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Abstract

Throughout the last few years society had witnessed a drastic change regarding traffic and
transportation. The ever-growing congestion and the increasing user’s heterogeneity have
made clear the importance of mathematical models capable of handling multiple types of
flows and minimizing traffic and congestion. In this thesis, multicommodity dynamical
flow networks are examined.

In the first part there is a presentation of the model used, which exploits Daganzo’s Cell
Transmission Model (CTM). This model gives a representation of real life traffic networks
which provides a robust tool for modeling and analyzing traffic dynamics. Traffic flow is
governed by fundamental principles of mass conservation and the flow-density relationship,
identified by supply and demand functions, that limit the flow based on the current density.
Examining different models present in the literature led to decide to analyze the set of
models (FIFOs and non-FIFOs) such that the cell outflow corresponds exactly to the
demand function if the whole system is in freeflow, meaning that the supply constraints are
not active. Then the focus shifts to the analysis of the stability, using recent results based
on the theory of contractive dynamical systems in single flow networks as a foundation,
showing that these results do not extend to multicommodity scenario and providing proofs
of the existence of a freeflow equilibrium point and, through the use of Hurwitz stability,
of the system’s local asymptotic stability.

In the second part the Traffic Assignment Problem, a central problem in transportation
systems science, is examined. The objective of the TAP is to find an optimal allocation
of traffic so that an aggregate cost function (e.g., the total travel time) of all users in
the transportation network is minimized (social optimum). In real-life transportation
networks the flow that travels across a road changes over time and this leads to dynamic
formulations of the TAP. In particular, the Dynamic Traffic Assignment (DTA) problem is
a optimal control problem that entails optimizing dynamic routing and network flows over
given transportation network and time horizon. A related problem is the Freeway Network
Control (FNC) problem, differing from the DTA problem in that the routing of the users
is a known exogenous input, instead of being part of the optimization process. The control
must be carried out in a distributed way, so that each road has only access to information
about the "neighbouring" ones. However, both these problems are non-convex, but it has
been shown that it is possible to relax them through the use of the CTM. By relaxing
the supply and demand functions into linear constraints the problems become convex and
the flow can be controlled through variable speed limit, ramp metering, and routing. In
other words the main objective of the FNC and the DTA is to minimize a given cost
function in order to find an optimal dynamic allocation of flow across the network. In this
thesis it is studied how these problem can be interpreted and solved in a multi commodity
scenario which provides a more accurate representation of real-life traffic networks. For
instance, consider a scenario where electric vehicles are permitted to traverse the entire
network freely, while petrol cars are restricted from accessing certain roads. In this multi-
commodity scenario it is important to control both flows in a separate way, which is
achieved by considering two different demand functions and a shared supply function.



This can be interpreted as limiting the amount of flow of a single commodity based on
the traffic volume of that commodity in each cell. Moreover, the joint flow entering a
cell is also restricted, based on the sum of the traffic volumes of both commodities. The
achieved control can then be thought as assigning different variable speed limits to each
kind of vehicles based on their density in a certain road. In order to solve both the
multi-commodity DTA and FNC, it has been used the Alternating Direction Method of
Multipliers (ADMM) introduced by Stephen Boyd as it has already been demonstrated to
perform effectively in the single-commodity scenario. The results and simulations show
that the selected algorithm is suitable for solving both problems. An optimal value of
traffic allocation is reached, which consider different speed limits for the two types of
commodities.
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Chapter 1

Introduction

Technology is advancing at an extremely fast pace and, each year, we witness new innova-
tions across all fields of research. In particular, there is an ongoing revolution concerning
transportation and the way society approaches roads and traffic, led not only by progress
but also by governments interventions to reduce greenhouse gas emissions. To this end, the
European Parliament enacted the Green Deal [1] which is "a package of policy initiatives,
which aims to set the EU on the path to a green transition, with the ultimate goal of reach-
ing climate neutrality by 2050". Regarding transportation, it mainly aims to completely
reduce CO2 emissions of new cars and light vehicles by 2035, finding in electric vehicles
(EVs) the main alternative. Having this objective in mind, companies have focused on
the development of new technologies regarding vehicles, such as (semi)autonomous con-
trollers, but also regarding the roads. In fact, the growth of cities and the evergrowing
congestion, have made it clear that a rethink of urban design and infrastructure planning
is necessary to accommodate cleaner and more efficient forms of transport. In the last
few years, we have witnessed the introduction of variable speed limits [2], which adapt on
the current amount of traffic volume on a certain road, allowing for higher speeds when
it is empty, and, recently, the implementation of freeflow systems [3] which removes toll
booths so that drivers can travel without barriers. Moreover, the increasing use of nav-
igation systems, such as Google Maps and Waze, have proven to significantly influence
traffic patterns and driver behavior. Using advanced algorithms and real-time data, these
systems can suggest alternate routes, avoid congestion, and optimize travel times. How-
ever, their widespread use can also lead to unintended traffic consequences. When large
numbers of users follow the same recommendations, traffic can be diverted to side streets
or residential areas, creating new congestion in places that normally wouldn’t experience
heavy traffic. However, with the advancement in autonomous vehicles it appears clear
how a combination of those along with navigation systems would be capable of reducing
congestions and traffic to a groundbreaking minimum. Looking ahead, but closer than
2035, many cities have already limited the entrance to drivers based on their type of car.
This is the case of the city of Milan where, since 2022, Euro 2 petrol vehicles and up to
Euro 5 diesel vehicles are forbidden to enter "Area B" of Milan [4]. This prohibition raises
new challenges since cities are now required to withstand different types of traffic flows, as
navigation systems would need to guide unallowed vehicles towards different, and possibly
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Introduction

more time consuming, paths. New strategies to direct vehicles and optimize traffic are
required, along with a drastic overhaul of cities’ infrastructure.

Traffic systems have been widely studied throughout the years. In fact, many studies
trace back to 1955 and before. In particular the studies conducted by Lighthill M.J. and
Whitham G.B ([5] and [6]) introduced the concept of kinematic waves to describe traffic
flow. In their work traffic is modeled to resemble fluid dynamics, where vehicles behave like
a continuous flow and changes in traffic density propagate in the form of waves. These
waves can move forwards or backwards depending on the traffic conditions. Moreover,
their theory explained how traffic jams, known as shockwaves, form and spread on con-
gested roads. The main focus of their research was to provide a mathematical foundation
able to predict and analyze traffic behavior, making it a cornerstone of modern traffic flow
theory. One of the most important studies that derives from this hydrodynamic theory
is the Cell Transmission Model (CTM) ([7] and [8]), introduced by Carlos F. Daganzo
in 1994, which has been a great advancement in the field of traffic modeling due to its
simplicity and effectiveness in simulating traffic flow on highways and road networks. The
CTM is a discretized version of the kinematic wave theory, splitting roadways into small
segments, called cells. Each cell represents a section of the road and vehicles flow between
these cells based on road’s capacity and traffic density. The model keeps track of how
many vehicles enter, leave or stay in a cell over discrete time steps. One of the most
important feature of the CTM is its ability to efficiently simulate traffic conditions such
as congestion, bottlenecks and shockwaves, which makes it a great tool for both theoret-
ical studies and real-world applications, like traffic control and infrastructure planning.
Moreover, the CTM has been proven to handle dynamic traffic, while remaining computa-
tionally feasible, making it one of the most used models in traffic flow theory. In this work
the Cell Transmission Model is used as a starting point, adapting it to handle different
types of flow and show how it remains a great tool to model their interaction.

More recent studies have focused not only on the modeling of traffic networks, but on
the analysis of their stability to understand how they react to different types of inputs.
This helps to analyze the amount of incoming traffic flow each network can sustain, so
that if it exceeds a certain limit it can be re-routed towards other roads. Many studies
have tackled this problem, but this thesis mainly drew inspiration from the work of E.
Lovisari, G. Como and K. Savla [9], in which the authors explores the stability properties
of dynamical flow networks, with a focus on systems where the dynamics are governed by
monotone interactions. In particular, they investigated how, by defining the traffic net-
work as monotone system, it is possible to introduce a stability region of the exogenous
inflows, which is the starting point to their proof of global asymptotically stability. In
fact, they prove that by choosing the exogenous inflow within the stability region, the
monotone system is locally asymptotically stable. However, by also demonstrating that
the system is also non-expansive in the l1 norm, it is possible to achieve global asymptot-
ical stability. In this thesis, their approach is generalized, trying to understand wether,
with the presence of multiple types of flow, the system remains stable.

Another key aspect of traffic systems studied in recent years, is the optimization of
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Introduction

total travel time so that the average time each driver takes to get his destination is re-
duced to a minimum. A considerable amount of studies have already been conducted
regarding static traffic flows merging into two main problems: the System Optimum Traf-
fic Assignment Problem (SO-TAP) and the User Optimum Traffic Assignment Problem
(UO-TAP). The main difference between these well-known problem is the fact that in the
SO-TAP the optimization is centralized, meaning that the system decides what routes
the driver must take so that the total travel time is minimized. On the other hand, in
the UO-TAP the optimization is a result of the selfish choices of the users, since each
drivers tries to minimize its own travel time. However, one more fascinating field is the
study of the dynamic traffic assignement problem, which is able to better model the real
world since traffic on a certain road does vary over time. This has made a really inter-
esting topic in the field of traffic networks, leading to the formulation of the Dynamic
Traffic Assignment (DTA) and of the Freeway Network Control (FNC), which resemble
the SO-TAP and the UO-TAP, respectively, but with time-varying traffic. However, it
has already been proven that both problems yield non-convex formulations. Specifically,
the work conducted by M. Carey [10] finds the cause in enforcing the FIFO constraints,
so that vehicles must follow the order in which they entered the same cell. Nonetheless,
further studies have proven how it is possible to reformulate such problems into convex
optimal control problems, as in the work conducted by G. Como, E. Lovisari and K. Savla
[11]-[12]. The authors of this paper proposed different and convex optimization problems,
and then show how an optimal solution of these is also a solution of the original problems.
Moreover, thanks to this formulations subsequent studies carried out by Q. Ba, K. Savla
and G. Como [13] and C. Rosdahl, G. Nilsson and G.Como [14] have proven how it is
possible to solve both problem with the use a slightly modified version of the Alternating
Direction Method of Multipliers (ADMM)[15], introduced by S. Boyd, which couples the
benefit of dual decomposition and augmented Lagrangian methods. Notably, there are
already some studies that try to find a solution to the DTA in a scenario in which different
flows can travel through the same network, such as, for example, in S. Samaranayake et
al. [10]. However, in that particular study, the DTA is still handled as a non-convex
problem, whose solution is obtain through a multi-start approach. In this work, it is
evaluated wether it is possible to formulate the DTA and the FNC, in a setting where
there are multiple types of flow, as convex optimization problems. Moreover, an iterative
distributed algorithm is designed based on the ADMM to find a solution to both problems.

In this thesis, studies regarding standard dynamical flow networks are generalized, so
that they can withstand multiple types of flow. Notably, the concept of Multicommodity
dynamical flow networks is introduced, where different commodities (like goods, infor-
mation, or traffic) move through a network and interact with each other, while sharing
the same infrastructure. The outline of this thesis is as follows. In Chapter 2 Daganzo’s
cell transmission model is used as a foundation for this thesis’ multicommodity model,
providing insightful simulations about system’s dynamics. Chapter 3 presents the studies
already conducted about the stability of single commodity systems, generalizing them into
a multicommodity setting to evaluate stability and the presence of equilibrium points. In
Chapter 4 two optimal control problems, the Dynamic Traffic Assignment and the Freeway
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Network Control, are introduced, discussing the possibility to achieve a convex formula-
tion and citing previous studies where the solution is obtained despite the non-convexity of
the problems. In Chapter 5 the Alternating Direction Method of Multipliers is presented,
which is used to solve both the DTA and the FNC, along with simulations to show the
improvement obtained with the control.

12



Chapter 2

Multicommodity Dynamical
Flow Networks Model

In the first chapter the model of a multicommodity dynamical flow network, which will be
used throughout this thesis, is formulated. Firstly, the concept of transportation network
is introduced and then the state and input variables along with the system’s dynamics.

2.1 Transportation Network
The network’s topology is modeled as a directed multigraph G = (V , E) with links i ∈ E
representing sections of the road, called cells, and nodes representing junctions such as
ordinary junctions (single incoming and outgoing cell), merge junctions (single outgoing
cell), diverge junction (single incoming cell) or mixed junctions (multiple incoming and
outgoing cells), as shown in Figure 2.1. Moreover, there are two vectors σ ∈ VE and τ
∈ VE such that σi and τi are two nodes representing the tail node and head node of a
link i in E . Furthermore, there is one special node w in V which can be interpreted as
the external world. It is possible to introduce source and sink cells as the cells whose
respectively tail and head node is the external world w in V . Regarding traffic networks
source and sink cells can be respectively called on-ramps and off-ramps. The set of source
cells is denoted as R and the set of sink cells as S. Moreover, the set of consecutive cells
is defined as A = {(i, j) ∈ E × E : τi = σj /= w}.

1

2

7

6

3

5

4

10

8 9

Figure 2.1: Example of Topology

Since this thesis aims at modeling a multicommodity dynamical flow network, it shall
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allow many different types of flow to traverse the network simultaneously and interact with
each other. In order to do so, it is introduced the finite set K as the set of commodities
that are found in the system. A simple example of a network with two commodities can
be seen in Figure 2.2.

Figure 2.2: Commodities in a network

Then, two functions of great importance in the field of transportation networks are
introduced, which are the supply function and the demand function, whose behaviour can
be seen in Figure 2.3. They are functions of the traffic volume through the network and
they represent the maximum amount of flow that can enter and leave a cell. The demand
function dk

i (·) is piecewise differentiable and increasing, such that dk
i (0) = 0 and defined

for each cell i in E and each commodity k in K. The supply function si(·) is differentiable
and decreasing, defined for each cell i in E and shared by commodities.

Figure 2.3: Demand and supply functions with respect to the traffic volume

Definition 1. A Multicommodity Transportation Network (MTN) is the tuple of the multi-
graph G = (V , E), the set of commodities K, demand functions {dk

i }i∈E,k∈K and supply
functions {si}i∈E .

Then it is possible to define the existence of a capacity region of the cells of the MTN,
which limits the admissible flow in a cell. In fact, since the supply functions are shared by

14



2.1 – Transportation Network

commodities, if one commodity tries to send more flow the other ones must accordingly
send less flow to not exceed the supply function.

Definition 2. The capacity region of a cell i with demand function dk
i (·) and supply

function si(·) is
Ci = {z ∈ RK

+ :
Ø
k∈K

zk
i ≤ si(

Ø
k∈K

(dk
i )−1(zk

i ))} (2.1)

Proposition 1. If the demand and supply functions are both concave, then the capacity
region Ci of a cell i ∈ E is convex.

Proof. Let’s first explicit the condition of the capacity region asØ
k∈K

zk
i ≤ si(

Ø
k∈K

(dk
i )−1(zk

i )) (2.2)

Since the supply function si is concave and strictly decreasing it admits s−1
i also concave

and strictly decreasing, which can be applied to both members of (2.2) to obtain the
following inequality.

s−1
i (

Ø
k∈K

zk
i ) ≥

Ø
k∈K

(dk
i )−1(zk

i ) (2.3)

It is then possible to rewrite the equation above asØ
k∈K

(dk
i )−1(zk

i ) − s−1
i (

Ø
k∈K

zk
i ) ≤ 0 (2.4)

Since the demand functions dk
i are concave and increasing, their inverse (dk

i )−1 are convex
and increasing. The supply functions si are concave and decreasing, meaning that their
inverse s−1

i are concave and decreasing. Therefore, the difference between the two inverse
functions is convex and the capacity region Ci is convex for all i.

Example 1. In order to show the capacity region an example is conducted on a very
simple network, with two commodities A and B, reported in Figure 2.4 made of only two
cells.

j i

Figure 2.4: Two cells network

In this example the supply is function of the variable xk
i , representing the traffic volume

in each cell for each type of commodity. The objective is to understand what is the form
of the capacity region of cell j.

Choosing the demand and supply function of cell j as

dA
j (xA

j ) = 5xA
j = zA

j

dB
j (xB

j ) = 3xB
j = zB

j
(2.5)

sj(xA
j + xB

j ) = 10 − 3(xA
j + xB

j ) (2.6)

15



Multicommodity Dynamical Flow Networks Model

Notice that it is possible to write the capacity region (2.1) in this case as

Cj = {z ∈ RK
+ : zA

j + zB
j ≤ 10 − 3(

zA
j

5 +
zB

j

3 )} (2.7)

Which can be also rewritten as

Cj = {z ∈ RK
+ : 8zA

j + 10zB
j ≤ 50} (2.8)

The resulting capacity region is shown in Figure 2.5.

z
B
j

z
A
j

6.25

5

Figure 2.5: Capacity region of a cell with two commodities and linear demand and supply

Example 2. Another example is taken to show the capacity region assuming the same
network shown in Figure 2.4 and the same demand functions in equation (2.5). Moreover,
a nonlinear supply constraint is assumed as

sj((xA
j )2 + (xB

j )2) = 4 − 2((xA
j )2 + (xB

j )2) (2.9)

Notice that it is possible to write the capacity region (2.1) in this case as

Cj = {z ∈ RK
+ : zA

j + zB
j ≤ 4 − 2((

zA
j

5 )2 + (
zB

j

3 )2)} (2.10)

Which can be also rewritten as

Cj = {z ∈ RK
+ : 18(zA

j )2 + 50(zB
j )2 + 225(zA

j + zB
j ) ≤ 900} (2.11)

The resulting capacity region is shown in Figure 2.6.

Remark 1. In a single commodity case, the capacity region reduces to an interval, which
is of course convex.

16



2.2 – System’s Dynamics and State Variables

z
A
j

z
B
j

2.55

3.18

Figure 2.6: Capacity region of a cell with two commodities, linear demand and nonlinear
supply

2.2 System’s Dynamics and State Variables

The state of the system is identified by the traffic volume (e.g. the amount of vehicles) of
each commodity in each cell at time t ≥ 0

xk
i (t), i ∈ E , k ∈ K (2.12)

Moreover, the vector of traffic volumes of the same commodity is

xk(t) k ∈ K (2.13)

It is also possible to stack the traffic volume vectors as columns of a matrix, representing
the traffic volume of the whole system, which can be called x(t).

The system is subject to exogenous input flows λk
i (t) ≥ 0 for k in K and t ≥ 0 which

represent the amount of traffic coming into the network from the external world. The
exogenous inflow is λk

i ≥ 0 for each cell i in R and λk
i = 0 for each cell i in E \ R. It shall

be taken into account that vehicles can leave the network and reach the external world
which is modeled as an outflow µk

i (xk
i ) ≥ 0 for k in K and t ≥ 0. The outflow is µk

i ≥ 0
for each cell i in S and µk

i = 0 for each cell i in E \ S. Then the cell-to-cell flow of a
commodity k ∈ K between two consecutive cells i and j is defined as

fk
ij(x) ≥ 0, (i, j) ∈ A k ∈ K (2.14)

which is 0 if the cell i and cell j are not connected.
It is then possible to introduce a law of mass conservation stating that the variation of

traffic volume in a cell depends on the difference between the total inflow yk
i to and the
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total outflow zk
i from the said cell.

ẋk
i (t) = yk

i (x) − zk
i (x), i ∈ E , k ∈ K

yk
i (x) =


q

j∈E fk
ji(x), i ∈ E \ R

λi, i ∈ R

zk
i (x) =


q

j∈E fk
ij(x), i ∈ E \ S

µk
i (xk

i ), i ∈ S

(2.15)

In order to close this law of mass conservation it is important carefully define the
cell-to-cell flow fk

ij(x). To this end, consider first the demand functions dk
i (xk

i ) for every
i in E and k in K and supply functions si(

q
k∈K xk

i ) for every i in E , meaning that the
amount of traffic that can enter a cell is limited by the current traffic volume among all
commodities.

The definition of the demand and supply functions allows us to introduce two funda-
mental constraints that limit the total inflow and outflow of each commodity and cell.

Definition 3. Given a MTN and cell outflow zk
i , then the demand constraint is

zk
i (x) ≤ dk

i (xk
i ) i ∈ E k ∈ K (2.16)

Definition 4. Given a MTN and cell inflow yk
i , then the supply constraint isØ

k∈K
yk

i (x) ≤ si(
Ø
k∈K

xk
i ) i ∈ E (2.17)

Before moving on, observe that the nonnegative orthant is invariant.

Lemma 1. The nonnegative orthant Rn
+ is left invariant.

Proof. Notice that this is always true based on the assumption that if the initial conditions
x(0) have all nonnegative entries, so does x(t) for all t ≥ 0. A sufficient condition for this
is the assumption made on dk

i (xk
i ), which is dk

i (xk
i ) = 0 whenever xk

i = 0.

Then the routing is introduce through the use of possibly time-varying substochastic
matrices Rk = Rk(t), defined as routing matrices, such that

Rk
ij(t) = 0 (i, j) ∈ E × E \ A (2.18)Ø

j∈E
Rk

ij(t) = 1 i /∈ S (2.19)

Equation (2.18) guarantees that the flow leaving a cell is sent only to adjacent cells, while
equation (2.19) guarantees that the flow leaving a non-sink cell is distributed among other
cells. Moreover, a routing matrix Rk(t) can be interpreted as the routes chosen by the
drivers, with their entries Rk

ij(t) , referred as turning ratios, that represents the percentage
of flow from cell i that is directed to cell j.
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Definition 5. Given a MTN and given routing matrices Rk and exogenous inflows λk,
the Freeflow Region is the region of traffic volume x for which the supply constraints are
not active, i.e.

F(λ) = {x :
Ø
k∈K

(λk
i +

Ø
j∈E

Rk
jid

k
j (xk

j )) ≤ si(
Ø
k∈K

xk
i ), ∀i} (2.20)

The Freeflow constraints are

fk
ji(x) = Rk

jid
k
j (xk

j ), ∀x ∈ F(λ) (j, i) ∈ A, k ∈ K (2.21)

The Freeflow Region is the region for which the supply function of every cell is able
to accommodate the whole incoming flow without limiting it and from equation (2.21) it
follows that

zk
i (x) =

Ø
j∈E

fk
ij(x) =

Ø
j∈E

Rk
ijd

k
i (xk

i ) = dk
i (xk

i ), i ∈ E , k ∈ K (2.22)

Given all these considerations it is possible to define the Multicommodity Dynamical
Flow Network.

Definition 6. Given a Multicommodity Transportation Network, routing matrices sat-
isfying (2.18) and (2.19) and exogenous inflows λk

i , a Multicommodity Dynamical Flow
Network (MDFN) is the dynamical system satisfying equations (2.15), (2.16), (2.17) and
(2.21).

Now some relevant examples of Multicommodity Dynamical Flow Networks are intro-
duced.

Example 3. It is first introduced a FIFO model, that uses the following allocation rule.

µk
i (x) = dk

i (xk
i ) i ∈ S, k ∈ K (2.23)

fk
ij(x) = γF

i (x)Rk
ijd

k
i (xk

i ), (i, j) ∈ A, k ∈ K (2.24)

where

γF
i =

γ ∈ [0,1] : γ · max
j∈E

(i,j)∈A

Ø
k∈K

Ø
l∈E

Rk
lj d̄

k
l (xk

l , αk
l ) ≤ sj(

Ø
k∈K

xk
j )

 (2.25)

that is the maximum value in [0,1] such that for each cell j, with (i, j) in A, the supply
constraint is satisfied. This means that all the flows sent to downstream cells are scaled
by the same value, even if for some cells more flow could be allocated.

In the literature are found examples of FIFOs models in [11], [12], [14].

Example 3.1. The dynamic of a MDFN is simulated, using the FIFO allocation rule,
assuming as the network’s topology the directed graph in Figure 2.7.
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Figure 2.7: Topology of single commodity dynamics

Assuming only two different commodities, namely A and B, and assuming demand and
supply functions such as

dk
i (xk

i ) = 3xk
i i ∈ E , k ∈ K (2.26)

si(
Ø
k∈K

xK
i ) =

I
4 −

q
k∈K xk

i i ∈ E \ R
+∞ i ∈ R

(2.27)

Moreover, fix the routing matrices Rk as

Rk
A =



0 0.5 0.5 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0

 Rk
B =



0 0.8 0.2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0


and the exogenous inflow on cell 1 of commodity A to λA

1 = 2 and the exogenous inflow on
cell 1 of commodity B to λB

1 = 5 for the first 15 seconds and set the initial conditions of
all cells to zero. Figure 2.8 shows the dynamics of the state of both commodities and it is
easily noticeable that almost all cells reach some kind of steady state. However, only the
source cell tends to increase due to the congestion in the network, which is quickly solved
once the exogenous input has stopped flowing into the network.

Example 4. Then it is introduced a non-FIFO model, as the one used in [9], whose
allocation rule reads

µk
i (x) = dk

i (xk
i ) i ∈ S, k ∈ K (2.28)

fk
ji(t, x) = Rk

ji(t)dk
j (xk

j ) min
A

1,
si(
q

h∈K xh
i )q

l∈E
q

h∈K Rli(t)hdh
l (xh

l )

B
, (i, j) ∈ A, k ∈ K

(2.29)
which states that when the supply function is not enough to provide for all the incoming
flows of all commodities, each flow is properly scaled based on the total amount each cell
and commodity want to send.

In the literature are found examples of non-FIFOs models mainly in [9].
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Figure 2.8: Multicommodity system’s dynamics

Example 4.1. One special scenario worth mentioning that has been widely studied in
the literature is the single commodity case in which the number of commodities in the
network reduces to just one. This thesis’ formulation is indeed a generalization of the
model employed in [9] that was used to study the stability of dynamical flow networks. In
this case the law of mass conservation and allocation rule reduce to

ẋi = yi(x) − zi(x)

yi =
Iq

j∈E fji, i ∈ E \ R
λi, i ∈ R

zi =
Iq

j∈E fij , i ∈ E \ S
di(xi), i ∈ S

(2.30)

fji(x) = Rjidj(xj) min
A

1,
si(xi)q

l∈E Rlidl(xl)

B
(2.31)

Then the dynamic of a single commodity flow network with topology shown in Figure
2.7 is simulated.

Assume demand and supply functions such as

di(xi) = 3xi ∀i (2.32)

si(xi) =
I

4 − xi i ∈ E \ R
+∞ i ∈ R

(2.33)

Moreover, fix the routing matrix R.
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R =



0 0.5 0.5 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0


Then set the exogenous inflow on cell 1 to λ1 = 0.5 and set the initial conditions of all cells
to zero. Figure 2.9 shows the dynamic of the single commodity dynamical flow network. It

Figure 2.9: Single commodity system’s dynamics

is possible to see that, in this case, an equilibrium is reached before the exogenous inflow
stops entering the system, thus leading to the network emptying itself.

Example 4.2. Then simulate the dynamic of a MDFN, using the non-FIFO allocation
rule, assuming as the network’s topology the directed graph in Figure 2.7.

Assuming only two different commodities, namely A and B, and assuming demand and
supply functions such as

dk
i (xk

i ) = 3xk
i i ∈ E , k ∈ K (2.34)

si(
Ø
k∈K

xk
i ) =

I
4 −

q
k∈K xk

i i ∈ E \ R
+∞ i ∈ R

(2.35)

Moreover, fix the routing matrices Rk as
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2.2 – System’s Dynamics and State Variables

Rk
A =



0 0.5 0.5 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0

 Rk
B =



0 0.8 0.2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0


and the exogenous inflow on cell 1 of commodity A to λA

1 = 2 and the exogenous inflow
on cell 1 of commodity B to λB

1 = 5 for the first 15 seconds and set the initial conditions
of all cells to zero. Figure 2.10 shows the dynamics of the state of both commodities and
it is easily noticeable that almost no cell reaches a steady state, which means that system
could handle more traffic. Moreover, even in this case the traffic volume of the source cells
tends to increase, it does so at a slower rate compared to the FIFO model.

0 5 10 15 20 25 30 35

Time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Traffic volumes dynamics of commodity A

0 5 10 15 20 25 30 35

Time [s]

0

1

2

3

4

5

6

7

Traffic volumes dynamics of commodity B

Figure 2.10: Multicommodity system’s dynamics
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Chapter 3

Stability Analysis

In this chapter the stability of the model introduced in the previous one is investigated. To
this end, some common definitions of system stability [16, Chapter 1] are first introduced
and then present the work already done to analyze the stability of single commodity dy-
namical flow networks. Finally, these studies are used to define a generalized formulation
which helps us to study the stability of Multicommodity Dynamical Flow Networks.

3.1 Preliminary Stability Concepts
Definition 7. Given a MDFN with its topology G = (V , E), set of commodities K, demand
{dk

i }i∈E
k∈K

and {si}i∈E and given constant routing matrices Rk and exogenous inflows λk
i ,

then

• The equilibrium point x̄ is the solution when the equation (2.15) is set equal to 0;

• Given any initial condition x(0), the equilibrium point x̄ is stable if

∀ϵ > 0, ∃δ > 0
∀x(0) : ||x(0) − x̄|| < δ → ||x(t) − x̄|| < ϵ, ∀t ≥ 0

(3.1)

• The equilibrium point x̄ is asymptotically stable if

lim
t→∞

||x(t) − x̄|| = 0 (3.2)

• The equilibrium point x̄ is globally asymptotically stable if it is asymptotically stable
for every initial condition x(0);

• The equilibrium point x̄ is unstable if it is not stable.

Example 5. Take into consideration the model proposed in the previous chapter and see
how it reacts to different inputs. In order to do so, it is chosen the same topology used in
the single commodity example in Figure 2.7. The considered demand function is

dk
i (xk(t)) = 3xk

i (t) (3.3)
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and the supply function is

si(
Ø
k∈K

xk
i (t)) = 2 −

Ø
k∈K

xk
i (t) (3.4)

Simulate first the dynamics considering an exogenous inflow

λA
1 = 0.5 λB

1 = 0.5 (3.5)

and fixing the routing matrices Rk as

Rk
A =



0 0.5 0.5 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0

 Rk
B =



0 0.8 0.2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0


and report the results in Figure 3.1.

Commodity A Commodity B

Figure 3.1: Multicommodity stability

Then simulate the dynamics again, keeping fixed the routing matrices Rk but changing
the exogenous inflow to

λA
1 = 0.5 λB

1 = 8 (3.6)
and report the results in Figure 3.2.

It is easily noticeable how in Figure 3.1 the traffic volumes reach an equilibrium, whereas
in Figure 3.2 the trajectories grow unbounded. The main objective in this chapter shall
be to understand whether and under what conditions a Multicommodity Dynamical Flow
Network is stable. Moreover, it is investigated if there exists one (or more) locally or
globally asymptotically stable equilibrium point. However, in the next section are presented
the studies already conducted present in the literature, which have been the starting point
and inspiration for this research.
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3.2 – Previous results in the single commodity case

Commodity A Commodity B

Figure 3.2: Multicommodity instability

3.2 Previous results in the single commodity case
Single commodity dynamical flow networks have been widely studied throughout the years
and it has already been proven in [9] that under some assumptions it is possible to demon-
strate how the system is indeed globally asymptotically stable. In this section their work
is presented by stating their results and giving a brief explanation on how they proceeded
to prove the global stability. Firstly, they considered a dynamical system defined by the
system (2.30) and (2.31) and defining

ϕ(x) = ẋ (3.7)

Moreover, they assumed a substochastic and outconnected routing matrix. By combin-
ing this assumption with the routing policy in equation (2.31), they call (2.30) as the
dynamical flow network with fixed preference rates.

Then, they proceeded by introducing a stability region Λ, defined as the largest set of
exogenous inflows for which the system (2.30)-(2.31) is stable

Λ := {λ ∈ RR
+ : max

i∈E
x∗

i (λ) < +∞} (3.8)

Moreover, they defined a set B ⊂ Λ as the set of λ for which there exists i ∈ E \ R such
that the summation of all the flows coming into the cell is equal to its supply functionØ

j∈E
Rjidj(x∗

j (λ)) = si(x∗
i (λ)) (3.9)

Then for every λ ∈ Λ \ B it is possible to introduce the dual graph Gd associated with
x∗(λ). Let

Jλ = ∇ϕ(x)|x=x∗(λ) (3.10)
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Then the dual graph Gd = (Vd, Ed) has set of nodes Vd = E and has ana edge (i, j) in Ed

if [Jλ]ji > 0. Moreover, the dual graph is rooted if for every i in Vd there exists a directed
path from i to an offramp j in R ⊆ Vd. The main result is defined in [9, Theorem 1]
which is reported below for completeness.

Theorem 1. Consider the dynamical flow network with fixed preference rates (2.30) with
inflow vector λ ∈ Λ \ B. Assume that the dual graph Gd is rooted. Then x∗(λ) =
limt→∞ ϕt(0, λ) is a globally asymptotically stable equilibrium.

In order to prove their result they exploited the theory about monotone and contractive
systems. In fact, they proved that the system (2.30)-(2.31) is monotone by using Kamke’s
theorem which states that a system ϕ is monotone if for almost all x

∂ϕi(x)
∂xk

≥ 0 ∀i /= k (3.11)

The fact that the system is monotone allows the authors of the paper to state a dichotomy
because either the system is bounded for each initial condition or each trajectory grows
unbounded. Then, after defining the set Λ and introducing the dual graph Gd, they
prove that the system is locally asymptotically stable by noticing that the eigenvalues of
the sublaplacian of the dual graph are all inside the unit circle. Moreover, they proved
global stability by proving that the system is also l1 non-expansive, thus every locally
asymptotically stable equilibrium point is also globally asymptotically stable.

Example 6. Then the dynamics of the system are simulated, to try to understand how x
changes when the inflow vector λ varies. In order to do so is used the network in Figure
3.3 and a very simple demand function as

di(xi(t)) = xi(t) i ∈ E (3.12)

along with a supply function of the form

si(xi(t)) = 2Ci − xi(t) i ∈ E (3.13)

where Ci is the capacity of cell i. Moreover, fix λ1 = 0.5 and vary λ2.
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8 9

Figure 3.3: Topology for single commodity stability analysis

Then the values of x under different λ2 are plotted, to understand the stability of the
system within and outside the set Λ. In Figure 3.4 it is possible to notice the volume
of cells 2, 5, 8 and 9 and it is easily noticeable that until λ2 ≤ 0.125 the system as a
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unique globally asymptotically stable equilibrium. At λ2 = 0.125 the system has infinite
equilibrium points since x8 can assume many different values. When λ2 > 0.125 the
system still has one (or more) equilibrium points, but when λ2 → 0.8, ρ tends to increase.
Furthermore, when λ2 = 0.8 (and even when λ2 > 0.8) the system becomes unstable and
each trajectory grows unbounded in x2.

Figure 3.4: Volume values of cells 2, 5, 8 and 9 with respect to different λ

3.3 Stability of Multicommodity Dynamical Flow Net-
works

In this section it is investigated the stability of the Multicommodity Dynamical Flow
Network, by discussing the existence of an equilibrium point inside the Freeflow Region
(2.20).

Proposition 2. Given a MDFN define z̄k
i = ((I−(Rk)′)−1λk)i and {z̄k

i }k∈K as the vectors
of the z̄k

i of all commodities on the same cell i. Then there exists a unique Freeflow
equilibrium point if and only if the following holds

{z̄k
i }k∈K ∈ Ci, ∀i ∈ E (3.14)

Proof. If it is considered a Freeflow equilibrium point, it must satisfy equation (2.15)
written in matrix form as

λk + (Rk)′zk − zk = 0 ∀k (3.15)
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It can be assumed that for each cell i ∈ E \ S there exists at least one path to a cell
j ∈ S. This is consistent with the idea that each particle in the network must have a path
to leave it. By considering this assumption and noticing that matrices (I − (Rk)−1) are
Metzler so each one of them is then invertible as in [9] and brings to a unique solution of
equation (3.15) as

z̄k = (I − (Rk)′)−1λk ∀k (3.16)
Since the equilibrium is in the Freeflow Region, then there is no congestion, so equation
(2.22) can be used to compute the state xk as the inverse of the demand as

x̄k
i = (dk

i )−1(z̄k
i )) = (dk

i )−1(I − (Rk)′)−1λk)i (3.17)

which is unique. Then, by substituting equations (3.16) and (3.17) in the condition defined
by (2.20) the following is obtainedØ

k∈K
(λk

i +
Ø
j∈E

Rk
jiz̄

k
j ) ≤ si(

Ø
k∈K

(dk
i )−1(z̄k

i )) ∀i ∈ E (3.18)

Notice that it is possible to restate the first term of the inequality asØ
k∈K

z̄k
i ≤ si(

Ø
k∈K

(dk
i )−1(z̄k

i )) ∀i ∈ E (3.19)

which corresponds to the inequality that defines the capacity region (2.1), thereby vali-
dating (3.14).

Moreover, it is immediate to see that if (3.14) holds, then the system is in freeflow.
Then for equations (3.15)-(3.17) the equilibrium is unique.

In the next definition, it is introduced a stability region to then study the stability
of the system given different exogenous inflows λ. Firstly, it is defined a diagonal block
matrix M such that it has (I − (Rk)′)−1 for each commodity k in K in the diagonal. For
example with two commodities, A and B, this matrix would be

M =
5(I − (RA)′)−1 0

0 (I − (RB)′)−1

6
It is now introduced the concept of Stability Region, which is the region of the exoge-

nous inflows for which the whole system is in freeflow.

Definition 8. Given a MDFN and its Freeflow Region F(λ). Then the stability region Λ
is the set of exogenous inflows such that

Λ = {(Mλ)i ∈ Ci, i ∈ E} (3.20)

Lemma 2. Given a MDFN. If the demand supply functions are concave, then the stability
region Λ is convex.

Proof. Recall the proof of Proposition 1, that shows the convexity of the capacity region
Ci for each cell i. By extending this result, the Stability region is a product of convex
regions, meaning that it is indeed convex.
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Then, properties of the routing matrices are exploited to prove that the Freeflow equi-
librium point is stable.

Proposition 3. Given a MDFN whose routing matrices Rk are both substochastic and
out-connected, then the freeflow equilibrium point is locally asymptotically stable.

Proof. Firstly, it is proven that that Rk is Schur stable. Let λk
R be the dominant eigenvalue

of Rk. Since (Rk)′ has the same eigenvalues of Rk then there exists a nonnegative eigen-
vector y in Rn

+ such that (Rk)′y = λk
Ry. Then, enumerate the elements of the eigenvector

and find its minimum element as

J = {i = 1, . . . , n : yi > 0}, y∗ = min
j∈J

yj > 0 (3.21)

Since Rk is substochastic and out-connected

min
i∈J

Ø
j∈J

Rij = 1 − γ < 1 (3.22)

Then, it is considered

λk
R

Ø
j∈J

yj =
Ø

1≤i≤n

Ø
j∈J

Rk
ijyi =

Ø
i∈J

yi

Ø
j∈J

Rk
ij ≤

Ø
i∈J

yi − y∗γ <
Ø
j∈J

yj (3.23)

proving that λk
R < 1, and thus Rk is Schur stable.

Then, recall the law of mass conservation in matrix form and compute its gradient

fk(xk) = λk − (I − (Rk)′)zk(x), ∇fk(xk) = (I − (Rk)′)(zk)′(x) (3.24)

Then, it can be introduced a positive diagonal matrix D = (zk)′(x) which will be used to
prove the stability of matrix A = (I−(Rk)′)D. First, notice that matrix A is compartmen-
tal and let λA be its dominant eigenvalue. Using Corollary 1 there exists a nonnegative
eigenvector y ∈ Rn

+ such that A′y = λAy. Then, defining J and y∗ as in (3.21) and let
d∗ = min{Dii : i ∈ J }. Then, since matrix Rk is substochastic and out-connected it is
possible to formulate that

min
i∈J

Ø
j∈J

Aij = min
i∈J

Ø
j∈J

Dii(1 − Rk
ij) ≤ −d∗γ < 0 (3.25)

Then, it is obtained

λA

Ø
j∈J

yj =
Ø

1≤i≤n

Ø
j∈J

Aijyi =
Ø
i∈J

yi

Ø
j∈J

Aij ≤ −y∗d∗γ < 0 (3.26)

thus proving that λA < 0, meaning that matrix A is Hurwitz stable proving that the
Freeflow equilibrium point is indeed locally asymptotically stable.

Example 7. It is now presented an example to show that the stability region is indeed
convex. In order to do so it is taken a network in which the commodities enter and leave
the network in different cells.
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Figure 3.5: Toplogy for the analysis of the convexity of the stability region

Fixing the routing matrix RA of commodity A as RA
1,3 = RA

1,4 = 0.5, RA
10,11 = 0.8,

RA
10,14 = 0.2, RA

11,8 = 0.6, RA
11,12 = 0.4, RA

14,16 = 1, RA
12,16 = 1 and 0 otherwise. Moreover,

fixing the routing matrix RB of commodity B as RB
2,5 = RB

2,6 = 0.5, RB
7,9 = 0.2, RB

7,10 = 0.8,
RB

10,11 = 0.6, RB
10,13 = 0.4, RB

9,15 = 1, R13,15 = 1 and 0 otherwise.
Choosing again as demand and supply functions the following ones

dk
i (xk

i ) = γk
i (1 − eαk

i xk
i ) i ∈ E , k ∈ K (3.27)

si(
Ø
k∈K

xk
i ) =

I
bi − a2

i

bi

q
k∈K xk

i i ∈ E \ R
+∞ i ∈ R

(3.28)

Fixing the parameters to

γk
i = 5 αk

i = 2 bi = 4 ai = 2 i ∈ E , k ∈ K (3.29)

Then iteratively increase the exogenous inflows λ1 = λA
1 and λ2 = λB

2 until they exit from
the region defined in (3.20).

Figure 3.6: Stability Region

Figure 3.6 shows the stability region and it is easily noticeable that such region is indeed
convex.
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Example 8. Now simulate the dynamics of the system by considering different initial
conditions to evaluate how the system acts when starting inside and outside of the freeflow
region. Moreover, it is evaluated how the system acts whether the exogenous inflow is
inside or outside the stability region. Set the topology as in Figure 3.3

Then, define the demand and supply function as

dk
i (xk

i ) = 3xk
i i ∈ E , k ∈ K (3.30)

si(
Ø
k∈K

xk
i ) =

I
2Ci −

q
k∈K xk

i i ∈ E \ R
+∞ i ∈ R

(3.31)

Morover, fix the exogenous inflows to λA
1 = 0.5 and λB

2 = 0.2 and the initial conditions
either to x(0) = 0 or to x(0) = 10, considering routing matrix RA such that RA

1,3 = 1,
RA

2,7 = 1, RA
3,4 = 0.5, RA

3,8 = 0.5, RA
4,5 = 0.75, RA

4,10 = 0.25, RA
5,6 = 1, RA

6,7 = 1, RA
7,3 = 1,

RA
8,9 = 1 and 0 otherwise. Then set the routing matrix RB such that RB

1,3 = 1, RB
2,7 = 1,

RB
3,4 = 0.5, RB

3,8 = 0.5, RB
4,5 = 0.6, RB

4,10 = 0.4, RB
5,6 = 1, RB

6,7 = 1, RB
7,3 = 1, RB

8,9 = 1
and 0 otherwise.

Commodity A Commodity B

Figure 3.7: Multicommodity System Dynamics with x(0) = 0

Figure 3.7 and 3.8 shows the dynamic of the system starting from two different initial
conditions. It is easily noticeable that in both cases the same equilibrium point is reached
even though in the second case the system starts outside the freeflow region this could imply
that the freeflow equilibrium point is indeed globally asymptotically stable which could be
proven with the use of a suitable Lyapunov function.

Example 9. Now simulate again the dynamics of the system by considering the initial
conditions x(0) = 0 and changing the exogenous inflows. In the first case it is considered
λA

1 = 0.5 and λB
2 = 0.2, whereas in the second one fix λA

1 = 0.5 and λB
2 = 1. Notice that

in the second case, it is chosen λB
2 such that the exogenous inflows are now outside of

the convex stability region and this could be helpful to understand the existence of other
equilibrium points other than the freeflow equilibrium point.
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Zoom-in Commodity A Zoom-in Commodity B

Figure 3.8: Multicommodity System Dynamics with x(0) = 10

Commodity A Commodity B

Figure 3.9: Multicommodity System Dynamics with λA
1 = 0.5 and λB

2 = 0.2

In figure 3.9 it is possible to notice that by choosing the exogenous inflows such that
they are inside of the stability region then the system does indeed converge to the freeflow
equilibrium point. However, in Figure 3.10 it is easily noticeable that by choosing the
exogenous inflows outside of the stability region the system loses its monotonicity and
does not converge anymore to the freeflow equilibrium point. Moreover, it is not possible
to talk about a true equilibrium point since, as it can be seen in the picture regarding
commodity B, there is one cell volume that diverges (cell 2). This happens because, by
choosing such exogenous inflows, congestion is unavoidable and the volume of the cell
which receives the exogenous inflow grows unbounded. Furthermore, the other cells do not
reach a true equilibrium either since their steady state value is only achieved based on the
level of congestion reached.
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Commodity A Commodity B

Figure 3.10: Multicommodity System Dynamics with λA
1 = 0.5 and λB

2 = 1

3.4 Conjectures and Future Research
In this chapter the stability of Multicommodity Dynamical Flow Networks is examined.
It was possible to define a Freeflow Region, the region of the traffic volume such that
the supply constraints are not active, and find an equilibrium point within this region if
the exogenous inflow is chosen inside a Stability Region. Moreover, it is proven that this
freeflow equilibrium point is locally asymptotically stable.

Given the results obtained in this chapter it is possible to formulate some conjectures,
supported by simulations, that would be of great interest for future researches. In Propo-
sition 2 is stated that there exists a unique Freeflow Equilibrium point if inequality (3.14)
is satisfied. However, this thesis does not evaluate the existence of equilibrium points if
the inequality is not satisfied. Many simulations have shown us that, by doing so, the
system will not reach an equilibrium since the traffic volume of one (or more) source cell
will eventually grow unbounded. Nevertheless, simulations are not enough to state this
as a result of this thesis and an analytic proof is not straightforward, leading us to leave
this topic open for future studies.

Moreover, in Proposition 3 is proved that the Freeflow Equilibrium point is locally
asymptotically stable. Even though I tried to also prove global asymptotical stability, I
was not able to found a solution yet. Given the multicommodity nature of this thesis’
scenario, it is not possible to use the approach adopted in [9] since the system loses
its monotonicity outside the freeflow region. A solution may be found using a suitable
Lyapunov function and then making some consideration about its form, possibly exploiting
the work done in [17].
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Chapter 4

Dynamic Traffic Assignment
and Freeway Network Control

This chapter presents two different optimal control problems that aim to optimize allo-
cated flow in multicommodity networks by minimizing a given cost function while satis-
fying supply and demand constraints.

The Dynamic Traffic Assignment (DTA) has been widely studied throughout the years
in a single commodity setting, so the objective is to generalize the formulation for mul-
ticommodity networks by achieving control through the use of ramp metering, variable
speed limits and variable routing. The Freeway Network Control (FNC) can be seen as a
simplification of the DTA in which the control is achieved only through the use of ramp
metering and variable speed limits since the routing is a known exogenous input. Since
both the DTA and FNC are known to lead to non-convex problems (as shown in [10]), it
is then presented a way in which is possible to relax the demand and supply functions in
order to achieve a linear program.

4.1 Problems formulation
Firstly, it is presented a controlled version of the Multicommodity Dynamical Flow Net-
work Model presented in Chapter 2. To this end, it is introduced the concept of control
parameters αk

i (t) ∈ [0,1] that are used to rescale the demand functions dk
i (xk

i ) and the
maximum outflow Ck

i for each source cell i in R. These control parameters are used, on
non-source cells, to control the demand functions to obtain variable speed limits (VLS),
whereas, on source cells, they control the maximum outflow so that these cells can be
thought as frontiers and obtain ramp metering.
Definition 9. Given a MDFN and given control parameters αk

i (t), then variable speed
limiting corresponds to reduce the demand functions as

d̄k
i (xk

i (t), αk
i (t)) = αk

i (t)dk
i (xk

i (t)) i ∈ E \ R, k ∈ K (4.1)
Remark 2. Notice how the previous definition states that each commodity inside the
network can have its own variable speed limit. In order to grasp this concept, imagine a
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setting in which on the same roads are present both cars and trucks, where trucks must
travel at a much lower speed.

Definition 10. Given a MDFN and given control parameters αk
i (t), then ramp metering

corresponds to reduce the maximum outflow of source cells as

d̄k
i (xk

i (t), αk
i (t)) = min(dk

i (xk
i (t)), αk

i (t)Ck
i ) i ∈ R, k ∈ K (4.2)

Remark 3. Given an initial assignment of traffic volumes

xk
i (0) = (x0

i )k, i ∈ E , k ∈ K (4.3)

and for each commodities exogenous inflows λk(t), routing policies Rk(t) and control pa-
rameters αk(t), the traffic’s evolution xk(t) for t ≥ 0 is uniquely determined by equations
(2.15) and (2.21).

Both the FNC and DTA problems, that are yet to be introduced, can be cast as open-
loop optimal control problems as a minimization of a cost function φ(x, z) over a time
interval [0,T] where T > 0 is a given finite time horizon. The cost function is supposed
to be convex in (x, z), non-decreasing in x, non-increasing in z and such that φ(0,0) = 0.
The cost function can assume many meanings such has

• Total travel time, such that φi(xi, zi) =
q

k xk
i . Notice that

s T
0
q

k xk
i (t) dt can be

thought as the total time spent by all kinds of vehicles on cell i over the interval
[0,T];

• Total travel distance, such that φi(xi, zi) = −li
q

k zk
i where li is the length of cell

i. Notice that
s T

0 li
q

k zk
i (t) dt can be thought as the total distance travelled by

drivers in cell i over the interval [0,T]. The minus sign is just to specify that the cost
function must be maximized and not minimized.

It is now possible to formulate the DTA and FNC as optimization problems. In the DTA,
assume that, given the initial traffic volumes and the exogenous inflow, it is possible to
control both the demand functions and the routing matrix within the constraints while in
the FNC problem assume that the routing matrix is a known exogenous input.

Definition 11. Given a MDFN, initial conditions (x0
i )k, a finite time horizon T and a

cost function φ(x, z), the multicommodity Dynamical Traffic Assigment can be formulated
as

min
α(t) R(t)

(2.15),(2.16),(2.17),(2.18),(2.19),(2.21)

Ú T

0
φ(x(t), z(t))dt (4.4)

Definition 12. Given a MDFN, initial conditions (x0
i )k, a finite time horizon T and a

cost function φ(x, z), the multicommodity Freeway Network Control can be formulated as

min
α(t)

(2.15),(2.16),(2.17),(2.21)

Ú T

0
φ(x(t), z(t))dt (4.5)
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4.2 Tight convexifications of the DTA and the FNC
problems

In this section it is shown how it is possible to relax both the DTA (4.4) and the FNC
(4.5) to obtain a formulation both convex and tight. Following the work done in [11]
two convex optimal control problems are presented and it is shown how their solution
can be mapped back into the original problems. The problems stated in (4.4) and (4.5)
achieve control by acting directly on the control parameters αk(t) and, only for the DTA,
the routing matrices Rk(t). However, the two problems shown in this section act on the
cell-to-cell flows fk(t), the cell inflows yk(t), the cell outflows zk(t), the traffic volumes
xk(t) and the outflow µk(t). Intuitively, non-negativity of these variables must be enforced
since a negative flow would indicate drivers travelling in the opposite direction, which is
inadmissible. So the following constraints are introduced

fk
ij(t) ≥ 0, (i, j) ∈ A,

µk
i (t) ≥ 0, i ∈ S,

µk
i (t) = 0, i ∈ E \ S,

k ∈ K (4.6)

where the constraints of µk
i (t) are given by definition of the outflow. Moreover, notice

that equation (4.6) implies also non-negativity for both yk
i (t) and zk

i (t) and that these are
linear constraints. Moreover, given the concave nature of both the supply and demand
functions it is possible to verify that the demand (2.16) and supply (2.17) constraints are
indeed convex. The non-convexity of the problem, arises from the allocation rule chosen,
both in the case of FIFO and non-FIFO models.

So it is now considered a relaxation of the multicommodity Dynamical Traffic Assign-
ment (4.4) which is

min
x,y,z,f,µ

(2.15),(4.3),(4.6),(2.16),(2.17)

Ú T

0
φ(x(t), z(t))dt (4.7)

And it is now possible to obtain a relaxation of the multicommodity Freeway Network
Control by ensuring that the flows are split accordingly to the given exogenous routing
matrices such that

fk
ij(t) = Rk

ij(t)zk
i (t), i ∈ E , ∀k (4.8)

Therefore it is obtained the FNC convex relaxation

min
x,y,z,f,µ

(2.15),(4.3),(2.16),(2.17),(4.8)

Ú T

0
φ(x(t), z(t))dt (4.9)

Proposition 4. The relaxation of the Dynamic Traffic Assignment (4.7) and of the Free-
way Network Control (4.9) are both convex.

Proof. In order to prove the convexity of the optimal control problems (4.7) and (4.9)
notice that it would mean that if (x(0)(t), y(0)(t), z(0)(t), f (0)(t), µ(0)(t)) satisfy the con-
straints in (4.7) and (4.9) and so does (x(1)(t), y(1)(t), z(1)(t), f (1)(t), µ(1)(t)) then for
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every β in [0,1], also (x(β), y(β), z(β), f (β), µ(β)) does, where x(β) = (1 − β)x(0) + βx(1),
y(β) = (1 − β)y(0) + βy(1) and so on, andÚ T

0
φ(x(β)(t)) dt ≤ (1 − β)

Ú T

0
φ(x(0)(t)) dt + β

Ú T

0
φ(x(1)(t)) dt (4.10)

Notice that the convex nature of the cost function φ(x, z) proves inequality (4.10). More-
over, notice that for each choice of routing matrices satisfying (2.18) and (2.19) and of the
control parameters αk(t) the dynamics of the multicommodity dynamical flow network
defined by (2.15) and the allocation rule inevitably satisfies (4.6),(2.16), (2.17) and (4.8)
thus being a solution of the convex optimal control problems (4.7) and (4.9).

In order to prove that these relaxations are tight it must be proven that for each
solution of the convex optimal control problems (4.7) and (4.9) there exists a choice of
control parameters αk(t) and routing matrices Rk(t) such that (2.21) is satisfied. This can
be easily verified by extending Proposition 1 in [11] to the multicommodity setting. In
order to do so and to state the next prosition it is first introduced the concept of variable
speed limits and variable routing matrices based on the demand function, capacity and
flows in the system. In this thesis refer as variable speed limits αk(t) obtained to

αk
i (t) =

I
zk

i (t)/dk
i (xk

i (t)), i ∈ E \ R
zk

i (t)/Ck
i , i ∈ R.

k ∈ K (4.11)

Moreover assume that αk
i (t) = 1 if zk

i (t) = dk
i (xk

i (t)) = 0 on a non-source cell i in E \ R
and that if zk

i (t) = 0 then Rk
ij(t) = |{k ∈ E : (i, k) ∈ A}|−1 for all (i, j) in A.

Notice that each commodity has its own variable speed limit meaning that two vehicles
belonging to different commodities driving in the same road are subjected to different
speed limits. Then variable routing matrices Rk(t) are introduced as

Rk
ij(t) =

I
fk

ij(t)/zk
i (t), (i, j) ∈ A

0 (i, j) ∈ E × E \ A
(4.12)

which means that vehicles belonging to different commodities may (or may not) take
different routes. Moreover, the variable routing matrices Rk satisfy both equations (2.18)
and (2.19)

Proposition 5. Given a MDFN and initial traffic volumes x0. Then for any feasible so-
lution (x(t), y(t), z(t), µ(t), f(t)) of the convex optimal control problem (4.7), it is possible
to set αk(t) and Rk(t) as defined in (4.11) and (4.12) respectively, so that x(t) satisfies
(2.21) and (αk(t), Rk(t)) is a solution of the original DTA problem (4.4).

Proof. Let (x(t), y(t), z(t), µ(t), f(t)) be a feasible solution of the convex optimal problem
(4.7). It is true that zi(t) ≤ Ci for any t ≥ 0 as defined in the demand constraint in
(2.16). Then, when choosing the control parameters as in (4.11), for every non-source cell
i ∈ E \ R

zk
i (t) = αk

i (t)dk
i (xk

i (t)) = d̄k
i (xk

i (t), αk
i (t)) (4.13)
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Then, for every sink cell i ∈ S it follows µk
i (t) = zk

i (t) = d̄k
i (xk

i (t), αk
i (t)). Moreover, for

every source cell i ∈ R it follows from the choice of control parameters (4.11) and the
demand constraint (2.16) that

zk
i (t) = min{dk

i (xk
i (t)), αk

i (t)Ck
i } = d̄k

i (xk
i (t), αk

i (t)) (4.14)

So it is possible to say that zk
i (t) = d̄k

i (xk
i (t), αk

i (t)) for every cell i ∈ E and from the
choice of the routing matrices in (4.12) it follows that

fk
ij = Rk

ij(t)zk
i (t) = Rk

ij(t)d̄k
i (xk

i (t), αk
i (t)) ∀(i, j) ∈ A, k ∈ K (4.15)

Therefore, for every cell j ∈ EØ
k∈K

Ø
i∈E

Rk
ij(t)d̄k

i (xk
i (t), αk

i (t)) =
Ø
k∈K

Ø
(i,j)∈A

fk
ij(t) =

Ø
k∈K

yk
j (t) ≤ sj(

Ø
k

xk
j (t)) (4.16)

where the inequality is the same as in the supply constraint in (2.17). This implies that
there is no congestion, meaning that the solution is in freeflow, thus being admissible
for each allocation rule. Then, it is easy to verify that the choice of routing matrix
(4.12) satisfies equations (2.18) and (2.19). This means that for every feasible solu-
tion (x(t), y(t), z(t), µ(t), f(t)) of the convex optimal control problem (4.7), the choices
of control parameters (4.11) and routing matrices (4.12) satisfy (2.21), which implies that
(α(t), R(t)) is a feasible solution of the original DTA problem (4.4).

Proposition 6. Given a MDFN, initial traffic volumes x0 and fjx the substochastic routing
matrices. Then for any feasible solution (x(t)k, y(t)k, z(t)k, µk(t), fk(t)) of the convex
optimal control problem (4.9) it is possible to set αk(t) as in (4.11) so that xk(t) satisfies
(2.21), such that αk(t) is a solution of the original FNC problem (4.5).

Proof. Let (x(t), y(t), z(t), µ(t), f(t)) be a feasible solution of the convex optimal control
problem (4.9). From equations (4.8) and (4.11) it follows that

fk
ij = Rk

ij(t)zk
i (t) = Rk

ij(t)d̄k
i (xk

i (t), αk
i (t)) (i, j) ∈ A, k ∈ K (4.17)

which implies thatØ
k∈K

Ø
i∈E

Rk
ij(t)d̄k

i (xk
i (t), αk

i (t)) =
Ø
k∈K

Ø
(i,j)∈A

fk
ij(t) =

Ø
k∈K

yk
j (t) ≤ sj(

Ø
k

xk
j (t)) j ∈ E

(4.18)
which is implied in the supply constraint (2.17). Then, proceed as in the proof of Propo-
sition 5 to satisfy every allocation rule. This means that for every feasible solution
(x(t), y(t), z(t), µ(t), f(t)) of the convex optimal control problem (4.9), the choices of con-
trol parameters (4.11) satisfies the allocation rule, which implies that α(t) is a feasible
solution of the original DTA problem (4.5).

4.3 Freeway Network Control optimal problem
In this section optimal control techniques are used to study the convex formulation of
the Freeway Network Control problem (4.9) by assuming a cost function φ(x(t)) which is
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function of the traffic volume only. By recalling that yk
i = λk

i +
q

j Rk
jiz

k
j for i ∈ E it is

possible to restate the law of mass conservation (2.15) as

ẋk
i = λk

i (t) +
Ø
j∈E

Rk
ji(t)zk

j (t) − zk
i (t) i ∈ E k ∈ K (4.19)

Considering this and the demand (2.16) and supply (2.17) constraints it is possible to
pose the optimal control problem using as control parameters only the outflow from the
cells z as such:

min
s T

0 φ(x(t))dt

xk
i (0) = (x0

i )k ẋk
i = λk

i (t) +
q

j∈E Rk
ji(t)zk

j (t) − zk
i (t) i ∈ E k ∈ K

0 ≤ zk
i (t) ≤ dk

i (xk
i (t))

q
k∈K

q
j∈E Rk

ji(t)zk
j (t) ≤ si(

q
k∈K xk

i (t)) i ∈ E

(4.20)

The Hamiltonian associated with problem (4.20) is

H(x, z, ζ) = −φ(x) +
Ø
k∈K

Ø
i∈E

ζk
i (λi(t)k +

Ø
j∈E

Rk
ji(t)zk

j (t) − zi(t)k) (4.21)

where x is the state vector, z is the control parameter and ζ is the adjoint state vector.
Then introduce the notation

κk
i (t) =

Ø
i∈E

Rk
ij(t)ζk

j (t) − ζk
i (t) (4.22)

So it is possible to rewrite the Hamiltonian as

H(x, z, ζ) = −φ(x) +
Ø
k∈K

(
Ø
i∈E

ζk
i λk

i +
Ø
i∈E

κk
i zk

i ) (4.23)

Then the Pontryagin maximum principle implies that if (x∗, z∗) is an optimal solution of
(4.20) then for every t ∈ [0,T]

z∗(t) ∈ argmax
(zk

i )i∈Eq
k∈K

q
j∈E Rk

ji(t)zk
j (t)≤si(

q
k∈K(xk

i )∗(t))
zk

i ≤dk
i ((xk

i )∗(t))

H(x∗(t), z, ζ(t))

= argmax
(zk

i )i∈Eq
k∈K

q
j∈E Rk

ji(t)zk
j (t)≤si(

q
k∈K(xk

i )∗(t))
zk

i ≤dk
i ((xk

i )∗(t))

Ø
k∈K

Ø
i∈E

κk
i (t)zk

i

= argmin
(zk

i )i∈Eq
k∈K

q
j∈E Rk

ji(t)zk
j (t)≤si(

q
k∈K(xk

i )∗(t))
zk

i ≤dk
i ((xk

i )∗(t))

A
−
Ø
k∈K

Ø
i∈E

κk
i (t)zk

i

B
(4.24)
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Denoting with ξi and νi the multipliers of the demand and the supply constraints then
the dual problem of (4.24) reads

(ξ∗(t), ν∗(t)) ∈ argmax
(ξi,νi)i∈E

ξi≥0, ν≥0, ≥0

ξk
i

+
q

j∈E
Rk

ij
vk

j
≥κk

i

−
Ø
k∈K

Ø
i∈E

(ξk
i dk

i ((xk
i )∗(t)) + νk

i si(
Ø
h∈K

(xh
i )∗(t)) (4.25)

So the adjoint dynamical equation is

ζ̇k
i (t) = ∂

∂xk
i

φ(x∗(t)) + (ξk
i (dk

i )′((xk
i )∗(t)) + νk

i s
′

i(
Ø
h∈K

(xh
i )∗(t))) (4.26)

where (dk
i )′ and s

′

i are the derivatives of the demand and supply respectively. The transver-
sality condition is

ζk
i (T ) = 0 i ∈ E (4.27)

4.4 Previous non-convex DTA studies
It is worth mentioning that the Multicommodity Social Optimum Dynamic Traffic As-
signment has already been addressed as a non-convex problem by ensuring the FIFO
constraints. In fact, the work done by Samaranayake et al. [18] tries to solve this problem
by assuming two different types of commodities: the controllable one, whose only origin
and destination cells are known and the routes can be freely chosen by the system, and
the uncontrollable one which has fixed routing.

In their study they also employed the cell transmission model assuming for each cell i
supply function si and demand function di, assuming that source cells have no supply and
sink cells have no demand. As the state of the system for each cell i they decided to use
the density of traffic volume xi computed as the total number of vehicles on a cell divided
by its length Li. Furthermore, they define the density of each commodity xk

i which must
satisfy

xi =
Ø
k∈K

xk
i (4.28)

Then, they introduced the total inflow and the total outflow computed as the summation
of the inflow and outflow of each commodity

yi =
Ø
k∈K

yk
i (4.29)

zi =
Ø
k∈K

zk
i (4.30)

Given these definitions they then defined the mass conservation law as

xk
i (t) =

I
xk

i (t − 1) + ∆t
Li

(yk
i (t − 1) − zk

i (t − 1)) ∀i ∈ E \ (R ∪ S)
xk

i (t − 1) + ∆t
Li

zk
i (t − 1)

(4.31)
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As previously mentioned, they employed two different types of commodities. A non-
controllable commodity defined by a substochastic routing matrix whose elements Rk

ij(t)
are called split ratios. Moreover, the split ratios are also introduced for the controllable
commodity but it assumes a different meaning

Rk
ij(t) =

I
1 if the path of commodity c contains both cell i and j
0 otherwise

(4.32)

Moreover, they decided to maintain the non-convexity of the problem by considering the
following FIFO condition whenever xi(t) /= 0

zk
i (t) = zi(t)

xk
i (t)
xi

(4.33)

Furthermore, each commodity outflow must be modulated by the corresponding split ratio

fk
ij(t) = Rk

ij(t)zk
i (t) (4.34)

The total inflow and the total outflow must also satisfy respectively the supply and demand
constraints

0 ≤ yi(t) ≤ si(t) (4.35)

0 ≤ zi(t) ≤ di(t) (4.36)

Considering the system defined in (4.28)-(4.36) and many more assumptions by employing
the Adjoint Method to compute the gradient and solve the problem by reaching a minimum
of the total travel time. However, since the problem is non-convex, there might be many
minimum points. In order to find the global one it is employed a multi-start strategy,
which consists in using the algorithm many times that, if there are not too many minimum
points, will eventually reach the global minimum.
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Chapter 5

Iterative Distributed Solution

In this chapter it is first presented a discretized version of the problems defined in the
previous chapter and then study a method to solve both the Multicommodity Dynamic
Traffic Assignment and the Multicommodity Freeway Network Control based on Alter-
nating Direction Method of Multipliers [15] introduced by Sthepen Boyd.

5.1 Discrete time Dynamic Traffic Assignment and
Freeway Network Control

In the following section it shall be used a discrete time version of both the DTA and the
FNC which are now introduced. The discrete time FNC would read

min
NØ

t=0

Ø
k

Ø
i∈E

φk
i (xk

i (t))

xk
i (0) = (xk

i )0 xk
i (t + 1) = xk

i (t) + λk
i (t) +

Ø
j∈E

Rk
ji(t)zk

j (t) − zk
i (t) i ∈ E , k ∈ K

0 ≤ zk
i (t) ≤ dk

i (xk
i (t))

Ø
k∈K

Ø
j∈E

Rk
ji(t)zk

j (t) ≤ si(
Ø
k∈K

xk
i (t)) i ∈ E (5.1)

However it is possible to introduce additional variables yk
i (t) = xk

i (t + 1) and fk
ij = Rk

ijz
k
i

to achieve a fully distributed control such as

min
NØ

t=0

Ø
k∈K

Ø
i∈E

φk
i (xk

i (t))

xk
i (0) = (xk

i )0 yk
i (t) = xk

i (t) + λk
i (t) +

Ø
j∈E

fk
ji − zk

i (t) i ∈ E , k ∈ K

yk
i (t) = xk

i (t + 1) fk
ij = Rk

ij(t)zk
i (t) i ∈ E , k ∈ K

0 ≤ zk
i (t) ≤ dk

i (xk
i (t))

Ø
k∈K

Ø
j∈E

fk
ji(t) ≤ si(

Ø
k∈K

xk
i (t)) i ∈ E (5.2)
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Then it is possible to formulate the discrete time version of the DTA by decoupling the
incoming flows f , the outgoing flows g and the exogenous outflow µ such as

min
NØ

t=0

Ø
k∈K

Ø
i∈E

φk
i (xk

i (t))

xk
i (0) = (xk

i )0 yk
i (t) = xk

i (t) + λk
i (t) +

Ø
j∈E

fk
ji(t) −

Ø
j∈E

gk
ij(t) − µk

i (t) i ∈ E , k ∈ K

yk
i (t) = xk

i (t + 1) fk
ij(t) = gk

ij(t) fk
ij(t) ≥ 0 i ∈ E , k ∈ K

0 ≤
Ø

j

gk
ij(t) + µk

i (t) ≤ dk
i (xk

i (t))
Ø
k∈K

(λk
i (t) +

Ø
j∈E

fk
ij(t)) ≤ si(

Ø
k∈K

xk
i (t)) i ∈ E (5.3)

5.2 Solving FNC and DTA with ADMM
The ADMM has already been proven to be a powerful tool to solve both the FNC and
the DTA in a single commodity setting. In fact, these problem have been addressed and
solved with the ADMM both in [14] and [13]. However, This section shall focus on a
formulation of the ADMM algorithm capable of solving both the FNC and DTA problems
in a multicommodity scenario and then present some relevant examples.

5.2.1 ADMM with Freeway Network Control
Recall the Multicommodity Freeway Network Control formulation as in (5.2)

min
NØ

t=0

Ø
k∈K

Ø
i∈E

φk
i (xk

i (t))

xk
i (0) = (xk

i )0 yk
i (t) = xk

i (t) + λk
i (t) +

Ø
j∈E

fk
ji(t) − zk

i (t) i ∈ E , k ∈ K

yk
i (t) = xk

i (t + 1) fk
ij(t) = Rk

ij(t)zk
i (t) i ∈ E , k ∈ K

0 ≤ zk
i (t) ≤ dk

i (xk
i (t))

Ø
k∈K

Ø
j∈E

fk
ji(t) ≤ si(

Ø
k∈K

xk
i (t)) i ∈ E (5.4)

It is thus possible to formulate the Augmented Lagrangian as
Lρ(x, y, f, z, ζ, χ, ξ, σ, ν, η) =

qN
t=0
q

k∈K
q

i∈E φk
i (xk

i (t)) + ζk
i (t)(yk

i (t) − xk
i (t)

−λk
i (t) −

q
j∈E fk

ji(t) + zk
i (t)) + χk

i (t)(yk
i (t)

−xk
i (t + 1)) +

q
j∈E (ξk

ij(t)(fk
ij(t) − Rk

ij(t)zk
i (t)))

+σk
i (t)(zk

i (t) − dk
i (xk

i (t))) + νk
i (t)(

q
h∈K

q
j∈E fh

ji(t)
−si(

q
h∈K xh

i (t))) + ηi(t)k(−zk
i (t)) + (ρ/2)((yk

i (t)
−xk

i (t) + λk
i (t) +

q
j∈E fk

ji(t) − zk
i (t))2 + (yk

i (t)
−xk

i (t + 1))2 +
q

j∈E (fk
ij(t) − Rk

ij(t)zk
i (t))2

+max(0, zk
i (t) − dk

i (xk
i (t), Ci))2

+max(0, (
q

h∈K
q

j∈E fh
ji(t) − si(

q
h∈K xh

i (t))))2

+max(0, −zk
i (t))2)

(5.5)
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Then it is possible to perform the minimization steps for the variables x, y, f and z as

zk+1 := argmin
z

Lρ(xk, yk, fk, z, ζk, χk, ξk, σk, νk, ηk) (5.6)

fk+1 := argmin
f

Lρ(xk, yk, f, zk+1, ζk, χk, ξk, σk, νk, ηk) (5.7)

yk+1 := argmin
y

Lρ(xk, y, fk+1, zk+1, ζk, χk, ξk, σk, νk, ηk) (5.8)

xk+1 := argmin
x

Lρ(x, yk+1, fk+1, zk+1, ζk, χk, ξk, σk, νk, ηk) (5.9)

The solution of the minimization steps (5.6)-(5.9) is equal to solving the following equa-
tions

∂Lρ

∂xk
i (t) = (φk

i )′(t) − ζk
i (t) − χk

i (t − 1) + σk
i (dk

i )′(xk
i (t)) − νk

i (t)(si)′(
q

h∈K xh
i (t))

+ρ
2(−2(yk

i (t) − xk
i (t) − λk

i (t) −
q

j∈E fk
ji(t) + zk

i (t)) − 2(yk
i (t − 1) − xk

i (t))
−2(dk

i (xk
i (t)))′max(0, zk

i (t) − dk
i (xk

i (t)))
−(si)′(

q
h∈K xh

i (t))max(0,
q

h∈K
q

j∈E λh
i (t) + fh

ji(t) − si(
q

h∈K xh
i (t))))

= 0
(5.10)

∂Lρ

∂fk
iw(t) = ζk

w(t) + ξk
iw(t) + νk

w(t) − ρ
2(−2(yk

w(t) − xk
w(t) − λk

w(t) −
q

j∈E fk
jw(t)

+zk
w(t)) + 2(fk

iw(t) − Rk
iwzk

i (t)) + 2(
q

h∈K
q

j∈E λh
i (t) + fh

jw(t)
−sw(

q
h∈K xh

w(t))))
= 0

(5.11)

∂Lρ

∂yk
i (t) = ζk

i (t) + χk
i (t) + ρ

2(2(yk
i (t) − xk

i (t) − λk
i (t) −

q
j∈E fk

ji(t) + zk
i (t)) + 2(yk

i (t)
−xk

i (t + 1)))
= 0

(5.12)
∂Lρ

∂zk
i (t) = −ζk

i (t) −
q

j∈E ξk
ij(t)Rk

ij + σk
i (t) − ηk

i (t) + ρ
2(2(yk

i (t) − xk
i (t) − λk

i (t)
−
q

j∈E fk
ji(t) + zk

i (t)) − 2(
q

j∈E Rk
ij(fk

ij(t) − Rk
ijz

k
i (t))) + 2max(0, zk

i (t)
−dk

i (xk
i (t))) − 2max(0, −zk

i (t)))
= 0

(5.13)
Once the minimization steps are computed it is necessary to update the dual variables as
such

ζk
i (t + 1) = ζk

i (t) + ρ(yk
i (t) − xk

i (t) − λk
i (t) −

Ø
j∈E

fk
ji(t) + zk

i (t)) (5.14)

χk
i (t + 1) = χk

i (t) + ρ(yk
i (t) − xk

i (t + 1)) (5.15)

ξk
ij(t + 1) = ξk

ij(t) + ρ(fk
ij(t) − Rk

ijz
k
i (t)) (5.16)

σk
i (t + 1) = max(0, σk

i (t) + ρ(zk
i (t) − dk

i (xk
i (t)))) (5.17)

νk
i (t + 1) = max(0, νk

i (t) + ρ(
Ø
h∈K

Ø
j∈E

fk
ji(t) − si(

Ø
h∈K

xh
i (t)))) (5.18)
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ηk
i (t + 1) = max(0, ηk

i (t) + ρ(−zk
i (t))) (5.19)

By computing the minimization steps and the dual variable updates it is possible to obtain
a distributed algorithm capable of solving the FNC problem

Example 10. It is now applied the ADMM algorithm to an example and evaluate the
results obtained. The network chosen for this example is shown in Figure 5.1. Moreover,

Figure 5.1: Topology for ADMM testing

the cost function chosen is simply the square of the total travel time such as

φk
i (xk

i (t)) = (xk
i (t))2 (5.20)

For this example it is chosen to use a linear demand function such as

dk
i (xk

i (t)) = αk
i xk

i (t) (5.21)

and affine supply function

si(
Ø
h∈K

xh
i (t)) = bi − ai

Ø
h∈K

xh
i (t) (5.22)

The plots consist of the cost function, the duality gap, interpreted as the difference between
the Lagrangian function and the Dual function, and the infeasibility, meaning how much
the constraints of the convex optimization problem are not satisfied.

In Figure 5.2 it is easily noticeable that even under different penalty terms the system
is able to reach, over many iterations, the same value of the cost function as expected.
Moreover, the duality gap tends to zero, as it is possible to imagine, since the result of the
Lagrangian function should be the same of that of the Dual Function. Furthermore, Figure
5.3 shows that the infeasibility decreases over iterations until reaching zero, meaning that
the control is achieved by satisfying every constraint. Moreover, it is noticeable that when
using a bigger penalty parameter ρ it introduces more oscillation caused mainly by an
overshoot of the optimal value.
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Figure 5.2: FNC: Cost function and Duality Gap under different penalty terms
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Figure 5.3: FNC: Degree of infeasibility

5.2.2 ADMM with Dynamic Traffic Assignment

Recall the Multicommodity Dynamic Traffic Assignment formulation as in (5.3)

min
qN

t=0
q

k∈K
q

i∈E φk
i (xk

i (t))

xk
i (0) = (xk

i )0 yk
i (t) = xk

i (t) + λk
i (t) +

q
j∈E fk

ji(t) −
q

j∈E gk
ij(t) − µk

i (t) i ∈ E , k ∈ K

yk
i (t) = xk

i (t + 1) fk
ij(t) = gk

ij(t) fk
ij(t) ≥ 0 i ∈ E , k ∈ K

0 ≤
q

j∈E gk
ij(t) + µk

i (t) ≤ dk
i (xk

i (t))
q

k∈K (λk
i (t) +

q
j∈E fk

ij(t)) ≤ si(
q

k∈K xk
i (t)) i ∈ E

(5.23)
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It is thus possible to formulate the Augmented Lagrangian as

Lρ(x, y, f, g, µ, ζ, χ, ξ, σ, ν, η) =
qN

t=0
q

k∈K
q

i∈E φk
i (xk

i (t)) + ζk
i (t)(yk

i (t) − xk
i (t)

−λk
i (t) −

q
j∈E fk

ji(t) +
q

j∈E gk
ij(t) + µk

i (t))
+χk

i (t)(yk
i (t) − xk

i (t + 1)) +
q

j∈E (ξk
ij(t)(fk

ij(t)
−gk

ij(t))) + σk
i (t)(

q
j∈E gk

ij(t) + µi(t) − dk
i (xk

i (t))
+νk

i (t)(
q

h∈K
q

j∈E λh
i (t) + fh

ji(t) − si(
q

h∈K xh
i (t)))

+
q

j∈E (ηij(t)k(−fk
ij(t))) + (ρ/2)((yk

i (t) − xk
i (t)

+λk
i (t) +

q
j∈E fk

ji(t) −
q

j∈E gk
ij(t) − µk

i (t))2 + (yk
i (t)

−xk
i (t + 1))2 +

q
j∈E (fk

ij(t) − gk
ij(t))2 + max(0, µk

i (t)
+
q

j∈E gk
ij(t) − dk

i (xk
i (t)))2

+max(0, (
q

h∈K
q

j∈E λh
i (t) + fh

ji(t)
−si(

q
h∈K xh

i (t))))2 +
q

j∈E max(0, −fk
ij(t))2)

(5.24)
Then it is possible to perform the minimization steps for the variables x, y, f and z as

gk+1 := argmin
g

Lρ(xk, yk, fk, g, µk, ζk, χk, ξk, σk, νk, ηk) (5.25)

fk+1 := argmin
f

Lρ(xk, yk, f, gk+1, µk, ζk, χk, ξk, σk, νk, ηk) (5.26)

yk+1 := argmin
y

Lρ(xk, y, fk+1, gk+1, µk, ζk, χk, ξk, σk, νk, ηk) (5.27)

µk+1 := argmin
µ

Lρ(xk, yk+1, fk+1, gk+1, µ, ζk, χk, ξk, σk, νk, ηk) (5.28)

xk+1 := argmin
x

Lρ(x, yk+1, fk+1, gk+1, µk+1, ζk, χk, ξk, σk, νk, ηk) (5.29)

Solving the minimization steps (5.25)-(5.29) is the same as solving the following equations

∂Lρ

∂xk
i (t) = (φk

i )′(t) − ζk
i (t) − ξk

i (t − 1) + σk
i (dk

i )′(xk
i (t)) − νk

i (t)(si)′(
q

h∈K xh
i (t))

+ρ
2(−2(yk

i (t) − xk
i (t) − λk

i (t) −
q

j∈E fk
ji(t) +

q
j∈E gk

ij(t) + µk
i (t))

−2(yk
i (t − 1) − xk

i (t)) − 2(dk
i (xk

i (t)))′max(0, µk
i (t) +

q
j∈E gk

ij(t) − dk
i (xk

i (t)))
−(si)′(

q
h∈K xh

i (t))max(0,
q

h∈K
q

j∈E λk
i (t) + fk

ji(t) − si(
q

h∈K xh
i (t))))

= 0
(5.30)

∂Lρ

∂fk
iw(t) = ζk

w(t) + ξk
iw(t) + νk

i (t) − ηk
iw(t) − ρ

2(−2(yk
w(t) − xk

w(t) − λk
w(t) −

q
j∈E fk

jw(t)
+
q

j∈E gk
ij(t) + µk

w(t)) + 2(
q

j∈E fk
ij(t) − gk

ij(t)) + 2(
q

h∈K
q

j∈E λk
w(t)

+fk
jw(t) − sw(

q
h∈K xh

w(t))))
= 0

(5.31)

∂Lρ

∂gk
iw(t) = −ζk

i (t) + −ξk
i (t) + σk

i (t) + ρ
2(2(yk

i (t) − xk
i (t) − λk

i (t) −
q

j∈E fk
ji(t)

+
q

j∈E gk
ij(t) + µk

i (t)) − 2(
q

j∈E fk
ij(t) − gk

ij(t)) + 2max(0, µk
i (t)

+
q

j∈E gk
ij(t) − dk

i (xk
i (t))

= 0

(5.32)
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∂Lρ

∂yk
i (t) = ζk

i (t) + χk
i (t) + ρ

2(2(yk
i (t) − xk

i (t) − λk
i (t) −

q
j∈E fk

ji(t) +
q

j∈E gk
ij(t)

+µk
i (t)) + 2(yk

i (t) − xk
i (t + 1)))

= 0
(5.33)

∂Lρ

∂µk
i (t) = −ζk

i (t) + σk
i (t) − ρ

2(2(yk
i (t) − xk

i (t) − λk
i (t) −

q
j∈E fk

ji(t) +
q

j∈E gk
ij(t)

+2max(µk
i (t) +

q
j∈E gk

ij(t) − dk
i (xk

i (t)))
= 0

(5.34)
Once the minimization steps are computed it is necessary to update the dual variables as
such

ζk
i (t + 1) = ζk

i (t) + ρ(yk
i (t) − xk

i (t) − λk
i (t) −

Ø
j∈E

fk
ji(t) +

Ø
j∈E

gk
ij(t) − µk

i (t)) (5.35)

χk
i (t + 1) = χk

i (t) + ρ(yk
i (t) − xk

i (t + 1)) (5.36)

ξk
ij(t + 1) = ξk

ij(t) + ρ(fk
ij(t) − gk

ij(t)) (5.37)

σk
i (t + 1) = max(0, σk

i (t) + ρ(µk
i (t) +

Ø
j∈E

gk
ij(t) − dk

i (xk
i (t)))) (5.38)

νk
i (t + 1) = max(0, νk

i (t) + ρ(
Ø
h∈K

Ø
j∈E

λk
i (t) + fk

ji(t) − si(
Ø
h∈K

xh
i (t)))) (5.39)

ηk
ij(t + 1) = max(0, ηk

ij(t) + ρ(−fk
ij(t))) (5.40)

By computing the minimization steps and the dual variable updates it is possible to obtain
a distributed algorithm capable of solving the DTA problem.

Example 11. It is then possible to apply the ADMM algorithm to an example and eval-
uate the results obtained, with the same network used for the FNC, shown in Figure 5.1.
Moreover, the cost function chosen is simply the square of the total travel time such as

φk
i (xk

i (t)) = (xk
i (t))2 (5.41)

For this example it is chosen to use a linear demand function such as

dk
i (xk

i (t)) = αk
i xk

i (t) (5.42)

and affine supply function

si(
Ø
h∈K

xh
i (t)) = bi − ai

Ø
h∈K

xh
i (t) (5.43)

The plots consist of the cost function, the duality gap, interpreted as the difference between
the Lagrangian function and the Dual function, and the infeasibility, meaning how much
the constraints of the convex optimization problem are not satisfied.
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Figure 5.4: DTA: Cost function and Duality Gap under different penalty terms
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Figure 5.5: DTA: Degree of infeasibility

As found for the FNC problem, the ADMM proves useful to solve the multicommodity
DTA. In fact, in Figure 5.4 it is shown that despite the chosen penalty parameter the
algorithm reaches the same value of the total travel time. Furthermore, the Duality gap
decreases over iterations until it eventually becomes null, meaning that the Lagrangian
function and the Dual function become more and more similar the more iterations are
considered. Moreover, the ADMM proves to be a great tool to ensure the demand and
supply constraints as shown in Figure 5.5 which shows the infeasibility of the system that
starts at a high value but decreases over iterations until eventually reaching zero, meaning
that the optimal value found actually satisfies all constraints. As for the FNC problem,
the use of a bigger penalty parameter ρ introduces some oscillation which can be related
to the overshoot of the actual optimal value.

5.3 Los Angeles Network
Proven that the algorithm works on a relatively small network, in this section it is now
tested in a real-life scenario. To this end, it is chosen to use the Los Angeles network
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defined in [12] shown in Figure 5.6.

Figure 5.6: Los Angeles Network

In this network its possible to notice different types of cells such as mainlines (the
longer cells), intersections, ramps (on and off) and between ramps. For all cells and
commodities it is defined the demand function as

emdk
i (xk

i ) = vk
i xk

i

Li
(5.44)

where vk
i is the free-flow speed of commodity k in cell i and Li is the length of cell i.

Moreover, it is defined a shared supply function for each cell

si(
Ø
h∈K

xh
i ) = wi(xjam

i −
q

h∈K xh
i )

Li
(5.45)

where wi and xjam
i are, respectively, the wave speed and the jam traffic volume on cell i.

Fix the variables as shown in Tables 5.1 and 5.2, assuming that the lengths of the cells,
the wave speed and the jam traffic volume is independent of commodities. However, two
commodities are consider, namely A and B, which have different freeflow speeds. This can
be easily thought as the case of cars and heavy vehicles travelling on the same road, with
the latter having to proceed at a lower speed for obvious safety reasons. In this example
it is assumed that vehicles belonging to commodity A can travel through the network at
a maximum of 65 mph, whereas vehicles of commodity B are required to travel at a lower
maximum speed of 50 mph.

Considering a time horizon of T = 20 and fixing the exogenous inflows λk
i = 0.1 for

every commodity and cell until t = 10. Set the initial condition of each cell and commodity
as xk

i (0) = 0.5 and proceeded to simulate choosing the penalty parameter ρ = 10.
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Iterative Distributed Solution

Table 5.1: Cell Length, wave speed and jam traffic volume

Type of cell L w xjam/Li

Mainline various 13 mph 200 veh/mi
Intersection 0.4 mi 13 mph 200 veh/mi

Between ramps 0.4 mi 13 mph 200 veh/mi
Ramps 0.4 mi 25 mph +∞/200 veh/mi

Table 5.2: Freeflow speed for different commodities

Type of cell v commodity A v commodity B
Mainline 65 mph 50 mph

Intersection 65 mph 50 mph
Between ramps 65 mph 50 mph

Ramps 25 mph 25 mph

Example 12. In this example the FNC is solved on the Los Angeles Network shown
in Figure 5.6 and considering the variables fixed in Tables 5.1 and 5.2. Moreover, the
routing matrices are fixed for both commodity such that 10% of flows are always sent to
the offramps and when considering an intersection, the flow is equally split.

The results are reported in Figure 5.7 and 5.8 in which it is easily noticeable how even
with a more complex network as the Los Angeles one, the iterative distributed algorithm is
capable of finding a feasible solution. After few iterations, the Cost function converges to
the minimum and also brings the duality gap to zero, meaning that the values of the Cost
and Lagrangian functions are equivalent. Moreover, the degree of infeasibility shows how
it quickly reaches zero, proving that the solution found is actually feasible and satisfies all
the constraints of the system. However, when considering networks whose dimension is
comparable to the Los Angeles one, it is expected that the algorithm complexity to increase
accordingly. In fact, for the converge of this example it took approximately 40 minutes,
before reaching an acceptable value.

Example 13. In this example, the focus shifts to solving the DTA on the Los Angeles
Network shown in Figure 5.6 and considering the variables in Tables 5.1 and 5.2. The
results are reported in Figure 5.10 and 5.9 in which it is clear how the iterative algorithm
is even able to solve the DTA problem in a more complex setting. After an initial spike the
Cost function converges at a much lower value than the one obtained in the FNC. This is
expected since the DTA can freely control the routing of the users. Furthermore, both the
duality gap and infeasibility reach zero, which mean that the solution obtain is actually
feasible and doesn’t violate any constraint.
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Figure 5.7: Los Angeles FNC: Cost function and Duality Gap with ρ = 20
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Figure 5.10: Los Angeles DTA: Cost function and Duality Gap with ρ = 20
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Chapter 6

Conclusions

In this thesis, a model for multicommodity dynamical flow networks was provided and
its stability and presence of equilibrium point was analyze. Moreover, the optimization
of traffic flows is studied, considering both the cases of a system optimum and of a user
selfish optimum.

Daganzo’s Cell Transmission Model is initially used as starting point for the formula-
tion of this thesis’ model, which splits roadways into cells, each one capable of accommo-
dating multiple types of flow. System’s dynamics is governed by a law of mass conser-
vation along with demand functions (maximum outflow) for each commodity and supply
functions (maximum inflow) shared by commodities. Moreover, it is then introduced the
concept of Freeflow Region, in Definition 5, which is the region of the traffic volumes,
given the exogenous inputs, that do not violate the supply constraints. This is useful to
define the set of models, both FIFOs and non-FIFOs, that are studied throughout the
thesis. Furthermore, the simulations of the system’s dynamic show that it is capable of
handling real traffic conditions.

In Chapter 3 the model’s stability is analyzed drawing inspiration from single com-
modity studies. It is first introduced the concept of Stability Region, in Definition 8,
which is the region of the exogenous inputs for which there exists a unique freeflow equi-
librium point. Moreover, in Proposition 2 it is proven that the freeflow equilibrium point
is unique.

Furthermore, by considering concave demand and supply functions it is proven that
the stability region is also convex, in Lemma 2. After defining the existence of the freeflow
equilibrium point, the focus shifted on the study of its stability. Notably, it was possible
to prove the equilibrium point is locally asymptotically stable within the Freeflow Region
in Proposition 3. The provided simulations are consistent with the formulation presented,
but also hint to the possibility that the system might be also globally asymptotically
stable which could be a great topic for further research.

In Chapter 4 the thesis focuses on presenting the two known problems of the Dynamic
Traffic Assignment and the Freeway Network Control formulated as optimal control prob-
lems. Afterwards, by generalizing previous studies it was possible to introduce two further
optimal control problems and prove that a solution of those is also a solution of the original
ones, both convex and tight. Through the use of optimal control techniques it was possible
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Conclusions

to formally present the FNC optimal problem, using this as a cornerstone to formulate
both the DTA and the FNC in discrete time. Furthermore, in this thesis are presented
previous studies that aimed to solve the DTA as a non-convex problem, discussing their
methods and solutions.

In Chapter 5 are introduced the concepts of Dual Ascent and Dual Decomposition,
along with the methods that can be used to solve convex optimization problems with a,
possibly, separable objective function. In order to ensure convergence without assuming
strict convexity it is then presented the Augmented Lagrangian Methods and the Method
of Multipliers, that uses a slightly modified objective function by considering an additional
norm-2 term. Combining these methods together it is possible to obtain the Alternating
Direction Method of Multipliers, which is then extended to solve both the DTA and
the FNC. In fact, the minimization equations were provided along with the updates of
the multipliers, also showing insightful simulations of how the solutions obtained by the
algorithm is feasible for the problems considered. It is then analyzed how the algorithm
would react to different penalty parameters, used for updating the Lagrangian multipliers,
finding that a greater one would imply oscillations before the convergence to the optimal
value of the cost function. Moreover, the proposed algorithm has shown great results even
in a real-life scenario with the use of the Los Angeles network. In fact, it is possible to find
a feasible solution for both the DTA and FNC, managing to optimize the traffic volume
within a large scale network.

Future researches regarding this topic could focus on the proof of the global asymptot-
ical stability of the Freeflow equilibrium point in the multicommodity model. Moreover,
this extended version of the ADMM has yet to be proven to converge, which leaves a
big question unanswered. In the end, it could be possible to investigate the effects of
the introduction of feedback control policies to further control the traffic flows within the
network.
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Appendix A

Background

In this first appendix we shall present some background notion which will be useful
throughout this thesis.

A.1 Matrices
We now briefly gather some known definitions and results about matrices.

Definition 13. A matrix A in Rn×n is referred to as Metzler if its extra-diagonal entries
are nonnegative

Aij ≥ 0, ∀i /= j (A.1)

Theorem 2. Let M in Rn×n
+ be a nonnegative square matrix. Then, there exist a non-

negative real eigenvalue λM ≥ 0 and nonnegative vector z /= 0 such that Mz = λM z and
every eigenvalue λ of M is such that |λ| ≤ λM .

Corollary 1. Let A in Rn×n be a Metzler matrix. Then, there exist a real eigenvalue λA

and non negative vector z ≥ 0 such that Az = λAz and every eigenvalue λ of A is such
that Re(λ ≤ λA).

We now recall the notion of stochastic, substochastic and compartmental matrices.

Definition 14. A square matrix M in Rn×n is

(i) stochastic if it is nonnegative and such that M✶ = ✶;

(ii) substochastic if it is nonnegative and such that M✶ ≤ ✶;

(iii) compartmental if it is Metzler and such that M✶ ≤ 0.

Definition 15. A substochastic matrix R in Rn×n
+ is out-connected if for every i0 = 1, ..., n

there exists p ≥ 0 and ii, i2, ..., ip in {1, ..., n} such that
pÙ

v=1
Rk

iv−1iv
> 0,

Ø
i≤j≤n

Rk
pj ≤ 1 (A.2)
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A.2 Networks and Graphs
A (weighted, directed) multigraph is a triple

G = (V , E , h) (A.3)

such that V is the set of nodes, E is the link set and h in RE
+ is a positive vector of link

weights (that can be interpreted as link’s capacity) along with two maps θ : E → V and
κ : E → V such that θ(e) and κ(e) can be interpreted, respectively, as the head node and
the tail node of a link e ∈ E .
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Appendix B

Alternating Direction Method
of Multipliers (ADMM)

In this appendix we shall present the Alternating Direction Method of Multipliers [15]
introduced by Sthepen Boyd which couples the benefits of dual decomposition and aug-
mented Lagrangian methods for constrained optimization.

B.1 Dual Ascent and Dual Decomposition
Given a convex optimization problem such as

minimize f(x)
subject to Ax = b

(B.1)

where x ∈ Rn, A ∈ Rm×n and f : Rn → R is convex.
It is then possible to introduce the Lagrangian of problem (B.1) as

L(x, y) = f(x) + y′(Ax − b) (B.2)

whose dual function is

g(y) = inf
x

L(x, y) = −f∗(−A′y) − b′y (B.3)

where y is the Lagrange multiplier and f∗ is the convex conjugate of f .
Given the dual function (B.3) the dual problem reads

maximize g(y) (B.4)

with y ∈ Rm. Then by assuming that strong duality holds the optimal value of the primal
problem coincides with the optimal value of the dual problem, meaning that it’s possible
to obtain a primal optimal point x∗ from a dual optimal point y∗

x∗ = argmin
x

L(x, y∗) (B.5)
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Alternating Direction Method of Multipliers (ADMM)

if f is stricly convex.
The dual ascent method is an algorithm to solve constrained convex optimization

problems with the use of the gradient ascent. By assuming that the dual function g (B.3)
is differentiable, the dual ascent method is composed of two separate steps. Firstly, a
x-minimization step by minimizing the Lagrangian function

xk+1 := argmin
x

L(x, yk) (B.6)

where k is the iteration counter. Then, in the second step the dual variable is updated as

yk+1 := yk + αk(Axk+1 − b) (B.7)

where αk > 0 is the step size.
One main consequence of the dual ascent method is that it can lead to a decentralized

algorithm in case, such as when the function f is separable as

f(x) =
NØ

i=1
fi(xi) (B.8)

where x = (x1, ..., xN ) and xi ∈ Rni It is then possible to partition matrix A as

A = [A1 . . . AN ] (B.9)

such that Ax =
qN

i=1 Aixi thus the Lagrangian function can be rewritten as

L(x, y) =
NØ

i=1
Li(xi, y) =

NØ
i=1

(fi(xi) + y′Aixi − (1/N)y′b) (B.10)

So the x-minimization step becomes

xk+1
i := argmin

xi

Li(xi, yk) (B.11)

which is made of N separate problems which can be computed in parallel. However, the
dual update step doesn’t change

yk+1 = yk + αk(Axk+1 − b) (B.12)

In this special case the dual ascent method takes the name of dual decomposition.

B.2 Augmented Lagrangians and the Method of Mul-
tipliers

In order to ensure convergence to the dual asent method without assume strict convexity
the Augmented Lagrangian methods are introduced. The augmented Lagrangian for (B.1)
is

Lρ(x, y) = f(x) + y′(Ax − b) + (ρ/2)||Ax − b||22 (B.13)
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B.3 – The Alternating Direction Method of Multipliers (ADMM)

where ρ > 0 is the so called penalty parameter. This augmented Lagrangian can be also
obtained by slightly modifying problem (B.1) into

minimize f(x) + (ρ/2)||Ax − b||22
subject to Ax = b

(B.14)

Notice that for problem (B.14) any feasible x implies that the second term is zero thus
leading to an equivalent problem of that in (B.1). Furthermore, it is possible to introduce
the dual function which is

gρ(y) = inf
x

Lρ(x, y) (B.15)

It is then possible to apply the dual ascent method, as shown in the previous section, to
the problem (B.14) yielding

xk+1 := argmin
x

Lρ(x, yk) (B.16)

yk+1 := yk + ρ(Axk+1 − b) (B.17)

which is also known as the method of multipliers to solve problem (B.1). The main
difference from the standart dual ascent method is that in the x-minimization step the
augmented Lagrangian is used and in the dual variable update the penalty parameter ρ
is used as the step size αk.

B.3 The Alternating Direction Method of Multipli-
ers (ADMM)

As previously state the Alternating Direction method of multipliers brings together the
benefits of dual decomposition and augmented Lagrangian methods for constrained op-
timization. In fact, by assuming two convex functions f and g it solves problems such
as

minimize f(x) + g(z)
subject to Ax + Bz = c

(B.18)

where x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp. Notice that the difference
from (B.1) is only that variable x has been split into two variables x and z so that the
objective function is separable in those two variables. We shall denote the optimal value
of problem (B.18) as

p∗ = inf{f(x) + g(z)|Ax + Bz = c} (B.19)

and it is then possible to formulate the augmented Lagrangian as

Lρ(x, z, y) = f(x) + g(z) + y′(Ax + Bz − c) + (ρ/2)||Ax + Bz − c||22 (B.20)

. The ADMM algorithm then reads

xk+1 := argmin
x

Lρ(x, zk, yk) (B.21)
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Alternating Direction Method of Multipliers (ADMM)

zk+1 := argmin
z

Lρ(xk+1, z, yk) (B.22)

yk+1 := yk + ρ(Axk+1 + Bzk+1 − c) (B.23)

where ρ > 0.

64



Bibliography

[1] url: https://www.consilium.europa.eu/en/policies/green-deal/.
[2] url: https://highways.dot.gov/safety/proven-safety-countermeasures/

variable-speed-limits.
[3] url: https://apl.pedemontana.com/scopri-il-free-flow.
[4] url: https : / / www . comune . milano . it / aree - tematiche / mobilita / area -

b/area-b-veicoli-che-possono-entrare.
[5] M. J. Lighthill and G. B. Whitham. “On kinematic waves I. Flood movement in

long rivers”. In: Phil. Trans. R. Soc. A.229 (1955), pp. 281–316.
[6] M. J. Lighthill and G. B. Whitham. “On kinematic waves II. A theory of traffic flow

on long crowded roads”. In: Phil. Trans. R. Soc. A.229 (1955), pp. 317–345.
[7] C. F. Daganzo. “The cell transmission model: A dynamic representation of highway

traffic consistent with the hydrodynamic theory”. In: Transportation Research Part
B: Methodological 28.4 (1994), pp. 269–287.

[8] C. F. Daganzo. “The cell transmission model, part II: Network traffic”. In: Trans-
portation Research Part B: Methodological 29.2 (1995), pp. 79–93.

[9] E. Lovisari, G. Como, and K. Savla. “Stability of monotone dynamical flow net-
works”. In: 53rd IEEE Conference on Decision and Control. 2014, pp. 2384–2389.

[10] Malachy Carey. “Nonconvexity of the dynamic traffic assignment problem”. In:
Transportation Research Part B: Methodological 26.2 (1992), pp. 127–133. issn:
0191-2615.

[11] G. Como, E. Lovisari, and K. Savla. “Convexity and Robustness of Dynamic Traffic
Assignment and Freeway Network Control”. In: Transportation Research Part B:
Methodological 91 (2016), pp. 446–465.

[12] G. Como, E. Lovisari, and K. Savla. “Convexity and Robustness of Dynamic Network
Traffic Assignment for Control of Freeway Networks”. In: IFAC-PapersOnLine 49.3
(2016). 14th IFAC Symposium on Control in Transportation SystemsCTS 2016,
pp. 335–340.

[13] Q. Ba, K. Savla, and G. Como. “Distributed optimal equilibrium selection for traffic
flow over networks”. In: 2015 54th IEEE Conference on Decision and Control (CDC).
2015, pp. 6942–6947.

65

https://www.consilium.europa.eu/en/policies/green-deal/
https://highways.dot.gov/safety/proven-safety-countermeasures/variable-speed-limits
https://highways.dot.gov/safety/proven-safety-countermeasures/variable-speed-limits
https://apl.pedemontana.com/scopri-il-free-flow
https://www.comune.milano.it/aree-tematiche/mobilita/area-b/area-b-veicoli-che-possono-entrare
https://www.comune.milano.it/aree-tematiche/mobilita/area-b/area-b-veicoli-che-possono-entrare


BIBLIOGRAPHY

[14] C. Rosdahl, G. Nilsson, and G. Como. “On Distributed Optimal Control of Traffic
Flows in Transportation Networks”. In: 2018 IEEE Conference on Control Technol-
ogy and Applications (CCTA). IEEE Conference on Control Technology and Ap-
plications, CCTA 2018, CCTA ; Conference date: 21-08-2018 Through 24-08-2018.
Aug. 2018, pp. 903–908.

[15] S. Boyd et al. “Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers”. In: Foundations and Trends® in Machine Learning
3.1 (2011), pp. 1–122.

[16] Andrea Baciotti. Analisi Della Stabilità. Pitagora Editrice, 2006.
[17] G. Nilsson and S. Coogan. “Strong Integral Input-to-State Stability in Dynamical

Flow Networks”. In: 2021 American Control Conference (ACC). 2021, pp. 4836–
4841.

[18] S. Samaranayake et al. “Discrete-time system optimal dynamic traffic assignment
(SO-DTA) with partial control for horizontal queuing networks”. In: Transportation
Science 52.4 (2018), pp. 982–1001.

66


	List of Tables
	List of Figures
	Introduction
	Multicommodity Dynamical Flow Networks Model
	Transportation Network
	System's Dynamics and State Variables

	Stability Analysis
	Preliminary Stability Concepts
	Previous results in the single commodity case
	Stability of Multicommodity Dynamical Flow Networks
	Conjectures and Future Research

	Dynamic Traffic Assignment and Freeway Network Control
	Problems formulation
	Tight convexifications of the DTA and the FNC problems
	Freeway Network Control optimal problem
	Previous non-convex DTA studies

	Iterative Distributed Solution
	Discrete time Dynamic Traffic Assignment and Freeway Network Control
	Solving FNC and DTA with ADMM
	ADMM with Freeway Network Control
	ADMM with Dynamic Traffic Assignment

	Los Angeles Network

	Conclusions
	Background
	Matrices
	Networks and Graphs

	Alternating Direction Method of Multipliers (ADMM)
	Dual Ascent and Dual Decomposition
	Augmented Lagrangians and the Method of Multipliers
	The Alternating Direction Method of Multipliers (ADMM)


