
Politecnico di Torino

Master Degree Thesis in Automotive Engineering

Data-Driven Approaches for the
Design of Traction Electrical

Motors

Supervisors:

Prof. Repetto Maurizio

Prof. Solimene Luigi

Prof. Ferrari Simone

Candidate:

Davoli Christian

Academic Year 2023/24

Abstract

In the last decades, the automotive industry has fostered the integration of electrical
machines into vehicle’s powertrain. The legislation regarding the environmental pol-
lution is becoming more and more stringent, till to the point in which the classical
internal combustion engines will not be compliant anymore. Consequently, Battery
Electric Vehicles (BEVs), Hybrid Electric Vehicles (HEVs), and Plug-in Hybrid
Electric Vehicles (PHEVs) are designed depending on the level of integration of the
electrical machine in the powertrain.

This trend has increased the necessity to design effective electrical machines that
are not only efficient but also cost-effective and powerful. Their design is therefore
challenging and often requires extensive multi-physics considerations. For example,
high Torque requires higher current, but this also leads to more complex cooling
system. At the same time, electrical machines should be compact enough to fit
inside the vehicles, ensuring excellent structural safety. The conflicting nature of
these objectives adds complexity to the design process.

Due to this challenging environment, a multi-objective design approach is essen-
tial to achieve the best trade-off for specific applications. The main tool used is the
Finite Element Analysis (FEA). By means of this, it is possible to evaluate electro-
magnetic, structural, and thermal performance of the design. However, even if this
tool represents the state of art for multi-physics analysis, it is very computationally
intensive. Therefore, it is limiting the exploring capabilities of the design space.
In this context, Machine Learning can provide a large help by training regression
models able to speed up the design process, allowing to use FEA only on the best
promising configurations.

This thesis investigates the possibility of applying SVR and Neural Network to
effectively predict torque and torque ripple, starting from an initial IPM (Internal
Permanent Magnets) geometry defined by 8 input features. To train the models a
dataset composed by 5000 samples have been created using FEA, in order to have
the labels to link the geometry to the final prediction. The models are trained on
a subset of the whole dataset to learn the statistics of the training set. Then this
knowledge it is assessed on the test set, where the predictions can be compared with
the real labels.

I

Abstract

The final outcome is that both SVR and Neural Network can be effective tools
in predicting the aforementioned outputs, providing, in most of the cases, a limited
error range. Neural Network showed slightly superior performances with the main
drawback of a longer training time compared to SVR.

Lastly, these models can be implemented in an optimization strategy, like dif-
ferential evolution, to identify the non-dominated solutions belonging to the Pareto
front. Given the slightly superior performances in terms of time, the SVR model has
been implemented in the aforementioned differential evolution strategy. The current
preliminary implementation needs more accurate validation but has already shown
promising results in terms of speed of convergence, providing a good exploration of
the design space.

II

Contents

List of Figures V

List of Tables IX

1 Introduction and motivations 1
1.1 Advancement in Electric Mobility . 1
1.2 Problem Statement . 3

1.2.1 Optimization Strategies . 4
1.3 Objectives of the thesis . 4

1.3.1 Data - Driven Approaches . 4
1.4 Organization of the thesis . 5

2 Electric motors 7
2.1 Electric motors generalities . 7

2.1.1 Internal Permanent Magnet (IPM) 9
2.1.2 Case study - Honda Accord 10

3 Parametric pre-processing of electric motor analysis: SyR-e 13
3.1 Latin Hypercube . 16
3.2 FEMM . 17
3.3 Dataset . 18

3.3.1 Pearson Correlation Matrix 19

4 Machine learning 25
4.1 Regression . 26

4.1.1 Regression metrics . 26
4.2 Training Dynamics . 28

4.2.1 Train - Validation - Test split 29
4.2.2 Pre-processing of the dataset 30
4.2.3 Overfitting . 30
4.2.4 Hyperparameter optimization: Grid Search and Random Search 31
4.2.5 Cross-Validation . 32
4.2.6 Ensemble models . 33

AdaBoost . 34
4.2.7 Learning Curve . 35
4.2.8 Early Stopping . 35

4.3 Support Vector Regression (SVR) . 36
4.3.1 Support Vector Machines for classification 36
4.3.2 Support Vector Regression: concept 37

III

Contents

4.3.3 Optimization problem and hyperparameters 37
The Kernel Trick . 40

4.3.4 Experimental Results . 44
Torque analysis . 44
Torque ripple analysis . 48

4.4 Neural Networks . 57
4.4.1 Neuron and Layers . 58
4.4.2 Activation functions . 59
4.4.3 Training . 61

Loss Function . 61
Optimizer . 62
Back-propagation . 64
Epoch and Batch Size . 65

4.4.4 Experimental Results . 65
Torque analysis . 66
Torque ripple analysis . 72

4.4.5 Final Comparison among models 79

5 Multi-objective optimization 83
5.1 Evolutionary algorithms (EAs) . 83

5.1.1 Differential Evolution . 84
5.1.2 Experimental Setup . 87

Experimental Results . 89

6 Conclusions and future works 97

IV

List of Figures

1.1 Example of typical approach to meet regulation targets 2
1.2 Global electric car stock . 3
1.3 Data - Driven approach . 5
1.4 Logical Sequence . 6

2.1 Schematic overview on the principal electrical machines solutions for
automotive sector . 8

2.2 Summary of motor types and characteristics 8
2.3 Examples of IPM machines . 9
2.4 Full electric mode . 11
2.5 Series electric mode . 11
2.6 Engine mode . 11
2.7 Honda Accord - Energy routes . 11
2.8 Honda Accord IPM machine CAD . 11
2.9 Final geometry . 12

3.1 SyR-e and FEMM data flow exchange 13
3.2 Variables representation . 15
3.3 SyR-e optimization interface . 15
3.4 Stratified Random Sampling . 16
3.5 Input feature distribution . 17
3.6 FEMM workflow integration . 17
3.7 FEMM . 18
3.8 Torque plot vs θ . 18
3.9 Structure of the Dataset . 19
3.10 Dataset . 20
3.11 Unfeasible check on dataset . 20
3.12 Feature dataset statistics . 21
3.13 Correlation Coefficient interpretation 21
3.14 Pearson Correlation matrix . 22
3.15 Variable influence in Torque - Torque ripple plane 23

4.1 Machine Learning Tasks and relative methods 25
4.2 Comparison between MSE and MAE 28
4.3 Train - Validation - Test split representation 29
4.4 Scaling of the dataset . 30
4.5 Three scenarios . 31
4.6 Error vs Capacity . 31
4.7 Grid Search and Random Search comparison in search space 32

V

List of Figures

4.8 k-fold cross - validation . 33
4.9 Ensemble models . 34
4.10 AdaBoost schematic . 34
4.11 Examples of learning curves: Underfit, Good Fit and Overfit 36
4.12 Support Vector Machine representation 37
4.13 Support Vector Regression representation 38
4.14 ϵ linear loss . 39
4.15 Effect of C on the performances of SVR 40
4.16 Kernel trick visualization . 41
4.17 Effect of the Kernel on model performance 43
4.18 Region of Similarity in function of γ 43
4.19 Dataset split ratio - Torque regression 44
4.20 Feature importance SVR model Torque regression 45
4.21 Torque regression on test set- SVR 46
4.22 Prediction with relative error on test set - SVR 46
4.23 Distribution of relative error on test set - SVR 47
4.24 Samples with relative error on test set - SVR 47
4.25 Samples with relative error on test set design space - SVR 48
4.26 Effect of train size on torque regression 49
4.27 Z-score Distribution comparison . 50
4.28 Dataset split ratio - Torque ripple regression 50
4.29 Feature importance SVR model torque ripple regression 51
4.30 Torque ripple regression on test set - SVR 52
4.31 Torque ripple prediction with relative error on test set - SVR 52
4.32 Distribution of relative error on test set - SVR 53
4.33 Samples with relative error on test set - SVR 53
4.34 Samples with relative error on test set design space - SVR 54
4.35 Effect of train size on torque ripple regression 54
4.36 Torque ripple regression on test set - AdaBoost 56
4.37 Distribution of relative error on test set - SVR and AdaBoost 56
4.38 Samples with relative error on test set - SVR and AdaBoost 57
4.39 Comparison among SVR and AdaBoost relative errors on test set . . 57
4.40 Neuron Analogy . 58
4.41 Structure of a simple Neural Network 59
4.42 Sigmoid activation function . 60
4.43 Tanh activation function . 60
4.44 ReLU activation function . 61
4.45 Loss function example . 62
4.46 Effect of learning rate on the update of internal parameters 63
4.47 Epoch and batch size relation . 65
4.48 Dataset Split For Neural Network . 66
4.49 Torque regression Neural Network representation 67
4.50 Validation Curves - Torque Neural Network 68
4.51 Torque regression Neural Network - Learning Rate scheduler 68
4.52 Torque regression on test set - Neural Network 69
4.53 Torque prediction with relative error on test set - Neural Network . . 70
4.54 Distribution of relative error on test set - Torque Neural Network . . 70
4.55 Samples with relative error on test set - Neural Network 71

VI

List of Figures

4.56 Effect of train size on torque regression - Neural Network 71
4.57 Effect of train size on torque regression - Neural Network Validation

Curve . 71
4.58 Effect of batch size on torque regression - Neural Network 72
4.59 Effect of batch size on torque regression - Neural Network Validation

Curve . 72
4.60 Torque ripple regression Neural Network representation 73
4.61 Validation Curves - Torque ripple Neural Network 74
4.62 Torque ripple regression Neural Network - Learning Rate scheduler . 75
4.63 Torque ripple regression on test set - Neural Network 75
4.64 Torque prediction with relative error on test set - Neural Network . . 76
4.65 Distribution of relative error on test set - Torque ripple Neural Network 76
4.66 Samples with relative error on test set - Torque ripple Neural Network 77
4.67 Samples with relative error on test set design space - Neural Network 77
4.68 Distribution of outliers features on test set 78
4.69 Effect of train size on torque ripple regression - Neural Network . . . 78
4.70 Effect of train size on torque ripple regression - Neural Network Val-

idation Curve . 78
4.71 Effect of batch size on torque ripple regression - Neural Network . . . 79
4.72 Effect of train size on torque ripple regression - Neural Network Val-

idation Curve . 79
4.73 Final comparison Torque . 81
4.74 Final comparison - Torque ripple . 81

5.1 Differential Evolution Scheme . 85
5.2 Multi-objective algorithm . 89
5.3 Average torque and torque ripple evolution 90
5.4 Pareto Front obtained with SVR . 91
5.5 Bar plot - SVR Pareto Front . 91
5.6 Parametric geometry and fitness of each configuration 92
5.7 Pareto Front on the dataset . 92
5.8 Pareto Fronts comparison in the objective space 93
5.9 Pareto set comparison . 93
5.10 Configuration comparison - Pareto Front 95
5.11 Configuration comparison - Torque 96
5.12 Configuration comparison - Torque Ripple 96

VII

List of Tables

2.1 Honda Accord 2014 structure specifications 12

3.1 Variables lower and upper boundaries 14

4.1 Resume of the SVR Hyperparameters 44
4.2 Resume of the SVR hyperparameters for Torque regression 45
4.3 Resume of the SVR hyperparameters for torque regression 51
4.4 Resume of the AdaBoost hyperparameters for torque regression . . . 55
4.5 Mean Squared Error on test set - AdaBoost vs SVR 57
4.6 Torque regression Neural Network Layer Summary 67
4.7 Torque ripple regression Neural Network layer summary 73
4.8 Performance Comparison of Machine Learning Models on test set . . 79
4.9 Error Performance Comparison of Machine Learning Models on test

set . 81

5.1 Pymoo performance Indicators . 94

IX

Chapter 1

Introduction and motivations

This first chapter provides an overview of the growing importance of electric mobility
and highlights the key challenges in the design of electric machines. It also briefly
describes the strategies that are adopted to address these problems. After this initial
part, then the focus is moved toward the contribution of this thesis work, introducing
the objectives and the impact that these can bring to the design of traction electrical
motors.

1.1 Advancement in Electric Mobility

Electric Mobility, also known as e-Mobility, is one of the most crucial factors in the
technological progress within the automotive industry. It encompasses the princi-
ples of using electric propulsion for different transportation means. This concept
is representing one of the key pillar in addressing global sustainability challenges.
In particular, sustainability is defined as the ”ability to meet the needs of the cur-
rent generation without compromising the ability of future generations to meet their
needs” [1]. It is clear how sustainable development is thus involving social, economic,
and environmental dimensions. In this scenario, e-Mobility plays a significant role
as it gives the possibility to address the ecological challenges and promoting envi-
ronmental sustainability by reducing pollution.

The growing awareness of environmental pollution is fostering the adoption of
electric propulsion for a wide range of transportation means, like passengers’ car,
busses but also ships, ferries, and sea vessels. In the automotive field, and particu-
larly with the passenger cars, in the last years many alternative propulsion solutions
were introduced:

• Battery Electric Vehicles (BEVs): packed with batteries that store energy to
power the electrical machines. They need external charging;

• Hybrid Electric Vehicles (HEVs): combine electrical machines with classical
Internal Combustion Engine (ICE) to improve fuel consumption;

• Plug-in Hybrid Electric Vehicles (PHEVs): similar to HEVs but features larger
battery that can be charged from an external source, allowing to extend the
pure electric range.

The development of these alternatives is driven by the urgent need of controlling
harmful emissions, such Noxious emissions (NOx), mitigate Green House Gasses

1

Introduction and motivations

(GHG) and to provide systems with an overall higher efficiency. These factors,
along with rising pollution levels, contribute to climate change and affect directly
human health:

• Noxious Emissions (NOx): are responsible for contributing to air pollution
and respiratory diseases. Their levels should be controlled especially at local
level since they are directly in contact with human beings [2];

• Green House Gasses (GHG): particularly carbon dioxide (CO2), are major
contributors to climate change. Many times, the actions to effectively reduce
carbon dioxide emissions are opposite to Noxious Emissions (NOx);

• Energy efficiency: which reflects the necessity of optimizing resources usage,
avoiding waste.

These high-level goals are not only ethical imperatives but are also becoming part
of the continuously evolving vehicles homologation procedures. In particular, the
European Union’s stringent CO2 emission targets aim to achieve carbon neutrality
by 2050. While internal combustion engines have reached high levels of maturity,
meeting these increasingly rigorous standards remains a significant challenge. Orig-
inal equipment manufacturers (OEMs) are subjected to fleet average target, setting
a policy of penalties and incentives for those who can respect them. Many typi-
cal approaches are investigated to be able to meet the regulations in short terms.
Particularly, Fig. 1.1, reports the main pathway that has been currently followed.

Figure 1.1: Example of typical approach to meet regulation targets [3]

The introduction of the electrical machines can effectively provide a solution to
the different environmental problems, providing:

• zero CO2 emissions at the local level (Tank to wheel - TWT);

• zero noxious emissions at the local level;

• very high energy efficiency;

• low acoustic emissions;

• energy recovery during braking and downhill to store energy inside the battery.

2

1.2 – Problem Statement

In addition to their environmental benefits, electric powertrains offer several advan-
tages for the end users, such as:

• Acceleration, providing very high torque even at zero speed;

• Elasticity and smoothness, as they can cover the whole speed range without
the necessity of having clutches and gearboxes;

• Higher energy efficiency;

• Regenerative braking during braking manoeuvres;

• Configurable performance options for drivers;

• Potentially lower maintenance cost, despite higher initial purchasing cost.

The rising interest in electric mobility is reflected in both consumer demand
and the priorities of Original Equipment Manufacturers (OEMs), who view electric
powertrains as a solution to stringent environmental regulations. This is evident
from the global market trends, with nearly 14 million new electric cars registered
in 2023, bringing the total number on the roads to 40 million, as illustrated in
Fig. 1.2. In Europe, new electric car registrations reached nearly 3.2 million in
2023, increasing by almost 20% relative to 2022.

Figure 1.2: Global electric car stock [4]

1.2 Problem Statement

All these factors together are contributing to the necessity of developing electri-
cal machines with higher performances and higher sustainability. The design and
optimization of electrical machine is crucial and influences the rate of adoption of
electrical solutions in the market. Electric machine’s design is challenging as it is
involving different physical domains such electromagnetic, structural, and thermal.
All these aspects must be carefully evaluated at design stage and many times the
final design requires a balance among all these factors. For examples, it is known
that to achieve a larger torque, it is required a larger current, but this will lead also
to higher losses and therefore to higher temperature. The design process can be

3

Introduction and motivations

defined as a multi-objective design problem. The optimal trade - off is limited by
the computational capabilities of the design setup since all the configurations must
be analysed with Finite Element Analysis (FEA).

1.2.1 Optimization Strategies

The design process of electrical machines for automotive applications is facing many
constraints and challenges. As mentioned earlier, the primary goal is to maximize
torque production while minimizing the cost, torque ripple, and weight of active
parts. Additionally, the design must ensure structural integrity to withstand in-
creasing rotor speeds, while maintaining thermal efficiency and reducing vibrations.
The size of the machine is also critical, as it must fit within the space available in the
vehicle. It is clear how this design must deal with the interaction of many physical
domains that are very often leading to conflicting objectives. This is increasing the
difficult of the design process, requiring experience by designers and high computa-
tional effort to explore the design space.
Given the complexity of these interdependent factors, multi-objective optimization
algorithms (MOOA) have become popular tools for exploring the design space
and identifying optimal configurations. However, evaluating each configuration
through FEA is computationally expensive, often requiring numerous iterations be-
fore achieving satisfactory performance. This is translating in a process that requires
many hours to find viable solutions.

1.3 Objectives of the thesis

This thesis intends to determine the extend in which ML can be used inside the
design procedure of electrical machines and whether the trained models are able to
give valuable insight when used for the optimization purpose identifying the best
set possible. Specifically:

• Two Machine Learning models are trained and tested on a dataset obtained
with FEA analysis. In particular, SVR and Neural network are compared to
identify the best model both in terms of prediction accuracy but also in terms
of training time;

• The SVR model is tested in a multi-objective optimization process, using
Evolutionary Algorithms, like Differential Evolution. The goal is to assess
the possibility of integrating Machine Learning models in the identification of
the best configurations, aiming at maximizing torque while minimizing torque
ripple. Again, a comparison with the Pareto Front obtained on the dataset is
given, to determine the quality of the model.

These objectives are effectively belonging to Data - Driven Approaches, which is
leveraging on the introduction of Machine Learning in the classical workflow.

1.3.1 Data - Driven Approaches

In the last year, Machine Learning has gained a lot of popularity, due to its learning
and predicting complex behaviours capabilities. Many models are present in litera-
ture, each with its own strong point. During the development of the thesis, Support

4

1.4 – Organization of the thesis

Vector Machines (SVR) and Neural Network were adopted since they led to the best
results.

In the context of design optimization, it is now clear how the design space explo-
ration is limited by the computational resources that are needed by the FEA software
to evaluate the main output given an input geometry. Data - Driven Approaches
are of interest since they can be used to predict a certain output starting from a
set of inputs, as reported in Fig. 1.3. The main advantage is that the time needed
is much short compared to the classical FEA analysis. It is clear therefore, how
with Machine Learning, it is possible to explore the design space faster and with
less computational effort. However, it is important to understand that the com-
plexity behind the electrical machine’s design, involving multi-physical phenomena
(i.e., electromagnetic, thermal, structural, or acoustic aspects), introduces signifi-
cant non-linearity. Due to this, Machine Learning models do not achieve the same
precision as FEA, thus associating a certain error with the predictions. However, a
well tuned model can indeed give important insight about the analysed configura-
tion, allowing to understand its performances. This can enhance the optimization
process, as refinements with FEA can be applied only to promising configurations,
resulting in considerable time savings.

Figure 1.3: Data - Driven approach

1.4 Organization of the thesis

This part is dedicated to the description of the different chapters of this thesis work.
In particular:

• Chapter 1 - Introduction: describes the necessity and the motivations behind
this thesis work, providing a focus on sustainable development and on the
major advantages that electric mobility can bring both to customers and to
OEMs. It also highlights the key challenges in the design of electric motors
and the role of multi-objective optimization strategies. Finally, it introduces
the concept of Data-Driven approach, showing the thesis objectives.

• Chapter 2 - eMotor : examines the principal electrical machines adopted in the
automotive field, with a focus on Internal Permanent Magnet motors (IPM).

5

Introduction and motivations

Moreover, a brief overview on torque and torque ripple mechanism is offered.
The last part is dedicated to the introduction of the case study (Honda Accord)
with the description of the main structure specification;

• Chapter 3 - SyR-e: describes the framework and the procedure that has been
followed to create the surrogate dataset relying on SyR-e and FEMM. In par-
ticular, the interaction among those two software allowed to evaluate 5000
different geometries, measuring the outputs of interest;

• Chapter 4 - Machine Learning : introduces the theory behind SVR and Neu-
ral Network models. After a first theoretic discussion, useful to provide an
overview on the main hyperparameters to be optimized, the results obtained
with the two models are reported. Finally a comparison among those two is
examined;

• Chapter 5 - Optimization framework : after a brief overview about the different
Evolutionary algorithms (EAs), the main focus is on Differential Evolution
(DE). This strategy has been implemented in the thesis, to evaluate if the
ML models, trained on the dataset, are able to offer valuable insight when
dealing with optimization and design space exploration. To asses the quality
of the results, the obtained Pareto front is compared with the one evaluated
by SyR- e and FEMM. Specifically, Pymoo Performance Indicators are used
as metrics for the comparison.

• Chapter 6 - Conclusion: provides a final overview of the results obtained
during the development of the thesis, highlighting the main outcomes and
identifying possible future works.

The overall research developed in this thesis follows the logical sequence sum-
marized in Fig. 1.4.

Figure 1.4: Logical Sequence

6

Chapter 2

Electric motors

The objective of this Chapter is to provide a brief overview on the principal ty-
pologies of electrical machines that are suitable for automotive applications. This
is particular relevant as it would give the opportunity to introduce the main con-
cept behind the torque production mechanisms, allowing therefore to understand
what are the key geometry parameters that are influencing the performances of the
machines. Lastly, the case study of this thesis is introduced.

2.1 Electric motors generalities

The automotive sector has seen in the last decade the introduction of electrical
machines in the vehicles powertrain, providing valuable alternatives to the classical
internal combustion engines (ICE). This shift is largely driven by the need to meet
increasing torque demands, enhance efficiency, respect environmental targets, and
improve the overall performance of vehicles. Researchers have devoted substantial
effort to refining and optimizing various types of electric motors (eMotors) to address
these challenges.

Key areas of focus include enhancing torque production capabilities, ensuring
high efficiency, and maintaining reliability, all while designing motors that are com-
pact enough to fit within the constrained spaces of modern vehicles.

Another significant consideration is cost, especially since many eMotors rely
on permanent magnets, such as neodymium–iron–boron (NdFeB). These materials,
while providing strong magnetic fields essential for efficient motor operation, are
expensive and subject to supply chain vulnerabilities.

Both DC and AC solutions are present in literature [5]. Despite the easier control
capabilities, the former are practically never use due to their lower efficiency, limited
maximum rotor speed, brush wear and poor overload capabilities.

Fig. 2.1 offers a schematic overview about the different types of electrical ma-
chines that are used for traction application. The principal solution for automotive
application is represented by AC machines. There are two big families:

• Asynchronous: they need a certain slip between the rotor and stator field to
induce current in the rotor, which generates the required torque;

• Synchronous: the rotor and the stator’s magnetic field are rotating at the
synchronous speed (ω0 = 2∗π∗f

pp
where f is the frequency of the stator voltage

and current while pp is the number of poles pairs).

7

Electric motors

Figure 2.1: Schematic overview on the principal electrical machines solutions for
automotive sector [3]

Synchronous electrical machines can be further categorized by the presence of Per-
manent Magnet (PM). Depending on their position it is possible to have:

• Surface Mounted Permanent Magnet (SMPM): permanent magnets are mounted
on the surface of the rotor;

• Internal Permanent magnet (IPM): permanent magnets are buried inside of
the rotor.

It is important to understand what are the main characteristics of each electrical
machines and what are the advantages that a specific type could bring to the auto-
motive sector. For this purpose, Fig. 2.2, is reported. Especially considering cost,
efficiency and torque density, it is clear how IPM are a good choice for the auto-
motive sector. Since the case study of this thesis is an Internal Permanent Magnet

Figure 2.2: Summary of motor types and characteristics [6]

machine, the next section is dedicated to a brief description of the possible rotor
geometries and torque production mechanism.

8

2.1 – Electric motors generalities

2.1.1 Internal Permanent Magnet (IPM)

For synchronous machines, independently from the stator winding (distributed or
concentrated), the rotor design imposes the motor name and type. As already men-
tioned, these type of electrical machines are widely adopted in traction application,
therefore the interest in optimizing their performances, achieving the best trade -
off, is very high. Parameters like the number of magnets, their inclination and their
position can affect the torque and torque ripple production. In literature, a wide
number of possible rotor structures are described. In particular, focusing on IPM,
two main families are present, as shown in Fig. 2.3:

• Spoke-type Internal PM motor: the magnets are placed radially;

• V-type IPM motor: the magnets are embedded in a ”V” shape within the
rotor.

Figure 2.3: Examples of IPM machines [6]

The introduction of the permanent magnets inside the rotor, is allowing to exploit
the concept of anisotropy. In particular, the inductance is not constant along the
airgap. The anisotropy level of a given geometry is described by the Saliency ratio.
It represents the ratio between the inductance of d-axis and the one on q-axis, as
reported in Eq. 2.1.

ζ =
Lq

Ld

(2.1)

In case of IPM, saliency ratio is weak (2 ÷ 3) but not null [6].

Torque production mechanism The main outcome is that, besides the typology
of rotor design, the torque produced by IPM is made by two components:

• Permanent magnet torque: each stator current produces a torque component
in association with the permanent magnet field along the airgap (Lorentz law);

9

Electric motors

• Reluctance torque: due to anisotropy, the rotor tends to align with the direc-
tion of maximum inductance along the magnetic field imposed by the stator,
to minimize the magnetic energy.

This concept can be resumed in Eq. 2.2, expressed in the d-q frame, that can be
derived from the dynamic model of the analysed machine.

T =
3

2
· p [λPM iq − (Lq − Ld)idiq] (2.2)

It is clear how the two torque components have an opposite sign, therefore the
optimization is fundamental to achieve the best trade - off performance wise.

Torque Ripple production mechanism torque ripple refers to a periodic oscil-
lation of torque, that therefore is constrained between a maximum and a minimum
value. A high torque ripple is undesired since it implies noise and also mechanical
stresses that can damage the motor itself [6]. As shown in Eq. 2.2, torque ripple can
be either affected by the linkage flux, by stator currents or by the cogging torque. In
particular, the last one, is caused by the interaction between the permanent magnets
on the rotor side and the stator slots [7] as well as the permeance variations during
the magnet rotation. The result is the tendency of the rotor to stop in determined
positions and it happens also with no current. It is therefore influenced by the rota-
tion of the rotor. As reported in literature [8] multiple geometrical parameters are
showing an influence on torque ripple production. In particular: stator slot opening,
slot width, slot height, airgap length, stack length, pole numbers, magnet dimen-
sions, magnet shape and position. It is important to underline that the relation
among the torque ripple and these geometrical dimensions is highly not linear and
therefore it is not possible to evaluate the a priori effect of any changes on the torque
ripple value.

Iterative design and designer experience are crucial to achieve the best trade - off
between those two competing objectives. In Chap. 3, a description of the different
geometrical parameters used as design variable is given. Moreover, the influence on
torque and torque ripple is discussed.

2.1.2 Case study - Honda Accord

After the initial discussion about IPM generalities, useful to understand the torque
production mechanism and the main geometrical parameters, the case study can be
introduced.
The reference IPM motor, with a published power rating of 124 kW, is belonging
to the 2014 full hybrid Honda Accord. Thanks to the integration of the electrical
machine, the power train can operate in:

• Full electric mode (motor EV drive): the power flows from the battery to the
electrical machine that is connected to the wheels;

• Series electric mode (motor drive): the internal combustion engine is used in
combination with a e-generator to fed a battery that provides power to the
electrical machines;

10

2.1 – Electric motors generalities

• Engine mode (pure ICE drive): by means of a clutch, the ICE is directly
connected to the wheels.

To better visualize these three operations mode, the possible energy routes are
reported in Fig. 2.7.

Figure 2.4: Full electric
mode

Figure 2.5: Series electric
mode

Figure 2.6: Engine mode

Figure 2.7: Honda Accord - Energy routes [9]

To proper implement this motor on SyR-e, the first task is to define the geomet-
rical dimensions of the electrical machines. For this purpose CAD software has been
used. In this way, the 2D drawing showed in Fig. 2.8 has been obtained. This has
allowed to obtain all the necessary measures, ensuring to be as close as possible to
the real geometry.

Figure 2.8: Honda Accord IPM machine CAD

Besides the geometrical dimensions, other important parameters for the simula-
tion purposes are needed. In particular, table 2.1 reports the main motor structure
specifications. Those quantities are obtained by looking at technical reports [10].

All these information will be later on combined in SyR-e. The final goal is to
obtain the 2D geometry showed in Fig. 2.9. Due to its symmetry, only a portion
is used. This allows to reduce the computational effort while maintaining solution
quality.

11

Electric motors

Pole pairs 4
Number of slots 48
Number of barrier 1
Stator diameter 291,3 (mm)
Stack length 61.7 (mm)

Number of turns 20

Peak Thermal loading 45 (kW
m2)

Table 2.1: Honda Accord 2014 structure specifications

Figure 2.9: Final geometry

This geometry has been used as a reference to create the dataset, composed by
5000 elements, that will be used to train the Machine learning models. In particular,
by means of Latin Hypercube Sampling, different geometries are sampled and eval-
uated with FEA in order to obtain the relevant output for the purpose of this thesis.
On the contrary, structure specifications are kept constant for all the configurations.
More details are given in Chap. 3.

12

Chapter 3

Parametric pre-processing of
electric motor analysis: SyR-e

This Chapter is dedicated to the description of the logical sequence and the method-
ologies that have been used to create the surrogate dataset for Machine Learning
model’s training. After the definition of the Internal Permanent Magnet (IPM) ge-
ometry, discussed in Chap. 2, the open-source software SyR-e is used to perform the
simulations.

SyR-e is the acronym of Synchronous Reluctance – evolution and it is a col-
lection of codes developed in Matlab/Octave. It covers Synchronous Reluctance
machine, PM-assisted SyR, Internal PM and Surface Mounted PM machine types
[11]. It provides a tool for the design of the aforementioned machines based on
Finite Element Analysis (FEA) and also multi-objective optimization algorithms.
The operational capabilities of SyR-e are represented in Fig. 3.1. Matlab is used
to realize a parametrized drawing of the machine as a .fem file that is analysed
by FEMM, a software which can manage linear/nonlinear magneto static problems
[12]. The results of the simulation are sent back to Matlab in order to evaluate the
performances of the analysed machine.

Figure 3.1: SyR-e and FEMM data flow exchange [11]

For the development of this thesis SyR-e has been used to create the dataset for
the Machine Learning training purpose. The goal is to realize a ML model that is

13

Parametric pre-processing of electric motor analysis: SyR-e

able to predict within a certain accuracy the torque and torque ripple of a given IPM
geometry, starting from the parametric description reported in the previous Chap. 2.
By doing so, it is possible to use these models in the optimization, allowing to speed
up the process, providing insights about the best parameter combinations able to
satisfy different constraints and objectives. Finite Element Analysis can then be
used then to validate the results. It is worth noting that, in Machine Learning
literature, the term feature refers to the input variables used by the model for pre-
dictions. In this thesis, the geometrical variables are used to predict torque and
torque ripple. For this reason, the terms geometrical variables and features are used
as synonymous throughout the work. The same logic applies to labels and outputs.
Once the parametric geometry of the electrical machines has been defined, the first
operation is to decide the boundaries for each design variable. By sampling those
values, many different configurations can be realized and for each of them FEA anal-
ysis can be conducted to evaluate the main output (torque, torque ripple, copper
mass, permanent magnet mass, and power factor). Tab. 3.1 and Fig. 3.2 are report-
ing the variable’s boundaries that have been used. These values have been chosen
by trial-and-error process, ensuring to reach the minimum number of unfeasible
configurations in the final dataset.

Variable Boundaries
Rotor Radius r [78 109] (mm)
Barrier width hc [0.3 0.45] (p.u.)
Barrier Shift dxIB [-3 6] (mm)
Barrier Position dα [0.5 0.6] (pu)
Tooth length lt [15.2 32] (mm)
Tooth width wt [3.4 10] (mm)
Slot opening wo [0.1 0.4] (p.u.)

Current phase angle γ [35 75] (°)

Table 3.1: Variables lower and upper boundaries

Fig. 3.3 shows the SyR-e optimization window with the aforementioned variables
boundaries. The main elements in this interface are:

• The definition of the lower and upper boundaries for each design variables;

• The setup of the size of the dataset (5000 in this case). This value has been
chosen as trade-off among the variability of the dataset and the computational
time needed;

• The definition of the objectives and penalization limits.

For what regards the objectives and penalization limits, it must be considered that
this interface has been primarily designed for the MODE (Multi-objective differential
evolution) optimization, for which is required to define the objectives that are driving
the evolution of the initial population. This is done to improve the convergence,
since a penalty cost is paid when the quantities are becoming larger with respect
the limits. If the limit is negative, the quantity is maximized (i.e. torque), while if
the limit is positive, the quantity is minimized (i.e. torque ripple). Here, the goal is
just to produce the dataset, without considering any penalization logic. Therefore,

14

Parametric pre-processing of electric motor analysis: SyR-e

Figure 3.2: Variables representation

positive limits are set to be exceptionally large, while negative ones are low. This
is producing a dataset without any particular attention to optimization. This is
reasonable since the main purpose of the dataset is the training of the Machine
Learning models.

Figure 3.3: SyR-e optimization interface

After this setup, it is required to define how to sample the variables in the
design space. This step is really important as the goodness of the final dataset, and
therefore the accuracy of the results of the Machine Learning models, depends on
this. SyR-e provides two different sampling strategies: Sobol and Latin Hypercube
(LHS). During this thesis, Latin Hypercube has been used.

15

Parametric pre-processing of electric motor analysis: SyR-e

3.1 Latin Hypercube

To understand how the dataset has been created, it is necessary to recall some
aspects about this sampling strategy. Latin Hypercube Sampling (LHS) [13] is an
integration of stratified and random sampling. The main characteristics are:

• Stratified: process of dividing the initial population (each input variable) into
homogeneous subgroups (also called strata) before sampling. For examples, in
the case of this thesis, 5000 samples are considered. This means that the range
of each variable (Tab.3.1) is divided into 5000 intervals, ensuring therefore to
cover the whole variability of the population;

• Random Sampling: within the subgroups, a single value is chosen randomly,
without considering any possible bias.

The combination of these two aspects is allowing for a deeper exploration of the input
space, avoiding any possible concentration in a specific area. These concepts are
clarified in Fig. 3.4. In this case, the initial population composed by 12 individuals,
is divided into four subgroups. A random element is sampled, for each of them.

By extending this concept to the parametric geometry composed by the input
features of table 3.1, it is possible to understand how the different configurations
are created.

Figure 3.4: Stratified Random Sampling [13]

The effect of Latin Hypercube Sampling on the feature dataset are reported in
Fig. 3.5. It is clear how this sampling method allowed to achieve a near-normal dis-
tribution for each input variable. The number of samples per bin is similar, proving
the efficiency of LHS in sampling individuals from multi-dimensional distributions.
This is beneficial as it ensures a comprehensive exploration of the input space.

It is evident that LHS is an effective method for dataset creation, as it leverages
the variability of the initial variables while also incorporating a random component.
Indeed, randomness is playing an important role in Machine Learning models, as it
contributes to improve generalization and robustness, avoiding overfitting [14].

16

3.2 – FEMM

Figure 3.5: Input feature distribution

3.2 FEMM

As already mentioned, to evaluate the fitness (the outputs) of each configuration, it
is required to use FEA to run the simulations. This step is crucial as it produces the
dataset to train the ML models and the labels that are used at test time to evaluate
their performances in terms of errors. The used software is FEMM [12], as it can
be integrated in the SyR-e workflow.

In particular, the logical sequence used to obtain the label is reported in Fig. 3.6

Figure 3.6: FEMM workflow integration

Thanks to Lua scripting [12], SyR-e and FEMM can exchange information. In
particular, SyR-e is used to define a geometry by sampling with LHS the input
features inside the boundaries. Once the geometry has been created, the Matlab
script realizes the parametric drawing. Then FEMM is called to analyse it and to
obtain the values of torque and torque ripple, by discretizing the geometry using
a triangular mesh, as shown in Fig. 3.7a. In particular almost 27000 elements are
used. To accurately determine the torque ripple, it is necessary to run simulations
across multiple rotor’s angular positions, as torque ripple is sensitive to its position
relative to the stator. In particular, for the creation of the dataset, 5 rotor positions
and 30° rotor angular excursion are used. Fig. 3.7b shows an example of results of
FEMM analysis, where flux lines and magnetic flux density map are reported.

Fig. 3.8 reports the results of the single point simulation obtained for a fixed
current phase angle and fixed current load. The torque output and the power factor,
in function of the rotor position θ (expressed as electrical angle), are reported. The
peak-to-peak distance, in the torque plot, is representing the torque ripple.

17

Parametric pre-processing of electric motor analysis: SyR-e

(a) FEMM mesh example (b) FEMM results example

Figure 3.7: FEMM

Figure 3.8: Torque plot vs θ

3.3 Dataset

After the evaluation of the 5000 sampled geometries, the fitness (torque, torque
ripple, mass copper, mass of permanent magnet, and power factor) of each individual
is calculated. The entire process lasted about 8 hours since multiple FEA simulations
had to be performed. The reorganization of the elements is allowing to create a full
dataset considering the inputs and the outputs of the simulations. To make an easier
data manipulation, two datasets are considered: one for the input features and one
for the output labels. Their structure is shown in Fig. 3.9. In particular, each row
is corresponding to a certain geometrical configuration to which is associated the
consistent fitness in the label dataset.

The main objective is to create a model able to predict the torque and the torque
ripple. In Fig. 3.10 the Dataset is plotted in the Torque - Torque Ripple plane. It is
possible to notice how with LHS sampling, the dataset is well distributed, without

18

3.3 – Dataset

(a) Features Dataset (b) Labels Dataset

Figure 3.9: Structure of the Dataset

any extensive empty area. Moreover, the samples are distributed away from regions
near the 0 Nm torque and 0 Nm torque ripple axes. This is a desired effect, since
all the configurations are useful for the training purpose. Some more checks are
needed to understand whether unfeasible configurations are present in the dataset.
Therefore, the first analysis that has to be performed is the filtering of the initial
dataset. A specific configuration is considered unfeasible when the mass of copper or
the mass of permanent magnets are equal to 0. This can be done easily since those
values are evaluated during the process (Fig. 3.11b). Fig. 3.11 reports the result
of the analysis. In particular, it is possible to notice how all the configurations
can be considered feasible with the previous hypothesis. Even if these constraints
are quite simplistic, they are still valid, as the Machine Learning models should be
able to offer valuable insight also with the far from optimal configurations. This is
fundamental in a design optimization scenario. After these initial considerations,
the filtered dataset is obtained, removing all the unfeasible geometries, and it can
be used to train the ML regression models to make predictions.

At this point, it is possible to explore the statistics of each input variable. This is
important as the Machine Learning models are mainly relying on statistics to capture
the underlying pattern of the input data during training. Fig. 3.12 shows the mean,
standard deviation, minimum and maximum value for for each feature. It is clear
how the different parameters are distributed on different ranges and therefore it is
necessary to perform some pre-processing to facilitate the regression task, avoiding
any possible bias toward the bigger features (like rotor radius for instance).

3.3.1 Pearson Correlation Matrix

The last consideration takes into account the influence of each input variable on
the specific output. It is important to remember that the dataset has been built
starting from an initial geometry and using defined boundaries for the parametric
geometrical input variables. It is therefore interesting to understand how a change in
a feature can affect the output. Correlation coefficients are used to understand what
the statistical relationship among two variables is. In particular, Pearson coefficient
measures the strength and direction of the linear relationship. It is defined as the
covariance of the variables divided by the product of their standard deviations as

19

Parametric pre-processing of electric motor analysis: SyR-e

Figure 3.10: Dataset

(a) Unfeasible configurations (b) Feasibility parameters distribution

Figure 3.11: Unfeasible check on dataset

reported in Eq. 3.1 [15].

ρX,Y =
cov(X, Y)

σXσY

(3.1)

By definition, correlation coefficients are bounded between [-1, 1], and as graphically
explained in Fig. 3.13, if:

• ρ = -1, it means that the relation between the variables is perfectly linear and
that Y decreases when X increases;

20

3.3 – Dataset

Figure 3.12: Feature dataset statistics

• -1 < ρ < 0, it means that the trend of the points has a negative slope;

• ρ = 0, it means that the points are linearly independent;

• 0 < ρ < 1, it means that the trend of the points has a positive slope;

• ρ = 1, it means that the points are linearly dependent and that Y increases
when X increases;

Figure 3.13: Correlation Coefficient interpretation [15]

Therefore, by examining the Pearson correlation matrix, it is possible to identify
which input variables have the most significant impact on the output. This anal-
ysis helps to understand the underlying pattern in the data and can guide further
optimization. To address this aspect, the Pearson correlation matrix is reported in
Fig. 3.14 as heat-map. It is clear that:

• Torque is mostly influenced by barrier width, current phase angle, rotor radius,
and barrier position. On the contrary, it has almost no correlation with the
slot opening;

• Torque ripple is mostly influenced by tooth width, rotor radius, and barrier
width, while tooth length, barrier shift, and current phase angle exhibit little
to no linear dependence.

21

Parametric pre-processing of electric motor analysis: SyR-e

Figure 3.14: Pearson Correlation matrix

This correlation matrix is also useful to understand the complexity beneath the
design of IPM. As it is possible to notice the correlation coefficients are bounded
in [-0.6, 0.6] showing how the influence of the geometry is mainly nonlinear and
requires FEA to carefully evaluate the performance of the machines. To further
stress this concept, the influence of the parametric geometry variables is reported in
the Torque - Torque Ripple plane in Fig. 3.15. In particular, a sensitivity analysis
regarding the optimization parameter is obtained.

22

3.3 – Dataset

(a) Barrier Shift (b) Current Phase Angle (c) Barrier Position (pu)

(d) Barrier Width (e) Rotor Radius (f) Slot Opening

(g) Tooth Length (h) Tooth Width

Figure 3.15: Variable influence in Torque - Torque ripple plane

23

Chapter 4

Machine learning

This Chapter is dedicated to the description of the main Machine Learning mod-
els that have been used for the regression task. By introducing the theory behind
them, it is possible to understand what is the effect of the hyperparameters on their
performances, and moreover, how to optimize the traning dynamics to obtain the
best results.

Machine learning is a branch of Artificial Intelligence (AI) that enables computer
to learn from data. Relying on them, these algorithm are able to extract statistics
and patterns that are used to build the knowledge of the model, mimicking the
learning process of the human being.

It can be used to perform different tasks, as illustrated in Fig. 4.1:

• Supervised Learning which trains a model on known input and output data
so that it can predict future outputs (i.e. Classification and Regression);

• Unsupervised Learning which finds hidden patterns or intrinsic structures
in input data (i.e. Clustering).

Figure 4.1: Machine Learning Tasks and relative methods. Adapted from [16]

25

Machine learning

The development of this thesis is based on Supervised Learning as the main goal
is to train a model able to predict a continuous value, performing a regression task.
Indeed, starting from the design variables used to define the parametric geometry
of the IPM, it is required to identify some model able to produce accurate output
results in terms of torque and torque ripple. Being a Supervised task, it is important
to have both the features (the input data, i.e. the geometry of the IPM motor) and
the labels (the output data, i.e. torque and torque ripple).

4.1 Regression

To understand how the models are working, it is worth to recall some aspects about
regression as this would give the possibility to highlight what are the main hyper-
parameters to tune to achieve the best performances out of the models.

Regression is a statistical method used to establish the relationship among a
dependent variable (label, referring to AI terminology) and one or more independent
variables (features). The primary goals is to derive the value of the output starting
from the input values. Regression can be used to:

• predict the value of the dependent value starting from the independent ones;

• understand the strength of the dependence of the dependent value starting
from the independent ones;

• identify and take important decisions.

For the development of this thesis, the main goal of the regression models is to be
able to predict torque and torque ripple, starting from the input variables describing
the geometry of the IPM motor.
Depending on the collected data, many regression models can be used as reported
in literature [17]:

• Simple regression model;

• SVR;

• Neural Network.

The two techniques used in this thesis are the Support Vector Regression (SVR)
and Neural Networks. More details about their working principles and the evaluation
of their effectiveness are given in the dedicated Sections 4.3 4.4.

4.1.1 Regression metrics

To actually assess the quality of the regression model, different metrics can be used
to evaluate the error between the predicted value and the real value. Each metric
highlights different aspects on the performance of the model, giving insight about
how well it is capturing the underlying relationships in the data. The most adopted
metrics are now discussed and will be used at test time in the experimental results
Sec. 4.3 4.4.

26

4.1 – Regression

Mean Square Error - MSE Mean Squared Error is used to measure the average
of the squared distances between predicted and real values as shown in equation 4.1.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4.1)

Its main characteristics are:

• it uses the mean to keep it independent from the the dataset size;

• due to the square operator, it penalizes more the larger errors, making therefore
it more sensible to outliers;

• it is beneficial to use as loss function if large errors are particularly undesirable.

Mean Absolute Error - MAE It corresponds to the average magnitude of er-
rors in a set of predictions, without considering their direction (overestimation or
underestimation). The mathematical formulation is given in Eq. 4.2.

MAE =
1

n

n∑
i=1

|yi − ŷi| (4.2)

The main characteristics are:

• it uses the mean to keep it independent from the the dataset size;

• all the errors are treated equally, since it is a linear relationship. This means
that it is less sensitive to outliers;

• it gives direct control on the error related to the prediction.

In Fig. 4.2 is reported the main difference between MAE and MSE. The green line
is representing the expected value (constant in this case), the red line is the predicted
value. It is possible to notice how the MAE line has a constant slope regardless of
whether it’s an overestimate or an underestimate while the MSE increases faster,
due to the squared operator, as the predicted value deviates more from the expected
value, highlighting the influence of outliers on it.

Coefficient of determination R-squared R2, also known as the coefficient of
determination, measures the proportion of variance in the dependent variable that
is predictable from the independent variables [19]. The mathematical description is
reported in Eq. 4.3.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(4.3)

In particular:

•
∑n

i=1(yi − ŷi)
2 represents the sum of squares of residuals (difference between

the real value and the predicted one);

•
∑n

i=1(yi − ȳ)2 represents the sum of the squares (difference between the real
value and the average value).

27

Machine learning

Figure 4.2: Comparison between MSE and MAE. Adapted from [18]

By definition, it is bounded between [0, 1]. This means that:

• If the prediction perfectly matches the real value
∑n

i=1(yi− ŷi)
2 = 0, resulting

in R2 = 1;

• If the prediction is always close to ȳ, R2 = 0.

For the purpose of the thesis, higher values of R2 are desired since they are associated
with better predictions and lower errors. It is particularly convenient to use this
metric as it gives a direct measure of the goodness of fit of the model.

4.2 Training Dynamics

This section is dedicated to the aspects concerning the training dynamics of the im-
plemented model. It is worth noticing that there are many parameters and method-
ologies to take into account when dealing with Machine Learning. The overall
performances and the computational time are influenced by their choice. The goal
of Supervised Machine Learning models is to extrapolate the statistics of the data
and, based on this, make predictions.
In this thesis, different mechanisms are considered:

• Train-validation-test split;

• Pre-processing of the dataset;

• Overfitting;

• Hyperparameter optimization: Grid Search and Random Search;

28

4.2 – Training Dynamics

• Cross-validation;

• Validation curve;

• Early stopping.

More details about their implementation are given in the relative Sec. 4.3 4.4.

4.2.1 Train - Validation - Test split

When dealing with Machine Learning models, it is important to develop the ability
to generalize the unseen data. Given a new input, the model should be able to
produce a new output within a certain accuracy. Since the model is learning on data,
it is fundamental to measure its performances on a subset of the initial dataset, to
avoid any possible bias at test set that may lead to overfitting, and consequently
poor results.
This procedure, therefore, involves taking the initial dataset and split it to obtain
different subsets. In particular, depending on the models, there are:

• Train Subset: used for the training phase to actually learn from data;

• Validation Subset: used for hyperparameters tuning to avoid overfitting;

• Test Subset: used to evaluate the performances and to understand the gener-
alization capabilities of the trained model.

Fig. 4.3 gives a visual representation of the split. This is particularly useful when
the size of the initial dataset is sufficiently large, allowing to have subset that are
big enough and still representative of the original domain.
Moreover, splitting the dataset into subsets allows also to reduce the computational
effort required to train the models, achieving a trade-off among the accuracy and
the time needed to accomplish the task. In literature, different split ratios are used.
The most common are:

• 60-20-20: 60% training, 20% validation, 20% test

• 70-15-15: 70% training, 15% validation, 15% test

• 80-10-10: 80% training, 10% validation, 10% test

Those are suggested ratios, but depending on the initial dataset, also other com-
binations may give better results. In this thesis, train - validation - test split has
been performed using scikit-learn Python Machine Learning library implementing
the function train test split [20].

Figure 4.3: Train - Validation - Test split representation

29

Machine learning

4.2.2 Pre-processing of the dataset

As already discussed, the inputs features of the surrogate dataset are distributed
on different ranges (Fig. 3.12). This may be a problem for regression task, since
the results may be biased by the larger variables. The risk is to have a very un-
stable model that may perform poorly. To overcome this problem, it is important
to scale the input features. Many scaling techniques are present in literature like
StandardScaler, MinMaxScaler, MaxAbsScaler. The aim of these is to re-scale the
input features in order to have similar characteristics, resulting in a simpler model.
For this thesis work, StandardScaler has been used. It uses the statistics of the
training set (both mean values and standard deviation) to remove the mean and
scale the dataset to unit variance. It is important to use just the training subset
characteristics to avoid any additional help at prediction time on the test subset.
The effects of the scaling are reported in Fig. 4.4.

(a) Train Subset (b) Test Subset

Figure 4.4: Scaling of the dataset

4.2.3 Overfitting

Overfitting occurs when the predictor has excellent performances on the training
set, but it poorly performs on the test set [21]. To address the concept, Fig. 4.5
is used. Let’s assume to have a certain distribution of points. By means of the
Machine Learning model, starting from the Predictor variable, the goal is to predict
the Output Variable. Three main scenarios can occur:

• Underfit: the model is too simple and it is not able to capture the full com-
plexity of the data, resulting in an under-performing model;

• Optimal: the model achieves the best trade-off among the complexity and the
accuracy;

• Overfit: the model is too complex and somehow learns by heart the data,
loosing the ability to generalize the unseen data. This means perfect fit at
training time, but very poor accuracy at test time.

In Fig. 4.6 is shown the relation among the capacity (i.e. the complexity of the
model) and the errors. The two curves represented are the training error and the
generalization error (i.e. the test error). It is possible to notice how:

30

4.2 – Training Dynamics

Figure 4.5: Three scenarios [22]

• A low-capacity model is producing high training and test error, meaning that
the model is under-performing;

• A very high-capacity model is doing almost perfectly on train error, but on
the test set the error is increasing, meaning that the generalization capability
of the model is lacking;

• The optimal capacity is producing a comparable error at train and test time,
providing the best performances.

Figure 4.6: Error vs Capacity [23]

The best results are provided by the right model with a suitable complexity.

4.2.4 Hyperparameter optimization: Grid Search and Ran-
dom Search

Hyperparameter can be defined as manually tuned parameters used to guide the
learning process of the model. Those are different with respect internal parame-
ters that, on the contrary, are learned automatically during training process. The
model’s performances are strictly related to hyperparameters. It is therefore espe-
cially important to optimize them as much as possible to obtain satisfactory results.
In general, the effect of a specific hyperparameter on the model of interest is known,
but defining the best combination of them is still challenging and depend on the spe-
cific dataset. Many studies proposed different methodologies to explore the search

31

Machine learning

space [24] aiming at minimizing the error of the models. The search space is defined
as the n-dimensional space in which each hyperparameter is representing a different
dimension limited by the boundary, representing the feasible range or set of values
that the hyperparameter can take. At the end of the process, the best combination
of hyperparameter is found. In particular, different algorithm can be used:

• Grid Search: used to evaluate every possible combination of the hyperparam-
eter, it is computationally expensive (especially when evaluating very poor
performance combinations) but it allows to find the best combination;

• Random Search: used to evaluate n random combinations inside the search
space. It is generally faster, but it does not ensure to find the optimal combi-
nation.

Fig. 4.7 [25], shows how the two algorithms are working inside a 2D search space.
While Grid Search provides an even coverage of the search space, it explores only a
small portion of the subspace defined by the single hyperparameter (i.e. on the x-
axis). On the contrary, Random Search, allows a better investigation of the subspace
where the single hyperparameter may give substantial changes at minimizing the
error. Following this concept, in the development of this thesis, Random Search has
been used as primary evaluation to understand which is the area of major interest.
Once this is defined, Grid Search is used on the smaller search space to refine the
results, obtaining the best combination within a suitable time. Both algorithms

Figure 4.7: Grid Search and Random Search comparison in search space [14]

have been implemented using the scikit-learn Python libraries [26] and [27].

4.2.5 Cross-Validation

During training, dealing with hyperparameter optimization, it is crucial to find the
optimal combination but at the same time to avoid overfitting, promoting a model
able to generalize well at test time. It is essential to implement criteria to mitigate
this risk, thus producing a robust model. In the context of Supervised models, like
SVR, this risk can be reduced without the explicit need for a validation set, which
could diminish the size of the training set, especially with small datasets. Numerous
techniques for cross-validation exist in the literature.
For the development of this thesis, k-fold cross - validation from scikit-learn library
has been used [28]. The working principle is shown in Fig. 4.8. Let’s assume that

32

4.2 – Training Dynamics

the dataset has been split into training data and test data. For this example, k = 5
is used. This means that the training set is split into 5 smaller subsets (called folds)
and:

• The model is trained using k-1 = 4 folds

• The 5th fold is used as validation set to measure the performance of the model

This procedure is repeated for k times and at the end the performances are the
average of the score obtained in the loop. By doing this, it is possible to avoid the
definition of a fixed validation set and producing a model that is unlikely to overfit.

Figure 4.8: k-fold cross - validation [29]

4.2.6 Ensemble models

Ensemble learning is a particular approach in Machine Learning that aims at im-
proving the predictive capabilities of a model, reducing the error, combining the
outputs of multiple instances of the same model. Those algorithms are helping to
improve the robustness, reducing the sensitivity to outliers and preventing overfit-
ting at the cost of increasing the computational complexity. Different classes are
present in literature:

• Bagging Regressor: trains the same model on different subsets of the training
set, typically created by random sampling with replacement. The final out-
put is obtained combining the results, in particular by means of voting (for
classification) or averaging (for regression);

• Boosting Regressor: trains a sequence of models with the peculiarity of chang-
ing training data to focus attention on examples that previous fit models have
gotten wrong;

A schematic overview is also given in Fig. 4.9.

33

Machine learning

Figure 4.9: Ensemble models

AdaBoost

In this Section, a more detailed description of AdaBoost algorithm is given. The
peculiarity of AdaBoost (also called Adaptive Boosting) is that a certain number of
base estimators, called weak learners [30], are added sequentially to the ensemble
model. The consequent model is trying to correct the predictions of its predecessor.
After each round, the algorithm changes the weights of the mispredicted outputs
so that the following model is forced to focus on these data. The final output is a
weighted sum of the predictions of all the cascade of weak learners. These weights are
determined based on the individual accuracy of the weak learner. The importance

Figure 4.10: AdaBoost schematic [31]

that each weak learner has in the final ensemble is controlled by the learning rate

34

4.2 – Training Dynamics

hyperparameter. In particular, the weight update shown in Eq. :

αt = learning rate · 1
2
ln

(
1− ϵt
ϵt

)
(4.4)

A higher learning rate increases the contribution of each weak learner reducing the
number of base estimators that must be trained. On the contrary, a smaller learning
rate generally requires a higher number of rounds to reach the same performances.
AdaBoost is implemented using the scikit-learn library [32].

4.2.7 Learning Curve

Another important aspect during the traning process of Machine Learning model, is
the ability to monitor its learning capabilities. This is fundamental to understand
if the model is overfitting, underfitting or achieving a good fit. Learning curves are
particular useful when training Neural Networks, as it is required to check the loss
during the training process. In the development of this thesis, two learning curves
are used:

• Training and Validation Loss;

• Training and Validation MAE;

Training and Validation Loss are reporting the loss metrics during the learning
process of the model. It is particularly useful to understand what are the perfor-
mances as the model is gathering experience on the dataset. Specifically, it can be
used to diagnose underfit, overfit or good fit by comparing the loss on the training
subset and the validation subset. Fig. 4.11 reports these 3 behaviours.

Training and validation MAE are also useful metrics to understand the entity
of the Mean Absolute Error on the traning set and on the validation set, by com-
paring the gap among them. This is useful to assess the generalization capabilities
of the model. A higher gap means that the model struggles on the test set, possibly
under-performing. On the other hand, a smaller gap is indicating a that the model
is able to generalize, ensuring similar performances on the training set and on the
test set, which is highly desirable.

4.2.8 Early Stopping

Early stopping is used to prevent overfitting during the training. It is used to stop
the traning when the performances on the validation set are beginning to degrade
with respect the training ones, like in Fig. 4.11c. This is ensuring that the model
is not overfitting, reducing its generalization capabilities. This tool is implemented
using Keras library [34] and it is controlled by the patience value that represents
the maximum tolerated number of epochs with no improvement, before that the
training is stopped.

35

Machine learning

(a) Underfit - example

(b) Good Fit - example

(c) Overfit - example

Figure 4.11: Examples of learning curves: Underfit, Good Fit and Overfit [33]

4.3 Support Vector Regression (SVR)

Support Vector Regression belongs to the family of the Support Vector Machines
that can be used to perform both classification and regression tasks. Much of the
literature on Support Vector Machines focuses on the classification task. Therefore,
the main concept are going to be presented referring to the classification and later
on these concept are going to be adapted to the regression task

4.3.1 Support Vector Machines for classification

The aim of the Support Vector Machine is to find the optimal Hyperplane that
is able to maximise the margin. In order to understand what the margin is, the
concept of Support Vector must be introduced. Support Vectors can be defined as
the closest point to the hyperplane that is required to be found. In Fig. 4.12, a generic
representation of this concept is presented. Given a distribution of points (for which
the hypothesis of independent and identically distributed (iid) holds), Support Vector
Machines aims at finding the Hyperplane that maximizes the margin, evaluated as
a distance between the Hyperplane itself and the Support Vector.

36

4.3 – Support Vector Regression (SVR)

Figure 4.12: Support Vector Machine representation [35]

4.3.2 Support Vector Regression: concept

Starting from these definitions, an analogue concept is exploited when dealing with
regression task. Literature refers to these models as Support Vector Regression
(SVR)[36]. Specifically, SVR introduces a ϵ − tube, around the Hyperplane, that is
used for the optimization problem. The goal is to find the best tube able to solve the
regression problem, balancing the complexity of the model and the losses. Fig. 4.13
shows the tube in case of a 1D problem. Since the goal is to predict a continuous
value, conversely with respect classification, Eq. 4.5 and Eq. 4.6 must be used in
case of 1D and multidimensional problem respectively. At training time, the model
is learning the internal parameters, w (weight) and b (bias), that are minimizing the
objective function. Once these are determined, by means of Eq. 4.5 and Eq. 4.6, it
possible to make predictions, starting from the test set.

y = f(x) = ⟨w, x⟩+ b =
M∑
j=1

wjxj + b, y, b ∈ R, x, w ∈ RM (4.5)

f(x) =

[
w
b

]T [
x
1

]
= wTx+ b, x, w ∈ RM+1 (4.6)

4.3.3 Optimization problem and hyperparameters

As already mentioned, SVR finds the best fit by means of an optimization prob-
lem. For this reason, it is needed to consider both the objective function and some
constraints. The mathematical description of those is quite useful to understand
what are the hyperparameters that are required to optimize the problem. At this

37

Machine learning

Figure 4.13: Support Vector Regression representation [36]

point, it is clear how the model should trade-off between the complexity and the
accuracy of the results. It should be accurate enough to well generalize to unseen
data and at the same time should be easy enough to avoid overfitting (more details
in Sec. 4.2.3).
From the mathematical point of view, therefore, the objective function can be ex-
pressed as shown in equation (4.7).

min
w

1

2
∥w∥2 where w =

[
w
b

]
(4.7)

By means of this objective function, it is ensured that the weights that the model
learns from the training set, are as small as possible. This can be seen as a regularizer
effect that allows to provide the simplest solutions, avoiding to have complex models
that are likely to overfit [21].

The constraint, on the other hand, is to minimize the error between the prediction
of the model and the ground-truth (the real label). The error is controlled by the
ϵ− tube in which no penalization is given. It is linked to the hyperparameter ϵ that
directly affects the width of the tube. This value is related the cost associated to
an error in the loss function. In particular:

• a smaller ϵ is providing a lower tolerance for errors, as the width of the tube
will be shrunk and therefore a larger number of samples are contributing to
the loss function.

• a larger ϵ on the contrary, is associated with a higher tolerance, as the number
of points contributing to the loss is decreasing.

The loss function can therefore be expressed as shown in Eq. 4.8 and in Fig. 4.14.

Lε (y, f(x,w)) =

{
0 if |y − f(x,w)| ≤ ε

|y − f(x,w)| − ε otherwise
(4.8)

If the absolute value of the distance among the ground-truth and the prediction
is lower than ϵ the loss associated is zero (i.e. samples are inside the tube). On the
contrary, the loss function depends on the error and on ϵ. Since the width is strictly

38

4.3 – Support Vector Regression (SVR)

Figure 4.14: ϵ linear loss [36]

related to the support vectors, it’s straight forward how these points are playing a
relevant role on the performance of the model.

The aforementioned description of the optimization problem is called hard-margin
as inside the objective function (Eq. 4.7) there is no relation with the admissible
error. As consequence, the model is trying to learn the weights (w and b) to fit
all the data inside the ϵ − tube. Depending on the distribution of the data, this
condition may be too strict proving actually no solution.

To overcome this problem, in the literature [36], a soft-margin approach is de-
scribed. The main difference with the hard-margin is that, in the latter, it is intro-
duced the possibility to violate the constraints by introducing a slack variable (ζ),
ensuring an higher level of flexibility. The objective function is therefore modified
as shown in Eq. 4.9:

min
w

1

2
∥w∥2 + C

n∑
i=1

ζi (4.9)

This representation is introducing a new hyperparameter (C), that can be regarded
as a penalty factor associated with the error. It is added to the L2 norm of w in
the objective function. In particular, C is linked to the cost of making an error:

• A large C aims at minimizing the error, since the model will pay a huge cost
whenever it commits a mistake. This means that the model tries to fit more
closely the training data, but this may also lead to overfitting

• A smaller C is giving the possibility to make some mistakes, ensuring to have
a simpler model that may better generalize to unseen data.

Fig. 4.15 shows the effect of various C on the model fit. In particular, three different
models with different values of C (0.1, 10, 1000) are trained on the same training
set. It is possible to notice how:

• C = 0.1 is producing a high error, since the penalty cost associated is very
low;

• C = 10 allows to better exploit the trend of the data;

39

Machine learning

Figure 4.15: Effect of C on the performances of SVR [37]

• C = 1000 is almost perfectly fitting the data with the risk of overfitting.

What has to been considered is that there is not a unique solution. Machine learning
models are a trade-off among the complexity of the models, the performances on
the test set (in terms of Mean Squared Error and/or Mean Absolute Error) and the
time required to accomplish the task. Therefore, is really important to make several
test in order to be able to find the best compromise for the specific application.

The Kernel Trick

The theory discussed until now, is assuming that f(x) is linear. This is a strong
assumption since in real word applications, data are showing a high degree of non-
linearity. The correct choice of the kernel can heavily affect the performance of
the model [38]. When data are not linearly separable in the original input space,
it is possible to project them into a higher dimensional space where the points are
linearly separable. This concept, shown in Fig. 4.16, is known in literature as Kernel
trick.

From the mathematical point of view, if we have a data x, z ∈ X and a map
ϕ : X → RN then

k(x, z) = ⟨ϕ(x), ϕ(z)⟩ (4.10)

is representing a kernel function. In particular, it takes in input the vectors in
the original dimensional space (x and z) and returns the dot product of the vectors
in the higher dimensional space.

This new representation is allowing to solve the non-linearly separable problem.
Indeed, looking at Fig. 4.16a as example, it is clear that it’s not possible to define
a linear hyperplane able to separate the two classes (blue and orange points). By

40

4.3 – Support Vector Regression (SVR)

(a) Example of not linearly separable data

(b) Projection of not linearly separable data in a higher dimensional
space

Figure 4.16: Kernel trick visualization [14]

leveraging, on a nonlinear transformation, those points are projected in a higher
dimensional space 4.16b where they can be correctly separated by the hyperplane.

The big advantage, from which the name trick comes, is that it is not required to
know how the points from the original space are mapped after the nonlinear trans-
formation (i.e. the actual function). For example, the transformation that allows
to move from the original space 4.16a to the higher dimensional space Fig. 4.16b is
shown in Eq. 4.11:

ϕ(x) = ϕ

((
x1

x2

))
=

 x2
1√

2x1x2

x2
2

 (4.11)

Kernels are special function for which the dot product of the transformed vectors
is just a function of the coordinates in the original dimensional space. In particular,
this is clear in Eq. 4.12. This is corresponding to project points in the higher
dimensional space without having to evaluate ϕ(x).

41

Machine learning

ϕ(x1)
⊤ · ϕ(x2) =

 x2
11√

2x11x12

x2
12

⊤

·

 x2
21√

2x21x22

x2
22

=
(
x2
11

√
2x11x12 x2

12

)
·

 x2
21√

2x21x22

x2
22

= x2

11x
2
21 + 2x11x12x21x22 + x2

12x
2
22

= (x11x21 + x12x22)
2

=
(
x⊤
1 · x2

)2

(4.12)

Well known examples of SVM kernels are:

• Radial Basis Function (RBF) :

K(x,x′) = exp

(
−∥x− x′∥2

2σ2

)
for σ > 0 (4.13)

• Linear :

K(x,x′) = x⊤x′ (4.14)

• Polynomial:

K(x,x′) = (1 + x⊤x′)r for any r > 0 (4.15)

In Fig. 4.17 is shown a comparison of three different models with three different
kernels. In particular, RBF, linear and polynomial are assessed. It’s clear how the
choice of the kernel is affecting the results, resulting in a different fit. Indeed, kernel
directly influences how well the model adapts to the underlying structure of the
data.

For the development of this thesis, RBF kernel has been used and therefore it’s
important to discuss about the related theory since it will introduce a hyperparam-
eter that has been used in the optimization process of the model.

Radial Basis Function is extremely popular among the different kernel be-
cause it allows to exploit a similar concept with respect the Gaussian distribution
[39]. Referring to Eq. 4.13:

• γ represents the variance and it’s an hyperparameter;

• ∥x− x′∥2 represents the L2 norm between point x and x’.

Since this kernel equation depends on the distance, two scenarios can be found:

• When points are really close (∥x− x′∥2 ≈ 0), they are similar ;

• When points are far away, kernel values is less than 1 and closer to 0 as points
are more spaced. In this case points are said to be dissimilar

42

4.3 – Support Vector Regression (SVR)

Figure 4.17: Effect of the Kernel on model performance [37]

(a) RBF kernel with γ=0.1 (b) RBF kernel with γ=1

(c) RBF kernel with γ=10

Figure 4.18: Region of Similarity in function of γ [14]

The condition of similarity is controlled by γ. The effect of the hyperparameter is
shown in Fig. 4.18 that is reporting the similarity condition (on the y-axis) versus
the distance among the points (on the x-axis) for different values of the hyperpa-
rameter. It is clear how, as γ is increasing, also the shape of the region of similarity
is becoming larger. This means that points that are farther away can be considered
similar. On the contrary, small values of γ (i.e. 0.1) are providing a very narrow

43

Machine learning

region. It is very important therefore to perform several tests in order to find the
best values of γ able to provide the best performance of the model.

Lastly, in Tab. 4.1 all the hyperparameter used in the developing of the SVR
model are reported:

Hyperparameter Description
Kernel For non-linearly separable dataset

C Penalty factor on the errors
ϵ controls the width of the ϵ− tube
γ controls the region of similarity of the RBF kernel

Table 4.1: Resume of the SVR Hyperparameters

4.3.4 Experimental Results

This part is dedicated to the discussion of the results obtained using SVR models.
Here the output predictions are:

• Torque;

• Torque ripple;

Torque analysis

The first analysed output is Torque. To train and test the model, the split ratio
shown in Fig. 4.19 has been used. This means that on a total of 5000 samples, 3500
are used for training and 1500 for testing.

Figure 4.19: Dataset split ratio - Torque regression

44

4.3 – Support Vector Regression (SVR)

The optimal hyperparameters found after the optimization process are shown in
Tab. 4.2: Due to the high value of the hyperparameter C, the model is paying a

Hyperparameter Kernel C ϵ γ
Value rbf 1000 1 0.1

Table 4.2: Resume of the SVR hyperparameters for Torque regression

very large cost whenever it makes an error. Since this cost is linked to the objective
function, that has to be minimized, it means that the model is forced to minimize
as much as possible the error, achieving a very good fit on the training dataset.
At the same time, γ is producing a very narrow region of similarity. This setup
achieved a R2 score of 0.997 on the training set with a total fit time of 16.188
seconds. This result is expected due to the aforementioned considerations regarding
the hyperparameters.
It is quite interesting to understand the features importance of the different input. In
particular, those can be regarded as the weights that the specific input feature has on
the final prediction of the output. This is shown in Fig. 4.20 where some analogies
with the Pearson correlation can be found (Fig. 3.14). In particular, the trained
model is identifying Current Phase Angle, Rotor Radius, Barrier Position and Tooth
Length as the most important features for the torque regression evaluation.

Figure 4.20: Feature importance SVR model Torque regression

Performances on test set At this point, the performances at test level are eval-
uated. In particular, Fig. 4.21 reports the real values of torque plotted against the
predicted values of the model. The red line is representing the regression line.

As it is possible to notice, the points are well distributed along the line, meaning
that the prediction are very close to the real values. The R2 score is 0.998 as the
model is well able to exploit the variability of the test set. The total fit time is 0.256
seconds and the Mean Squared Error on the test set is 1.12.
It is interesting to understand what is the error associated with every prediction.

45

Machine learning

Figure 4.21: Torque regression on test set- SVR

To asses to this information, the relative error for each prediction is evaluated. The
results are reported in Fig. 4.22, Fig. 4.23, and Fig. 4.24.

Figure 4.22: Prediction with relative error on test set - SVR

It is apparent from these graphs how:

• The relative error is below 10% and the majority of the predictions are below
6% (Fig. 4.22);

46

4.3 – Support Vector Regression (SVR)

Figure 4.23: Distribution of relative error on test set - SVR

Figure 4.24: Samples with relative error on test set - SVR

• The lower portion of torque prediction is associated with the highest val-
ues of relative errors, while the error decreases as the torque values increase
(Fig. 4.22);

• Over 1200 (out of 1500 total samples) are predicted with a relative error lower
than 2% (Fig. 4.23);

• Fig. 4.24 is used to understand the number of points that are above an arbi-
trary threshold and their relative position in the Torque-Torque Ripple plane.

47

Machine learning

Figure 4.25: Samples with relative error on test set design space - SVR

Given a threshold of 10%, just one point is above, and its position is shown in
Fig. 4.25.

Influence on Training size These results are suggesting that the optimized
model is able to well capture the statistics of the training set and to obtain low errors
at test time. It is interesting therefore to understand how the performances of the
model are changing when using a limited amount of training samples. Ideally, this
allows to define what is the minimum number of samples that can be used to achieve
satisfactory results. To evaluate this aspect, the best model has been trained using a
subset of the original train split ratio. In particular, starting from the original ratio
(Fig. 4.19, different train sizes have been considered. While the test set has been
fixed to 1500 samples to make a fair comparison, different percentage of the train
samples size are evaluated (10%, 25%, 50%, 75% and 100%), which are translating
in respectively 350, 875, 1750, 2625 and 3500 samples. The performances of the
different tests are compared in Fig. 4.26. As can be seen, training time in increasing
as the number of samples for training is increasing. The advantage of smaller train
size can be seen is the R2 and MSE plots, where it is clear that the performances of
the model are reaching a plateau after 2625 samples while the training time is almost
4 seconds faster. This aspect is also evidenced at test time, where the prediction
time of 75% train size is lower with respect of the 100% subset. The important
finding is that if optimization of the computational resources is a concern, the SVR
model trained on a portion of the total training set, could lead to a comparable
result within a limited time.

Torque ripple analysis

The discussion now moves to the second output to be analysed which is the torque
ripple. Preliminary tests have been performed in order to understand which is the

48

4.3 – Support Vector Regression (SVR)

Figure 4.26: Effect of train size on torque regression

best implementation to consider. In particular, torque ripple regression has been
evaluated considering:

• Torque ripple as direct value obtained from SyR- e simulations;

• Torque ripple normalized to the corresponding torque output;

The second simulation setup is considered since it allows to better scale the torque
ripple and to correlate it to the geometry of the considered IPM machine. Through-
out this thesis, the term torque ripple percentage is used to refer to the latter setting.
To actually evaluate which was the best configuration to use, the z-score distribu-
tion of the torque ripple and torque ripple percentage are compared to the torque
distribution, as accurate predictions were obtained. In Fig. 4.27, the comparison
among them is shown:

Since torque is well predicted, it is taken as example for the ideal statistics to
achieve. By means of z-score analysis, it is possible to notice how the torque be-
haviour (Fig. 4.27a) is close to a normal distribution with a central tendency around
0 and almost symmetrical tendency. This condition is desirable as it allows models
to better capture the statistics of the data, providing accurate results. Moving to
the torque ripple percentage (Fig. 4.27c), it is clear how the distribution is more
spread with respect the previous case. Moreover, it is right-skewed, showing how a
certain amount of data-samples are far away with respect the mean value of the dis-
tribution. Those points may be seen as outliers and they may represent a problem
for the model as SVR performances are affected by the presence of noise and out of
distribution points [40]. This makes the torque ripple direct configuration the most
indicated to be solved with Support Vector Regression. Indeed, even thought the
distribution is slightly different with respect a normal one, the presence of outliers
is less prominent (Fig. 4.27b).

Torque Ripple on direct values As mentioned before, the torque ripple anal-
ysis has been performed using the direct values obtained with SyR- e simulations,

49

Machine learning

(a) Torque Z-Score Distribution
(b) Torque ripple Z-Score Distribu-
tion

(c) Torque ripple Percentage
Z-Score Distribution

Figure 4.27: Z-score Distribution comparison

without normalizing to the corresponding torque value. The first operation is to
define the split ratio among the train and test subset, remembering that in total
the dataset is composed by 5000 samples. In Fig. 4.28, the split is reported. With
respect the torque case, now 3750 samples are used for traning and 1250 for testing.
This decision has been taken after several test that are showing that this split is a
good trade - off among the performances and the risk of overfitting.

Figure 4.28: Dataset split ratio - Torque ripple regression

With this setup, the optimal model found, after the optimization process, is
shown in Tab. 4.3.

50

4.3 – Support Vector Regression (SVR)

Hyperparameter Kernel C ϵ γ
Value rbf 620 0.44 scale

Table 4.3: Resume of the SVR hyperparameters for torque regression

Conversely with respect before, in this case, the value of C is lower, meaning that
the model is accepting to make some mistakes, paying a smaller cost. The optimal
model is therefore found relaxing the constraints about the strict fit, increasing the
flexibility. For what regards the hyperparameter γ, for the region of similarity, it is
set to scale, whose value can be seen in Eq. 4.16. This value is linked to the statistics
of the dataset, allowing to obtain a region of similarity that is more representative
of the data. With this setup, the model achieved a R2 score on training subset equal
to 0.975 and a total fit time of 101.128 seconds. As already done also for the torque
regression, it is possible to extrapolate the feature importance, to understand how
much each feature is contributing to the final output prediction. The results are
shown in Fig. 4.29 and they are pretty consistent with what has been previously
evaluated in the Pearson Correlation Plot (Fig. 3.14), giving the majority of the
decision weight to features as Rotor Radius, Tooth Width, and Barrier Position.

scale =
1

nfeatures ·X.var()
(4.16)

Figure 4.29: Feature importance SVR model torque ripple regression

Performances on test set Moving with the discussion, the performances at
test time are now presented. Starting with the torque ripple regression, Fig. 4.30
shows how the prediction is less accurate with respect torque analysis, reporting
multiple points that are far from the red regression line. The R2 on test subset is
0.983 indicating that the model is anyway able to exploit the variability of the test
set. The prediction time is 0.378 seconds and the Mean Squared Error is 1.86. The
greater errors are concentrated in the lower part of the torque ripple region, while

51

Machine learning

higher values are more closer to the regression line. This reflects also in Fig. 4.31,
that shows how the range between 0 Nm and 35 Nm is predicted with a relative error
that reaches its peak at 80%, which is much larger with respect the torque model.
However, this does not mean that the model is behaving very poorly at prediction
stage.

Figure 4.30: Torque ripple regression on test set - SVR

Figure 4.31: Torque ripple prediction with relative error on test set - SVR

52

4.3 – Support Vector Regression (SVR)

Figure 4.32: Distribution of relative error on test set - SVR

Figure 4.33: Samples with relative error on test set - SVR

Indeed, looking at Fig. 4.33, where the relative errors are grouped into bins,
it is possible to see that the more than 600 points are predicted with a relative
error which is lower with respect 10%. Lastly, the relative error for each sample is
compared with a threshold manually set to 25%. This limit is larger with respect
the torque regression since the model is performing slightly worse. Additionally,
this value delineates the cluster of well-predicted points from the mispredicted ones.
The number of points that are exceeding this limit is 13 and their location is shown

53

Machine learning

Figure 4.34: Samples with relative error on test set design space - SVR

in figure, where the Torque Ripple - Torque plane on the test set is represented 4.34.

Influence on Training size Also for torque ripple, the analysis regarding the
importance of the training size has been performed. The methodology that has
been followed is the same that has been described in paragraph 4.3.4 for the torque
regression.
In this case, the number of training samples used are: 375, 937, 1875, 2812, 3750.
The effect of the different training sizes are reported in Fig. 4.35. Despite the trend

Figure 4.35: Effect of train size on torque ripple regression

being very similar, it is clear how the complexity of the torque ripple regression is
higher with respect torque regression. Indeed, looking at the plot describing the

54

4.3 – Support Vector Regression (SVR)

R2 trend, it is possible to notice how the advantages in having a larger number of
training samples is more evident and results in a higher prediction accuracy. This
is also the reason why, at the beginning, the split ratio among the train and test
subset has been chosen slightly enlarging the training size over the test size.

AdaBoost Due to the inferior performances of the torque ripple model, it is inter-
esting to see if any kind of ensemble model can actually reduce the error. Different
models where considered (more details in Sec. 4.2.6), such as:

• Bagging Regressor;

• Random Forest;

• AdaBoost;

All these models are requiring a base estimator, and in this case, both decision trees
and the optimized SVR are tested. The outcomes are:

• Bagging Regressor is requiring a huge amount of time for the training while
the final predictions are practically unchanged with respect the best SVR;

• Random Forest is much faster when trained using decision trees as base esti-
mator, but the final errors are higher compared to optimal SVR;

• AdaBoost is very computationally intensive and the results are just slightly
improved.

For the development of this thesis, the results of the AdaBoost model are reported
since it may produce some positive effect on the final predictions. In Tab. 4.4, the
optimized hyperparameters are reported:

Hyperparameter base estimator n estimators learning rate loss
Value Torque Ripple SVR 30 0.011 linear

Table 4.4: Resume of the AdaBoost hyperparameters for torque regression

With this setup, obtained at the end of the optimization process by means of
Random Search, AdaBoost model scored R2 = 0.974 on the training set. The total
time for the fitting is 608 seconds (almost 6 times higher with respect the optimised
torque ripple SVR).

Performances on test set For what regard the prediction on the test subset,
the model obtained R2 = 0.983 and a prediction time of 6.88 seconds. The results of
the regression are shown in Fig. 4.36. Comparing the results with the SVR regression
(Fig. 4.30), it is clear how the AdaBoost advantage is coming from a redistribution
of the error, proving better results on some points while worsening the predictions
on other. Fig. 4.38 and Fig. 4.37 are showing better this trend. On the left part, it
is reported the results obtained with the torque ripple SVR regressor while on the
right the AdaBoost outcome.

A better comparison is reported in Fig. 4.39, where the relative errors from the
SVR are compared with the relative errors of AdaBoost. The presence of the bisector
line is used to understand what are the points associated with a higher accuracy
and those with a worse prediction. In particular:

55

Machine learning

Figure 4.36: Torque ripple regression on test set - AdaBoost

Figure 4.37: Distribution of relative error on test set - SVR and AdaBoost

• Red points are the ones whose prediction error improved after AdaBoost;

• Blue points are the ones associated with higher error after the ensemble model.

The final outcome is that AdaBoost may actually provide better results, and in this
case it helped to reduce the higher mis-predicted point at the cost of increasing it in
the low error area. In the end it provides a sort of redistribution of the error with
the downsize of increasing the computational effort required for the model.
Finally the mean squared errors are compared in Tab. 4.5 to actually understand
if this ensemble model can be beneficial and to quantify it. In the end AdaBoost
provided an increase of the Mean Squared Error of 2.5% starting from a value of
1.86 and reaching the value of 1.82. This shows that even if the AdaBoost model
is increasing the robustness of the results, the complexity beneath the torque ripple
prediction, still requires further investigation. For this reason, the same analysis

56

4.4 – Neural Networks

Figure 4.38: Samples with relative error on test set - SVR and AdaBoost

Figure 4.39: Comparison among SVR and AdaBoost relative errors on test set

performed with the Supervised Support Vector Machine is repeated using a Deep
Learning Approach.

Model MSE Value
Optimized SVR 1.86

AdaBoost 1.82
AdaBoost Improvement 2.50%

Table 4.5: Mean Squared Error on test set - AdaBoost vs SVR

4.4 Neural Networks

Neural Networks are Machine Learning models inspired by the structure of human
brain. Their aim is to mimic the learning capabilities of human being, understanding
how to move from a given input to achieve a desired output. They are very powerful
tool in the context of Artificial Intelligence as they show very good generalization ca-
pabilities. The basic unit is called neuron and many neurons can be interconnected
to create the network. Since they have a very high degree of customization, they are

57

Machine learning

suitable to solve many complex problems. For this reason, Neural Networks, imple-
mented using Keras libraries, are tested to understand if they can be a valid choice
at predicting the torque and torque ripple starting from the features representing
the geometrical dimensions of the Internal Permanent Magnet (IPM) motor. The
results will be compared with the outputs of the Support Vector Machine (SVR),
to evaluate which is the best model for the task.

4.4.1 Neuron and Layers

As already mentioned, the basic element of the Neural Network is the neuron with
a structure similar to the ones present in human brain, as shown in Fig. 4.40. The
main components are:

• Inputs (x0, x1, x2, . . .): input signals to the neuron. These are from a previous
layer or an external input;

• Weights (w0, w1, w2, . . .): internal parameters of the model that are adjusted
during the learning phase. wi gives the strength of the associated input xi. In
this way, the network learns which inputs are important to achieve the desired
output. From mathematical point of view this is equal to 4.17;∑

i

wixi (4.17)

• Bias (b): additional internal parameter learned during training. It allows to
shift the weighted sum of the inputs to improve the learning process;

• Activation function: used to introduce non-linearity inside of the model. This
is crucial since real world patterns are complex and highly nonlinear. Those
are used to decide if the neuron should be activated or not;

• Output: the final outcome is sent to the next layer.

(a) Brain Neuron representation (b) Neural Network Neuron representation

Figure 4.40: Neuron Analogy [41]

The composition of several neurons is producing a layer. Different layers are
creating a Neural Network, as shown in Fig. 4.41. In this example, a Neural Network
composed by 4 layers is represented. The layers between the Input layer and Output
Layer are called Hidden Layers. Depending on the network architecture, one or
more Hidden layers can be present. More layers are associated to more parameters,
and therefore, more complex network. These types of network are also referred as
Multi - layer Perceptron.

58

4.4 – Neural Networks

Figure 4.41: Structure of a simple Neural Network [42]

4.4.2 Activation functions

As already mentioned, activation functions are required to introduce some non-
linearity inside the Neural Network. This is improving its learning capabilities [43].
In literature many activation functions are described, each with advantages and
disadvantage.

Sigmoid function The mathematical equation describing the sigmoid function is
reported in Eq. 4.18 while the graphical representation is shown in Fig. 4.42. For
every input, the associated output range is [0, 1]. Due to this, it has several draw-
backs. Indeed, being the function saturated, it introduces the vanishing gradient
problem [43] for which the gradient of the objective function becomes really small
leading to almost no update in learning process. Moreover, since the outputs are
not zero - centered, there may be problems of convergence. Lastly, the exponential
function can be expensive to compute.

σ(x) =
1

1 + e−x
(4.18)

Tanh function The second activation function analysed is the tanh whose expres-
sion is reported in Eq. 4.19 and represented in Fig. 4.43. In this case, the output is
zero - centered as it belongs to the range [-1, 1]. This is improving the convergence
dynamics of the model. On the other hand, it suffers from varnishing gradient, be-
ing saturated, and also from computational complexity, due to the presence of the
exponential.

tanh(x) =
ex − e−x

ex + e−x
(4.19)

ReLU function Rectified Linear Unit function is shown in Eq. 4.20 and in Fig. 4.44.
The output are constrained in the range [0, inf]. This comes with different advan-
tages, since it does not suffer from saturation in the positive region, it provides faster
convergence with respect tanh and sigmoid and it is also computationally efficient.
It still has the problem of Dying ReLU [43] when the input is negative or close

59

Machine learning

Figure 4.42: Sigmoid activation function [14]

Figure 4.43: Tanh activation function [14]

to zero, with the downsize of killing the gradient and thus reducing the learning
capabilities of the model.

ReLU(x) = max(0, x) =

{
x, if x ≥ 0

0, otherwise
(4.20)

60

4.4 – Neural Networks

Figure 4.44: ReLU activation function [14]

4.4.3 Training

Training deals with the minimization of the loss function, by learning the internal
parameters (weights wi and bias b) that are producing the lowest error possible.
Training process requires different elements to be described, in particular:

• Loss Function;

• Optimizer;

• Back-propagation;

• Epoch and Batch Size.

Loss Function

As the name suggests, loss functions are used in Neural Network to evaluate the
losses. The goal of the training is to learn the best parameters (weights wi and bias
b) that are minimizing the loss function, providing the minimum error. Depending
on the task that the network has to perform, different loss functions can be adopted.
Since this thesis is discussing about regression, the main regression losses are:

• Mean Square Error [MSE] : to penalize larger error more heavily, potentially
at the expense of smaller errors, in order to achieve a closer fit.

• Mean Absolute Error [MAE] : to balance the trade - off between a good fit
and maintaining robustness to outliers, in order to achieve a more balanced
performance across the entire dataset.

More details are given in the corresponding Sec. (4.1.1).

61

Machine learning

Optimizer

At this point, a loss function is defined. Depending on the number of features that
are given in input, the loss function can be described in a very high dimensional space
where each dimension corresponds to a model parameter. For example, Fig. 4.45,
shows the shape of a generic loss function that depends on two different model
parameters (x-axis and y-axis), while the loss is on the z-axis. For each combination
of x and y, a value of loss is produced. The function features multiple peaks and
multiple valleys, therefore it is non - convex, as it comes with multiple local minima
and local maxima. The aim of the optimizer is to update the parameters of the model
such that the combination of them is producing a minimum in the loss function. The
optimal combination would lead to the global minimum of the function.
During training, the model is learning how to update the parameters starting from
a random point on the loss function curve to minimize the errors. The update is
done every epoch, which represents the number of times that the network sees all
the training set.
It is clear how this already complex scenario, can be further complicated as the
model parameters are increasing. Therefore, the choice of the optimizer is crucial.
In literature many optimizers are present [44]. For this thesis, two main approaches
are evaluated:

• Stochastic gradient descent (SGD);

• Adaptive Moment Estimation (ADAM);

Figure 4.45: Loss function example [14]

Stochastic gradient descent (SGD) The optimization problem deals with the
evaluation of the minima of the loss function. It is required therefore to evaluate
the gradient of the loss, using a mini-batch of training set (to speed up the process),

62

4.4 – Neural Networks

to understand what is the direction pointing toward a minimum. Then the internal
weights θ (vector composed by wi and b) are updated following Eq. 4.21:

θt+1 = θt − α∇θJ(θt) (4.21)

This updating process is repeated until convergence. A special mention is given to
the hyperparameter α that represents the learning rate and it is used to control the
step size of the parameters updating. The choice of this value is critical, as shown
in Fig. 4.46: In particular:

Figure 4.46: Effect of learning rate on the update of internal parameters [14]

• Small α can lead to a slow convergence speed, requiring larger time to reach
the minimum;

• Large α produces overshooting, for which the solution is bouncing around the
minimum;

• Optimal α has to be searched with some hyperparameter tuning process.

SGD provides a memory efficient (since it works with mini-batches) and easy to
implement optimization algorithm, but on the other hand it may get stuck in local
minima or saddle point. To solve this problem, formulation taking into account for
momentum are considered. This is used to speed up convergence by considering the
past history of the gradients in the update process. The mathematical expression is
given in Eq. 4.22 and it is used to update the velocity.

vt+1 = λvt + (1− β)∇θJ(θt) (4.22)

Then the velocity is used to update the parameters as reported in Eq. 4.23.

θt+1 = θt − αvt+1 (4.23)

Adaptive Moment Estimation (ADAM) The concept of momentum is also
explored in Adaptive Moment Estimation (ADAM) optimizer. In particular, it lever-
ages on adaptive estimation of first-order (the mean) and second-order (uncentered
variance) moments to adjust the propagation speed by dynamically evaluating the
learning rate. This means that, unlike SGD, ADAM is adapting the learning rate
for each parameter individually. In particular 4.24 shows the implementation of the
two moments:

63

Machine learning

mt+1 = β1mt + (1− β1)∇θJ(θt)

vt+1 = β2vt + (1− β2)∇θJ(θt)
2 (4.24)

Then these are corrected (Bias-Corrected Estimates) to counteract the fact that
initially the moment estimates are biased toward zero. This improves the stability
of the algorithm. β1 and β2 are the two hyperparameters in charge of controlling
the behaviour of the estimation.

m̂t+1 =
mt+1

1− βt+1
1

v̂t+1 =
vt+1

1− βt+1
2

(4.25)

Finally the update of the parameters is occurring (4.26).

θt+1 = θt − α
m̂t+1√
v̂t+1 + ϵ

(4.26)

By leveraging on these aspects, ADAM is able to provide smoother and more
consistent convergence compared to SGD, making it suitable for many applications.
In the development of the thesis, both SGD and ADAM are tested. The final
outcome is that ADAM optimizer requires less epoch to reach convergence, also
ensuring to obtain smaller errors.

Back-propagation

Keeping in mind all the aspects that have been discussed in this section, it is possible
to introduce the actual traning mechanism that is used by the network to actually
learn from the data.
The term back-propagation [45] refers to the algorithm used to update the internal
parameters of the model by computing the gradients of the loss function in order
to minimize the difference between the label and the predictions. It is therefore an
efficient application of the chain rule in the Neural Network context. The training
process is composed of the following key phases:

• Forward Pass : this refers to the propagation of the input from the input layer
till to the output layer. Each neuron applies the linear transformation followed
by the non-linear activation function, according to the network architecture
(i.e. Fig. 4.41). Initially, the weights of each neuron are set randomly. At the
end the prediction is compared with the label to quantify the loss.

• Back-propagation: as the name suggest, the flow of information starts from
the output layer and moves back to the input layer. In this phase, for each
layer, the gradient of the loss with respect the weights is computed. This
involves differentiating the loss function considering the activation function
used for the specific neuron. The gradient gives information about how much
each weight is contributing to the final loss, and therefore it gives insights of
the direction in which the which the weights should be adjusted to reduce the

64

4.4 – Neural Networks

loss. The gradient is propagated through the network using the chain rule of
calculus, which is crucial for updating the weights efficiently.

• Parameter update: this phase involves the optimizer that is used as update pol-
icy for the weights based on the gradients computed during back-propagation.
Example of optimizer are discussed in Sec. 4.4.3. This process of forward pass,
back-propagation, and parameter update is iteratively repeated over multiple
epochs to progressively reduce the loss, ideally resulting in predictions aligning
more closely with the true labels.

Epoch and Batch Size

Before moving to the discussion of the experimental results, it is necessary to intro-
duce the concept of epoch and batch size. Both terms are hyperparameters used to
control the training dynamics of a Neural Network model. In particular:

• Epoch: it refers to one complete pass trough the entire training dataset. In
particular, at the end of the epoch, the network has processed all the training
samples, performing the forward phase, the backward phase, and the update
of the internal weights. Generally the training process is requiring multiple
epochs to minimize the loss function. It is really important to set this value
correctly to fully exploit the network potential, avoiding both overfitting and
underfitting.

• Batch size: it refers to the number of training samples that are used in one for-
ward and backward pass. The training subset is divided into smaller batches,
as shown in Fig. 4.47, each one composed by a batch size number of samples.
The internal weights are updated after one batch is processed, therefore this
hyperparameter is linked to the convergence dynamic of the model.

Figure 4.47: Epoch and batch size relation

4.4.4 Experimental Results

This part is dedicated to the presentation of the results obtained for the torque
and torque ripple regression using Neural Networks. The implementation has been
done with Keras libraries [46] that are coming with some predefined function useful
for the definition of a Network. In this case, the same training-test-validation split
has been used both for torque and torque ripple regression. The ratio is shown in
Fig. 4.48. This is corresponding, considering the total set of 5000 samples, to: train
subset 3200 samples, validation subset 800 samples and test subset 1000 samples.
With respect the SVR models, the presence of the validation set is required since it

65

Machine learning

will be used as a metrics to check the performances of the model during the learning
process. This is necessary to ensure that no overfitting or underfitting are affecting
the process.

Figure 4.48: Dataset Split For Neural Network

In both cases, the structure of the network has been optimized using Keras
Tuner. The design variables considered are:

• The number of neurons for each layer;

• The activation function for each layer;

• The number of layers;

• The Learning Rate;

• The possibility of having dropout layers for regularization purposes;

This optimization process required some computational time, but it allowed to iden-
tify the best combination of the parameters and hyperparameters useful to achieve
the minimum error. More details about the structure of each Network are given in
following sections.

Torque analysis

The first model is the Neural Network for torque regression. In this case the network
has been designed using the Keras Random Search Tuner which is based on the
Random Search algorithm (Sec. 4.2.4) on a maximum number of iterations equal to
30. Once the best configuration has been evaluated, the torque regression network
has been created. The results are shown in Fig. 4.49.

The Network architecture is reported in Tab. 4.6:

66

4.4 – Neural Networks

Figure 4.49: Torque regression Neural Network representation

Layer (type) Output Shape Activation Function Parameters #

Input (Dense) (None, 40) tanh 360
Hidden (Dense) (None, 48) relu 1968
Output (Dense) (None, 1) linear 49

Total parameters: 2377 (9.29 KB)
Trainable parameters: 2377 (9.29 KB)
Non-trainable parameters: 0 (0.00 Byte)
Loss function: MSE

Table 4.6: Torque regression Neural Network Layer Summary

The Network is composed by 3 layers with respectively 40, 48 and 1 neurons.
The necessity of having just a neuron in the output layer is justified by the fact that
the desired output is just a value (i.e. torque in this case). The total number of
parameters to learn is 2377. A lower number indicates a simpler network, while the
complexity increases as # parameters is increasing. This has to be considered as a
trade-off among the complexity of the network, the prediction’s error and the risk of
overfitting. Before discussing the results, some details about the training process are
given. In particular, Fig. 4.50a and Fig. 4.50b are reporting the validation curves
obtained in the learning phase. Some considerations can be done:

• The training and the validation loss are decreasing together, with the vali-
dation curve that mimics the shape of the training loss. This behaviour is
indicating that the model is well performing, without any risk of overfitting or
underfitting;

• 871 epochs are required before the stopping criterion is met. The total training
process lasted 2401.47 seconds;

• Training and validation Mean Absolute Error are decreasing at the same time,
but the second one is showing higher values;

67

Machine learning

• In terms of learning rate, at the beginning it is fixed to 1e − 3 and drops to
1e− 4 around epoch 350. ADAM is used as optimizer;

• The current results are obtained with a batch size equal to 16.

(a) Torque regression Neural Network -
Training and Validation Loss

(b) Torque regression Neural Network -
Training and Validation MAE

Figure 4.50: Validation Curves - Torque Neural Network

Figure 4.51: Torque regression Neural Network - Learning Rate scheduler

This setup reached a mean squared error on validation set of 0.26 and a mean
absolute error on validation set of 0.37.

Performances on test set Once the model is trained it is possible to evaluate its
performances on the test set. Fig. 4.52 shows the torque regression between the true
values (on x-axis) and the predicted values (on the y-axis). As already mentioned,

68

4.4 – Neural Networks

the red line is indication the regression line. Looking at the distribution of the
points, it is clear how the Neural Network model is showing excellent performance
at predicting the torque starting from the geometrical dimensions of the IPM motor.
Indeed, blue points are lying very close to the red line. The obtained R2 is 0.999,
showing the the model is capturing very well the variability of the test set. To link

Figure 4.52: Torque regression on test set - Neural Network

the relative error of the predictions with the true value, Fig. 4.53 is reported. With
respect the SVR model, the predictions are improved, showing a maximum relative
error slightly above 7% (compared to 10% of SVR). The majority of the outputs are
below 2%. In terms of trend, also in this case, the higher errors are occurring on
the low torque area [0, 80] Nm.

The same results can be obtained looking at Fig. 4.54, showing the distribution of
the relative error. The current setup is therefore able to predict almost the majority
of the test point with a suitable error. Lastly, Fig. 4.55, shows the correlation among
the samples of the test set and their relative error. The 10% threshold has been set
manually and it is used to visually see the difference of performances with the SVR
model. In this case, none of the points is exceeding this limit.

Influence on Training size It is interesting to understand how much the per-
formances are affected by the size of the training subset. Also in this case, different
train sizes are tested keeping the dimension of the validation subset and test subset
fixed. This has been done to have a fair comparison among the different candidates.
The goal is to understand what is the minimum number of training samples that
can be used to obtain satisfactory results. In particular, the tested train sizes are
10%, 25%, 50%, 75% and 100% of the train subset described in Fig. 4.48. Looking
at Fig. 4.56, it is possible to understand that the two evaluation metrics (R2 and
MSE) are becoming almost flat at 75% of the test set. This point is also associated
with a lower training time with respect the next configuration, being the number

69

Machine learning

Figure 4.53: Torque prediction with relative error on test set - Neural Network

Figure 4.54: Distribution of relative error on test set - Torque Neural Network

of samples lower. This means that if optimization of the computational resources is
a concern, the 75% model could be used to obtain still accurate results, requiring
less time for the training. In the same way, also the maximum number of epoch for
the 75% configuration is lower with respect the 100% test size. Also the validation
curves for the different test setup are reported in Fig. 4.57 to ensure that none of
them is overfitting. The main outcome is that as the number of training samples
is increasing, the training and validation curves are becoming closer, meaning that
the performances of the network are increasing. Moreover, the configuration with

70

4.4 – Neural Networks

Figure 4.55: Samples with relative error on test set - Neural Network

Figure 4.56: Effect of train size on torque regression - Neural Network

320 samples (10%) is the one in which overfitting may occur. Indeed, it is possi-
ble to observe how without the adoption of a stopping criterion, the training loss
would decrease more, while the validation curve is almost flat. This means that
the network is gaining knowledge on the training samples, but this is not useful at
prediction stage.

Figure 4.57: Effect of train size on torque regression - Neural Network Validation
Curve

71

Machine learning

Influence of Batch Size Another interesting tuning factor is related to the batch
size. As already mentioned, batch size controls the number of samples that are
processed at each time, and consequently how frequently the model weights are
updated. Fig. 4.58 reports a sensitivity analysis regarding the effect of different batch
sizes. In particular, it is shown how the 16 batch size configuration is associated
with the highest R2 and the lowest MSE. This setup is not the most optimized in
terms of training time, prediction time and maximum number of epoch since the it
requires 200 iterations to complete an epoch. In any case, since the computational
effort is not a concern, it has been chosen as the best one, since it lead to the highest
accuracy. From Fig. 4.59 it is evident that smaller batch sizes are associated with

Figure 4.58: Effect of batch size on torque regression - Neural Network

faster convergence. This is because smaller batches lead to more frequent weight
updates within each epoch, resulting in a larger number of iterations and allowing
the model to adjust its parameters more quickly. However it in important to notice
that this behaviour is influenced by several factors like the adopted learning rate,
the number of layers and the activation function, that together are contributing to
the overall convergence of the model.

Figure 4.59: Effect of batch size on torque regression - Neural Network Validation
Curve

Torque ripple analysis

The second prediction output is the torque ripple. In particular, direct values are
used to train the model. Also in this case, the optimization procedure has been
performed using Keras tuner library, in particular with the Hyperband optimization
framework [47]. This procedure allows to gradually allocate more computational
power to the most promising configurations. In particular, it starts training for few
epoch a large amount of models, comparing the results among them. The best ones
are trained for additional epochs, till converging to the best model. By doing so,
computational resources are focused on the configurations with the highest potential,

72

4.4 – Neural Networks

avoiding to waste time and power on the sub-optimal solutions. The whole tuning
process lasted for 6 hours, but it gives a deep exploration of the architecture and
hyperparameter space of the models.

Figure 4.60: Torque ripple regression Neural Network representation

The architecture of the optimized network is reported in Fig. 4.60 and in Tab. 4.7.
In this case, an extra layer is required to achieve satisfactory results. This is leading
to a more complex model with a larger number of trainable parameters. This com-
promise is anyway accepted as it leads also to an increase of accuracy of the final
model.

Layer (type) Output Shape Activation Function Parameters #

Input (Dense) (None, 24) tanh 216
Hidden 1 (Dense) (None, 64) relu 1600
Hidden 2 (Dense) (None, 40) tanh 2600
Output (Dense) (None, 1) linear 41

Total parameters: 4457 (17.41 KB)
Trainable parameters: 4457 (17.41 KB)
Non-trainable parameters: 0 (0.00 Byte)
Loss function: MSE

Table 4.7: Torque ripple regression Neural Network layer summary

From Fig. 4.61 it is possible to make some considerations about the training
process. In particular:

• The model is able to learn from the training set and to make predictions of
the validation set without overfitting;

• Due to the shape of the curves, it is clear how some variability on the validation
set is still present, much more than in torque prediction case;

73

Machine learning

• The total process required 1224 epochs and a total time of 1771 seconds;

• As already occurring for torque, also in this case a learning rate scheduler
has been used to increase the speed of convergence ensuring to reach the best
performances in a suitable time. In particular as shown in Fig. 4.62, 3 drops
are performed, starting from 1e − 3 reaching 1e − 6. A larger learning rate
is associated to a faster convergence but it also comes with the possibility of
bouncing around the minimum. For this reason, a progressive decreasing of
the hyperparameter value is adopted to avoid this effect, reaching the real
(global or local) minimum. Also in this case, ADAM is used as optimizer;

• A batch size equal to 8 has been used.

(a) Torque ripple regression Neural Net-
work - Training and Validation Loss

(b) Torque ripple regression Neural Net-
work - training and validation MAE

Figure 4.61: Validation Curves - Torque ripple Neural Network

Performances on test set The prediction capabilities on test set are now as-
sessed. The trained model is able to reach a R2 = 0.985 as shown in Fig. 4.63,
which is slightly improved with respect the results obtained by the SVR. In this
case, the points are distributed closer to the red regression line, even if there are
some mispredicted point. With the current setup, the Mean Squared Error is 1.71
while the Mean Absolute Error is 0.95, both evaluated on the test set. To associate
the relative error, with respect to the true label, Fig. 4.64 is reported. In particu-
lar, it is possible to notice how the majority of the predictions are below a relative
error of 20%. Few points are in the 20% - 60% range zone and just a point is close
to almost 100%, producing a prediction that is double with respect the true value.
This is anyway accepted due to the complexity beneath torque ripple prediction and
the overall performances on the test set. To further stress this concept, Fig. 4.65 is
used to give an idea about the number of samples predicted within a certain error.
Almost all the test set is predicted with a relative error below 10%. This makes the
model quite usable even if some predictions are coming with a really high relative
error. Indeed the goal of the ML model is not to completely substitute the FEA
analysis but just to provide a way to faster explore the design space, and later on
validate the results with FEA, refining the design. The whole process has to be

74

4.4 – Neural Networks

Figure 4.62: Torque ripple regression Neural Network - Learning Rate scheduler

Figure 4.63: Torque ripple regression on test set - Neural Network

intended as a way to enhance the design capabilities and not as a way to achieve the
best final combination of features without any further refinement. Lastly Fig. 4.66,
reports the relative error for each sample of test set. A threshold equal to 25 % has
been considered, to make a comparison with the SVR model. With this setup, just
5 configurations are above the limit. The location of these points in the Torque -
Torque Ripple plane is reported in Fig. 4.67. It is interesting to try to understand
why these points are mispredicted. In order to provide an explanation Fig. 4.68

75

Machine learning

Figure 4.64: Torque prediction with relative error on test set - Neural Network

Figure 4.65: Distribution of relative error on test set - Torque ripple Neural Network

reports the distributions of every pre-processed feature variable (in purple) and the
corresponding values of the configurations with a relative error higher than 25%
(here referred as outliers). Each variable has a near-normal distribution, and it
is evident that these outlier configurations belong to regions with the lowest data
density. Those values are significantly deviating from the main data distribution
and for this reason, the model is not able to predict their labels with a low relative
error associated. Since they are just 5 points, the overall effect on the whole model
accuracy is quite limited.

76

4.4 – Neural Networks

Figure 4.66: Samples with relative error on test set - Torque ripple Neural Network

Figure 4.67: Samples with relative error on test set design space - Neural Network

Influence on Training size Also for the torque ripple model it is interesting to
perform the sensitivity analysis to understand how the number of training samples
is influencing the results. For this purpose Fig. 4.69 is reported. It is clear how
even in the case of Neural Network, a similar trend to SVR model is achieved. In
particular, focusing on the R2 score, it is evident that there is a major advantages in
training the model with a larger train size. In particular, the model is able to better
fit the test set achieving a lower MSE. This confirms the fact that the complexity
of the torque ripple prediction requires more samples with respect the torque case.

For what concerns the validation curve, Fig. 4.70, shows how a larger number of

77

Machine learning

Figure 4.68: Distribution of outliers features on test set

Figure 4.69: Effect of train size on torque ripple regression - Neural Network

training samples is able to improve the performance of the model, allowing to have
a smaller gap between the validation loss and the training loss. For this reason, the
full training subset is regarded as the best option.

Figure 4.70: Effect of train size on torque ripple regression - Neural Network Vali-
dation Curve

Influence of Batch Size In this part, the effects of batch sizes on the training
dynamics are presented. In particular 4 values are tested (8, 16, 32, 64). Looking at
Fig. 4.71, as already occurring for the torque, also in this case, the best results are
achieved considering 8 samples at the same time. Since the torque ripple is the the

78

4.4 – Neural Networks

most critical output to predict for the purpose of this thesis, the compromise over a
larger number of maximum epoch is accepted. Referring to Fig. 4.72, it is evident

Figure 4.71: Effect of batch size on torque ripple regression - Neural Network

how the considerations done in case of torque batch size analysis are still valid. In
particular, 8 as batch size allows for a faster convergence and for a longer training,
ensuring therefore to achieve the best results.

Figure 4.72: Effect of train size on torque ripple regression - Neural Network Vali-
dation Curve

4.4.5 Final Comparison among models

Model Torque Torque Ripple

R2 MSE MAE Training Time (s) R2 MSE MAE Training time (s)

SVR 0.998 1.126 0.804 15.942 0.983 1.864 0.934 103.32
Neural Network 0.999 0.251 0.372 614 0.985 1.718 0.950 1771

Table 4.8: Performance Comparison of Machine Learning Models on test set

At this point all the models have been optimized and tested. A small recap about
their prediction capabilities is given in Tab. 4.8. In particular, R2, MSE, MAE on
test set are used as metrics to compare the two models for the two different outputs
of interest. Also training time is considered, as it gives direct insight about model
complexity. It is possible to notice:

• Torque

– R2 is very similar for SVR and Neural Network, both really close to the
unit value. Both models are able to explain the variance in the test data;

79

Machine learning

– For what regards MSE, Neural Network is producing a much lower MSE
(0.251) compared to the SVR (1.126). Neural Network is therefore gen-
erally able to avoid large prediction errors more effectively. This is con-
firmed also in Fig. 4.73;

– Regarding MAE, the Neural Network has a lower MAE (0.372), which
confirms that its predictions are generally closer to the actual torque
values compared to SVR (0.804);

– SVR is much faster at training time compared to Neural Network, sug-
gesting that it is more computationally efficient for torque predictions.

• Torque ripple

– R2 is very similar for SVR and Neural Network, both slightly lower with
respect the torque regression. This confirms that the torque ripple is
more complex to predict starting from the geometrical configuration of
the machine. The Neural Network (0.985) still outperforms SVR (0.983),
but the difference is minimal;

– Neural Network is achieving a lower MSE (1.718) versus SVR (1.864).
This means that the first one on average is better at minimizing large
errors at predicting torque ripple;

– Considering MAE the Neural Network has a larger MAE (0.950) than
SVR (0.934), and this values is influenced by the sample with very high
relative error associated, as reported in Fig. 4.74;

– SVR is much faster at training time compared to Neural Network.

The main outcomes are:

• For what regards torque, Neural Network can minimize more effectively the
risk of larger prediction errors (lower MSE). At the same time, it can offer an
overall better average accuracy (lower MAE), generally making smaller errors.
This is confirmed by Fig. 4.73, where the frequency and the magnitude of the
spikes are lower. However, SVR is outperforming Neural Network in terms of
training time.

• For torque ripple prediction, SVR is offering more consistent predictions (due
to the lower MAE) but Neural Network is able to slightly reduce the impact
of larger errors (due to lower MSE). Looking at Fig. 4.74, it is clear how
SVR has more frequent and less smoother relative error peaks compared to
Neural Network. Similarly to the previous case, SVR is outperforming Neural
Network in terms of training time.

Other valuable insight can be given looking at percentile values evaluated on the
relative error between the true value and the label. In particular, the i-th percentile
is corresponding to the values below which a given percentage of observations in the
dataset falls. In particular, i-th percentile means that i% of the dataset is predicted
with an error lower than to the corresponding value. Specifically, looking at Tab. 4.9,
it is possible to say:

• Torque:

80

4.4 – Neural Networks

(a) Torque relative error on test set - SVR (b) Torque relative error on test set - NN

Figure 4.73: Final comparison Torque

(a) Torque ripple relative error on test set
- SVR

(b) Torque ripple relative error on test set -
NN

Figure 4.74: Final comparison - Torque ripple

Model Torque Torque Ripple

25 perc (%) 50 perc (%) 75 perc (%) mean (%) min (%) 25 perc (%) 50 perc (%) 75 perc (%) mean (%) min (%)

SVR 0.41 0.88 1.59 1.18 0.001 1.28 2.94 5.01 4.22 0.001
Neural Network 0.17 0.39 0.76 0.56 0.0001 1.36 2.90 5.54 4.37 0.001

Table 4.9: Error Performance Comparison of Machine Learning Models on test set

– 25th percentile: Neural Network is able to produce very low error;

– 50th percentile: considering the median, Neural Network is producing
smaller errors;

– 75th percentile: In the upper end of error distribution, Neural Network
is more able to control larger errors;

– mean: On average, Neural Network has almost half prediction errors
compared to the SVR, indicating better overall performance;

– minimum error: both models are able to achieve near-perfect predictions
with Neural Network achieving (0.0001% relative error).

• Torque ripple:

81

Machine learning

– 25th percentile: 25% of the errors are below 1.28% for the SVR and 1.36%
for the Neural Network. This means that SVR is producing smaller errors
more frequently;

– 50th percentile: considering the median, Neural Network is producing
smaller errors;

– 75th percentile: In the upper end of error distribution, SVR is more able
to control larger errors;

– mean: on average, SVR has slightly lower prediction errors compared to
the Neural Network, indicating better overall performance;

– minimum error: both models are able to achieve near-perfect predictions
(0.001% relative error).

These results are showing that both SVR and Neural Network can achieve similar
results on the given dataset, providing a valuable methods to predict the main two
outputs (torque and torque ripple), ensuring predictions within a certain error range.
A key parameter for the decision of the Machine Learning model to adopt is also the
training time. In particular SVR demonstrated its superiority in providing faster fit
time on the train set. This is particular relevant if computational effort is a concern.

82

Chapter 5

Multi-objective optimization

This chapter is dedicated to the analysis of an optimization model implemented
using DEAP library [48]. As already mentioned in the first part of this thesis, the
exploration of the design space is highly limited by the available computational re-
sources. To enhance the efficiency of exploring the objective space, surrogate models
are used to predict the torque and the torque ripple inside the optimization frame-
work. This is allowing to speed up the process of exploration of the objective space.
To actually asses the feasibility of this process, a comparison with the results ob-
tained with a real optimization process using FEA is reported. The final goal is to
establish if the trained models are able to give valuable insight when dealing with an
optimization process giving effective support to the classical optimization method-
ologies. It is important to underline that this process is not meant to substitute
the traditional design framework, but it can be used to improve the exploration, al-
lowing to use FEA just on a limited portion, identified with ML, of the design space.

In this thesis, two main regression machine models were developed (SVR and
Neural Network). In Sec. 4.4.5, their performances are compared using different
metrics. The main outcome is that the error among the models is comparable,
while SVR has a huge advantage in terms of training time. Due to this reason,
the following multi-objective problem is implemented using the SVR as evaluation
model for each individual. Before reporting the results, a brief overview about
Evolutionary algorithms (EAs) is given.

5.1 Evolutionary algorithms (EAs)

Evolutionary algorithms (EAs) can be regarded as a subset of evolutionary computa-
tion (EC), that in general refers to a population - based meta - heuristic optimization
algorithm. EAs are inspired to the biological evolution that focuses on mechanism
as mutation, combination and selection. The purpose of this tools is to identify
a set of possible solutions, starting from an initial random set of individuals. To
determine the quality of a candidate, fitness functions are required. By minimizing
(or maximizing) them, the algorithms are able to evolve the initial population, till
the convergence to the final set of solutions [49]. Alg. 1 represents the mathematical
formulation of the problem.

EAs can be applied to problems with either many design variables either many
objectives. Both conditions are associated with a high complexity that is requiring

83

Multi-objective optimization

Algorithm 1 General Procedure of MOA [50]

Let X be a set of possible solutions.
Find x0 ∈ X such that maximize/minimize f
(i.e. f(x0) = maxx∈X f(x) or f(x0) = minx∈X f(x))
where f : X → R.

many computational effort to solve it. It is therefore suitable to solve multi-objective
problems, where competing objectives and many design variables are present.
In the evolutionary computation (EC) domain, many algorithms are present, each
of them with its own peculiarities [50]. The most common are: genetic algorithm
(GA), genetic programming (GP), differential evolution (DE), the evolution strategy
(ES), and evolutionary programming (EP). As a brief overview:

• Genetic algorithm (GA): promotes evolution simulating natural selection
using genetic operators like selection, mutation and cross-over;

• Genetic Programming (GP): solutions are in forms of computer programs.
Their fitness is determined by the ability of solving computational expensive
programs;

• Differential evolution (DE): mutation is used as main operator to perturb
the population stimulating evolution of the individuals, focusing on continuous
optimization;

• Evolution strategy (ES): Focuses on optimizing real-valued parameters us-
ing mutation and selection, often applied to continuous optimization problems;

• Evolutionary programming (EP): similar to GP but in this case the struc-
ture of the program is fixed while its numerical parameters are allowed to
evolve.

Despite this different implementation of EAs, it is relevant to say that the no free
lunch theorem is valid. Indeed, under the same condition, no evolutionary algorithm
is fundamentally better than others [51].

In this thesis, Differential Evolution (DE) is chosen as main strategy since it can
be easily implemented in python using DEAP library. Moreover, this evolutionary
algorithm is already implemented in SyR- e and therefore it is possible to assess the
quality of the surrogate model (SVR in this case) in the prediction of the best set
of individuals by comparing it with the best set so far, evaluated using FEA.

5.1.1 Differential Evolution

Differential Evolution is a widely adopted evolutionary algorithm (EAs) for solving
multi-objective problems. Unlike the other population - based methods, it gener-
ates new offspring by recombining previous solutions, following specific conditions.
Moreover, the current solution is replaced if the new offspring outperforms it. The
benefit of this approach is that it is possible to explore the design space and to
obtain the best decision variables combination, ensuring to respect the constraints

84

5.1 – Evolutionary algorithms (EAs)

of the problem. Differential Evolution has moreover demonstrated very good per-
formances dealing with non linear - problems, providing a simple implementation of
the problem [52].

As other EAs, also Differential Evolution is producing new offsprings using three
genetic operators like mutation, cross-over, and selection. Fig. 5.1 reports the logical
sequence of this operations in the Differential Evolution framework.

Figure 5.1: Differential Evolution Scheme

Before introducing the experimental setup that has been used, a small overview
about each operator and its mechanism is reported.

Initialization After having decided the population size NP, initialization is used
to populate the initial population by defining NP random configurations. For a
N-dimensional problem, each individual is a vector of dimensions [1 x N]. It is
worth mentioning that in order to ensure that each feature is correctly scaled, it is
important to establish a lower bound and an upper bound for each dimension. By
doing so, the problem is correctly constrained ensuring to have an effective design
space exploration. Generally, random uniform is chosen as sampling method to
populate the population.

Mutation The first genetic operator is mutation. It is used to modify the genes of
the populations, according to the scale factor F that ranges between [0, 1]. Different
mutation mechanism are present in literature, as reported in [52]. For the develop-
ment of this thesis, DE/current-to-best/2 is used. In particular, the expression is
reported in Eq. 5.1.

Yi = Xi + F · (Xbest − Xi) + F · (Xr1 − Xr2) (5.1)

where:

• Y is the mutant vector;

• X is the current individual (target);

• best is the best individual of the current population;

• Xr1,Xr2 are two randomly selected individuals;

• F is the scale factor.

This current implementation is ensuring the the mutant is evolving toward the best
solution. To avoid a too fast convergence, promoting therefore a good exploration,
the mutant is also influenced by other two random individuals. Choosing the right
F provides a good trade-off between exploration and exploitation.

85

Multi-objective optimization

Cross-over To further enhance diversity and variability, DE also implements
cross-over. In particular, this genetic operator is used to combine the genes of the
mutant and the target, following Eq. 5.2, which represents the uniform cross-over
equation. The new vector is called offspring.

Zt
i,j =

{
Y t
i,j if randij[0,1] ≤ CR or j = k

X t
i,j Otherwise

(5.2)

Specifically:

• Zi: is the offspring vector;

• CR: is the cross over rate that ranges between [0, 1]. It is used to control the
cross over by comparing it with a random number;

Selection At each generation, the population size is fixed to NP. During the evo-
lution, the creation of offspring is enlarging the initial population, overcoming the
maximum number. In order to reduce the size, the last operation is selection. In
particular, this step is used to cut each generation’s population, in order to be con-
sistent with NP. The mathematical expression adopted in Differential Evolution is
reported in Eq. 5.3.

X t+1
i =

{
Zt

i if f(Zt
i) ≤ f(X t

i)

X t
i Otherwise

(5.3)

Where:

• X t+1
i : is the individual belonging to the next generation;

• f(Zt
i), f(X

t
i): are the fitness’s values of the offspring and of the target vector.

This means that the offspring is replacing the target vector if it has a better fitness
value. This is ensuring the correct evolution toward the best set.

Fitness The fitness function is a fundamental component in any EAs and it used
to evaluate the quality of a candidate during the evolution process. It is used as
evaluation metrics to drive the process toward the optimal set. For the purpose of
this thesis, torque has to be maximized while torque ripple has to be minimized.
Fitness is strictly connected to an evaluation function. As already mentioned in
Chap. 3, SyR- e and FEMM are used together to evaluate the torque and torque
ripple of each geometrical configuration, obtaining the dataset (Fig. 3.10). This
process is computationally intensive and required many hours to be completed. By
using ML models trained on the dataset, it may be possible to improve the speed
of convergence toward the optimal set, using the SVR to predict the fitness of
the configurations. Due to the presence of error between the real outputs and the
predicted one, it is important to assess the quality of the optimal set by comparing
it with the one evaluated by FEMM.

86

5.1 – Evolutionary algorithms (EAs)

Exploration Exploration is linked to the ability of the EAs to discover new and
different solutions, avoiding to focus too much on certain design space areas. This
is particular important since it allows to prevent premature convergence toward a
possible local optimal solution. On the other hand, excessive exploration may lead
to inefficiency, since it may require a lot of effort on searching in a poor design area.

Exploitation A complementary concept to exploration in optimization process is
exploitation. The goal is to refine and improve solutions inside promising areas, nar-
rowing therefore the design space. It is used thus to fine-tune the solutions, allowing
to define the optimal solutions by making small adjustments. A too aggressive ex-
ploitation may lead to be trapped in local optima.

Exploration and Exploitation are thus two opposite concepts that are driving
the evolution in a optimization process. It is particularly relevant to balance them,
in order to find high-quality solutions inside the design space.

5.1.2 Experimental Setup

After the brief theoretical description of the main concept behind Differential Evo-
lution, it is possible to introduce the implementation of the algorithm and the main
parameters that have been used for this thesis. The logical sequence is reported in
Fig. 5.2. The Algorithm is composed by 3 different blocks:

• Initialization: An initial population composed by 20 individuals is created,
using random uniform distribution. Each individual is thus characterized by 8
features (the geometrical parameters) and 2 labels (torque and torque ripple).
Since the evaluation is based on the SVR, it is mandatory to be consistent
with the dataset used during training. Therefore each features has to respect
the upper bound and the lower bound of the dataset (Fig. 3.12. Moreover,
each geometrical variable has to be pre-processed in order to have 0 mean
value and unitary standard deviation. This is particular important since the
performances of the two SVR models are known inside this range (more details
in Chap. 4).

• Evolution loop: After the definition of the maximum number of generations
of the optimization process, mutation, cross-over, and selection are performed.
Specifically:

– mutation: is implemented following the DE/current-to-best/2 logic of
Eq. 5.1. The probability of mutation is controlled by the mutation rate
τ1. This value has been set equal to 0.1 and it is used to impose the scale
factor F. The mathematical formulation is shown in Eq. 5.4.

scalefactor =

{
random(), if random() < τ1

F, otherwise
(5.4)

In particular, there is a probability of 10% of having a random scale fac-
tor while in the other 90% of the cases, F is fixed to 0.75. This value is
promoting exploration of the design space. On the other hand, the intro-
duction of a random F, is fostering exploitation. Overall, this approach

87

Multi-objective optimization

is allowing to have enough flexibility ensuring to have a good balance
among exploration and exploitation. It is also important to check always
the bounds of the features of each mutant, in order to ensure consistent
prediction from the SVR.

– cross-over: it is used to create a new individual (called trial) based on
the combination of a mutant and target. This mechanism is controlled
by cross over rate and reported in Eq. 5.5.

trial =

{
mutant[i], if random() < crossover rate

target[i], otherwise
, ∀i ∈ [0, n− 1]

(5.5)
Specifically, cross over rate is controlling the influence that the mutant
have on the new trial. A higher value means that the trial has inherited
more characteristics from the mutant. This process is repeated for each
gene of the individual (n is the number of variables, 8 in this case). For
the purpose of this thesis, cross over rate equal to 0.3 has been used.
This value is encouraging exploitation, as the algorithm is more likely to
refine solutions (target) rather than exploring new areas. This value has
been chosen as trade-off between speed of convergence and accuracy of
the final set.

– selection: as already mentioned, at each generation the population size
should be fixed and equal to NP. During the evolution process, mutation
and cross-over are increasing the number of individuals above the limit,
requiring therefore a selection stage. To promote diversity and better
accuracy, crowding distance is used to prevent convergence to a single
area promoting solutions that are spread in the design space [48]. Eq. 5.6
reports the formulation.

crowding distance(i) =
M∑

m=1

(
fnext
m (i)− fprev

m (i)

fmax
m − fmin

m

)
(5.6)

Where:

∗ i: is the index of the individuals;

∗ m: is the index of the objectives;

∗ fnext
m (i): is the objective value of the next neighbor in the sorted
order;

∗ fprev
m (i): is the objective value of the previous neighbor in the sorted
order;

∗ fmax
m and fmin

m : are the maximum and minimum values of the m-th
objective in the population.

This can be used as an additional metric for the final sorting, allowing to
obtain distributed solutions.

• Final output: Once all the generations are completed, the desired output
is represented by the Pareto Front that represents the non-dominated solu-
tions identified by the algorithm. Each point is a geometrical configuration,

88

5.1 – Evolutionary algorithms (EAs)

composed by the best combination of parameters found for the corresponding
values of torque and torque ripple. This means that it is possible to retrieve
the normalized geometrical features of each point. Then these values can be
converted back to the de-normalized values by using the mean and the stan-
dard deviation of the training set, as done in Sec. 4.2.2. In the end, Pareto set
is obtained.

Figure 5.2: Multi-objective algorithm

Experimental Results

Finally, the results are now presented. First, the outcomes from the Differential Evo-
lution (DE) algorithm, in combination with the Support Vector Regression (SVR),
are discussed. Then, the real Pareto Front obtained on the full dataset is introduced.
This allows to compare the two different best set, to understand what is the quality
of the optimization process driven by the SVR. In the end, Pymoo performance
index are used as a comparison metrics among the two different Pareto Fronts.

Differential Evolution with SVR After having defined the size of the popula-
tion (NP = 20, in this case), it is necessary to decide the number of generations.

89

Multi-objective optimization

This parameter is quite important as it is linked to exploration and exploitation
concepts (Sec. 5.1.1). Since the objectives are the maximization of the torque and
the minimization of the torque ripple, those two are chosen as metrics to evaluate
the convergence of the algorithm. In particular, for each generation, the average
torque and the average torque ripple of the entire population are compared. Fig. 5.3
illustrates the behaviour of these two variables over the generations. At low gener-
ation numbers, it is clear that the predominant effect is due to the randomness of
the chosen individuals belonging to the population. As the number of generations
increases, Differential Evolution gradually provides solutions that align with the ob-
jectives. After several trial-and-error tests, the maximum number of generations
have been set equal to 20, since it guarantees high average torque and low average
torque ripple.

Figure 5.3: Average torque and torque ripple evolution

At the end of the evolution loop, the non-dominated solutions are identified.
Specifically, being a bi-objective problems, it it possible to represent them in the
Torque - Torque ripple plane, allowing for easier visualization. A non-dominated
solution refers to a configuration where any improvement in one objective would
lead to a deterioration in the other. This means that for any fixed value of one
objective, the corresponding non-dominated solution provides the best achievable
value for the other objective. Fig. 5.4, reports the evaluated solutions. Several key
observations can be made:

• The set of solutions is spread across the objective plane. This means that the
Differential Evolution setup has provided a good trade-off among exploration
and exploitation;

• One point is associated with almost 0 Nm of torque ripple. Although this
solution is not feasible, it is important to note that, with reference at Fig. 4.31,
SVR exhibits its largest error in the lower torque ripple region;

• A total of 20 configurations belongs to the Pareto Front;

• The whole optimization process lasted 1.06 seconds.

90

5.1 – Evolutionary algorithms (EAs)

Figure 5.4: Pareto Front obtained with SVR

An alternative representation, similar to the one obtained at the end of the
optimization process on SyR-e, is reported in Fig. 5.5. In this way, it is possible
to associate each configuration with the corresponding machine characterized by a
specific geometry.

(a) Torque bar plot (b) Torque ripple bar plot

Figure 5.5: Bar plot - SVR Pareto Front

Additionally, it is possible to retrieve the geometrical characteristics of each
machine. By doing so, each configuration is associated with a geometry and the
corresponding output, evaluated with the SVR. The results are reported in Fig. 5.6.
Those values are already representing the de-normalized variables, obtained using
the mean and the standard deviation from the training set.

Pareto Front obtained on the dataset To assess the accuracy of the best set
obtained by the SVR, it is necessary to compare it with the Pareto Front generated
using FEA. Although, a full optimization process has not been performed using
SyR- e, the high number of simulations performed to create the dataset allows
to identify the best set composed by the non-dominated solutions. This task has
been performed using Pymoo’s non-dominated sorting [53]. The results are shown
in Fig. 5.7. In particular, 17 configurations are identified: blue points represent
dominated solutions, while green points denote the Pareto Front. This visualization
also helps to understand the definition of non-dominated solution. Since those points
are evaluated on the dataset, they are referred as real Pareto. Key observations
include:

91

Multi-objective optimization

Figure 5.6: Parametric geometry and fitness of each configuration

• For a fixed torque value, the green points represents the solutions with the
lowest torque ripple;

• Considering for example the blue points in the area around [20, 10] Nm, they
do not belong to Pareto Front, as following the green curve, there are config-
urations with better torque and lower torque ripple.

Figure 5.7: Pareto Front on the dataset

Comparison At this point it is possible to compare the results, by superimposing
the two Pareto Fronts. Fig. 5.8 reports the outcomes. In particular, it is possible to
notice:

• Both fronts are well-distributed in the objective space, providing a similar cov-
erage. This indicates that the Differential Evolution setup with SVR achieves
a good trade - off among exploration and exploitation.

92

5.1 – Evolutionary algorithms (EAs)

Figure 5.8: Pareto Fronts comparison in the objective space

• The torque range between [70, 130] Nm is well replicated by the SVR Pareto
Front, with several points closely matching the real Pareto Front;

• In the lower torque ripple regions, the SVR-based Pareto Front deviates signif-
icantly from the real Pareto Front. This is due to the SVR model’s difficulty in
accurately predicting torque ripple, particularly where ripple values are small,
as suggested by Fig. 4.33.

Moreover, a comparison among the two different Pareto sets is reported in Fig. 5.9.
The idea is to understand if the SVR model is able to provide some insights about
the geometries of the best solutions, allowing to better identify the boundaries of
each feature. This allows to reduce the computational effort required by the FEA
optimization, by focusing only on the most promising configurations.

Figure 5.9: Pareto set comparison

Lastly, Pymoo Performance indicators [53] are reported, to assess the quality of
the SVR Pareto Front compared to the real one giving quantitative insights. Three
main metrics are used:

93

Multi-objective optimization

• Generational Distance (GD): measures how far the obtained solutions are
from the real Pareto Front. It is evaluated as the average Euclidean distance
between each solution in the evaluated set (i.e., SVR) and the nearest solution
in the real Pareto Front (i.e. the dataset front), as shown in Eq. 5.7. It gives,
therefore, indications about the convergence of the two fronts.

GD =

(
1

n

n∑
i=1

dpi

) 1
p

(5.7)

Being a distance, it gives indication on how the evaluated solutions are close
to the real ones. Lower values are more desirable.

• Inverted Generational Distance (IGD): inverts the generational distance
and measures the distance from any point in the real front to the closest point
in the evaluated one. The mathematical expression is reported in Eq. 5.8.

IGD =

(
1

nreal

nreal∑
i=1

dpi

) 1
p

(5.8)

IGD helps in understanding how well the evaluated Pareto Front covers the
true Pareto Front. Also in this case, lower values are indicating better coverage.

• Hypervolume (HV): is the volume of the objective space dominated by
the obtained Pareto Front solutions, bounded by a reference point (usually
worse than the worst solution). It captures both the quality and diversity of
solutions. Generally a larger HV means better diversity and coverage. It is not
strictly correlated to the quality of the evaluated Pareto Front with respect
the real one.

Performance indicator values are summarized in Tab. 5.1. The calculated perfor-

Metric Value

Generational Distance (GD) 4.017
Inverted Generational Distance (IGD) 3.141
Hypervolume (HV) (SVR Pareto Front) 9550
Hypervolume (HV) (real Pareto Front) 8661

Table 5.1: Pymoo performance Indicators

mance indicators provides valuable insight about the effectiveness of the SVR Pareto
Front with respect the real one. Specifically:

• Generational Distance (GD) of 4.017 suggests that there is a moderate distance
between the two fronts. This indicates that while the SVR is effective in
generating solutions, there is a certain discrepancy in terms of convergence to
the real front;

94

5.1 – Evolutionary algorithms (EAs)

• The Inverted Generational Distance (IGD) value of 3.141 indicates that the
approximation of the real Pareto Front still can be improved, highlighting
potential discrepancies in the lower torque ripple regions, where the SVR’s
predictions may be less reliable;

• The Hypervolume (HV) metric shows that the SVR Pareto Front achieves a
hypervolume of 9550, which is higher than the real Pareto Front’s hypervolume
of 8661. This indicates that the SVR Pareto Front covers a larger area in the
objective space, suggesting it provides a broader set of solutions and a good
trade-off between torque and torque ripple.

Validation of the results with FEA It is essential to evaluate the error associ-
ated with the configurations identified by the SVR model. Each geometrical design
is tested using SyR-e to assess its performance in terms of torque and torque ripple.
This validation allows to measure how effectively the surrogate model framework
can be employed in the optimization process.
At the end of the machine learning-driven optimization, the identified configurations
are tested in SyR-e to evaluate their true fitness. Figure 5.10 compares the torque
and torque ripple outputs predicted by the SVR model (orange points) with the true
values calculated using the classical FEA-based approach (red points). Some config-
urations are accurately predicted by the surrogate model, while others, particularly
in the lower torque region, show significant error. This behavior is expected since
the SVR model tends to exhibit larger prediction errors in the low-torque range,
while predictions improve as torque increases. Fig. 5.11 and Fig. 5.12 are report-

Figure 5.10: Configuration comparison - Pareto Front

ing the torque and torque ripple levels for each individual configuration (on the
x-axis). It is evident how the low error associated to torque prediction, is allowing
to closely match the FEA results. In contrast, torque ripple predictions exhibit a

95

Multi-objective optimization

Figure 5.11: Configuration comparison - Torque

higher associated error, leading to solutions that are not always close to the true
values. However, two configurations (9 and 11) are accurately predicted, suggesting
promising results for further refinement of the surrogate model.

Figure 5.12: Configuration comparison - Torque Ripple

Overall it is clear how SVR model can yield to useful insights with respect the
real Pareto Front. Pymoo’s performance indicators are indicating how the ML model
can be used to explore the design space effectively, especially where the prediction’s
accuracy is high. It is important to point out also that further refinements must be
done to increase the accuracy in torque ripple predictions, that may lead to a better
convergence of the two fronts. Anyway, it is important to emphasize the potential
of using SVR in optimization processes for IPM motors, providing a valuable tool
for a faster exploration of the design space.

96

Chapter 6

Conclusions and future works

The growing environmental concern has fostered the introduction in the automotive
field of more sustainable powertrain architectures, specifically introducing electrical
machines in place or together with Internal Combustion Engines. The search for a
more sustainable mobility, requires an efficient electrical machine design to enhance
performances and efficiency. In this scenario, Finite Element Analysis represents the
state of art for the performances evaluation, especially in terms of torque and torque
ripple. This tool is able to provide accurate solutions but it is very computationally
expensive. This is limiting the exploration capabilities of the design space, slowing
the design and optimization framework of the electrical machines. The introduction
of Machine Learning in the design can be beneficial, providing insights about the
solution in less time.

Machine Learning is a powerful tool that can be used to solve a wide range of
problems, implementing models able to perform regression, classification and clus-
tering. This thesis investigates the potential of Machine Learning in the design
process of a Internal Permanent Magnet (IPM) motor. After an initial introduction
about the motivations and the problems behind the actual design procedure, the
theory behind Machine Learning training process is discussed with a particular fo-
cus on Support Vector Regression (SVR) and Neural Network.

The primary goal is to assess their effectiveness in predicting torque and torque
ripple based on geometrical features of IPM configurations. The main outcome is
that both SVR and Neural Network are valid models in predicting torque, achieving
a R2 close to the 1. However, predicting torque ripple is more challenging due to
the highly non-linear relationship. In particular, more complex models are required,
with an higher number of parameters. At the same time, the results are less accu-
rate, providing a R2 around 0.98 and predictions with larger relative error. Despite
this, both models have demonstrated to be effective in predicting the two output of
interest. Moreover, the big advantage is in terms of speed. Indeed, both SVR and
Neural Network are able to provide the results in a much shorter time compared
to classical FEA simulations, where multiple runs have to be performed in order
to evaluate the performances. Comparing SVR and Neural Network, it is possible
to assess that both models are producing similar MAE and MSE while the biggest
difference is on the training time. In this case, SVR demonstrated to be much faster
compared to Neural Network.

97

Conclusions and future works

Since ML allows to produce the output, even if affected by errors, it is interesting
to assess if those models can be effectively used in a multi-objective optimization
process, implemented with Differential Evolution (DE). The goal is to obtain the
best set, represented by the non-dominated solutions. In this case, due to simi-
lar performances but shorter training time, SVR is used in the evaluation phase,
to obtain the fitness of each candidate. The preliminary experimental setup has
demonstrated how ML can be effectively used to explore the design space in a much
faster time compared to FEA. A key outcome of the analysis, further supported
by Pymoo’s performance indicators, is that SVR can provide valuable insights into
the set of optimal configurations. However, it is important to note that SVR does
introduce a certain degree of error, particularly in torque ripple predictions.

The task of predicting torque and torque ripple is particularly complex due to
the intrinsic non-linearity in electrical machines. Despite the promising results, the
models exhibit some reliability issues due to prediction errors, providing solutions
that are not always reliable. Further work needs to be done focusing in identifying
the best sampling method for creating a robust training dataset and the optimal
size of the dataset, in order to maximize prediction accuracy. At the same time, the
multi-optimization framework should be tested on other dataset, in order to assess
the feasibility of the procedure.

Even if this research is just a preliminary setup, the gained insights may be of
assistance to define a framework, relying on machine learning that can enhance the
design and the optimization of the geometry of electrical machines, in order to pro-
mote e-Mobility and sustainable development in the automotive industry.

98

Bibliography

[1] Gro Harlem Brundtland, Mansour Khalid, et al. Our common future. Oxford
University Press, Oxford, GB, 1987.

[2] Stephanie Shaw and Bill Van Heyst. ≪Nitrogen Oxide (NOx) emissions as an
indicator for sustainability≫. In: Environmental and Sustainability Indicators
15 (2022), p. 100188. issn: 2665-9727. doi: https://doi.org/10.1016/j.
indic.2022.100188. url: https://www.sciencedirect.com/science/
article/pii/S2665972722000204.

[3] Vittorio Ravello. ≪E-powertrain components≫. Lecture Notes.

[4] IEA. ≪Global EV Outlook 2024≫. IEA, Paris. Licence: CC BY 4.0. 2024. url:
https://www.iea.org/reports/global-ev-outlook-2024.

[5] Zhi Cao et al. ≪An Overview of Electric Motors for Electric Vehicles≫. In: 2021
31st Australasian Universities Power Engineering Conference (AUPEC). 2021,
pp. 1–6. doi: 10.1109/AUPEC52110.2021.9597739.

[6] Radu Bojoi. ≪Electrical Drives for eMobility≫. Lecture Notes.

[7] Seunghyeon Cho et al. ≪Optimal design to reduce torque ripple of IPM motor
with radial based function meta-model considering design sensitivity anal-
ysis≫. In: Journal of Mechanical Science and Technology 33.8 (Aug. 2019),
pp. 3955–3961. issn: 1976-3824. doi: 10.1007/s12206-019-0740-0. url:
https://doi.org/10.1007/s12206-019-0740-0.

[8] Lavanya Balasubramanian et al. ≪Design and Optimization of Interior Perma-
nent Magnet (IPM) Motor for Electric Vehicle Applications≫. In: CES Trans-
actions on Electrical Machines and Systems 7.2 (2023), pp. 202–209. doi:
10.30941/CESTEMS.2023.00021.

[9] Honda Motor Co., Ltd. Two-Motor Hybrid System (Honda eHEV). Accessed:
2024-09-18. 2024. url: https : / / global . honda / en / tech / two _ motor _
hybrid_system_honda_eHEV/.

[10] None None. ≪FY2015 Electric Drive Technologies Annual Progress Report≫.
In: (Feb. 2016). doi: 10.2172/1245342. url: https://www.osti.gov/
biblio/1245342.

[11] SyR-e: Synchronous Reluctance - evolution. https : / / github . com / SyR -

e/syre_public.

[12] Finite Element Method Magnetics (FEMM). Accessed: 2024-09-23. 2024. url:
https://www.femm.info/wiki/HomePage.

99

https://doi.org/https://doi.org/10.1016/j.indic.2022.100188
https://doi.org/https://doi.org/10.1016/j.indic.2022.100188
https://www.sciencedirect.com/science/article/pii/S2665972722000204
https://www.sciencedirect.com/science/article/pii/S2665972722000204
https://www.iea.org/reports/global-ev-outlook-2024
https://doi.org/10.1109/AUPEC52110.2021.9597739
https://doi.org/10.1007/s12206-019-0740-0
https://doi.org/10.1007/s12206-019-0740-0
https://doi.org/10.30941/CESTEMS.2023.00021
https://global.honda/en/tech/two_motor_hybrid_system_honda_eHEV/
https://global.honda/en/tech/two_motor_hybrid_system_honda_eHEV/
https://doi.org/10.2172/1245342
https://www.osti.gov/biblio/1245342
https://www.osti.gov/biblio/1245342
https://github.com/SyR-e/syre_public
https://github.com/SyR-e/syre_public
https://www.femm.info/wiki/HomePage

BIBLIOGRAPHY

[13] Wikipedia contributors. Latin hypercube sampling — Wikipedia, The Free
Encyclopedia. [Online; accessed 14-August-2024]. 2024. url: https://en.
wikipedia.org/w/index.php?title=Latin_hypercube_sampling&oldid=

1216779135.

[14] Tatiana Tommasi. ≪Data analysis and Artificial Intelligence≫. Lecture Notes.

[15] Kiatdd. Pearson correlation coefficient. Own work, CC BY-SA 3.0. 2013. url:
https://commons.wikimedia.org/w/index.php?curid=37108966.

[16] MathWorks. Machine Learning - MATLAB & Simulink Solution. Accessed:
2024-8-10. 2024. url: https://it.mathworks.com/solutions/machine-
learning.html.

[17] Sam Ansari and Ali Bou Nassif. ≪A Comprehensive Study of Regression Anal-
ysis and the Existing Techniques≫. In: 2022 Advances in Science and Engi-
neering Technology International Conferences (ASET). 2022, pp. 1–10. doi:
10.1109/ASET53988.2022.9734973.

[18] Jason Brownlee. Regression Metrics for Machine Learning. Accessed: 2024-
8-10. 2020. url: https : / / machinelearningmastery . com / regression -

metrics-for-machine-learning/.

[19] Wikipedia contributors. Coefficient of determination — Wikipedia, The Free
Encyclopedia. [Online; accessed 22-August-2024]. 2024. url: https://en.
wikipedia.org/w/index.php?title=Coefficient_of_determination&

oldid=1241125450.

[20] Scikit - learn. ≪train test split≫. https : / / scikit - learn . org / stable /
modules/generated/sklearn.model_selection.train_test_split.html.

[21] Xue Ying. ≪An Overview of Overfitting and its Solutions≫. In: Journal of
Physics: Conference Series 1168 (Feb. 2019), p. 022022. doi: 10.1088/1742-
6596/1168/2/022022.

[22] Educative Team. Overfitting and Underfitting. Accessed: 2024-09-30. 2023.
url: https://www.educative.io/answers/overfitting-and-underfitting.

[23] Safaa Azzakhnini. ≪Multimodal fusion based approaches for multi-sensor sys-
tems: from enhancing performance to ethical concerns≫. PhD thesis. Dec. 2020.

[24] Petro Liashchynskyi and Pavlo Liashchynskyi. Grid Search, Random Search,
Genetic Algorithm: A Big Comparison for NAS. 2019. arXiv: 1912.06059
[cs.LG]. url: https://arxiv.org/abs/1912.06059.

[25] James Bergstra and Yoshua Bengio. ≪Random search for hyper-parameter
optimization≫. In: J. Mach. Learn. Res. 13.null (Feb. 2012), pp. 281–305.
issn: 1532-4435.

[26] Scikit - learn. ≪GridSearchCV≫. https : / / scikit - learn . org / stable /
modules/generated/sklearn.model_selection.GridSearchCV.html.

[27] Scikit - learn. ≪RandomizedSearchCV≫. https : / / scikit - learn . org /

stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.

html.

[28] Scikit - learn. ≪Cross-validation: evaluating estimator performance≫. https:
//scikit-learn.org/stable/modules/cross_validation.html.

100

https://en.wikipedia.org/w/index.php?title=Latin_hypercube_sampling&oldid=1216779135
https://en.wikipedia.org/w/index.php?title=Latin_hypercube_sampling&oldid=1216779135
https://en.wikipedia.org/w/index.php?title=Latin_hypercube_sampling&oldid=1216779135
https://commons.wikimedia.org/w/index.php?curid=37108966
https://it.mathworks.com/solutions/machine-learning.html
https://it.mathworks.com/solutions/machine-learning.html
https://doi.org/10.1109/ASET53988.2022.9734973
https://machinelearningmastery.com/regression-metrics-for-machine-learning/
https://machinelearningmastery.com/regression-metrics-for-machine-learning/
https://en.wikipedia.org/w/index.php?title=Coefficient_of_determination&oldid=1241125450
https://en.wikipedia.org/w/index.php?title=Coefficient_of_determination&oldid=1241125450
https://en.wikipedia.org/w/index.php?title=Coefficient_of_determination&oldid=1241125450
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022
https://www.educative.io/answers/overfitting-and-underfitting
https://arxiv.org/abs/1912.06059
https://arxiv.org/abs/1912.06059
https://arxiv.org/abs/1912.06059
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html

BIBLIOGRAPHY

[29] Georgios Kiminos and Christos Gkaris. ≪Using Machine Learning for Text
Classification to identify useful information in texts: A comparison of Näıve
Bayes and Support Vector Machines to identify decisions in business meeting
transcripts≫. PhD thesis. Nov. 2020. doi: 10.13140/RG.2.2.19552.92166.

[30] Cha Zhang and Yunqian Ma, eds. Ensemble Machine Learning. Methods and
Applications. Springer New York, NY, 2012. isbn: 978-1-4419-9326-7. doi:
10.1007/978-1-4419-9326-7. url: https://doi.org/10.1007/978-1-
4419-9326-7.

[31] Jason Brownlee. A Tour of Ensemble Learning Algorithms. Accessed: 2024-09-
30. 2021. url: https://machinelearningmastery.com/tour-of-ensemble-
learning-algorithms/.

[32] Scikit - learn. ≪AdaBoostRegressor≫. https://scikitt-earn.org/stable/
modules/generated/sklearn.ensemble.AdaBoostRegressor.html.

[33] Jason Brownlee. Learning Curves for Diagnosing Machine Learning Model
Performance. Accessed: 2024-08-29. 2020. url: https://machinelearningmastery.
com / learning - curves - for - diagnosing - machine - learning - model -

performance/.

[34] Keras.Keras EarlyStopping Callback. Accessed: 2024-08-29. 2023. url: https:
//keras.io/api/callbacks/early_stopping/.

[35] Niousha Rasifaghihi. ≪From Theory to Practice: Implementing Support Vector
Regression for Predictions in Python≫. https://medium.com/@niousha.rf/
support-vector-regressor-theory-and-coding-exercise-in-python-

ca6a7dfda927.

[36] Mariette Awad and Rahul Khanna. ≪Support Vector Regression≫. In: Efficient
Learning Machines: Theories, Concepts, and Applications for Engineers and
System Designers. Berkeley, CA: Apress, 2015, pp. 67–80. isbn: 978-1-4302-
5990-9. doi: 10.1007/978-1-4302-5990-9_4. url: https://doi.org/10.
1007/978-1-4302-5990-9_4.

[37] Scikit-learn Developers. Support Vector Machines — Regression Example. Ac-
cessed: 2024-10-09. 2023. url: https://scikit-learn.org/stable/auto_
examples/svm/plot_svm_regression.html.

[38] Hao Ma, Shuxin Shao, and Xin Huang. ≪In-depth analysis of SVM kernel
learning and its components≫. In: Neural Computing and Applications 34
(2022), pp. 123–138.

[39] Xiaojian Ding et al. ≪Random radial basis function kernel-based support vec-
tor machine≫. In: Journal of the Franklin Institute 358.18 (2021), pp. 10121–
10140. issn: 0016-0032. doi: https://doi.org/10.1016/j.jfranklin.
2021.10.005. url: https://www.sciencedirect.com/science/article/
pii/S0016003221006025.

[40] Mostafa Sabzekar and Seyed Mohammad Hossein Hasheminejad. ≪Robust re-
gression using support vector regressions≫. In: Chaos, Solitons Fractals 144
(2021), p. 110738. issn: 0960-0779. doi: https://doi.org/10.1016/j.
chaos.2021.110738. url: https://www.sciencedirect.com/science/
article/pii/S0960077921000916.

101

https://doi.org/10.13140/RG.2.2.19552.92166
https://doi.org/10.1007/978-1-4419-9326-7
https://doi.org/10.1007/978-1-4419-9326-7
https://doi.org/10.1007/978-1-4419-9326-7
https://machinelearningmastery.com/tour-of-ensemble-learning-algorithms/
https://machinelearningmastery.com/tour-of-ensemble-learning-algorithms/
https://scikitt-earn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html
https://scikitt-earn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://keras.io/api/callbacks/early_stopping/
https://keras.io/api/callbacks/early_stopping/
https://medium.com/@niousha.rf/support-vector-regressor-theory-and-coding-exercise-in-python-ca6a7dfda927
https://medium.com/@niousha.rf/support-vector-regressor-theory-and-coding-exercise-in-python-ca6a7dfda927
https://medium.com/@niousha.rf/support-vector-regressor-theory-and-coding-exercise-in-python-ca6a7dfda927
https://doi.org/10.1007/978-1-4302-5990-9_4
https://doi.org/10.1007/978-1-4302-5990-9_4
https://doi.org/10.1007/978-1-4302-5990-9_4
https://scikit-learn.org/stable/auto_examples/svm/plot_svm_regression.html
https://scikit-learn.org/stable/auto_examples/svm/plot_svm_regression.html
https://doi.org/https://doi.org/10.1016/j.jfranklin.2021.10.005
https://doi.org/https://doi.org/10.1016/j.jfranklin.2021.10.005
https://www.sciencedirect.com/science/article/pii/S0016003221006025
https://www.sciencedirect.com/science/article/pii/S0016003221006025
https://doi.org/https://doi.org/10.1016/j.chaos.2021.110738
https://doi.org/https://doi.org/10.1016/j.chaos.2021.110738
https://www.sciencedirect.com/science/article/pii/S0960077921000916
https://www.sciencedirect.com/science/article/pii/S0960077921000916

BIBLIOGRAPHY

[41] Matthew Stewart. ≪Introduction to Neural Networks≫. https://towardsdatascience.
com/simple-introduction-to-neural-networks-ac1d7c3d7a2c.

[42] Ksenia Sorokina. ≪Image Classification with Convolutional Neural Networks≫.
https : / / medium . com / @ksusorokina / image - classification - with -

convolutional-neural-networks-496815db12a8.

[43] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Activa-
tion Functions in Deep Learning: A Comprehensive Survey and Benchmark.
2022. arXiv: 2109.14545 [cs.LG]. url: https://arxiv.org/abs/2109.
14545.

[44] David Shulman. Optimization Methods in Deep Learning: A Comprehensive
Overview. 2023. arXiv: 2302.09566 [cs.LG]. url: https://arxiv.org/abs/
2302.09566.

[45] Wikipedia contributors. Backpropagation — Wikipedia, The Free Encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Backpropagation&
oldid=1238994293. [Online; accessed 28-August-2024]. 2024.

[46] keras. ≪Sequential Model≫. https://medium.com/@ksusorokina/image-
classification-with-convolutional-neural-networks-496815db12a8.

[47] keras. ≪Hyperband tuner≫. https://keras.io/api/keras_tuner/tuners/
hyperband/.

[48] DEAP. ≪DEAP library reference≫. https://deap.readthedocs.io/en/
master/api/tools.html.

[49] Andrew N. Sloss and Steven Gustafson. 2019 Evolutionary Algorithms Review.
2019. arXiv: 1906.08870 [cs.NE]. url: https://arxiv.org/abs/1906.
08870.

[50] Adam Slowik and Halina Kwasnicka. ≪Evolutionary algorithms and their ap-
plications to engineering problems≫. In: Neural Computing and Applications
32.15 (2020), pp. 12363–12379. doi: 10.1007/s00521-020-04832-8. url:
https://doi.org/10.1007/s00521-020-04832-8.

[51] Wikipedia contributors. Evolutionary algorithm — Wikipedia, The Free En-
cyclopedia. [Online; accessed 23-September-2024]. 2024. url: https://en.
wikipedia.org/w/index.php?title=Evolutionary_algorithm&oldid=

1247004801.

[52] Mohamad Faiz Ahmad et al. ≪Differential evolution: A recent review based
on state-of-the-art works≫. In: Alexandria Engineering Journal 61.5 (2022),
pp. 3831–3872. issn: 1110-0168. doi: https://doi.org/10.1016/j.aej.
2021.09.013. url: https://www.sciencedirect.com/science/article/
pii/S111001682100613X.

[53] J. Blank and K. Deb. ≪pymoo: Multi-Objective Optimization in Python≫. In:
IEEE Access 8 (2020), pp. 89497–89509.

102

https://towardsdatascience.com /simple-introduction-to-neural-networks-ac1d7c3d7a2c
https://towardsdatascience.com /simple-introduction-to-neural-networks-ac1d7c3d7a2c
https://medium.com/@ksusorokina/image-classification-with-convolutional-neural-networks-496815db12a8
https://medium.com/@ksusorokina/image-classification-with-convolutional-neural-networks-496815db12a8
https://arxiv.org/abs/2109.14545
https://arxiv.org/abs/2109.14545
https://arxiv.org/abs/2109.14545
https://arxiv.org/abs/2302.09566
https://arxiv.org/abs/2302.09566
https://arxiv.org/abs/2302.09566
https://en.wikipedia.org/w/index.php?title=Backpropagation&oldid=1238994293
https://en.wikipedia.org/w/index.php?title=Backpropagation&oldid=1238994293
https://medium.com/@ksusorokina/image-classification-with-convolutional-neural-networks-496815db12a8
https://medium.com/@ksusorokina/image-classification-with-convolutional-neural-networks-496815db12a8
https://keras.io/api/keras_tuner/tuners/hyperband/
https://keras.io/api/keras_tuner/tuners/hyperband/
https://deap.readthedocs.io/en/master/api/tools.html
https://deap.readthedocs.io/en/master/api/tools.html
https://arxiv.org/abs/1906.08870
https://arxiv.org/abs/1906.08870
https://arxiv.org/abs/1906.08870
https://doi.org/10.1007/s00521-020-04832-8
https://doi.org/10.1007/s00521-020-04832-8
https://en.wikipedia.org/w/index.php?title=Evolutionary_algorithm&oldid=1247004801
https://en.wikipedia.org/w/index.php?title=Evolutionary_algorithm&oldid=1247004801
https://en.wikipedia.org/w/index.php?title=Evolutionary_algorithm&oldid=1247004801
https://doi.org/https://doi.org/10.1016/j.aej.2021.09.013
https://doi.org/https://doi.org/10.1016/j.aej.2021.09.013
https://www.sciencedirect.com/science/article/pii/S111001682100613X
https://www.sciencedirect.com/science/article/pii/S111001682100613X

	List of Figures
	List of Tables
	Introduction and motivations
	Advancement in Electric Mobility
	Problem Statement
	Optimization Strategies

	Objectives of the thesis
	Data - Driven Approaches

	Organization of the thesis

	Electric motors
	Electric motors generalities
	Internal Permanent Magnet (IPM)
	Case study - Honda Accord

	Parametric pre-processing of electric motor analysis: SyR-e
	Latin Hypercube
	FEMM
	Dataset
	Pearson Correlation Matrix

	Machine learning
	Regression
	Regression metrics

	Training Dynamics
	Train - Validation - Test split
	Pre-processing of the dataset
	Overfitting
	Hyperparameter optimization: Grid Search and Random Search
	Cross-Validation
	Ensemble models
	AdaBoost

	Learning Curve
	Early Stopping

	Support Vector Regression (SVR)
	Support Vector Machines for classification
	Support Vector Regression: concept
	Optimization problem and hyperparameters
	The Kernel Trick

	Experimental Results
	Torque analysis
	Torque ripple analysis

	Neural Networks
	Neuron and Layers
	Activation functions
	Training
	Loss Function
	Optimizer
	Back-propagation
	Epoch and Batch Size

	Experimental Results
	Torque analysis
	Torque ripple analysis

	Final Comparison among models

	Multi-objective optimization
	Evolutionary algorithms (EAs)
	Differential Evolution
	Experimental Setup
	Experimental Results

	Conclusions and future works

