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Summary

In today’s rapidly evolving Information Technology landscape, automation is a key
objective across all sectors, including cybersecurity. The security of a system can
be completely compromised by even the minor of configuration errors, highlight-
ing the importance of minimizing human intervention in security configurations.
Manual configuration of security systems, such as VPNs and packet filters, is not
only prone to errors but also likely to result in suboptimal solutions: studies have
shown that even seasoned security experts can introduce anomalies and errors when
configuring complex systems manually. Therefore, automating such crucial tasks
would greatly improve the overall quality and effectiveness of a network’s security,
while minimizing the attack surface exploitable by potential attackers.

The VEREFOO (VErified REFinement and Optimized Orchestrator) frame-
work perfectly fits the role of a tool capable of automating the allocation and
configuration of security systems, producing as output network configurations that
are both correct and optimal. VEREFOO is a framework developed at Politecnico
di Torino which lays its foundation on the formal methods approach, whose core
design allows the achievement of three important goals: firstly, ensuring formal
correctnes of the produced solution by construction; secondly, optimization by se-
lecting the most efficient option in the solution space; finally, as a consequence of
the first two, eliminating the need for post-verification.

This thesis aims to analyze the problem of automating the allocation and con-
figuration of VPNs from both conceptual and practical perspectives, and enhance
the implementation of the approach in VEREFOO. In particular, the thesis focuses
on the analysis of how VEREFOO manages the formulation of the VPNs’ configu-
ration process as a Maximum Satisfiability Modulo Theories (MaxSMT) problem:
starting from the generation of the network flows and constraints applied to the
Network Security Functions (NSF) allocated on the graph, the analysis examines
every computational step that ultimately leads to the production of the final out-
come.

Through careful code reviews and debugging, the objective is to detect and
fix the issues affecting the current version of the framework, while also studying
new optimization strategies to enhance the tool’s performance. The analysis re-
vealed several defects in the framework’s code, such as inefficient generation of
constraints, an incorrect assignment of weights and grouping of constraints, im-
precise generation of the various flow path and a redundancy issue affecting the
quality of the output solution. Additionally, for not-yet resolved challenges like
the achievement of feasible performances when managing large-sized networks, var-
ious strategies and approaches are proposed. The intrinsic complexity of the VPNs
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auto-configuration problem leaves very little room for sub-optimizations, especially
related to the generation of constraints, as they can lead to unexpected and am-
biguous output scenarios.

Finally, an evaluation of the current framework’s implementation is presented,
in order to assess its strengths and weaknesses. The evaluation offers insights into
areas where VEREFOO, and more broadly, the state of the art of VPNs automatic
configuration, can advance in the future.
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Chapter 1

Introduction

1.1 Thesis introduction

The nowadays landscape of security management for virtualized networks has been
as turbulent as ever. As attackers grow more skilled and aware of potential vulner-
abilities to exploit, system administrators must keep up the pace with the evolving
nature of virtualized networks, managing increasingly complex topologies and se-
curity configurations. The configuration of complex security systems, such as NAT,
IDS, firewalls and VPNs, can become particularly time-consuming, even when lim-
ited to small-medium sized business networks. When we factor in the high risk of
misconfiguring these critical systems, the balance shifts dangerously in favor of the
attackers.

From this perspective, the cybersecurity automation increasingly appears to be
a necessity rather than merely an innovative branch of the cybersecurity field, as
we aim to build high-quality security solution to protect our assets. Cybersecurity
automation, particularly in the configuration of security systems, is a relatively new
and still underexplored approach to the setup and enforcement of security rules in
a network,which are still largely managed manually in most cases.

With its foundation firmly rooted in this philosophy, the VEREFOO (VErified
REFinement and Optimized Orchestrator) framework has been designed and de-
veloped, which purpose is to automatically allocate and configure Network Security
Functions (NSF) on the network. VEREFOO’s strength lies in the combination of
security automation with a formal methods based approach. This approach formu-
lates the configuration and allocation of NSFs as a Maximum Satisfiability Modulo
Theories (MaxSMT) problem, with the framework’s embedded SMT solver auto-
matically computing its resolution. This means that the security administrator’s
only task is to provide the framework with a Service Graph (SG) on which the
NSFs will be deployed, along with the set of Communication Protection Policies
(CPPs) they wish to enforce within the network, while the framework automatically
generates an output configuration, guaranteed to be both correct and optimal.

In the literature, VEREFOO has proved the effectiveness of its approach, es-
pecially in the packet filters configuration capability, as the works [1] [2] [3] ex-
haustevely analyze the model, while [4] presents a practical demonstration of the
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Introduction

framework in action. Building on its excellent performance in configuring firewalls,
VEREFOO has been extended to support the allocation and configuration of Vir-
tual Private Networks (VPNs), a mechanism that is becoming increasingly relevant.
However, VPNs are higly complex security systems, whose configuration involves
a greater number of factors to consider with respect to other security systems,
and currently the framework is not yet capable to achieve the same computational
performances as it does when configuring firewalls.

The objective of this thesis is to analyze VEREFOO’s current implementation
for ensuring secure communications in a network through VPNs and to enhance
it by introducing new pruning and optimization strategies, while also identifying
areas for potential improvement and fixing minor issues.

1.2 Thesis description

The thesis is organized as follows:

• Chapter 2: This chapter provides a background on cybersecurity automa-
tion, discussing its benefits and challenges, and explores the current state of
the art. It also delves into VPN architecture, covering the key concepts, com-
ponents, and protocols relevant to VPNs. Finally, it presents an overview of
the VEREFOO framework, setting the foundation for the thesis.

• Chapter 3: This chapter outlines the thesis’s objectives, focusing on the
automation of VPN configurations using the VEREFOO framework. It details
the steps for analyzing and enhancing VEREFOO, including identifying issues
and implementing optimization strategies for VPN configuration.

• Chapter 4: This chapter presents an in-depth analysis of VEREFOO’s ca-
pabilities for automatic VPN configuration. It describes the framework’s
architecture, focusing on constraint generation and detailing the algorithms
used to allocate and configure VPN components.

• Chapter 5: This chapter addresses the identified issues and limitations
within VEREFOO, discussing enhancements made to improve the frame-
work’s performance. It includes the development of new optimization strate-
gies and their implementation to resolve inefficiencies in VPN configuration.

• Chapter 6: This concluding chapter summarizes the main findings and con-
tributions of the thesis and suggests areas for future research to further ad-
vance the automation of VPN configuration.

12



Chapter 2

Background

This chapter provides a general overview of the background and context on which
the thesis is based.

In the first section, the motivation of introducing automation in the cyber-
security field will be presented, highlighting its benefits while also exponing the
limitation of traditional manual network security management. Then, the focus
shifts on the state of art of cybersecurity automation, analyzing which concepts
related to this topic has been covered by the literature and which, instead, are still
unexplored. The aim is to provice a clear picture of what the literature has focused
on.

The second section of this chapter will analyze the VPN architecture. This
analysis comprehend a deep focus on its purpose, its characteristics and its func-
tioning. This way, the key features and concepts that need to be formalized later
in the VEREFOO framework will be highlighted.

Finally, a brief overview of VEREFOO will be provided, covering the inputs,
outputs, methodology, and models that are relevant for the subsequent in-depth
analysis.

2.1 State of the art of cybersecurity automation

2.1.1 Motivation for shifting towards security automation

Managing network security requires the security administrator to analyze the com-
puter network to identify assets that need protection and potential threats, draft
the necessary security requirements to achieve the desired security level, select the
appropriate NSFs to enforce these requirements, and finally allocate and config-
ure the NSFs accordingly. For instance, if a security requirement specifies that all
requests originating from a known malicious address must be rejected, the secu-
rity administrator would identify a packet filter as the appropriate NSF to provide
this protection; consequently, a firewall would be allocated and configured with the
necessary filtering rule to enforce this requirement. Although it may initially seem
like a straightforward task involving a linear sequence of actions, the complexity of
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management can quickly escalate when multiple NSFs are required, particularly as
the network size and the number of security requirements to be enforced increase.
This often leads to solutions that unintentionally introduce one or more anomalies,
which are inconsistencies caused by the security administrator during the NSF con-
figuration phase. Following the classification process performed in [5], anomalies
can belong to one of the following categories:

• Conflict: this type of anomaly happens when the enforcement of a security
rule is incompatible with the enforcement of another. The conflicting secu-
rity rules could be enforced by the same NSF, or by different NSFs (even of
different types, like a VPN gateway and a NAT). A simple example is two fil-
tering rules with identical conditions but contradictory actions. More subtle
conflicts can arise, for instance, when a NAT and a VPN gateway are mis-
configured, causing the NAT to modify the data packet’s IP address so that
it no longer matches the VPN’s security association. Generally, conflict-type
anomalies lead to the failure to apply protection and often result in network
connectivity issues as well.

• Error: this type of anomaly occurs in presence of an hard misconfiguration.
For example, a VPN gateway may be expected to create a TLS tunnel, but
it fails to do so because the necessary TLS module hasn’t been installed.
More broadly, the security administrator’s solution design might depend on
a node to enforce a security rule, but the node lacks the necessary capability
to implement that rule. In most cases, this type of anomaly causes a non-
enforceability situation and can potentially prevent any data exchange.

• Sub-optimization: This type of anomaly occurs when the network configu-
ration reduces throughput or results in wasted resources. In the context of
firewall configuration, a sub-optimization anomaly can occur when filtering
rules that could be combined are left separate, causing certain rules to never
be triggered and ultimately leading to wasted memory. In the case of VPNs,
various sub-optimizations can occur, with one of the most impactful being
the allocation of an excessive number of VPN gateways. This leads to a sig-
nificant reduction in overall network throughput as unnecessary traffic is sub-
jected to computationally intensive cryptographic operations. Less impactful
sub-optimizations include redundant tunnels that encapsulate already secure
tunnels, adding unnecessary overhead on nodes, or configurations that force
data to travel unnecessarily long paths, resulting in suboptimal routing. In
a cloud computing environment, suboptimal assignment of Virtual Machines
to nodes can lead to increased energy consumption and network congestion,
as addressed in research such as [6]. While these types of anomalies may not
prevent achieving the desired security level, resolving them is crucial for en-
hancing network performance and reducing the vulnerability of the security
configuration to DoS attacks.

The presented classification of anomalies is not intended to be exhaustive, as
the literature offers thorough analyses of anomalies specific to each major security
domain. For example, [7] examines anomalies arising from enforcing security poli-
cies through VPN gateways, while [8] addresses anomalies related to filtering rules.
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Here, the aim is to highlight the typical scenarios in which a security manager might
inadvertently introduce critical errors, conflicts, and sub-optimizations, which are
highly common when configuring such complex security systems manually. In addi-
tion to offering the aforementioned taxonomy, the study [7] conducted an empirical
assessment to analyze the relationship between the number of introduced anomalies
and the expertise level of the administrator enforcing the Communication Protec-
tion Policies (CPP). The analysis revealed that 93% of administrators involved in
the experiment introduced at least one anomaly. As expected, solutions designed
by less experienced professionals were more likely to generate impactful inconsisten-
cies, such as conflicts and errors, with 70% and 60% respectively occurring among
administrators labeled as having ”low expertise.” Similar percentages were observed
for those with a medium level of expertise. However, the more interesting—and con-
cerning—aspect is that even expert professionals introduced a considerable number
of anomalies, particularly within the sub-optimization category. The research indi-
cates that while their advanced expertise and deeper understanding of the network
generally prevent them from introducing conflict anomalies, this same expertise can
also lead to the design of suboptimal implementations. In summary, the empiri-
cal assessment demonstrated that these anomalies frequently occur in real-world
scenarios, regardless of the security administrator’s level of expertise.

Adding to the challenges faced by security managers who manually perform
these complex tasks, the 2024 State of Security Report by Splunk [9] identifies the
misconfiguration of security systems as both the most common threat vector (38%)
and the most concerning threat vector (35%). Furthermore, the 2024 Data Breach
Investigation Report by Verizon [10] highlights that misconfiguration remains one
of the most frequent causes of data breaches, with the healthcare industry being
the most affected. The fact that the healthcare industry is the most affected sug-
gests that, despite the high value and critical importance of protecting its data
assets, the expertise of security managers responsible for configuration may often
be insufficient, possibly indicating a lower investment in safeguarding patient data.
Moreover, to complete the picture, it is of foundamental importance the consid-
eration of the costs of the breaches. In this regard, the IBM’s 2024 Cost of Data
Breach Report [11] states that the global average cost of a data breach increased
10% over the previous year, reaching an astonishing amount of $4.88M. In par-
ticular, the costs of breaches caused by system errors and cloud misconfiguration
averaged respectively $4.07M and $3.98M. Unsurprisingly, the healthcare industry
remains the most costly sector for data breaches, with an average expense of $9.77
million per incident. These statistics reached skyhigh numbers, highlighting the
enormous economic impact a single breach caused by a configuration anomaly can
generate.

Having discussed the real world scenarios where the manual configuration can
lead to anomalies and how severe their consequences can be from both technical
and economic points of view, it is equally important to highlights the benefits and
advantages of moving towards the automation of the tasks.

”Automation is the application of technology, programs, robotics or processes
to achieve outcomes with minimal human input” is the definition provided by IBM
to synthetically describe what automation is. However, as noted in [12], the term
”automation” was coined as early as 1936, originally applied within the context
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of industrial production, referring to the transfer of workpieces between machines
without the need for human intervention. Since 1946, when the Automatic De-
partment of Ford Motor Company was firstly established, the focus on this science
has increased exponentially. Today, nearly every sector has been transformed by
automation, with Agriculture, Construction, Energy, Healthcare, Transportation,
and Manufacturing being just a few of the many areas that have benefited from
its advancements. Regardless of the context in which it is applied, the common
denominator of automation remains consistent: it aims to minimize the number
of tasks that need to be performed manually by human personnel. This principle
holds true in the realm of security configuration and orchestration as well. The main
focus of automation, as far as network security is concerned, is on the NSFs alloca-
tion and configuration tasks. Automated security configuration and orchestration
can be accomplished through various approaches, including Artificial Intelligence-
enabled techniques (such as Machine Learning, Deep Learning, and Reinforcement
Learning) and formal methods-based approaches. In either case, the benefits can
be summarized as follows:

• Minimized Human Intervention: with automated security configuration, hu-
man administrators are no longer required to design security solutions from
scratch. Their tasks are instead limited to defining the security properties that
need to be enforced on the network and providing assistance and maintenance
for the automated system. Shifting their focus primarily to monitoring ac-
tivities can greatly enhance efficiency, accuracy, and responsiveness, enabling
administrators to manage multiple systems concurrently while significantly
reducing the likelihood of human errors.

• Lower level of expertise required: since the security management operations
are automated, the high likehood of conflict and error anomalies generated by
solution designed by less experienced system administrator would no longer
be an issue. This approach allows smaller companies, which may not have
the resources to hire highly experienced professionals due to their high salary
demands, to still aim for high levels of security in their networks.

• Better management of large and heterogeneous networks: the trend on the
raise of larger and heterogeneous network is yet another issue that furtherly
complicates the traditional manual security management. However, an au-
tomated tool can easily abstract different implementations of the same NSF
and subsequently perform, for each individual device, an efficient translation
to suit its specifics. At the same time, improved performances in manag-
ing large-scale computer network is guaranteed, thanks to the comprehensive
overview of the entire network architecture that humans cannot naturally
achieve.

• Optimization: as observed in [7], the sub-optimization type of anomaly was
the most common one across all expertise level when security management is
performed manually. With an automated approach, instead, not only opti-
mization can be achieved more easily, but it would be possible to implement
different optimization profiles and then let the security administrator decid-
ing which one is more suitable to his needs. For example, when configuring
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VPNs, the administrator could choose to prioritize the generation of end-to-
end VPNs, resulting in less VPN gateways allocated on the network, or, on
the contrary, the administrator could prioritize the performance of network
communication in terms of bandwidth, so prefering site-to-site VPNs.

Although automation has historically proven to be a game-changing innovation
in various fields, it is often met with justified skepticism when introduced into a
new domain. The decision to transfer control to software or hardware is always
approached with caution, particularly when the automation involves critical tasks
like IT security. The papers [13] and [14] discuss respectively what is the general
perception of the automation of tasks traditionally performed by humans and how
automation in cybersecurity could cause more harm than good. However, thanks
to the IBM 2024 Cost of a Data Breach Report, we know that more than 67%
of organizations is at least using AI and automation on a limited basis, and the
31% use them extensively, representing a 10.7% increase in use. This shows that
the trust in these automated tools is slowly growing, confirmed by the 44% of
respondents interviewed by Splunk citing AI as among their three main initiatives
in 2024, now surpassing cloud security. Moreover, almost 90% of them believe that
it can help organizations hire more entry-level talent since AI and automation can
be useful to develop their skills once they are hired, and 65% think that it will also
allow seadoned security pros to be more productive. To conclude the overview of
the nowadays perception and impact of automation, the organizations extensively
using these tools saved averagely $1.88M when a breach occured, compared to the
ones deciding to not rely on AI and automation.

2.1.2 Analysis of the state of the art

The literature review performed in this thesis focused on the articles, publications
and books related to the automatic configuration of firewalls and VPNs in order
to better understand which objectives have been achieved, and which objective are
still pursued. The search process was mainly performed in the Google Scholar web
engine and in the IEEE Digital library database, using the following search strings:

• ((firewall OR (packet AND filter)) AND (automation OR automatic OR auto-
mated OR programmability OR programmable) AND (configuration OR con-
figured))

• ((vpn OR (virtual AND private AND network)) AND (automation OR auto-
matic OR automated OR programmability OR programmable) AND (configu-
ration OR configured))

Automatic Firewall Configuration
Among the papers reviewed on the subject of automatic firewall configuration, [15]
is the earliest to propose a tool designed to assist security administrators by auto-
matically generating and analyzing firewall configurations across a network. The
configuration algorithm requires three key inputs: the network topology, a set of
organizational firewall policies that define permissible traffic for each machine, and
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trust assumptions that indicate whether a node is considered trusted. Once the
feasibility of the desired policy is established, the automated configuration genera-
tor proceeds through an iterative process. However, the proposed tool has several
limitations. It primarily focuses on preventing spoofed traffic, which consists of
packets that falsely claim a different origin than their actual source. While spoofed
traffic is indeed a significant threat, firewalls are deployed for a broader range of
purposes, making the tool’s functionality somewhat specific rather than general.
Additionally, it is limited to filtering inbound traffic, excluding the filtering of out-
bound traffic. The algorithm also fails to fully address cases where destination
nodes or trusted nodes lack the capacity to filter traffic. Furthermore, the tool only
supports whitelisting policies and does not include any optimization objectives. De-
spite these limitations, the tool exhibits notable strengths, including correctness by
construction and its applicability within distributed network architectures, which
demonstrate its potential for further development and refinement.

A similar achievement is presented in [16], though through a fundamentally
different approach. The framework described in this study introduces a low-level
language based on the IETF policy framework, capable of managing various types
of firewalls, including packet filter firewalls and application layer firewalls. It also
includes a tool for analyzing potential inconsistencies in firewall policies prior to
deployment. The static analysis, grounded in formal specifications, aids in identify-
ing common errors such as shadowing, correlation, generalization, and redundancy
in firewall rules. After policy deployment, the framework automatically validates
enforcement by generating test packets and monitoring the firewall’s response, pro-
ducing a detailed report for the administrator. While the ability to manage different
firewall types, combined with pre-deployment static analysis and post-deployment
runtime validation, represents significant innovations, the framework has certain
limitations. First, a high-level language for policy specification is generally pre-
ferred over low-level languages, as it allows security requirements to be expressed
in a more abstract and manageable manner. Second, the framework lacks any
consideration of optimization, and no information is provided regarding its perfor-
mance and scalability. At the time of publication, only the policy analysis tool
had been fully implemented, with the enforcement testing functionality still under
development.

An intriguing approach to the problem of automated firewall configuration is
presented in [17], where the authors adopt a procedural method that aims to min-
imize security risks while accounting for connectivity requirements, usability, and
budget constraints. The proposed synthesis process is capable of managing a dis-
tributed filtering architecture by generating rule configurations for each firewall to
satisfy both risk and connectivity requirements. Additionally, it aims at optimizing
firewall placement within the network to reduce spurious traffic—traffic destined
to be dropped by a firewall—which unnecessarily consumes network bandwidth
and increases vulnerability to Denial of Service (DoS) attacks. However, to ad-
dress the Distributed Firewall Synthesis Problem (DFSP), the authors had to rely
on a greedy heuristic algorithm, since their integer programming solver could not
compute the optimal solutions for larger networks. While this approach improves
scalability, it sacrifices optimality, as is typical of heuristic methods. Although the
deviation from the lower bound of the optimal solution remains within acceptable

18



Background

limits, true optimality is still not guaranteed.

The application of formal argumentation and preference reasoning for the anal-
ysis and automated generation of firewall policies is explored in [18]. A notable
advantage of this approach is its declarative nature, as the logic-based, declara-
tive specification of firewall requirements and configuration properties enhances the
comprehensibility of the policy set for administrators. The validity of this method
has been demonstrated through its application to a real-world firewall configuration
of moderate size (150 rules). However, the approach has several significant limita-
tions. It does not address the configuration of multiple firewalls within the same
network or the detection of inter-firewall anomalies; additionally, the challenge of
optimizing firewall configurations is not addressed.

In [17], the authors address the research question by formulating the problem as
a Boolean satisfiability problem, introducing a framework that leverages an SMT
solver to identify the correct and optimal security configuration. The objective
of their configuration synthesis problem is to maximize both usability—defined as
the accumulated usability of a node based on all service flows to that node—and
overall isolation within the network, while simultaneously satisfying various security
requirements and organizational business constraints. A notable strength of the
proposed framework is the broad range of NSFs it supports, including not only
firewalls but also IDS, IPsec, and NAT. Furthermore, the framework demonstrates
satisfactory performance despite its focus on optimization in terms of both security
configuration and device placement.

Nevertheless, all the previously discussed works focus exclusively on traditional
computer networks, which no longer align with current trends that increasingly
rely on Software Defined Networks (SDNs) combined with the Network Functions
Virtualization (NFV) paradigm. These technologies offer users and administrators
greater flexibility and agility in network configuration. The study in [19] partially
embraces these paradigms by proposing a semantic-based tool for firewall configu-
ration, specifically targeting Netfilter, a firewall system integrated into the Linux
kernel. Netfilter’s behavior is highly dependent on the order of its rules, as rule
sequencing directly impacts how the firewall functions. To address this, the authors
introduce a formal model of the Linux firewall system, which abstracts its key con-
cepts, and develop a simple yet powerful language that enables users to specify
firewall configurations independently of rule order. However, the tool’s limitation
to Netfilter undermines its flexibility, restricting its broader applicability in diverse
environments.

A network configuration synthesis tool that targets both traditional and virtual
networks is proposed in [20]. The synthesis process described by the authors uti-
lizes stratified Datalog to model the network’s behavior, with routing requirements
expressed as constraints, thereby reducing the input synthesis problem to the sat-
isfiability of SMT constraints. To ensure network reliability and scalability, the
approach relies heavily on distributed protocols to compute the forwarding state.
While the goals of reliability and scalability are effectively achieved, the methodol-
ogy lacks formal verification techniques applied to the synthesized configurations,
nor does it employ a formal correctness-by-construction approach.
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Finally, the group of papers ([20-23]) shifts the focus from the automatic gener-
ation and configuration of firewall policies to the analysis of existing configurations,
aiming to detect and resolve misconfigurations and anomalies. Specifically, [21] pro-
poses a method based on Firewall Decision Diagrams (FDDs) for analyzing firewall
configurations. In [22], a formal approach is utilized to manage firewall misconfigu-
rations, while [23] presents an automatic test generator based on white-box testing.
Lastly, [24] introduces a framework capable of testing firewall implementations by
generating both ACL policies and the corresponding packets for their enforcement.

Automatic VPN configuration
In this research area, one of the earliest works to recognize the significance of ab-
stracting Virtual Private Networks (VPNs) is [25]. After identifying the limitations
of manual configuration, the authors propose a VPN design aimed at satisfying the
specifications provided by the customer, while simultaneously maximizing resource
availability for the VPN Service Provider (VSP). Once the customer and the VSP
establish a Service Level Agreement (SLA), the partial VPN specification must
be translated into a complete specification. Upon achieving a full description, the
VPN can be expressed as a set of ”switchlet” specifications, which partition the
physical resources to ensure that VPNs are isolated and do not interfere with one
another. The problem of determining the optimal route for a VPN is compared
to finding a minimum Steiner Tree, where the objective is to identify the least
expensive subgraph based on a cost function. The cost function is automatically
generated by parsing the SLA, which integrates customer requirements with the
specific conditions of the VSP. Since finding the minimum Steiner Tree is an NP-
complete problem, the task of determining the optimal VPN topology, as outlined
in the paper, is also NP-complete. To bridge the gap between suboptimal and
optimal solutions, the authors analyze a brute-force approach, constructing every
possible connected subgraph that satisfies the VPN description, calculating the cost
of each, and selecting the least expensive. As expected, this brute-force algorithm
performs poorly in practice. However, the paper made significant contributions to
the field of automated VPN configuration by (i) proposing a method to translate
high-level customer requirements into low-level resource specifications, thereby en-
hancing usability and easing the administrative burden, and (ii) formulating the
problem of optimal VPN topology in a way that balances customer needs with VSP
resource constraints.

Another significant milestone in the evolution of research on automatic genera-
tion of security policies for VPNs is represented by [26]. In this paper, the authors
make a critical distinction between security requirements and low-level policies. Se-
curity requirements reflect the overarching security objectives and are independent
of specific implementations, while low-level policies are concrete actions designed
to meet these objectives. This separation provides a clear definition of policy cor-
rectness, whereby a low-level policy is considered correct only if it satisfies all
corresponding security requirements. The authors classify security requirements
into four main categories: (1) Access Control Requirements, which restrict access
to trusted traffic only; (2) Security Coverage Requirements, which mandate that
security protections must encompass all links and nodes within a specified area;
(3) Content Access Requirements, which specify that certain nodes (e.g., firewalls,
IDS) must have access to the content of certain traffic, ensuring that the traffic is
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not encrypted at those nodes; and (4) Security Association Requirements, which
define the need for—or prohibition of—establishing Security Associations of cer-
tain security functions between specific nodes. To systematically generate policies
that fulfill the specified security requirements, the paper introduces two algorithms.
The first, known as the Bundle Approach, groups entire traffic flows into disjoint
bundles based on the given requirements. For each bundle, a tunnel or a chain
of tunnels is created to satisfy the Security Coverage Requirements (SCR) of the
area. While this approach guarantees completeness and correctness, it is less effi-
cient and scalable due to the computational overhead involved in bundling traffic,
which requires extensive difference calculations. The second method is the Direct
Approach, which generates policies directly corresponding to each SCR without
bundling traffic into groups. Compared to the Bundle Approach, the Direct Ap-
proach generates fewer policies and requires less frequent updates, making it a more
scalable and efficient solution, but also not complete, meaning that future work for
optimization is required.

The same authors expanded their original work several times, proposing with
[27] a new approach with the aim to reduce to the minimum the number of poli-
cies generated, while [28] address the challenge of distributed policy management
through an ad-hoc framework.
In particular, [27] introduces the Ordered-Split Approach, an alternative method
to the previously discussed Direct and Bundle approaches, aimed at addressing the
redundancy and quality issues that affect them. This new algorithm is inspired by
traditional task scheduling, where the authors draw an analogy between the start
and end times of a task and the start and end points of a tunnel. The goal is to elim-
inate any overlaps between tunnels, ensuring that no two tunnels share the same
start or end time, resulting in what is referred to as a Canonical Solution. The same
logic is applied to security requirements, with the transformed set of requirements
being termed Tie-Free Requirements Sets. These requirements are processed in a
sorted order, and at each step, any existing tunnels that overlap with the current
requirement are split. Additional tunnels needed to complete the chain for the cur-
rent requirement are then added. A final cleanup phase ensures that the resulting
solution remains canonical, after which the algorithm proceeds to process the next
requirement. The Ordered-Split Approach demonstrates a significant improvement
over previous methods, as the number of policies generated stabilizes once a certain
threshold is reached, in contrast to the older approaches that cause the number of
policies to increase dramatically as the number of requirements grows.
On the other hand, [28] encapsulates previous works within BANDS, a framework
designed for inter-domain security policy management. The BANDS architecture
employs a hybrid structure, integrating both centralized and distributed systems,
and operates in two main phases: (1) Autonomous System (AS) route path discov-
ery and (2) an inter-domain collaborative protocol for policy negotiations among
the ASes discovered in the initial phase. Each AS within the framework contains
a Requirement Server (RS), which is responsible for managing policy negotiations
with other RSs in the distributed environment. When an RS receives a negotia-
tion message from a remote RS, it computes the corresponding security policies
using one of the automated policy generation algorithms discussed earlier. Once
the policies are determined, each RS communicates the necessary security policies
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to both local and remote routers, establishing the required Security Associations
(SAs) for a specific traffic flow. This framework enables effective cooperation and
policy enforcement across multiple domains, facilitating more comprehensive secu-
rity management in complex, inter-domain network environments.

However, very few studies in the literature propose solutions to the problem
of automatic configuration of VPNs in a non-traditional network. The paper [29]
proposes a method that integrates SDN with IPsec to streamline the configuration
and management of IPsec VPNs by using OpenFlow switches and controllers. The
architecture consists of an SDN controller, an OpenFlow switch and a VPN server,
where the switch acts as the IPsec VPN client, while the controller issues config-
uration parameters to the client through the IPsec configuration module equipped
on the SDN controller. In this setup, the SDN controller manages the flow of
data packet, enforces IPsec policies and ensures that only authenticated devides
can establish VPN connections; the authentication process relies on the RADIUS
architecture.

The work in [30] adopts a similar philosophy, presenting a solution for man-
aging IPsec Security Associations (SAs) using SDNs, with the novel distinction of
handling two cases: IKE and IKE-less. In the IKE case, the complexity of IPsec
management is shared between the network resource and the SDN controller. The
network resource implements IKEv2 to manage the IPsec SA, while the SDN con-
troller provides the necessary configuration for IKEv2 to function. In contrast, the
IKE-less case simplifies the network resource by incorporating only the IPsec logic,
while delegating all key management operations to the SDN controller, which is
capable of independently deriving the IPsec SAs. This approach reduces the com-
plexity at the network resource level, centralizing key management within the SDN
controller. The architecture is defined through three key interfaces: (1) the North-
bound interface allows administrators to configure the SDN controller with Flow-
based Protection Policies (FPP) using a high-level language to describe how data
flows should be managed between networks under its control; (2) the Southbound
interface manages the interaction between the SDN controller and the network
resource, enabling the controller to provide IPsec configurations to the network re-
source; (3) the East/West interface operates between two SDN controllers and is
required when network resources managed by different controllers are involved in
the IPsec protection of a specific flow.

Finally, a different approach is proposed by [31], where the concepts of DevOps
are applied to the resolution of the problem of automated VPN configuration in an
SDN-environment. This approach emphasizes enhanced usability and manageabil-
ity by enabling user interaction through a graphical user interface (GUI). The SDN
Hybrid model allows equipment from different providers to be connected through
VPN tunnels configured automatically. The architecture consists of three planes:
(1) the Application plane, which provides the web-based GUI for users to input the
necessary details for VPN tunnel deployment; (2) the Control plane, which defines
the operational model; and (3) the Data plane, which includes the physical infras-
tructure required to support network traffic. Through the GUI, the user provides
both the IKE parameters (encryption algorithm, hashing algorithm, Diffie-Hellman
group), which are used to set up a secure authenticated connection between the two
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concerned router, and the infromation regarding the IPsec (protocol and other rel-
evant details), which are used to prepare the mandatory SAs to establish the VPN
tunnel.

Final considerations and open issues

On the basis of this extensive analysis, state-of-the-art studies about automatic
NSF configuration have several limitations that should still be addressed.

In terms of firewall configuration, one of the most evident shortcoming in the
literature is the lack of focus on optimization, which is often overlooked entirely.
Optimization is crucial not only for enhancing network performance but, more
importantly, for elevating the overall quality of the security infrastructure. Fur-
thermore, even when optimization is not the primary goal, the scalability of the
approaches analyzed rarely reaches the levels required to manage medium-to-large
real-world network scenarios. Another common shortcoming in much of the exist-
ing research is the limited applicability to distributed network architectures. From
a security perspective, distributed architectures are significantly preferred over cen-
tralized ones, as the latter introduce a single point of failure, increasing the risk to
the entire network.

On the VPN configuration side, the situation is similarly lacking: heuristic ap-
proaches are required to make current methods feasible for modern network sizes
and to handle the increasing number of security requirements needed to deploy a
robust and reliable VPN infrastructure. Additionally, none of the studies reviewed
provide support for TLS technology, despite its rapidly growing relevance. More-
over, with a few rare exceptions, formal methods are generally overlooked. This
absence deprives the proposed solutions of the soundness and stability that formal
verification or correctness-by-construction can offer.

To sum up, the literature is still in search of an approach that combines cor-
rectness, optimality, and scalability, while addressing both traditional and virtual
networks, as well as distributed architectures.

2.2 VPNs Architecture

2.2.1 Definition

A VPN is a communications environment in which access is con-
trolled to permit peer connections only within a defined community of
interest, and is constructed though some form of partitioning of a com-
mon underlying communications medium, where this underlying com-
munications medium provides services to the network on a non-exclusive
basis.

This is the formal definition provided by [32]. In other words, a Virtual Private
Network (VPN) is a networking architecture implemented over a public network
(such as the internet), with the purpose of creating a secure and virtual connection
between peers. Two terms are worth a deeper explanation, virtual and secure. In
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this context, the adjective ”virtual” refers to the fact that no dedicated physical
infrastructure or exclusive channel is being created between the peers, but rather
that the underlying public network is shared by other organizations and users that
are unaware of the private channel established by the peers, making the commu-
nication appear as though it is happening over a private, isolated network. The
other key term, ”secure”, means that the virtual connection is designed to uphold
specific security properties that provide a degree of protection against unauthorized
actors who are not part of the communication: certain security properties, such as
authentication, are mandatory in any VPN implementation to ensure that only
authorized peers can establish a connection; other properties, like confidentiality
through encryption, are optional and depend on the specific requirements of the
peers.

2.2.2 Components and Actors

In a traditional VPN architecture, we can distinguish the following core actors:

• Communication Protection Systems: systems located at the VPN’s borders
that actively apply protection on the VPN’s traffic through a set of mech-
anisms and protocols. They can be placed directly on the End Points (if
they support the required VPN protocols and ciphersuites) or on the VPN
Gateways, depending on the VPN topology and purpose.

• End Points: network nodes or subnetworks representing the users or systems
that need to securely connect to a remote network or service through the
VPN.

• VPN Gateways: network nodes specifically designed to host the CPS and
create the VPN tunnels.

(a) CPS equipped on gateways

(b) CPS equipped on end points

Figure 2.1: Example of VPN architecture

As shown in Figure 2.1, the allocation of CPS determines where the VPN tunnels
start and end. In the first scenario, the CPSs are allocated on the VPN gateways,
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which are responsible for establishing the tunnel and applying the necessary security
measures to the traffic. In the second scenario, the traffic is protected directly from
End Point 1, eliminating the need for a VPN gateway, as the tunnel is established
directly between the peers. Many more hybrid models exist, and their differences
will be explored in greater detail in the subsequent subsections of this chapter.

The previous figure represents a highly simplified VPN architecture. In real-
world scenarios, numerous additional network functions and services, such as fire-
walls, Network Address Translation (NAT), Intrusion Detection Systems (IDS),
and others, enrich and complicate the network topology. Furthermore, the design
of a VPN may vary significantly depending on the specific context, such as whether
it is deployed in a commercial or business environment, each of which may have
different security and operational requirements.

2.2.3 VPN Tunnels

In networking, a tunnel is a communication channel that encapsulates data pack-
ets of one protocol inside another packet of the same or of a different protocol as
its payload and adds a new header before sending it, allowing communication be-
tween two entities over an intermediary network. The new headers contain specific
routing information necessary for transmitting the packet over the intermediary
network, typically the Internet. Once the packet reaches its final destination, it is
decapsulated, allowing the recipient to access the original packet and its contents.

In the context of VPNs, to establish a secure tunnel between communicating
entities, packets are protected prior to encapsulation. This protection involves
the calculation of a Message Authentication Code (MAC) to ensure integrity and
authentication, as well as encryption to guarantee confidentiality. When strong
cryptographic algorithms are employed, the only viable attack on the tunnel would
be to disrupt communication entirely.

We can distinguish three main VPN topologies which rely on different tunnel
edges placement:

• End-to-End (E2E): In this VPN topology, protection on network traffic is
applied and removed directly by the communication endpoints. It is well-
suited for use cases that prioritize direct and secure communication, such
as privacy-focused applications (e.g., VoIP services) and Internet of Things
(IoT) devices.

• Site-to-Site (S2S): In this VPN topology, protection on network traffic is
applied and removed by VPN gateways, which act as routers for the two
private networks seeking to establish a secure connection. This approach is
ideal for organizations that need to connect distant sites in a transparent and
secure manner. The hosts within the protected networks are unaware of the
existence of the VPN channel, allowing seamless communication between the
sites.

• Host-to-Network: In this VPN topology, the VPN tunnel is established be-
tween the user’s endpoint and the VPN server, granting the user access to
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remote private networks. This setup is typically employed for remote work-
ers, enabling secure access to data and applications hosted in corporate data
centers and headquarters.

2.2.4 VPN Tunneling Protocols

When considering the landscape of VPN technologies for tunnel creation, there
is a wide range of options available, encompassing both standardized and non-
standardized solutions. In this thesis, the two primary technologies employed for
this task this will be briefly explored: IPsec and TLS.

IPsec

Internet Protocol Security (IPsec) is a widely used IETF architecture that provides
OSI Layer 3 security for both IPv4 and IPv6, commonly used for establishing secure
VPNs over untrusted networks and ensuring end-to-end secure packet flows. IPsec
offers numerous valuable and desirable security properties, including data integrity,
sender authentication, partial protection against replay attacks, and confidentiality
through encryption. These features make IPsec one of the most reliable, robust,
and consequently, popular technologies for secure communications.

IPsec’s functionality is based on the concept of Security Associations (SAs) and
Security Policies (SPs).
A Security Association (SA) is a unidirectional logical connection between two IPsec
systems involved in the communication. It defines the protection mechanisms and
keys to be used for the subsequent data transfer. To fully protect a bidirectional
packet flow, two SAs are required—one for each direction of communication. In
particular, a SA provides information about the following parameters:

• IP addresses of the peers involved in the communication;

• Protocol used for tunnel creation (AH or ESP);

• Cryptographic algorithms and associated keys;

• A 32-bit integer known as the Security Parameter Index (SPI);

A Security Policy (SP) is a rule that determines which traffic must be encapsulated
and routed through the tunnel, meaning the traffic that must be protected using
IPsec with the information provided by the SA. The SP contains information about:

• IP addresses of the peers involved in the communication;

• Protocol of the network traffic and the corresponding port;

• Identifier of the SA to be used for processing the data;
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Both SAs and SPs of a IPsec system are stored in its local databases, respectively
Security Association Database (SAD) and Security Policy Database (SPD).

IPsec can be viewed as a collection of multiple protocols, each serving distinct
functions:

• Authentication Header (AH) ensures data integrity, sender authentication,
protection against IP header modification, and defense against replay attacks;

• Encapsulating Security Payload (ESP) provides data confidentiality, as well
as authentication, though it is not equivalent to the level of authentication
provided by the AH;

• Internet Security Association and Key Management Protocol (ISAKMP) es-
tablishes a framework for authentication and key exchange, with the primary
goal of generating the SA;

The IPsec protocols AH and ESP can be implemented in two modes of opera-
tion: transport mode and tunnel mode.
Transport mode is used for end-to-end security (so no gateways are usually in-
volved) and only the payload of the IP packet is encrypted or authenticated. It is
computationally light, but, since the header is neither modified or encrypted, no
protection of header variable fields is provided. The following figures show how the
transport mode is applied on AH and ESP protocols:

Figure 2.2: Transport mode applied on AH and ESP

On the other hand, with tunnel mode the entire IP packet is encrypted and
authenticated. It is then encapsulated into a new IP packet, which includes a new
IP header, allowing for the creation of tunnels for VPNs. The following figures
show how the tunnel mode is applied on AH and ESP protocols:
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Figure 2.3: Tunnel mode applied on AH and ESP

Finally, one of the key strengths of IPsec is its support for a comprehensive
and robust ciphersuite, which ensures a high level of protection for the traffic it se-
cures. It guarantees data integrity and authenticity with HMAC-SHA1/SHA2, con-
fidentiality via TripleDES-CBC and AES-CBC, and authentication through RSA,
ECDSA, and EdDSA. Key exchange is handled by Diffie-Hellman and ECDH al-
gorithms.

TLS

Transport Layer Security (TLS) is a cryptographic protocol designed to provide
secure communication over a network. It ensures peer authentication through an
asymmetric challenge-response mechanism, message confidentiality via symmetric
encryption, message authentication and integrity through the computation of a
MAC, and protection against replay and filtering attacks using an implicit sequence
number, furtherly improving this capability inherited by layering on top of TCP.
These properties have established TLS as one of the most widely used protocols for
securing various applications, including email services, messaging platforms, VoIP
communications, financial transactions, remote desktop protocols, and file transfer
mechanisms. However, its role in securing HTTPS remains its most prominent and
publicly recognized application.

In recent years, one of the most significant advancement in securing private com-
munication over untrusted networks has been the integration of TLS in the creation
of VPNs. A prominent implementation of TLS-based VPNs is OpenVPN, a widely
used open-source program that leverages the TLS protocol for cryptographic oper-
ations. What TLS brings to the table is primarily its handshake protocol for key
exchange and encryption, which enhances the security of VPN connections. TLS
initiates a handshake between the client and server, during which they authenticate
each other, agree on encryption algorithms, and securely exchange cryptographic
keys. Once the handshake is complete, all subsequent data is encrypted using
the agreed-upon keys, ensuring secure communication between the VPN client
and server. Additionally, TLS supports certificate-based authentication, adding
an extra layer of security by verifying the identities of the entities involved in the
communication.
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The most evident advantages of adopting TLS in the VPN context are its flex-
ibility and compatibility. Unlike IPsec-based VPNs, which operate at the network
layer, TLS-based VPNs function at the transport layer, making them more versatile.
This allows them to easily traverse firewalls and NAT configurations, simplifying
deployment.
The enhanced compatibility is due to the fact that TLS is widely used in securing
web traffic (e.g., HTTPS), meaning most devices and networks already support it.
As a result, it is easier to establish VPN connections without specialized configu-
rations.

2.3 VEREFOO Overview

As highlighted by the literature review in subsection 2.1.2, VEREFOO is the first
automated methodology that integrates formal correctness and verification with op-
timality in the allocation and configuration of Network Security Functions across
both traditional and virtual networks. Specifically, in the realm of VPN configu-
ration, it stands as the first approach to tackle the problem of automatically de-
termining both the allocation scheme and the protection rules for Communication
Protection Systems within a network topology, starting from a set of communica-
tion protection policies.

2.3.1 General Inputs and Outputs of the Framework

The framework requires the user to provide two inputs: a Service Graph (SG) and
the set of Network Security Requirements (NSR).

A Service Graph is a logical representation of the relationships and connections
between different network services or functions within a network architecture. The
provided SG is automatically processed by the framework and an Allocation Graph
is generated, which is the original SG enriched with special nodes called Allocation
Places (AP). These special nodes are generated for each link between every pair
of edges of the SG and represent the placeholder positions where the needed NSFs
(CPSs in the case of VPNs configuration) may be allocated in order to enforce the
user-specified NSRs.

The second input is the set of Network Security Requirements that the user
desire to be enforced on the SG. In the VPN context, these are referred to as Com-
munication Protection Policies (CPPs), which represent the security requirements
for communication protection. They are expressed in a medium-level language to
ensure sufficient user-friendliness and to remain independent of specific implemen-
tations. Each CPP includes details about policy conditions (IP addresses and ports
of the network traffic’s source and destination), the algorithms required for ensuring
confidentiality and integrity, the VPN protocols and enforcement modes to be used,
and, finally, any trustworthiness and inspection requirements for specific nodes and
links.

Once the required inputs are provided, the framework moves forward to solve
the automatic security enforcement problem. If a solution is found, the framework
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outputs the CPS allocation scheme, detailing which APs and other nodes should
host the CPSs, along with the protection rules for each allocated CPS. Otherwhise,
if no solution is available, a non-enforceability report is generated, providing useful
information to help the user understand why the CPPs could not be enforced.

2.3.2 MaxSMT Problem Formulation

The core of this methodology involves formulating the auto-configuration problem
as a Maximum Satisfiability Modulo Theories (MaxSMT) problem, which ensures
both formal correctness by construction and optimization of the results. Unlike a
traditional SAT problem, the MaxSMT approach allows for the inclusion of soft
constraints alongside hard constraints. Hard constraints are non-relaxable and
must all be satisfied to obtain a solution. Soft constraints, on the contrary, are not
strictly required for a valid output; instead, they are assigned weights, with the goal
being to maximize the total sum of these weights. In other terms, satisfying the
hard constraints ensures formal correctness, while the inclusion of soft constraints
enables the framework to achieve optimization goals.

For the automatic configuration of VPNs, hard constraints are used to enforce
CPPs and specify the conditions under which a CPS must be allocated on a par-
ticular node. Soft constraints, on the other hand, are defined to achieve an optimal
solution by minimizing the number of allocated CPSs and the number of config-
ured protection rules. The actual algorithms responsible for the generation of such
constraints will be deeply analyzed in the subsequent chapters of the thesis.

For solving the MaxSMT problem, the chosen solver is the z3 SMT solver
developed by Microsoft [33]. This solver was selected due to its efficiency, versatility,
and strong support for various theories, in addition to being open-source and freely
available.

2.3.3 Communication Protection Systems Model

CPSs are characterized by a set of rules that determine the actions they must per-
form on specific traffic classes. To enable the SMT solver to compute the necessary
rules for enforcing the CPPs, these rules are represented as a set of free variables,
for which the solver will determine the actual values, in line with the defined soft
and hard constraints. This set of rules associated with each CPS is referred to as
the set of placeholder rules, as they are generated during the framework’s execution,
and it is not known in advance which rules the solver will ultimately configure for
the final output.

The rules specify the conditions (IP addresses, ports, and protocol) that identify
the traffic each rule applies to, the algorithms for enforcing confidentiality and
integrity, the VPN protocol to be used (either IPsec or TLS), how the CPS should
enforce protection properties, whether the traffic should be encapsulated in a VPN
tunnel, and whether the CPS handling the traffic should apply or remove protection.

When the solver allocates a CPS on the graph, a VPN Gateway is placed on
that node, and the associated rules are configured and translated in the output
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as Security Associations. According to the configured rules, the VPN Gateway is
assigned an ACCESS behavior, meaning that the node acts as the entry point for
the secure channel, or EXIT behavior, if the VPN Gateway represents the end of
the secure channel. The Security Associations specify the conditions to be matched
by the ingress packet class and the actions to be applied on it by the VPN Gateway
if the conditions are satisfied.
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Chapter 3

Thesis Objective

As mentioned in the introduction, in the realm of network security even minor
configuration errors can lead to severe security vulnerabilities, often resulting in
breaches and financial losses. Automation offers a way to minimize human error
and optimize network configurations.

One tool that embodies this philosophy is VEREFOO, a framework capable
of automatically allocating and configuring the necessary security functions on a
network to enforce a set of desired security requirements. In this way, the user
only needs to define the security policies—referred to as Communication Protec-
tion Policies (CPP) in the VEREFOO environment—by specifying the source and
destination of the communication to be protected, along with the type of require-
ment. Depending on the requirement type, different network security functions are
allocated and configured automatically by the framework, while also optimizing for
performance in terms of solution computation, network bandwidth, and resource
allocation.

The framework has achieved significant success in the literature regarding the
automated configuration of packet filters, and another version focused on VPNs
has been developed in response to the growing importance of this technology for
securing communication within organizational environments. However, the current
implementation of this VPN-focused version of VEREFOO has not yet matched
the results and performance of the version dedicated to packet filters. This is
because the task of automatically configuring VPNs is significantly more complex
than configuring firewalls. In particular, the formalization of traffic tunneling and
VPN behaviors involves numerous factors to be constrained that considerably slow
down the computation of the solution.

This thesis aims to investigate the low-level details of the framework’s imple-
mentation, understand the challenges and issues affecting it, and develop solutions
to address them. Specifically, the objectives of this thesis will be pursued through
the following steps:

• Presenting a high-level overview of the framework’s functioning, with a focus
on the key modules that contribute to solution computation and their roles
within the VEREFOO ecosystem.
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• Conducting an in-depth analysis of each algorithm responsible for constraint
generation, which forms the core of the framework’s functioning, addressing
both network function-related constraints and protection requirement-related
constraints.

• Identifying and categorizing issues within the current implementation of the
framework, including an assessment of their impact on the correctness and
quality of the output.

• Developing solutions for the identified issues and proposing new optimization
strategies to enhance VEREFOO’s performance.

• Evaluating the performance and testing the effectiveness of the solutions
through a specifically designed battery of test cases.

By following these steps, the aim is to enhance VEREFOO’s implementation for
VPN configuration, contributing to cybersecurity automation by making the tool
more reliable, performant, and ultimately a more practical solution to the problem
of automatically securing network communications.
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Chapter 4

Analysis of VPNs Automatic
Configuration Capability

This chapter presents an analysis of the current implementation of the VEREFOO
framework’s capability to configure secure communication through VPNs. The
analysis begins with a high-level overview of the framework’s functionality, high-
lighting its key components and their roles within the VEREFOO ecosystem.

Next, the focus shifts to the core of the framework: the generation of constraints.
The source code of each algorithm involved in this process will be examined in detail.

Finally, the chapter will explain the Z3 model produced from these constraints
and the framework’s final output, with examples provided for illustration.

4.1 High-Level View of Framework Functioning

4.1.1 XML Input File schema

The VEREFOO framework takes as input an XML file that describes the Service
Graph (SG), representing the network topology that the framework is responsible
for managing, along with a list of Network Security Requirements (NSR) that must
be enforced.
The following snippet of code will clearly show the structure of the input file:

1 <NFV xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../../xsd/nfvSchema.xsd">

2 <graphs>

3 <graph id="0">

4 <node functional_type="" name="">

5 <neighbour name ="" />

6 ...

7 </node>

8 ...

9 </graph>
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10 </graphs>

11 <PropertyDefinition>

12 <Property graph="0" name="" src="" dst="">

13 <protectionInfo>

14 ...

15 <protectionInfo>

16 </Property>

17 ...

18 </PropertyDefinition>

19 <\NFV>

Listing 4.1: XML input file structure

In this template, several key definitions can be distinguished:

• <graphs>: This element defines multiple network topologies, each identified
by an integer number.

• <node>: Each node is characterized by two fields. The functional type field
defines the type of node, which can be set to WEBCLIENT, WEBSERVER,
FORWARDER and many more, or it can be omitted if the node has no
predefined role (in which case, it may be considered as a candidate for a
VPN Gateway automatic placement). The name field specifies the IP address
of the node.

• <neighbour>: This element is defined within a node and specifies the IP
address of each neighbor connected to that node.

• <Property>: This element has several fields. The graph field specifies the
identifier of the graph on which the security property must be enforced. The
name field accepts values such as ProtectionProperty, IsolationProperty, and
ReachabilityProperty, defining the type of security property. The src and dst
fields indicate the IP addresses of the nodes affected by the property, while
src port and dst port the number or interval for the ports, and finally
l4 proto the type of layer 4 protocol (TCP, UDP, ANY or OTHER).

• <protectionInfo>: This element is defined within the <Property> element
and contains additional information about the requested protection property.

– <authenticationAlgorithm>: Specifies the authentication algorithm to
be used.

– <encryptionAlgorithm>: Specifies the encryption algorithm to be ap-
plied.

– <inspectorNode>: Contains the list of inspector nodes, where traffic
should not be protected when these nodes are traversed.

– <untrustedNode>: Contains the list of untrusted nodes, requiring traffic
protection when these nodes are traversed.

– <untrustedLink>: Similar to untrusted nodes, but applies to links that
require protection when traversed.
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– <securityTechnology>: Specifies the security technology to be used
(e.g., IPsec or TLS).

– <securityTechnologyInfo>: Contains additional details about the se-
lected security technology, specifying themode (e.g., Tunnel, Transport,
or Null) and the architecture (e.g., ESP, AH, etc.).

– <requiredProtection>: Specifies the type of protection that must be
applied to the traffic (e.g., Confidentiality Internal, Header Integrity In-
ternal Header, etc.).

4.1.2 Key Modules Overview

In a single iteration of the automatic configuration and allocation of VPNs through
the VEREFOO framework, many modules are being called. After receiving in input
the XML file containing the SG and list of NSRs, the functioning of the framework
can be schematized with the following simplified Module Dependency Graph:

Figure 4.1: Simplified Module Dependency Graph

The figure above highlights the key modules utilized by the framework and their
dependency relationships, although many additional modules with smaller roles also
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contribute to streamline and enhance the automatic allocation and configuration
process.

• Main: Represents the entry point of the framework, used to facilitate the
debugging process.

• Verefoo Serializer: This module wraps all the framework tasks, executing
the constraint-solving procedure for each graph in the NFV element of the
input file.

• Verefoo Normalizer: This module normalizes the security properties, han-
dling any anomalies introduced by the user during their definition and trans-
lating them in a more functional format for the tool.

• Allocation Graph Generator: Called by the Verefoo Serializer, this mod-
ule automatically generates the Allocation Graph, starting from the Service
Graph (SG) specified by the user as input.

• Verefoo Proxy: Considered the most important module, it acts as the in-
terface with other modules and is responsible for:

– Computing all possible paths related to each requirement.

– Requesting the instantiation and allocation of functions.

– Requesting the definition of constraints for each function and require-
ment.

• Allocation Manager: Called by the Verefoo Proxy, this module manages
the allocation and deployment of Network Functions on the nodes of the
Allocation Graph and requests their configuration by calling the dedicated
function configuration modules.

• Function Configuration Module: These modules configure and define the
soft and hard constraints for each Network Security Function deployed by the
Allocation Manager. Each module is specific to a function (e.g., VPNGate-
way, EndHost, Forwarder, etc.).

• Checker: This module defines the hard constraints necessary to enforce
the security properties requested by the user. It then submits the complete
set of constraints, including those related to function configurations, to the
MaxSMT solver to generate a model that satisfies the specified requirements.

• Translator: Called by the Verefoo Serializer after the Checker has provided
the solution to the MaxSMT problem, this module implements a parser for
the output model, translating it into the correct XML file.

4.2 Algorithms for Constraint Generation

Unquestionably, the core of the framework lies in formulating the allocation and
configuration problem as a MaxSMT problem, which is achieved through the gen-
eration of constraints. As thoroughly explained in section 2.3, the constraints can
be classified into two categories:
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• Hard: These must all be satisfied; otherwise, the MaxSMT problem is de-
clared UNSATISFIABLE.

• Soft: While not mandatory, the solver aims to satisfy as many of these as pos-
sible to maximize the total weight assigned to them, allowing the achievement
of an optimized configuration.

It is evident that, in the case of VPN configuration, the constraints dictate
where (and whether) the CPS are allocated, how they are configured, and how the
traffic must be handled and tunneled to securely reach its destination.

In the framework’s source code, the generation of constraints is concentrated
into a few key components:

1. Function Modules: Responsible for generating constraints related to func-
tion allocation, configuration, and VPN tunnel establishment.

2. Checker Module: Generates constraints concerning the application or re-
moval of protection on network traffic, depending on the functional typology
and trustworthyness of the nodes it traverses.

4.2.1 Network Functions Related Constraints

Since this thesis focuses on the automatic configuration and allocation of VPNs,
VEREFOO’s capability to handle other Network Functions, such as NATs, Packet
Filters, and Loadbalancers, will be disregarded. The code analysis and subsequent
enhancements will concentrate on the three fundamental functions that comprise a
basic VPN architecture: VPN Gateway, Forwarder, and EndHost.

VPN Gateway

The VPN Gateway is a node specialized in creating VPN tunnels and applying or
removing security protection on the traffic it handles. In the VEREFOO context, a
VPN Gateway can either be pre-existing in the Service Graph provided by the user
or automatically allocated by the framework on the nodes deemed most suitable for
hosting one. This type of node is one of only two on which a CPS can be allocated by
the framework (the other being the EndHost, if it supports VPN technologies). As
a result, the majority of the constraints related to the configuration and allocation
of CPS are focused on this module. These constraints can be classified in three
main categrories, and will be examined in this order:

1. Placeholder Rule Constraints

2. Allocation Constraints

3. Protection Requirement Satisfiability Constraints
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Each allocated CPS is defined by a set of rules that dictate the specific actions it
must perform on different packet classes. These rules are represented by a series of
free variables, for which the MaxSMT solver is responsible for determining actual
values. More specifically, a set of these variables is associated to each node where
a CPS may be allocated, and the rules associated with these sets are referred to as
”placeholder rules.” This terminology is used because, at the time the problem is
formulated, it is uncertain whether these rules will ultimately be applied.
The following code snippet illustrates how the placeholder rules are defined through
Z3 variables:

1 Expr src = ctx.mkConst(vpnGw + "_auto_src_"+flow.getIdFlow(),

nctx.addressType);

2 Expr dst = ctx.mkConst(vpnGw + "_auto_dst_"+flow.getIdFlow(),

nctx.addressType);

3 Expr proto = ctx.mkConst(vpnGw +

"_auto_proto_"+flow.getIdFlow(), ctx.mkIntSort());

4 Expr srcp = ctx.mkConst(vpnGw + "_auto_srcp_"+flow.getIdFlow(),

nctx.portType);

5 Expr dstp = ctx.mkConst(vpnGw + "_auto_dstp_"+flow.getIdFlow(),

nctx.portType);

6 Expr authAlg = ctx.mkConst(vpnGw +

"_auto_auth_alg_"+flow.getIdFlow(), ctx.mkStringSort());

7 Expr encAlg = ctx.mkConst(vpnGw +

"_auto_enc_alg_"+flow.getIdFlow(), ctx.mkStringSort());

8

9 IntExpr srcAuto1 = ctx.mkIntConst(vpnGw +

"_auto_src_ip_1_"+flow.getIdFlow());

10 IntExpr srcAuto2 = ctx.mkIntConst(vpnGw +

"_auto_src_ip_2_"+flow.getIdFlow());

11 IntExpr srcAuto3 = ctx.mkIntConst(vpnGw +

"_auto_src_ip_3_"+flow.getIdFlow());

12 IntExpr srcAuto4 = ctx.mkIntConst(vpnGw +

"_auto_src_ip_4_"+flow.getIdFlow());

13 IntExpr dstAuto1 = ctx.mkIntConst(vpnGw +

"_auto_dst_ip_1_"+flow.getIdFlow());

14 IntExpr dstAuto2 = ctx.mkIntConst(vpnGw +

"_auto_dst_ip_2_"+flow.getIdFlow());

15 IntExpr dstAuto3 = ctx.mkIntConst(vpnGw +

"_auto_dst_ip_3_"+flow.getIdFlow());

16 IntExpr dstAuto4 = ctx.mkIntConst(vpnGw +

"_auto_dst_ip_4_"+flow.getIdFlow());

17

18 ...

19

20 srcConditions.put(i, src);
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21 dstConditions.put(i, dst);

22 portSConditions.put(i, srcp);

23 portDConditions.put(i, dstp);

24 l4Conditions.put(i, proto) ;

25 authAlgConditions.put(i, authAlg);

26 encAlgConditions.put(i, encAlg);

Listing 4.2: Placeholder rule definition through Z3 variables

Generally, the assertions are structured as follows: a string representing the type
of node (e.g., vpnGw), a string representing the variable (e.g., auto src , auto dst ,
etc.), the identifier of the flow, and finally, the type of variable (e.g., addressType,
portType, etc.). In the second part of the reported code, the source and destination
addresses are split into the four parts that make up the complete address. This
approach facilitates easier address management within the framework. Finally, the
variables are inserted into their respective HashMaps, where the key is an integer
that increments for each placeholder rule.

After fully defining the placeholder rules through the set of Z3 variables, the
framework proceeds to generate the following constraints on these rules:

1 implications1.add(ctx.mkAnd(ctx.mkNot(ctx.mkEq( src,

this.nctx.addressMap.get("null"))),

2 ctx.mkNot(ctx.mkEq( dst, this.nctx.addressMap.get("null")))));

3 implications2.add(ctx.mkAnd(ctx.mkEq( src,

this.nctx.addressMap.get("null")),

4 ctx.mkEq( dst, this.nctx.addressMap.get("null"))));

Listing 4.3: Constraints on placeholder rules

The purpose of these constraints is to ensure that the destination of the rule is set
to null if the source is null, and to ensure that the destination is not null if the
source is also not null.

For the allocation of a CPS on the VPN Gateway, the following constraints are
designed to minimize their allocation. This approach helps achieve the optimiza-
tion goal of maximizing the available network bandwidth while ensuring that VPN
tunnels are present to protect the traffic:

1 nctx.softConstrVPNGWAutoPlace.add(new Tuple<BoolExpr,

String>(ctx.mkNot(used), "VPN_auto_conf"));

2 ...

3 List<BoolExpr> uses = new ArrayList<>();

4 for(Map.Entry<Integer,BoolExpr> entry :

usedVPNFlowsMap.entrySet()) {

5 uses.add(entry.getValue());

6 }

7

8 BoolExpr[] tmp = new BoolExpr[uses.size()];
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9 BoolExpr totalUse = ctx.mkAtLeast(uses.toArray(tmp),1) ;

10

11 constraints.add((BoolExpr)ctx.mkITE(totalUse, ctx.mkEq(used,

ctx.mkTrue()), ctx.mkEq(used, ctx.mkFalse())) );

Listing 4.4: Constraints on CPS allocation on VPN Gateway

• Line 1: this soft constraint state that, if possible, the VPN Gateway should
not be used. The soft constraint is assigned to the group VPN auto conf
and of the type softConstrVPNGWAutoPlace, which determines the weight
assigned to the constraint.

• Line 3-11: this hard constraint states that if the node has at least one
communication protection rule configured, it implies that a VPN Gateway
must be allocated on that node.

Finally, the third category of constraints for the VPN Gateway is managed
by the generateSatisfiabilityConstraint() function, which is called for every
traffic flow crossing the node. The first step of the function is to generate con-
straints about the VPN Gateway behavior:

1 BoolExpr opt1 = ctx.mkAnd(

ctx.mkEq(nctx.protect.apply(source.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkTrue()),

ctx.mkEq(nctx.disProtect.apply(source.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkFalse()) );

2 BoolExpr opt2 = ctx.mkAnd(

ctx.mkEq(nctx.protect.apply(source.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkFalse()),

ctx.mkEq(nctx.disProtect.apply(source.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkTrue()) );

3 BoolExpr opt3 = ctx.mkAnd(

ctx.mkEq(nctx.protect.apply(source.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkFalse()),

ctx.mkEq(nctx.disProtect.apply(source.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkFalse()) );

4 BoolExpr behaviour = ctx.mkOr(opt1,opt2,opt3);

5 constraints.add(behaviour);

6 constraints.add((BoolExpr)ctx.mkITE(opt3, ctx.mkEq(currentUse,

ctx.mkFalse()), ctx.mkEq(currentUse, ctx.mkTrue())));

Listing 4.5: Constraints on VPN Gateway behavior

• Lines 1-3: these lines formally define the three behaviors that can be assigned
to the VPN Gateway.
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– opt1: the first boolean expression defines the ACCESS behavior, which
means that the node applies protection on the traffic flow (i.e., pro-
tect=TRUE and disProtect=FALSE );

– opt2: the second boolean expression defines the EXIT behavior, which
mean that the protection removes protection on the traffic flow (i.e.,
protect=FALSE and disProtect=TRUE );

– opt3: the third boolean expression defines the FORWARD behavior,
which means that the node does not apply or remove protection on the
traffic flow (i.e., protect=FALSE and disProtect=FALSE );

• Lines 4-5: the hard constraint states that one of the three possible behaviors
must be assigned to the VPN Gateway.

• Line 6: the hard constraint states that if the assigned behavior is NOT
USED, the value of the free variable used is forced to false, otherwhise, either
with ACCESS or EXIT, the value of used is forced to true.

In the second part of the generateSatisfiabilityConstraint() function, the
construction of VPN tunnels is formulated through a set of constraints. However,
before analyzing this set of constraints, it is helpful to explain how VEREFOO
manages VPN tunnels.

In the Flow class of VEREFOO, for each node along the flow path, a pair of
Z3 variables representing the tunnel source and tunnel destination addresses are
created and stored in two HashMaps: tunnelSrcMap and tunnelDstMap.

1 this.tunnelSrcMap = new HashMap<String, Expr>();

2 this.tunnelDstMap = new HashMap<String, Expr>();

3 this.tunnelMap = new HashMap<String, VPNTunnel>();

4 for(int i=0; i<this.path.getNodes().size(); i++) {

5 Expr tunnelSrc = ctx.mkConst(idFlow + "_auto_tunnelSrc_"+i,

nctx.addressType);

6 Expr tunnelDst = ctx.mkConst(idFlow + "_auto_tunnelDst_"+i,

nctx.addressType);

7 String nodeName =

this.path.getNodes().get(i).getNode().getName();

8 this.tunnelSrcMap.put(nodeName, tunnelSrc);

9 this.tunnelDstMap.put(nodeName, tunnelDst);

10 }

Listing 4.6: Tunnel handling through Z3 variable definition

In these maps, the key is the node’s address, and the value is the corresponding Z3
variable, which is structured as the concatenation of the flow identifier, the string
auto tunnelSrc or auto tunnelDst , and an integer representing the position of
the node in the path. For example, the free variable ”0 auto tunnelSrc 0” refers
to the tunnel source address of the first node in the flow with identifier ”0”. This
structure allows the framework to establish VPN tunnels by assigning addresses
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to the source and destination variables of the tunnels, based on the constraints
generated in the VPN Gateway class.

Returning to the topic of constraint generation, the assignment of VPN tun-
nel source and destination addresses is deeply linked to the behavior of the VPN
gateway.

1 BoolExpr tunnelSrcStartConstruct =

nctx.equalIpAddressToVPNGwSA(source.getNode().getName(),

flow.getTunnelSrc(nextNode)) ;

2 Traffic t = flow.getCrossedTraffic(source.getNode().getName());

3 BoolExpr tunnelSrcEndConstruct =

nctx.equalIpAddressToVPNGwSA(t.getIPSrc(),

flow.getTunnelSrc(nextNode)) ;

4 BoolExpr tunnelSrcForwardConstruct =

ctx.mkEq(flow.getTunnelSrc(source.getNode().getName()),

flow.getTunnelSrc(nextNode)) ;

5

6 List<AllocationNode> vpnExits = new ArrayList<>();

7 for( int i=currentVPNpos+1; i<flow.getPath().getNodes().size();

i++ ) {

8 if(flow.getPath().getNodes().get(i).getPlacedNF()

9 .getHasVpnCapability()){

10 vpnExits.add(flow.getPath().getNodes().get(i));

11 }

12 }

13 List<BoolExpr> tunnelDstStartConstructs = new ArrayList<>();

14 for(AllocationNode vpnexit : vpnExits) {

15 BoolExpr opt2VPNExit = ctx.mkAnd(

ctx.mkEq(nctx.protect.apply(vpnexit.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkFalse()),

ctx.mkEq(nctx.disProtect.apply(vpnexit.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkTrue()) );

16 tunnelDstStartConstructs.add(ctx.mkAnd(opt2VPNExit,

nctx.equalIpAddressToVPNGwSA(vpnexit.getNode().getName(),

flow.getTunnelDst(nextNode)),

ctx.mkEq(flow.getTunnelSrc(vpnexit.getNode().getName()),

flow.getTunnelSrc(nextNode)) ) );

17 }

18 BoolExpr[] temp = new BoolExpr[tunnelDstStartConstructs.size()];

19 BoolExpr tunnelDstStartConstruct =

ctx.mkOr(tunnelDstStartConstructs.toArray(temp)) ;

20 BoolExpr tunnelDstEndConstruct =

nctx.equalIpAddressToVPNGwSA(t.getIPDst(),

flow.getTunnelDst(nextNode)) ;

21 BoolExpr tunnelDstForwardConstruct =

ctx.mkEq(flow.getTunnelDst(source.getNode().getName()),

flow.getTunnelDst(nextNode)) ;
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22 BoolExpr tunnelSrcStartConfig = ctx.mkImplies(opt1,

tunnelSrcStartConstruct);

23 constraints.add(tunnelSrcStartConfig);

24 BoolExpr tunnelDstStartConfig = ctx.mkImplies(opt1,

tunnelDstStartConstruct);

25 constraints.add(tunnelDstStartConfig);

26 BoolExpr tunnelSrcEndConfig = ctx.mkImplies(opt2,

tunnelSrcEndConstruct);

27 constraints.add(tunnelSrcEndConfig);

28 BoolExpr tunnelDstEndConfig = ctx.mkImplies(opt2,

tunnelDstEndConstruct);

29 constraints.add(tunnelDstEndConfig);

30 BoolExpr tunnelSrcForwardConfig = ctx.mkImplies(opt3,

tunnelSrcForwardConstruct);

31 constraints.add(tunnelSrcForwardConfig);

32 BoolExpr tunnelDstForwardConfig = ctx.mkImplies(opt3,

tunnelDstForwardConstruct);

33 constraints.add(tunnelDstForwardConfig);

Listing 4.7: Constraints on source and destination tunnel addresses

• Source Tunnel Address

– ACCESS behavior: if the VPN Gateway has been assigned an ACCESS
behavior, then the tunnel source address of the next node of the flow
path must be the address of the VPN Gateway.

– EXIT behavior: if the VPN Gateway has been assigned an EXIT be-
havior, then the tunnel source address of the next node of the flow path
must be the source of the traffic itself.

– FORWARD behavior: if the VPN Gateway has been assigned a FOR-
WARD behavior, then the tunnel source address of the next node of the
flow path must be equal to the tunnel source address assigned to the
VPN Gateway.

• Destination Tunnel Address

– ACCESS behavior: if the VPN Gateway has been assigned an ACCESS
behavior, then one of the next VPN Gateway on the flow path must be
assigned an EXIT behavior, and the tunnel destination address of the
next node of the flow path must be equal to the address of the VPN
Gateway with the EXIT behavior assigned.

– EXIT behavior: if the VPN Gateway has been assigned an EXIT be-
havior, then the tunnel destination address of the next node of the flow
path must be the address of the VPN Gateway.

– FORWARD behavior: if the VPN Gateway has been assigned a FOR-
WARD behavior, then the tunnel destination address of the next node
of the flow path must be equal to the tunnel destination address assigned
to the VPN Gateway.
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Finally, the function concludes with a final set of constraints related to the
Security Association configuration. In this section, if the VPN Gateway is assigned
an ACCESS or EXIT role, the free variables defined in Listing 4.2 are assigned the
values corresponding to the actual traffic.

1 BoolExpr component2 = ctx.mkAnd(

2 nctx.equalIpAddressToVPNGwSA(flow.getCrossedTraffic(ipAddress)

3 .getIPSrc(), srcConditions.get(srCount)),

4 nctx.equalIpAddressToVPNGwSA(flow.getCrossedTraffic(ipAddress)

5 .getIPDst(), dstConditions.get(srCount)),

6 nctx.equalPort(flow.getCrossedTraffic(ipAddress)

7 .getpSrc(), portSConditions.get(srCount)),

8 nctx.equalPort(flow.getCrossedTraffic(ipAddress)

9 .getpDst(), portDConditions.get(srCount)),

10 nctx.equalLv4Proto(flow.getCrossedTraffic(ipAddress)

11 .gettProto().ordinal(), l4Conditions.get(srCount)));

12 srCount++;

13 constraints.add(ctx.mkImplies(ctx.mkOr(opt1,opt2),component2));

Listing 4.8: Constraints on SA configuration

Wrapping everything together, the constraints related to the VPN Gateway are
the following:

1. Constraints on placeholder rules, Listing 4.3

2. Constraints on VPN Gateway allocation, Listing 4.4

3. Constraints on protection requirements satisfiability

• Constraints on VPN Gateway behavior, Listing 4.5

• Constraints on VPN tunnels, Listing 4.7

• Constraints on SA configuration, Listing 4.8

Forwarder

The functional type of Forwarder is one of the fundamental components of any
computer network. In general, a Forwarder is a node that possesses only forwarding
behavior rather than transformation behavior, meaning it can determine whether
a packet class belonging to a traffic flow is discarded or forwarded to the next hop,
without modifying the packet in any way.

Within the VEREFOO framework, the Forwarder functional type is further sim-
plified, as it only forwards packets to the next hops. Other Network Functions, such
as Packet Filters and Loadbalancers, are specifically modeled within the framework
to handle filtering actions and other advanced traffic management tasks.

The simplicity of this functional type also impacts the constraints required to
formalize its behavior, which are limited to ensuring proper forwarding and main-
taining consistency for VPN tunnels between adjacent nodes. Specifically, the con-
straints about its behavior are the following:
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1 constraints.add(ctx.mkEq(nctx.protect.apply(source.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkFalse()));

2 constraints.add(ctx.mkEq(nctx.disProtect.apply(source.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkFalse()));

3 constraints.add(ctx.mkEq(nctx.deny.apply(source.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkFalse()));

Listing 4.9: Constraints on Forwarder behavior

The first two constraints specify that a Forwarder node cannot apply or remove
protection on any traffic it handles (i.e., protect=FALSE and disProtect=FALSE ).
The third constraint reinforces its forwarding behavior by disabling the discard
action (i.e., deny=FALSE ).

As mentioned earlier, the second set of constraints is related to the VPN tun-
nels, ensuring that the tunnel addresses remain unchanged and that consistency is
maintained throughout the traffic flow path:

1 constraints.add(ctx.mkEq(flow.getTunnelSrc(

2 source.getNode().getName()), flow.getTunnelSrc(nextNode)));

3 constraints.add(ctx.mkEq(flow.getTunnelDst(

4 source.getNode().getName()), flow.getTunnelDst(nextNode)));

Listing 4.10: Forwarder constraints on tunnels

In particular, these hard constraints set the tunnel source and destination addresses
of the next node to the same values assigned to the Forwarder node.

End Host

End Hosts function as the endpoints in a network connection, which can either
be a client or a server. In VEREFOO, there is minimal distinction between how
clients and servers are implemented. The main difference lies in the FunctionalType
assigned when the node is created: clients are designated as WEBCLIENT, and
servers as WEBSERVER. Additionally, both types of nodes have a vpnCapabilities
attribute. When this attribute is set to true, it indicates that the node is capable
of acting as a VPN gateway, allowing it to serve as either the starting or ending
point of the VPN, thus enabling secure data transmission.

In the context of constraints generation, the vpnCapabilities attribute is crucial,
as different sets of constraints are generated depending on the VPN capability of
the End Host.

Starting from the simpler case, if the EndHost does not support VPN technolo-
gies, the following constraints are generated:

1 constraints.add(ctx.mkEq(nctx.protect.apply(source.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkFalse()));
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2 constraints.add(ctx.mkEq(nctx.disProtect.apply(source.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkFalse()));

3 constraints.add(ctx.mkEq(vpnCapIsUsed, ctx.mkFalse()));

4

5 if(lastNode==false){

6 Expr tunnelSrc =

flow.getTunnelSrc(source.getNode().getName());

7 constraints.add(nctx.equalIpAddressToVPNGwSA(t.getIPSrc(),

tunnelSrc) );

8 constraints.add(ctx.mkEq(flow.getTunnelSrc(source.getIpAddress()),

flow.getTunnelSrc(nextNode)) );

9 Expr tunnelDst =

flow.getTunnelDst(source.getNode().getName());

10 Traffic t2 =

flow.getCrossedTraffic(source.getNode().getName());

11 constraints.add(nctx.equalIpAddressToVPNGwSA(t2.getIPDst(),

tunnelDst) );

12 constraints.add(ctx.mkEq(flow.getTunnelDst(source.getIpAddress()),

flow.getTunnelDst(nextNode)) );

13 }

Listing 4.11: EndHost constraints with no vpnCapabilities

• Lines 1-3: These hard constraints indicate that since the node does not
possess VPN capabilities, it cannot apply or remove protection on the traffic
it handles, and the Z3 variable vpnCapabilities must be set to false.

• Lines 6-13: These hard constraints apply only if the EndHost is not the
last node in the traffic path, meaning it is of the WEBCLIENT type and the
source of the traffic.

– Lines 6-8: These hard constraints specify that the tunnel source address
of the first node of the path must be set to the IP address of the actual
traffic’s source (which is the node itself). Additionally, the tunnel source
address of the next node is forced to be equal to the EndHost’s tunnel
source address.

– Lines 9-12: These hard constraints specify that the tunnel destination
address of the first node of the path must be set to the IP address of the
actual traffic’s destination. Furthermore, the tunnel destination address
of the next node is forced to be equal to the EndHost’s tunnel destination
address.

In summary, the behavior of the EndHost is described by the first three con-
straints, while the remaining constraints set the source and destination of the tunnel
to match the source and destination of the traffic, and impose consistency between
the first node of the path and the next one.

On the other hand, if the EndHost does support VPN technologies, the config-
uration of the node is much more complex.
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The first step is the same reported in Listing 4.2, which is the definition of the
free variables describing the fields of the placeholder rules. The only difference is
the string used to represent the type of node; in this case, politoEndHost is used
instead of vpnGw. However, the set of constraints applied to the placeholder rules
is extended. In addition to the constraints discussed in Listing 4.3, new soft and
hard constraints are introduced to further minimize both the allocation of CPS
on the network and the number of rules needed to enforce the required protection
properties.

To enhance consistency and facilitate easier management of IP addresses within
the Z3 model, the following hard constraints ensure that each component of the
source and destination addresses of the rule is equal to the previously defined Z3
variables:

1 constraints.add(ctx.mkAnd(

2 ctx.mkEq(nctx.ipFunctionsMap.get("ipAddr_1").apply(src),

srcAuto1),

3 ctx.mkEq(nctx.ipFunctionsMap.get("ipAddr_2").apply(src),

srcAuto2),

4 ctx.mkEq(nctx.ipFunctionsMap.get("ipAddr_3").apply(src),

srcAuto3),

5 ctx.mkEq(nctx.ipFunctionsMap.get("ipAddr_4").apply(src),

srcAuto4),

6 ctx.mkEq(nctx.ipFunctionsMap.get("ipAddr_1").apply(dst),

dstAuto1),

7 ctx.mkEq(nctx.ipFunctionsMap.get("ipAddr_2").apply(dst),

dstAuto2),

8 ctx.mkEq(nctx.ipFunctionsMap.get("ipAddr_3").apply(dst),

dstAuto3),

9 ctx.mkEq(nctx.ipFunctionsMap.get("ipAddr_4").apply(dst),

dstAuto4))

10 );

Listing 4.12: Constraints on rule’s IP addresses

Next, to enable a single rule to satisfy multiple security properties simultane-
ously, the following soft constraints are introduced:

1 nctx.softConstrWildcard.add(new Tuple<BoolExpr, String>(

2 ctx.mkNot(ctx.mkEq((IntExpr)nctx.ipFunctionsMap.get("ipAddr_1")

3 .apply(nctx.addressMap.get("wildcard")),srcAuto1)),

"vpn_auto_conf"));

4 nctx.softConstrWildcard.add(new Tuple<BoolExpr, String>(

5 ctx.mkNot(ctx.mkEq((IntExpr)nctx.ipFunctionsMap.get("ipAddr_2")

6 .apply(nctx.addressMap.get("wildcard")),srcAuto2)),

"vpn_auto_conf"));

7 nctx.softConstrWildcard.add(new Tuple<BoolExpr, String>(

8 ctx.mkNot(ctx.mkEq((IntExpr)nctx.ipFunctionsMap.get("ipAddr_3")

9 .apply(nctx.addressMap.get("wildcard")),srcAuto3)),

"vpn_auto_conf"));
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10 nctx.softConstrWildcard.add(new Tuple<BoolExpr, String>(

11 ctx.mkNot(ctx.mkEq((IntExpr)nctx.ipFunctionsMap.get("ipAddr_4")

12 .apply(nctx.addressMap.get("wildcard")),srcAuto4)),

"vpn_auto_conf"));

13 nctx.softConstrWildcard.add(new Tuple<BoolExpr, String>(

14 ctx.mkNot(ctx.mkEq((IntExpr)nctx.ipFunctionsMap.get("ipAddr_1")

15 .apply(nctx.addressMap.get("wildcard")),dstAuto1)),

"vpn_auto_conf"));

16 nctx.softConstrWildcard.add(new Tuple<BoolExpr, String>(

17 ctx.mkNot(ctx.mkEq((IntExpr)nctx.ipFunctionsMap.get("ipAddr_2")

18 .apply(nctx.addressMap.get("wildcard")),dstAuto2)),

"vpn_auto_conf"));

19 nctx.softConstrWildcard.add(new Tuple<BoolExpr, String>(

20 ctx.mkNot(ctx.mkEq((IntExpr)nctx.ipFunctionsMap.get("ipAddr_3")

21 .apply(nctx.addressMap.get("wildcard")),dstAuto3)),

"vpn_auto_conf"));

22 nctx.softConstrWildcard.add(new Tuple<BoolExpr, String>(

23 ctx.mkNot(ctx.mkEq((IntExpr)nctx.ipFunctionsMap.get("ipAddr_4")

24 .apply(nctx.addressMap.get("wildcard")),dstAuto4)),

"vpn_auto_conf"));

25

26 ...

27

28 nctx.softConstrProtoWildcard.add(new Tuple<BoolExpr, String>(

29 (ctx.mkEq( proto, ctx.mkInt(0)) ),"vpn_auto_conf"));

30 nctx.softConstrPorts.add(new Tuple<BoolExpr, String>(

31 (ctx.mkEq(srcp, nctx.portMap.get("null")) ),"vpn_auto_conf"));

32 nctx.softConstrPorts.add(new Tuple<BoolExpr, String>(

33 (ctx.mkEq(dstp, nctx.portMap.get("null")) ),"vpn_auto_conf"));

Listing 4.13: Constraints on wildcard usage

In VEREFOO, the Wildcard can be applied on network addresses, ports and
L4 protocols with the following values:

• IP address: -1 on each component of the address;

• Ports: 0-65535;

• Protocol: ”ANY”;

Finally, to minimize the number of rules that need to be configured, the following
soft constraints are generated:

1 BoolExpr notConfiguredRule = ctx.mkAnd(

2 ctx.mkEq(nctx.ipFunctionsMap.get("ipAddr_1").apply(

3 nctx.addressMap.get("null")), srcAuto1),

4 ctx.mkEq(nctx.ipFunctionsMap.get("ipAddr_2").apply(

5 nctx.addressMap.get("null")), srcAuto2),

6 ctx.mkEq(nctx.ipFunctionsMap.get("ipAddr_3").apply(
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7 nctx.addressMap.get("null")), srcAuto3),

8 ctx.mkEq(nctx.ipFunctionsMap.get("ipAddr_4").apply(

9 nctx.addressMap.get("null")), srcAuto4),

10 ctx.mkEq(nctx.ipFunctionsMap.get("ipAddr_1").apply(

11 nctx.addressMap.get("null")), dstAuto1),

12 ctx.mkEq(nctx.ipFunctionsMap.get("ipAddr_2").apply(

13 nctx.addressMap.get("null")), dstAuto2),

14 ctx.mkEq(nctx.ipFunctionsMap.get("ipAddr_3").apply(

15 nctx.addressMap.get("null")), dstAuto3),

16 ctx.mkEq(nctx.ipFunctionsMap.get("ipAddr_4").apply(

17 nctx.addressMap.get("null")), dstAuto4)

18 );

19 nctx.softConstrAutoConf.add(new Tuple<BoolExpr,

String>(notConfiguredRule, "vpn_auto_conf"));

20 notConfiguredConditions.put(i, notConfiguredRule);

Listing 4.14: Constraints on not configuring rules

By forcing a NULL value on both the source and destination addresses simultane-
ously (when possible), the rule is not generated.

Having covered the constraints related to rule configuration, the next section
of constraints addresses the formalization of the EndHost’s behavior and tunnel
management, depending on its functional type.

If the node is a WEBCLIENT, the ACCESS and FORWARD behaviors, as
discussed in Listing 4.5, are defined, while the EXIT behavior is disregarded, as
the source of the traffic cannot simultaneously serve as the termination point of a
VPN tunnel. Regardless of the behavior assigned to the EndHost, the constraints
applied to the tunnel source address are identical to those described in lines 6-8 of
Listing 4.11, while the tunnel destination address constraints are the same as those
outlined in Listing 4.7. The SA configuration is based on the set of constraints
analyzed in Listing 4.8, but with a notable difference:

1 List<BoolExpr> listSecondC = new ArrayList<>();

2 for(int i = 0; i < nRules; i++) {

3 BoolExpr component2 = ctx.mkAnd(

4 nctx.equalIpAddressToVPNGwSA(

5 flow.getCrossedTraffic(ipAddress).getIPSrc(),

srcConditions.get(i)),

6 nctx.equalIpAddressToVPNGwSA(

7 flow.getCrossedTraffic(ipAddress).getIPDst(),

dstConditions.get(i)),

8 nctx.equalPort(flow.getCrossedTraffic(ipAddress).getpSrc(),

portSConditions.get(i)),

9 nctx.equalPort(flow.getCrossedTraffic(ipAddress).getpDst(),

portDConditions.get(i)),

10 nctx.equalLv4Proto(flow.getCrossedTraffic(ipAddress)

11 .gettProto().ordinal(), l4Conditions.get(i)));

12 listSecondC.add(component2);
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13 }

14 BoolExpr[] tmp = new BoolExpr[listSecondC.size()];

15 BoolExpr secondC = ctx.mkOr(listSecondC.toArray(tmp)) ;

16 constraints.add(ctx.mkImplies(opt1,secondC) );

Listing 4.15: Constraints on SA configuration by EndHost

In this case, component2 is defined for each placeholder rule and collected in the
list listSecondC. All the elements in the list are then combined using a boolean
OR expression, and a single constraint based on that expression is generated. The
constraint is interpreted as: ”if the EndHost is assigned an ACCESS behavior,
then one (or more) SA must be configured.” In contrast, in Listing 4.8, a separate
constraint is generated for each placeholder rule. The impact of this distinction
will be analyzed in a later section of this thesis.

On the other hand, if the EndHost’s functional type is WEBSERVER, the
formalized behaviors are EXIT and NOT USED. The notation NOT USED is pre-
ferred in the case of a WEBSERVER node, as there are no further hops in the
traffic path. However, in the context of VPN capabilities utilization, this behavior
is equivalent to the FORWARD behavior previously discussed. Since the WEB-
SERVER is the actual destination of the traffic, no constraints on VPN tunnels are
introduced. The constraints on the SAs configuration are also the same discussed
in Listing 4.15, with the only difference being that the placeholder rules have to be
configured if the EndHost is assigned an EXIT behavior.

A final set of constraints, (almost) indipendently of the EndHost’s functional
type, handles the two VPN technologies that can be used to enforce communication
protection and establish tunnels: IPsec and TLS.
Starting from the IPsec case:

• If IPsec is supported by the end host (this.supportedVpnTecnologies con-
tains ”IPSEC”):

– The framework checks for the different capabilities of IPsec by iterating
over several capability types (IPSECcapability, AuthenticationAlgorithmType,
EncryptionAlgorithmType).

1 for(IPSECcapability ipsc : IPSECcapability.values()) {

2 String string = "IPSEC_" + ipsc;

3 BoolExpr c = ctx.mkEq(nctx.supportCap.apply(

4 source.getZ3Name(),ctx.mkInt(

5 flow.getIdFlow()),ctx.mkString(string)),

ctx.mkTrue());

6 ipsecUsedBoolExprs.add(c);

7 }

8 for (AuthenticationAlgorithmType aa :

AuthenticationAlgorithmType.values()) {

9 if(!ipsecCapList.contains(aa.toString())) {

10 String string = "IPSEC_" + aa.toString();

11 BoolExpr c = ctx.mkEq(nctx.supportCap.apply(

12 source.getZ3Name(),ctx.mkInt(
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13 flow.getIdFlow()),ctx.mkString(string)),

ctx.mkFalse());

14 ipsecUsedBoolExprs.add(c);

15 }

16 }

17 for (EncryptionAlgorithmType ea :

EncryptionAlgorithmType.values()) {

18 if(!ipsecCapList.contains(ea.toString())) {

19 String string = "IPSEC_" + ea.toString();

20 BoolExpr c = ctx.mkEq(nctx.supportCap.apply(

21 source.getZ3Name(),ctx.mkInt(

22 flow.getIdFlow()),ctx.mkString(string)),

ctx.mkFalse());

23 ipsecUsedBoolExprs.add(c);

24 }

25 }

26 for(Capability capability : Capability.values()) {

27 String string = "IPSEC_" + capability;

28 BoolExpr c = ctx.mkEq(nctx.supportCap.apply(

29 source.getZ3Name(),ctx.mkInt(

30 flow.getIdFlow()),ctx.mkString(string) ),

ctx.mkFalse());

31 ipsecNotUsedBoolExprs.add(c);

32 }

Listing 4.16: Boolean Expression definition of IPsec capabilities of EndHost

– For each capability, if supported, it generates a Boolean expression indi-
cating the host supports that capability for the traffic flow; otherwhise,
a constraint indicating the capability is not supported is added.

– These expressions are combined into ipsecUsedFinal (capabilities used)
and ipsecNotUsedFinal (capabilities not used), which are combined
into the ipsecFinal expression using a logical OR.

• Otherwhise, if IPsec is not supported, the code generates constraints that
explicitly mark all IPsec-related capabilities as unsupported.

The framework mirrors the discussed management approach for TLS technology,
where similar checks are performed for the supported TLS capabilities. Expressions
are created to determine whether TLS capabilities are utilized or not, and these are
combined into the final expressions (tlsUsedFinal and tlsNotUsedFinal), which
are subsequently merged into tlsFinal.

After processing both IPsec and TLS, the code adds the final constraints to the
constraints list. This step varies slightly depending on the functional type of the
EndHost:

• WEBCLIENT
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1 BoolExpr[] capTmp = new BoolExpr[capConstraints.size()];

2 BoolExpr capConsFinal =

ctx.mkAnd(capConstraints.toArray(capTmp)) ;

3

4 constraints.add(ctx.mkImplies(opt1,capConsFinal) );

5 if(ipsecFinal != null && tlsFinal != null)

6 constraints.add(ctx.mkOr(ipsecFinal,tlsFinal));

7

8 List<BoolExpr> sameVpnTechConstructs = new ArrayList<>();

9 for(AllocationNode vpnexit : vpnExits) {

10 BoolExpr opt2VPNExit = ctx.mkAnd(

ctx.mkEq(nctx.protect.apply(vpnexit.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkFalse()),

11 ctx.mkEq(nctx.disProtect.apply(vpnexit.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkTrue())

);

12

13 sameVpnTechConstructs.add(ctx.mkAnd(opt2VPNExit,

14 ctx.mkEq(nctx.usedTechnology.apply(

15 source.getZ3Name(),ctx.mkInt(

16 flow.getIdFlow()),ctx.mkString("IPSEC")),

nctx.usedTechnology.apply(

17 vpnexit.getZ3Name(),ctx.mkInt(

18 flow.getIdFlow()),

19 ctx.mkString("IPSEC"))),

20 ctx.mkEq(nctx.usedTechnology.apply(

21 source.getZ3Name(),ctx.mkInt(

22 flow.getIdFlow()),ctx.mkString("TLS") ),

nctx.usedTechnology.apply(

23 vpnexit.getZ3Name(),ctx.mkInt(

24 flow.getIdFlow()),

25 ctx.mkString("TLS") )),

26 ctx.mkEq(flow.getTunnelSrc(

27 vpnexit.getNode().getName()),

flow.getTunnelSrc(nextNode))));

28 }

29 BoolExpr[] sameVpnTechConstructTemp = new

BoolExpr[sameVpnTechConstructs.size()];

30 BoolExpr sameVpnTechConstruct = ctx.mkOr(

31 sameVpnTechConstructs.toArray(sameVpnTechConstructTemp));

32 constraints.add(ctx.mkImplies(opt1, sameVpnTechConstruct));

Listing 4.17: Constraints on IPsec and TLS capabilities by EndHost

– Line 1-4: the constraint ensures that assigning a ACCESS behavior
to the EndHost implies that all the capability constraints have to be
satisfied.
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– Line 5-6: the constraint specify that if the node support both the IPsec
and TLS, one of the two technologies must be used.

– Line 8-32: This section adds conditions to ensure that the VPN exit
behaves correctly in terms of protection, uses the same VPN technology
(IPsec or TLS) as the source host, and verifies the correct tunnel source
for communication between node.

• WEBSERVER

– In this case, the constraints from lines 1 to 6 remain the same, but the
condition is the EXIT behavior.

– Since the node serves as the destination of the traffic, the second section
of the code block (lines 8-32) is not required.

To summarize all the constraints related to the EndHost configuration:

• EndHost with no VPN capabilities, Listing 4.11 :

1. Constraints on behavior

2. Constraints on tunnels

• EndHost with VPN capabilities:

1. Constraints on placeholder rules configuration, Listing 4.12 Listing 4.13
Listing 4.14

2. Constraints on SA configuration, Listing 4.15

3. Constraints on IPsec and TLS capabilities, Listing 4.17

4.2.2 Protection Requirements Related Constraints

As mentioned in section 4.2, there is another important group of constraints yet to
be discussed, which pertains to the protection requirements themselves. These con-
straints are generated within the Checker class. Specifically, the formalizeRequirements()
method in the VerefooProxy module calls the createRequirementConstraints()
method of the Checker module (as shown in Figure 4.1).

The createRequirementConstraints method is invoked for each security re-
quirement specified by the user in the input XML file, serving as a wrapper for other
three methods specifically designed for the different types of security requirement:
createIsolationConstraints(), createReachabilityConstraints(), and
createProtectionConstraints().

Since the first two are used exclusively when VEREFOO configures firewalls,
this thesis will focus its analysis only on the Protection Requirement type, which
involves the establishment of a VPN tunnel for enforcement.

The createRequirementConstraints method operates at the granularity of
individual security requirements; each security requirement is associated with mul-
tiple flows, and each flow consists of nodes and links. The method iterates over
each flow within the security requirement and then over each node and link in each
flow, generating constraints for:
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1. Untrusted nodes

2. Inspector and Destination nodes

3. Nodes with VPN capabilities

4. Untrusted links

Untrusted Nodes Handling

1 if(un.contains(node.getNode().getName()) ) {

2 List<AllocationNode> predecessors= new ArrayList<>();

3 int unPos=flow.getPath().getNodes().indexOf(node);

4 for(int i=0;i<flow.getPath().getNodes().size(); i++) {

5 if(i<unPos) {

6 predecessors.add(flow.getPath().getNodes().get(i));

7 }

8 }

9 List<BoolExpr> protectExprs = new ArrayList<>();

10 List<BoolExpr> disProtectExprs = new ArrayList<>();

11 List<BoolExpr> constraints= new ArrayList<>();

12 for(AllocationNode predecessor: predecessors) {

13 protectExprs.add((BoolExpr)nctx.protect.apply(

14 predecessor.getZ3Name(), ctx.mkInt(flow.getIdFlow())) );

15 disProtectExprs.add((BoolExpr)

nctx.disProtect.apply(predecessor.getZ3Name(),

ctx.mkInt(flow.getIdFlow())));

16 }

17 BoolExpr[] bl2 = new BoolExpr[disProtectExprs.size()];

18 disProtectExprs.toArray(bl2);

19 int z=0;

20 int i=0;

21

22 for(BoolExpr boolProtect: protectExprs){

23 BoolExpr[] disProtect= new

BoolExpr[disProtectExprs.size()-(i)];

24 disProtect[z]=boolProtect;

25 z++;

26 for (int j=i+1; j<protectExprs.size();j++){

27 disProtect[z]=(ctx.mkEq(bl2[j],ctx.mkFalse()));

28 z++;

29 }

30 i++;

31 z=0;

32 constraints.add(ctx.mkAnd(disProtect));

33 }

34 BoolExpr[] finalConstraints = new BoolExpr[constraints.size()];

35 constraints.toArray(finalConstraints);
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36 untrustedConstraints.add(ctx.mkOr(finalConstraints));

37 }

Listing 4.18: Constraints on Untrusted Nodes

If the list of untrusted nodes un of the current traffic flow contains the node
under analysis:

• Lines 2-8: The list predecessors is computed, containing all the nodes
preceding the untrusted one.

• Lines 9-16: For each node in the predecessors list, a pair of boolean expres-
sions is created and stored in two lists, protectExprs and disProtectExprs.

– protectExprs: Contains boolean expressions stating that the node ap-
plies protection to the specific traffic flow.

– disProtectExprs: Contains boolean expressions stating that the node
removes protection from the specific traffic flow.

• Lines 22-33: For each boolean expression in protectExprs, a constraint is
generated by concatenating the boolProtect expression with the subsequent
disProtect expressions (with their value forced to false) using the AND
logical operator. The meaning of this constraint is interpreted as: ”If the node
applies protection to the traffic flow, none of the subsequent nodes (preceding
the untrusted node) should remove that protection.”

• Lines 34-36: All the generated constraints are combined into a single con-
straint using the OR operator.

The result of this algorithm is that if a node in a traffic flow associated with the
Protection Requirement is declared as untrusted, one of the preceding nodes must
apply protection to the traffic flow, and that protection must remain in place until
the untrusted node is traversed.

Inspector and Destination Nodes Handling

These two types of nodes, though serving different purposes, share a common re-
quirement: the traffic that reaches them must not be protected. In the case of an
inspector node, this is because if the traffic is encrypted, the node would be unable
to perform any inspection. Similarly, for the destination node, it would be unable
to process the data packets if any form of protection remains applied. Therefore,
it is crucial to ensure that the network traffic reaching these nodes is unprotected
and in clear form.

1 if(node.getNode().getName().equals(sr.getOriginalProperty().getDst())

|| in.contains(node.getNode().getName())) {

2 List<AllocationNode> predecessors= new ArrayList<>();

3 int dstPos=flow.getPath().getNodes().indexOf(node);

4 for(int i=0;i<flow.getPath().getNodes().size(); i++) {
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5 if(i<=dstPos) {

6 predecessors.add(flow.getPath().getNodes().get(i));

7 }

8 }

9 List<BoolExpr> protectExprs = new ArrayList<>();

10 List<BoolExpr> disProtectExprs = new ArrayList<>();

11 List<BoolExpr> constraints= new ArrayList<>();

12 for(AllocationNode predecessor: predecessors) {

13 protectExprs.add((BoolExpr)nctx.protect.apply(

14 predecessor.getZ3Name(), ctx.mkInt(flow.getIdFlow())) );

15 disProtectExprs.add((BoolExpr)

nctx.disProtect.apply(predecessor.getZ3Name(),

ctx.mkInt(flow.getIdFlow())));

16 }

17 BoolExpr[] bl2 = new BoolExpr[disProtectExprs.size()];

18 disProtectExprs.toArray(bl2);

19 int z=0;

20 int i=0;

21 for(BoolExpr boolProtect: protectExprs){

22 BoolExpr[] disProtect= new

BoolExpr[disProtectExprs.size()-(i+1)];

23 for (int j=i+1; j<protectExprs.size();j++){

24 disProtect[z]=bl2[j];

25 z++;

26 }

27 z=0;

28 constraints.add(ctx.mkImplies(boolProtect,ctx.mkOr(disProtect)));

29 i++;

30 }

31 BoolExpr[] finalConstraints = new BoolExpr[constraints.size()];

32 constraints.toArray(finalConstraints);

33 inspectorConstraints.add(ctx.mkAnd(finalConstraints));

34 }

Listing 4.19: Constraints on Inspector and Destination nodes

If the list of inspector nodes in in the current traffic flow contains the node
under analysis, or the node under analysis is the destination of the traffic:

• Lines 2-16: As in Listing 4.18, the list of nodes preceding the current node
is computed, and the list of boolean expressions regarding the application or
removal of protection on the traffic flow is created.

• Lines 17-30: For each boolProtect expression, a constraint is generated
by combining the protection expression with the subsequent disProtect ex-
pressions (concatenated using the OR logical operator) through the IMPLY
logical operator. The meaning of this constraint is: ”If the node applies pro-
tection to the traffic flow, then one of the subsequent nodes (preceding the
inspector or destination node) should remove that protection.”
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• Lines 31-34: Once again, all the generated constraints are combined into a
single constraint using the OR operator.

The result of this algorithm is that if a node in a traffic flow associated with the
Protection Requirement is declared as an inspector or serves as the destination, then
if any preceding node applies protection to the traffic flow, another node between
the one applying the protection and the inspector/destination node must remove
that protection.

Nodes with VPN Capabilities

The following algorithm verifies that a node possessing VPN capabilities (so it is
able to apply or remove protection) also support the security technologies and the
corresponding capabilities.

1 BoolExpr b1_1=ctx.mkEq(nctx.protect.apply(node.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkTrue() );

2 BoolExpr b1_2=ctx.mkEq(nctx.disProtect.apply(node.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkTrue() );

3 BoolExpr b1= ctx.mkOr(b1_1,b1_2);

4 HashMap<String, ArrayList<String>> tecCapMap = new HashMap<>();

5 for(SecurityTechnologyType st : sts) {

6 ArrayList<String> caps = new ArrayList<>();

7 String string = st.toString()+"_" + encAlg;

8 String string2 = st.toString()+"_" + authAlg;

9 caps.add(string);

10 caps.add(string2);

11 tecCapMap.put(st.toString(), caps);

12 }

13 List<BoolExpr> tecConstraints = new ArrayList<>();

14 for (Map.Entry<String,ArrayList<String>> entry :

tecCapMap.entrySet()) {

15 List<BoolExpr> capConstraints = new ArrayList<>();

16 for(String c : entry.getValue()) {

17 BoolExpr b2 =

ctx.mkEq(nctx.supportCap.apply(node.getZ3Name()

,ctx.mkInt(flow.getIdFlow()), ctx.mkString(c) ),

ctx.mkTrue());

18 capConstraints.add(b2);

19 }

20 BoolExpr[] arraycapConstraints = new

BoolExpr[capConstraints.size()];

21 BoolExpr finalCapConstraint =

ctx.mkAnd(capConstraints.toArray(arraycapConstraints));

22 tecConstraints.add(finalCapConstraint);

23 }

24 BoolExpr[] arraytecConstraints = new

BoolExpr[tecConstraints.size()];
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25 BoolExpr finalTecConstraint =

ctx.mkOr(tecConstraints.toArray(arraytecConstraints));

26 BoolExpr capConstraint1 = ctx.mkImplies(b1, finalTecConstraint);

27 constraintList.add(capConstraint1);

Listing 4.20: Constraints on VPN capabilities by Checker

• Lines 1-3: The Boolean expression b1 is defined, and it is true if the node
either applies protection or removes protection (dis-protection) on the traffic
flow.

• Lines 4-12: A HashMap called tecCapMap is created, where the key is the
security technology (i.e., IPsec and TLS), and the value is an array containing
strings that represent the required authentication and encryption algorithms
(e.g., ”IPSEC SHA256”).

• Lines 13-23: For each security technology:

– Lines 14-18: For each capability associated with the security technol-
ogy (both the encryption and authentication algorithms), a constraint is
generated. This constraint asserts that the node must support the cor-
responding security capability, and it is inserted into capConstraints.

– Lines 20-22: The constraints in the capConstraints list are combined
into a single constraint finalCapConstraint using a logical AND oper-
ator. This means that for a given security technology, all the necessary
capabilities must be supported by the node.

• Lines 24-27: The elements of the tecConstraints list (which contains the
constraints related to the two security technologies, IPsec and TLS) are com-
bined using a logical OR operator. This implies that the node must support
the necessary capabilities for at least one of the two security technologies.
Finally, an IMPLY operator is used to logically connect the protection/dis-
protection condition with the security technology support.

The result of this algorithm enforces the following constraint: ”If a node ap-
plies or removes protection on a traffic flow, it must also support all the necessary
capabilities for at least one security technology.”

Untrusted Links Handling

The algorithm that generates constraints for untrusted links is nearly identical to
the one discussed in Listing 4.18. The only difference lies in how the predecessor
nodes are identified, as a link is a logical connection between a pair of nodes. In
this case, the predecessors list contains all the nodes preceding the destination of
the untrusted link. Otherwise, the algorithm follows the same steps, ensuring that
if a node applies protection to the traffic, no subsequent preceding node removes
that protection, thereby guaranteeing that traffic remains protected when passing
through untrusted links in the network.
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4.3 Z3 Model Analysis

All the generated constraints discussed in section 4.2 are submitted by the Checker
module to the framework’s embedded Z3 Solver, the MaxSMT solver developed
by Microsoft, which resolves the MaxSMT problem using the Check() method.
The result of this operation is the generation of the Z3 Model, consisting of a set
of strings that satisfy all hard constraints and maximize the sum of the weights
assigned to the satisfiable soft constraints. These strings specifically represent the
previously defined free variables and the values assigned to them by the Z3 solver.

To provide a clear and straightforward example of the Z3 Model, a specific XML
input file has been created:

1 <NFV xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

2 xsi:noNamespaceSchemaLocation="../../xsd/nfvSchema.xsd">

3 <graphs>

4 <graph id="0">

5 <node functional_type="WEBCLIENT" name="10.0.0.1">

6 <neighbour name="50.0.0.1" />

7 </node>

8 <node name="50.0.0.1">

9 <neighbour name="10.0.0.1" />

10 <neighbour name="30.0.0.1" />

11 </node>

12 <node functional_type="FORWARDER" name="30.0.0.1">

13 <neighbour name="50.0.0.1" />

14 <neighbour name="50.0.0.2" />

15 </node>

16 <node name="50.0.0.2">

17 <neighbour name="30.0.0.1" />

18 <neighbour name="20.0.0.1" />

19 </node>

20 <node functional_type="WEBSERVER" name="20.0.0.1">

21 <neighbour name="50.0.0.2" />

22 </node>

23 </graph>

24 </graphs>

25 <Constraints>

26 <NodeConstraints/>

27 <LinkConstraints />

28 </Constraints>

29 <PropertyDefinition>

30 <Property graph="0" name="ProtectionProperty" src="10.0.0.1"

dst="20.0.0.1">

31 <protectionInfo>

32 <untrustedNode node="30.0.0.1"></untrustedNode>

33 </protectionInfo>

34 </Property>

35 </PropertyDefinition>

36 </NFV>

Listing 4.21: Simple Input Testcase

This input file describes the following topology:

60



Analysis of VPNs Automatic Configuration Capability

Figure 4.2: Simple VPN Topology

In this topology, the FORWARDER node with IP addresses setted to 30.0.0.1
is declared untrusted in the Property section of the input file, so on the node
with IP address 50.0.0.1 a VPN GATEWAY with ACCESS behavior should be
deployed, while on the node with IP address 50.0.0.2 a VPN GATEWAY with
EXIT behavior is expected to be configured.

The corresponding Z3 model generated by the framework, which strings have
been reordered to enhance clarity and understanding of the various sections, is the
following:

1 (define-fun null () PortRange (port_range_constructor 0 65535))

2 (define-fun null () Address (ip_constructor 0 0 0 0))

3 (define-fun wildcard () Address (ip_constructor (- 1) (- 1) (-

1) (- 1)))

4

5 (define-fun |10.0.0.1| () Address (ip_constructor 10 0 0 1))

6 (define-fun |50.0.0.1| () Address (ip_constructor 50 0 0 1))

7 (define-fun |30.0.0.1| () Address (ip_constructor 30 0 0 1))

8 (define-fun |50.0.0.2| () Address (ip_constructor 50 0 0 2))

9 (define-fun |20.0.0.1| () Address (ip_constructor 20 0 0 1))

10

11 (define-fun |\|10.0.0.1\|_vpnCapIsUsed| () Bool false)

12

13 (define-fun |\|50.0.0.1\|_used| () Bool true)

14 (define-fun |\|50.0.0.1\|used0| () Bool true)

15 (define-fun |\|50.0.0.1\|_auto_src_0| () Address

(ip_constructor 10 0 0 1))

16 (define-fun |\|50.0.0.1\|_auto_dst_0| () Address

(ip_constructor 20 0 0 1))

17 (define-fun |\|50.0.0.1\|_auto_srcp_0| () PortRange

(port_range_constructor 0 65535))

18 (define-fun |\|50.0.0.1\|_auto_dstp_0| () PortRange

(port_range_constructor 0 65535))

19 (define-fun |\|50.0.0.1\|_auto_proto_0| () Int 0)

20 (define-fun |\|50.0.0.1\|_auto_src_ip_4_0| () Int 1)

21 (define-fun |\|50.0.0.1\|_auto_src_ip_3_0| () Int 0)

22 (define-fun |\|50.0.0.1\|_auto_src_ip_2_0| () Int 0)

23 (define-fun |\|50.0.0.1\|_auto_src_ip_1_0| () Int 10)

24 (define-fun |\|50.0.0.1\|_auto_dst_ip_4_0| () Int 1)

25 (define-fun |\|50.0.0.1\|_auto_dst_ip_3_0| () Int 0)
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26 (define-fun |\|50.0.0.1\|_auto_dst_ip_2_0| () Int 0)

27 (define-fun |\|50.0.0.1\|_auto_dst_ip_1_0| () Int 20)

28

29 (define-fun |\|50.0.0.2\|_used| () Bool true)

30 (define-fun |\|50.0.0.2\|used0| () Bool true)

31 (define-fun |\|50.0.0.2\|_auto_src_0| () Address

(ip_constructor 10 0 0 1))

32 (define-fun |\|50.0.0.2\|_auto_dst_0| () Address

(ip_constructor 20 0 0 1))

33 (define-fun |\|50.0.0.2\|_auto_srcp_0| () PortRange

(port_range_constructor 0 65535))

34 (define-fun |\|50.0.0.2\|_auto_dstp_0| () PortRange

(port_range_constructor 0 65535))

35 (define-fun |\|50.0.0.2\|_auto_proto_0| () Int 0)

36 (define-fun |\|50.0.0.2\|_auto_src_ip_4_0| () Int 1)

37 (define-fun |\|50.0.0.2\|_auto_src_ip_3_0| () Int 0)

38 (define-fun |\|50.0.0.2\|_auto_src_ip_2_0| () Int 0)

39 (define-fun |\|50.0.0.2\|_auto_src_ip_1_0| () Int 10)

40 (define-fun |\|50.0.0.2\|_auto_dst_ip_4_0| () Int 1)

41 (define-fun |\|50.0.0.2\|_auto_dst_ip_3_0| () Int 0)

42 (define-fun |\|50.0.0.2\|_auto_dst_ip_2_0| () Int 0)

43 (define-fun |\|50.0.0.2\|_auto_dst_ip_1_0| () Int 20)

44

45 (define-fun |\|20.0.0.1\|_vpnCapIsUsed| () Bool false)

46

47 (define-fun |0_auto_tunnelSrc_0| () Address (ip_constructor 10

0 0 1))

48 (define-fun |0_auto_tunnelDst_0| () Address (ip_constructor 20

0 0 1))

49 (define-fun |0_auto_tunnelSrc_1| () Address (ip_constructor 10

0 0 1))

50 (define-fun |0_auto_tunnelDst_1| () Address (ip_constructor 20

0 0 1))

51 (define-fun |0_auto_tunnelSrc_2| () Address (ip_constructor 50

0 0 1))

52 (define-fun |0_auto_tunnelDst_2| () Address (ip_constructor 50

0 0 2))

53 (define-fun |0_auto_tunnelSrc_3| () Address (ip_constructor 50

0 0 1))

54 (define-fun |0_auto_tunnelDst_3| () Address (ip_constructor 50

0 0 2))

55 (define-fun |0_auto_tunnelSrc_4| () Address (ip_constructor 10

0 0 1))

56 (define-fun |0_auto_tunnelDst_4| () Address (ip_constructor 20

0 0 1))

57

58 (define-fun nodeHasAddr ((x!0 Node) (x!1 Address)) Bool

59 (let ((a!1 (ite (= x!1 (ip_constructor 50 0 0 2))
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60 (ip_constructor 50 0 0 2)

61 (ite (= x!1 (ip_constructor 20 0 0 1))

62 (ip_constructor 20 0 0 1)

63 (ip_constructor 3 30 30 30)))))

64 (let ((a!2 (ite (= x!1 (ip_constructor 50 0 0 1))

65 (ip_constructor 50 0 0 1)

66 (ite (= x!1 (ip_constructor 10 0 0 1))

67 (ip_constructor 10 0 0 1)

68 a!1))))

69 (let ((a!3 (ite (= x!1 (ip_constructor 30 0 0 1))

70 (ip_constructor 30 0 0 1)

71 a!2)))

72 (or (and (= x!0 |50.0.0.2|) (= a!3 (ip_constructor 50 0 0

2)))

73 (and (= x!0 |50.0.0.1|) (= a!3 (ip_constructor 50 0 0

1)))

74 (and (= x!0 |20.0.0.1|) (= a!3 (ip_constructor 20 0 0

1)))

75 (and (= x!0 |30.0.0.1|) (= a!3 (ip_constructor 30 0 0

1)))

76 (and (= x!0 |10.0.0.1|) (= a!3 (ip_constructor 10 0 0

1))))))))

77 (define-fun supportCap ((x!0 Node) (x!1 Int) (x!2 String)) Bool

true)

78 (define-fun deny ((x!0 Node) (x!1 Int)) Bool false)

79 (define-fun addrToNode ((x!0 Address)) Node

80 (ite (= x!0 (ip_constructor 50 0 0 2)) |50.0.0.2|

81 (ite (= x!0 (ip_constructor 30 0 0 1)) |30.0.0.1|

82 (ite (= x!0 (ip_constructor 10 0 0 1)) |10.0.0.1|

83 (ite (= x!0 (ip_constructor 20 0 0 1)) |20.0.0.1|

84 |50.0.0.1|)))))

85

86 (define-fun disProtect ((x!0 Node) (x!1 Int)) Bool

87 (and (= x!0 |50.0.0.2|) (= x!1 0)))

88 (define-fun protect ((x!0 Node) (x!1 Int)) Bool

89 (and (= x!0 |50.0.0.1|) (= x!1 0)))

Listing 4.22: Simple Z3 Model

• Lines 1-3: Wildcards and null values for ports and IP addresses are defined.

• Lines 5-9: IP addresses of the nodes in the topology are specified.

• Lines 11-45: Free variables for the VPN Gateways and EndHosts are defined.

– Line 11: The free variable _vpnCapIsUsed for the WEBCLIENT node
is set to false, as the input XML file did not specify VPN capabilities
for this node.
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– Lines 13-27: Free variables for the node with IP address 50.0.0.1 are
defined.

∗ Line 13: The free variable _used is set to true, indicating that the
node 50.0.0.1 is used as a VPN GATEWAY.

∗ Line 14: The free variable used0 is set to true, meaning the node
is used as a VPN GATEWAY for the flow with id=0.

∗ Lines 15-27: The free variables related to the placeholder rules
described in Listing 4.2 are assigned their respective values.

– Lines 29-43: Similar to lines 13-27, but for the node with IP address
50.0.0.2.

– Line 45: Same as for the WEBCLIENT, but applicable to the WEB-
SERVER.

• Lines 47-56: Free variables related to the VPN tunnels are assigned the
source and destination IP addresses for each node in the flow path, constrained
by the conditions set in Listing 4.7, Listing 4.10, Listing 4.11.

• Lines 58-84: Two functions with complementary purposes are defined: nodeToAddr
maps each node’s name to its corresponding IP address, while addrToNode

performs the reverse mapping.

• Lines 86-87: Lists the nodes that remove protection and the traffic flows on
which they act.

• Lines 88-89: Lists the nodes that apply protection and the traffic flows on
which they act.

The two most significant sections of the Z3 model pertain to VPN tunnels and
the application or removal of protection by nodes.

For the VPN tunnels, the structure of each string follows this format:
flowId + "_auto_tunnelSrc/Dst" + pos. Here, flowId is the integer assigned
to each flow, identifying it uniquely, while pos indicates the node’s position within
the flow path. For example,
(define-fun |0_auto_tunnelSrc_0| () Address (ip_constructor 10 0 0 1))

specifies that the tunnel source IP address for the first node of the flow with id=0

is 10.0.0.1. Given the simplicity of the input SG topology, only a single flow with
id=0 is processed. This allows for an easy observation that the tunnel source and
destination IP addresses initially match the actual traffic addresses (10.0.0.1 and
20.0.0.1, respectively) until the untrusted node is reached (pos=2). At this point,
the tunnel addresses switch to those of the VPN gateways (50.0.0.1 and 50.0.0.2,
respectively). Upon exiting the VPN tunnel, the addresses revert to those of the
original traffic flows.

The other crucial section of the Z3 model is the final part, where nodes listed
in protect apply protection to the traffic identified by an integer, and they will be
assigned an ACCESS behavior when the model is translated into the XML output
file. Similarly, nodes in the disProtect list remove protection from the traffic
identified by the integer, and they will be assigned an EXIT behavior.
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4.4 XML Output File Analysis

After generating the Z3 model, the Translator module, as described in Figure 4.1,
parses the model and produces an XML file in which the VPN Gateways are allo-
cated and configured with the necessary Security Associations (SAs). The output
XML file follows a schema similar to the one described in Listing 4.1, allowing the
user to be familiar with its structure and easily use it to deploy and configure the
security services specified in the output.

To provide an example of the output XML file coherent to the analysis per-
formed in the previous section, the same simple VPN topology and input XML file
referenced in Listing 4.21 has been used. The framework produced the following
output:

1 <NFV xsi:noNamespaceSchemaLocation="./xsd/nfvSchema.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

2 <graphs>

3 <graph id="0">

4 <node name="10.0.0.1" functional_type="WEBCLIENT">

5 <neighbour name="50.0.0.1"/>

6 </node>

7 <node name="50.0.0.1" functional_type="VPNGateway">

8 <neighbour name="10.0.0.1"/>

9 <neighbour name="30.0.0.1"/>

10 <configuration name="AutoConf">

11 <vpnGateway>

12 <securityAssociation>

13 <behavior>ACCESS</behavior>

14 <startChannel></startChannel>

15 <endChannel></endChannel>

16 <source>10.0.0.1</source>

17 <destination>20.0.0.1</destination>

18 <protocol>ANY</protocol>

19 <src_port>*</src_port>

20 <dst_port>*</dst_port>

21 </securityAssociation>

22 </vpnGateway>

23 </configuration>

24 </node>

25 <node name="30.0.0.1" functional_type="FORWARDER">

26 <neighbour name="50.0.0.1"/>

27 <neighbour name="50.0.0.2"/>

28 </node>

29 <node name="50.0.0.2" functional_type="VPNGateway">

30 <neighbour name="30.0.0.1"/>

31 <neighbour name="20.0.0.1"/>

32 <configuration name="AutoConf">

33 <vpnGateway>

34 <securityAssociation>

35 <behavior>EXIT</behavior>

36 <startChannel></startChannel>

37 <endChannel></endChannel>

38 <source>10.0.0.1</source>

39 <destination>20.0.0.1</destination>

40 <protocol>ANY</protocol>

41 <src_port>*</src_port>
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42 <dst_port>*</dst_port>

43 </securityAssociation>

44 </vpnGateway>

45 </configuration>

46 </node>

47 <node name="20.0.0.1" functional_type="WEBSERVER">

48 <neighbour name="50.0.0.2"/>

49 </node>

50 </graph>

51 </graphs>

52 <Constraints>

53 <NodeConstraints/>

54 <LinkConstraints/>

55 </Constraints>

56 <PropertyDefinition>

57 <Property name="ProtectionProperty" graph="0" src="10.0.0.1"

dst="20.0.0.1" lv4proto="ANY" src_port="null" dst_port="null" isSat="true">

58 <protectionInfo>

59 <untrustedNode node="30.0.0.1"/>

60 </protectionInfo>

61 </Property>

62 </PropertyDefinition>

63 <profile name="hybrid"/>

64 </NFV>

Listing 4.23: Simple VEREFOO Output

As expected, the nodes with addresses 50.0.0.1 and 50.0.0.2 have been con-
figured as VPNGateway. Specifically, each node has been set up with a Security
Association: the first node is assigned an ACCESS behavior, while the second is
assigned an EXIT behavior, consistent with the previously analyzed Z3 model.
Since the Security Property specified in the input did not define specific ports or a
Layer 4 protocol, wildcard values have been assigned (ANY for the protocol and *

for the ports).

In the PropertyDefinition section of the output, the property has been en-
riched with additional fields not present in the input file: lv4proto, src_port, and
dst_port are now populated with the values of the configured SAs, while the field
isSat is assigned a boolean value indicating whether the configured SAs satisfy the
specified property.
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Chapter 5

Enhancements and Performance
Evaluation

5.1 Identified Issues and Limitations of the Frame-

work

During the framework analysis, conducted primarily through detailed debugging
and a careful examination of the Z3 model and the produced output, several issues
were identified. These issues can be classified as follows:

• Configuration and Pathing Errors

• Output Quality and Efficiency Issue

• Optimization Deficiencies

5.1.1 Configuration and Pathing Errors

The defects in this category impact both flow path generation and the configuration
of VPN Gateways through constraints. In this context, three specific issues have
been identified:

1. EndHosts that do not participate in the traffic flow are incorrectly included
in the flow path.

2. Incorrect weights are assigned to soft constraints.

3. Protection constraints for inspector and destination nodes are constructed
erroneously.

The first issue was identified while analyzing flow paths in topologies with mul-
tiple WEBCLIENTS and WEBSERVERS. Specifically, when the framework com-
putes a flow path for a particular Security Requirement, EndHosts that are not
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relevant to the Security Requirement in question are still included in the flow path.
For example, consider the following network topology:

Figure 5.1: Sample topology with multiple clients and servers

If a Security Requirement requires protection on the traffic with src=10.0.0.1

and dst=20.0.0.2, one of the flow paths computed by the framework is the fol-
lowing:

The blue arrows indicate the correct sequence of nodes in the flow paths, while
the red arrows highlight points where the recursive algorithm responsible for gen-
erating the flow path encounters a ”sink” and cannot proceed further. This occurs
because EndHosts, such as 10.0.0.2 and 20.0.0.1, lack forwarding capabilities, caus-
ing the algorithm to backtrack to the previous step and attempt an alternative
route. However, even though the two EndHosts with IP addresses 10.0.0.2 and
20.0.0.1 are recognized as not being part of the flow path leading to the Security
Requirement’s destination, they are not removed from the path. This affects sub-
sequent constraint generation, as these nodes are incorrectly considered part of the
path.

Regarding the issue of incorrect weight assignments to soft constraints, it is help-
ful to revisit the code snippets provided in Listing 4.13 for a clearer understanding.
The soft constraints within the lists softConstrWildcard, softConstrProtoWildcard,
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and softConstrPorts are assigned weights in the framework’s NetContext module
as follows:

1 softConstrWildcard.forEach(t->solver.AssertSoft(t._1,

WIPWILDCARD, t._2));

2 softConstrProtoWildcard.forEach(t->solver.AssertSoft(t._1,

WPROTOWILDCARD, t._2));

3 softConstrPorts.forEach(t->solver.AssertSoft(t._1, WPORTS,

t._2));

Each element in these lists is submitted to the Z3 solver using the solver.AssertSoft()
method, where the first argument is the constraint, the second argument specifies
the assigned weight, and the third argument indicates the group to which the con-
straint belongs. The weights assigned to these soft constraints are as follows:

• WIPWILDCARD: 10

• WPORTS: -10

• WPROTOWILDCARD: -10

However, by examining the construction of these soft constraints, it becomes appar-
ent that their effect is contrary to the intended outcome. By assigning a negative
weight to the soft constraints related to ports and protocols, the solver is encour-
aged to prioritize assigning specific values over wildcard values. A similar issue
occurs with the soft constraint related to the assignment of wildcard values for the
source and destination IP addresses, where the solver is inclined to assign specific
IP addresses rather than wildcard values.

Finally, an issue has been identified in the construction of constraints related
to inspector and destination nodes. Specifically, in the algorithm described in
Listing 4.19, if the last node in the predecessors list applies protection to the
traffic, there is no further opportunity to remove that protection before the traffic
reaches the inspector or destination node, thereby preventing them from functioning
as intended. This issue also impacts the Z3 model, as an incomplete constraint is
generated, which can potentially affect the values assigned to the free variables by
the solver.

5.1.2 Output Quality and Efficiency Issue

In section 4.4, the framework’s output was discussed, with an example provided
using a very simple input. However, when the framework is supplied with a slightly
more complex input file, such as the one describing the network topology illus-
trated in Figure 5.1, the output contains a significant amount of redundant infor-
mation. For example, with this topology, if the user requests protection between
each client-server pair, four Security Associations per VPN Gateway would be suf-
ficient (10.0.0.1-20.0.0.1, 10.0.0.1-20.0.0.2, 10.0.0.2-20.0.0.1, 10.0.0.2-20.0.0.2). In
practice, however, the framework’s output contains many more SAs than neces-
sary, often with repeated entries. For instance, the node with IP address 50.0.0.2
has been configured with eleven SAs:
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1 ...

2
3 <node name="50.0.0.2" functional_type="VPNGateway">

4 <neighbour name="30.0.0.1"/>

5 <neighbour name="30.0.0.2"/>

6 <neighbour name="30.0.0.5"/>

7 <configuration name="AutoConf">

8 <vpnGateway>

9 <securityAssociation>

10 <behavior>ACCESS</behavior>

11 <startChannel></startChannel>

12 <endChannel></endChannel>

13 <source>10.0.0.2</source>

14 <destination>20.0.0.1</destination>

15 <protocol>ANY</protocol>

16 <src_port>*</src_port>

17 <dst_port>*</dst_port>

18 </securityAssociation>

19 <securityAssociation>

20 <behavior>ACCESS</behavior>

21 <startChannel></startChannel>

22 <endChannel></endChannel>

23 <source>10.0.0.1</source>

24 <destination>20.0.0.1</destination>

25 <protocol>ANY</protocol>

26 <src_port>*</src_port>

27 <dst_port>*</dst_port>

28 </securityAssociation>

29 <securityAssociation>

30 <behavior>ACCESS</behavior>

31 <startChannel></startChannel>

32 <endChannel></endChannel>

33 <source>10.0.0.1</source>

34 <destination>20.0.0.2</destination>

35 <protocol>ANY</protocol>

36 <src_port>*</src_port>

37 <dst_port>*</dst_port>

38 </securityAssociation>

39 <securityAssociation>

40 <behavior>ACCESS</behavior>

41 <startChannel></startChannel>

42 <endChannel></endChannel>

43 <source>10.0.0.1</source>

44 <destination>20.0.0.1</destination>

45 <protocol>ANY</protocol>

46 <src_port>*</src_port>

47 <dst_port>*</dst_port>

48 </securityAssociation>

49 <securityAssociation>

50 <behavior>ACCESS</behavior>

51 <startChannel></startChannel>

52 <endChannel></endChannel>

53 <source>10.0.0.2</source>

54 <destination>20.0.0.1</destination>

55 <protocol>ANY</protocol>

56 <src_port>*</src_port>

57 <dst_port>*</dst_port>
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58 </securityAssociation>

59 <securityAssociation>

60 <behavior>ACCESS</behavior>

61 <startChannel></startChannel>

62 <endChannel></endChannel>

63 <source>10.0.0.2</source>

64 <destination>20.0.0.1</destination>

65 <protocol>ANY</protocol>

66 <src_port>*</src_port>

67 <dst_port>*</dst_port>

68 </securityAssociation>

69 <securityAssociation>

70 <behavior>ACCESS</behavior>

71 <startChannel></startChannel>

72 <endChannel></endChannel>

73 <source>10.0.0.2</source>

74 <destination>20.0.0.1</destination>

75 <protocol>ANY</protocol>

76 <src_port>*</src_port>

77 <dst_port>*</dst_port>

78 </securityAssociation>

79 <securityAssociation>

80 <behavior>ACCESS</behavior>

81 <startChannel></startChannel>

82 <endChannel></endChannel>

83 <source>10.0.0.1</source>

84 <destination>20.0.0.2</destination>

85 <protocol>ANY</protocol>

86 <src_port>*</src_port>

87 <dst_port>*</dst_port>

88 </securityAssociation>

89 <securityAssociation>

90 <behavior>ACCESS</behavior>

91 <startChannel></startChannel>

92 <endChannel></endChannel>

93 <source>10.0.0.2</source>

94 <destination>20.0.0.1</destination>

95 <protocol>ANY</protocol>

96 <src_port>*</src_port>

97 <dst_port>*</dst_port>

98 </securityAssociation>

99 <securityAssociation>

100 <behavior>ACCESS</behavior>

101 <startChannel></startChannel>

102 <endChannel></endChannel>

103 <source>10.0.0.1</source>

104 <destination>20.0.0.1</destination>

105 <protocol>ANY</protocol>

106 <src_port>*</src_port>

107 <dst_port>*</dst_port>

108 </securityAssociation>

109 <securityAssociation>

110 <behavior>ACCESS</behavior>

111 <startChannel></startChannel>

112 <endChannel></endChannel>

113 <source>10.0.0.2</source>

114 <destination>20.0.0.1</destination>
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115 <protocol>ANY</protocol>

116 <src_port>*</src_port>

117 <dst_port>*</dst_port>

118 </securityAssociation>

119 </vpnGateway>

120 </configuration>

121 </node>

122 ...

The redundancy not only affects the overall quality of the output produced by the
framework but also leads to a considerable waste of resources in terms of memory
usage. This can be especially problematic if a user decides to apply the generated
configuration directly to a real network without manually removing the redundant
SAs, potentially impacting network performance and efficiency.

5.1.3 Optimization Deficiencies

The issues in this category do not prevent the framework from functioning as in-
tended, nor do they affect the correctness of the computed solution. However, they
can impact the framework’s performance and scalability to varying degrees, depend-
ing on the size of the network topology and the number of security requirements
provided as input.

The analysis conducted in this thesis revealed two areas for improvement in the
framework: the suboptimal generation of constraints related to protection require-
ments, and the absence of a pruning function to minimize the number of placeholder
rule variables that need to be defined.

To better illustrate where the suboptimal generation of constraints occurs, it is
helpful to outline the theoretical formulas, deeply discussed in [34], that guides this
process:

∀f ∈ ϕ(p).∀ni ∈ π(f) |ni ∈ p.W.NU.

∃nj ∈ π(f) |nj ≺ ni.
(︁
protectx(nj, f)∧

∀nk ∈ π(f) |nj ≺ nk ≺ ni.¬unprotectx(nk, f)
)︁

(5.1)

∀f ∈ ϕ(p).∀ni ∈ π(f) |ni ∈ p.W.NI.

∀nj ∈ π(f) |nj ≺ ni.
(︁
protectc(nj, f) ⇒

∃nk ∈ π(f) |nj ≺ nk ≺ ni. unprotectc(nk, f)
)︁

(5.2)

∀f ∈ ϕ(p).
(︁
∃ni ∈ π(f). protectx(ni, f)

)︁
⇒(︁

∃nj ∈ π(f) |ni ≺ nj. unprotectx(nj, f)
)︁

(5.3)

The formula (5.1) specifies that if a node ni traversed by a flow f satisfying the
security requirements is classified as untrustworthy, then there must be at least one
node nj preceding ni in the flow path that enforces the required protection on the
traffic flow, and this protection must remain intact, without being removed by any
node nk between nj and ni.
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The formula (5.2) indicates that if a node ni traversed by a flow f satisfying the
security requirements is classified as an inspector, then f must not be protected by
confidentiality when crossing ni. Consequently, if a node nj preceding ni in the flow
path enforces confidentiality on the traffic flow, this protection must be removed
by a node nk between nj and ni.

The formula (5.3) states that if a node ni applies protection to a flow f , this
protection must be removed by a subsequent node nj in the path followed by f .

The three formulas have been fully implemented in Listing 4.18 and Listing 4.19;
however, the implemented algorithms generate constraints for applying and remov-
ing protection on the traffic flow without considering the nature of the nodes and
their actual capabilities. This oversight leads to the generation of numerous un-
necessary constraints, making the Z3 model heavier and more computationally
demanding to process.

The second suboptimization issue identified in the framework’s source code is, as
previously mentioned, the absence of a pruning function to minimize the number of
placeholder rules that need to be defined. Specifically, while a method intended for
this purpose, called minimizePlaceholderRules(), exists within the VPNGate-
way and EndHosts function modules, its implementation is as follows:

1 private int minimizePlaceholderRules() {

2 List<Flow> allProperties =

source.getFlows().values().stream().collect(Collectors.toList());

3 int minimizedRules = allProperties.size();

4 return minimizedRules;

5 }

Listing 5.1: Current Implementation of pruning function

Essentially, this method merely collects all traffic flows crossing the node into a
list and returns the size of this list as the minimum number of placeholder rules
required. It is evident that this approach does not assist in computing the output
by reducing the number of free variables the solver needs to consider, indicating
that further development is necessary to optimize this aspect effectively.

5.2 Enhancements and Issues Addressing

To address the issues discussed previously, the source code of the responsible algo-
rithms has been modified. In some instances, a simple modification was sufficient
to resolve an issue, while in others, a more substantial reworking of the algorithm
was necessary.

5.2.1 Addressing the Configuration and Pathing Errors

Starting from the pathing error, the algorithm responsible of the generation of the
paths of nodes is the following:
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1 private void recursivePathGeneration(List<List<AllocationNode>>

allPaths, List<AllocationNode> currentPath, AllocationNode

source, AllocationNode destination, AllocationNode current,

Set<String> visited, int level) {

2 currentPath.add(level, current);

3 visited.add(current.getNode().getName());

4 List<Neighbour> listNeighbours =

current.getNode().getNeighbour();

5 if(destination.getNode().getName().equals(current.getNode().getName()))

{

6 List<AllocationNode> pathToStore = new ArrayList<>();

7 for(int i = 0; i < currentPath.size(); i++) {

8 pathToStore.add(i, currentPath.get(i));

9 }

10 allPaths.add(pathToStore);

11 visited.remove(current.getNode().getName());

12 currentPath.remove(level);

13 return;

14 }

15 if(level != 0) {

16 if(current.getNode().getFunctionalType() ==

FunctionalTypes.WEBCLIENT ||

current.getNode().getFunctionalType() ==

FunctionalTypes.WEBSERVER) {

17 return;

18 }

19 }

20 for(Neighbour n : listNeighbours) {

21 if(!visited.contains(n.getName())) {

22 AllocationNode neighbourNode =

allocationNodes.get(n.getName());

23 level++;

24 recursivePathGeneration(allPaths, currentPath, source,

destination, neighbourNode, visited, level);

25 level--;

26 }

27

28 }

29 visited.remove(current.getNode().getName());

30 currentPath.remove(level);

31 return;

32 }

Listing 5.2: Recursive method for flow path generation

This method is invoked by the wrapper method generateFlowPaths() within the
VerefooProxy module of the framework. The wrapper method calls
recursivePathGeneration(), passing the source and destination addresses of the
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security requirements for which the flow paths need to be constructed. As with any
recursive algorithm, there is a base case that produces a result without further re-
cursion. In this case, the base condition is that the currently analyzed node matches
the destination of the security requirement. If this condition is met, the path is
stored; otherwise, the algorithm recurses by analyzing the next neighboring node
of the current one until it reaches the base case or encounters a node with a func-
tional type of WEBCLIENT or WEBSERVER. The issue described in the previous
section is rooted in this second condition: when a WEBCLIENT or WEBSERVER
node is traversed by the algorithm, it is not removed from the currentPath list. As
a result, even though the algorithm correctly backtracks to the previous recursion
level and continues the path search, these nodes remain in the final path, where they
are mistakenly considered as legitimate path nodes during constraint generation.
By adding the line currentPath.remove(level); before the return instruction
at line 17, the EndHost node is correctly removed from the list, ensuring it does
not appear in the path.

Regarding errors related to configuration and constraint generation, an incon-
sistency between the intended framework behavior—specifically, assigning wildcard
values to the free variables wherever possible—and the actual behavior was identi-
fied by examining the weights assigned to soft constraints. As mentioned previously,
the sign of the values of the weights must be coherent with the way the associated
soft constraints are constructed. For instance, the soft constraints specifying that
wildcard values should be assigned to the Layer 4 protocol and ports utilize the
mkEq boolean operator in Z3:

1 nctx.softConstrProtoWildcard.add(new Tuple<BoolExpr, String>(

2 (ctx.mkEq( proto, ctx.mkInt(0)) ),"vpn_auto_conf"));

3 nctx.softConstrPorts.add(new Tuple<BoolExpr, String>(

4 (ctx.mkEq(srcp, nctx.portMap.get("null")) ),"vpn_auto_conf"));

5 nctx.softConstrPorts.add(new Tuple<BoolExpr, String>(

6 (ctx.mkEq(dstp, nctx.portMap.get("null")) ),"vpn_auto_conf"));

To achieve the desired behavior of the framework, a positive weight should be as-
signed to these groups of constraints. This means that the values of WPORT and
WPROTOWILDCARD should be changed from -10 to 10.
A specular reasoning can be applied to the soft constraints stating that the wild-
card value should be assigned to the four components of the IP addresses of the
placeholder rules:

1 nctx.softConstrWildcard.add(new Tuple<BoolExpr, String>(

2 ctx.mkNot(ctx.mkEq((IntExpr)nctx.ipFunctionsMap.get("ipAddr_1")

3 .apply(nctx.addressMap.get("wildcard")),srcAuto1)),

"vpn_auto_conf"));

4 ...

The use of the mkNot Z3 boolean operator necessitates that the weight associated
with this group of soft constraints be negative. Therefore, WIPWILDCARD values must
be changed from 10 to -10. Alternatively, another way to correct this unintended
behavior is to remove the mkNot operator and keep the current weight sign.
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Finally, the last issue within the category of configuration errors was identified
in the algorithm described in Listing 4.19. Specifically, the relevant section of the
algorithm is as follows:

1 ...

2 int i=0;

3 for(BoolExpr boolProtect: protectExprs){

4 BoolExpr[] disProtect= new

BoolExpr[disProtectExprs.size()-(i+1)];

5 for (int j=i+1; j<protectExprs.size();j++){

6 disProtect[z]=bl2[j];

7 z++;

8 }

9 z=0;

10 constraints.add(ctx.mkImplies(boolProtect,ctx.mkOr(disProtect)));

11 i++;

12 }

13 ...

For each element in the protectExprs list, an array of boolean expressions, disProtect,
is created and populated with expressions indicating that successor nodes of the
one applying protection must subsequently remove it. However, when the outer
for loop iterates to the last element of the list, the inner for loop is completely
skipped because j is equal to the size of protectExprs. As a result, a constraint is
generated where the protection does not need to be removed. For example, if the
node with IP address 50.0.0.2 is the last node in the predecessors list for a flow
with id=0:

[⇒ (protect |50.0.0.2| 0)(or )]
With this specific constraint, if the first condition is true (so the node 50.0.0.2 ap-
plies protection on traffic flow 0), no action is taken to remove the protection before
the inspector or destination node, as intended. To address this issue, a condition
has been added to ensure that the constraint is generated only if there is at least
one node that removes the protection:

1 ...

2 if(disProtect.size>0)

3 constraints.add(ctx.mkImplies(boolProtect,ctx.mkOr(disProtect)));

4 ...

5.2.2 Redundancy Issue Resolution

The resolution of the redundancy issue affecting the framework’s output required a
significant rework of the VPNGateway function module. The algorithm responsible
of the issue is the generateSatisfiabilityConstraint() method, and, in partic-
ular, the section that generates constraints about the configuration of the security
associations:
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1 ...

2 BoolExpr component2 = ctx.mkAnd(

3 nctx.equalIpAddressToVPNGwSA(flow.getCrossedTraffic(

4 ipAddress).getIPSrc(), srcConditions.get(srCount)),

5 nctx.equalIpAddressToVPNGwSA(flow.getCrossedTraffic(

6 ipAddress).getIPDst(), dstConditions.get(srCount)),

7 nctx.equalPort(flow.getCrossedTraffic(ipAddress).getpSrc(),

portSConditions.get(srCount)),

8 nctx.equalPort(flow.getCrossedTraffic(ipAddress).getpDst(),

portDConditions.get(srCount)),

9 nctx.equalLv4Proto(flow.getCrossedTraffic(

10 ipAddress).gettProto().ordinal(),

l4Conditions.get(srCount))

11 );

12 srCount++;

13 constraints.add(ctx.mkImplies(ctx.mkOr(opt1,opt2),component2) );

14 ...

In the current version, the component2 boolean expression is constructed by con-
catenating all the fields of a single placeholder rule. These fields are retrieved from
the maps defined in Listing 4.2, using the variable srCount as an index, which
increments each time the generateSatisfiabilityConstraint method is called.
Finally, a constraint is generated to imply that if the node is assigned an AC-
CESS or EXIT behavior, then component2 must be satisfied. However, with this
approach, if the VPN Gateway on the node is assigned an ACCESS or EXIT be-
havior, the constraints require that all placeholder rules be satisfied, resulting in
the generation of a Security Association for each rule. This leads to redundant and
unnecessary SAs in the output XML file.

To prevent generating a constraint for each placeholder rule, the rules can be
aggregated into a list that includes all placeholder rules related to the specific flow.
These rules can then be combined into a single boolean expression using the OR
logical operator, and a constraint can be generated based on this aggregated ex-
pression:

1 List<BoolExpr> listSecondC = new ArrayList<>();

2 for(int i = 0; i < nRules; i++) {

3 BoolExpr singleComponent = ctx.mkAnd(

4 nctx.equalIpAddressToVPNGwSA(

5 flow.getCrossedTraffic(ipAddress).getIPSrc(),

srcConditions.get(i)),

6 nctx.equalIpAddressToVPNGwSA(

7 flow.getCrossedTraffic(ipAddress).getIPDst(),

dstConditions.get(i)),

8 nctx.equalPort(flow.getCrossedTraffic(ipAddress).getpSrc(),

portSConditions.get(i)),
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9 nctx.equalPort(flow.getCrossedTraffic(ipAddress).getpDst(),

portDConditions.get(i)),

10 nctx.equalLv4Proto(flow.getCrossedTraffic(ipAddress)

11 .gettProto().ordinal(), l4Conditions.get(i)));

12 listSecondC.add(singleComponent);

13 }

14 BoolExpr[] tmp = new BoolExpr[listSecondC.size()];

15 BoolExpr component2 = ctx.mkOr(listSecondC.toArray(tmp)) ;

16 constraints.add(ctx.mkImplies(ctx.mkOr(opt1,opt2),component2) );

This way, just one placeholder rule is needed to be configured, and the final output
of the framework does not show anymore redundant SAs. It is also coherent with
the way the Security Associations are configured when the EndHost is equipped
with VPN capabilities, as described in Listing 4.15.

5.2.3 New Optimization Strategies

As anticipated in subsection 5.1.3, the framework’s functioning can be further op-
timized, significantly improving its performance.

The first enhancement in this regard involved re-evaluating the code implemen-
tation of the generation of constraints related to the protection requirments, based
on the formulas (5.1), (5.2), and (5.3). While the current implementation adheres
closely to the theoretical models, it does not fully consider the actual context in
which it operates. Specifically, constraints related to the application and removal
of protection on the traffic flows should be generated only for nodes that are capa-
ble of performing these actions, rather than indiscriminately generating constraints
for all nodes, including those like forwarders and packet filters that lack this ca-
pability. To address this, a filter has been added to the various sections of the
createProtectionConstraints method within the Checker module. This filter
ensures that these constraints are generated only for nodes with a functional type
of VPNGateway:

1 ...

2

3 // UNTRUSTED NODES HANDLING

4 for(AllocationNode predecessor: predecessors) {

5 if(predecessor.getTypeNF().equals(FunctionalTypes.VPN_GATEWAY)){

6 protectExprs.add((BoolExpr)nctx.protect.apply(

7 predecessor.getZ3Name(), ctx.mkInt(flow.getIdFlow())) );

8 disProtectExprs.add((BoolExpr)

nctx.disProtect.apply(predecessor.getZ3Name(),

ctx.mkInt(flow.getIdFlow())));

9 }

10 }

11 ...

12
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13 // INSPECTOR / DESTINATION NODES HANDLING

14 for(AllocationNode predecessor: predecessors) {

15 if(predecessor.getTypeNF().equals(FunctionalTypes.VPN_GATEWAY)){

16 protectExprs.add((BoolExpr)nctx.protect.apply(

17 predecessor.getZ3Name(), ctx.mkInt(flow.getIdFlow())) );

18 disProtectExprs.add((BoolExpr)

nctx.disProtect.apply(predecessor.getZ3Name(),

ctx.mkInt(flow.getIdFlow())));

19 }

20 }

21 ...

22

23 // NODES WITH VPN CAPABILITIES HANDLING

24 if(predecessor.getTypeNF().equals(FunctionalTypes.VPN_GATEWAY)){

25 BoolExpr b1_1=ctx.mkEq(nctx.protect.apply(node.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkTrue() );

26 BoolExpr b1_2=ctx.mkEq(nctx.disProtect.apply(node.getZ3Name(),

ctx.mkInt(flow.getIdFlow())), ctx.mkTrue() );

27 BoolExpr b1= ctx.mkOr(b1_1,b1_2);

28 }

29 ...

Another contribution of this thesis towards optimizing the framework has been
the introduction of the set of constraints described in Listing 4.13 and Listing 4.14
within the VPNGateway module, which were originally present only in the EndHost
class. With this addition, even fewer placeholder rules need to be configured,
resulting in a lighter Z3 model and a clearer final output.

Finally, the optimization improvement that likely had the greatest impact on the
framework’s performance was the rework of the pruning function minimizePlaceholderRules().
The intended purpose of this method is to return the maximum number of place-
holder rules that need to be defined and automatically configured by exploiting
pruning strategies. However, the previous implementation was limited to simply
counting the number of flows crossing the node and returning that number.

The new pruning strategy applied is fairly straightforward in its approach:
the first filtering step considers only security requirements of the type PROTEC-
TION PROPERTY, marking these as candidates for potential pruning. The algo-
rithm then avoids duplicate requirements by checking the identifier of each exam-
ined requirement. If the requirement is unique, it is added to the list of relevant
properties. The method finally returns the size of this list of relevant properties,
representing the minimized number of placeholder rules needed.

1 private int minizimePlaceholderRules() {

2 List<Flow> allProperties =

source.getFlows().values().stream().collect(Collectors.toList());

3 List <Flow> interestedProperties = new ArrayList<>();

4 for(Flow p : allProperties) {

5 if(p.getRequirement().getOriginalProperty().getName().equals(
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6 PName.PROTECTION_PROPERTY)) {

7 boolean toAdd=true;

8 for(Flow p2 : interestedProperties) {

9 if(p.getRequirement().getIdRequirement() ==

p2.getRequirement().getIdRequirement())

10 toAdd = false;

11 }

12 if(toAdd)

13 interestedProperties.add(p);

14 }

15 }

16 int minimizedRules = interestedProperties.size();

17 return minimizedRules;

18 }

Listing 5.3: New implementation of pruning function

5.3 Performance Evaluation of the Enhanced Im-

plementation

To evaluate the correctness of the fixes for the identified issues and the effectiveness
of the new optimization strategies, a specific battery of tests has been developed.
Each test case has been crafted to target specific aspects of the framework, such as
flow path and constraint generation, placeholder rule pruning, and Security Asso-
ciation configuration, thereby facilitating a precise evaluation of the effects of the
implemented modifications. The complexity of the network topology and the num-
ber of security requirements provided as input are varied according to the testing
needs, whether that involves tracing the framework’s execution through debugging
or simply analyzing the final output in terms of correctness and performance.

5.3.1 Test Case 1

The Test Case 1 has been designed with the objective of analyzing the framework’s
behavior towards flow path generation and protection constraints on inspector and
destination nodes. To reach the objective, the provided input must:

1. include multiple WEBCLIENT nodes to verify the correct generation of flow
paths;

2. feature a node where a VPN Gateway will be allocated prior to the inspector
or destination node, to validate the correct generation of protection con-
straints;

3. be sufficiently simple to facilitate detailed execution tracing through debug-
ging;

80



Enhancements and Performance Evaluation

Following these requirements, the crafted network topology is the following:

Figure 5.2: Test Case 1: Network Topology

The nodes 30.0.0.1, 30.0.0.2, and 30.0.0.3 enables the framework to attempt
generating a flow path that, starting from one of the two WEBCLIENTS, also
traverses the second. As each node can be visited only once during the recursive
flow path generation, this topology represents the simplest configuration that allows
for such an investigation.

The execution of the framework, provided with the input XML file correspond-
ing to the Figure 5.2 topology, confirms the expected corrected flow path generation:
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(a) (b)

Figure 5.3: Test Case 1: Flow Path Generation Corrected

The first figure demonstrates that the framework attempted to insert the node
10.0.0.2 into the current flow path at level=4; however, as it is a WEBCLIENT
node, it was correctly removed from the list. The second figure then shows that
the node 50.0.0.2 was selected as the next hop for the path.

The second aspect to be verified with this test case is the protection constraint
generated in the Checker module for the inspector and destination nodes. With
the fix discussed in Listing 5.2.1, the resulting constraint is as follows:

[(and (=> (protect |50.0.0.1| 0)

(or (disProtect |50.0.0.2| 0) (disProtect |50.0.0.4| 0)))

(=> (protect |50.0.0.2| 0)

(or (disProtect |50.0.0.4| 0))))]

In the previous implementation, the last element of the constraint would have been
(=>(protect |50.0.0.4| 0)(or)), which would imply that the node 50.0.0.4
could apply protection to traffic flow 0 without any subsequent node removing
that protection. In contrast, the current implementation avoids generating this
constraint entirely, addressing the problem directly.
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5.3.2 Test Case 2

Test Case 2 was designed to verify whether the redundancy issue has been resolved
with the implemented modifications concerning the configuration of Security Asso-
ciations SAs within the VPNGateway module. As previously analyzed, the issue
tends to arise when the framework is required to manage a network topology where
multiple flows (and, consequently, multiple placeholder rules) are associated with
a single Security Requirement. In a simple topology, such as the one illustrated in
Figure 4.2, where only a single traffic flow is computed, the issue does not mani-
fest. Consequently, an appropriate and efficient test input for this purpose should
generate at least two traffic flows, while remaining as simple as possible.

The chosen network topology is the following:

Figure 5.4: Test Case 2: Network Topology

In this topology, two flows are expected to be generated—one traversing the
50.0.0.1 node and the other the 50.0.0.2 node—with both crossing the 50.0.0.3
node. By specifying the node 30.0.0.1 as untrusted in the input file, the framework
is forced to allocate a VPN Gateway with ACCESS behavior on both 50.0.0.1 and
50.0.0.2, and a VPN Gateway with EXIT behavior on 50.0.0.3. This way, the
non-modified version of VEREFOO should generate two identical SAs on the node
50.0.0.3, while the newer implementation of the framework should overcome the
redundancy issue.

With the theoretical expectations for the framework’s computation outcome es-
tablished, the next step is to provide the updated framework with the input XML
file corresponding to the crafted network topology and observe the actual produced
output, which is as follows:

1 <NFV xsi:noNamespaceSchemaLocation="./xsd/nfvSchema.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

2 <graphs>

3 <graph id="0">

4 <node name="10.0.0.1" functional_type="WEBCLIENT">

5 <neighbour name="50.0.0.1"/>

6 <neighbour name="50.0.0.2"/>

7 </node>

8 <node name="50.0.0.1" functional_type="VPNGateway">

9 <neighbour name="10.0.0.1"/>
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10 <neighbour name="30.0.0.1"/>

11 <configuration name="AutoConf">

12 <vpnGateway>

13 <securityAssociation>

14 <behavior>ACCESS</behavior>

15 <startChannel></startChannel>

16 <endChannel></endChannel>

17 <source>10.0.0.1</source>

18 <destination>20.0.0.1</destination>

19 <protocol>ANY</protocol>

20 <src_port>*</src_port>

21 <dst_port>*</dst_port>

22 </securityAssociation>

23 </vpnGateway>

24 </configuration>

25 </node>

26 <node name="50.0.0.2" functional_type="VPNGateway">

27 <neighbour name="10.0.0.1"/>

28 <neighbour name="30.0.0.1"/>

29 <configuration name="AutoConf">

30 <vpnGateway>

31 <securityAssociation>

32 <behavior>ACCESS</behavior>

33 <startChannel></startChannel>

34 <endChannel></endChannel>

35 <source>10.0.0.1</source>

36 <destination>20.0.0.1</destination>

37 <protocol>ANY</protocol>

38 <src_port>*</src_port>

39 <dst_port>*</dst_port>

40 </securityAssociation>

41 </vpnGateway>

42 </configuration>

43 </node>

44 <node name="30.0.0.1" functional_type="FORWARDER">

45 <neighbour name="50.0.0.1"/>

46 <neighbour name="50.0.0.2"/>

47 <neighbour name="50.0.0.3"/>

48 </node>

49 <node name="50.0.0.3" functional_type="VPNGateway">

50 <neighbour name="20.0.0.1"/>

51 <neighbour name="30.0.0.1"/>

52 <configuration name="AutoConf">

53 <vpnGateway>

54 <securityAssociation>

55 <behavior>EXIT</behavior>

56 <startChannel></startChannel>

57 <endChannel></endChannel>
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58 <source>10.0.0.1</source>

59 <destination>20.0.0.1</destination>

60 <protocol>ANY</protocol>

61 <src_port>*</src_port>

62 <dst_port>*</dst_port>

63 </securityAssociation>

64 </vpnGateway>

65 </configuration>

66 </node>

67 <node name="20.0.0.1" functional_type="WEBSERVER">

68 <neighbour name="50.0.0.3"/>

69 </node>

70 </graph>

71 </graphs>

72 <Constraints>

73 <NodeConstraints/>

74 <LinkConstraints/>

75 </Constraints>

76 <PropertyDefinition>

77 <Property name="ProtectionProperty" graph="0" src="10.0.0.1"

dst="20.0.0.1" lv4proto="ANY" src_port="null"

dst_port="null" isSat="true">

78 <protectionInfo>

79 <untrustedNode node="30.0.0.1"/>

80 </protectionInfo>

81 </Property>

82 </PropertyDefinition>

83 <profile name="hybrid"/>

84 </NFV>

As expected, despite the fact that node 50.0.0.3 is traversed by multiple flows, no
redundant SAs appear in the final output. In contrast, with the previous imple-
mentation, a separate SA is present for each flow:

1 ...

2

3 <node name="50.0.0.3" functional_type="VPNGateway">

4 <neighbour name="20.0.0.1"/>

5 <neighbour name="30.0.0.1"/>

6 <configuration name="AutoConf">

7 <vpnGateway>

8 <securityAssociation>

9 <behavior>EXIT</behavior>

10 <startChannel></startChannel>

11 <endChannel></endChannel>

12 <source>10.0.0.1</source>

13 <destination>20.0.0.1</destination>
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14 <protocol>ANY</protocol>

15 <src_port>*</src_port>

16 <dst_port>*</dst_port>

17 </securityAssociation>

18 <securityAssociation>

19 <behavior>EXIT</behavior>

20 <startChannel></startChannel>

21 <endChannel></endChannel>

22 <source>10.0.0.1</source>

23 <destination>20.0.0.1</destination>

24 <protocol>ANY</protocol>

25 <src_port>*</src_port>

26 <dst_port>*</dst_port>

27 </securityAssociation>

28 </vpnGateway>

29 </configuration>

30 </node>

31

32 ...

5.3.3 Test Case 3

The next aspect of VEREFOO that needs to be assessed is its performance and
scalability. The previous test cases were intentionally designed to be as simple as
possible to isolate the specific aspects or issues under analysis, facilitating easier
evaluation. However, their low complexity also means they do not provide a reliable
indication of the framework’s true performance capabilities.

For this reason, Test Case 3 is designed solely to represent a more complex use
case, with more nodes interacting. This setup provides a more reliable assessment
of the framework’s performance and scalability. the objective is to evaluate the per-
formance impact of the modifications introduced to address the redundancy issue.
Additionally, the effectiveness of the reworked pruning function will be measured
by comparing the tool’s performance both with and without the function applied.

The network topology illustrated in Figure 5.1 fits the requirements: with mul-
tiple clients and servers, and numerous flow paths to consider during the allocation
and configuration problem resolution, it provides a comprehensive test of the frame-
work’s optimization capabilities and handling of complex scenarios.

The first version of the framework tested was the one with the original im-
plementation of the minimizePlaceholderRules method. After twelve hours of
computation on a workstation equipped with a 12-core Intel i7-1255U CPU and
40 GB of RAM, the framework had still not found a solution, indicating that the
input size is beyond the current framework’s processing capabilities.

However, when the new implementation of the pruning function was used, the
framework was capable of producing a correct solution within eleven seconds of
computation (10245 milliseconds), demonstrating the effectiveness of the approach.
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Chapter 6

Conclusions

In this thesis, a detailed analysis of VEREFOO was conducted, which proved essen-
tial in identifying issues affecting the framework’s implementation, understanding
their nature, and determining solutions for addressing them. The framework was
enhanced by introducing new optimization strategies aimed at improving its per-
formance while maintaining the correctness of the output.

An in-depth research on the current landscape of network security configuration,
along with the challenges and issues that arise when such tasks are performed
manually, underscores the importance of a tool like VEREFOO, which is capable
of automatically allocating and configuring security services. Furthermore, the
literature review on the topic of automatic configuration of firewalls and VPNs
highlighted specific areas where current research is lacking and demonstrated how
VEREFOO could contribute to advancing the field.

With the foundational research phase complete, a high-level overview of the
framework’s functioning was provided, highlighting its key components and the
most relevant modules for examination. The framework was dissected and care-
fully analyzed, with a primary focus on the algorithms responsible for generating
constraints, on the Z3 model generated by the embedded solver and on the final
output. This analysis uncovered several issues affecting the VEREFOO implemen-
tation, including errors in path and constraint generation, incorrect weight assign-
ment to soft constraints and redundant Security Associations in the final output.
The impact of these issues on the framework’s correctness and output quality was
thoroughly evaluated. Additionally, new optimization strategies were developed by
recontextualizing the theoretical formulas within the actual VEREFOO environ-
ment and by completely reworking a pruning function that was not operating as
intended. In particular, the generation of protection constraints has been restricted
to network nodes capable of applying and removing protection on the traffic. This
approach reduces the number of constraints fed to the solver for the automatic
allocation and configuration problem, ultimately resulting in a lighter and cleaner
Z3 model.

Finally, a battery of tests was developed to evaluate the effectiveness of both the
solutions to the identified issues and the newly implemented enhancements. Each
test case was crafted to target a specific aspect of the framework, with the design
philosophy for each carefully explained.
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Conclusions

In conclusion, the VEREFOO framework has proven to be a practical, auto-
mated solution for the allocation and configuration of VPNs within a network.
Nonetheless, further work could be pursued to enhance its implementation and
expand its capabilities.

In the future, heuristic studies could be conducted to achieve a meticulous
balance between performance and optimality without compromising the correctness
of the solution. Additionally, VEREFOO’s ability to automatically configure VPNs
could be integrated with its already well-developed capability for configuring packet
filters. A final compelling extension would be the integration of an automatic
reconfiguration feature, allowing the framework to respond dynamically when an
attack on the network is detected, thus enabling a true fully automated and agile
cybersecurity management.
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