
Valeria Manfreda
Structural optimization of FDM components through load paths analysis.
Rel. Giorgio De Pasquale, Ferdinando Ursi. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Biomedica, 2024
Abstract: |
Material extrusion is a popular additive manufacturing process that gained prominence in various industrial applications. The current work addresses the limitations of the existing slicing software in producing parts with customized filament layouts. A new filament deposition algorithm that produces filament paths taking as input arbitrary point-wise orientation fields is presented. Like slicing software, it can control various process parameters, including extrusion width, layer height, filament spacing, number of layers, printing and travel speeds, and produces G-Code instructions. Capabilities of the algorithm are presented by producing parts with both partial and maximum infill and parts with a multi-oriented layer stacking sequence. The results show that the algorithm can print parts with filaments oriented along the input orientation field at different infills, thus making this contribution a potential tool for many applications that demand customized filament placement. |
---|---|
Relators: | Giorgio De Pasquale, Ferdinando Ursi |
Academic year: | 2024/25 |
Publication type: | Electronic |
Number of Pages: | 79 |
Additional Information: | Tesi secretata. Fulltext non presente |
Subjects: | |
Corso di laurea: | Corso di laurea magistrale in Ingegneria Biomedica |
Classe di laurea: | New organization > Master science > LM-21 - BIOMEDICAL ENGINEERING |
Aziende collaboratrici: | UNSPECIFIED |
URI: | http://webthesis.biblio.polito.it/id/eprint/32880 |
![]() |
Modify record (reserved for operators) |