx and Exy b) Actual and predicted phase for Exx and Exy.

We have presented three random regular geometries out of hundreds. By analyzing
the three graphs from the regular shapes, it is clear that the model predicts these usual
geometries well. Though there is potential for improvement in accuracy, particularly
at some important locations when bigger deviations are detected, the model generally
captures both the amplitude and phase properties well.

4.4.2 Performance on Irregular Datasets

Geometries that are uncommon and not commonly utilized as metasurface unit cells
are called irregular datasets. Besides the regular geometries, we have also introduced
hundreds of unusual geometries. The neural network should be trained for every possi‐
ble combination of geometries that a person could think of, as it will serve as a simulator.

Figure 4.10 shows data for an elliptical‐dimer form, both actual and anticipated. It can
be seen from the subplot 4.10(a) that the actual Exx and predicted Exx look similar.
Though it seems like around 1225 nm is a bit under‐predicted and around 1550 nm is a
bit over‐predicted, the difference between the actual and predicted data is acceptable.
On the other hand, the model predicts through the entire wavelength span for Exy, but
the promising fact is that the prediction follows the trend of actual data.

The phase graph illustrated in subplot 4.10(b) shows that the model handled the phase
transition very well, around 1200 to 1300 nm region. For both Exx and Exy, the pre‐
dicted phase value maintains the actual phase value all the time, even if it follows sud‐
den changes in the actual graph. This shows that the model has caught the underlying
physics regulating the phase shifts well, as it matches the actual data quite well in its
predictions of these trends.
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Figure 4.10: Transmission spectra of elliptical‐dimer metasurface. a) Actual and predicted am‐
plitude of Exx and Exy b) Actual and predicted phase for Exx and Exy.

In Fig. 4.11, a trimer structure is presented, which consists of three interconnected
or closely arranged circular shapes. From subplot 4.11(a), it can be said that, in the
beginning, the prediction for Exx was a bit under‐predicted, but it fits well gradually as
the wavelength increases. For the Exy, the actual value usually stays between 0 and 0.1;
even though we have encountered an issue with low‐value prediction, the prediction
accuracy and graph’s trend perfectly match the actual data.

Figure 4.11: Transmission spectra of three closely joint circular metasurface. a) Actual and pre‐
dicted amplitude of Exx and Exy b) Actual and predicted phase for Exx and Exy.

In the subplot 4.11(b), the actual phase and predicted phase match perfectly for Exx,
though there is around a 360‐degree phase shift at 1200 nm between the actual and
predicted phase. For Exy, predicted values stay around the actual value, and the pre‐
dicted phase experiences a blue shift compared to the actual data.

We have presented actual and predicted data for a random polygon from the random
polygon generator in Figure 4.12. The purpose is to check how the model works on

42



this completely random shape that the model has never seen during training. From the
subplot 4.12(a), it is seen that the Exx is more closely under‐predicted than the actual
data throughout the entire wavelength span, but the graph trends match perfectly with
the actual data. A red shift in the predicted data is seen compared to the actual data.
On the other hand, the predicted value of Exy matches quite well with the actual data.

Figure 4.12: Transmission spectra of random polygon metasurface a) Actual and predicted am‐
plitude of Exx and Exy b) Actual and predicted phase for Exx and Exy.

For the phase in subplot 4.12(b), the phase of predicted Exx follows the actual Exx well,
but the predicted phase is left‐shifted compared to the actual phase. For the Exy, the
predicted data perfectly syncswith the actual data and the phase transition around 1350
nm. We have presented three unusual geometries out of hundreds, including a random
polygon. The model can predict the transmission spectra with quite good accuracy.
Though there are some slight under‐ or over‐predictions, the model follows the overall
trends in the actual data really well.

4.4.3 Performance on MNIST Datasets

We have presented some data from the MNIST datasets. MNIST datasets consist of
handwritten digits from zero to nine. Those digits are randomly arranged and have
sharp edges, sharp turns, and sudden changes in geometry. Predicting the transmission
spectra for the MNIST datasets is the real challenge for the neural network simulator.
In Figure 4.13, we have presented the actual and predicted transmission spectra for the
digit zero. The subplot 4.13(a) shows that the actual data and predicted data merge
nicely with each other with a minimal deviation for both Exx and Exy. Also, in the sub‐
plot 4.13(b), the phase prediction for both Exx and Exy syncs perfectly with the actual
data. Though there is a little shift towards the right in the phase prediction for the Exy
the overall prediction accuracy is quite well.

Figure 4.14 shows the actual and expected transmission spectra for digit two. Digit two
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Figure 4.13: Transmission spectra of MNIST digit zero metasurface. a) Actual and predicted
amplitude of Exx and Exy b) Actual and predicted phase for Exx and Exy.

has a sharp bend and sharp edge in its pattern, which is a challenge for the model in
predicting the transmission spectra accurately. In the subplot 4.14(a), the actual and
the predicted values sync well, even for the sudden changes in the actual data for both
Exx and Exy. The predicted values follow the trend of the true value quite nicely. It is
also seen from the subplot 4.14(b) that the phase of the predicted data for both Exx
and Exy matches perfectly with the actual phase. The predicted phase maintains the
phase transition nicely in the actual Exy phase, around 1250 nm. Overall, the model
shows exemplary prediction accuracy on the digit two, randomly picked from theMNIST
datasets.

Figure 4.14: Transmission spectra of MNIST digit two metasurface. a) Actual and predicted am‐
plitude of Exx and Exy b) Actual and predicted phase for Exx and Exy.

Lastly, we have presented the actual and predicted data for the digit six in Figure 4.15.
From the subplot 4.15(a), the prediction for Exx is quite good, for somepoints it predicts,
and for some points it predicts but overall the prediction graph follows the trend of the
actual graph even when the actual value drop suddenly and increases again. Also, for
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the Exy, the predicted value always maintains the trend of true value with high accuracy
and minimal deviation.

Figure 4.15: Transmission spectra of MNIST digit six metasurface. a) Actual and predicted am‐
plitude of Exx and Exy b) Actual and predicted phase for Exx and Exy.

In the subplot 4.15(b), The predicted phase of Exx maintains the actual phase well.
Though the predicted phase shifted slightly left, it maintains all the ups and downs in the
actual curve. Also, for the Exy the model handled the prediction nicely, even with the
sudden change in the actual data the predicted data syncs perfectly. The predicted data
also appropriately maintained the phase transition in the actual data around 1450 nm.
Overall, the model’s prediction over theMNIST datasets was quite good. Themodel has
learned the complex features from the MNIST datasets and can make accurate predic‐
tions. The model is now sensitive to sharp edges, sharp bends, and sudden changes in
the pattern, which will help extract features from unseen complex geometry.

We have presented nine samples out of 150 test datasets to show how themodel works
on different types of unseen data. Wehave shown the graph concerning Exx and Exy. We
have also plotted the data concerning Eyy and Eyx, since the graph looks almost similar
in y polarized illumination to avoid making the report bulky we consider not including
those graphs in the main report. Some of the graphs concerning y‐polarized incident
light will be in Appendix B, along with other related graphs. In brief, themodel performs
well on the test datasets. Though it under or over‐predicted and even shifted a bit in
some cases, the model predicted accurately most of the time with minimal deviation
between the true and predicted values.

4.5 Comparative Analysis

We trained themodel with five optimizers to get the optimum response from the neural
network simulator. We have compared the performance of several optimizers in terms
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of training and validation loss, both for real and imaginary parts of the complex label
data. The comparative analysis highlights the performance of the optimizer AdamW
in contrast to others. The training loss and validation loss based on the optimizer are
presented in Table 4.2. AdamW is the most effective at minimizing error during the
training phase since it exhibits the lowest training loss in both real and imaginary parts.
Additionally, it has one of the lowest validation losses, indicating that the model per‐
forms well when applied to fresh, untested data. Because of this, AdamW is a reliable
option for estimating metasurface transmission spectra. RMSprop struggles more dur‐
ing validation than during training when it performs rather well with a relatively low
training loss. Since RMSprop’s validation loss is larger than AdamW’s, it may overfit the
data or have difficulty generalizing as well.

Optimizer Training Loss Validation Loss
Real Imaginary Real Imaginary

AdamW 0.0005 0.0005 0.0032 0.0032
RMSprop 0.0008 0.0008 0.0120 0.0120
Adam 0.0007 0.0007 0.0039 0.0039
SDG 0.0243 0.0237 0.0243 0.0243

Adagrad 0.0109 0.0109 0.0114 0.0114

Table 4.2: Training and validation loss for different optimizers

Withmarginallymore training and validation losses, Adamperforms similarly toAdamW.
Although it is still a formidable opponent, AdamW outperforms it in both the validation
and training stages. SDG shows the largest loss values during the training and validation
stages. Although this optimizer might be useful in some situations, it doesn’t seem as
well‐suited for forecasting metasurface transmission spectra because of slower conver‐
gence or challenges with efficiently lowering error. While Adagrad outperforms SDG,
it is still much less efficient than AdamW, Adam, or RMSprop. Its test loss is compara‐
tively higher than that of some other optimizers, suggesting it is not as generalizable.
The prediction statistics like Figure 4.3, will be given in Appendix B for the comparison
between the optimizers in terms of accuracy statistics.

Based on the information presented in Table 4.2, AdamW is themost efficient optimizer
for the ResNet‐18 neural network whenmaking predictions for the transmission spectra
of metasurfaces. Concerning training and generalization, it performs exceptionally well,
yielding the lowest training loss and among the lowest validation losses. This supports
the ultimate decision to choose AdamW as the model’s optimizer.
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5 Conclusion

In brief, we have introduced a ResNet‐18‐based neural network simulator. The neural
network mimics the conventional numerical simulator for a definite design objective.
The neural network predicts the transmission spectra of the Goldmetasurface with high
accuracy within the 1200 nm to 1700 nm region in a timescale of milliseconds. We have
introduced thousands of simulated datasets with varied geometries to train the neural
network to predict with high accuracy. After an iterative training process, the model
successfully passed the validation and test phase. The training process includes ran‐
dom polygons, the MNIST datasets, and the regular geometries to introduce the model
with sharp edges, bends, and complex structures. The model can accurately predict
the geometries that it has never seen before. The training was performed in an RTX
5000 16 GB GPUmachine, and it took about 40 minutes to train the model with around
8000 datasets. After the training, the model took 0.405 seconds to predict transmis‐
sion spectra for 150 test datasets. The average accuracy on the test data was found
85.27%. The presented neural network outperforms the traditional solver by approxi‐
mately five orders of magnitude regarding simulation time. Overall, the neural network
simulator performs considerably well in predicting the transmission spectra of unseen
complex randommetasurfaces. The researchmethodology has introduced us to a time‐
convenient approach for investigating polarization conversion metasurfaces.

A deep learning model will be introduced to provide on‐demand polarization conver‐
sion. We discussed earlier that a pattern‐producing network(CPPN) will be built with
the help of generative adversarial networks(GANs). The CPPN will generate hundreds
of compositional patterns based on the desired functionalities. We introduced the for‐
ward prediction simulator model in this work to validate those patterns. Numerical
verification will be performed on those validated metasurfaces to compare the perfor‐
mance. Finally, an experimental verification will be carried out to confirm the research
objective.
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A Appendix A

All the necessary codes and the neural networkmodel can be found
at the following link: GitHub

A.1 Evaluation of The Test Datasets for Y‐polarized Light
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A.2 Accuracy Statistics for Different Optimizer

A.2.1 Accuracy Statistics for Adam Optimizer
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A.2.2 Accuracy Statistics for RMSprop Optimizer
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A.2.3 Accuracy Statistics for SGD Optimizer
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A.2.4 Accuracy Statistics for Adagrad Optimizer
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