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Abstract

Previous studies found that the zebrafish spontaneous whole-brain neuronal
dynamics, obtained with Ca2+ imaging, is avalanche-like, i.e., it has alternating
periods of silence and collective cascading activity bursts, where both the duration
of the bursts and the number of neurons that spiked during those bursts follow power
law distributions with exponents close to the random field Ising universality class,
but which deviate from their critical values for avalanches occurring when there is
an unbalance between excitatory (E) and inhibitory (I) activity. Here, we model
the response of the zebrafish neurons in the optic tectum, displaying avalanche
dynamics in spontaneous activity, to an external stimulus, aiming to see whether the
power law exponents change or if the dynamics is no longer avalanche-like, and how
this is related to E/I unbalances. For this, we simulated the avalanche dynamics
of a network of excitatory and inhibitory stochastic neurons with the stochastic
Wilson-Cowan model, taking the connectivity matrix as function of data of the
position of neurons in the optic tectum, and we found values of the parameters
of the model that reproduce the experimental power law exponents. Then, we
varied the value of the parameter representing the external input to neurons, e.g.,
an optogenetic stimulus, for various proportions of stimulated E or I neurons. We
found that as the stimulus to the E neurons grows, the inhibition maintains the E/I
balance and that avalanches get longer, until reaching a Poissonian regime. On the
other hand, an increasing stimulus to the I neurons shortens avalanches and the
E/I ratio, until E neurons get totally inhibited. Surprisingly, for reasonably high
but balanced stimulus to E and I neurons, avalanche dynamics remains unchanged.
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1 Introduction

1.1 What are neural avalanches and why are they important

A neuronal avalanche is commonly defined as a period of continuous collective cascading
bursts of activity of a network of neurons, preceded and followed by a total absence of
activity (Beggs and Plenz [2003]). The study of these avalanches can be tried to be seen as
analogous to the study of out-of-equilibrium second order phase transitions in physics (e.g.
in ferromagnets), as one aims to understand neuronal activity that seems to be close to a
critical point between a low order or low ”firing synchrony” phase and a high order phase.
One may roughly characterize the low order phase by a firing pattern of the network
of neurons similar to a collection of independent Poisson processes, analogous to the
T > Tc,m(t) = 0 phase in ferromagnets and the ordered phase by ”trivially” synchronized
sustained firing of highly correlated neurons analogous to T < Tc,m(t)±1. However, one
shall always have in mind that neurons are far from being idealized Ising spins, e.g., they
do not have the same ±1 symmetry as they remain in a quiescent state integrating inputs
from other neurons, only firing when the input exceeds a threshold, and the interactions
between neurons are not symmetric either. Pushing the analogy, close enough to the
critical point, the dynamics of the network is that of neuronal avalanches, i.e., periods of
cascading firing that can extend up to the system size which are preceded and followed
by periods of no or very low firing, while the correlations between the neurons’ spike time
series during the whole experiment remain low with respect to the high order phase. The
distributions of the number of spikes during the avalanches, called the avalanche size, and
of the duration of the avalanches seem to follow scale-invariant power-law distributions
with cut-offs that scale with the system size, suggestive of criticality.

There is a growing corpus of experimental observations of neuronal avalanches, from
the local field potentials recordings of spontaneous neuronal activity in cultures of slices
of rat cortex (Beggs and Plenz [2003]), high resolution electrophysiology data of cultures
of slices of cortical tissue from living rats (Friedman et al. [2012]), local field potentials
of the superficial layers of the cat’s cortex during spontaneous activity under anesthesia
(Hahn et al. [2010]), spontaneous cortical activity in awake monkeys (Petermann et al.
[2009]), up to the zebrafish larvae whole-brain spontaneous activity (Ponce-Alvarez et al.
[2018]). Another compelling point is that the brain could benefit of operating near to a
critical state, e.g, by having bigger repertoires of neural activity patterns, bigger mutual
information between external stimuli and neural activity, and responding to a bigger
range of stimuli (reviewed in Shew and Plenz [2013]). However, there is still no consensus
on whether neurons operate near a bona fide critical point, e.g., the methodologies for
assessing the criticality of a system have been questioned (Destexhe and Touboul [2021]),
and major questions of research are still to better determine relevant order and control
parameters, or, in the case self-organized criticality hypotheses, biological mechanisms
(e.g., plasticity) that would tune the system towards the critical point.

Ongoing work (Ponce-Alvarez et al., unpublished) analyzed one-hour 15Hz recordings
of the spontaneous activity of N ∼ 2000 neurons in the zebrafish optic tectum, for ten fish
larvae, obtained with calcium fluorescence selective-plane illumination microscopy. They
binarized the fluorescence fluctuations signal ∆F/F by setting it to 1 when the signal is
3 standard deviations above from baseline fluctuations, and 0 otherwise. The resulting
binarized calcium fluorescence events show avalanche dynamics (Fig. 1). Using both
spatially constrained and unconstrained definitions of neural avalanches with activity
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thresholds (see Definitions in 2.4), they found that the distributions of avalanche size S
and duration T, and the relation between the average S given T, are will fit by power laws
P (S) ∼ S−τ , P (T ) ∼ T−α, < S > (T ) ∼ T

1
σνz which span several decades, suggestive of

criticality. For the spatially constrained definition, the power law exponents are close to
those of the universality class of the non-equilibrium random field Ising model, whereas
for the spatially unconstrained definition, the exponents, averaged over the ten fish data,
are < α >= 1.64 ± 0.02, < τ >= 1.62 ± 0.04, < σνz >= 0.87 ± 0.03 (Fig. 2), which
agree with previous results (Fontenele et al. [2019], Fosque et al. [2021]). Additionally,
we have seen that, under the spatially unconstrained definition, the distribution of the
duration of silences D (i.e., total absence of activity of the network) seems to be a power
law P (D) ∼ D−γ with < γ >= 1.99. Notably, they looked at the E/I ratio, defined as the
proportion of active excitatory neurons divided by the proportion of active excitatory and
inhibitory neurons at a given time, which is a candidate control parameter for avalanche
dynamics (Plenz et al. [2021]), and found that the power law exponents deviate from
their critical values for avalanches occurring at unbalanced E/I ratios (Fig. 3).

Figure 1: Sample rasters of the binarized calcium fluorescence events and their corresponding summed
activity of excitatory (blue) and inhibitory (red) populations, shown for two time scales of 500s and 50s.
The shaded patches correspond to the time intervals of the avalanches, during which the sum of the
excitatory together with the inhibitory activity was superior to a threshold of 0.5% of the total number
of neurons

Here, we aim to investigate how external stimuli could perturb the spontaneous activ-
ity of the zebrafish’s optic tectum neurons, e.g., displacing it out of its avalanche dynam-
ics, and to see how this could be related to perturbations in the E/I balance. For this,
we modeled the resting state spiking activity of the neurons with a network of excitatory
(E) and inhibitory (I) neurons following the stochastic Wilson-Cowan model (Benayoun
et al. [2010], 2.1), using the positions of the neurons to generate the connectivity matrix,
and then converted the spikes to binarized calcium fluorescence events (2.3). Once we
found parameters that generated activity with power law statistics similar to the exper-
imental statistics, we explored how the avalanche dynamics and E/I balanced changed
when varying the parameter of external input to different proportion of E and I neurons,
and found similar changes as those found in the spontaneous activity experimental data.
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Figure 2: Data for ten fish of the distributions of avalanche size, duration, silence duration D, and
relation between average avalanche size given the avalanche size, showing power law statistics. Here, the
spatially unconstrained definition is used (see 2.4)

2 Methods

2.1 Model of the avalanche dynamics of the zebrafish’s neurons

We modeled the avalanche dynamics of the zebrafish’s optic tectum neurons with the
stochastic Wilson-Cowan model (Benayoun et al. [2010]). This model considers a network
of NE excitatory (E) neurons and NI inhibitory (I) neurons, where each neuron i =
1...N ≡ NE +NI can be in an active (ai(t) = 1) or a quiescent (ai(t) = 0) state. There is
a pairwise coupling between the neurons represented by a connectivity matrix W, where
wij,i̸=j is the synaptic weight between the presynaptic neuron j and the postsynaptic
neuron i, where wij ≥ 0 if the presynaptic neuron is excitatory, wij ≤ 0 if the presynaptic

neuron is inhibitory, and wii = 0. Each neuron i receives an input si(t) ≡
∑N

j=1 wijaj(t)+
hi(t) from other neurons and from the exterior field. The state of the neurons evolves
in time as continuous-time Markov process with two possible transitions determined by

their probability transition rates : one transition is the so-called spike ai = 0
gf(si(t))→

ai = 1, where g is a constant and homogeneous probability rate and

f(x) =

{
tanh(x) if x > 0,

0 if x < 0.

is the response function, and the other transition is called a decay ai = 0←
q
ai = 1 where

q is the constant and homogeneous decay probability rate. This means that for a time
∆t → 0, P(ai(t) = 1 → ai(t + ∆t) = 0) = q∆t and Pi(ai(t) = 0 → ai(t + ∆t) = 1) =
gf(si(t))∆t.

In Benayoun et al. [2010], they consider the case of all-to-all connectivity, with
NE = NI = N , hi(t) = h > 0, g = 1ms−1, wij,j∈E ≡ wE

N
, wij,j∈I ≡ −wI

N
, i.e.,

si(t) = wE

∑
j∈E aj(t)

N
− wI

∑
j∈I aj(t)

N
+ h ≡ wEE − wII + h, where here there is a different

use of notation for E, I, which now represent the proportion of active excitatory and
inhibitory neurons. By doing a gaussian approximation, they express the total amounts
k and l of excitatory and inhibitory neurons as an extensive deterministic term plus some
subextensive noise, k = NE+

√
NξE, l = NI +

√
NξI . where the deterministic term fol-

lows the Wilson-Cowan equations (Wilson and Cowan [1972]), which do not themselves
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Figure 3: Figure and caption from unpublished work, using a spatially-constraint definition of avalanches,
from Ponce-Alvarez et al. Neuronal avalanche exponents as a function of the E/I ratio. A)
Distribution of avalanche sizes (S) for avalanches occurring at low E/I ratios (red, lowest 25% E/I ratios)
and at typical E/I ratios (blue, E/I ratios within the 25th-75th percentiles). Solid lines indicate estimated
power laws. Inset: distribution of E/I ratio. Red: low E/I ratios; blue: typical E/I ratios; gray: high
E/I ratios (highest 25% E/I ratios). B) Distribution of avalanche durations (T) for avalanches occurring
at low and typical E/I ratios, respectively. Solid lines indicate estimated power laws. C) Power-law
exponents describing the distributions of the sizes (τ , top panel) and durations (α, bottom panel) of
neuronal avalanches occurring at low, typical, and high E/I ratios. One-way ANOVA: for exponent τ :
F(2,27) = 7.35, p = 0.003; for exponent α: F(2,27) = 7.94, p = 0.002. *: p < 0.05, post hoc t tests. D-F)
Average power-law exponents τ , α, and σνz estimated for different bins of E/I ratios. For each fish, the
E/I ratio bins were chosen to contain an equal number of neuronal avalanches (1,000). The center of
the bins was defined as the mean E/I ratio associated to the corresponding neuronal avalanches. The
relation between exponents and E/I ratio was linearly interpolate before averaging over fishes. Purple
shaded areas indicate SEM. The gray horizontal lines and shaded areas indicate the expected critical
exponents and their uncertainty, respectively, in random field Ising models

produce avalanches. After the change of variables Σ = E+I
2

,∆ = E−I
2

, they show the
deterministic fixed point is (Σ0 ̸= 0,∆0 = 0) and after a linear noise approximation, they
show that the fluctuations ξΣ, ξ∆ around that fixed point follow :(

ξΣ
ξ∆

)
=

(
−λ1 wff

0 −λ2

)(
ξΣ
ξ∆

)
+
√

qΣ0

(
ηΣ
η∆

)
where wff = (1 − Σ0)(wE + wI)f

′(s0), with s0 = (wE − wI)Σ0 + (wE + wI)∆0 + h =
(wE −wI)Σ0 + h the input at the fixed point, λ1 = (1−Σ0)(wE −wI)f

′(s0) + q + f(s0),
λ2 = q + f(s0), and where the matrix comes from the Jacobian of the deterministic
equations evaluated at the fixed point. This means that the fixed point (Σ0, 0) is less
stable as w− is smaller, and that deviations from the balance between excitation and
inhibition, represented by ξ∆, drive the fluctuations of the mean variable ξΣ, and that
this feedforward effect is greater as wff ∝ w+ is bigger, which explains why avalanches
occur when w+ ≡ wE + wI ≫ w− ≡ wE − wI (Fig. 4 A,B,C), but only for N not too
big (e.g. N < 105) so that the deterministic, non-avalanche-like part, does not dominate
the fluctuations. In summary, we can see the dynamics of the system as the fluctuations
around a fixed point (E0 = I0 ̸= 0) which gets closer to a line attractor (i.e., its nullclines
increasingly overlap) as w+ increases (Fig. 4 G,H,I) and whose stability decreases as
w− decreases, where one has not assumed some self-organized criticality mechanism, but
where one has assumed a hidden feedforward connectivity from the fluctuations in the
difference variable to the fluctuations in the sum variable.
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Figure 4: Figure and caption from Benayoun et al. [2010] : Transition from asynchronous firing to
avalanche dynamics. Simulations with parameter values hE = hI = 0.001, wE −wI = 0.2, and N = 800.
Left column, wE+wI = 0.8 , middle column, wE+wI = 1.8, right column wE+wI = 13.8 . A,B,C: Mean
firing rate of network plotted over raster plot of spikes. Individual neurons correspond to rows, and are
unsorted except that the lower rows represent excitatory neurons and the upper rows inhibitory. D,E,F:
Network burst distribution in number of spikes, together with geometric (red) and power law (blue) fit;
∆t , the mean inter spike interval, is the time bin used to calculate the distribution, and β is the exponent
of the power law fit. Inset, inter-spike interval (ISI) distribution in ms for a sample of 50 neurons from
the network, shown in semi-logarithmic co-ordinates, with exponential fit (green). G,H,I: Phase plane
plots of excitatory and inhibitory activity showing the vector field (grey) and nullclines Ė = 0 (red)
and İ = 0 (blue), of the associated Wilson-Cowan equations and plots of a deterministic (black dashed)
and a stochastic (green) trajectory starting with identical initial conditions. Note that the deterministic
fixed point (black circle), where the nullclines cross, does not change as wE +wI increases, but the angle
between the nullclines becomes increasingly shallow, and the stochastic trajectory becomes increasingly
spread out.

2.1.1 Connectivity matrix as a function of experimental data

We generate the connectivity matrix W as a function the distance between the neurons
and of their type, E or I, known from the experimental data. Note that this a main
difference with the previous theory work of Benayoun et al. [2010] and de Candia et al.
[2021b], where they analyze an all-to-all connectivity matrix.

We first build an adjacency matrix C by supposing that the probability of neuron j
to be a presynaptic neuron of neuron i decays exponentially with the distance :

cij =

{
1 if e−

d(ri,rj)

λ > l, l ∼ U[0, 1],

0 otherwise .

where ri is the 3D position vector of the neuron i, d is the cartesian distance function,
and λ is the parameter of typical length of decay of the connection. Note that it is then
not necessarily a symmetric matrix because the random number l is drawn two separate
times for each pair (i,j).

The connectivity matrix W is a rescaling of the adjacency matrix :

wij =


wE

NE,pre(i)
if cij,j∈E = 1

−wI

NI,pre(i)
if cij,j∈I = 1

0 if cij = 0 or i = j.
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with NE,pre(i) =
∑

j∈E,j ̸=i cij, i.e., the number of presynaptic E neurons of neuron i
andNI,pre(i) =

∑
j∈I,j ̸=i cij the number of presynaptic I neurons of neuron i, where wE > 0

and wI > 0 are parameters of the model. In this way, for any postsynaptic neuron i, the
sum of the weights of all its presynaptic E neurons is wE, i.e.,

∑
j∈E wij = wE ≥ 0 and

similarly,
∑

j∈I wij = −wI ≤ 0, and wij,j∈E ≳ wE

NE
, −wij,j∈I ≲

−wI

Ni
(with equalities in the

all-to-all connectivity limit λ → ∞). So, at any time, −wI + hi(t) ≤ si(t) ≤ wE + hi(t)
with equality on the right when all presynaptic E neurons are active and all presynaptic
I neurons are quiescent, and with equality on the left when all presynaptic I neurons are
active and all presynaptic E neurons are quiescent, and si(t) = wE − wI + hi(t) if all
presynaptic neurons are active.

For some fixed values of the model’s parameters, the power law exponents of the simu-
lated avalanche dynamics vary greatly when using different adjacency matrices generated
as a function of the different data of the position of the neurons of different fishes, and
even some simulations do not produce avalanche dynamics for those fixed values of the
parameters (5.1). Thus, to simplify the analysis when varying parameters, we only used
the data of the positions of the neurons of one particular fish to generate connectivity
matrices (Fig. 5a). For the position of the neurons of that fish and for the values of the
parameter λ ∼ 80µm that we commonly used in simulations, the connectivity matrix is

relatively sparse (Fig. 5), where each neuron has roughly
NE,pre(i)

NE
≈ NI,pre(i)

NI
≈ 1

4
(Fig.

5c).

(a) Positions of the neurons.

(b) Connectivity matrix. Its 3x3 grid substructures
arise because both the E and I neurons are labeled by
order in the z coordinate.

(c) Distributions of the proportions of E and I presy-

naptic neurons
NE,pre(i)

NE−1
and

NI,pre(i)

NI−1 (d) Distributions of the non-zero weights.

Figure 5: One example of generating a connectivity matrix as a function of the position of the neurons
for λ = 80µm, wE = 5.045, wI = 4.955, NE = 962, NI = 806.

The value of λ ∼ 80µm used in simulations, which was chosen to match the experi-
mental values of the power law exponents (see 3.1), was also corroborated by comparing
the Pearson correlation between the time series of the neurons of the spontaneous activity
∆F/F data as a function of the distance between neurons with the null model of shuffled
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correlation values. We found that the average lines cross at around λ ∼ 90µm for all 10
fish (e.g. Fig. 6).

Figure 6: Example for one fish of the Pearson correlation coefficient between the time series of the
neurons of the spontaneous activity ∆F/F data as a function of the pairwise distance between neurons.
The solid line represents the mean values over bins of 10µm. The shaded area represents the standard
error of the mean over the same bins. The null model in red is done by shuffling the vector of correlation
values. The cross between the normal and the null model mean lines is at ∼ 90µm

2.2 Simulation algorithm of the stochastic Wilson-Cowan model

We simulate the stochastic Wilson-Cowan model using the Gillespie algorithm (Gillespie
[1977]) (Algorithm 1). One assumes that the evolution of each neuron i follows a Poisson
distribution of rate ri(t) :

ri(t) =

{
q if ai(t) = 1,

gf(si(t)) if ai(t) = 0.

Algorithm 1 Gillespie algorithm

1: Set t = 0
2: Set the initial states of the neurons {ai(t = 0)}.
3: Calculate the initial rates of the neurons {ri(t = 0)}.
4: while t < tfinal do

5: Draw ∆t ∼ Exp(
∑N

i=1 ri(t))
6: Pick a unique neuron to change its state, where any neuron i has a probability

ri(t)∑N
i=1 ri(t)

to be selected.

7: Do t = t+∆t
8: Update the rates {ri(t)} of the neurons.
9: end while

In this way, one generates a set of times and neuron indices of each transition, out of
which we only retain the indices and times of the spiking transitions ai(t) = 0→ ai(t) = 1
as these are the only events relevant for analyzing the avalanches. We choose the initial
states of the neurons to be 30% active at random. Note that in this algorithm, time is
a continuous variable. Time delays are not considered, as the inputs to the postsynaptic
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neurons change at exactly the same time the state of the presynaptic neuron changes.
We tried to get rid of the effect of initial conditions by ignoring the transient activity of
the simulated network for any data analysis, including power-law fittings, for t ∈ [0, teq],
where teq is a parameter commonly set to teq ∼ 100 s. The experimental recordings
lasted 3600 s, however, the power law exponents of a shortened version of the data for
t ∈ [0, 2000] s, averaged over the ten fish, only change of ±0.03 with respect to the
exponents of the full data, which is much less than the variations of ∼ ±0.1 due to the
simulation stochasticity, thus, simulations were done with tfinal = 2000 s to save time.

2.3 Transformation of spiking events to Calcium fluorescence
binary events

After having generated the spiking binary events of the network with the Gillespie al-
gorithm, we transform them to a ∆F/F Calcium fluorescence signal using the phe-
nomenological Spike-to-fluorescence model of Wei et al. [2020]. In that model, for a
given neuron, one calculates a latent variable c(t) by convolving its spiking times {t1...tk}
with a double exponential kernel and adding a gaussian noise η1(t) ∼ N (0, σ2

1), i.e.

c(t) =
∑

t>tk
(1 − e−(

t−tk
τr

))e
−(

t−tk
τd

)
+ η1(t), where τr and τd are the rise and decay time

parameters of the double exponential. We calculate c(t) using a time bin of 0.01 seconds.
We choose σ1 to be 10% of the mean ”latent activity” of the whole network, i.e., if we call
ci(tj) the value of the latent variable of neuron i (before adding the noise) at time bin j,

then σ1 = 1
10

∑N
i=1

∑J
j=1

ci(tj)

N ·J where J is the total number of time bins. Given that the
Calcium indicator used in the experimental data we considered was the H2B-GCamP6f,
according to Shemesh et al. [2020], we use τr = 0.5 s and according to Kawashima et al.
[2016] and Duchemin et al. [2021], we use τd = 3 s.

Then, the ∆F/F (t) is a sigmoid of the latent variable plus some gaussian noise η2(t) ∼
N (0, σ2

2), i.e., for a neuron i, (∆F/F (t))i =
Fmax

1+e
k·(ci(t)−c1/2)

+ η2(t), where Fmax, k and c1/2

are the maximum-value, slope and half-activation parameters of the sigmoid. We use
Fmax = 10, k = 0.6 and c1/2 = 5. Once again, we choose η2 as 10% of the mean

fluorescence activity of the whole network, i.e. σ2 =
1
10

∑N
i=1

∑J
j=1

(∆F/F (t))i(tj)

N ·J . Then, in
order to have a signal of the same temporal resolution of the data, we coarse-grain the
∆F/F (t) signal by taking its average over time bins of length 1

15
s.

Finally, to transform the fluorescence continuous signal to fluorescence binary events
(”Calcium spikes”), for each neuron i, we use as a threshold the z-score zi(t) of its

(∆F/F )i(t) signal (as in Romano et al. [2017]), i.e. zi(t) =
(∆F/F )i(t)−<(∆F/F )i(t)>time√

<((∆F/F )i(t)−<(∆F/F )i(t)>time)2>time

:

(∆F/F )i(t) =

{
1 if zi(t) ≥ 3,

0 if zi(t) < 3.

2.4 Definition of neural avalanches

Commonly, a neuronal avalanche is defined as a period of continuous activity of the
network preceded and followed by a total absence of activity, where one does not take
into account the position of the neurons (e.g. Beggs and Plenz [2003]). The time elapsed
during the period of activity is called the avalanche duration, and the number of spikes
that occurred during the avalanche is called the avalanche size. As we analyze data from
three very close planes (δz ≈ 10µm) of the region of the optic tectum δx ≈ δy ≈ 400µm,
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we use this spatially unconstrained definition of avalanches rather than a definition where
one would impose a maximal distance to consider that two active neurons form part of
a common avalanche. However, because in the optic tectum, even in the resting state,
there are stimuli coming from other zones of the brain, we impose that there is always
some external input to the network, i.e., for any neuron i, there are times at which
hi(t) ̸= 0, and so a dead network {ai(t) = 0 for all i = 1...N} is not an absorbing state.
This motivates adding a threshold to the spatially unconstrained definition of avalanches
(e.g. as in Poil et al. [2012]) to filter out noisy activation of the network caused by the
external inputs, in an attempt to label only the ”truly” cascading synchronous events as
avalanches. In this definition, an avalanche is occurring at a given time bin if the sum of
the active neurons is above a threshold (Algorithm 2):

Algorithm 2 Getting the sizes and durations of avalanches according to the non-spatial
threshold definition of avalanche
1: Inputs:
2: t : time array of L elements [t1, ...tL]
3: SummedActivity: array of L elements whose i-th element contains the number of

neurons active at time bin i, i.e., SummedActivity(i) =
∑N

k=1 ak(ti), i = 1...L
4: th: avalanche threshold (in number of neurons)
5: Outputs:
6: Size: array containing the sizes of the avalanches
7: Duration: array containing the durations of the avalanches
8: Initialization:
9: Size ← [ ]
10: Duration ← [ ]
11: s← 0
12: d← 0
13: for i = 2 to L do
14: if SummedActivity(i) ≥ th then
15: s← s+ SummedActivity(i)
16: d← d+ 1
17: else if SummedActivity(i) < th and SummedActivity(i− 1) ≥ th then
18: Size ← append(Size, s)
19: Duration ← append(Duration, d)
20: s← 0
21: d← 0
22: end if
23: end for
24: Size ← Size[Duration > 0]
25: Duration ← Duration[Duration > 0]
26: Return [Size, Duration]

We use the resolution of the fluorescence binary events, 1
15

s, for the time bin size for
the fluorescence avalanches, and a much bigger time bin size of 0.5 s when analyzing spike
avalanches (the maximum bin size up to which critical exponents are robust as discussed
in Fontenele et al. [2024]) and in both cases ⌊ 5

1000
·N⌋ for the avalanche threshold.
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2.5 Power-law fitting

For estimating the power law exponents of the avalanche size and duration probability
distributions, they were fitted by truncated power laws P (S) ∼ S−τ and P (T ) ∼ T−α us-
ing the maximum likelihood estimation (MLE) function from the MATLAB NCC (Neural
Complexity and Criticality) Toolbox (Marshall et al. [2016]) with [min(S),max(S)] and

[min(T),max(T)] as left and right cutoffs. The function < S(T ) >∼ T
1
σ was calculated

by averaging S and T over logarithmically spaced bins in the range [min(T),1.1 max(T)],
and its power law exponent was obtained by linear least squares of log(S) vs log(T).
Depending on the parameters of the model, avalanche distributions of the simulated net-
works did not always seem to follow clear power laws, and because in this work we do
not take into account the uncertainty of the power laws, we required a minimum of either
5 avalanches or both 3 avalanches and a range of durations greater than one decade to
consider valid the power law exponent, otherwise it was set to NaN. This criterion was
found to be satisfactory by qualitative inspection of the distributions. Additionally, we
found that when there are no spike avalanches, the noise introduced by the algorithm
when transforming spikes to calcium fluorescence binary events can constitute avalanches
by itself, and so when the τ ,α,σνz exponents for spike avalanches are NaN, they are also
set to NaN for calcium events.

2.6 Averages over simulations

When doing k batches of simulations Bk of the SWC, where in each batch Bi we vary n
parameters Pj of the model but without varying λ, (i.e., in Bi

λ we vary P1, ..., Pn, Pj ̸= λ),
we generate a unique adjacency matrix Ci

λ for all simulations of Bi
λ (which may be then

normalized in different ways if varying the parameters wE or wI). So, when we say that
a result with parameters (P1 = p1, ..., Pn = pn) was obtained after taking the average
over k simulations, it refers to averaging over the ”randomness of the k connectivity
matrices” of the k batches of simulations, i.e. the average of the results obtained with
((P1 = p1, ..., Pn = pn), C

1
λ), ..., ((P1 = p1, ..., Pn = pn), C

k
λ).

3 Results

3.1 Simulations of the spiking and fluorescence neuronal spon-
taneous activity that reproduce the experimental avalanche
statistics

We found value ranges of the parameters (e.g. w+ = 10, w− = 0.09, g = 1Hz, q = 0.1Hz,
h = 0.001, λ = 80µm) of the stochastic Wilson-Cowan model that generate avalanches
of spikes, which after transformation to binarized calcium fluorescence events (see 2.3),
produce avalanches (Figs. 8, 9, 10) with power-law distributions spanning over several
decades with exponents close to the experimental exponents and with similar standard
deviation of the normalized summed excitatory and inhibitory activity (Fig. 7). The
values used as a reference for the experimental exponents are the values of the partic-
ular fish used for generating the connectivity matrix, and not the average ones in the
introduction.
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Figure 7: Differences between simulations and experiments of the avalanche power law exponents and the
standard deviation of the E and I summed normalized activities for different parameters w+ and w−, for
g = 1Hz, q = 0.1Hz, h = 0.001, λ = 80µm Color encodes the simulation value minus the experimental
value (i.e white signals are a perfect match)

Figure 8: Example rasters, sum activity and E/I ratio with parameters w+ = 10, w− = 0.1, g = 1Hz,
q = 0.1Hz, h = 0.001, λ = 80µm producing calcium avalanches with exponents close to experimental
data. Shaded patches show the occurring avalanches. E and I neurons in blue and red, respectively.
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Figure 9: Zoom of Fig. 8 showing the effect of the convolution with the slow decaying double exponential
kernel when converting from spikes to fluorescence (2.3)
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Figure 10: Avalanche distributions of Fig. 8 showing the resulting power law exponents (see Methods
2.5)

3.2 Simulations applying constant external stimuli, hI and hE,
to E and I populations

Here we set the parameters w+ = 10, w− = 0.09, λ = 80µm, h = 0.001 found in the
previous subsection 3.1 that generate calcium fluorescence binarized events with avalanche
dynamics with avalanche power law statistics similar to those of the experimental data,
and we explore the effect of varying the parameters of the external stimulus to the neurons
hi(t) which could represent, e.g., optogenetic stimuli. First, in 3.2.1, we replace the
uniform constant external stimulus h = 0.001, that all neurons receive, for hE and hI ,
applied to all E and I neurons, respectively. Then, in 3.2.2 and 3.2.3, we consider the
uniform h = 0.001 constant background external stimulation identical for all neurons, and
we add a second external stimulus, noted hE or hI again, applied to a certain proportion
of E and I neurons, nE and nI . When presenting average values of statistics, the averages
are meant to be over three simulations (see 2.6) of same duration Tmax = 2000s.
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3.2.1 Applying external stimuli to all E and I neurons

We varied the intensity of a constant external stimulus hE and hI , applied to the entire
populations of E and I neurons (nE = nI = 1), respectively, for different combinations of
(hE,hI). We start by distinguish among three types of qualitative behaviour by analyzing
the spike rasters (Figs. 11,12). First, along the diagonal, hE = hI , avalanche dynamics
are maintained up to the maximal value of stimulus hE = hI = 0.05 (Figs. 13, 14) and
the spike and calcium power law exponents and the variances of the summed E and I
activities remain almost constant (Fig. 19), as close to their experimental values as the
parameters we found allows for (Fig. 20). Second, for hE = 0.05 > hI ≥ 0.0088, we
see big avalanches and short silences, coherent with the decrease in α, τ , the NaN values
of γ and a slight decrease in variance of summed activity, as this summed activity gets
closer to a sustained activity oscillating around a mean value without vanishing. And
for even lower values of hI(≤ 0.0057), i.e. when hE is unmatched, the dynamics is no
longer avalanche-like but rather asynchronous Poissonian for both E and I neurons (e.g.
Figs. 15, 16), with similar E and I firing rates and almost absence of total silence of the
network.Third, for high values of hI(= 0.034) and low enough values of hE(≤ 0.0024),
the I neurons visibly overinhibit the E neurons, and so avalanches are short and α, τ are
big, and silences are big and γ is small (e.g. Figs. 17, 18), and when inhibition is even
higher hI = 0.05, hE ≤ 0.0057, the E neurons are totally inhibited while the I neurons
remain active in a Poissonian regime driven by hI . For parameters in between those three
limit cases, one sees avalanche power laws (Fig. 21), with exponents varying following the
same tendencies already described (Fig. 19). Notably, the power law exponents deviate
from the experimental values when the mean E/I ratio deviates from the balance value
of 0.5 (Fig. 22), analogously as the experimental exponents deviate from their critical
value when the mean E/I ratio deviates from 0.5 (Fig. 3).

In summary, hE tends to drive the network towards a regime of longer avalanches
and shorter silences but keeping the E/I balance, until reaching a limit of nonstopping
Poissonian E and I activity, whereas hI tends to drive the network to shorter avalanches
and longer silences while creating an E/I unbalance, until it makes the I neurons take
completely over the E neurons, and, when combined, the effects of hE and hI compensate
each other. Satisfactorily, the calcium statistics have a similar structure as the spike
statistics. However, as the calcium signal is the result of the convolution of the spike
with a slow decaying double exponential kernel with some noise, it decreases the silence
period, so, naturally, the structure of the heatmaps of silences (captured in γF ) and of
variances get deformed.

One can try to give a broad explanation for these results : If both hE and hI are low,
the stimuli start driving E and I, and as E recruits more I, I stops E and itself, until the
cycle starts again, and so on average the E/I ratio is close to 0.5. If hE, hI > 0.05 are
both too high, we have found (not shown) that they drive E and I towards a Poissonian
regime where both E and I fire close to the maximum firing rate imposed by the model
parameters (which is qg

q+g
, as any possible negative synaptic input becomes negligible

with respect to the positive external input, which saturates the nonlinearity), and again,
the average the E/I ratio remains balanced. If hE > hI , hE activates a big proportion
of E, and so E activates also a big proportion of I ( I

NI
∼ 0.1), and I tends to stop E

but hE is high enough to keep driving E, and thus I, for a long time which gives the
bigger avalanches, and again on average the E/I ratio is close to 0.5. If hE >> hI , the
unbalanced drive hE does not allow activity to vanish, which gives the Poissonian regime,
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still with balanced E/I. It is only when hI > hE that the E/I balance is broken as hI

drives I and I stops E and also tends to stop itself, making avalanches shorter, but hI

is high enough to keep I in a Poissonian regime, which increases silences as it becomes
more unlikely that E starts a new avalanche.

Figure 11: Spike rasters when varying over logarithmically spaced points between [0.001,0.05] the total
inputs hE and hI to the entire E and I populations. Initial transient activity for t < teq = 100s is not
taken into account

Figure 12: Zoom of Fig. 11
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Figure 13: Sample rasters, sum activity and E/I ratio of a simulation for hE = hI = 0.05
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Figure 14: Avalanche distributions of Fig. 13 for hE = hI = 0.05

Figure 15: Sample rasters, sum activity and E/I ratio of a simulation for hE = 0.05 >> hI = 0.001
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Figure 16: Avalanche distributions of Fig. 15 for hE = 0.05 >> hI = 0.001

Figure 17: Sample rasters, sum activity and E/I ratio of a simulation for hI = 0.0324 >> hE = 0.0024

101 102 103

Avalanche size S

10-5

100

Pr
ob

ab
ilit

y d
en

sit
y Spike events

P(S) 9 S-=

= = 1.97

100 101

Avalanche duration T (in frames of 0.5 s)

100

Pr
ob

ab
ilit

y d
en

sit
y

P(T) 9 T-,

, = 1.86

100 101 102

Avalanche duration T (in frames of 0.5 s)

102

<S
>(

T)

<S>(T) 9 T1/<8z

<8z = 0.81

102 104

Avalanche size S

10-10

100

Pr
ob

ab
ilit

y d
en

sit
y

Calcium fluorescence 
 binarized events

P(S) 9 S-=

= = 2.13

100 101 102 103

Avalanche duration T (in frames of 1/15 s)

100

Pr
ob

ab
ilit

y d
en

sit
y

P(T) 9 T-,

, = 1.84

100 101 102 103 104

Avalanche duration T (in frames of 1/15 s)

100

105

<S
>(

T)

<S>(T) 9 T1/<8z

<8z = 0.79

1 2 3 4 5 6 7 8 9
Silence duration D (in frames of 0.5 s)

100

Pr
ob

ab
ilit

y d
en

sit
y

P(S) 9 D-.

= = 2.02

100 101

Silence duration D (in frames of 1/15 s)

100

Pr
ob

ab
ilit

y d
en

sit
y

P(S) 9 D-.

= = 2.13

Figure 18: Avalanche distributions of Fig. 17 for hI = 0.0324 >> hE = 0.0024

17



0.0
01

0.0
01

5

0.0
02

4

0.0
03

7

0.0
05

7

0.0
08

8

0.0
13

6
0.0

21

0.0
32

4
0.0

5

 hE

0.05
0.0324

0.021
0.0136
0.0088
0.0057
0.0037
0.0024
0.0015

0.001

 h
I

 <,F>

1.4

1.6

1.8

NaN

0.0
01

0.0
01

5

0.0
02

4

0.0
03

7

0.0
05

7

0.0
08

8

0.0
13

6
0.0

21

0.0
32

4
0.0

5

 hE

0.05
0.0324

0.021
0.0136
0.0088
0.0057
0.0037
0.0024
0.0015

0.001

 h
I

 <=F>

1.6
1.8
2
2.2

NaN

0.0
01

0.0
01

5

0.0
02

4

0.0
03

7

0.0
05

7

0.0
08

8

0.0
13

6
0.0

21

0.0
32

4
0.0

5

 hE

0.05
0.0324

0.021
0.0136
0.0088
0.0057
0.0037
0.0024
0.0015

0.001

 h
I

 <<8zF>

0.74
0.76
0.78
0.8
0.82
0.84

NaN

0.0
01

0.0
01

5

0.0
02

4

0.0
03

7

0.0
05

7

0.0
08

8

0.0
13

6
0.0

21

0.0
32

4
0.0

5

 hE

0.05
0.0324

0.021
0.0136
0.0088
0.0057
0.0037
0.0024
0.0015

0.001

 h
I

 <.F>

1.6
1.8
2
2.2
2.4

NaN

0.0
01

0.0
01

5

0.0
02

4

0.0
03

7

0.0
05

7

0.0
08

8

0.0
13

6
0.0

21

0.0
32

4
0.0

5

 hE

0.05
0.0324

0.021
0.0136
0.0088
0.0057
0.0037
0.0024
0.0015

0.001

 h
I

 <,>

1

1.5

2

NaN

0.0
01

0.0
01

5

0.0
02

4

0.0
03

7

0.0
05

7

0.0
08

8

0.0
13

6
0.0

21

0.0
32

4
0.0

5

 hE

0.05
0.0324

0.021
0.0136
0.0088
0.0057
0.0037
0.0024
0.0015

0.001

 h
I

 <=>

1

1.5

2

NaN

0.0
01

0.0
01

5

0.0
02

4

0.0
03

7

0.0
05

7

0.0
08

8

0.0
13

6
0.0

21

0.0
32

4
0.0

5

 hE

0.05
0.0324

0.021
0.0136
0.0088
0.0057
0.0037
0.0024
0.0015

0.001

 h
I

 <<8z>

0.76
0.78
0.8
0.82
0.84
0.86
0.88

NaN

0.0
01

0.0
01

5

0.0
02

4

0.0
03

7

0.0
05

7

0.0
08

8

0.0
13

6
0.0

21

0.0
32

4
0.0

5

 hE

0.05
0.0324

0.021
0.0136
0.0088
0.0057
0.0037
0.0024
0.0015

0.001

 h
I

 <.>

1.6
1.8
2
2.2
2.4

NaN

0.0
01

0.0
01

5

0.0
02

4

0.0
03

7

0.0
05

7

0.0
08

8

0.0
13

6
0.0

21

0.0
32

4
0.0

5

 hE

0.05
0.0324

0.021
0.0136
0.0088
0.0057
0.0037
0.0024
0.0015

0.001

 h
I

 Pooled Std[E / NE]

2
4
6
8
10
12

#10-3

0.0
01

0.0
01

5

0.0
02

4

0.0
03

7

0.0
05

7

0.0
08

8

0.0
13

6
0.0

21

0.0
32

4
0.0

5

 hE

0.05
0.0324

0.021
0.0136
0.0088
0.0057
0.0037
0.0024
0.0015

0.001

 h
I

 Pooled Std[I / NI]

2
4
6
8
10
12
14
#10-3

0.0
01

0.0
01

5

0.0
02

4

0.0
03

7

0.0
05

7

0.0
08

8

0.0
13

6
0.0

21

0.0
32

4
0.0

5

 hE

0.05
0.0324

0.021
0.0136
0.0088
0.0057
0.0037
0.0024
0.0015

0.001
 h

I

 Pooled Std[EF / NE]

0.01

0.02

0.03

0.0
01

0.0
01

5

0.0
02

4

0.0
03

7

0.0
05

7

0.0
08

8

0.0
13

6
0.0

21

0.0
32

4
0.0

5

 hE

0.05
0.0324

0.021
0.0136
0.0088
0.0057
0.0037
0.0024
0.0015

0.001

 h
I

 Pooled Std[IF / NI]

0.01

0.02

0.03

Figure 19: Average avalanche statistics over three simulations
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Figure 20: Difference between simulations and experimental avalanche statistics. Color encodes the
simulation value minus the experimental value

Figure 21: Avalanche distributions for one of the three simulation batches of those considered to produce
the average exponents in Fig. 19. Less transparent colors mean higher values of hE
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Figure 22: Relation between average over simulations of the power law exponents and average over
simulations of the mean E/I ratio. Error bars are the pooled standard deviation (i.e., taking into
account the standard deviations of the E/I ratio of each of the three simulations used for the average).
Less transparent colors mean higher values of hE

3.2.2 Appliying an external stimulus to a proportion of E neurons

We varied the intensity of a constant external stimulus hE applied to a proportion nE

of E neurons, for different combinations of (hE,nE) (Fig. 24). Here, we observe the
same role for hE as discussed in 3.2.1, in which it drives the network towards longer
avalanches and shorter silences, i.e smaller α, τ and makes γ take NaN values. The nE

parameter only modulates the effect of hE (26,25,27). Again, the structure of the calcium
and spike statistics heatmaps are similar, except for γF due to the noise introduced when
transforming spikes to calcium events. Equally consistent with the explanations given in
3.2.1, we see that hE can not increase the E/I ratio (it only deviates from 0.5 of ∼ 0.02
for calcium when both hE, nE are high, see Fig. 23), as it can only turn the activity more
Poissonian.

Interestingly, here we also see that this intuition on the role of hE remains valid if
one does a more ”local” stimulation (e.g. nE = 0.2) that, one could think, would not
have enough nearby I to recruit, but rather would recruit nearby E and create a positive
feedback loop that lasts long enough until more I is recruited, thus increasing the mean
E/I ratio. This could be due to the fact that the connectivity matrix does not seem to
have isolated islands of E or I neurons (Fig. 5b), so the inhibition can prevent quickly
enough such loops in E occurring at any place in the network, and so the E/I ratio
remains close to 0.5.
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Figure 23: Relation between average over simulations of the power law exponents and average over
simulations of the mean E/I ratio. Error bars are from the pooled standard deviation (i.e., taken into
account the standard deviations of the E/I ratio of each of the three simulations used for taking the
average). Less transparent colors mean higher values of hE

Figure 24: Spike rasters when varying over logarithmically spaced points between [0.001,0.05] the addi-
tional external input hE and the proportion of neurons receiving this stimulus, nE
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Figure 25: Difference between simulations and experimental avalanche statistics. Color encodes the
simulation value minus the experimental value
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Figure 26: Average avalanche statistics over three simulations

Figure 27: Avalanche distributions for one of the three simulation batches of those considered to produce
the average exponents in 26. Less transparent colors mean higher values of hE

3.2.3 Applying an external stimulus to a proportion of I neurons

We varied the intensity of a constant external stimulus hI applied to a proportion nI

of I neurons, for different combinations of (hI ,nI). Similarly to 3.2.2, the proportion of
stimulated neurons, here nI , only modulated the effects of hI already discussed in 3.2.1.
Note in Fig. 33 that for low nI or low hI the mode of the mean E/I ratio is ≈ 0.52 for
calcium events, as it was the case when varying hE and nE in 3.2.2. Thus, this increase
in E/I ratio should be interpreted as a deviation from balance, but as an artifact of the
transformation from spikes to calcium (Figs. 30,31,32,28,29).
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Figure 28: Spike rasters when varying over logarithmically spaced points between [0.001,0.05] the addi-
tional external input hI and the proportion of neurons receiving this stimulus, nI

Figure 29: Zoom of 28
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Figure 30: Average avalanche statistics over three simulations
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Figure 31: Difference between simulations and experimental avalanche statistics. Color encodes the
simulation value minus the experimental value

Figure 32: Avalanche distributions for one of the three simulation batches of those considered to produce
the average exponents in 30.Less transparent colors mean higher values of hI

Figure 33: Relation between average over simulations power law exponents and average over simulations
of mean E/I ratio. Error bars are from the pooled standard deviation (i.e., taken into account the
standard deviations of the E/I ratio of each of the three simulations used for taking the average). Less
transparent colors mean higher values of hI
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4 Conclusion

This work found parameters of the stochastic Wilson Cowan model that calcium event
avalanches with power law statistics similar to those found in experimental data of the
zebrafish optic tectum. When perturbing the spontaneous activity of both E and I pop-
ulations with constant external stimuli of intensity hE and hI for the whole duration of
the simulations, we found that there is an asymmetry between stimulating predominantly
only one of the populations. When overly stimulating the E population, i.e., hE > hI ,
the avalanches get longer, and as hE increases, the avalanche dynamics disappears and
a Poissonian desynchronized regime establishes, but in any case the inhibition is capable
of maintaining the E/I ratio close to its balance value of 0.5. However, when overly stim-
ulating the I neurons, they make the avalanches shorter, the silences between avalanches
longer and the E/I ratio lower, because, even though I neurons can inhibit themselves,
they are receiving a constant drive. Therefore, trivially, when hI ≫ hE, they suppress
completely the E neurons, and they remain spiking in a Poissonian regime. Surprisingly,
big balanced stimuli hE ≈ hI do not change the avalanche power law statistics, provided
the stimuli do not get too big to saturate the non linear response function of the neu-
rons, in which case the network goes to a Poissonian regime, firing close to the maximum
firing rates imposed by the model. Finally, we have also seen that ”local” stimulations
to certain proportions of E or I neurons only modulate the effects of hE and hI already
mentioned, but do not change their qualitative role, as the networks considered have a
high degree of connectivity, making positive feedback loop between islands of E neurons
rare.

Interesting continuations could include a study of the transient regimes when applying
time dependent external stimuli to better understand how avalanches emerge and end
(perhaps with analysis in the Fourier space), or to see if it is possible to phase lock the
network. Other possibilities are the study of more realistic spatial profiles of stimulations
(e.g., those of a laser doing an optogenetic stimulation), the influence of the change in
spatial distribution of the neurons that is used to generate the connectivity matrix, e.g.,
to see if there are hub neurons or clusters (see 5.1) and a study of the relevance of
initial conditions of the network. Additionally, to increase the E/I ratio, one could try
to increase/decrease the number of excitatory/inhibitory neurons, which could represent
and experiment where they are inactivated (e.g. with neuromodulation), which could
give rise to E islands.

This work could also be further complemented by studying the effects of the threshold
and bin sizes used when finding avalanches, and by studying the effects of the parameters
of the kernel converting spikes to calcium events, as short calcium avalanches tend to
get merged into bigger avalanches, which lowers the exponents and could possibly be
contributing to some of the bumps in the power law distributions.

5 Supplementary Information

5.1 Variability across fishes

The parameters found to produce avalanche dynamics using the connectivity matrix as
a function of the position of the neurons of one particular fish (see 3.1) did not generate
avalanche dynamics for all fish (Figs. 35,34). Even though the number of neurons slightly
increases in certain fish, which, as already described in 2.1, makes the deterministic, non-
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avalanche dynamics, dominate over the fluctuations that produce the avalanche, this was
found in Benayoun et al. [2010] to have effect for N > 105, whereas here in any case we
stay in N ∼ 103. Perhaps the difference lies in the spatial distribution of neurons that
changes the connectivity matrix (see Fig. 36, where the spatial separation between E and
I populations is more prominent than in Fig.5a).
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Figure 34: Results of the calcium events avalanche duration power law exponent when varying w+, w−
for different fishes. Color encodes the simulation value minus the experimental value

Figure 35: Raster of fish ID = 8 with parameters that generate avalanches in fish ID = 3
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Figure 36: Positions of neurons for the fish ID = 8

5.2 Mean firing rates and q, g

Note that the parameters q = 0.1Hz, g = 1Hz used in the simulations impose a maximum
mean firing rate for a neuron of qg

q+g
≈ 1Hz (think about the case of saturated inputs,

where a neuron has then constant transition rates q and g), and commonly the firing rates
are much lower than that (≈ 0.01Hz, not shown), which could be considered unrealistic,
even for resting state neurons. However, this choice had to be made, as the conversion
from spikes to calcium via a convolution with a slowly decaying double exponential kernel
and the subsequent binarization is analogous to applying a low pass filter, which means
that for higher firing rates, the signal is lost. We tried scaling up q, g to the expense
of scaling down inputs, i.e, scaling down h,w+, w− to decrease the firing rates, however,
as shown by analytic discussions of the SWC (de Candia et al. [2021b]), avalanches are
produced for w− ∼ q

g
(Fig 37), and thus for more realistic values q = 100Hz, g = 1000Hz,

the ratio q
g
= 0.1 remains constant which constrains w− not to be scaled down.

Figure 37: Figure and caption from de Candia et al. [2021a] : (A) Analytical dependence of the firing
rate per neuron at the fixed point on the value of w0, for different values of h. (B) Normalized variance
σRR = N < (R−R0)

2 > as a function of w0. (C) Fano factor σRR/R0. (D) Square coefficient of variation
σRR/R

2
0, that is equal to N times the variance of the ratio R

R0
. Other parameters: α = 0.1ms−1, β =

1ms−1, wE + wI = 13.8
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Evidence for Quasicritical Brain Dynamics. Phys. Rev. Lett., 126(9):098101, March
2021. ISSN 1079-7114. doi: 10.1103/PhysRevLett.126.098101.

Nir Friedman, Shinya Ito, Braden A W Brinkman, Masanori Shimono, R E Lee DeVille,
Karin A Dahmen, John M Beggs, and Thomas C Butler. Universal critical dynamics in
high resolution neuronal avalanche data. Phys. Rev. Lett., 108(20):208102, May 2012.

Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81(25):2340–2361, December 1977. ISSN 1541-5740.
doi: 10.1021/j100540a008. URL http://dx.doi.org/10.1021/j100540a008.

27

http://dx.doi.org/10.1523/JNEUROSCI.23-35-11167.2003
http://dx.doi.org/10.1523/JNEUROSCI.23-35-11167.2003
http://dx.doi.org/10.1371/journal.pcbi.1000846
http://dx.doi.org/10.1371/journal.pcbi.1000846
http://dx.doi.org/10.1126/sciadv.adj9303
http://dx.doi.org/10.1021/j100540a008


Gerald Hahn, Thomas Petermann, Martha N. Havenith, Shan Yu, Wolf Singer, Dietmar
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