
POLITECNINCO DI TORINO

Master’s Degree in Embedded System

Master’s Degree Thesis

Low-power event driven accelerator for
Spiking Neural Networks on FPGA

Supervisors

Prof. Stefano DI CARLO

Prof. Alessandro SAVINO

Prof. Alessio CARPEGNA

Candidate

Filippo MAROSTICA

October 2024

Summary

The exponential growth in both research and industry in recent years has made Ma-
chine Learning (ML) increasingly complex, rendering applications in the embedded
field progressively more challenging. This has intensified the need to reduce power
consumption and computational load without sacrificing performance. Hence, the
focus of this thesis project is to develop a low-power, event-driven accelerator for
Spiking Neural Networks (SNNs) on FPGA.
SNNs have gained attention due to their potential to address various challenges
in artificial intelligence, including event-based processing, low-power computation,
and efficient representation of temporal information.

A Spiking Neural Network is a type of artificial neural network that closely
mimics the behavior of biological neurons in the brain. Unlike traditional artificial
neural networks, SNNs operate based on discrete events called spikes. Moreover,
since in biological systems information is encoded not only in the strength of
connections between neurons but also in the timing and frequency of spikes, SNNs
capture this temporal information by considering the precise timing of spikes as
part of computation.
SNNs offer various neuron’s models with a trade-off between biological plausibility
and performance. The basic neuron is the Leaky Integrate and Fire (LIF) neuron,
it models neural activity by accumulating input current until it reaches a threshold,
causing it to "fire" a spike and then reset; it also incorporates a leaky mechanism
where the accumulated charge dissipates over time if not triggered, similar to the
leakage of ions in a biological neuron.
In the digital domain, spikes in SNNs can be represented as single-bit events,
where a spike is active when it occurs and quiescent otherwise. This representation
significantly reduces the memory footprint and interconnection resources required,
as activations are compressed to just a single bit.
The Event-Driven approach processes information (spikes) only when events occur,
in contrast to the Clock-Driven approach where computations happen at regular
intervals determined by the system’s clock. The Event-Driven approach is chosen
to optimize performance in terms of power consumption and occupied area, crucial

ii

for embedded systems with limited computational resources. This technique is
particularly advantageous for event-driven sensors, which have become increasingly
popular over the years for their flexibility and performances.

The project, EDAMAME (Event-Driven Accelerator to Model And Mimick
Encephalon behavior), encapsulates its main characteristics and objectives within
its name. The workflow unfolds in two distinct phases.
The first part consists in the creation and training of the SNN using Python.
Python, coupled with snnTorch (a framework built on top of PyTorch), facilitates
the development and training of SNNs extending the capabilities of PyTorch, taking
advantage of its GPU accelerated tensor computation and applying it to networks
of spiking neurons; it also offers pre-designed spiking neuron models. For the
purposes of the project, apart from all the standard functionalities of snnTorch, a
custom event-driven neuron was developed within snnTorch to serve as the central
component of the designed networks.

In the event-driven neuron, the neuron only updates when a spike arrives and,
between two consecutive spikes, the neuron uses a counter to track how much time
has elapsed. This neuron uses the counter value to access a precomputed table or
memory that stores the results of the decay function for different time intervals (
e−t/τ , where the value of t depends on the input sparsity); this means that when
a spike arrives after a certain delay, the neuron simply looks up how much the
potential has decayed in the elapsed time instead of recalculating the exponential
decay.
After implementing the event-driven neuron model in snnTorch, the next steps
involved training and testing the network to compare its performance with the
default clock-driven model and also for finding the best approach to implement the
event-driven quantization. During testing, inference on the trained model showed
that the event-driven and clock-driven networks performed very similarly. Some-
times the event-driven model was slightly better, and sometimes the clock-driven
one performed better, but overall, both were highly comparable in accuracy.

A key aspect of the training process was the development of a quantized model.
Since the trained network’s parameters needed to fit within the limited memory of
an FPGA, quantisation reduced memory usage by converting floating-point weights
into lower-precision formats, such as 8-bit fixed point. This significantly reduced
the model size, making deployment on resource-constrained devices like FPGAs
feasible.
To achieve this Post Training Quantization (PTQ) was used. In this technique
weights are quantized only after training and, even if has reduced performance
compared to Quantization Aware Training (QAT) where weights are quantized
during training, has an higher degree of customization to meet the requirements of

iii

the target FPGA at the cost of some accuracy reduction.

Following the training phase, during which various datasets were used to validate
the model and network parameters were collected, the project transitions into its
second, hardware-centric, phase: implementing the spiking neural network (SNN)
on an FPGA using System Verilog.
Key aspects of this implementation involve creating a custom architecture able
to efficiently represent the network, use different testbenches to test and simulate
the hardware accelerator and compare the results with the results obtained in
software, adapting the model to FPGA constraints and go through all the steps
for the creation of an hardware project such as simulation, synthesis and finally
implementation.

Additionally, a comparative analysis was carried out between other hardware
accelerator project built using spiking neural networks. This analysis is critical to
understanding the hardware’s performance across essential metrics such as latency,
throughput, and power efficiency.
The comparison showed that EDAMAME presents a well-rounded design focused
on achieving efficiency within FPGA limitations, balancing both performance and
power requirements. Operating at 100 MHz, EDAMAME achieves comparable
throughput to other accelerators while maintaining low power usage. The choice of
the LIF neuron model and an event-driven update mechanism aligns EDAMAME
with energy-conscious architectures, contrasting with clock-driven designs. Addi-
tionally, EDAMAME’s utilization of only 17,274 logic cells and 50 DSPs underscores
its resource efficiency, especially in comparison to designs with much higher DSP
counts. The relatively compact architecture (784-40-10) optimizes for speed and
energy efficiency, though it may limit application in highly complex tasks suited to
deeper networks.
With power consumption at just 0.182W, EDAMAME is among the most efficient
in its class. The reduction in synapse count to 31,760 further enhances its en-
ergy profile. While accuracy, at 88.5%, is slightly lower than some alternatives,
EDAMAME’s trade-offs make it ideal for embedded applications where efficiency
is paramount.

iv

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1
1.1 The Biological neuron . 1

1.1.1 The action potential . 3
1.2 From the biological neuron to the artificial neuron 4
1.3 The Neurons classification . 6

1.3.1 Electrical input–output membrane voltage models 7
1.3.2 The Hodgkin–Huxley model 7
1.3.3 Perfect Integrate-and-fire . 8
1.3.4 Leaky integrate-and-fire . 8

1.4 Biological accuracy vs efficiency in SNN 9
1.5 The Spiking Neural Network . 10

2 The artificial neural network 12
2.1 Clock driven and Event driven . 12
2.2 The LIF model in artificial neural network 15

2.2.1 Mathematical derivation LIF neuron 16
2.3 Clock driven implementation of LIF neuron in snnTorch 18

2.3.1 The β coefficient for the exponential quantization 18
2.3.2 Complete mathematical model 19
2.3.3 "Firing" and Reset mechanism 20
2.3.4 From clock-driven to event-driven neuron in snnTorch 22

2.4 The network architecture . 25
2.4.1 The Network Definition . 25
2.4.2 The Network parameters . 27

2.5 Training and Inference . 30
2.5.1 Running Inference on the Saved Model 31

2.6 Quantization for Hardware Deployment 33

vi

2.6.1 Quantization Techniques . 34

3 The Spiking Neural Network 35
3.1 Hardware implementation . 35
3.2 Internet communication characteristics 36

3.2.1 How Ethernet works . 36
3.2.2 Is Ethernet model suitable for SNN? 37

3.3 Network on Chip (NoC) characteristics 38
3.3.1 How Network on Chip works 38
3.3.2 Is NoC model suitable for SNN? 38

3.4 Interrupt management characteristics 40
3.4.1 Similarity with SNN Input Management 41

3.5 Custom architecture characteristics 41
3.5.1 Custom architecture optimizations 44

3.6 Address Event representation (AER) standard 45

4 Network software testing 47
4.1 Training the Network . 48
4.2 Network Preparation - Automatic Scripts 48

4.2.1 Parameters extraction and memory initialization 49
4.2.2 Sample extraction and AER conversion 49

4.3 The quantization process . 52
4.3.1 Input optimization and parameters normalization 53
4.3.2 Parameters quantization . 55
4.3.3 Accumulator quantization 56
4.3.4 Final considerations . 57

4.4 Network simulation . 58

5 Network - hardware structure 61
5.0.1 External interface . 63

5.1 The Finite State Machine . 64
5.1.1 FSM States Description . 64

5.2 Optimized Structure for Two-Layer Operation 68
5.3 Memory management . 69
5.4 Accelerator usage . 70

5.4.1 Example Description . 72

6 HW simulation, synthesis and implementation 74
6.1 Hardware Simulation . 74
6.2 Synthesis and Implementation . 77

6.2.1 Synthesis process . 77
6.2.2 Implementation process . 79

vii

6.3 Resource Utilization Summary . 81
6.3.1 Power and Timing analysis 82
6.3.2 Hardware Accelerators comparison 85

7 Further improvements 88
7.1 The Synaptic neuron . 88

7.1.1 Synaptic neuron mathematical model 90
7.1.2 From clock-driven to event-driven synaptic neuron 91
7.1.3 Synaptic event-driven neuron criticality 95
7.1.4 Network simulation . 96

7.2 Quantization with Brevitas . 97
7.2.1 Using Brevitas in Hardware Deployment 99

Bibliography 100

viii

List of Tables

3.1 Ethernet Frame Fields and Byte Count 37

6.1 Resource Utilization Summary . 81
6.2 Detailed Slice Logic Breakdown . 82
6.3 Power Summary . 83
6.4 On-Chip Components Power Consumption 83
6.5 Power Consumption by Hierarchy 84
6.6 Timing Analysis Summary Constraints 85
6.7 Combined Data Set with Additional Designs 87

ix

List of Figures

1.1 Biological Neuron, image taken from Wikipedia [1] 2
1.2 Biological neuron membrane potential evolution 4
1.3 How Biological neuron communicate 5
1.4 Neuron model comparison . 6
1.5 LIF neuron model mechanism . 9

2.1 Event and Clock driven approach comparison 13
2.2 Synaptic current . 15
2.3 Membrane potential equation . 17
2.4 LIF neuron reset mechanism . 20
2.5 LIF neuron behaviour . 21
2.6 LIF neuron clock and event driven comparison 24
2.7 MNIST dataset . 25
2.8 MNIST network scheme . 26
2.9 MNIST Training with different hidden layer size 28
2.10 MNIST training/testing using standard and custom LIF neuron . . 32

3.1 NoC scheme with Mesh structure 39
3.2 2 × 2 Mesh scheme . 43
3.3 AER string format . 45

4.1 Network scheme . 48
4.2 MNIST conversion process for SNNs deployment 50
4.3 MNIST sample raster plot . 51
4.4 MNIST rate coding with different gain values 52
4.5 Inference results using different gain and conversion factor 54
4.6 Inference with different different bits for parameters’ quantization . 57
4.7 Inference with different different bits for accumulator’s quantization 58

5.1 Network high level scheme . 63
5.2 Finite State Machine flow . 67
5.3 Pipeline execution . 68

x

https://commons.wikimedia.org/w/index.php?curid=72816083
https://opentextbc.ca/biology/chapter/16-2-how-neurons-communicate/
https://opentextbc.ca/biology/chapter/16-2-how-neurons-communicate/
https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_2.html
https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_4.html
https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_2.html
https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_2.html
https://commons.wikimedia.org/w/index.php?curid=132282871
https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_3.html

5.4 Parameter Memory interface . 70
5.5 Accelerator Waveform example . 71

6.1 HW Simulaiton flow chart . 76
6.2 Accelerator’s device scheme . 79
6.3 Accelerator’s schematic . 80

7.1 Passive Membrane in biological neuron 89
7.2 Synaptic neuron behaviour . 90
7.3 Small synaptic current . 92
7.4 Big synaptic current . 92
7.5 Event vs clock driven approach . 94
7.6 MNIST training/testing using standard and custom synaptic neuron 96
7.7 MNIST training/testing using Brevitas quantization 98

xi

https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_2.html
https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_4.html

Chapter 1

Introduction

Biological neuron models, also known as spiking neuron models, are mathematical
descriptions of the conduction of electrical signals in neurons. Neurons (or nerve
cells) are electrically excitable cells within the nervous system, able to fire electric
signals, called action potentials, across a neural network.
Central to these models is the description of how the membrane potential (that
is, the difference in electric potential between the interior and the exterior of a
biological cell) across the cell membrane changes over time. In an experimental
setting, stimulating neurons with an electrical current generates an action potential
(or spike), that propagates down the neuron’s axon. This axon can branch out
and connect to a large number of downstream neurons at sites called synapses.
At these synapses, the spike can cause the release of neurotransmitters, which in
turn can change the voltage potential of downstream neurons: this change can
potentially lead to even more spikes in those downstream neurons, thus passing
down the signal.

1.1 The Biological neuron
The neuron, as the functional unit of the nervous system, consists of various
components:

• Soma (also known as Neurosoma or cell body): this is the metabolic center of
the neuron, housing the nucleus and other organelles responsible for primary
cellular functions. From the soma, certain extensions, known as dendrites,
arise.

• Dendrites: these are extensions that originate from the soma and are respon-
sible for carrying nerve signals centripetally (from the outside towards the
soma). Structurally, the dendritic cytoplasm differs from the axonal cytoplasm,

1

Introduction

Figure 1.1: Biological Neuron, image taken from Wikipedia [1]

notably due to the presence of mitochondria. In many cases, dendrites may
have small protrusions called dendritic spines, which serve as post-synaptic
sites for connections with other neurons.

• Axon: this is a long, cylindrical structure, generally unbranched, specialized
for conducting nerve signals away from the soma (centrifugally). The axon
arises from the soma through a region known as the axon hillock. The length
of an axon can vary widely, reaching up to a meter. At its terminal end, the
axon branches into structures known as synapses.

• Synapses: these are branching structures originating from the end of the axon,
serving as anatomical and functional connections that enable the transmission
of nerve impulses to other neurons. Synapses may connect with another
neuron, a muscle cell, or an epithelial cell in specialized tissue.

Neuronal synapses can be classified anatomically and physiologically. The
anatomical classification recognise three type of synapse: interneuronal, if it
connects two neurons, neuromuscular, if it connects a neuron to a muscle cell,
cytoneuronal, if it involves a neuron and a specialized epithelial cell.

On the other hand, physiological classification, separate two types of synapses:

1. Electrical Synapses: in this type, the action potential passes directly from
the presynaptic cell to the postsynaptic cell through transmembrane channels
known as gap junctions. This allows for rapid, bidirectional flow of information.

2

https://commons.wikimedia.org/w/index.php?curid=72816083

Introduction

2. Chemical Synapses: in this type, information transfer is mediated by chem-
ical substances called neurotransmitters. The presynaptic and postsynaptic
cells are separated by a gap known as the synaptic cleft. The presynaptic
cell contains voltage-gated channels, while the postsynaptic cell has receptors
specific to the neurotransmitter.
Neurotransmitters are released from the presynaptic cell in response to an
incoming action potential, binding to receptors on the postsynaptic cell. These
receptors are ligand-gated ion channels that open upon neurotransmitter bind-
ing, allowing ion entry and altering the membrane potential of the postsynaptic
cell. Chemical synapses are generally slower than electrical synapses.

1.1.1 The action potential
Neurons function across all species by transmitting an electrochemical impulse.
The plasma membrane of a neuron is polarized, meaning it exhibits an electrical
charge difference between the inside and outside of the cell. This difference is due
to a higher concentration of positive ions (sodium ions, Na+) outside the cell than
inside with the consequence of generating an electrical potential difference called
the resting potential.

The resting potential is maintained by the action of a membrane protein called
the sodium-potassium pump, which keeps it stable at approximately –70 mV. The
pump achieves this by moving Na+ ions from the inside to the outside of the cell
and potassium ions (K+) in the opposite direction, from the outside to the inside.
The behavior of the two types of ions differs: while potassium ions (K+) can freely
pass through potassium channels, sodium ions (Na+) cannot move, as the sodium
channels remain closed, preventing an even distribution.

The rest state is disrupted if the neuron is stimulated, causing the sodium
channels to open and the membrane potential to rise from –70 mV to approximately
–50 mV, reaching the threshold value.
Upon reaching this threshold, many sodium channels open, allowing a rapid influx
of Na+ ions, initiating a sequence of events known as depolarization of the
membrane; this chain effect continues and, as positive charge concentration inside
increases, the potential reverses sharply reaching a value of +30/35 mV (action
potential). The time evolution of the neuron potential is shown in Figure 1.2, taken
by [2].
Moments later, the sodium channels close, and potassium channels reopen, with
the sodium-potassium pump assisting in restoring resting conditions; this process
is called repolarization of the membrane. If an impulse has been generated, it
propagates along the axon membrane of nerve cells.
The picture in Figure 1.3, taken by [2], shows how the neuron manage this ion flux

3

Introduction

Figure 1.2: Biological neuron membrane potential evolution

when it is stimulated.
The action potential is a localized electrochemical phenomenon and, for impulse

transmission to occur, depolarization must propagate from the origin point to the
immediately adjacent region. The impulse propagates exclusively in one direction,
as the sodium-potassium pump actively restores resting conditions in areas already
affected by the action potential.
For a brief moment, the concentration of potassium ions outside the cell becomes
higher than under normal resting conditions generating what is called hyper-
polarization of the membrane, which persists until the –70 mV potential is
restored. During this period, which lasts about 2 milliseconds, the membrane
cannot respond to any stimulus (refractory period), preventing back-propagation
of depolarization and effectively ensuring unidirectional transmission of the impulse.

1.2 From the biological neuron to the artificial
neuron

It’s essential to highlight the differences between biological neurons, traditional
artificial neurons, and neurons used in spiking neural networks (SNNs). Biological
neurons operate through complex nonlinear processes involving the flow of ions
across the membrane, which is modeled, with high accuracy, by the Hodgkin-
Huxley equations. These neurons generate action potentials, or spikes, based on
dynamic interactions between ion channels, which influence their behavior and
communication with other neurons.
In contrast, artificial neurons used in traditional artificial neural networks (ANNs),

4

https://opentextbc.ca/biology/chapter/16-2-how-neurons-communicate/

Introduction

Figure 1.3: How Biological neuron communicate

like multilayer perceptrons or convolutional neural networks (CNNs), operate in a
highly simplified manner; they compute weighted sums of their inputs and apply an
activation function to determine the output. Unlike biological neurons, traditional
artificial neurons do not explicitly represent time or spike-based activity but operate
on continuous values, limiting their ability to capture the temporal dynamics seen
in real neural processes.
Spiking neural networks (SNNs) introduce a more biologically realistic approach
by incorporating neurons like the leaky integrate-and-fire model, which generates
spikes based on a neuron’s membrane potential crossing a threshold. SNNs simulate

5

https://opentextbc.ca/biology/chapter/16-2-how-neurons-communicate/

Introduction

the timing of spikes, allowing them to encode and process temporal information in a
manner closer to biological systems. This temporal precision enables SNNs to bridge
the gap between the simplicity of artificial neurons and the biological accuracy of
models like Hodgkin-Huxley, making them particularly useful for neuromorphic
computing and efficient real-time data processing. Figure 1.4, take from [3], shows
a comparison of these three models.

Figure 1.4: Neuron model comparison

1.3 The Neurons classification
Neuron models can be divided into two categories according to the physical units
of the interface of the model:

• Electrical input–output membrane voltage models: these models pro-
duce a prediction for membrane output voltage as a function of electrical
stimulation given as current or voltage input. Some models in this category
predict only the moment of occurrence of the output spike, other models are
more detailed and account for sub-cellular processes.

• Natural stimulus or pharmacological input neuron models: the models
in this category connect the input stimulus, which can be either pharmaco-
logical or natural, to the probability of a spike event. The input stage of
these models is not electrical but rather has either pharmacological (chemical)

6

https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_2.html

Introduction

concentration units, or physical units that characterize an external stimulus
such as light, sound, or other forms of physical pressure.

Although neurons can be classified into these two general categories, the variety
of biological neuron models is remarkably diverse, often reflecting specific experi-
mental conditions and the complexity of capturing intrinsic neuronal properties.
Among these models, the first category (electrical input–output models) is particu-
larly significant for artificial neural networks, especially in spiking neural networks
(SNNs): in fact these networks rely on simplified models where the spiking behavior
mimics biological neurons, laying the groundwork for computational neuroscience.

1.3.1 Electrical input–output membrane voltage models
As stated above, these neuron models are the most relevant for what concern the
use of techniques that belong to the human neuron for implementing artificial
neurons; in fact, while biophysical models can reproduce electrophysiological results
with a high degree of accuracy, their complexity makes them difficult to use at
present.

1.3.2 The Hodgkin–Huxley model
The Hodgkin–Huxley (HH) model is a model of the relationship between the flow
of ionic currents across the neuronal cell membrane and the membrane voltage
of the cell. It consists of a set of nonlinear differential equations describing the
behavior of ion channels that permeate the cell membrane of the squid giant axon.
It is important to note the voltage-current relationship, with multiple voltage-
dependent currents (Ii(t, V)) charging the cell membrane of capacity Cm, is:

Cm · dV (t)
dt

= −
Ø

Ii(t, V) (1.1)

The above equation is the time derivative of the law of capacitance, Q = CV
where the change of the total charge must be explained as the sum over the currents.
The Hodgkin–Huxley model may be extended to include additional ionic currents.
The inonic contribution typically include inward Ca2+ and Na+ input currents
as well as several varieties of K+ outward currents, including a "leak" current;
moreover it is also possible to extend it to take into account the evolution of the
concentrations that are otherwise considered constant in the standard version of
the neuron.
The high degree of freedom and configurability of this model makes the HH neuron
behaviour very close to the "real" neuron however in a model of a complex system of
neurons, numerical integration of the equations are computationally expensive. This

7

Introduction

problem made simplifications of the model necessary especially in an environment
with limited resources as that of an embedded system.

1.3.3 Perfect Integrate-and-fire
One of the earliest models of a neuron is the perfect integrate-and-fire model
(non-leaky integrate-and-fire), first investigated in 1907 by Louis Lapicque. A
neuron is represented by its membrane voltage V which evolves in time during
stimulation with an input current I(t) according to the following relationship:

I(t) = C · dV (t)
dt

(1.2)

which simply represent time derivative of the law of capacitance, Q = CV .
When an input current is applied, the membrane voltage increases with time until
it reaches a constant threshold Vth, at which point a delta function spike occurs
and the voltage is reset to its resting potential, after that the model continues to
run.
In this neuron model the firing frequency is the inverse of the total inter-spike
interval so the model can be made more accurate by introducing a refractory period
tref that limits the firing frequency of a neuron by preventing it from firing during
that period.
The principal issue with this model is that it describes neither adaptation nor
leakage and this characteristic doesn’t align with the observed neuronal behavior
making it not enough precise and also inefficient when used in Neural Networks.

1.3.4 Leaky integrate-and-fire
The leaky integrate-and-fire (LIF) model is an evolution of the integrate-and-fire
model described above. It introduces a "leak" term in the membrane potential
equation, representing the passive diffusion of ions through the membrane, which
better represents the gradual decay of voltage in a biological neuron. This behavior
makes the LIF neuron more accurate and biologically realistic as it reflects the
natural tendency of the neuron to return to its resting state over time.
The model equation is given by:

Cm · dVm(t)
dt

= I(t) − Vm(t)
Rm

(1.3)

From an electrical perspective, the LIF neuron can be modeled as an RC circuit
with a threshold; its behaviour, when input stimuli reaches the neuron, is shown in
Figure 1.5, that shows the results obtained by [4].
Each input pulse produces a brief current, and the voltage across the membrane

8

Introduction

decays exponentially over time due to the leak term; if the membrane potential
reaches a threshold, an output spike (or action potential) is generated, and the
membrane voltage is then reset to a resting value. This feature allows the LIF
model to capture the dynamics of spiking neurons more effectively, and its simplicity
makes it widely used in spiking neural networks for computational modeling.
The LIF model is central in spiking neural networks because it strikes a balance
between computational efficiency and biological realism, providing a tractable yet
insightful representation of neuronal dynamics.

Figure 1.5: LIF neuron model mechanism

1.4 Biological accuracy vs efficiency in SNN
The choice between using a neuron model that closely simulates real biological
behavior, such as the Hodgkin-Huxley model, and using a simplified version, like
the Leaky Integrate-and-Fire (LIF) model, presents a trade-off between biological
accuracy and computational efficiency.
Models like Hodgkin-Huxley provide a highly detailed representation of ion channel
dynamics and membrane potentials, making them ideal for studying the precise
mechanisms of neuronal behavior. However, this level of detail comes at a cost of
high computation intensity, requiring significant processing power, which makes
them impractical for large-scale simulations or real-time applications.
On the other hand, simplified models like the LIF neuron offer a much more efficient
and scalable solution, obtained with the reduction of the computational overhead by
abstracting away many biological complexities; this choice make them particularly
advantageous when dealing with artificial systems, such as neuromorphic hardware,
where speed and resource constraints are critical factors.
Moreover, when dealing with neuron models, the difference between the human
brain and electronic circuits further complicates the direct application of biologi-
cally accurate models. The brain operates in a highly parallel and energy-efficient

9

Introduction

manner, whereas electronic circuits rely on sequential processing and often consume
more power. For this reason using highly detailed models in an embedded system
is not only computationally expensive but also unnecessary, as the intricacies of
biological ion channels don’t translate meaningfully to an electronic system.
Simplified models thus strike a balance, providing enough realism to model key
neuronal dynamics while being computationally feasible and adaptable to the
differences between biological and electronic systems.

1.5 The Spiking Neural Network
Spiking Neural Networks (SNNs), [5], represent the third generation of artificial neu-
ral networks, designed to more closely replicate the behavior of biological neurons
compared to traditional models. Unlike standard neural networks, which rely on
continuous activation values and compute in fixed time steps, SNNs operate based
on discrete events (spikes). This allows them to capture both the strength and
precise timing of input stimuli, which is a crucial feature of biological computation.
The use of spikes enables SNNs to encode information through temporal patterns, a
key distinction from traditional neural networks. This temporal encoding not only
mimics the behavior of biological neurons but also makes SNNs highly effective
for tasks that require time-based processing, such as sensory data analysis (e.g.,
vision and auditory signals) and event-driven computing. Their ability to process
information over time makes them particularly well-suited for dynamic, real-world
applications.
One of the main advantages of SNNs is their energy efficiency. Biological neurons
fire only when necessary, and SNNs replicate this sparse, event-driven computation.
This means neurons in SNNs only perform calculations when spikes are transmit-
ted, leading to significant power savings compared to traditional artificial neural
networks (ANNs), which update all neurons at every time step. As a result, SNNs
reduce both computational load and memory usage, making them an attractive
choice for low-power hardware.
In terms of architecture, SNNs typically use neuron models like the leaky integrate-
and-fire (LIF) neuron and synaptic connections with time-dependent properties.
The variety of spiking neuron models available offers a high degree of customizabil-
ity, allowing networks to be tailored for specific tasks and enabling the creation
of biologically inspired, dynamic networks capable of learning and processing
complex temporal data. Furthermore, learning in SNNs often involves spike-timing-
dependent plasticity (STDP), a mechanism that adjusts synaptic strengths based
on the timing of spikes between neurons, further enhancing their ability to mimic
biological learning processes.

10

Introduction

In conclusion, SNNs [6] represent a significant advancement in neural networks,
providing a more biologically realistic and energy-efficient approach to artificial
intelligence. As research progresses and dedicated hardware for SNNs continues
to evolve, these networks are expected to play a key role in energy-efficient AI,
particularly in applications like embedded systems and neuromorphic computing.

11

Chapter 2

The artificial neural network

There exists different ways of designing SNNs and subsequently to train and run
inference using Python and one of them is snnTorch [3]. snnTorch is a Python
package for performing gradient-based learning with spiking neural networks. It is
designed to be used with PyTorch [7], as though each spiking neuron were simply
another activation in a sequence of layers, extending its capabilities.
snnTorch offers a variety of spiking neuron classes which can simply be treated as
activation units with PyTorch; even if its lean requirements enable networks to be
trained on CPU, making training possible also on limited performance platforms,
snnTorch is also deeply integrated with torch.autograd so to take advantage of GPU
acceleration in the same way as PyTorch, to further enhance its capabilities. Lastly,
the level of integration among PyTorch and snnTorch allows to construct Spiking
Neural Networks using a combination of the snnTorch and torch.nn packages.
The neurons available in snnTorch are variants of the Leaky Integrate-and-Fire
(LIF) neuron model offering the developer the possibility to design networks taking
advantage of simpler models, as a first order LIF or a Recurrent LIF, or more
complex and advanced ones, as second order Synaptic or its recursive version the
RSynaptic, for crafting and configuring the network on the personal needs.

The first steps in the design of the desired network were done using Python
by exploiting snnTorch and PyTorch frameworks’ capabilities. The wanted result
was to create a network using a first order event-driven neuron based on the LIF
model and subsequently to train this network and verify is effectiveness on the
MNIST dataset.

2.1 Clock driven and Event driven
In traditional clock-driven approaches neurons are updated at regular intervals
based on a fixed time step, whose length is influenced by many parameters such

12

The artificial neural network

as the performance capabilities of the chosen platform and also the constraints,
like power consumption or heat dissipation especially for devices that work under
critical conditions.
Most of everyday electronic devices, including hardware accelerator, are clock-
driven. In clock-driven systems operations are synchronized using a global clock
signal that ensures all components update their states at regular intervals. This
approach is usually preferred because it simplifies the design and coordination
between different components.

Figure 2.1: Event and Clock driven approach comparison

However the clock-driven method has two main disadvantages. First, it limits
the temporal precision of neuron updates to the predefined time step; this means
that any spike event occurring between time steps will lose some temporal accuracy
and it is not possible to recover the accuracy lost in any way since, when the spike
arrived, the neuron was involved in executing other operations, this issue become
extremely relevant for real-time systems. This drawback, when dealing with SNNs,
has important consequences in the performances of the neuron since part of the
temporal dynamic is lost going against the nature of biologically inspired neurons
used in these systems.
The second disadvantage is that neurons are updated continuously at each time
step, even when no spikes are received, resulting in unnecessary computations and

13

The artificial neural network

higher energy consumption. This has significant impact on the power consumed by
the network especially considering that SNN are usually optimized for working in
condition where inputs are sparse, same as for biological neurons.
In contrast, the event-driven approach, whose features and characteristics have
been deeply discussed in [8], addresses these limitations by only updating neurons
when they receive input spikes. This method improves temporal accuracy, as
neurons react to spikes as soon as they arrive, providing a finer resolution for
spike timing. Furthermore, because neurons are only updated when necessary,
event-driven models are more efficient in terms of power consumption.
While the event-driven approach offers clear advantages in timing precision and
energy efficiency, it comes with the trade-off of increased computational complex-
ity. Event-driven models require more sophisticated mathematical frameworks to
handle asynchronous updates and ensure that neurons react properly to incoming
spikes. However, this additional complexity can be justified in systems where
power efficiency and timing accuracy are critical, particularly in large-scale SNN
implementations or neuromorphic hardware where event-driven processing better
aligns with the sparse, event-based nature of biological neurons.

Figure 2.1 illustrates a comparison [9], between clock-driven and event-driven
simulation approaches in terms of computational time as a function of the number
of input connections (nAfferent), executed by [10]. The y-axis represents the
total simulation time in seconds, while the x-axis represents the number of input
connections.
The plot shows how, in the time-driven (clock driven) simulations, the computation
time increases linearly with both the number of input connections and the resolution
of the time step. The smaller the time step (the finer the resolution), the greater
the total simulation time.
On the other hand the event-driven simulation shows a much more efficient be-
havior, with a significantly lower computational time compared to all time-driven
simulations, especially as the number of input connections increases. Unlike the
time-driven approach, the event-driven simulation time does not vary with the
time-step but remains consistently low.

In conclusion, event-driven simulations offer clear computational advantages
over time-driven simulations, particularly in cases where input activity is sparse or
where minimizing power and processing time is critical. This characteristic makes
event-driven models ideal for applications in neuromorphic computing where
energy-efficient and real-time processing are necessary.

14

The artificial neural network

2.2 The LIF model in artificial neural network
As stated above the simpler model that compose the LIF family [11] facilitates
the behaviour of biological neuron models assuming that when an input voltage
spike occurs, there is an immediate increase in the synaptic current contributing to
the membrane potential. The synaptic conductance-based LIF model takes into
account the gradual temporal dynamics of the input current due to the fact that
in reality the release of neurotransmitters following a spike is a gradual process,
not an immediate one.

Figure 2.2: Synaptic current

When a pre-synaptic neuron fires, a voltage spike travels down its axon, trigger-
ing the release of neurotransmitters from vesicles into the synaptic cleft. These
neurotransmitters then activate post-synaptic receptors, influencing the current flow
into the post-synaptic neuron. There are two main types of excitatory receptors:
AMPA and NMDA.

1. AMPA Receptors: in the biological neuron the conductance of AMPA
receptors is voltage-independent, meaning that once the receptor is activated,
it rapidly allows ions to pass through regardless of the membrane potential.
This behavior is what makes AMPA receptors responsible for the initial fast
component of excitatory synaptic transmission.

2. NMDA Receptors: on the other hand NMDA receptors are involved in a

15

https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_4.html

The artificial neural network

slower component of excitatory synaptic transmission compared to AMPA
receptors due to their voltage-dependent properties. They are particularly
important for synaptic plasticity mechanisms such as long-term potentiation
(LTP) and long-term depression (LTD).

Figure 2.2, taken from [3], shows how the simplest model of synaptic current
assumes a rapid increase followed by a slow exponential decay, as observed in the
AMPA receptor response.

2.2.1 Mathematical derivation LIF neuron
The AMPA model mirrors the membrane potential dynamics of Lapicque’s model.
From the biological point of view neurons are cells and, like all cells, they are
surrounded by a thin membrane (lipid bilayer), that has the scope of insulating
the conductive saline solution within the neuron from the extracellular medium;
however, another function of this membrane is to control what goes in and out of
this cell. The membrane is usually impermeable to ions and, thanks to specific
channels in the membrane whose activity is electrically regulated, the neuron can
exchange ions with the external world controlling the flux of ions entering and
exiting the neuron body.

These two behaviors of the biological neuron find a direct translation into an
electrical circuit: the RC circuit. In this circuit, the capacitor represents the two
conductive solutions separated by an insulator while the resistor models the charge
movement toward the neuron.

According to the described model the input current Iin(t) is equal to the sum of
the contribution on the resistor branch added to that on the capacitor’s one, as
shown in the Equation 2.1.

Iin(t) = Umem(t)
R

+ C · dUmem(t)
dt

(2.1)

From this expression, the membrane potential can be recovered showing that
the passive membrane is described by a linear differential equation as shown by
Equation 2.2.

τ
dUmem(t)

dt
= −Umem(t) + RIin(t) (2.2)

with τ = RC, representing the decay rate.
Representing with U0 the initial value of the neuron membrane potential,

with no further inputs, the solution of the previous differential equation leads to
the following expression:

16

The artificial neural network

Figure 2.3: Membrane potential equation

Umem(t) = Iin(t)R + [U0 − Iin(t)R]e− t
τ (2.3)

A further simplification consists in considering the input current Iin = 0, in this
way the previous solution can be further reduced:

Umem(t) = U0e
− t

τ (2.4)

The Equation 2.4 shows how the circuit, and consequently the neuron, reacts
when it starts from a membrane potential U0 and decays exponentially when no
inputs stimuli reaches the neuron. This model well represents the decay behaviour
that characterize biological neurons.
Figure 2.3, taken from [3], shows a synthetic representation of the mathematical
model described. In the top left the electrical representation of the neuron behaviour

17

https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_2.html

The artificial neural network

through the RC circuit, on the right the full derivation and in the bottom left how
the membrane potential behaves according to the model.

2.3 Clock driven implementation of LIF neuron
in snnTorch

Having defined the basic differences between the event-driven and clock-driven
approaches and how neurons behave under each, we can now explore how an event-
driven neuron can be implemented using the snnTorch framework, particularly
focusing on the Leaky neuron model.
In snnTorch, the exponential decay of the neuron’s membrane potential over
time is approximated using a simplified, quantized model. Calculating the exact
exponential decay is a very computationally intensive task so an approximation
is employed to make the model more efficient, especially for real-time simulations
and hardware implementations. This is where the β factor comes into play.

2.3.1 The β coefficient for the exponential quantization
The beta coefficient (β) is used to approximate the decay between two consecutive
time steps of the membrane potential.

β = Umem(t + ∆t)
Umem(t) (2.5)

The value of β describes the ratio between the membrane potential at two
successive time steps, allowing for an efficient and simplified calculation of the
decay process without needing to compute the full exponential function at every
step.
By further simplifying the equation, as shown below, we can obtain a clearer
representation of how the quantization of the exponential decay is obtained:

β = U0e
− t+∆t

τ

U0e
− t

τ

= e− ∆t
τmem (2.6)

In the expression above τ represents the membrane time constant, which deter-
mines how quickly the potential decays, and ∆t is the time step. In this formulation
the value U0 cancels out because we are evaluating the ratio between two membrane
potentials related to the same neuron under the same conditions.

While the use of the quantization significantly improves computational efficiency,
it introduces certain limitations.

18

The artificial neural network

• Loss of precision: the approximation, compared to the full exponential
calculation, lead to a slight loss of precision especially in high-frequency
spiking scenarios. This uncertainty can be mitigated introducing smaller time
steps (∆t << τ , for reasonable accuracy) but it is never canceled completely.

• Inflexibility: the β-based model assumes a fixed time constant and constant
conditions between time steps. This may not capture more nuanced variations
in decay that could occur in more complex neuron models.

Despite these drawbacks, the use of β provides several key advantages that make
it a highly effective trade-off in many applications:

• Efficiency: the most significant advantage of using β is its computational
simplicity. By reducing the complexity of the exponential decay calculation,
the model becomes more efficient, enabling real-time simulations and allowing
the use of more complex networks without excessive computational overhead.

• Scalability: the β approximation allows SNNs to scale better when deployed
in hardware or on neuromorphic systems, where memory and processing
power are limited; the slight loss of precision is an acceptable trade-off for the
significant gains in performance.

2.3.2 Complete mathematical model
To model the behavior of a neuron in a Spiking Neural Network (SNN), we start
with the general mathematical formula that describes how the neuron’s membrane
potential evolves over time. The membrane potential Umem[t] is influenced by both
the inputs the neuron receives and its internal state.
The equation governing this process is:

Umem[t] = Umem[t0] · e− t
τ + WX[t] − R[t] (2.7)

This mathematical expression allows to evaluate the membrane potential
between two consecutive inputs.

The factor Umem[t0] is the membrane potential at time t0 when the last input
arrives and it is multiplied for the exponential factor since it decays over time, the
X[t] member corresponds to the incoming input at time t and they are weighted
according to the W coefficient, lastly, the reset term R[t] is what ensures that, after
a spike is fired, the membrane potential drops back down, preventing continuous
firing and allowing for subsequent spikes to be generated only when appropriate
stimuli are received.

This model is finally adapted using the β-based model for the exponential
quantization and the final expression is as follows:

19

The artificial neural network

Umem[t + ∆t] = βUmem[t0] + WX[t] − R[t] (2.8)

2.3.3 "Firing" and Reset mechanism
The concept of a spike, or action potential, is central to SNNs. When the membrane
potential Umem exceeds a certain threshold Uthreshold the neuron "fires" a spike,
sending an output signal to the connected neurons. This binary event defines
how the neurons communicate in the network, and it is described by the following
condition:

Sout =
1 if U(t) > Uthreshold,

0 otherwise.
(2.9)

The factor Sout is the output spike and has a binary format; it takes the value
of 1 when the membrane potential exceeds the threshold, indicating a spike,
and 0 otherwise.

When a Spike occurs the neuron is reset. From a biological point of view this
phenomenon is called to as hyperpolarization, it consists in a temporarily condition
where it is more challenging for the neuron to fire again, thereby conserving energy.
In the artificial neuron model, the reset mechanism is used to mimic this process.

Figure 2.4: LIF neuron reset mechanism

20

https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_2.html

The artificial neural network

There are three methods to implement the reset mechanism:

• Reset by subtraction: this is the default method used in snnTorch neurons,
in this case the membrane potential is reduced by subtracting the threshold
voltage each time a spike is generated.

• Reset to zero: the membrane potential is reset to zero after a spike is
triggered, essentially forcing the neuron to start from a neutral state.

• No reset: no action is taken after a spike, which can lead to uncontrolled
firing and continuous spiking if no other inhibitory mechanisms are applied.

The graph in Figure 2.4, taken from [3], shows how the reset by subtraction and
the reset to zero behaves. The main difference between the two approaches is that
applying subtraction the neuron does not ignore how much the membrane exceeds
the threshold and, consequently, the model get close to how the biological neuron
behaves. On the other hand, applying a hard reset with zero promotes sparsity and
potentially less power consumption at the cost of biological accuracy reduction and
some performance degradation especially when dealing with correlated information.

Figure 2.5: LIF neuron behaviour

The plot in Figure 2.5, [12], is a schematic representation of a neurons that is
excited by different inputs in different time step and whose membrane potential,
vi(t), evolve in time following the previously described relation. The plot sj(t)
shows a flattened representation of the inputs to better visualize their distribution

21

The artificial neural network

in time and the plot si(t) shows the output spike.
The reset mechanism employed is the reset to zero in fact, when the potential
reaches the threshold vth (dashed line), the potential goes immediately to zero;
this graph shows very well that, with this reset method, the information about
how much the threshold has been overcome is "lost". Lastly this model includes a
further contribution that is the refractory period (∆tref); it is the brief time after
a neuron fires a spike during which it is unable to fire again ensuring that the
neuron doesn’t immediately reactivate, allowing recovery and preventing continuous
spiking, emulating the hyperpolarization behavior of a biological neuron.

2.3.4 From clock-driven to event-driven neuron in snnTorch
The previously described method using the β coefficients is highly efficient in terms
of hardware utilization but is not well-suited for an event-driven approach. In the
standard clock-driven model, the membrane potential is updated at every time step
∆t, regardless of whether the input X is 0 or 1. This continuous update process
leads to unnecessary computations when no spike is present, which negates the
efficiency advantages typically desired in event-driven systems.

As discussed earlier, the coefficient β represents the ratio between consecutive
values of the membrane potential in the absence of input spikes, essentially quan-
tifying the decay over a fixed time interval (∆t). In an event-driven model, to
conserve resources, we employ two key components: a counter and a Look-Up
Table (LUT).

• Counter: this counter is reset every time a new input spike arrives. It keeps
track of the elapsed time between consecutive inputs and it is the only active
component when the input is 0.

• Look-Up Table (LUT): the LUT is a small memory that stores precomputed
decay coefficients (βi values) corresponding to different time intervals.

The system operates as follows: when the input is 0, the counter runs con-
tinuously, helping conserve resources. By increasing the counter’s precision (i.e.,
increasing the frequency), the system’s accuracy can be enhanced. The upper
bound is the input source speed, exceeding its frequency results in an unnecessary
waste of resources.
When an input spike arrives, the counter stops, and its value is used as an index
to access the LUT. The value retrieved from the LUT is used to compute the
exponential decay of the membrane potential over the time interval when the input
was 0 thus reducing the computational complexity compared to the clock-driven
model.

22

The artificial neural network

To clarify the process of obtaining the Look-Up Table (LUT) index, we break
down the steps for the membrane potential over multiple time steps in an event-
driven model. The membrane potential Umem[t], at any time t, can be expressed
using the decay factor β as follows:

Umem[t] = β(∆t) · Umem[t0] (2.10)

In the expression β(∆t) is the LUT and ∆t = t − t0.

Example: Calculate for t = 3 with ∆t = 1

We apply this to a specific case where t = 3 and ∆t = 1. t represents the
time instant where an input spike reaches the network so, in the time interval
[t0, t] = [0,3], the membrane potential has an exponential decay behavior without
any source of excitation.

Umem[1] = βUmem[0] (2.11)
Umem[2] = βUmem[1] (2.12)
Umem[3] = βUmem[2] (2.13)

By substituting the values of Umem[1] and Umem[2] into the expression for Umem[3],
we get:

Umem[3] = β · β · β · Umem[0] = β3Umem[0] (2.14)

For a generic time T (time interval between two consecutive ’1’ inputs), the
membrane potential can be expressed as:

Umem[T] = βT Umem[0] (2.15)

This final equation shows that the membrane potential at a generic time t = T
is equal to the initial membrane potential Umem[0] scaled by the decay factor β
raised to the power of T .
Since βT values repeatably decay over time, we can precompute these values for
different time steps T and store them in a Look-Up Table (LUT). When an input
arrives we can retrieve the precomputed βT from the LUT where the value T
corresponds to the value stored in the counter register.
The generation of the Look-Up Table is straightforward and can be done with just
a few lines of Python code, making it also easier for a successive deployment of the
Table in hardware.

23

The artificial neural network

Listing 2.1: LUT generation in Python using predefined beta
1 # Def ine the beta value
2 beta = 0 .8
3 # Number o f e lements in the l i s t
4 num_elements = 60
5 # Calcu la te the cor re spond ing U va lue s
6 LUT = [pow(beta , x) f o r x in range (num_elements)]

This method efficiently adapts the standard clock-driven model to an event-
driven approach, significantly reducing computational overhead while maintaining
accuracy by leveraging precomputed decay values.

Example: Membrane potential in clock-driven and event-driven

The plot in Figure 2.6 illustrates the behavior of both the clock-driven and
event-driven neurons. In this simulation, the initial membrane potential (Umem) is
set to 2.5, and the neuron receives two inputs, one at time t = 10 and another at
time t = 15.
In the clock-driven plot, the membrane potential decays exponentially over time.
In contrast, during this transient period, the event-driven neuron remains fixed, as
it only updates when an input is received. However, upon the arrival of each input,
both neurons reach the same value, demonstrating that their fundamental behavior
is identical. Finally, when the input at t = 15 causes the membrane potential to
exceed the threshold (Uth = 3), both neurons reset to zero.

Figure 2.6: LIF neuron clock and event driven comparison

24

The artificial neural network

2.4 The network architecture
The following step, after defining and testing the single neuron, was to go through
the real implementation of a network using the designed event-driven neuron and
testing its performance. When using Python, since it is an interpreted language,
resources usage is very difficult to monitor so the performed test were done mainly
to explore the potentiality of the developed neuron, to verify its functionality and
to obtain the network parameters after training as a starting point for the real
hardware implementation of the accelerator on FPGA.

2.4.1 The Network Definition
The combined use of snnTorch and PyTorch provides a powerful framework to
define, train, and run Spiking Neural Networks (SNNs) efficiently.
In this implementation, we employ the well-known MNIST dataset, a benchmark
dataset in machine learning, consisting of 60,000 training images and 10,000 test
images of handwritten digits (0-9). Each image is grayscale with a resolution of
28x28 pixels.
The reason why MNIST is widely used, especially as a benchmark dataset, it
is because it is a relatively simple dataset that enables researchers to test and
validate the performance of neural networks, especially for classification tasks. This
simplicity is ideal for demonstrating the capability of SNNs in solving classification
problems while also allowing for comparison with traditional Artificial Neural
Networks (ANNs). An example of the items contained in the described dataset is
shown in Figure 2.7.

Figure 2.7: MNIST dataset

The network itself is a three-layer spiking neural network, as depicted in
the scheme in Figure 2.8, taken from [3]. It consists of an input layer, a hidden

25

https://commons.wikimedia.org/w/index.php?curid=132282871

The artificial neural network

layer of spiking neurons, and an output layer. The spiking neurons in the hidden
and output layers are modeled using custom event-driven Leaky Integrate-and-Fire
(LIF) neurons implemented on top snnTorch while the connections between layers
are handled by PyTorch modules, such as nn.Linear(), which define the synaptic
weights between neurons.

The network is composed of two distinct parts:
1. Network Definition: the network is implemented as a subclass of nn.Module,

which is the base class for all neural network modules in PyTorch. The
architecture comprises two fully connected layers: the first hidden layer (fc1)
consists of 1000 neurons, and the output layer (fc2) consists of 10 neurons,
corresponding to the 10 digits (0-9) in the MNIST dataset, to match the
dimension of the target classification group.

2. Forward Method: the forward method defines how the input image data
(x) propagates through the network. The image data first passes through the
hidden layer (fc1 and lif1), where it is processed by the spiking neurons, next,
the output of the hidden layer is passed to the second fully connected layer
(fc2 and lif2), then, the network records both the spikes and membrane
potentials at every time step, lastly, the recorded values, are stacked and
returned at the end of the forward pass, providing the output for classification.

Figure 2.8: MNIST network scheme

The network shown in Figure 2.8 illustrates the three-layer structure: the input
layer consists of 784 neurons (28x28 pixels flattened), the hidden layer has 1000

26

https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_3.html

The artificial neural network

spiking neurons, and the output layer contains 10 neurons, each corresponding to a
digit from 0 to 9.

2.4.2 The Network parameters
The choice of a fully connected (FC) network architecture, instead of a more
complex structure, is based on the effectiveness of this architecture for handling
small-scale, low-resolution image classification problems. Here are the main reasons
why the FC network was preferred:

• Small Dataset: when dealing with small dataset (in terms of complexity and
size) it is feasible to use a fully connected architecture without overcomplicating
the network.

• Feature Learning: in fully connected layers, each neuron receives input from
all neurons in the previous layer, allowing the network to learn global patterns
and relationships across the entire input image. This global connectivity is
often sufficient to capture the necessary features for accurate classification.

• Ease of implementation: fully connected layers, thanks to their regular
structure, are easier to implement in a second moment when the network will
be implemented in hardware.

• Future customization: in this specific application the use of snnTorch for
developing the network is a preparation step since the target platform is the
FPGA; for this reason a FC network give more space for customisation when
the network will be deployed in hardware.

Another critical step is the choice of the layers’ dimension since this strongly
influence performance but also dimension and scalability of the network.

The first layer is the Input Layer; the made choice is to match the number
of pixels in the MNIST images, which is 28 × 28 = 784 neurons. This is not an
unbreakable rule but it is preferable since this ensures that each pixel in the image
corresponds to a unique input neuron.
On the other hand the last layer is the output layer; its size must corresponds to
the number of classes. Since MNIST contains 10 digits (0-9), the output layer must
contain 10 neurons. Each output neuron represents the likelihood of the input
image belonging to a specific class.
The last choice consists in how to handle the hidden layer. Usually the hidden
layer size is an empirical choice; a larger hidden layer allows the network to learn
more complex features but comes at the risk of overfitting on the other hand a
smaller hidden layer reduces the risk of overfitting but might limit the network’s
ability to learn intricate patterns, encountering underfitting.

27

The artificial neural network

Moreover, this choice strongly influences the final dimension of the network; since
the hidden layer is the biggest one trying to minimize its dimension helps a lot
for reducing the hardware accelerator complexity. The hidden layer’s size is a
fundamental parameter of the network and the best approach is to test the model
under different conditions to verify the effectiveness of such choices.
As a final consideration, in this example, only one hidden layer is used. Adding
more layers would increase the model’s depth, potentially allowing it to learn more
hierarchical features, but this would drastically increases computational complexity.

Figure 2.9: MNIST Training with different hidden layer size

The plots in Figure 2.9 demonstrate the evolution in time of the network’s
training accuracy across different hidden layer sizes. The left plot shows how the
training accuracy changes over iterations.
The following key observations can be drawn:

• Larger hidden layers (e.g., 1000 and 500 neurons) tend to reach higher accuracy
levels quickly and stabilize around the 95-100% mark; they show minimal
fluctuations over time, indicating more stable learning behavior.

• Smaller hidden layers (e.g., 100 neurons and below) also reach reasonable
accuracy but at a slower rate, with more oscillation in their learning curves.
Particularly, the network with only 10 neurons struggles the most to reach
higher accuracy, converging around 90%.

• The relationship between hidden layer size and accuracy is not linear: while
reducing the number of neurons decreases the accuracy, the difference is not
drastic for sizes like 100 or 40 neurons. This shows that even significantly
smaller networks can achieve relatively high performance.

28

The artificial neural network

On the other hand the right plot provides a summary of the final training and
testing accuracies for each hidden layer size. It reveals:

• Larger hidden layers (1000 and 500 neurons) achieve both high training and
testing accuracies, with a minimal gap between the two, suggesting good
generalization.

• The hidden layer of 100 neurons and the one with 40 neurons also perform well,
achieving around 95% training accuracy and slightly lower testing accuracy,
showing that reducing the size still leads to strong performance.

• For smaller networks (10 neurons), the training accuracy drops significantly,
and this reduction is mirrored in the testing accuracy.

This analysis shows that reducing the hidden layer size does have an impact on
accuracy, but the dependency is not strictly linear. Networks with smaller hidden
layers can still perform reasonably well, particularly when considering the trade-off
in terms of network complexity.
For example, observing the results obtained for the network with 1000 neurons
and for that with 100 neurons while reducing the hidden size by a factor of 10, the
testing accuracy drops only slightly (97% to 96%). This represents a significant
reduction in network size and computational cost with only a minor impact on
performance.
From a practical standpoint, reducing the hidden layer size is an effective strategy
to lower the computational complexity and the physical dimension of the network
while still maintaining relatively high accuracy.

It’s important to note that the choice of dataset plays a significant role in this
trade-off. For instance, the MNIST dataset, while commonly used as a benchmark,
is relatively simple; this simplicity allows for more aggressive reductions in network
size without severely impacting performance while, for more complex datasets, the
hidden layer size would have a much greater influence on the network’s overall
performance, making it a more critical factor to consider.

Listing 2.2: Network Event Driven
1 # Network Arch i t e c tu re
2 num_inputs = 28 ∗ 28
3 num_hidden = 1000
4 num_outputs = 10
5

6 # Temporal Dynamics
7 num_steps = 100
8 beta = 0 .8

29

The artificial neural network

In the code above, the key parameters for the network are defined, showing
how the core architecture and temporal dynamics parameters are defined using
PyTorch.

2.5 Training and Inference
The training process for a Spiking Neural Network (SNN) involves several key
stages, including data preparation, network initialization (described above), loss
function and optimizer setup, and iterative training over multiple epochs.

The main steps leading up to the training loop are summarized as follows:

1. Data Preparation: in the preparation phase, the MNIST dataset is loaded
and transformed into tensors. The dataset is split into training and test sets,
and DataLoader objects are created for both sets to facilitate batch processing.

2. Network Initialization: the network is defined as described in the architec-
ture section, using layers and neurons adapted to the SNN framework.

3. Device Setup: the network is loaded onto the appropriate device, either
CPU or GPU. Using a GPU, when available, speeds up both the training and
inference phases due to its capacity for parallel processing.

4. Loss Function Definition: a loss function measures the discrepancy between
predicted and true labels. In this case, the cross-entropy loss function is chosen
to quantify classification errors.

5. Optimizer: an optimizer is needed to update the network’s parameters during
training. For this implementation, the Adam optimizer is selected due to its
efficiency in handling non-convex optimization problems.

Once these preliminary steps are executed, the network is ready for the training
loop, which iterates over the dataset for a predefined number of epochs and updates
the network’s parameters based on the computed loss. Here are the key phases of
the training process:

• Epoch Loop: the outer loop runs for a specified number of epochs (equal
to: num_epochs). In each epoch, the network is trained on the entire training
dataset once.

• Minibatch Loop: during each epoch, the dataset is split into smaller sets
called mini-batches. This improves training performance by optimizing memory
usage and speeding up gradient calculations.

30

The artificial neural network

• Forward Pass: for each mini-batch, input data is passed through the network
to generate spike records (spk_rec) and membrane potential records (mem_rec)
over multiple time steps.

• Loss Calculation: for each time step, the cross-entropy loss is computed
between the predicted membrane potentials and the target labels. The total
loss accumulates over all time steps.

• Backpropagation and Optimization: the loss is used to compute gradients
via backpropagation. The optimizer then updates the network’s weights using
these gradients to minimize the loss.

• Test Set Evaluation: periodically, the model’s performance is evaluated on
the test set. During evaluation, the network is set to inference mode using
net.eval(), and a forward pass is performed on the test mini-batches. The
test loss and accuracy are computed and recorded.

• Printing Performance Metrics: the train_printer function periodically
prints performance metrics, such as training and test loss, as well as accuracy
on both the training and test sets.

At the end of the training process, the model is evaluated on the complete test
set to calculate the overall accuracy. The trained model parameters are then saved
to a file for future use.
Training SNNs is a complex, multi-stage procedure with many interdependent
phases. Figure 2.10 shows a comparison between the training process of a standard
clock-driven LIF neuron (as implemented in snnTorch) and the custom event-
driven LIF neuron; in the image is also highlighted the point where the two
different model reach the highest accuracy (both for testing and training) to show
how they both behaves in a very similar way showing a very similar final accuracy
obtained at approximately at the same rate.

2.5.1 Running Inference on the Saved Model
After completing the training phase and saving the model’s parameters, the final
step is to run inference on new, unseen data. Inference is a process that verifies
whether the trained model generalizes well beyond the data it was trained on and
ensures that the model performs as expected in real-world scenarios. This is done
by testing the model on data it has not encountered during the training process,
and it is often used as a measure of the model’s robustness and generalization
capability.
In PyTorch, once the model has been successfully trained, the learned parameters,
such as weights and biases of each layer, are saved in the form of a state dictionary,

31

The artificial neural network

Figure 2.10: MNIST training/testing using standard and custom LIF neuron

or state_dict. The state dictionary (state_dict) is a Python data structure
used in PyTorch to store the parameters of a neural network; it contains the
model’s learnable parameters organized in a format that maps each parameter to
its corresponding tensor. In the dictionary, parameters are organized by layer and
neuron, with each entry named according to its layer and the type of parameter
(e.g., layer1.weight, layer1.bias), this regular structure facilitates the extraction
process of the necessary data.
Saving the state_dict ensures that the trained model becomes portable, allowing
it to be exported, shared, and deployed across different systems or environments
for inference tasks. Furthermore, by decoupling the trained parameters from the
model architecture, the state_dict allows for flexible reuse of the model without
the need for retraining.

The following code snippet demonstrates how easy it is to export the model’s
learned parameters by saving the state_dict at the end of the training phase:

Listing 2.3: Saving the trained model parameters to a state dict
1 # Save the t ra in ed model parameters
2 torch . save (net . s t a t e_d i c t () , " trained_model . pt ")

To perform inference using this saved model, the first step is to load the saved
state_dict into a model with the same architecture used during training. It is
critical to ensure that the network is built exactly as it was during training since
any inconsistencies in the model’s architecture will result in failed inference.
Once the parameters are loaded, it is important to set the model to evaluation
mode by calling model.eval(). This step disables certain layers, such as dropout
and batch normalization, which are active during training but not needed during
inference. Setting the model to evaluation mode ensures that it behaves correctly

32

The artificial neural network

during inference, avoiding any unintended behaviors from training-specific layers.
To facilitate and optimize the inference process, the MNIST dataset is divided
into subsets, allowing the developer to easily select the desired one. The following
code demonstrates how to load the test set subset, load a saved state_dict, and
prepare the model for inference:

Listing 2.4: Loading the state dict and preparing the model for inference
1 # S e l e c t the te s t −s e t from the MNIST datase t
2 mnist_test = data s e t s .MNIST(data_path , t r a i n=False , download=True

, trans form=transform)
3 # Load the saved model parameters
4 net = Net () # I n i t i a l i z e the model a r c h i t e c t u r e
5 net . load_state_dict (torch . load (" trained_model . pt "))
6 net . eva l ()

2.6 Quantization for Hardware Deployment
Quantization in general refers to the process of mapping a large set of continu-
ous values or high-precision data to a smaller set of discrete values. The main
goal of quantization is to simplify data representation, which can be useful for
reducing storage requirements, simplifying computations, and increasing efficiency,
particularly in digital systems.

Quantization is used in various fields, such as:

• Signal Processing: quantization is applied to analog signals to convert them
into digital signals. A generic waveform that contains a range of continuous
voltage level (analog values) is converted into a series of discrete voltage levels
(digital values) so it can be stored or processed digitally.

• Image Compression: in image formats such as JPEG, quantization is used
to reduce the precision of pixel values to save storage space while retaining
most of the visual information.

• Neural Networks: in machine learning, especially for hardware implementa-
tion, quantization reduces the precision of weights, biases, and activations from
floating-point precision (like 32-bit) to lower precision (like 8-bit integers).

In summary, quantization is the process of reducing precision by converting
continuous data into a discrete form; this extremely important when dealing with
an Artificial Neural Network because quantization, by reducing the precision of the
model’s parameters, makes the model more efficient for hardware implementation.
However, quantization introduces a trade-off: while it reduces resource usage, it can
also negatively affect the model’s accuracy if not applied carefully. The challenge

33

The artificial neural network

lies in finding the right balance between optimizing the network and maintaining
acceptable performance.

2.6.1 Quantization Techniques
There are two main approaches to quantization: Quantization-Aware Training
(QAT) and Post-Training Quantization (PTQ). Both methods aim to optimize the
model for hardware accelerators, but they differ in their complexity and impact on
accuracy.

1. Quantization-Aware Training : QAT simulates quantization during the
training phase of the neural network. While the model is trained in floating-
point precision, it simulates how the parameters will behave when quantized,
allowing the model to adapt to lower precision.
By incorporating quantization during training, the model is more likely to
maintain accuracy when deployed in a quantized state. This approach tends to
result in higher accuracy but requires more effort during the training process.

2. Post-Training Quantization : PTQ is a simpler and faster approach since it
is applied after the model has already been trained in floating-point precision
in fact the parameters are converted to lower precision after training, typically
requiring a calibration step to minimize the accuracy loss. PTQ speeds up
the deployment process but can lead to a more significant drop in accuracy
compared to QAT.

In summary, PTQ is easier and faster to implement, especially when quick
deployment is needed, but it may result in a noticeable drop in accuracy. QAT, on
the other hand, requires more effort during training but usually preserves more of
the model’s accuracy in the quantized form.
In this case, PTQ has been chosen. The reason for this decision is to customize
the quantization process as much as possible to adapt it to the specific application.
While this method may lead to some performance loss compared to QAT, it allows
for greater flexibility and faster deployment. For this reason, as will be explained
in Chapter 5, simulating the model and analyzing its behavior will be fundamental
to minimize losses and maintain high accuracy during deployment on the hardware
accelerator.

34

Chapter 3

The Spiking Neural Network

The network is made of an input layer, a hidden layer, and an output layer:

• Input Layer: the input layer accepts the 28x28 pixel images, flattened into a
single dimension of 784 neurons.

• Hidden Layer: the hidden layer contains several neurons, this Layer is the
more flexible since, according to the requirements of the designer, can be
resized.

• Output Layer: the output layer has 10 neurons, corresponding to the 10
digit classes (0-9).

This network has been designed specifically to suit the needs of the MNIST
dataset, with additional considerations for minimizing the area by keeping the
network size as small as possible without compromising performance.
The network consists of two fully connected layers; this choice impacts the overhead
in terms of data traveling from one layer to another, but, knowing that the
target architecture will have limitations, the designer can approximate low-weight
connections to zero to save power.

The key element of this architecture is the neuromorphic neuron [13]. The chosen
neuron is an event-driven version of the standard clock-driven leaky integrate-and-
fire (LIF) neuron available in the snnTorch library.

3.1 Hardware implementation
After completing the training and all the steps necessary to create a complete
software description of the network, the next step is to move towards the hardware
implementation. The first major issue when transitioning from software to hardware
is managing the limited resources and correctly scheduling the operations.

35

The Spiking Neural Network

The most straightforward way of connecting neurons within a network is to directly
route each neuron in the previous layer to neurons in the next layer. This method
simplifies the network structure but requires an arbitration mechanism to handle
congestion, and it is neither power-efficient nor area-efficient.
As a starting point for finding a better solution was to draw inspiration from
protocols used to manage communications in complex systems, such as Artificial
Neural Networks. The studied protocols included those used in the Internet and
Network-on-Chip systems. Additionally, interrupt management was analyzed to
better understand how to efficiently manage congestion; finally, taking inspiration
from all these sources, a custom implementation was created.

3.2 Internet communication characteristics
The term Internet refers to a vast collection of standards that govern how commu-
nication operates within this global network. Two of the most widely used methods
for Internet communication are Ethernet and Wireless communication, both of
which are regulated by the IEEE 802 standards.
Ethernet, a key member of this family, is a widely-used technology for local area
networks (LANs) and it regulates how data packets between devices on the same
network are transmitted.

3.2.1 How Ethernet works
Ethernet [14] transmits data in units called frames whose name and dimension is
summarized in Table 3.1. An Ethernet frame consists of several fields:

1. Preamble (PRE): synchronizes communication by waking up the receiver.

2. Starting Frame Delimiter (SFD): marks the beginning of the frame.

3. Destination Address (DA) and Source Address (SA): a six-byte fields
indicating the frame’s destination and source, respectively.

4. Length/Type (L/T): indicates the length of the data or the type of frame,
with specific values used for different frame types.

5. Payload: contains the actual data to be transmitted, which can be up to
1500 bytes. Padding is added if the data is less than 46 bytes.

6. PAD: ensures the minimum frame length of 64 bytes.

7. Frame Check Sequence (FCS): a CRC value for error detection, ensuring
frame integrity during transmission.

36

The Spiking Neural Network

Frame field Description Byte Count
PRE Preamble 7
SFD Starting Frame Delimiter 1
DA Destination Address 2 - 6
SA Source Address 2 - 6
L/T Length/Type 2
Dati Data 0 - 1500
PAD Padding 0 - 46
FCS Frame Check Sequence 4

Table 3.1: Ethernet Frame Fields and Byte Count

3.2.2 Is Ethernet model suitable for SNN?
While Ethernet is an effective model for communication in computer networks, it
is not well-suited for implementing spiking neural networks (SNNs) in hardware.
Here are several reasons why Ethernet’s model does not satisfy the requirements of
SNNs:

• Broadcast Communication: Ethernet is primarily designed for packet-
switched networks where data can be sent to a specific address or broadcast
to all devices on the network; on the other hand SNNs require precise, point-
to-point communication between neurons. Broadcasting data to all neurons,
or most of them, would be highly inefficient leading to significant performance
degradation.

• Network Size and Addressing: the MAC addresses used by Ethernet for
identifying devices becomes cumbersome in large-scale networks. Since SNNs
typically consist of a very large number of neurons the addressing scheme in
Ethernet would not scale well.

• Scalability: SNNs need to scale efficiently to simulate large neural networks
while Ethernet, for its characteristics, encounters performance degradation
when the numbers of devices increases.

• Communication Overhead: Ethernet introduces overhead through its
various frame fields which are necessary for reliable data transmission in
computer networks but in an artificial neural network, where minimal latency
and overhead are required, the additional data fields in Ethernet frames would
introduce unnecessary latency and processing overhead.

• Data Granularity: SNNs need to transmit very small amounts of data (spike
events) so the large frame size in Ethernet would be strongly inefficient for

37

The Spiking Neural Network

the frequent, small data transmissions characteristic of SNNs.

3.3 Network on Chip (NoC) characteristics
A Network on Chip (NoC) [15] is a communication framework designed to connect
multiple processing elements (PEs) within a single integrated circuit. It provides
an efficient way to interconnect various components such as CPUs, GPUs, memory
modules, and specialized accelerators (Figure 3.1).

3.3.1 How Network on Chip works
The Network on Chip communication model has the following characteristics:

1. Topology: NoC employs various topologies like mesh, torus, ring, and star
to interconnect PEs.

2. Routing: data packets are routed from source to destination using routing
algorithms; the scope of these algorithms is to determine the path taken by
data packets.

3. Communication Protocol: NoC uses packet-based communication where
data is encapsulated in packets and each of them typically contains a header
(with source and destination addresses), payload (data), and sometimes a tail.

4. Switches and Buffers: at each node in the network, switches or routers
manage the incoming and outgoing data packets while the job of buffers is
to temporarily store packets during routing to prevent data loss and manage
congestion.

5. Flow control: these are all the mechanism that ensure an efficient data
transfer avoiding congestion.

Finally one of the biggest advantages of NoC is its flexibility, allowing designers
to fully customize the network to meet specific needs.

3.3.2 Is NoC model suitable for SNN?
Having defined the main features of NoC is now necessary to analyze if this
architecture is suitable for creating a SNN to satisfy our needs. Here are the main
reasons why NoC model doesn’t satisfy the requirements for our SNNs:

• Connection Scheme: SNNs require both a simple and direct communication
pathways between neurons to minimize as much as possible power usage and

38

The Spiking Neural Network

Figure 3.1: NoC scheme with Mesh structure

latency. The complex routing and switching mechanisms in NoC are overkill
and inefficient for SNNs, leading to unnecessary power consumption.

• Broadcast Communication: NoC are optimized mainly for point-to-point
and multicasting communication while SNNs require mostly broadcasting.
Implementing such communication may turns out to be inefficient and complex,
requiring additional hardware and power.

• Power consumption: SNNs require low-power communication mechanisms
to simulate the energy efficiency of biological brains and this is in contrast
with he complex switching, buffering, and routing mechanisms of NoC which
is acceptable for general-purpose processing but not ideal for energy-efficient
neural network implementations.

• Routing Overhead: SNNs need minimal overhead to ensure real-time
performance. The routing overhead in NoC would introduce unnecessary
delays and complexity, without satisfying the fast communication required in
neural networks.

While Network on Chip (NoC) provides an efficient and scalable communication
framework for integrated circuits, it is not well-suited for implementing spiking

39

The Spiking Neural Network

neural networks. The described issues in using NoC for implementing the architec-
ture of a SNN are significant drawbacks. However, in some applications where very
large Artificial Neural Networks (ANNs) are implemented, NoC can be used for
regulating the communication between building blocks, each made of thousands of
neurons.

3.4 Interrupt management characteristics
Managing interrupt congestion is crucial when multiple interrupts require access
to shared resources. Effective interrupt handling ensures that high-priority tasks are
executed promptly without causing significant delays in the system and ensuring
to execute all necessary operations avoiding collision between requests.
There exists many different ways how interrupt congestion is typically managed
and every system can implement the strategy or an hybrid one that best satisfy its
requirements; however interrupt management techniques can be divided into five
categories:

1. Priority-Based Handling: each interrupt has an assigned priority, both in
a static or dynamic way, based on the criticality; higher priority interrupts
are serviced first, ensuring critical tasks are handled promptly.

2. Interrupt Queuing: in this case interrupts are queued in a buffer and the
adopted strategy consists in processing interrupts in the order they arrive. This
approach can be combined with priority assignment to increase the efficiency
or, in simpler application, interrupts are just executed in order.

3. Interrupt Masking: in this approach interrupts have priorities and lower
priority interrupts can be temporarily masked or disabled when a higher
priority interrupt is being serviced.

4. Distributed Interrupt Handling: this approach is reserved to system that
have multiple execution units (such as multi-core systems) for example in
a multi-core systems, interrupts can be distributed across different cores to
balance the load and avoid congestion.

5. Hardware Timers and Interrupt Controllers: hardware timers and
dedicated interrupt controllers manage the timing and distribution of interrupts.
This approach is by far the most complicated one and needs some specialized
hardware resources.

40

The Spiking Neural Network

3.4.1 Similarity with SNN Input Management
In a spiking neural network, input spikes from the previous layer must be processed
by the neurons in the current layer; this is analogous to handling multiple interrupts
requiring access to shared hardware resources.
The design of the artificial neural network and how data need to be processed
inside it make the ANN different from different perspective with respect to a CPU
that needs to control interrupt and manage their corresponding routine.
In SNNs the use of custom hardware to manage simultaneous input stimuli, as
done for interrupt, should be reduced as much as possible to limit both power
consumption and area occupation; for this reason solutions as Interrupt Masking
or Priority-Based Handling are suitable. However Interrupt Queuing can be
an interesting starting point for building a custom method to manage neuron
operations without the need of extra hardware even though this require some
method to synchronize inputs and to manage the priority.

3.5 Custom architecture characteristics
Given the limitations but also the advantages of existing communication frameworks
such as Ethernet and Network on Chip (NoC) for implementing spiking neural
networks (SNNs) and inheriting some ideas from the way interrupts are manged, a
custom architecture has been designed.
Here are summarized some of the main characteristics of the custom architecture.

• Data structure: one of the key characteristics of this custom architecture is
how data are represented. In the context of Ethernet and NoC, a significant
disadvantage was the overhead introduced by data packets. To address this
issue, the custom architecture adopts a simplified data representation where
each neuron’s output is either a 0 or a 1, corresponding to a non-spike or a
spike, respectively.
In this way, by representing the outputs as an ordered sequence of 0’s and
1’s, the data can be processed and transmitted more efficiently compared to
complex packet-based systems but correct synchronization must be ensured.

• Priority management: this is an extremely important aspect to take care
of since, in SNNs, the order in which operations are executed is crucial; for
this reason, to simplify the internal structure of the network, each input is
processed in order and only after the end of all the operations generated by
the previous one.
This assumption is coherent with the way sensors, such as event-driven camera,
works; they work at a certain frequency and once every specified period of
time an output is generated and given as an input to the network. This

41

The Spiking Neural Network

characteristic requires the accelerator to be fast enough to generate an output
before the output from the sensor reaches the network input.

• Mesh Structure: the architecture is organized in a mesh structure with N
rows and K columns, this is done for avoiding a 1-dimension network with too
many rows or with big building blocks that would turns out into an inefficient
structure both for power consumption and area optimization, ensuring that
the architecture can scale efficiently without excessive resource usage.

• Input Spike Distribution: input spikes are divided into N groups (same as
the number of rows) of dimension H and each group is sent to a different row
of the mesh. This is done for ensuring that elements in the same row work on
the same data. To simplify the architecture, there is no data transfer between
columns.

• Building Blocks: each building block corresponds to a specific set of J
neurons, the choice of the number of neurons effects both latency and area
utilization.

• Data Transfer and Processing: once each block has processed its group
of input spikes (from the previous layer or from the input bus), the results
are transferred to the block directly below it. If each block requires G cycles
to process an input block, then in a total of G × N cycles, all blocks (and
consequently all neurons) will have processed the incoming input.

• Parallel Input and Serial Processing: input blocks arrive in parallel
through a bus that delivers data packets to all the blocks that build a row
and are transmitted in parallel between blocks in the same column. On the
other hand, operations inside the neuron are executed serially, with inputs
shifted one at a time and then elaborated by the processing element inside
the single block.

• Scalable Processing and efficient cycle management: the design allows
for scalable processing as each block processes its input independently before
transferring the results to the block below. Moreover by requiring G × N
cycles for complete processing, the architecture ensures that all neurons in
the network process their inputs in a synchronized manner, maintaining the
temporal accuracy that is crucial for SNNs.

In summary the processing flow can be divided into the following phases:

1. Input Distribution: input spikes coming from the previous layer are divided
into N groups and sent to the respective rows.

42

The Spiking Neural Network

2. Processing: each block, after receiving through the bus the inputs, processes
them serially, bit after bit.

3. Cycle Management: in G cycles, all blocks complete their processing.

4. Data Transfer: once the elaboration phase has elapsed, each block transfers its
input, strategically saved inside a register during the execution of operations,
to the next block in the same column and a feedback connection allows to
route data from the last to the first block of the column.

5. End of operation: when all the blocks in a column as successfully processed
all the data from the previous layer for each block the spike or non-spike (1 or
0) is calculated and sent in parallel to the next layer.

Figure 3.2: 2 × 2 Mesh scheme

This custom architecture addresses the specific needs of our SNNs, providing a
scalable, efficient, and low-power solution compared to a traditional communication
models. An example of a 2 × 2 mesh is shown in Figure 3.2; in the picture a
simplified scheme of the connections is shown and the main components of the
mesh are schematically represented.

43

The Spiking Neural Network

3.5.1 Custom architecture optimizations
Starting from this basic description some optimization can be applied to further
customize and to adapt the network to the specific needs of SNNs.
Here some possible personalization are described:

• Input Buffer Optimization: inside each building block there is an input
buffer that is used to collect the input data and to serially distribute it to the
processing elements.
The buffer becomes critical when its dimension increases both for power and
area issue so it is important to choose a buffer size that allows for efficient data
processing without excessive memory usage. This involves finding a trade-off
where a smaller buffer reduces power and area requirements but increases the
frequency of memory access, which can impact performance.

• Number of Neurons per Block: this parameter is related to the buffer
dimension and, as before, some considerations are needed both in terms of
area and power.
Assuming that the number of neurons per block is J and that each input
packet is made of H bits we have two possible scenarios:

1. Maximizing Performance: with J=H, the performance is maximized be-
cause each neuron processes one input, but this consumes more power
and area furthermore going above this value is completely useless.

2. Resource Optimization: reducing J by a factor (i.e. 2 or 3) can save
space and power leading to better resource reuse and optimized area.
This reduction increases latency but is acceptable when processing events
from sensors or cameras operating at low frequencies (a few Hz), where
ultra-fast response times are not critical.

• Memory Access Optimization: optimizing memory is crucial to reduce
the bottleneck introduced by memory elements.
A possible solution to this problem comes from reducing memory access
contention for example aligning data access patterns with memory architecture
to reduce access time and improve throughput. Another possibility is to
utilize local memory within each block to store frequently accessed data. By
combining this approach the latency due to slow memory can be strongly
minimized.

• Idle System Optimization: design the system to stay idle when an input
bit is 0, meaning resources are only consumed when the input bit is 1. This
approach, even if it doesn’t effect latency, leverages the typically sparse activity
in spiking neural networks to reduce power consumption significantly without
introducing undesired desynchronization due to dropping 0 inputs.

44

The Spiking Neural Network

3.6 Address Event representation (AER) stan-
dard

Address Event Representation (AER) is a communication protocol widely used in
Spiking Neural Networks (SNNs) for transmitting information between neurons,
neuronal populations, or between a sensor and the corresponding network. In AER,
events are conveyed as series of address-event pairs. The key characteristics of
AER are outlined below:

• Event-Based Communication: AER communicates information via dis-
crete events, where each event represents a neuronal spike. This form of
communication can either transmit the entire state of the network at fixed in-
tervals (synchronous communication) or only when spikes occur (asynchronous
communication). The latter results in a highly efficient, event-driven commu-
nication system, reducing unnecessary data transmission.

• Address and Time: each AER event consists of two parts: an address and a
timestamp. The address corresponds to the identity of the neuron or network
node that generates the spike, and the timestamp indicates the exact time
the event occurred.
The addresses can be either unique for every neuron in the network or reused
within each layer, depending on the network structure. Proper event mapping
mechanisms are required to ensure that spikes are transmitted accurately from
their source to the appropriate destination.

• Temporal Precision: the AER protocol provides high temporal precision by
timestamping events with fine-grained resolution ensuring precise synchroniza-
tion and accurate representation of spike timing, making it especially useful
in real-time neural processing.

• Scalability and Efficiency: the event-based nature of AER enables scala-
bility, especially in large-scale neural systems. By only transmitting events
when spikes occur, AER minimizes data bandwidth and energy consumption,
making it an efficient mechanism for high-density neural processing systems.

Figure 3.3: AER string format

45

The Spiking Neural Network

From the perspective of the network architecture, each AER event is represented
as a string of bits, as depicted in Figure 3.3. The first part of the string, starting
from the Most Significant Bit (MSB), encodes the address, while the second part,
ending at the Least Significant Bit (LSB), represents the timestamp or temporal
information. Inside the architecture, spikes are often represented as bit strings,
where each bit corresponds to the presence (1) or absence (0) of a spike. This
representation simplifies the internal transmission of information and is enabled by
translators at both the input and output of the accelerator.
The Address Event Representation (AER) is critical for interfacing with external
systems, allowing for minimal data transfer overhead and enabling efficient commu-
nication within the SNN. By maintaining compatibility with the AER standard,
this communication protocol ensures the SNN can be easily integrated with other
external systems and devices, supporting interoperability across diverse platforms.

Here is an Example of the AER Conversion Process. Consider a random string
of binary values representing a simple sequence of neuronal spikes: 1010110010 at
a certain time instant t1.
Each bit in this string represents whether a neuron has spiked (1) or not (0). The
conversion of this binary spike representation into AER format involves assigning
an address (in a neural network the position of a spike in a sequence is the address
of the neuron who generate that spike) to each spike and capturing the time at
which the spike occurs.
Observing the first two ones of the string we can say that there is a spike at position
1 and another spike at position 4. The corresponding AER representation for these
events would look like:

• Address: 00001, Time: t1

• Address: 00100, Time: t1

After processing all events, the final AER string for the two spikes could
look something like: 00001_t1, 00100_t1, 00101_t1, 00111_t1, 01001_t1, then,
substituting a generic value for t1 = 0101 the resulting string would be 000010101,
001000101, 001010101, 001110101, 010010101.
This string provides the complete address-event information, where each address is
linked to a specific neuron and timestamp, facilitating communication with external
devices using the AER protocol.

46

Chapter 4

Network software testing

To ensure the functionality and correctness of the design, before diving into the
hardware development of the model, a preliminary verification was performed
using a Python version of the spiking neural network that behaves exactly as the
hardware accelerator.
This network consists of 784 inputs, a first layer (hidden layer) with 40 neurons
organized in a 2 × 2 mesh structure (10 neurons per mesh element) and with 10
outputs. Following this, a second layer with 10 neurons arranged in a 2 × 1 mesh
structure (5 neurons per mesh element) was used leading to 10 final outputs. An
high-level representation of the network is shown in Figure 4.1.
The primary objective of this setup was to test the functionality of the network
and those of the developed environment and to finally debug any potential issues
in the design.

The simulation steps are as follows:

• Training the Network: the network was initially trained using PyTorch and
snnTorch with the goal of extracting the network’s parameters. The training
is performed using the custom event-driven neuron and the parameters from
the trained network are saved in a text file extracting the useful information
from the state_dict generated with PyTorch.

• Network Preparation: two automated scripts were employed to prepare
the network for simulation. The first script creates the initialization files for
the required memories then another script is in charge of generating a file for
the simulation extracting from the MNIST dataset a sample and converting it
into the wanted AER format.
For this preliminary test the first script is not strictly needed since the Python
simulation could extract the parameters directly from the dictionary but, in this
way, the script is tested before using it for the real hardware implementation.

47

Network software testing

Figure 4.1: Network scheme

• Network simulation: the simulation was executed using Python. The
intermediate results were analyzed to verify the correctness of the network’s
functionality and to identify any potential design errors.

4.1 Training the Network
The network’s training is conducted using PyTorch, as described in Section 2.5,
and the training output file is the state_dict.
After extracting the state dictionary, a Python script was used to convert it into a
simple text file; the code iterates through all the entries of the state_dict and
prints only the necessary parameters (weights, biases, etc.).
This conversion step is crucial for making the model’s learned parameters more
accessible for further processing, serving as the foundation for subsequent processing
steps, where automatic scripts will handle parameter conversions for deploying the
network in hardware.

4.2 Network Preparation - Automatic Scripts
The automatic scripts employed in this phase are two and they were both developed
using Python for its ease of use and for its characteristics of being merely deployed
on different platforms.

48

Network software testing

4.2.1 Parameters extraction and memory initialization
The first script is used to extract from the state dictionary, obtained through the
training phase, the necessary parameters as though weights and biases.
With this automated script, the elements are first extracted from the file gener-
ated in the previous stage through the state_dict conversion and stored inside
temporary variables, then, the script is in charge of converting from floating-point
representation into the necessary integer format, finally, they go through a quite
articulated process where the data are re-organized to meets the requirements of
the hardware accelerator.
The last step is the generation of a ".coe" (Coefficient) file filling it with the
parameters extracted and then elaborated as described above.
The ".coe" files, produced by the first script, are used for memory initialization;
Vivado offers the possibility of generating a memory (ROM/RAM) using its IP
block set of instruments and the coefficient file is used to initialize the memory.
This last step, as described in the introduction of the chapter, is not strictly
necessary during the simulation phase but it is fundamental for ensuring coherence
with how the accelerator will works when it will access the parameters. For this
reason, also in the software simulation, the files containing the parameters will be
accessed by the program.

4.2.2 Sample extraction and AER conversion
The second script is used for extracting a sample from the MNIST dataset and
converting it into Address Event Representation using rate coding.
One of the features of Spiking Neural Networks (SNNs) is that they are made to
exploit time-varying data and, since the MNIST is not a time-varying dataset,
there are two options for using MNIST with an SNN:

1. Repeatedly pass the same training sample X ∈ Rm·n to the network at each
time step. This is like converting MNIST into a static, unchanging video.
Each element of X can take a high precision value normalized between 0 and
1: Xij ∈ [0,1].

2. Convert the input into a spike train of sequence length num_steps, where
each feature/pixel takes on a discrete value Xij ∈ 0,1. In this case, MNIST is
converted into a time-varying sequence of spikes that features a relations to
the original image.

The first method is straightforward but does not fully leverage the temporal
dynamics inherent to spiking neural networks (SNNs) therefore data-to-spike
conversion (encoding) methods based on the second method are preferable.
The snntorch.spikegen module of SNNTorch offers several functions to simplify the

49

Network software testing

process of converting data into spikes. There are three available options for spike
encoding:

• Rate Coding: implemented as spikegen.rate, this method uses the input
features to determine the frequency of spikes.

• Latency Coding: available through spikegen.latency, this method utilizes
input features to determine the timing of spikes.

• Delta Modulation: accessed via spikegen.delta, this approach generates
spikes based on the temporal changes in input features.

Figure 4.2: MNIST conversion process for SNNs deployment

When converting input data into a rate code each normalized input feature Xij

is used as the probability an event (spike) occurs at any given time step, returning
a rate-coded value Rij. This can be treated as a Bernoulli trial: Rij ∼ Bij, where
the number of trials is n = 1, and the probability of success (spiking) is p = Xij.
Explicitly, the probability a spike occurs is: P (Rij = 1) = Xij = 1 − P (Rij = 0).
For an image from the MNIST dataset, the described probability of spiking cor-
responds to the pixel value; a white pixel corresponds to a 100% probability of
spiking, and a black pixel will never generate a spike (0% probability). Figure 4.2
shows how the three different approaches described above behave for converting an
image into the corresponding SNN’s friendly representation.

In a similar way, spikegen.rate can be used to generate a rate-coded sample of
data. As each sample of MNIST is a static element (image) we can use num_steps
to repeat it across time; in all the examples this parameter has been fixed at a
value of 100. Figure 4.3 shows the output of the conversion using a raster plot.

50

Network software testing

Raster plots are a highly informative visualization technique for examining neural
activity over time, both for individual neurons and across all channels simultaneously
but they can also be used to visualize spiking activity in relation to particular
stimuli.
In this context, raster plots are used to display the spiking activity at the input
of the neural network. As shown, the horizontal axis represents 100-time steps
(num_steps), while the vertical axis consists of 784 spots (28 × 28), corresponding
to the pixels of an image. This representation not only illustrates the result of
the data-to-spike conversion process but also effectively highlights the inherent
sparsity of spiking neural networks.

Figure 4.3: MNIST sample raster plot

Thanks to the functions of the snnTorch’s framework the process of converting an
image into the corresponding SNN format is straightforward. After that, to ensure
compatibility with the input interface of the network, the information encoded into
spikes must be converted into the Address Event Representation (AER) format.
The output from the conversion of the images into spikes is a set of num_steps
strings of length 28 × 28 (784 pixels); converting such information into the AER
format requires to describe each 1 (spike) bit of every string with the corresponding
encoding. In this final conversion, the bit length is first defined, a certain portion
of each string will be dedicated to the address (address_portion) part and the next
portion to the time (time_portion). Formally, for obtaining such quantities, the
following formulas are used:

time_portion = log2(num_step) = 6.64 ≈ 7

address_portion = log2(num_inputs) = 9.61 ≈ 10

where num_steps is equal to 100 and num_inputs is 784 (28x28).

51

Network software testing

Having defined the bit length the script goes through every time step, extract
only the elements that represent a spike (bit = 1) and convert its position into the
binary address on the defined number of bits and, for each spike, write a line in a
.txt file.

4.3 The quantization process
The script in charge of extracting the parameters and initializing the memories
implement also diverse steps for normalization and quantisation of the parameters.
The first step, before moving to the actual quantization, consists in adapting the
input generation process.
In snnTorch the function spikegen.rate can be used to generate a rate-coded
sample of data. Since the MNIST dataset consists of static images, we need to
repeat the image data across multiple time steps; this is achieved by specifying
the number of time steps using the num_steps parameter, ensuring that the static
image is represented over a temporal sequence. Another important argument of the
spikegen.rate function is the gain, which controls the spiking frequency by scaling
the intensity of each pixel’s grayscale value.
The MNIST dataset contains grayscale images, where a significant portion of
the image consists of a white background. This characteristic is particularly
relevant because, using the rate-coding mechanism, a white pixel corresponds to
a 100% spiking rate at every time step. In contrast, only a small portion of the
image represents the relevant information (i.e., the digits). By reducing the gain
parameter, the spiking rate for less relevant parts of the image can be decreased,
effectively reducing unnecessary computations. Figure 4.4 shows how different gain
values change the spiking behavior of a sample from the MNIST dataset.

Figure 4.4: MNIST rate coding with different gain values

Choosing the appropriate gain is not trivial. While reducing the gain can

52

Network software testing

optimize resource usage (as fewer spikes reduce computational load), it can also
negatively impact accuracy. If the gain is reduced too much, essential information
might not be adequately represented, leading to significant degradation in model
performance.

4.3.1 Input optimization and parameters normalization
The next step involves normalizing the network’s parameters for deployment on
hardware accelerators. In this process, a conversion factor is used to transform
the floating-point parameters, trained in PyTorch, into integer values. This con-
version is essential for hardware platforms, which operate more efficiently with
fixed-point arithmetic or integer-based computations.
The conversion process involves multiplying each floating-point parameter, ex-
tracted from the state_dict of the trained network, by the chosen conversion
factor and then truncating the result to obtain an integer value. The conversion
factor must be consistent across all network parameters to ensure coherence between
the floating-point training and the hardware implementation.

The normalization of the parameters effectively behaves like a binary shift
operation. In fact, the factor is chosen as a power of 2, meaning a conversion factor
of 10, for example, corresponds to 210 = 1024. This is important because in binary
arithmetic, multiplying by a power of 2 is equivalent to performing a left shift
simplifying the multiplication process in hardware.
For example, if we have a floating-point number 0.035474, and we apply a conversion
factor of 10 (which is equivalent to multiplying by 210 = 1024), the conversion
process is as follows:

floating-point value : 0.035474

multiply by factor : 0.035474 × 210 = 36.334

truncate to integer : 36

In this case, after applying the factor and truncating, we get the integer value 36.
However, it’s important to note that when using a factor of 210, any information
smaller than 10−3 is effectively considered negligible. This is because 210 is approxi-
mately 103, meaning that when rounding, we are discarding all information smaller
than 10−3. This consideration is valid for every chosen factor but, as shown in the
example, if the factor is close to a power of 10 it is easier to visualize this loss of
precision but also how much information we are actually keeping with the conversion.

53

Network software testing

In practice, the choice of the factor depends on the dataset and the range of values
present in the model’s parameters. For a relatively simple dataset like MNIST, it is
easier to find a factor that is not too large, as the data don’t require high precision
to maintain accuracy. However, for more complex datasets or networks, careful
tuning of this factor becomes more critical to prevent significant information loss
during normalization.

This conversion process has two main advantages:

• Reduced Computational Complexity: Integer operations are faster and
less resource-intensive compared to floating-point operations. Integer arith-
metic can be implemented more efficiently on hardware, consuming fewer
resources in terms of power and silicon area.

• Improved Determinism: Integer arithmetic typically offers more determin-
istic behavior, as it avoids the precision issues and rounding errors associated
with floating-point arithmetic.

Figure 4.5: Inference results using different gain and conversion factor

On the other hand, as discussed above regarding the selection of the gain
coefficient, finding a trade-off between reducing the memory footprint and increasing
computational efficiency without drastically compromising performance is not trivial.
To address this challenge an analysis was conducted to examine the combined effects
of adjusting the gain during input generation and modifying the conversion factor.
The results are shown in Figure 4.5, where the graph illustrates the network’s
accuracy as a function of different gains and conversion factors.

On the x-axis, the conversion factor is shown, while on the y-axis, the accuracy
is displayed in percentage. What can be observed is that in all three cases (gain

54

Network software testing

= 1/0.5/0.25), the network saturates with a conversion factor of 10 or greater;
therefore, it would be unnecessary to select a larger conversion factor, as it doesn’t
yield any further improvements in accuracy. This is an important information since
it shows that everything that is bigger than 2factor = 210 is negligible.
The plot shows that the network achieves its best result when the gain value is set
to 1 (corresponding to 100% spike generation). However, it is important to note
that with a 50% reduction in input spikes (gain = 0.5), the accuracy is practically
preserved, showing only a minimal reduction of about 1%.
Nevertheless, when the gain is reduced further (example in blue with a gain = 25%),
the performance degrades significantly, and the reduction in accuracy becomes
non-negligible.
Based on the results, the optimal configuration to maintain high accuracy while
limiting computational load is to select a gain of 0.5 (50% reduction) coupled with
a conversion factor of 10 for the float-to-integer conversion.

4.3.2 Parameters quantization
The next step is to select the number of bits used to actually represent the parame-
ters in hardware; this decision is crucial, as it impacts both power consumption and
silicon area. While choosing a higher number of bits keeps the precision high, it also
increases the size of the hardware components used by the accelerator, resulting in
greater power consumption and silicon area utilization.
It is important to mention that in this simulation phase, the concept of bits is just
an artificial mechanism. In fact, since the simulations are performed in Python, all
the operations are executed using integer number; however the truncation process
is extremely useful to simulate how the real system will behaves when deployed in
hardware using binary representation.
An important consideration when choosing the bit-width is how it handles param-
eter saturation. For instance, suppose we have chosen 4 as the bit-width of the
parameters; if a parameter’s value can fit within a 4-bit integer it can be represented
without issue, however, if the value exceeds the range that can be represented by 4
bits (e.g., [-8;7] in signed 4-bit integers), saturation will occur. Saturation means
that the value will be clipped to the maximum or minimum representable number,
depending on its sign. For example:

Given a 4-bit signed integer range: [−8, 7]

For x = 5, −8 < x < 7, so xconverted = 5

For x = 20, x > 7, so xconverted = 7

Saturation can introduce errors into the network, especially when critical param-
eters are affected. Therefore, when selecting the bit-width, it is essential to strike a

55

Network software testing

balance between precision and hardware constraints to avoid excessive saturation
that might degrade the model’s performance.
To determine the optimal bit-width for our specific application, a simulation was
conducted. The gain used in the generation of the input was fixed at 0.5 (50%),
and the conversion factor was chosen as 10. Thus, the only parameter that varied
during the simulation was the number of bits used to represent the quantized
parameters.
In the plot shown in Figure 4.6, the x-axis represents the bit-width, while the
y-axis displays accuracy as a percentage. The blue points correspond to results
from multiple simulations using different set of data to ensure the reliability of the
outcome. The green line connects the average accuracy for each bit-width, showing
the overall trend, while the red dot highlights the best solution in terms of both
accuracy and bit minimization.
From the simulation, we can observe that when the bit-width is small (between
4 and 6 bits), the accuracy is significantly compromised and the performances
have high unpredictable fluctuations; this happens because lower bit-widths do not
capture enough detail in the parameter representation. However, as the bit-width
increases beyond 7 or 8 bits, the accuracy plateaus, meaning that further increases
in bit-width no longer provide substantial accuracy improvements but merely
consume additional resources; this is because most of the relevant information is
already captured by 8/9 bits.
In this scenario, 9 bits represent a Pareto point namely a point where we achieve
the best balance between minimizing resource usage (bit-width) and maximizing
performance (accuracy). In the context of optimization, a Pareto point is a solution
where no other option can improve one objective (e.g., accuracy) without worsening
another (e.g., resource usage).

4.3.3 Accumulator quantization
The final step in optimizing the system involves saturating the membrane potential
of the LIF neuron model. In this model, when inputs arrive, the system first
accumulates the weights of the incoming inputs then, when all inputs have been
processed, it applies the exponential decay and performs the remaining mathe-
matical operations. The accumulator, which handles this process, stores signed
integer values but predicting the fluctuations of this accumulator is challenging
because they depend on both the number of inputs and the specific parameter
values involved.
To optimize the bit-width of the accumulator, a quantitative analysis was con-
ducted, similar to the approach used for determining the parameter bit-width. The
network was tested with various input sets, and the bit-width of the accumulator

56

Network software testing

Figure 4.6: Inference with different different bits for parameters’ quantization

was adjusted with each simulation.
The results, shown in Figure 4.7, illustrate the effect of varying the bit-width of the
membrane potential, which ranged from 7 bits (two bits smaller than parameters)
to 15 bits. As with previous optimizations, the objective is to find a Pareto point
to get a balance between accuracy and resource usage.
The analysis shows that the behavior is very similar to that observed during the
quantization of the parameters and it indicates that using 11 bits strikes a good com-
promise, maintaining high accuracy while reducing resource consumption. While
11 bits is a safe choice, further experiments on the actual hardware accelerator
might require to increase the bit-width to 12 or to reduce it to 10.

4.3.4 Final considerations
The normalization process can be summarized in three main phases:

• Choosing the Gain: this phase reduces the neuron activity. By selecting
an appropriate gain value, we ensure that neural responses remain within a
manageable range, minimizing excessive spikes and computational overhead.

• Selecting the Normalization Factor: this phase involves scaling the
network’s inputs using facilitating efficient processing on hardware.

• Quantizing the Parameters and Accumulator: finally, the network
parameters are quantized to reduce bit-width while maintaining accuracy. At
this stage, we also determine the optimal bit-width for the accumulator to

57

Network software testing

Figure 4.7: Inference with different different bits for accumulator’s quantization

handle the summation of inputs efficiently. The goal is to minimize resource
usage without compromising model performance.

When performing inference with the trained network, an initial accuracy of
approximately 95-96% was observed. The trained model was then passed to the
Python program, where it operated at maximum precision without any optimization,
yielding an average accuracy of 94-95%, comparable to the behavior observed with
PyTorch.
Once optimization began, with a gain set at 50% and a normalization factor of
10, the accuracy increased to approximately 96-97%. The most critical phase
was during quantization, where the impact on accuracy was more pronounced.
Simulations showed that with 9-bit quantization for both weights and biases, the
accuracy dropped to approximately 93%. Finally, after applying 11-bit quantization
to the accumulator, the accuracy settled at 90%.
While this behavior might seem unexpected, it is largely due to the characteristics
of the MNIST dataset. The simplicity of MNIST allows for model simplifications,
which can sometimes lead to performance improvements rather than degradation.
The differences between these results and the earlier steps are therefore minor and
still fall within a comparable range.

4.4 Network simulation
The last step is the network simulation. The simulation consists of multiple layers
of computation where each layer performs specific operations.

58

Network software testing

The code reads the inputs in the AER format, processes them through weight
accumulation, applies a membrane potential decay mechanism, generates spikes
and finally computes and evaluates the accuracy of the model based on its predicted
results.

1. Parameters Initialization: in the code, some useful parameters are defined
such as the number of rows (ROW_num), columns (COL_num), processing elements
(N_PE) or inputs (num_inputs) to define the structure of the layers.
Moreover, various other constants, like bit_line_length or thr_factor
(threshold factor), are set at the beginning to optimize code portability and
customization of the simulation.

2. Reading AER Data: as a preliminary step the code reads Address-Event Rep-
resentation (AER) formatted input data. The function process_AER_file()
reads and processes the file. The resulting data is stored in a 2D array where
each row represents a time step, and the columns correspond to input neurons
that are active (set to 1).

3. Bias Conversion: the bias values are converted to integer format using
the function convert_bias(). This function multiplies the bias by a scaling
factor (defined as 2thr_factor) and saturate them at the maximum allowable
range depending on the bit-width dedicated to the parameters.

4. Processing Weights: the weights, saved in a dedicated file through the
automatic script, are stored inside an array. After this operation, the network
has finished the setup and it is ready to start processing the inputs

5. Simulation Loop: the main simulation takes place inside the simulation()
function, which processes input stimuli over multiple time steps. For each
time step, the code iterates over all layers, performing the following steps:

• Weight Accumulation: for each layer, the code initializes an accumulator
and spike matrix; then it iterates over all inputs and the weights are
accumulated. The resulting values are accumulated in the accumulator
matrix and saturation limits are applied to prevent overflow.

• Membrane Potential Update: when the input processing ends the mem-
brane potentials are updated using an event-driven exponential decay
approach. The new membrane potential is then computed by adding the
accumulated weights and bias to the decayed potential.

• Spike Generation: spike is generated when the membrane potential ex-
ceeds a predefined threshold, which is set as 2factor (in line with the
normalization of the network’s parameters); when a spike occurs, the

59

Network software testing

membrane potential is reset to zero. The spike vector is stored for future
processing by subsequent layers.

6. Results and Accuracy Calculation: after processing all inputs through
both layers, the final output spikes are analyzed and the neuron with the
maximum number of spikes is considered the predicted output. The accuracy
is calculated by comparing this prediction with the target label extracted from
the input file.
The simulation allows to process more than one input at a time by repeating
this process iteratively, in this case, the accuracy is computed evaluating over
the set of inputs the number of correct predictions over the total predictions.

This code simulates an event-driven hardware accelerator that processes inputs
across multiple layers using spiking neurons, closely mimicking the behavior of the
real hardware implementation.
Certain steps, such as weight extraction and weight accumulation, are intentionally
"not optimized" to replicate how the hardware will retrieve parameters from memory
and accumulate their values. This approach aims to make the simulation as realistic
as possible, accurately reflecting the eventual hardware behavior.
The simulation script has an high degree of customizability to test different config-
urations of the network. This propriety has been used to analyze the behaviour
of the system under different conditions and to test different configurations as a
preparation step for the final deployment of the "real" accelerator on hardware.

60

Chapter 5

Network - hardware
structure

The network architecture is designed with several specialized components that
manage the flow and processing of data. In total the network is made of the
following modules:

1. Control Unit (CU): the Control Unit is responsible for managing all opera-
tional states of the network using a Mealy state machine. It controls the flow
of operations throughout the system, ensuring that each component executes
its tasks in the correct sequence and timing.

2. Processing Element (PE): the Processing Element, named in this way for
the similarities with the Network-on-Chip (NOC) model, serves as the core of
the neural network.
The PE implements the functionalities of a set of N neurons and it performs
essential mathematical operations such as membrane potential computations
or weight accumulations. The PE is essentially the heart of the network, where
all the computations are executed and the actual processing of input data
occurs.

3. Mesh Block: Mesh Blocks are structural components that facilitate the
flow of information to and from the Processing Elements; every mesh block
is connected directly to one PE in a way to ensures efficient communication
within the network’s mesh structure. This block, as for the PE, is inspired
from the structure of NoC.

4. Layer: a Layer, in this network, is a collection of Mesh Blocks. It defines
the overall architecture and control the distribution of weights, inputs and
outputs within the blocks.

61

Network - hardware structure

Every Layer component has numerous parameters that can be set when
istantiating it to customize the shape and the internal organization of the
Layer. The parameters are:

• IN_block: number of bits delivered to each ROW. This defines the input
width for each row of the MESH.

• piso_cnt: logarithm (base 2) of the IN_block. This represents the
dimension of the counter needed to track the number of bits in the
Parallel-In-Serial-Out (PISO) buffer as they are sent to the neuron.

• ROW_number: number of rows in the MESH.
• COL_number: number of columns in the MESH.
• N_PE: number of Neurons in each Processing Element.
• ROM_weights_depth: number of lines in the ROM (Read-Only Memory)

storing the weights.
• ROM_weights_width: width of each line in the ROM storing the weights.
• ROM_weights_addr: logarithm (base 2) of the ROM_weights_depth. This

is the number of bits in the address for the ROM storing the weights.
This is calculated as the

• ROM_biases_addr: number of bits in the address for the ROM storing
the biases.

• counter_dim: dimension of the counter used to track the number of
iterations through the mesh. This is calculated as the logarithm (base
2) of the ROW_number, representing the counter’s size for navigating rows
during computation.

• layer_index: index of the Layer in a multi-layer architecture. This helps
distinguish between different layers when multiple layers are present in
the network.

5. Memory: each Layer has a single port ROM where the weights are stored.
The dimension of the memory depends on the number of inputs and on
the number of neurons of the layer. The memories are defined as external
component with respect to the Layer to raise the network configurability.

6. Input Translator: this component is responsible for converting Address
Event Representation (AER) formatted inputs into a string of bits.

7. Output Translator: performing the inverse operation of the Input Translator,
the Output Translator converts the processed bit strings back into AER format.

62

Network - hardware structure

8. Network: the Network component is the top level entity and it encompasses
all other components. It integrates the Control Unit, Layers, Input Translator,
Output Translator and finally the memories, ensuring that all parts are
interconnected and function cohesively.
The Network component is in charge of addressing the synchronization issues
between different Layers, facilitating smooth data processing across the entire
system.

Figure 5.1: Network high level scheme

An external components has been deployed to enhance easy customization and
modification of the network’s configuration, enabling new versions to be created
with minimal changes dedicated.
This package named constants.sv is used to store all configurable parameters of
the network; an example of such parameters are the number of neurons in each
layer, the number of bits dedicated to the parameters (either weights or biases) or
exponential decay coefficients (β).

5.0.1 External interface
The external interface of the hardware accelerator is designed to be as simple as
possible, minimizing the number of connections to external systems and enhancing
compatibility.
The external connections are as follows:

63

Network - hardware structure

• Input Signals:

1. clk: clock signal used for synchronization and timing.
2. reset: reset signal that reset all the registers and components of the

architecture.
3. new_input: a boolean flag that can be either 1 or 0, indicating when

a new input is available. This signal must remains high as long as new
inputs are present.

4. AER_string_in: the input string in Address Event Representation format,
with its length being the sum of the ADDRESS bits and TIME bits, as
explained in Section 3.6.

• Output Signals:

1. ready: a boolean flag indicating the readiness of the architecture to
receive new input stimuli. A value of 1 means the accelerator is ready,
while 0 indicates it is busy processing.

2. AER_string_out: similar to the input string but represents the output of
the network after processing the inputs.

An high level representation of the structure of the architecture is shown in
Figure 5.1 and the external configuration is also shown. The picture represent a
simplified version of the network made of an input layer organised as a 2 × 2 mesh
and of an output layer organized as a 2 × 1 mesh.

5.1 The Finite State Machine
The network’s Finite State Machine (FSM) is designed as a Mealy machine. In
this type of FSM the outputs depend not only on the current state but also on
the current inputs. This allows for more responsive behavior compared to a Moore
machine, where the outputs depend solely on the current state.

5.1.1 FSM States Description
The FSM (Finite State Machine) of the network operates through a series of states
to manage the flow of data and control operations; a scheme of all the states of the
Finite State Machine is shown in the Figure 5.2. Below is a detailed description of
each state:

• IDLE: the FSM is in a waiting state, looking for a new input signal. Once
a new input is detected, the FSM transitions to the next state to begin
processing.

64

Network - hardware structure

• EVENT IN: when a new input arrives, the FSM enters this state. Here,
every clock cycle, a new input in Address Event Representation format is
received and the Control Unit manages the translation process through the
Input Translator component, converting AER format to the corresponding bit
string suitable for processing.

• TIME CALCULATION: when an input from a different time step is
detected this state is activated and the delta time between the previous and
the current set of input is evaluated and, once this evaluation is complete, the
translation process concludes.

• LOAD IN BUS: at this point, the input bus from the Input Translator
delivers the bit string to the first Layer of the network and, from the second
input set, the first layer sends the output spikes to the following layer. This
state prepares the Layer/s to start processing the inputs, marking the transition
from input translation to input processing.

• BUF IN: in this state, bits are sent serially from the Layer to the Mesh Block
and subsequently to the Processing Element (PE). During each clock cycle a
bit is processed, contributing to weight accumulation within the PE.

• BUF WAIT: the Layer communicates its status to the CU. If the input
bus still contains data to be processed, the FSM returns to the BUF IN state
otherwise, if the input string has been fully processed, the FSM transitions to
the next state.

• OUT SHIFT: in this state the CU controls data transmission between
Mesh Blocks belonging to different rows of the matrix. If all inputs have
been processed, the FSM moves to the MEMBRANE DECAY state to calculate
exponential decay, otherwise, it transitions to the LOAD INTERNAL state to
continue weight accumulation.

• LOAD INTERNAL: this state manages data transmission inside the Mesh
and prepares the Layer for the next set of weight accumulation operations; the
FSM then moves back to the BUF IN state. The behaviour of this state is equal
to LOAD IN BUS but, instead of loading the data from the input bus, either
from the input translator or, in case of the second layer, from the previous
layer, the data are delivered from one row to the following one in a circular
manner.

• MEMBRANE DECAY: this state initiates the membrane decay calculation,
when all input has been processed. The accumulator and the bias of each
neuron are added together and the membrane potential absolute value is
evaluated as a preparation step for the exponential decay evaluation.

65

Network - hardware structure

• FINISH DECAY: in this state the actual decay is calculated, a multiplier is
employed to calculate the product between the membrane potential and the β
coefficient.

• DECAY NORMALIZATION: finally, in this state, the sign of the mem-
brane potential is restored and, depending on whether this is the first pass
through this state, the FSM transitions to MEMBRANE COMPUTATION FIRST
for the initial computation phase or MEMBRANE COMPUTATION for subsequent
evaluations.

• MEMBRANE COMPUTATION: this state performs the final opera-
tions for evaluating firing conditions, determining whether a neuron spikes
or not. The operations executed in this last two states are among the most
computationally intensive tasks for the PE and consequently for the entire
network.

• MEMBRANE COMPUTATION FIRST: similar to the previous state
(MEMBRANE COMPUTATION) but with specific adjustments to handle the initial
stage of operation (Stage 1 described in section 5.2).

• OUT CONVERSION: in this state, the FSM manages the conversion of
output bit strings from the last layer back into AER format; this processes
persists for as many clock cycles as there are neurons in the last layer and it
is executed by the Output translator (in our network the process last 10 clock
cycles).
When the conversion completes the FSM can either return to EVENT IN if
more inputs are queued, transitions to the LAST ROUND state to manage the
final cycle of operations (Stage 3 described in section 5.2) or moves to the OUT
state if processing is complete.

• LAST ROUND: this state ensures proper synchronization during the final
stage of operation (Stage 3) and initiates the last cycle of processing operations.

• OUT: the final state of the FSM, where a single clock cycle is used to reset
all components, making the network ready to receive new inputs.

66

Network - hardware structure

Figure 5.2: Finite State Machine flow

67

Network - hardware structure

5.2 Optimized Structure for Two-Layer Opera-
tion

The network has been specifically optimized to handle two layers, which is suitable
for tasks such as processing the MNIST dataset that are simple enough to not
require any more complex network structure but can be applied, increasing the
number of neurons for each layer, also on more complex dataset.
When the network receive a new sets of inputs the operations are executed in 3
stages:

• Stage 1: in the first stage, only the first layer is active, processing the initial
set of inputs; this stage last as long as the layer has processed all the inputs,
latency is approximately 2 · num_inputs.

• Stage 2: in the second stage, both layers operate simultaneously. The first
layer processes the next set of inputs while the second layer processes the
outputs generated by the first layer in the previous time step.
This stage is the longest and last as long as all input sets have been processed.
Assuming that every set is processed in a time t = K this stage lasts t =
K · (num_sets − 1).

• Stage 3: in the final stage, the first layer ceases operation, and the second
layer processes the last set of inputs from the first layer. This stage last
2 · num_inputs where, this time, the number of inputs depends on the output
of the first layer.

Figure 5.3: Pipeline execution

The layers are designed to operate in a sort of pipelined fashion; the scheme in
Figure 5.3 show in a very simplified way how the two layers work. In the example

68

Network - hardware structure

is assumed that there are 4 sets of inputs and each square block represents all the
operations described in the Section 5.1.
This pipelined processing ensures efficient use of resources and minimizes idle time.
However, due to the different sizes and processing times of the two layers, there
might be situations where one layer completes its tasks before the other. In such
cases, the layer that finishes first enters a "wait" state where it follows the FSM in
the same way as the other layer is doing but the PEs are disabled so no operation
is performed until the other layer completes its processing. This wait mechanism
ensures synchronization and prevents data loss or errors due to unsynchronized
operations.
Overall, this structured and optimized design allows the network to handle neural
computations effectively, ensuring high performance and adaptability for different
tasks and datasets.

5.3 Memory management
One of the major challenges in this design was the size of the neural network model,
which significantly complicates the creation of efficient embedded models due to
limitations in the available resources.
FPGAs provide the option of using Block RAM (BRAM), which is optimized to
save space while maximizing memory access speed. BRAMs in AMD FPGAs are
ideal for these applications, as they allow extensive customization and optimization
through Vivado’s Block Memory Generator that provides various solutions in terms
of external interface (Native, AXI or AXI-4), of memory types (single port RAM,
single port ROM,...), of speed, of error correction,....

The strategy adopted for this design was to allocate separate memories for each
layer of the neural network each containing the weights organised through the script
for parameters’ extraction. Each BRAM was configured as a single-port ROM
with a three-port interface: clock, address, and data out; during configuration, the
enable signal was set to always active to simplify memory management and the
memory was loaded with .coe (coefficient) file so that, if the dimension of the layer
remains constant, the memory content can be easily updated changing this file
content. A scheme showing the external interface of the memory is shown in Figure
5.4.

In the developed system two memories have been employed. The first memory
block stores the input layer weights, with 784 lines of 360 bits each while the second
memory block is smaller, consisting of 40 lines of 90 bits.
The reason for separating the memories belonging to each layer is to simplify the
parameters’ storing for future optimization and for fine-tuning and also to reduce

69

Network - hardware structure

Figure 5.4: Parameter Memory interface

the bus dimension. Each layer, when an input is received by the system, accesses
the corresponding element in memory that contains the necessary weights for the
computation.

5.4 Accelerator usage
To properly interface with the accelerator, you need to follow a structured procedure
to ensure data is properly transmitted to and processed by the accelerator, while
also allowing you to retrieve the results accurately from the output bus. This
description assumes you are using an AER (Address Event Representation) format
to send and receive data.

1. Wait for the Accelerator to be Ready: the first step requires to monitor
the ready signal. It will remain low (0) while the accelerator is busy; once
the ready signal rises to high (1), the accelerator is prepared and ready to
accept inputs.

2. Reset the Accelerator: when the accelerator is ready you must first reset
the accelerator to bring it in a known state and avoid unwanted behaviour
due to unsynchronized state of one or more components of the system. This
can be achieved by setting the reset signal high (1) for at least one clock
cycle, and then set it low (0) to release the reset and allow the accelerator to
start operating normally.

3. Send New Input Data: after monitoring again the ready signal and having
verified that it is high (1), raise the new_input signal to indicate that a new
set of inputs will be sent to the accelerator.

70

Network - hardware structure

The AER_string_in bus is used to send input data in AER format. Keep
sending the input data monitoring the ready signal; if the accelerator detects
a new timestep (i.e., data belonging to a different timestep from the previous
set) the accelerator will stop reading new data, the ready signal will go low
(0) and the system will start processing the received data.

4. Pause Input Transmission While the Accelerator is Processing: as
soon as the accelerator starts processing, the ready signal will go low (0), the
input transmission must be interrupted otherwise any further inputs will be
lost so.

5. Monitor the Output and Wait for the Ready Signal: while the ready
signal is low (0), monitor the AER_string_out bus for results.
When the input processing comes to the end the accelerator will output the
results, this require to monitor continuosly the AER_string_out bus until the
ready signal returns to high (1), indicating that the accelerator has finished
processing the current input set and is ready to receive more input data.

6. Repeat the Input Transmission Process: once the ready signal is high
again, repeat the input transmission process:

• Keep the new_input signal high.
• Send the next set of inputs using the AER_string_in bus.
• Pause again when the ready signal goes low, wait for the accelerator to

process, and read the results from the AER_string_out bus.

7. Final Output and Shutdown: After sending the last set of inputs, while
monitoring for the value on the output bus, wait for the ready signal to go
high one final time. This will be the output from the network corresponding
to the last input set you sent.

Figure 5.5: Accelerator Waveform example

71

Network - hardware structure

5.4.1 Example Description
The waveform in Figure 5.5 illustrates how the system handles multiple time steps
of input (two in the example), monitors the ready signal and ensures that input
data from different time steps is processed correctly.
Moreover the timing shows how the ready signal plays a crucial role in controlling
when data can be sent and when it is being processed to avoid data loss and correct
synchronization with the input source.

1. Reset and Initial Setup:

• Initially, the system is in the reset state, as indicated by the reset signal
being high (1).

• The reset is deactivated (0) after a few clock cycles, and the system is
ready to accept new inputs.

2. First input set (in-1 and in-2):

• The ready signal is high (1), meaning the accelerator is ready to receive
inputs.

• The new_input signal goes high, indicating that new input data is being
sent and AER_string_in shows the values in-1 and in-2, which are
inputs for the first time step.

3. Second Input Set:

• The third input (in-3) belongs to a different time step compared to in-1
and in-2. The accelerator detects this change in timestep, as indicated
by the ready signal dropping to 0.

• The system is now processing the previous set of inputs (in-1 and in-2)
while the information related to in-3 is stored in memory ready for the
next input transmission. The input transmission must be interrupted
while the system processes the data otherwise the data would be lost.

4. Output generation from first input set (out-1 and out-2):

• After processing the first set of inputs, the accelerator produces outputs
out-1 and out-2, visible on the AER_string_out bus.

• Once the output is available, the ready signal rises again (1), indicating
that the accelerator is ready for more inputs.

5. Second Input Set cont. (in-4):

72

Network - hardware structure

• The next set of inputs, made of two inputs (in-3, received in the first
input set transmission, and in-4), is transmitted after ready is high.

• As with in-3, input in-5 belongs to a different time step, causing ready
to drop again as the system processes the data; as before in-5 is saved in
a temporary memory.

73

Chapter 6

HW simulation, synthesis
and implementation

6.1 Hardware Simulation
The simulation process supports testing with either a single input or multiple inputs.
Single-input testing is used to assess parameters like network latency and power
per image, while multi-input testing provides insights into accuracy across a larger
dataset, similar to the SW simulation. To ensure consistency and comparability
with the SW simulation, the HW simulation process follows specific steps that are
shown in the flow chart in Figure 6.1.

Parameters extraction

First, the same script used in the SW simulation is employed to extract 100 random
samples from the MNIST dataset. These samples are saved in a designated folder
and reused for HW simulation, ensuring that both HW and SW simulations evalu-
ate the same data. Each time the script is relaunched, it generates new random
samples, enabling tests on varying data sets.
Next, weight and bias conversion is handled automatically by a script. For
weights, the script takes the SW simulation’s weight files, stored as integers
(parameter_layer.coe) and converts them to binary format for hardware de-
ployment (weight_layer.coe), maintaining consistency between simulations; this
conversion process elaborates both the weights of the input and of the output layer.
After the weight conversion, biases are extracted from the state_dict in their
floating-point format. These are then converted to integers and subsequently to
binary values. The converted bias values are printed on-screen and manually copied
into the source code, simplifying their deployment in HW due to the low number

74

HW simulation, synthesis and implementation

of biases involved.

Input processing

Once the network has the correct parameters the accelerator is ready to start
the input processing. The simulation begins by launching the testbench, which
iteratively processes all elements in the folder containing the input samples.
The testbench (tb._mnist.sv), for each sample, reset the accelerator and then
starts the input processing; this process increase the latency but this small per-
formance loss ensures that the accelerator always starts from a known state and
emulates how the accelerator would be employed in a real context.
The output from the accelerator, which are strings in the AER format, is written
into a file in a specific format. At first, for every sample, the corresponding target
value is extracted from the input file and reported in the output one then every
string is written line by line finally, once the processing of the inputs is complete, a
"STOP" line is written to signify the end of that sample’s output.
Additionally, in the TCL console of Vivado, when an input is processed, is shown
the target value and when the simulation is complete, to help the designer monitor
the evolution of the process.

Output interpretation

The final step is the output interpretation; the interpretation of the output differs
significantly between traditional and spiking neural networks.
In a conventional non-spiking neural network the output layer typically represents
the network’s classification of the input data where each neuron corresponds to a
different class while, for a multi-class classification problem the interpretation is
more complex and the network assigns a probability to each class, with the neuron
yielding the highest activation value representing the predicted class.
This supervised learning approach is based on the final activations as confidence
levels, and the neuron with the maximum activation signifies the model’s best
guess.
In a Spiking Neural Network (SNN) the interpretation of outputs depends on the
encoding method use to convert the input information into spikes. With rate
coding the class prediction is based on the neuron with the highest firing rate
or spike count, on the other hand, if the chosen method is latency coding the
output interpretation is based on which neuron spikes first, assuming that faster
spiking corresponds to stronger confidence in a given class.

For the hardware simulation of the accelerator rate coding is employed and
the number of output neurons match the number of classes so, for interpreting
the output of the network, the neuron that spikes most frequently represent the

75

HW simulation, synthesis and implementation

Figure 6.1: HW Simulaiton flow chart

predicted class. For doing so a dedicated script processes the output file, generated
by the HW simulation testbench, where the classification results are stored.
For each sample the script begins by extracting the target value from the first line
of the output string; it then initializes a 10-element vector (corresponding to the 10
classes in the MNIST dataset) with zeros and, for each AER-formatted string in
the output, the script extracts address and timing information, incrementing the
vector element corresponding to that address. The presence of the "STOP" line
marks the end of the current output’s processing, allowing the script to analyze
the vector by identifying the maximum value, which represents the predicted class.
Lastly a comparison between the predicted and expected classes is then executed.
This process is repeated for all outputs, and finally, accuracy is computed over the
entire test set.

76

HW simulation, synthesis and implementation

6.2 Synthesis and Implementation
In FPGA design using Vivado, synthesis and implementation are two crucial
stages that convert a high-level hardware description into a deployable, optimized
design on an FPGA.
Each process plays a distinct role in preparing a digital design for hardware
execution:

1. Synthesis: this step translates the functional design, written in HDL (Hard-
ware Description Language), into a gate-level netlist optimizing for factors
like area and speed. The output of synthesis serves as a blueprint for how
logical operations are mapped onto the FPGA’s resources.

2. Implementation: it focuses on physically placing and routing the design
within the FPGA’s fabric by assigning physical locations to each component
and connects them according to timing and area constraints.

6.2.1 Synthesis process
The step that follows simulation is synthesis. The synthesis process translates a
high-level hardware description, written in System Verilog, into a gate-level rep-
resentation and represents the first major step in preparing a design for deployment
on an FPGA.

Synthesis consists of the following three main steps:

• Parsing and Elaboration: the HDL code is read and analyzed to identify
modules, hierarchies and finally checked for any syntax errors.

• Optimization and Technology Mapping: if the design passes parsing,
Vivado optimizes it, mainly to reduce area and increase speed. Moreover,
in this stage, components are mapped to primitive gates or LUTs (Look-Up
Tables) available on the FPGA.

• Netlist Generation: this final step of synthesis creates a netlist, a structural
representation of the design, that outlines the interconnections between logic
gates and other elements.

The initial parsing step is independent of the chosen platform and is consistent
across different FPGAs. In contrast, the Optimization and Netlist Generation
stages are technology-specific, meaning that Vivado must consider the hardware
resources available on the target FPGA.

The chosen platform for deployment is the PYNQ-Z2 board, an FPGA devel-
opment board designed for the Xilinx Zynq-7000 SoC (System on Chip), which

77

HW simulation, synthesis and implementation

combines ARM processing with FPGA fabric. The PYNQ-Z2 board includes a
dual-core ARM Cortex-A9 processor alongside the programmable logic (PL) re-
sources of the Zynq FPGA, making it ideal for applications requiring a combination
of embedded processing and reconfigurable hardware. This board also provides
multiple interfaces, such as HDMI, audio, and communication protocols, and offers
General Purpose I/O (GPIO) headers compatible with Arduino and Raspberry Pi
pins, making it highly flexible for prototyping.

In Vivado, the target device is first specified, either by selecting it from the
installed device list or importing board files. After that, the constraints file is
customized using the Vivado Editor to specify I/O ports and clock configuration.
A constraints file (XDC file) defines physical parameters that guide the synthesis
and implementation processes. These constraints are crucial to ensure that the
design operates as intended on the physical board, by mapping logical signals to
physical pins, defining clock speeds, and setting other essential parameters.

For the hardware accelerator, external interfaces require the ready, the reset
and the new_input PIN, as well as PINs for input and output strings in AER
format. The PYNQ-Z2 board’s GPIO headers provide 24 Arduino and 28 Raspberry
Pi-compatible pins, making it possible to distribute the input and output signals
of the accelerator across these 52 pins. This choice enables contiguous grouping of
pins for both input and output strings, facilitating system usage and debugging.

Using these GPIO pins offers several advantages:

• Power Measurement for Simulation: utilizing these pins simplifies power
measurement, increasing the confidence level in power estimation by providing
a reference during simulation.

• Physical Accessibility: the accessible GPIO headers simplify the connection
of external components or interfaces, enabling easy input and output testing.

• Flexibility and Interfacing Options: these GPIO pins can interface with
various devices, including custom-designed interfaces, enhancing the versatility
of the board for a wide range of applications.

Finally, the XDC file also specifies the clock constraint. For this synthesis
and implementation, a 100MHz clock frequency is chosen to align with other
accelerator specifications, ensuring easy comparison of results.

The outcome of the synthesis stage serves as input for the next stage: imple-
mentation.

78

HW simulation, synthesis and implementation

6.2.2 Implementation process
The implementation phase in Vivado transforms the synthesized design into a
configuration that can be deployed on a specific FPGA platform.
Following synthesis, the implementation process maps the gate-level netlist to
the physical resources of the target FPGA, optimizing for timing, area, and power
based on platform constraints. Since the hardware resources and interconnect
architecture vary between FPGA models, the implementation phase, as for the
synthesis one, is inherently platform-dependent.

Figure 6.2: Accelerator’s device scheme

The major steps in Vivado’s implementation process are as follows:

• Opt Design (Optimization): in this initial step, Vivado refines the synthesized
netlist by applying optimizations tailored to reduce area usage and improve
timing performance.
Some optimization examples are logic cells’ merging, unused logic’s trimming
or specific FPGA features’ optimization such as block RAMs (BRAM) or
Digital Signal Processing (DSP) slices. The results of the optimization can be
investigated by looking at the Utilization Report.

• Place Design (Placement): the placement maps logical elements onto the
FPGA’s physical resources, assigning each LUT, flip-flop, or memory block a

79

HW simulation, synthesis and implementation

specific location on the FPGA fabric.
The goal of this procedure is to optimize data flow by minimizing interconnect
delays and ensuring that the components are placed as close as possible to
each other based on signal paths and design constraints.

• Route Design (Routing): this stage involves connecting the placed elements
using the FPGA’s interconnect resources. Vivado uses internal algorithms to
determine the optimal paths to ensure signal integrity while limiting the delay
and power consumption.
Routing can be tailored with additional constraints to further optimize
the design especially if a specific timing performance or signal routing is
necessary. For this design, standard settings are used, allowing Vivado’s
routing algorithms to find an optimal solution.

• Bitstream Generation: once placement and routing are complete, Vivado
generates the bitstream, a binary file that encodes the hardware configuration
for the FPGA. This bitstream can be directly loaded onto the FPGA for
testing and deployment.

Figure 6.3: Accelerator’s schematic

Vivado allows for extensive customization throughout the implementation pro-
cess, such as: setting timing constraints, enforcing specific setup and hold times,
defining area constraints, keeping certain logic blocks within specified regions, or
enabling power optimizations for energy-efficient designs.
The design choice was to keep the default configuration; this decision comes from
the idea of letting Vivado make decisions automatically to verify the "real" system
performances without the intervention of the designer, however, better results could
be obtained by setting more stringent constraints.

80

HW simulation, synthesis and implementation

The visual resource distribution (Figure 6.2) shows organized clustering by func-
tionality across different regions labeled X*Y* with a more relevant concentration
in regions X0Y0, X1Y0 and X1Y1. The Device scheme from Vivado helps identify
where denser regions, where the logic activity is more intense, are located.
On the other hand the schematic in Figure 6.3 illustrates a dense arrangement of
routing paths, as highlighted by the green lines. Major logic blocks appear highly
interconnected, showing that the design leverages parallel data paths extensively.
This organization supports efficient data processing and signal transfer which is
crucial for complex computational tasks within the FPGA.

6.3 Resource Utilization Summary
The utilization report for the FPGA design indicates a moderate use of resources,
as shown in Table 6.1. The design utilizes a small portion of Slice LUTs and DSPs,
while the memory resources are minimally utilized.
The breakdown of slice logic resources is presented in Table 6.2.

Resource Type Used Available Utilization (%)
Slice LUTs 8011 53200 15.06
Slice Registers 9263 106400 8.71
F7 Muxes 204 26600 0.77
F8 Muxes 100 13300 0.75
Block RAM Tile 11.5 140 8.21
RAMB36/FIFO 11 140 7.86
RAMB18 1 280 0.36
DSP Blocks 50 220 22.73

Table 6.1: Resource Utilization Summary

The most significant contributors to resource allocation in this design are LUTs
and DSP blocks. Approximately 15% of available LUTs and 22.73% of DSP
resources are utilized, indicating moderate usage with a focus on computational
components. These results align with expectations, as the network was specifically
designed to minimize resource usage. The primary complexity lies within the
computational blocks (neurons), while the remaining resource demands come from
neuron interconnections and control logic that synchronize and manage the flow of
operations.

As outlined above, Vivado leverages DSP (Digital Signal Processing) blocks to
optimize performance and resource efficiency in FPGA designs. DSP blocks offer
several key advantages: they provide efficient resource usage, as they are specialized

81

HW simulation, synthesis and implementation

Slice Logic Components Used Available Utilization (%)
Slices 3156 13300 23.73
Slice LUTs 8011 53200 15.06
LUTs as Logic 8011 53200 15.06
LUTs as Memory 0 17400 0.00
Slice Registers 9263 106400 8.71
Registers with internal LUT usage 240 - -

Table 6.2: Detailed Slice Logic Breakdown

for complex arithmetic operations like multiply-accumulate (MAC), enhancing
the accelerator’s performance during intensive computational tasks. Additionally,
DSP blocks are engineered for high-speed arithmetic which reduces the number
of clock cycles required, thereby increasing overall throughput. Another benefit
that make DSP convenient is their lower power consumption relative to traditional
logic elements, contributing to overall power efficiency and making them ideal for
low-power applications.
Vivado’s synthesis engine automatically infers and optimizes DSP block usage based
on the design’s requirements and constraints resulting in an improved placement
and utilization, reducing area and power consumption while achieving performance
goals.

6.3.1 Power and Timing analysis
Vivado’s Power Report provides three main analyses of power consumption, offering
detailed insights into resource efficiency and power distribution across the design’s
components.

The first section, the Power Summary, offers a high-level overview of total
on-chip power, measured at 0.182 W. This includes both dynamic (0.074 W) and
static power (0.108 W), indicating that the majority of power consumption is static.
Additionally, the junction temperature is calculated at 27.1 °C, suggesting safe
operational thermal levels.

The second report, On-Chip Components Power Consumption, breaks
down power usage across individual FPGA resources. DSP blocks, utilized at
22.73%, consume 0.018 W, reflecting their central role in handling arithmetic
operations while I/O components show a high utilization rate of 30.40%, though
they contribute only 0.003 W to the total power, suggesting that a more efficient
approach for output connectivity may be advantageous, rather than directly routing
pins from the accelerator interface to the FPGA’s embedded pins.
Furthermore, Slice Logic, comprising LUTs and registers, forms a significant part of
the power profile, while Block RAMs consume minimal power, indicating efficient

82

HW simulation, synthesis and implementation

Parameter Value
Total On-Chip Power (W) 0.182
Design Power Budget (W) Unspecified
Power Budget Margin (W) NA
Dynamic (W) 0.074
Device Static (W) 0.108
Effective TJA (C/W) 11.5
Max Ambient (C) 82.9
Junction Temperature (C) 27.1
Confidence Level Low
Setting File —
Simulation Activity File —
Design Nets Matched NA

Table 6.3: Power Summary

resource usage for parameter storage.

On-Chip Component Power (W) Used Available Utilization (%)
Clocks 0.021 3 — —
Slice Logic 0.013 20583 — —
LUT as Logic 0.011 8011 53200 15.06
CARRY4 0.001 1034 13300 7.77
Register <0.001 9263 106400 8.71
F7/F8 Muxes <0.001 304 53200 0.57
Others 0.000 72 — —
Signals 0.012 15011 — —
Block RAM 0.008 11.5 140 8.21
DSPs 0.018 50 220 22.73
I/O 0.003 38 125 30.40
Static Power 0.108
Total 0.182

Table 6.4: On-Chip Components Power Consumption

The final report, Power Consumption by Hierarchy, details power distri-
bution across specific design hierarchies. The Layer_INPUT component shows the
highest power usage, consuming 0.045 W, primarily due to the arithmetic-heavy
operations within MeshBlock and ProcessingElement instances aligning with the
expectations as this block is the largest, containing 40 neurons and 31,360 synapses

83

HW simulation, synthesis and implementation

(784 × 40).
In contrast, the Translate_Event, input_memory, and output_memory compo-
nents exhibit relatively lower power usage due to their smaller, energy-efficient
design. This distribution highlights that processing-intensive tasks are the primary
drivers of power consumption, underscoring the need for optimized arithmetic
handling to further enhance power efficiency across the design.

Name Power (W)
network 0.074
ControlUnit 0.001
Layer_INPUT 0.045

gen_row[0].gen_col[0].MeshBlock 0.011
ProcessingElement 0.009

gen_row[0].gen_col[1].MeshBlock 0.011
ProcessingElement 0.009

gen_row[1].gen_col[0].MeshBlock 0.011
ProcessingElement 0.009

gen_row[1].gen_col[1].MeshBlock 0.011
ProcessingElement 0.009

Layer_OUTPUT 0.010
gen_row[0].gen_col[0].MeshBlock 0.006

ProcessingElement 0.003
gen_row[1].gen_col[0].MeshBlock 0.004

ProcessingElement 0.003
Translate_Event 0.005
input_memory 0.006

U0 0.006
inst_blk_mem_gen 0.006

output_memory 0.003
U0 0.003

inst_blk_mem_gen 0.003

Table 6.5: Power Consumption by Hierarchy

The timing analysis provided by Vivado shows three main timing metrics
(shown in Table 6.6):

• Setup Timing: the worst negative slack (WNS) is measured at 1.066 ns,
which is sufficient for our 100 MHz clock. This indicates that the timing
constraints are comfortably met, with no negative slack or failing endpoints.
The positive slack allows for some margin in the design, which is crucial for

84

HW simulation, synthesis and implementation

ensuring reliable operation under varying conditions.

• Hold Timing: the worst hold slack (WHS) is 0.037 ns, showing that the
design meets hold timing requirements without any failing endpoints. This is
particularly important in ensuring that the data is stable at the clock edge,
preventing data corruption due to timing violations; moreover, the absence of
failing endpoints further confirms the robustness of the design.

• Pulse Width Timing: the worst pulse width slack (WPWS) is 4.500 ns,
with no negative slack, further confirming that pulse width timing constraints
are met. This generous slack ensures that the pulse width is long enough for
reliable detection and processing of signals by downstream components.

To achieve the required 100 MHz clock speed, the critical path within the
neuron, specifically from the accumulator result to the final output, was split across
different processing states. This approach minimizes the path delay by dividing
operations, such as exponential decay of the membrane and bias accumulation, into
separate stages; in this way the design meets timing requirements despite the high
computational load on the neuron module.

Additionally, the timing analysis indicates that there are zero failing endpoints
across all metrics, suggesting the design’s robust against timing violations. The
comprehensive slack across setup, hold, and pulse width timings provides further
assurance that the design will perform reliably in its intended application. Overall,
these results demonstrate a successful alignment of the design with the targeted
clock frequency and performance criteria.

Timing Type Parameter Value

Setup
Worst Negative Slack (WNS) 1.066 ns
Total Negative Slack (TNS) 0.000 ns
Worst Hold Slack (WHS) 0.037 ns

Hold
Total Hold Slack (THS) 0.000 ns

Number of Failing Endpoints 0

Pulse Width
Worst Pulse Width Slack (WPWS) 4.500 ns

Total Pulse Width Negative Slack (TPWS) 0.000 ns

Table 6.6: Timing Analysis Summary Constraints

6.3.2 Hardware Accelerators comparison
The Table 6.7 shows a comparison of the performance of the EDAMAME accelerator
and similar accelerator projects. All results were obtained by testing the hardware

85

HW simulation, synthesis and implementation

using the MNIST dataset to ensure consistency. Given the dataset’s nature, each
static image was converted into a spike representation over 100 time_steps, as
the accelerator’s latency depends on the number of cycles required to process the
input.

• Clock Frequency (fclk): EDAMAME operates at 100 MHz, consistent with
most other designs, though some operate at higher frequencies, such as Nevarez
et al. [16] at 200 MHz or Li et al. [17] at 300 MHz. While higher frequencies
can increase throughput, they also impact on power consumption and design
complexity.

• Neuron and Weight Bit Width (bw): the average neuron bit width across
other designs is approximately 11.5 bits, close to EDAMAME’s 12-bit width
while the average weight bit width among other designs is about 11 bits,
whereas EDAMAME uses 9 bits. This lower precision in both neuron and
weight bit widths slightly impacts accuracy but significantly benefits memory
savings and reduces power consumption.

• Neuron Model and Update Mechanism: EDAMAME uses the LIF
neuron model, a popular choice among accelerators due to its balance between
performance and efficient resource use. EDAMAME’s event-based update
approach aligns with designs focused on energy efficiency, while others adopt
clock-driven mechanisms.

• FPGA Logic Cells and DSPs: EDAMAME uses around 17,274 logic cells,
much lower than the average of 31,000 in other designs, highlighting its focus
on resource efficiency. With 50 DSPs, EDAMAME achieves a balanced use
of DSP resources; some accelerators use no DSPs, while others, prioritizing
performance, have more DSP-intensive designs (e.g., Li et al. [17] with 288
DSPs).

• Architecture: EDAMAME’s architecture (784-40-10) is relatively lightweight
compared to deeper networks like Gerlinghoff et al. [18] (32×32×1–6c5
p2–16c5–p2–120c5–120–84–10) or like Panchapakesan et al. [19] (28x28-32c3-
p2-32c3-p2-256-10). This structure favors speed and energy efficiency, though
it limits the accelerator’s applicability for more complex tasks that benefit
from deeper architectures.

• Power, Number of Synapses, and Accuracy: EDAMAME consumes
approximately 0.182W, one of the lowest power consumptions among the
designs. Its simpler structure reduces the number of synapses to 31,760,
contributing to its efficiency; however, EDAMAME’s trade-offs in power and
area utilization result in an accuracy of 88.5%, slightly lower than that of
other designs.

86

HW simulation, synthesis and implementation

Overall, EDAMAME demonstrates an effective balance between efficiency and
performance. Its low power consumption and resource usage make it highly
optimized for FPGA constraints. The moderate architecture and parameter choices
yield strong results in accuracy and energy efficiency, particularly suitable for
embedded applications.

Design Liu et al. [20] Nevarez et al.
[16]

Li et al. [17] Gerlinghoff et al.
[18]

Panchapakesan
et al. [19]

Khodamoradi et
al. [21]

Year 2023 2021 2023 2022 2021 2021
fclk [MHz] 100 200 300 200 200 N/R
Neuron bw 8 8 12 N/R 4 N/R
Weights bw 8 8 8 3 4 N/R

Update Clock Clock Clock Clock Event Event
Model IF Spike-by-Spike

(SbS)
LIF LIF IF LIF

FPGA XA7Z020 XC7Z020 XCZU3EG XCVU13P XCZU9EG XA7Z020
Avail.

BRAM
140 140 216 2688 912 140

Used BRAM N/R 16 50 N/R N/R 40.5
Avail. DSP 220 220 360 12288 2520 220
Used DSP 0 46 288 0 N/R 11
Avail. logic

cells
159,600 159,600 211,680 3,088,800 822,240 159,600

Used logic
cells

27,551 23,704 15,000 51,000 N/R 39,368

Arch 28x28-32c3-p2-
32c3-p2-256-10

28x28x2-32c5-p2-
64c5-p2-1024-10

28x28-16c3-64c3-
p2-182c3-256c3-10

32x32x1-6c5-p2-
16c5-p2-120c5-120-

84-10

28x28-32c3-p2-
32c3-p2-256-10

28x28-16c7-24c7-
32c7-10

#syn 8,960 75,776 2,560 25,320 10,752 320
Tlat/img [ms] 0.27 1.67 0.49 0.29 0.08 N/R
Power [W] 0.28 0.22 2.55 3.40 N/R N/R
E/img [mJ] 0.076 0.37 1.250 0.986 N/R N/R
E/syn [nJ] 8.48 4.88 488 38.9 N/R N/R
Accuracy 99.00% 98.84% 98.12% 99.10% 99.30% 98.50%

Design Han et al. [22] Gupta et al. [23] Li et al. [24] Carpegna
(SPIKER) et al.

[25]

Carpegna
(SPIKER+) et

al. [26]

EDAMAME
(this work)

Year 2020 2020 2021 2022 2024 2024
fclk [MHz] 200 100 100 100 100 100
Neuron bw 16 24 16 16 6 12
Weights bw 16 24 16 16 4 9

Update Event Event Hybrid Clock Clock Event
Model LIF LIF LIF LIF LIF LIF
FPGA XC7Z045 XC6VLX240T XC7VX485 XC7Z020 XC7Z020 XC7Z020
Avail.

BRAM
545 416 2,060 140 140 140

Used BRAM 40.5 162 N/R 45 18 11.5
Avail. DSP 900 768 2,800 220 220 220
Used DSP 0 64 N/R 0 0 50
Avail. logic

cells
655,800 452,160 485,760 159,600 159,600 159,600

Used logic
cells

12,690 79,468 N/R 55,998 7,612 17,274

Arch 784-1024-1024-10 784-16 784-200-100-10 784-400 784-128-10 784-40-10
#syn 1,861,632 12,544 177,800 313,600 101,632 31,760

Tlat/img [ms] 6.21 0.50 3.15 0.22 0.78 1.62
Power [W] 0.477 N/R 1.6 59.09 0.18 0.182
E/img [mJ] 2.96 N/R 5.04 13 0.14 0.29
E/syn [nJ] 1.59 N/R 28 41 1.37 9.13
Accuracy 97.06% N/R 92.93% 73.96% 93.85% 88.50%

Table 6.7: Combined Data Set with Additional Designs

87

Chapter 7

Further improvements

In this chapter, we explore potential enhancements to the current accelerator design
aimed at increasing efficiency, accuracy, and adaptability in deployment.
The first improvement centers on replacing the current Leaky Integrate-and-Fire
(LIF) neuron model with a Synaptic neuron model. This transition offers the op-
portunity to better emulate biological neural networks by incorporating Synaptic
dynamics. The Synaptic model’s ability to account for dynamic neural interactions
is anticipated to significantly boost the network’s expressiveness and robustness.
The second improvement consists in integrating the Brevitas framework for quanti-
zation, the design can achieve higher computational efficiency and reduced memory
footprint thanks to the Quantization Aware Training that this framework owns.
Quantization with Brevitas is designed to retain essential model characteristics
even with lower bit precision, enabling the accelerator to operate effectively under
stringent hardware constraints.

7.1 The Synaptic neuron
There exists a large variety of artificial neuron models, they go from biophysically
accurate models to extremely simple artificial neuron that compose most of the
deep learning network. Biological plausibility has been at the center of the research
when building artificial neuron.

The similarity between nerve membranes and RC circuits was observed by Louis
Lapicque in 1907. He stimulated the nerve fiber of a frog with a brief electrical
pulse, and found that neuron membranes could be approximated as a capacitor
with a leakage.
Somewhere in the middle between biological plausibility and practicality there is
the leaky integrate-and-fire (LIF) neuron model. This specific type of neuron takes

88

Further improvements

Figure 7.1: Passive Membrane in biological neuron

the sum of weighted inputs and integrates them over time with a leakage; then, if
the integrated value exceeds a threshold, the LIF neuron will emit a voltage spike.
The research has enlarged the number of available models and nowadays there
exists different neurons that are part of the LIF family and they mainly differ in
how the previously described electrical model is implemented.

The LIF neurons’s family, in Artificial Neural Network, is made of different
neurons classified for their similarity with the Biological neuron and for their per-
formance in ANN, with the Synaptic neuron being one of them and representing
a good trade off between performance and semblance.
The main characteristic of the Synaptic neuron is that it embodies two exponen-
tially decaying terms:

• Synaptic current (Isyn) : it represents the flow of electric charge across the
synapse in response to the flow of neurotransmitters inside the neuron.

• Membrane potential (Umem) : it is the electric potential difference across the
neuronal membrane. The Membrane potential reflects the neuron’s response
to inputs, leading to the generation of spikes.

The drawing in Figure 7.2 shows the time evolution of the Synaptic Current

89

https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_2.html

Further improvements

(left) and the Membrane Potential (right) in response of a series of input stimuli
(Sin) and the resulting output (Sout).

Figure 7.2: Synaptic neuron behaviour

7.1.1 Synaptic neuron mathematical model
As explained for the standard LIF model in Chapter 2 the evaluation of an
exponential decay is not an easy task due to the complexity of its calculations,
leading to the necessity of a quantized version; as a consequence two coefficients, α
and β, are used, representing the ratio between subsequent terms of the exponential:

α = Isyn(t + ∆t)/Isyn(t) = e
− ∆t

τsyn

β = Umem(t + ∆t)/Umem(t) = e− ∆t
τmem

(7.1)

In this expression τsyn and τmem represent the time constants; they are chosen
by the designer and their values affects the network performance as well as the
exponential decay behavior.

With the introduction of the α and β coefficients we can evaluate the Synaptic
current and the Membrane potential; the mathematical expressions that model

90

https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_4.html

Further improvements

their behavior are the following:

Isyn[t + 1] = αIsyn[t] + WX[t + 1]
Umem[t + 1] = βUmem[t] + Isyn[t + 1] − R[t]

(7.2)

In the expression in Equation 7.2 the term WX[t + 1] is the product between
the weight W associated to a certain connection and the input X[t + 1], while R[t]
refers to the reset mechanism that regulates the behaviour of the neuron when the
membrane potential exceed the threshold voltage Uthr.

In a similar to that of the standard LIF neuron, based on the input and the
evolution over time of the Synaptic current and the membrane potential, it is
possible to evaluate the expression for the output spike Sout

Sout =
1 if U(t) > Uthreshold,

0 otherwise.
(7.3)

7.1.2 From clock-driven to event-driven synaptic neuron
The mathematical model described in the previous paragraph works well when
a clock-driven approach is used. As can be observed, the α and β parameters,
used to quantized the exponential decay, allows to evaluate at every time instant
(defined by the clock signal) the current value for Isyn and Umem. If, instead, an
event-driven approach is adopted some modifications are requested.

As first step we can rewrite the expressions for the Synaptic current and the
membrane potential using the "real" exponential decay at a specific time instant
t = T :

Isyn[T] = e
− T

τsyn Isyn[0] + WX[t + 1]

Umem[T] = e− T
τmem Umem[0] + Isyn[T] − R[T]

(7.4)

The main difference with respect to the definition given by equation 7.2 resides
in the meaning of time t. As described before, the event-driven approach became
more efficient as the sparsity of the datas increases, leading us to define Isyn[0]
and Umem[0] as the values of Synaptic current and membrane potential when the
neuron receives the previous non zero input while Isyn[T] and Umem[T] represent
the value of Synaptic current and of membrane potential at the instant T when
an input different from zero arrives.

The Figures 7.3 and 7.4 show the different results of membrane potential (Umem[t])
between the clock-driven model (blue curve) and the event-driven one (orange
curve) for different initial conditions:

91

Further improvements

Figure 7.3: Small synaptic current Figure 7.4: Big synaptic current

1. Figure 7.4 : Isyn[0] = 0.5 and Umem[0] = 0.2

2. Figure 7.3 : Isyn[0] = 0.04 and Umem[0] = 0.9

In the pictures the starting time is t = 0 and, after a time T = 60, the neuron
receives an input whose value is equal to 1; this is the reason for the fast jump on
the far right of the graph.

The chosen initial condition are just for simulations purposes but, as shown
by the two graphs, the performance of the event-driven approach is very poor
compared with the clock-driven one. It is important to notice that the accuracy
of the model is strongly influenced by the initial value Isyn[0]. When the value
increases the error increases too caused by the fact that if calculations are executed
at the end, as in the event-driven approach, all intermediate terms (between
t = 0 and t = T − 1) of the Synaptic current that sum up to the i − th term of
membrane potential, are lost.

For the previously explained reasons this mathematical approach requires some
additional complexity to integrate in the expression also the contribution due to
the "lost terms".
To better understand what the "lost terms" are and to find a way to generalize
the expressions we can calculate the result that we obtain using the clock-driven
approach, described by equation 7.2, assuming that an input arrives at t = 4
(time_step) and with the following parameters: W=1 and R=0.

Isyn[0] = Isyn_init Umem[0] = Umem_init

Isyn[1] = αIsyn[0] Umem[1] = βUmem[0] + Isyn[1]
Isyn[2] = αIsyn[1] Umem[2] = βUmem[1] + Isyn[2]
Isyn[3] = αIsyn[2] + X[3] Umem[3] = βUmem[2] + Isyn[3]

(7.5)

The equations 7.5 shows how Isyn and Umem vary as a function of the time steps.
From this preliminary mathematical analysis it can be seen as if each term, both
for the Synaptic current and membrane potential, depends on the previous one.

92

Further improvements

Having defined each terms, the membrane potential at time t = 4 can be calculated
by substituting in the last expression the value of Isyn and Umem as a function of
their respective initial value:

Umem_clk_drv[4] = β4Umem_init[0] + αIsyn[0](β3 + β2α + βα2 + α2) + X[3] (7.6)

At first glance the formula might look very different from the equation 7.4 but
if we express its result for t = 4 in the same way substituting e

− t
τsyn with αt and

same for e− t
τmem with βt we get:

Umem_evn_drv[4] = β4Umem_init[0] + α3Isyn[0] + X[3] (7.7)
By observing this expression we can notice that the term with β4 represent the

exponential decay after a time t = 4, the term with α3 is the exponential decay of
the Synaptic current after a time t = 3 and finally the term X[3] is the non-zero
input received at time t = 4.

By subtracting the equation 7.7 from 7.6, we can get the "lost terms"

lost_terms = αβ3Isyn[0] + α2β2Isyn[0] + α3βIsyn[0] (7.8)
The term αβ3 is the Synaptic current Isyn[1] integrated three times (β3), the

term α2β2 is the Synaptic current Isyn[2] integrated two times (β2) and finally the
term α3β is the Synaptic current Isyn[1] integrated one time (β).

These are exactly the terms that we don’t consider when we directly calculate
the membrane potential at a general t = 4, in fact, they corresponds to the terms
t ∈ (1 : 3).

The last step is to generalized the expression for the calculation of the membrane
potential at a generic time instant T. When observing equation 7.6 we can notice
that it can be splited in four parts:

1. The exponential decay of the membrane potential at instant t = T (i.e.
β4Umeminit[0])

2. The product between α and the initial value of Isyn[0] (i.e. αIsyn[0]

3. A polynomial made of β and α coefficients (i.e. β3 + β2α + βα2 + α2)

4. Finally the contribution of the input at instant T (i.e. X[3])

The first, the second and the last element of the equation are very simple to
be predicted so what is left is the third one. This polynomial, as was observed
before, has a very regular form since it includes the "lost terms" and the power of
α related to the T − 2 term; in Python code the polynomial can be calculated, for
a generic time T , as follows:

93

Further improvements

Listing 7.1: Polynomial calculation
1 i f t == 0 :
2 poly [t] = 0
3 e l i f t == 1 :
4 poly [t] = 1
5 e l s e :
6 f o r n in range (t) :
7 i f n == 0 :
8 poly [t] += beta ∗∗(t−n−1)
9 e l s e :

10 poly [t] += (beta ∗∗(t−n−1)) ∗ alpha ∗∗(n)

In this code the various terms are calculated based on the input value t that
represent the time instant at which the neuron received a non zero input.

Having defined all the necessary terms that are needed to calculate the membrane
potential using the event-driven approach a generalized set of formulas 7.9 and
7.10 is used and Figure 7.5 shows the comparison between the event-driven and
clock-driven simulations.
The graph shows that the two curves perfectly overlap showing how, with this new
model, the behaviour of the membrane potential is correctly evaluated.

Umem[t] = βtUmem[0] + αIsyn[0](polyt) + X[t − 1] (7.9)

polyt =
t if t = (0, 1)qt−1

n=0(βt−n−1 ∗ αn) otherwise
(7.10)

Figure 7.5: Event vs clock driven approach

94

Further improvements

7.1.3 Synaptic event-driven neuron criticality
To discuss the criticality of using Synaptic neurons in spiking neural networks,
it’s important to analyze the evolution of the membrane potential in response to
inputs. As shown in Figure 7.5, when a Synaptic neuron receives an input, its
membrane potential rises before decaying exponentially back to its resting state.
This behavior reveals a challenge with event-driven neurons, especially during
the initial transient phase where the potential increases.
In a clock-driven neuron, the membrane potential is continuously monitored at
each time step. If the membrane potential crosses the firing threshold during this
transient, the neuron fires, ensuring precise spike timing. However, in an event-
driven neuron, the neuron remains "asleep" during the decay phase and only "wakes
up" when a new input arrives. As a result, the neuron may miss potential threshold
crossings during the decay, leading to missed firings and negatively impacting the
overall network accuracy.

To address this issue, three possible solutions can be proposed:

• Accepting the Event-Driven Compromise: in this approach, the neuron
remains 100% event-driven and ignores any potential threshold crossings
during the transient increasing phase. The neuron only monitors the membrane
potential when an input arrives, similar to the behavior of Leaky Integrate-
and-Fire (LIF) neurons. This method significantly reduces power consumption
and simplifies implementation, but it comes at the cost of reduced accuracy,
particularly in terms of both missed spikes and spike timing precision.

• Hybrid Neuron Model: a more advanced solution involves adopting a
hybrid neuron model. Upon receiving an input, the neuron briefly switches to
a clock-driven mode, allowing it to monitor the membrane potential during
the transient phase and, if the membrane potential crosses the threshold during
this period, the neuron fires. Once the potential begins to decay or stabilize,
the neuron reverts to its event-driven state; this implementation offers
improved accuracy and timing precision but increases power consumption.

• Future Evolution Prediction: this approach is a hybrid between the
previous two. When the neuron receives an input, it estimates the maximum
potential value that will be reached during the transient phase; if this predicted
value exceeds the firing threshold, the neuron either switches to clock-driven
mode to ensure precise timing or spikes immediately, simplifying the process.
This method strikes a balance between accuracy and resource efficiency, as
it limits clock-driven operations to situations where they are necessary,
while also preserving computational simplicity by spiking immediately when
possible.

95

Further improvements

7.1.4 Network simulation

The last step to verify the effectiveness of this neuron is to use it inside a Spiking
Neural Network and, after executing a suitable training, analyze its performance;
the MNIST dataset has been chosen as a benchmark and the neuron has been
simulated "Accepting the Event-Driven Compromise" so it is actually ignoring what
happens during the growing transient.

The neural network chosen for testing the functionalities of the event-driven
Synaptic neuron is a three-layer architecture with a similar shape to that used
for the LIF neuron. It has an input size of 784 neurons, a hidden layer of 1000
neurons, and an output layer of 10 neurons (for classification into 10 categories
specifically for the MNIST dataset); all the layers are fully connected ones.
The network was trained and tested using the MNIST dataset to then compare
the results with the custom event-driven LIF neuron and the results are shown
in Figure 7.6. On the left plot the training accuracy evolution are shown, the
curves show that both neuron types perform similarly in terms of the final accuracy
however the custom neuron (orange) exhibits faster convergence than the standard
one and it appears to have more stable performance in terms of oscillations. On
the right plot the testing accuracy evolution are shown; in testing, the custom
neuron achieves a higher maximum accuracy (98.44%) than the standard neuron
(96.88%), indicating better generalization, both networks stabilize similarly after
epoch 15, though the custom neuron retains a small but consistent advantage over
the standard neuron.

Figure 7.6: MNIST training/testing using standard and custom synaptic neuron

96

Further improvements

The results obtained with the Synaptic neuron show strong performance, even
though the chosen strategy for the event-driven neuron tends to sacrifice some
efficiency. However, the increased complexity of the Synaptic neuron, compared
to the simpler LIF neuron, makes it more suitable for tackling more challenging
tasks. The MNIST dataset, being relatively simple, doesn’t fully test the neuron’s
capabilities however, the Synaptic event-driven neuron implement using this
approximation, if used in more complex scenarios, could result in a noticeable drop
in accuracy.

Testing the Synaptic neuron’s behavior was useful in validating certain hypothe-
ses formed from the LIF neuron. The primary distinction between the clock-driven
and event-driven neurons lies in the latter’s reliance on a simpler model that
more deeply approximates the network’s exponential dynamics. While this might
lead one to expect weaker performance from the simpler event-driven neuron,
this is not the case for the MNIST dataset; in fact, the simplicity of MNIST allows
the less complex neurons to perform more effectively.

7.2 Quantization with Brevitas
Brevitas is an open-source library specifically designed for neural network quanti-
zation in PyTorch. Its primary goal is to facilitate the training of quantized neural
networks using Quantization-Aware Training (QAT) and enhancing the capabilities
of PyTorch with a series of Custom Layers, built on top of the standard ones of
PyTorch, that owns an high level of parameters for optimizing the quantization
process.
The main capabilities of Brevitas can be summarized as follows:

• Brevitas allows both Quantization-Aware Training (QAT) and Post-Training
Quantization (PTQ).

• Supports customizable bit-widths for both weights and activations offering
flexibility for balancing precision, memory footprint, and computational ef-
ficiency. Brevitas is apable of handling integer quantization from binary
(1-bit) up to 8-bit or higher.

• Provides quantized versions of common operations such as Linear and Con-
volutional layers other than quantized activation functions like ReLU, batch
normalization, and pooling layers.

The key advantage of Brevitas is its seamless integration with PyTorch, enabling
the developers to easly introduce quantization into their existing workflows without
needing to switch frameworks. Moreover Brevitas provides greater flexibility,
compared to PyTorch’s native quantization, which typically focus on standard 8-bit

97

Further improvements

Figure 7.7: MNIST training/testing using Brevitas quantization

quantization; this level of customizability enhance PyTorch’s networks flexibility
and it is especially important for deploying models on custom hardware architectures
that require non-standard bit-widths.
The plot in Figure 7.7 shows the evolution in time both for training and inference
using Brevitas framework on the usual network built from the MNIST classification
(784 inputs - 40 hidden layer - 10 output layer) where weights are quantized of 4
bits while input activations and biases are quantized on 8 bits.

To illustrate how simple it is to incorporate Brevitas, let’s compare a standard
PyTorch Linear layer with a quantized version from Brevitas:

Listing 7.2: quantized network
1 # PyTorch standard Linear l a e y r
2 s e l f . fc_std = nn . Linear (num_inputs , num_hidden , b i a s = True)
3 # Brev i ta s Linear l a y e r
4 s e l f . fc_brv = qnn . QuantLinear (num_inputs , num_hidden , b i a s = True ,

weight_bit_width=4, input_quant=Int8ActPerTensorFloat , bias_quant=
Int8Bias)

In a standard PyTorch ‘nn.Linear‘ layer the framework uses 32-bit floating-point
weights and activations; on the other hand the Brevitas layer, ‘QuantLinear‘,
allows for quantization of both weights and activations. In this example, weights are
quantized to 4-bit precision, and the activations and biases are quantized to 8-bit
integers. The addition of quantization-related parameters like weight_bit_width,
input_quant, and bias_quant is the primary difference, but integrating Brevitas
is otherwise quite straightforward.

98

Further improvements

7.2.1 Using Brevitas in Hardware Deployment
While Brevitas provides significant advantages for quantization-aware training
in software, there are some critical issues when moving from training to hardware
deployment:

• Brevitas quantization process may not map directly to hardware like
FPGAs or custom accelerators. Most hardware platforms support only specific
types of quantization, typically 8-bit or binary formats. This means that
custom quantization schemes, such as 4-bit or 6-bit used during training, may
be difficult to implement in hardware without custom logic.

• Hardware Acceleration: when designing custom hardware, converting the
Brevitas-trained model to hardware can be challenging.
Even if Brevitas significantly simplifies the quantization process in software
and helps developers build custom quantized models with reduced effort in
terms of code production compared to other methods, the processes executed
by PyTorch and Brevitas under the hood to optimize the quantization make
direct translation from software to hardware difficult.
Using tools like HLS (High-Level Synthesis) might simplify the deployment of
Brevitas models onto custom hardware, but the level of customizability on
the hardware side would be significantly compromised.

In conclusion, while Brevitas is a powerful tool for training quantized models
in PyTorch, integrating these models into custom hardware accelerators requires
careful planning and adaptation to the constraints of the target hardware platform.

99

Bibliography

[1] Biological neuron model. Oct. 2024. url: https://en.wikipedia.org/wiki/
Biological_neuron_model (cit. on p. 2).

[2] How Neurons Communicate. url: https : / / opentextbc . ca / biology /
chapter/16-2-how-neurons-communicate/ (cit. on p. 3).

[3] Jason K Eshraghian, Max Ward, Emre Neftci, Xinxin Wang, Gregor Lenz,
Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and Wei D Lu.
«Training spiking neural networks using lessons from deep learning». In:
Proceedings of the IEEE 111.9 (2023), pp. 1016–1054 (cit. on pp. 6, 12, 16,
17, 21, 25).

[4] Adarsh Kosta and Kaushik Roy. Adaptive-SpikeNet: Event-based Optical Flow
Estimation using Spiking Neural Networks with Learnable Neuronal Dynamics.
Sept. 2022. doi: 10.48550/arXiv.2209.11741 (cit. on p. 8).

[5] Spiking neural network. Oct. 2024. url: https://en.wikipedia.org/wiki/
Spiking_neural_network (cit. on p. 10).

[6] Compressed Latent Replays for Lightweight Continual Learning on Spiking
Neural Networks | IEEE Conference Publication | IEEE Xplore. url: htt
ps://ieeexplore.ieee.org/abstract/document/10682744 (visited on
10/08/2024) (cit. on p. 11).

[7] Adam Paszke et al. «PyTorch: An Imperative Style, High-Performance Deep
Learning Library». In: Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.
cc/paper/9015- pytorch- an- imperative- style- high- performance-
deep-learning-library.pdf (cit. on p. 12).

[8] Mahyar Shahsavari, David Thomas, Marcel van Gerven, Andrew Brown, and
Wayne Luk. «Advancements in spiking neural network communication and
synchronization techniques for event-driven neuromorphic systems». In: Array
20 (2023), p. 100323. issn: 2590-0056. doi: https://doi.org/10.1016/
j.array.2023.100323. url: https://www.sciencedirect.com/science/
article/pii/S2590005623000486 (cit. on p. 14).

100

https://en.wikipedia.org/wiki/Biological_neuron_model
https://en.wikipedia.org/wiki/Biological_neuron_model
https://opentextbc.ca/biology/chapter/16-2-how-neurons-communicate/
https://opentextbc.ca/biology/chapter/16-2-how-neurons-communicate/
https://doi.org/10.48550/arXiv.2209.11741
https://en.wikipedia.org/wiki/Spiking_neural_network
https://en.wikipedia.org/wiki/Spiking_neural_network
https://ieeexplore.ieee.org/abstract/document/10682744
https://ieeexplore.ieee.org/abstract/document/10682744
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/https://doi.org/10.1016/j.array.2023.100323
https://doi.org/https://doi.org/10.1016/j.array.2023.100323
https://www.sciencedirect.com/science/article/pii/S2590005623000486
https://www.sciencedirect.com/science/article/pii/S2590005623000486

BIBLIOGRAPHY

[9] Difference between Clock-driven and Event-driven Scheduling. May 2020. url:
https://www.geeksforgeeks.org/difference-between-clock-driven-
and-event-driven-scheduling/ (cit. on p. 14).

[10] Limiao Ning, Junfei Dong, Rong Xiao, Kay Tan, and Huajin Tang. «Event-
driven spiking neural networks with spike-based learning». In: Memetic Com-
puting 15 (May 2023), pp. 1–13. doi: 10.1007/s12293-023-00391-2 (cit. on
p. 14).

[11] Sijia Lu and Feng Xu. «Linear leaky-integrate-and-fire neuron model based
spiking neural networks and its mapping relationship to deep neural networks».
In: Frontiers in Neuroscience 16 (2022). issn: 1662-453X. doi: 10.3389/
fnins.2022.857513. url: https://www.frontiersin.org/journals/
neuroscience/articles/10.3389/fnins.2022.857513 (cit. on p. 15).

[12] Federico Paredes-Vallés, Kirk Scheper, and Guido Croon. Unsupervised Learn-
ing of a Hierarchical Spiking Neural Network for Optical Flow Estimation:
From Events to Global Motion Perception. Mar. 2019. doi: 10.48550/arXiv.
1807.10936 (cit. on p. 21).

[13] Dario Padovano, Alessio Carpegna, Alessandro Savino, and Stefano Di Carlo.
«SpikeExplorer: Hardware-Oriented Design Space Exploration for Spiking
Neural Networks on FPGA». en. In: Electronics 13.9 (Jan. 2024). Number:
9 Publisher: Multidisciplinary Digital Publishing Institute, p. 1744. issn:
2079-9292. doi: 10.3390/electronics13091744. url: https://www.mdpi.
com/2079-9292/13/9/1744 (visited on 09/06/2024) (cit. on p. 35).

[14] Ethernet. Sept. 2024. url: https://en.wikipedia.org/wiki/Ethernet
(cit. on p. 36).

[15] Network on a chip. Sept. 2024. url: https://en.wikipedia.org/wiki/
Network_on_a_chip (cit. on p. 38).

[16] Yarib Nevarez, David Rotermund, Klaus R. Pawelzik, and Alberto Garcia-
Ortiz. «Accelerating Spike-by-Spike Neural Networks on FPGA With Hybrid
Custom Floating-Point and Logarithmic Dot-Product Approximation». In:
IEEE Access 9 (2021). Conference Name: IEEE Access, pp. 80603–80620.
issn: 2169-3536. doi: 10.1109/ACCESS.2021.3085216 (cit. on pp. 86, 87).

[17] Jindong Li, Guobin Shen, Dongcheng Zhao, Qian Zhang, and Yi Zeng. «Fire-
Fly: A High-Throughput Hardware Accelerator for Spiking Neural Networks
With Efficient DSP and Memory Optimization». In: IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 31.8 (Aug. 2023). Conference
Name: IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
pp. 1178–1191. issn: 1557-9999. doi: 10.1109/TVLSI.2023.3279349 (cit. on
pp. 86, 87).

101

https://www.geeksforgeeks.org/difference-between-clock-driven-and-event-driven-scheduling/
https://www.geeksforgeeks.org/difference-between-clock-driven-and-event-driven-scheduling/
https://doi.org/10.1007/s12293-023-00391-2
https://doi.org/10.3389/fnins.2022.857513
https://doi.org/10.3389/fnins.2022.857513
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.857513
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.857513
https://doi.org/10.48550/arXiv.1807.10936
https://doi.org/10.48550/arXiv.1807.10936
https://doi.org/10.3390/electronics13091744
https://www.mdpi.com/2079-9292/13/9/1744
https://www.mdpi.com/2079-9292/13/9/1744
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/Network_on_a_chip
https://en.wikipedia.org/wiki/Network_on_a_chip
https://doi.org/10.1109/ACCESS.2021.3085216
https://doi.org/10.1109/TVLSI.2023.3279349

BIBLIOGRAPHY

[18] Daniel Gerlinghoff, Zhehui Wang, Xiaozhe Gu, Rick Siow Mong Goh, and
Tao Luo. «E3NE: An End-to-End Framework for Accelerating Spiking Neural
Networks With Emerging Neural Encoding on FPGAs». English. In: IEEE
Transactions on Parallel and Distributed Systems 33.11 (Nov. 2022). Publisher:
IEEE Computer Society, pp. 3207–3219. issn: 1045-9219. doi: 10.1109/
TPDS.2021.3128945 (cit. on pp. 86, 87).

[19] Sathish Panchapakesan, Zhenman Fang, and Jian Li. «SyncNN: Evaluating
and Accelerating Spiking Neural Networks on FPGAs». In: 2021 31st Interna-
tional Conference on Field-Programmable Logic and Applications (FPL). ISSN:
1946-1488. Aug. 2021, pp. 286–293. doi: 10.1109/FPL53798.2021.00058
(cit. on pp. 86, 87).

[20] Hanwen Liu, Yi Chen, Zihang Zeng, Malu Zhang, and Hong Qu. «A Low
Power and Low Latency FPGA-Based Spiking Neural Network Accelerator».
In: 2023 International Joint Conference on Neural Networks (IJCNN). ISSN:
2161-4407. June 2023, pp. 1–8. doi: 10.1109/IJCNN54540.2023.10191153
(cit. on p. 87).

[21] Alireza Khodamoradi, Kristof Denolf, and Ryan Kastner. «S2N2: A FPGA Ac-
celerator for Streaming Spiking Neural Networks». In: The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. FPGA ’21.
New York, NY, USA: Association for Computing Machinery, Feb. 2021,
pp. 194–205. isbn: 978-1-4503-8218-2. doi: 10.1145/3431920.3439283 (cit.
on p. 87).

[22] Jianhui Han, Zhaolin Li, Weimin Zheng, and Youhui Zhang. «Hardware
implementation of spiking neural networks on FPGA». In: Tsinghua Science
and Technology 25.4 (Aug. 2020). Conference Name: Tsinghua Science and
Technology, pp. 479–486. issn: 1007-0214. doi: 10.26599/TST.2019.9010019
(cit. on p. 87).

[23] Shikhar Gupta, Arpan Vyas, and Gaurav Trivedi. «FPGA Implementation
of Simplified Spiking Neural Network». In: 2020 27th IEEE International
Conference on Electronics, Circuits and Systems (ICECS). Nov. 2020, pp. 1–4.
doi: 10.1109/ICECS49266.2020.9294790 (cit. on p. 87).

[24] Sixu Li, Zhaomin Zhang, Ruixin Mao, Jianbiao Xiao, Liang Chang, and
Jun Zhou. «A Fast and Energy-Efficient SNN Processor With Adaptive
Clock/Event-Driven Computation Scheme and Online Learning». In: IEEE
Transactions on Circuits and Systems I: Regular Papers 68.4 (Apr. 2021).
Conference Name: IEEE Transactions on Circuits and Systems I: Regular
Papers, pp. 1543–1552. issn: 1558-0806. doi: 10.1109/TCSI.2021.3052885
(cit. on p. 87).

102

https://doi.org/10.1109/TPDS.2021.3128945
https://doi.org/10.1109/TPDS.2021.3128945
https://doi.org/10.1109/FPL53798.2021.00058
https://doi.org/10.1109/IJCNN54540.2023.10191153
https://doi.org/10.1145/3431920.3439283
https://doi.org/10.26599/TST.2019.9010019
https://doi.org/10.1109/ICECS49266.2020.9294790
https://doi.org/10.1109/TCSI.2021.3052885

BIBLIOGRAPHY

[25] Alessio Carpegna, Alessandro Savino, and Stefano Di Carlo. «Spiker: an
FPGA-optimized Hardware accelerator for Spiking Neural Networks». In:
2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). ISSN:
2159-3477. July 2022, pp. 14–19. doi: 10.1109/ISVLSI54635.2022.00016
(cit. on p. 87).

[26] Alessio Carpegna, Alessandro Savino, and Stefano Di Carlo. Spiker+: a
framework for the generation of efficient Spiking Neural Networks FPGA
accelerators for inference at the edge. arXiv:2401.01141 [cs]. Jan. 2024. doi:
10.48550/arXiv.2401.01141. url: http://arxiv.org/abs/2401.01141
(visited on 01/26/2024) (cit. on p. 87).

103

https://doi.org/10.1109/ISVLSI54635.2022.00016
https://doi.org/10.48550/arXiv.2401.01141
http://arxiv.org/abs/2401.01141

	List of Tables
	List of Figures
	Introduction
	The Biological neuron
	The action potential

	From the biological neuron to the artificial neuron
	The Neurons classification
	Electrical input–output membrane voltage models
	The Hodgkin–Huxley model
	Perfect Integrate-and-fire
	Leaky integrate-and-fire

	Biological accuracy vs efficiency in SNN
	The Spiking Neural Network

	The artificial neural network
	Clock driven and Event driven
	The LIF model in artificial neural network
	Mathematical derivation LIF neuron

	Clock driven implementation of LIF neuron in snnTorch
	The coefficient for the exponential quantization
	Complete mathematical model
	"Firing" and Reset mechanism
	From clock-driven to event-driven neuron in snnTorch

	The network architecture
	The Network Definition
	The Network parameters

	Training and Inference
	Running Inference on the Saved Model

	Quantization for Hardware Deployment
	Quantization Techniques

	The Spiking Neural Network
	Hardware implementation
	Internet communication characteristics
	How Ethernet works
	Is Ethernet model suitable for SNN?

	Network on Chip (NoC) characteristics
	How Network on Chip works
	Is NoC model suitable for SNN?

	Interrupt management characteristics
	Similarity with SNN Input Management

	Custom architecture characteristics
	Custom architecture optimizations

	Address Event representation (AER) standard

	Network software testing
	Training the Network
	Network Preparation - Automatic Scripts
	Parameters extraction and memory initialization
	Sample extraction and AER conversion

	The quantization process
	Input optimization and parameters normalization
	Parameters quantization
	Accumulator quantization
	Final considerations

	Network simulation

	Network - hardware structure
	External interface
	The Finite State Machine
	FSM States Description

	Optimized Structure for Two-Layer Operation
	Memory management
	Accelerator usage
	Example Description

	HW simulation, synthesis and implementation
	Hardware Simulation
	Synthesis and Implementation
	Synthesis process
	Implementation process

	Resource Utilization Summary
	Power and Timing analysis
	Hardware Accelerators comparison

	Further improvements
	The Synaptic neuron
	Synaptic neuron mathematical model
	From clock-driven to event-driven synaptic neuron
	Synaptic event-driven neuron criticality
	Network simulation

	Quantization with Brevitas
	Using Brevitas in Hardware Deployment

	Bibliography

