

Politecnico di Torino

Master of Science in Engineering and Management (Class LM-31)

Department of Management and Production Engineering

Degree Thesis

Digital Twin Application for Dynamic Task
Allocation in a Robotic System:

A Flexsim-Based Case Study

Supervisor: Candidate:
Professor Giulia Bruno

Lucia Ines Codesal

 307114

A.y. 2023/2024
October 2024

2

Para mi familia

3

Acknowledgements
With the submission of this document, I bring to a close one of the most challenging and

rewarding stages of my life, and I can only express my deepest gratitude to all those who have

supported and accompanied me along the way.

First and foremost, I want to thank my family, who gave me their unconditional support every

step of the way. To my parents, who helped me navigate the challenges of this degree, thank

you for instilling in me the values that define who I am today and for supporting me in all my

plans, no matter how far-fetched they may seem. To my sister Pili, for always knowing how to

make me laugh and helping me relax, and to my Abuelita, who, even though still cries because

I moved to Europe, never stops encouraging me to pursue my dreams.

I also want to extend my heartfelt thanks to my friends, both those I have known for years and

those I have met along the way, now spread across different countries. To my childhood friends,

for their unwavering support, understanding, and belief in me even when I doubted myself.

To my friends from ITBA, who made my academic journey in back in Argentina far more

enjoyable. I especially appreciate Benja for always sharing notes and answering my countless

questions, and Luli and Valen, with whom it was always a pleasure to do group projects and

study.

To my friends at Polito, with whom I share unforgettable moments. Thank you for welcoming

me into your group so warmly, even when communication was not always easy, and for your

support during the thesis experiments.

And, to the friends I made during my internship at Amazon, who made my start in the

professional world so much more enjoyable and fun.

Lastly, I would like to express my sincere appreciation to the institutions that have enabled me

to achieve this degree. My admiration and gratitude to the Instituto Tecnológico de Buenos

Aires for providing me with a world-class education through its outstanding professionals, and

to the Politecnico di Torino for welcoming me so warmly and fostering an inspiring academic

environment that allowed me to complete my studies at both universities.

In particular, I would like to thank Professor Giulia Bruno and Khurshid Aliev for guiding me

through my thesis, supporting my work in the lab, and including me in the Digital Twin project

that we were fortunate to receive a prize for, an achievement that I will always remember.

To every one of you, thank you for being part of this journey.

4

Contents
Abstract ___ 6

Digital Twin technology __ 7

Components of the Digital Twin __ 8

Brief history of Digital Twin technology and State of Art __________________________ 9

Digital Twin applied to Manufacturing and Production Environments _______________ 10

Digital Twins for Industrial Robotics ___ 13

Digital Twin for Dynamic Scheduling and Reallocation Processes __________________ 15

Software and Tools used in the Application of Digital Twin - Flexsim software __________ 17

Flexsim’s main uses, tools and functionalities __________________________________ 17

FlexScript and code customization ___ 18

3D modeling __ 18

Objects of the Model __ 18

Element Connection and Port Properties _____________________________________ 20

Close and Open Port __ 21

Properties of the objects and customization __________________________________ 22

Process Flow Modeling __ 24

Elements of the Process Flow ___ 24

Variable, Set and Get Variable ___ 25

Events, States and Triggers - Connecting the 3D Model to the Process Flow __________ 26

Labels ___ 27

Flexsim’s Emulation Tool __ 28

Internal Emulation Variables and Internal Emulation Connection _________________ 29

Dashboards ___ 31

Application of Digital Twin developed in the Lab _________________________________ 32

Setting and scenarios __ 32

5

Digital Twin implementation__ 34

Physical System __ 34

Virtual System ___ 36

Connections - Flexsim’s Emulation Tool ____________________________________ 37

Logics and functioning of the Physical System _________________________________ 38

Logics and functioning of the Virtual System ___________________________________ 41

Logics and functioning within the 3D Model _________________________________ 41

Logics and functioning within the Process Flow_______________________________ 44

Variables of the Process Flow ___ 44

Simulation start and functioning before Reallocation of items __________________ 47

Digital Twin for dynamic task allocation – Third scenario: Reallocation of one item at

a time __ 49

Digital Twin for dynamic task allocation - Fourth scenario: Reallocation of an optimal

batch of items __ 51

Connections between the Virtual and Physical Systems ___________________________ 55

Run of the Simulation, simplifications made and its modifications when applied to a

production environment ___ 55

Results and Analysis __ 56

First Scenario - Non-dynamic Scheduling without Failure _________________________ 57

Second Scenario - Non-dynamic Scheduling with time Failure _____________________ 58

Third Scenario - Dynamic Scheduling with Time Failure, reallocation of one item at a time

 ___ 60

Forth Scenario - Dynamic Scheduling with Time Failure, reallocation of an optimal batch

of items __ 62

Conclusion ___ 65

References __ 67

List of Figures ___ 70

List of Tables __ 71

6

Abstract
In contemporary manufacturing systems the use of the Digital Twin technology provides

valuable insights for enhancing real-time performance and adaptability. By creating virtual

replicas of physical systems with bidirectional data flow and constant synchronization, Digital

Twins enable live monitoring and optimization of processes, increasing operational efficiency,

minimizing downtime and enhancing the quality of products.

In the context of dynamic scheduling, it serves as a valuable tool for identifying issues that may

disrupt the planned schedule. When failures are detected, Digital Twin models can dynamically

adjust the original schedule, implementing real-time response strategies to effectively mitigate

disruptions.

This paper explores the utilization of a Digital Twin in optimizing the performance of a physical

system within a practical application developed in the Mind4Lab Lab of the Politecnico di

Torino. The study examines how the use of a Digital Twin for dynamic scheduling and

reallocation of tasks can effectively identify and mitigate production problems and failures,

especially when applied to robotic systems.

The research is focused on the application of the Digital Twin for processes under changing

conditions, as it addresses challenges related to failures and inefficiencies within a production

system. The impacts of different dynamic scheduling approaches on mitigating failures are

evaluated and compared against non-dynamic scheduling, highlighting the critical advantages

of implementing a Digital Twin in modern manufacturing environments. The study includes an

analysis of scenarios involving different reallocation strategies to optimize the system’s

parameters (Throughput, Cycle Time, and Utilization).

The work is structured into three main parts. Initially, the concepts and technologies behind

Digital Twins are introduced, including their application in the industry. Secondly, a detailed

Case Study is presented to demonstrate the implementation of the Digital Twin in managing a

process in which a system of robots experiences time failures. Finally, an analysis of the

performance metrics collected from the different scenarios is provided.

The obtained results demonstrate that the use of the Digital Twin for dynamic scheduling

improves the performance of the system by mitigating the effects of errors and time failures

and optimizing the allocation of resources. The findings validate the effectiveness of Digital

Twin technology in improving operational efficiency, thereby highlighting its potential when

applied to manufacturing and production processes.

7

Digital Twin technology
A Digital Twin is a dynamic virtual model of a physical system, with a bidirectional data flow

that enables real-time synchronization. The Digital Twin is constantly updated with data,

allowing it to reflect the live state of the physical system it represents. Moreover, it is also able

to send information back to the physical system, thus responding and adapting to changes in

the environment. These abilities enable the Digital Twin to be used for monitoring, analysis,

and optimization of operational systems.

To better understand the concept of Digital Twin, it is important to differentiate between the

related concepts of Digital Model and Digital Shadow.

A Digital Model is a static representation of a physical system. It is characterized by the lack

of information exchange between the virtual and physical systems and by the lack of influence

on the virtual model due to changes in the physical system. Therefore, unlike the Digital Twin

its ability to reflect the current state of the system is limited. Nevertheless, it is a useful tool for

performing initial design and analysis.

A Digital Shadow represents a one-way flow of data from the physical system to the virtual

model. While it is able to capture the past or current states of the physical system, thus updating

the virtual model with it, it is not able to provide continuous updates, feedback or changes to

the physical system.

In contrast, the Digital Twin presents the most complete model, offering bidirectional data

flows: from the physical system to the virtual model and from the virtual model to the physical

system. This way, both components are fully integrated, and the Digital Twin is not only an

accurate current representation of the physical system, but it also provides a feedback loop to

it, that enables for optimization and improvement of the performance of the system.

Fig 1. Digital Model, Digital Shadow and Digital Twin.

8

Components of the Digital Twin

The main components of the Digital Twin concept model are a) the physical system (Real

Space), b) the virtual model (Virtual Space) and c) the connections of data between the two,

consisting of information flows from the physical system to the virtual model and from the

virtual model to the physical system.1

1. The physical system is the tangible, actual object or system in the real world, which is

represented by the Digital Twin. The asset's physical characteristics, behavior, and

operational conditions are the primary inputs for the Digital Twin.

2. The virtual model is the digital representation of the physical system, and it reflects

the physical asset's properties, behavior, and lifecycle. To accurately represent the

physical system in a virtual environment it integrates different data sources, including

physical models, simulations, and historical data. This component is used for real-time

monitoring, simulation, and analysis.

3. The information flow refers to the bidirectional data exchange between the physical

and virtual systems. It ensures that the Digital Twin remains synchronized with the

physical system by continuously updating the virtual model with real-time data and vice

versa.

Moreover, for the Digital Twin to work correctly, its interaction with other elements is needed.

Sensors and Data Acquisition Systems are used to collect information from the physical system.

Sensors, IoT devices and other data acquisition technologies allow the transformation of

physical states, performances, environments and characteristics of the physical system into

readable and actionable variables that serve as inputs for the Digital Twin.

Furthermore, Simulation and Analytics Engines, that are the software tools and platforms used

to analyze and simulate the data collected from the physical system, allow for the performance

of analysis, predictive modelling and simulations based on the data gathered. Other tools, like

Machine Learning or Artificial Intelligence (AI) can be integrated for driving predictions and

feedback.

User Interface and Visualization Tools allow users to interact with the Digital Twin and

visualize its data and simulations, helping in understanding complex data and facilitating

decision-making. This could refer for example to 3D Models and live performance dashboards.

1 Grieves, M., & Vickers, J. (2011). Digital twin: Manufacturing excellence through virtual factory replication. In

Proceedings of the Fifth Annual IEEE International Conference on Cyber Physical Systems (pp. 1-7). IEEE.

9

Security protocols for the data transmitted and for the flow of information between the various

components involved in the Digital Twin are required. Authentication and authorization

mechanisms are highly suggested.

Finally, a Digital Twin performance evaluation is needed to ensure the correct functioning of

the Digital Twin; by using evaluating metrics like accuracy, resilience and robustness of the

Digital Twin model, evaluation methods and tests should be performed. 2

Brief history of Digital Twin technology and State of Art

The concept of Digital Twin was introduced in 2002 by Michael Grieves as part of his

presentation on PLM at the SME Conference, referring to it as “a digital copy of one or a set

of specific devices that can abstractly represent a real device and can be used as a basis for

testing under real or simulated conditions”. 3

In 2011, Michael Grieves and John Vickers would propose a renewed definition for the Digital

Twin concept, emphasizing the need for a dynamic interaction between the physical and virtual

systems, and defining its three necessary components previously mentioned: the physical

system, the virtual model and the bidirectional flow of data between the two. This definition

laid the groundwork for the Digital Twin technology.

NASA further developed the Digital Twin concept by applying the technology in the context

of spacecraft and advanced aerospace vehicles. They were able to advance the concept beyond

its initial theoretical framework by using Digital Twin models to simulate and test spacecraft

systems and components in a virtual environment, mirroring operational conditions, helping in

its design, testing and operational management.

In the following years, the Digital Twin technology has become widely applied with the rise of

Industry 4.0. The integration of Digital Twin with the technologies of Industry 4.0, such as

Internet of Things (IoT), Artificial intelligence (AI), Cyber-Physical Systems (CPS), Big Data

and advanced simulation technologies, expanded its use to different industry sectors.

2 Sharma, A., Kosasih, E., Zhang, J., Brintrup, A., & Calinescu, A. (2022). Digital twins: State of the art theory

and practice, challenges, and open research questions. Journal of Industrial Information Integration, 30, 100383.
3 Grieves, M. (2003). Digital twin: Manufacturing excellence through virtual factory replication. Presented at the

Society of Manufacturing Engineers Conference.

10

With these technological advancements, more detailed and accurate digital models could be

created, thus facilitating the predictive maintenance, real-time monitoring and optimization of

production processes.4

The use of IoT devices and big data analytics increased the capabilities of Digital Twins, as IoT

sensors facilitated real-time data collection from physical systems and big data tools enabled

the analysis and integration of the data into the virtual models. This allowed for the expansion

of the Digital Twin into various areas of application, such as predictive maintenance and fault

detection in production systems, improvement of manufacturing processes and smart city

developments, detection of anomalies in patient care, fault detection and traffic management

in smart cities, among others.5

More recent developments focus on integrating Digital Twins with emerging technologies such

as 5G, edge computing, and advanced robotics, which promise to expand the capabilities of

Digital Twins.

Digital Twin applied to Manufacturing and Production Environments

The Digital Twin technology has become a key tool for decision making in all steps of the

Product Lifecycle Management, as it is used for monitoring and analyzing products during their

entire life cycle. Its use allows for optimizing production processes by enhancing operational

efficiency, reducing downtime, and improving product quality.6 Moreover, a Digital Twin

System can provide support to the design, reconstruction, integration, monitoring, operation

and maintenance of production lines. 7

The application of the Digital Twin in the manufacturing industry and in production

environments is particularly promising, as factories are becoming increasingly more connected

and reliant on data-driven decisions, and the amount and variety of information generated by

productive processes is growing at a fast rate. Moreover, emerging technologies and the

extended use of sensors, controllers and actuators, make possible both the acquisition of large

amounts of data from production systems, and the transmission of information to them.

4 Tao, F., Zhang, H., Liu, A., & Nee, A. Y. C. (2018). Digital twin in industry: State-of-the-art. IEEE Transactions

on Industrial Informatics, 15(4), 2405-2415.
5 Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital twin: Enabling technologies, challenges, and open

research. IEEE Access, 8, 108952-108971.
6 Methuselah, J. (2024). Digital twin technology for smart manufacturing. Journal of Technology and Systems,

6(4), 52–65.
7 Yan, D., Sha, W., Wang, D., Yang, J., & Zhang, S. (2022). Digital twin-driven variant design of a 3C electronic

product assembly line. Scientific Reports, 12, 3846.

11

Besides, physical systems can act upon the received signals, making use of the full capabilities

of the Digital Twin technology. Fig 2. illustrates a possible flow of information within

manufacturing systems and when implementing a Digital Twin.

A Digital Twin model acts on data collected by sensors as well as on information obtained from

other internal or external environments. With these data, and considering the physical system

logics, the Digital Twin is able to create an accurate representation of the physical system,

allowing for predictions to be made on it, and ultimately enabling autonomous real-time

decision-making. By using actuators, the decisions transmitted are then used to modify the

physical environments, making use of the full capabilities of the Digital Twin.

Fig 2. Digital Twin interaction with Manufacturing and Production Environments.

In the context of the Digital Twin technology, sensors allow for the collection of live data from

physical systems, that then serve as inputs for the virtual model of the Digital Twin; they detect

physical or chemical magnitudes and transforms them into electrical variables. Different types

of sensors are commonly used in the manufacturing industry depending on the process

performed and the measured variable, such as temperature, humidity, proximity and force

sensors, among others.

Controllers, such as PLCs and other servers, collect the data gathered by the different sensors

and send the information to the virtual model of the Digital Twin. Moreover, as the Digital

Twin can analyze the data collected and drive feedback into the system, it is also possible to

manage and automate physical system processes based on the data received from the model,

by commanding specific actions on the actuators.

Finally, actuators take the signals received from the controller and upon it perform physical

adjustments to the process, acting according to the optimization suggestions made by the

12

Digital Twin. Actuators in production environments can be of different types, such as electric,

pneumatic, hydraulic, thermal, among others.

As the technologies used for retrieving and transmitting data evolve, allowing for more

parameters to be measured and controlled, so do the functionalities and applications of the

Digital Twin. Additionally, the integration of robotics and other automation tools in factories is

elevating the complexity of manufacturing systems, as they allow for a broader range of tasks

to be performed.

Some of the main applications of Digital Twin within manufacturing and production systems

include product development, optimization of production, predictive maintenance, quality

assurance, training of operators, energy management and supply chain and logistics.

Related to product development, Digital Twins facilitate the creation of virtual prototyping for

the optimization of product designs. The simulation and testing of products in a virtual

environment reduces costs and time and allows for the creation of products with enhanced

qualities.

For production optimization, the use of Digital Twin systems allows for the creation of process

simulations and its real time monitoring. This helps identify possible bottlenecks and mitigate

them, optimize production lines, and subsequently, improve the efficiency of the overall

process. Moreover, the Digital Twin technology allows for the identification of failures and

errors within the production process and for its mitigation and resolution.

Another great application for the Digital Twin is the predictive maintenance of production

systems. By using the technology, the condition of equipment can be monitored and its failure

predicted and mitigated, thus minimizing downtown of machinery and extending its useful life.

Digital Twins for quality assurance help ensure that products are consistent with the required

quality, detect deviations from it and implement corrective measures.

Related to the training of operators, it is used for their practice and development of skills in a

riskless environment. It can also be used for training security protocols and how to handle

unexpected issues that may arise.

For energy management, simulations related to energy usage can be done, helping identify

opportunities for energy savings and testing and implementing energy efficient and cost

reduction practices.

13

Finally, in the supply chain and logistics area, Digital Twins can help optimize inventory,

improve storage, retrieval and transportation processes, and monitor the logistics and supply

chain sector in general.

Furthermore, Digital Twins can be applied to different levels within the production process,

depending on the system to be modeled and the amount of detail needed. At component level,

Digital Twins are used when the focus is on a single critical component within the process.

Asset level Digital Twins are used for modeling single assets within a production line, while

process level Digital Twins aim at optimizing processes like design, development and

production, and system level Digital Twins monitor and potentially improve entire production

line system. Moreover, product level Digital Twins helps monitor a single product in real-time

as used by real customers or end-users. 8

In particular, implementing a Digital Twin is highly beneficial when physical prototyping

involves high costs, requires resources and is time-consuming, when it involves extreme testing

conditions, when real-time monitoring is essential, and for products or products lifecycles with

multiple parameters which could be optimized jointly. 9

Digital Twins for Industrial Robotics

The Digital Twin technology in robotics has come a long way in terms of domains of

implementation and possible applications. Current areas of application for Digital Twins for

robotics include space robotics, medical and rehabilitation robotics, soft robotics, human-robot

interaction and industrial robotics.

For the context of this thesis, the last one is of interest. Robots have become an important

element in the automation of industrial manufacturing systems, as they enhance task

performance by reducing both the time required to complete tasks and the operational quality

of repetitive processes. This results in faster production cycles and greater overall efficiency.

Moreover, by handling repetitive and hazardous tasks, the utilization of robots frees up human

resources, allowing them to engage in more complex and creative activities, thus driving

innovation and growth within the industry.

8 Radiant Digital. (n.d.). Digital twin: Converging the virtual and physical worlds to accelerate transformational

innovation. Radiant Digital. https://www.radiant.digital/digital-twin-converging-the-virtual-and-physical-worlds-

to-accelerate-transformational-innovation/
9 Sharma, A., Kosasih, E., Zhang, J., Brintrup, A., & Calinescu, A. (2022). Digital twins: State of the art theory

and practice, challenges, and open research questions. Journal of Industrial Information Integration, 30, 100383.

https://www.radiant.digital/digital-twin-converging-the-virtual-and-physical-worlds-to-accelerate-transformational-innovation/
https://www.radiant.digital/digital-twin-converging-the-virtual-and-physical-worlds-to-accelerate-transformational-innovation/

14

Current needs require robots to adapt to real-time situations, to be able to address issues that

arise within production, such as fluctuations in demand or unexpected disruptions. While robots

can develop effective control strategies through interactive learning in simulated environments,

inconsistencies between the simulated environment and reality can arise, posing a challenge to

the performance of the robots. In this context, the Digital Twin technology serves as a powerful

tool for monitoring and optimizing robotic systems.

Digital Twin systems enable the creation of detailed models and simulations of robotic

environments, providing valuable insights into robot performance. This facilitates the

optimization of key areas, such as navigation planning, perception analyses, and decision-

making, while allowing for testing and validation to be performed in a virtual setting.

Additionally, Digital Twin models can be used for real-time remote control and monitoring of

robotic systems, allowing for automatic responses to changes in parameters. This offers

immediate real-time insights into the performance of the system and enables proactive

adjustment to be made swiftly, ensuring smoother workflows, reducing downtime and

improving the overall performance and efficiency of robotic systems.

Furthermore, the Digital Twin enhances autonomous learning and decision-making capabilities

for robots. By integrating algorithms, such as deep learning and reinforcement learning, with

the Digital Twin framework, robots can undergo effective training and optimization, leading to

improved performance and adaptability.

Within industrial robotics, Digital Twins can be used for monitoring robot states, planning

assembly and disassembly sequences, learning grasping techniques, navigating environments,

generating collision-free paths, and facilitating human-robot interaction, among other

applications. Recent trends include work related to robot work-cell simulations, Digital Twin-

aided plant maintenance, Digital Twin-aided AI implementations, industrial cloud and edge

robotics cloud and blockchain in industrial robotic Digital Twins.

In practice, Digital Twin systems applied to industrial robotics are increasingly being

implemented to reduce the costs and risks associated with production processes.10

10 Zhang, X., Wu, B., Zhang, X., Duan, J., Wan, C., & Hu, Y. (2023). An effective MBSE approach for constructing

industrial robot digital twin system. Robotics and Computer-Integrated Manufacturing, 80, Article 102455.

15

Digital Twin for Dynamic Scheduling and Reallocation Processes

Production scheduling plays a central role in the manufacturing process, as it directly influences

the efficiency of production systems. Challenges such as unforeseen events, unexpected

disturbances, and information gaps often affect the quality of the scheduling, for which

traditional scheduling methods lack effectiveness in mitigating.

In traditional scheduling the parameters used, such as the processing time of a machine, are

estimated based on statistics regarding the production process and taken as constants for

calculating the schedule to be followed. In reality, these parameters depend on several factors

and are not static; a significant difference between the values estimated and reality can pose a

real threat to the planned schedule.

To address this issue, predictive scheduling provides a solution by using data analytics and

forecasting tools to enhance the accuracy of the scheduling process. By integrating historical

and real-time data and predictive models it anticipates potential disruptions, thus developing

an improved schedule. Nonetheless, it still involves creating the schedule in advance, which

can introduce some rigidity when handling unforeseen events.

Dynamic scheduling is an evolution of predictive scheduling that allows for the creation of

both a baseline schedule to be followed and a strategy on how to respond to unexpected events

in real time, allowing for real-time adjustments to be done to the proposed schedule. It

continuously updates and modifies the schedule as new information becomes available, with

the aim of reducing downtimes, improving responsiveness and adaptiveness of the schedule

and hence improving the efficiency of the overall process.

In the area of dynamic scheduling the Digital Twin technology is a valuable tool for detecting

problems that could pose a significant change in the planned schedule of a production system,

as it enables real-time monitoring and facilitates optimization improvements within the

process. Upon detection of failures, Digital Twin models could activate mechanisms to adapt

the original baseline schedule to mitigate the failures; it allows for the creation of a strategy

stating how to respond to events in real time.

Furthermore, dynamic scheduling could allow for the interaction between different machines

when an unexpected problem compromises the planned schedule. Mitigating strategies could

involve the reallocation of items to be produced or processed between different machines

working in parallel or within a system of machines.

16

The implementation of Digital Twins for dynamic scheduling issues can have two different

approaches based on the way they operate when an issue occurs: reactive or preventive.

In the reactive situation, upon the occurrence of an issue, the new information is fed back to

the Digital Twin model for recalculation and re-execution of the program. It involves

continuous recalculation of outcomes based on new information taken.

With the preventive approach, the need for constant rescheduling is minimized. This is done

either by minimizing the adjustments needed in each rescheduling situation, and therefore

reducing the organizational challenges associated with each change in the schedule, or by

establishing a certain threshold for the foreseen deviations on the planned schedule and

activating the rescheduling process only when the threshold is met. This threshold limit then

represents the critical point for when measures need to be taken in order to comply with a

specific timing taking into account normal deviations in the production.

17

Software and Tools used in the Application of Digital Twin -

Flexsim software
FlexSim was selected as the software for the Digital Twin Application as it allows for both

good user interface and visualization tools and advanced simulation and analytics. It not only

enables the real-time virtual representation of processes, but it also allows for the generation

of logics within the program. These logics can then dictate the behavior of elements within the

physical system, thanks to Flexsim’s Emulation Tool. By using Flexsim one can create a Digital

Twin within the software and without the need for additional programs.

With respect to the user interface and visualization tools, Flexsim’s 3D Model can offer a live

representation of the physical system for the user to have a real-time notion of what is

happening in its physical counterpart. Moreover, Flexsim’s dashboards can provide a live

display of the different measurable parameters and variables of interest of the system.

Simulations and analysis can be also done within the Flexsim environment, as it allows for

logic creation both within its 3D Model and the Process flow. Flexsim’s Emulation Tool allows

for the connection of the simulation with PLCs and other servers of the physical system,

allowing for the bidirectional data flow necessary for the Digital Twin application.

In short, FlexSim offers a complete suite of tools and functionalities to model and analyze

complex systems across various industries, enabling in-depth analysis, optimization, and

experimentation within a virtual environment11, which makes it a great tool for the development

of a Digital Twin application.

Flexsim’s main uses, tools and functionalities

FlexSim is a simulation software with high versatility and a user-friendly interface. It allows

users to construct detailed 3D models of systems, applying them to various applications across

industries, including manufacturing, logistics, healthcare, and service operations. FlexSim's

scalability allows it to adapt to the needs of its users, as it can accommodate models of different

complexities and scales.

Within its functionalities Flexsim allows users to create 3D Models, enabling the creation of

functional visual representation of real processes. Moreover, Process Flow models can also be

11 Flexsim. (n.d.). Flexsim: A powerful simulation modeling software. Flexsim. Retrieved August 14, 2024,
from https://www.flexsim.com/flexsim/

18

generated, for users to build the model’s logic. Both modelling interfaces can then be connected

to ensure the correct functioning of the simulation, and dashboards and statistical analysis can

be generated. It also provides an Emulation tool that allows for real-time connections with

PLCs or other servers.

Flexsim’s Library provides a wide range of pre-built objects and resources to optimize

simulation modeling and analysis. Users can simply drag and drop elements into their

simulation models, combining them to best represent the system, and thus reducing modeling

time and effort. These objects can then be customized to match specific requirements.

Moreover, its Toolbox includes tools for model creation, object manipulation, data analysis,

visualization, experimentation, and optimization, providing users with a wide range of

modeling tools and features to create and customize simulation models according to their

specific requirements.

FlexScript and code customization

FlexSim runs on FlexScript as its scripting language. While it has functions made specifically

for the FlexSim simulation environment, including concepts such as variables, loops,

conditionals, functions and data types, it shares syntactical similarities with C programming

language.

FlexScript allows for the writing of custom scripts inside objects within the 3D Model or on its

Process Flow. These features allow users to interact with simulation objects, events, and data.

For this reason, FlexScript is a powerful tool for automating tasks, implementing logics, and

analyzing simulation results within FlexSim.

3D modeling

Objects of the Model

One of the main advantages of Flexsim is that it allows 3D modelling, enabling the creation of

very accurate virtual representations of real processes. FlexSim offers a bast variety of different

3D objects available to build a Simulation Model.

Starting with Flow items, these are the items that flow through the Simulation model, following

its path through the process. They can represent different things within the Simulation, such as

19

material, products, customers, and orders. In the Simulation Model, Flow Items interact with

Fixed Resources and Task Executers.

Fig 3. List of available Fixed Resources and Task Executers.

Fixed Resources are objects that remain fixed or immobile as they interact with Flow Items.

Flow Items flow from one Fixed Resource to the next one downstream, continuing until

reaching the end of the Simulation. Fixed resources can represent various processes within the

model, the most common ones being workstations, storage centers and processing stations.

Among the fixed resources that can be used to build models, the most popular ones are the

Source, the Queue, the Processor and the Sink, as they represent the starting point, waiting area,

processing stage and endpoint of Flow Items within a simulated system. By combining and

connecting these components in a logical sequence, users can create dynamic simulations to

analyze processes, ranging from simple to more complex ones.

Fig 4. Common fixed resources used for 3D Modelling.

The Source represents the starting point of a process flow in FlexSim since it is where the Flow

Items are generated. These can be introduced following a specific rate or a predefined schedule,

among other options.

20

The Queue is a storage area where Flow Items are retained, waiting for the next step of the

process. Queues in FlexSim can represent physical storage areas or virtual buffers. Items can

exit the queue following different configurations, such as first-in-first-out (FIFO) or last-in-

first-out (LIFO), or even some special logics. Queues may include additional parameters to

control capacity, priorities, and routing.

The Processor, also known as an activity or workstation, represents a step in the process where

Flow Items are transformed, processed, or worked on. Processors in FlexSim simulate the

actions or tasks performed on items as they move through the system, such as assembly,

machining, inspection, or any other type of processing required in a production line. Processors

can have specified processing times, resource requirements, and work schedules.

The Sink represents the endpoint of Flow Items; entities that reach the sink are deleted from

the simulation, and thus, end their journey through the system. The Sink can be used not only

for finished products after a processing line, but also for waste or defective materials or other

outputs of the process.

Finally, Task Executers are objects that interact with Flow Items and Fixed Resources as they

move through the Model. As its name suggests, Task Executers can be assigned tasks and task

sequences, such as transporting Flow Items, setting up or operating machines, acting as a shared

resource for processing stations, among other simulation tasks. They represent workers, AGVs,

vehicles or transportation machineries and more.

Element Connection and Port Properties

The connection between the different elements in a Simulation is done through ports. Elements

in Flexsim allow for connection through two ways: input-output, and center port connections.

As the names suggest, an input port of an element is where entities enter the object, while an

output port is where they exit it. Input/output port connections are generally used to link two

fixed resources, allowing for flow items exchange and enabling their progression through the

process. They are represented by a small triangle or arrow at the top of the 3D Model elements,

as can be seen in Fig 5. The direction of the arrow indicates the direction of the process flow,

with input ports arrows pointing towards the object and output ports arrows away from the

object.

21

Fig 5. Input/Output connection in Flexsim.

Center ports on the other hand, create an abstract reference point between objects, and are used

to link task executers to fixed resources or any objects that reference each other.

3D Model elements can be connected to multiple other elements, allowing for complex process

modelling. Whenever a connection is made between two objects a rank is assigned to it. This

ranking allows for easy referencing of these ports for various purposes, such as for creating

conditional logics for items exiting an object.

Fig 6. Output ports of a Queue element connected to various Processors.

Close and Open Port
Ports can be open or closed, and thus be available to receive or send items, or not. During a

simulation run, open ports take the color green, while close ports the color red. Moreover, ports

can be opened and closed as needed by using certain Triggers and Events.

The State of both input and output ports can managed by four different instructions: Close,

Stop, Open and Resume.

Fig 7. Instructions for managing the state of the ports.

22

The Close input or Close output instructions block the input or output of the object respectively.

This way, ports are blocked when this instruction is called.

The Open input or Open output instructions act as the counterpart of the Close port instructions

and unlocks the ports of the object after they have been previously closed with the Close port

instructions.

The Stop input or Stop output instructions operate like the Close port commands, but it also

keeps track of the consecutive stop calls on the object and will only open the port after all stop

calls have been resumed with its respective Resume input or Resume output instruction.

Finally, the Resume input or Resume output commands opens the input or output of the object

just like the Open port command does, but because they keeps track of previous Stop port calls

on the object, they will only open the respective port after all stops have been resumed.

In summary, if the Stop port commands are used, one will need as many Resume port

instructions as times one has called the respective Stop port command. If the Close port

commands are used however, one will need only one Open port instruction to open the port.

When modelling the opening and closing of ports it is advised to use the Stop port and Resume

port commands, rather than the Close port and Open port instructions.

Properties of the objects and customization

Flexsim offers an extensive range of features for personalizing objects within the simulation,

to best represent the physical system, both in appearance and functionality.

Within the 3D Modelling features FlexSim provides tools that allow users to customize the

appearance of objects, modifying parameters such as texture, color, shape, among others. It is

also possible to import custom 3D objects. Additionally, it is possible to add custom labels and

graphics to objects within the 3D Model, providing additional information on it.

23

Fig 8. Object customization done for the Application of Digital Twin.

Related to its functionality, Flexsim also allows for the customization of the object’s properties

and attributes. Parameters such as processing time, capacity, size, weight, and resource

requirements can be defined.

Fig 9. Predetermined parameter values of a Processor object.

24

Process Flow Modeling

Flexsim also allows for Process Flow modelling. With pre-built activity blocks, it is possible

to build the logic of the simulation with a flowchart approach. Dynamic process flows, decision

trees and routing rules, can be created, enabling the creation of all types of simulation logics,

from simple to more complex ones.

Moreover, building the logics of the simulation throughout Process Flow modelling eases the

generation of logics, allows for the centralization of the logics in one place and facilitates

scalability and debugging as the model changes and progresses.

Elements of the Process Flow

To build logics in Flexsim a list of predefined activities is provided. Activities can be combined

in different orders as needed, allowing tokens to circulate through the process, activating

different logics as they do so. Among the most common activity blocks, it is worth mentioning

the Source, the Decide, the Delay, the Wait for Event and the Sink.

Fig 10. Common elements of the Process Flow.

The Source element marks the starting point of the process flow, where tokens are generated

and introduced into the system. There are different types of sources that can be used depending

on whether tokens arrive at a specified rate, according to a schedule, based on predefined

Events or other conditions.

The Decide element allows for different scenarios to take place depending on if certain defined

conditions are met or not; they are generally connected to two or more activities and depending

on if the condition is met or not tokens follow its way to one or other subsequent activity. They

can be used to control the flow of tokens or trigger specific actions, allowing for different

scenarios to take place conditionally according to the current state of the simulation. The

conditions inside the Decide block can be of various types, such as based on a condition, a case,

a time, a probability percentage, following a statistical distribution, among others.

25

The Wait for Event element momentarily stops the execution of the Process Flow until a

specified Event takes place. Once a token arrives to this activity, it is held while listening for a

specific event to occur in the Simulation, both in the 3D Model and Process Flow. Tokens can

be released to the next activity in the Process Flow only when the Event occurs.

The Event to wait for can be related to entity arrivals, resource availability or other user-defined

events. The Wait for Event block is used to synchronize activities, coordinate actions, or

manage timing within the simulation, ensuring that actions occur only when specific events or

conditions are met and not before.

The Delay block introduces a waiting time before the token proceeds to the next activity. It is

used when there is a specific fixed time between the occurrence of events, but it can also be

used as a security buffer time to ensure the correct functioning of the model. The delay time

can be fixed or follow a statistical distribution.

Like the Sink in the 3D Model, the Sink element in the Process Flow is the endpoint of tokens.

Consequently, Tokens that reach the Sink are deleted from the Process Flow.

Moreover, FlexSim offers other specific blocks that allow for the correct functioning of the

model, like the Merge and Split element, that combines or separates flow paths for entities

within the process flow. Also, Flexsim has a Custom Code element, that allows for the

execution of custom code defined by the user, for more specific applications.

Variable, Set and Get Variable

Flexsim’s Process Flow allows for the creation of internal variables. These variables can be

connected to the simulation by the Set Variable and the Get Variable elements, which allows

assigning and retrieving values to and from variables respectively.

The Set Variable element modifies the value of variables within the Process Flow. Among other

possible uses, the Set Variable block allows for fixed values, calculations or state updates based

on predefined logics, to be assigned to variables. Set Variables are used to track and manipulate

data, parameters, or states within the simulation.

Conversely, The Get Variable element retrieves the value of variables from the simulation

allowing its use within the Process Flow. Get Variables are used for getting attributes or

properties of entities, objects, or resources of the simulation.

26

Fig 11. Variable connected to a Set Variable and a Get Variable element.

Events, States and Triggers - Connecting the 3D Model to the Process

Flow

Events, States and Triggers enable complex interactions between different elements of the

model. For this reason, they represent a key component for creating the Model’s logic.

Flexsim’s Events consist of a series of pre-programmed logics that instructs the 3D object how

to interact with Flow Items. Events can be used to modify the logic and behavior of 3D objects,

initiating, modifying or terminating processes and activities within the Model. Flexsim’s Events

represent real-life events that can occur over time, like the arrival of a customer, order or

material, the transportation of products between stations, the processing of a product, or the

breakdown of a machine.

For Events to interact with the system, Flexsim includes a feature for event listening. This way,

specific Events can be monitored within the Simulation and responses can be defined tied to its

occurrence. This capability allows the simulation to respond to real-time changes, thus allowing

for the creation of dynamic and interactive simulation models.

Moreover, event listening is a way of connecting the 3D Model with the Process Flow Model:

event-listening activities in the Process Flow Model can be used for listening to certain Events

in the 3D Model. Upon the occurrence of the Events, the event-listening activity will create

and/or release a token, that could consequently execute some action in the Process Flow. The

two main Process Flow activities that are used for event listening are the Event-Triggered

Source and the Wait for Event activities.

Events in a simulation model can cause a State change in the 3D objects, for both Fixed

Resources and Task Executers, with the State of the object being its current condition or status.

Example of States include processing state, idle state, down state, traveling state and utilized

state, among others. States are relevant for statistical and data-gathering purposes.

Finally, Triggers are responsible for the execution of actions, and are implemented whenever

an Event needs to occur in the Model; they are used to create responsible behaviors in the

27

simulation. Most 3D objects have a specific set of associated Triggers, that can be activated

upon the execution of an Event.

Additionally, certain logics can be assigned to the Triggers allowing for the generation of

actions when the Trigger is activated. FlexSim has a wide variety of pre-programmed logics

that can be added to Triggers. Moreover, it also allows for the creation of custom logic using

the Process Flow tool or FlexScript.

Fig 12. List of available pre-programmed Triggers and Events associated to common Fixed

Resources.

Labels

Labels are another important component for building the logics of the Model. They can be

assigned to Flow Items, Tokens or objects in the 3D Model, and store valuable information

about them. Different Labels can be assigned to the same element type, allowing for

differentiation among the same group of items.

Labels can be used for getting data from the Model for tracking statistics, representing changes

to a Token or object, linking Tokens to 3D objects or other Tokens, stablishing sorting and

conditional routing, filtering and restricting Flow Items and Tokens, and for enabling

conditional decision making, among other uses.

28

Flexsim’s Emulation Tool

In addition to its core functionalities, Flexsim offers an Emulation tool that facilitates the

bidirectional data flow necessary for Digital Twin applications. It serves as a connection

between the virtual model and the physical system, enabling communication and interaction

between the two, allowing to send and receive signals, data, and commands between the model

and external devices. The Emulation Tool creates a connection between Flexsim and external

PLCs or other servers, and supports various protocols, including OPC UA, OPC DA and

Modbus.

By establishing this connection, FlexSim enables real-time data exchange, where information

from the physical system can be captured and incorporated into the simulation, and information

sent by the virtual model can alter the physical system. This real-time feedback loop ensures

that the virtual model remains synchronized with the physical system, allowing it to respond

and act upon the data received.

Fig 13. Creating a connection using Flexsim’s Emulation Tool.

Multiple simultaneous connections can be created for one simulation, to integrate various

sources of data. When a connection is not actively needed for the simulation, it is possible to

deactivate it; consequently, the data would be retrieved from the simulation model instead of

from the PLC.

29

The Emulation Tool can be accessed from Flexsim’s Toolbox or can be generated within the

Process Flow Model. Moreover, Variables related to the connection made through Flexsim’s

Emulation Tool can be accessed through its window interface or can be generated within the

Process Flow Model.

Internal Emulation Variables and Internal Emulation Connection

Flexsim allows for the creation of Internal Emulation Variables and Internal Emulation

Connections as part of the Emulation Tool inside the Process Flow Model. This allows for the

Variables to be modified by elements within the Process Flow, like the previously discussed

Set Variable block.

Flexsim allows for a wide range of Variables and Connections to be created, depending on the

protocol needed. Moreover, the Variables can be Sensor Variables and Control Variables.

Sensors are the inputs of the PLC, that provide environmental data and upon which the PLC

takes specific actions based on the data received. When connected to the simulation, Sensor

Variables are the variables which send data from the Simulation and to the PLC.

Flexsim allows for Sensor Variables to be connected to an object within the 3D Model and be

associated with a series of Events, depending on what kind of object it is connected to. Upon

the realization of the selected Event a signal is sent from the Simulation and to the PLC. The

PLC can then perform a task associated with the signal received.

Controls are the outputs of the PLC; the results achieved and sent to the simulation, based on

the inputs it received. Control Variables are then the simulation’s variables which receive data

from the PLC, and upon which certain actions can be taken in the Model.

Like the Sensor Variables, each Control Variable can also be connected to an object of the 3D

Model, and can trigger a series of actions, depending on what kind of object it is connected

to. Upon receiving the right signal, the simulation executes a specific action within the model.

Finally, to ensure the functioning of the Emulation Tool it is necessary to connect the Variables

to the Connection in the Process Flow, selecting also the register type and register number of

the Connection.

30

Fig 14. Sensor Variable used in the Application.

Fig 15. Control Variable used in Fig 16. List of possible actions associated with

the Application. a Processor.

31

Dashboards

Flexsim’s dashboard tool is a graphical user interface and visualization tool that enable users

to make use of various visualization elements like charts and graphs to create custom

dashboards. Between its available elements, users can choose between time plots, histograms,

Gantt charts, pie charts, bar charts, table charts, box plots, and more.

It is a particularly useful tool, as it allows for the real-time monitoring of the simulation,

visualizing its main statistics, metrics and KPIs. This can be used to perform insightful analysis

of the performance of the simulated system, and even take corrective actions on it, adjusting

parameters, inputs, and settings.

The dashboard’s graphical elements are supported on data from the simulation model, such as

variables, attributes, outputs or any other custom data source and they can be integrated with

Process Flow and 3D Modelling.

Fig 17. Example of Flexsim’s Dashboard.

32

Application of Digital Twin developed in the Lab

Setting and scenarios

To illustrate how the Digital Twin technology can enhance the flexibility of a production

system, by enabling real-time detection of failures and triggering a dynamic task reallocation

response, the following Application is proposed.

The setting presents two collaborative robots tasked with handling items within a

manufacturing environment. The task assigned to these robots is to retrieve an item from a

designated pick-up point, process it, and subsequently transport it to a releasing point.

Fig 18. Set up of the Application in the Laboratory.

Seven items are assigned to each robot for its processing. In an optimal scenario, both robots,

being identical, work at approximately the same speed and perform the same tasks, thus

completing its respective tasks at nearly the same time.

If a time failure occurs however, and one of the two robots operates at a slower pace,

maintaining the initial schedule, the slower robot would take a longer time to accomplish the

seven assigned tasks.

To mitigate this problem, a Digital Twin is implemented to perform a dynamic task reallocation

between the two robots. The Digital Twin can automatically detect the time failure, and

subsequently reassign the remaining items to be processed by the faster robot. This can be done

through two different reallocation strategies: by reallocating one item at a time, or by moving

an optimal calculated batch of items at once.

For the reallocation of items, a third robot is used, thus automatizing, and controlling the

movement of the items.

33

Fig 19. Set up of the Application in the Laboratory, with the addition of the third robot

performing the dynamic task reallocation.

Four scenarios are then considered for the Application:

1. Non-dynamic Scheduling without Failure: This scenario represents the optimal

production case where no unexpected events, such as time failures, disruptions, or

slowdowns, occur. In this scenario, each of the two collaborative robots is assigned

seven items to handle and the tasks are executed according to the predefined schedule.

2. Non-dynamic Scheduling with Time Failure: In this scenario, one of the two robots

experiences a time failure, resulting in a slower execution of tasks. Despite the

occurrence of this time failure, the initial task allocation and scheduling remain

unchanged. Consequently, the slower robot takes a longer time to complete the seven

assigned tasks, resulting in an increase in the processing time of the system.

3. Dynamic Scheduling with Time Failure, reallocating one item at a time: This

scenario demonstrates the capability of the Digital Twin system to detect time failures

in real-time and automatically initiate corrective actions. When a time failure is

detected, the Digital Twin dynamically adjusts the task allocation by reassigning jobs

to the faster robot. This is achieved by initially reallocating one item, upon which

operation is resumed; if this was not enough to mitigate the time failure, another item

is reallocated. This is iterated until the situation is corrected.

4. Dynamic Scheduling with Time Failure, reallocating an optimal batch of items:

Like the previous scenario, the Digital Twin system detects a time failure in real-time.

In this scenario however, the Digital Twin dynamically modifies the original scheduling

by reassigning a calculated optimal batch of items to the faster robot at once.

34

Digital Twin implementation

The Digital Twin implemented in this Application comprises three main components: the

Physical System, the Virtual System, and the Connections between the two.

Physical System consists of two robots performing the processing tasks and one robot

performing the reallocation of items between the two. The Virtual System on the other hand, is

a Simulation Model made using the software Flexsim. The connection between Physical and

Virtual System is done by using the Flexsim’s Emulation Tool, which allows sending and

receiving signals between the robot and the simulation, in the form of digital inputs and digital

outputs.

Fig 20. Digital twin Physical System, Virtual System and the connection among them.

Physical System

The physical system consists of two collaborative robots that work in parallel to perform a

given task, and a third collaborative robot that performs the reallocation of items between the

two, when needed.

For the two robots performing the processing tasks, the UR3e collaborative robots,

manufactured by Universal Robots, were chosen.

The UR3e-series is a small collaborative robot designed for various industrial and research

settings. Made primarily of plastic and aluminum, these robots are lightweight and agile,

facilitating easy coordination of movement to perform tasks accurately. Moreover, thanks to its

small size it can work in confined workspaces, improving the efficiency of a given production

35

facility. It can integrate into any production environment, as it can work side-by-side with

human workers or within a separate station. 12

Each UR3e robot is equipped with its own controller and teach pendant, facilitating their

control and programming as well as the coordination and communication between the robots.

The control units are interconnected via TCP/IP communication, enabling real-time data

exchange and synchronization between the robots. Additionally, each control unit is equipped

with digital/analog input and output ports that enable connectivity with the robot arms, the

Teach Pendant, and other peripherals within the robotic cell.

Fig 21. UR3e robotic arms with its teach pedant.

Moreover, to facilitate dynamic task allocation and reallocation of items between the two UR3e

robots within the application of the digital twin, a UR3-CB-series robot is utilized. Similar to

the UR3e-series robots, the UR3-CB-series robot is a collaborative robotic arm developed by

Universal Robots, that offers precision and flexibility for various industrial and research

applications.13

Additionally, for the three robots to be able to perform the pick and place tasks, a RG gripper

was attached to the wrist of each of the robots.

12 Universal Robots. (n.d.). UR3 robot. Universal Robots. Retrieved August 14, 2024, from
https://www.universal-robots.com/products/ur3-robot/
13 Universal Robots. (n.d.). CB3 series robots. Universal Robots. Retrieved August 14, 2024, from
https://www.universal-robots.com/products/cb3/

36

Virtual System

For the Application of Digital Twin the Virtual Model was developed using the software

Flexsim. It consists of several key elements that represent the various components of the

physical system and their interactions. Fig 22. shows the 3D Model of the Virtual System,

consisting of two Source elements, three Queue elements and three Processor elements.

The process starts with the Source elements, that generate the Flow Items that move through

the Model: each Source element generates a batch of seven items at the start of the simulation.

Flow elements continue the process as they enter the first two Queue elements. They are the

storage area where the items wait to be processed by the robots.

Two Processor elements, representing the two UR3e robots working in parallel, are the next

step of the process. They pick Flow Items from their respective Queue and place it on another

final Queue, after the processing is done. The latter is used for storage of the items at the end

of the process.

Another Processor is used to represent the UR3 CB robot in charge of the reallocation process.

It is connected to the Queues of the other two Processors, as it redistributes Flow Items between

them.

Fig 22. Virtual System of the Application.

37

Connections - Flexsim’s Emulation Tool

For the Digital Twin, the connection between the physical system and the virtual model plays

a fundamental role in enabling the necessary bidirectional flow of data. This connection allows

for the real-time synchronization of the virtual model and the physical system, for the virtual

model to be an accurate live representation of the physical system and for the physical system

to be able to respond and adapt to changes.

• Data Flow from Physical System to Virtual Model: This flow of data transfers

information regarding the status of the robots from the physical system to the virtual

model. This data is used to synchronize the movement of the robots with the simulation,

ensuring that the virtual model accurately reflects the behavior of the physical system.

• Data Flow from Virtual Model to Physical System: This flow of data involves the

transmission of instructions and control signals from FlexSim to the robots. Based on

the decisions and actions taken within the virtual model, following the different

dynamic task reallocation strategies, instructions are generated and sent to the robots.

These instructions guide the behavior and actions of the robots in the physical system,

by controlling their start and stop.

In the context of this Application, the connections between the robots and FlexSim are

established using the Emulation tool provided by the software. The Modbus protocol was used,

generating three Modbus TCP Connections, one for each robot, as can be seen in Fig 23.

Fig 23. Flexsim’s Emulation Tool, connection between the robots and the simulation.

38

Logics and functioning of the Physical System

In order to make sure that the robots work correctly, a series of logics were implemented.

Waypoints were set to define the movements and path to be followed by the robots, each

Waypoint being a determined position the robot must take. Moreover, signals were used to

control the opening and closing of the gripper, for the robot to be able to perform the pick and

place tasks.

Concerning the two UR3e series Robots, a 15 second wait was added to the cycle of the robots

to simulate the processing of the items. In a production environment this would be a real delay

time due to the processing work done by a human worker or by another machine.

Regarding the robot’s functioning logics, the process starts when a signal is sent to both robots.

As the robots work simultaneously in a single productive cell, they wait until receiving a signal

from the other robot to start the process. If the signal is not received within 20 seconds, the

process is ended; for this a thread is run in parallel of the main robot program, independent of

the robot tasks.

However, if the signal is received the robot enters a loop, in which upon receiving another

signal it is instructed to move an item. When no signal is received (digital output 4 = False) it

waits for three seconds before entering the loop again, as can be seen in Fig 24. and Fig 25.

This ensures that the robot is constantly checking for the signal, and that upon receiving it, it

will start the movement within a three second delay. Moreover, this allows for the robots to be

momentarily stopped if needed, but without exiting the program, which is a very useful feature

to facilitate the reallocation of items.

Finally, when an item is picked the signal DO[1] is set to On and when the item is placed in its

destination the signal is set back to Off. These signals are then picked up by the Digital System

to ensure the synchronization of the movement between both systems.

39

 Fig 24: Robot UR3e’s logics. Fig 25: Robot UR3e’s process flow.

With respect to the UR3 CB series Robot, responsible for reallocating the items between the

two processing robots, its logic can be observed in Fig 26. and Fig 27. The reallocation process

starts when the robot receives a signal. There are two possible signals the robot can receive that

prompt two different movements: from Robot 1 to Robot 2 or vice versa. To ensure that the

robot is constantly waiting for signals, a loop is utilized. If no signal is received it waits for 0.5

seconds before checking for any of the two signals again.

Moreover, like for the other two robots, when an item is picked the signal DO[2] is set to On

and when the item is placed in its destination the signal is set back to Off.

40

 Fig 26. Robot UR3 CB’s logics. Fig 27. Robot UR3 CB’s logics process flow.

41

Logics and functioning of the Virtual System

To ensure the correct functioning of the simulation, logics were implemented both in the 3D

Model and the Process Flow Model. While logics within the 3D Model deal with the general

functioning of the simulation, logics within the Process Flow Model handle the connection and

communication between the physical and the virtual systems, thus enabling the Digital Twin

Application.

Logics and functioning within the 3D Model

The process starts with the arrival of fourteen items to the system. This is done with two Source

elements, each delivering seven items. An arrival schedule was used, with a table to determine

the arrival time of seven items at the start of the Simulation.

Each Source element is connected to one Queue element. Using a Trigger, once a Flow Item

enters a Queue, a Label is assigned to it. The Label is called Type and it can hold values of

either 1 or 2, contingent upon the queue of entry and the robot assigned for processing of the

item. This Label designation is important, as it allows for logics and computations to take place.

It is relevant to mention that the Label is assigned to the items each time they enter a Queue,

and so if an item is moved from one Queue to another the label will take the value of the last

Queue it entered to, consequently losing the value of the first one.

Fig 28. Trigger inside the Queue elements.

Items are stored in each Queue until retrieved by the Processors. Each Queue is connected to

two Processors, one representing the UR3-CB-series robot in charge of the processing and the

other the UR3 CB robot doing the reallocation of items when implementing the Digital Twin.

Each Processor element contains a trigger, that activates when the simulation is started, which

stops the input port, preventing the entrance of items to the Processor. This is to ensure perfect

coordination with the physical system.

42

Fig 29. Triggers inside the Processor elements.

Within the Application, the processing of the Flow Items is controlled by opening and closing

the input and output ports of the Processors, as will be explained in another section bellow.

This way, the real processing time of the Processors is defined by the time between an item is

allowed in and out of the Processor. For this reason, a processing time of 10 seconds is set in

the Processor element as its processing time. This is not the real processing time, but a time

short enough to ensure the correct functioning of the Model.

Moreover, the Processor associated with the robot performing the reallocation of items follows

a specific logic when deciding which port to send the items upon exiting the Processor: it

examines the Label Type of the item and then decides the port accordingly. This logic is

necessary because the Processor operates between two Queues and to ensure that an item, once

taken for processing, does not return to the same Queue from which it came from. Thus, if the

item's Type is 1, it is directed to Queue 2, and vice versa.

Fig 30. Logics inside the output port of the Processor.

Finally, the two other Processors are connected to a final Queue that collects the processed

items. In this final Queue the number of items processed by each Processor is computed, also

considering the Label Type assigned before; for this a custom code is used as a Trigger. This

Queue element also has another trigger to reset the count upon resetting the program.

43

Fig 31. Triggers inside the Queue element.

Fig 32. Triggers inside the Queue element.

44

Logics and functioning within the Process Flow

Variables of the Process Flow

To explain the functioning of the logics of the Process Flow it is necessary to first describe the

variables that intervene in said logics. Nine Internal Emulation Variables are used, comprising

six Sensor Variables and three Control Variables, as depicted in Fig 33.

Fig 33. Process Flow Variables used in the Application.

These variables have different purposes and interact with the Virtual and Physical Systems in

different ways. The connection of the variables to the Physical System through the Emulation

Tool will be discussed in another section bellow.

As explained before, Sensor Variables send information from the Virtual to the Physical

System, upon which the Physical System takes certain actions. The Sensor Variables used in

the Application are the following:

• Start and Stop Variables (1 and 2 for each robot respectively): These variables are

responsible for the activation of the Robots at the start of the Simulation.

They can take the values of 0 or 1 and have an associated event at Simulation Start that

assigns the value of 1 to the variable. This way, they send a signal (value of the signal

equal to 1) at the start of the simulation to start the robots. When the signal is no longer

received (value equal to 0) robots stop working and the program is stopped.

45

• Continue Variables (1 and 2 for each robot respectively): These variables are

responsible for the momentarily stop and restart of the robots. They enable the

reallocation of items, by stopping the functioning of the robots while the third robot

reallocates the items between them.

Like Start and Stop, they also take the values of 0 or 1 and have an associated event

that on Simulation Start assigns the value of 1 to the variable to start the functioning of

the robots.

These variables send a signal to the robots (value of the signal equal to 1); when the

signal is no longer received (value of the signal equal to 0) robots momentarily stop

working until signal is received again.

• From Robot 1 to 2 Variable and From robot 2 to 1 Variable: These variables control the

movement of the robot in charge of the reallocation of items. They send a signal to the

robot to activate the right movement.

They can take 1 and 0 as their values, having an associated event that on the start of the

simulation that assigns the value of 0 to them. This way the robot is not activated at the

start of the simulation, and instead is waiting for the signal to start its functioning.

Control Variables receive data from the Physical System, upon which the Virtual System reacts.

The following Control Variables were used for the Application:

• Cycle Variables (1, 2 and 3 respectively): These variables are responsible for the

movement synchronization between the Physical and Virtual Systems, as they control

the performance of the Processors within the Model.

The variables can take 1 and 0 values and have a series of associated actions according

to the value taken by them. They receive a signal (signal value of 1) once the robot

grabs an item and stop receiving it (signal value of 0) once the robot places the item in

its destination.

To ensure the precise synchronization between the Physical System and the Virtual

System, the input and output port of the Processors are controlled. For this, a time short

enough to ensure the correct functioning of the Model is set to be the processing time

in the Processor element of the 3D Model, allowing the real processing time to be

defined by the input and output ports. This way, by controlling the ports of the

Processor, not only the processes are completely synchronized, but also the processing

times are equal.

46

Fig 34. Actions taken by the Cycle Variable.

Upon receiving a value of 1 for the Variable, the Model instructs the Processor to

resume its input of items while stopping its output, thereby forcing the element to

remain in the processor until the signal to end its processing is received.

Fig 35. Resume Input and Stop Output graphical representation.

 Fig 36. Resume Input and Stop Output in the Application.

Conversely, upon receiving a value of 0, the Model sets the processor to resume the

output of elements, enabling the items to exit the processor, while stopping its input

until the signal indicating that the robot has grabbed another item is received.

Fig 37. Stop Input and Resume Output graphical representation.

47

Fig 38. Stop Input and Resume Output in the Application.

Simulation start and functioning before Reallocation of items

Before the Simulation begins, the initial value of all the variables within the Application is 0.

As the Simulation starts various events and actions are triggered within the Process Flow,

turning the Start and Stop and Continue Variables values to 1. This triggers the functioning of

the robots within the Physical System, allowing them to pick the first item. 14

As previously mentioned, as each a robot retrieves an item from its respective queue, a signal

is sent, and upon placing the item in its destination, the signal is ended. This triggers the Cycle

variable, which manages the input and output ports of the Processor element in the 3D Model,

allowing the Model to work accordingly to the real process.

For the process to be iterated, a simple logic is implemented in the Process Flow. Whenever an

item exits the Processor, signifying a change in the number of items in its queue, a token is

generated with an Event Triggered Source in the Process Flow.

This token then moves to a Decide block that assesses whether there are still items in the

Processor’s queue. This is done by using the subnode.lenght expression, which counts the

number of items inside a 3D Model element, as it can be seen on Fig 39. If the response is

affirmative, indicating that there are still items present in its queue, the Continue Variable is set

to 1, allowing the robot to pick another item and the process to continue.

14 The implicit assumption being that each robot has at least one item in its queue.

48

Fig 39. Condition applied in the first Decide Block.

If there were no more items in queue however, the Continue Variable is set to 0, discontinuing

the signal that enables the functioning of the respective robot, bringing it to a halt.

The process then continues with a Decide block that asses the number of items in queue of the

other robot and determines whether there is a need for a reallocation of items: if there are less

than two items in queue no reallocation takes place, case contrary the reallocation logic is

executed. The reasoning behind this is that if there is only one item in the queue of the other

robot or if the other robot is processing its last item, it would be faster and more efficient for

that robot to complete its work rather than reallocating the item to the other robot for

processing, considering the time taken for the reallocation of items. Therefore, in such

scenarios, no reallocation of items is deemed necessary.

The complete process flow before the reallocation is implemented can be seen in Fig 40.

Fig 40. Process Flow before the reallocation of items.

49

Digital Twin for dynamic task allocation – Third scenario: Reallocation

of one item at a time

In this scenario one of the robots experiences a time failure. Consequently, would the initial

schedule be maintained, the slower robot would take a longer time to accomplish its assigned

tasks. For this reason, a Digital Twin is implemented to mitigate the issue, by reassigning items

from the slowest to the fastest robot.

This reallocation of items is done once the Digital Twin detects that one of the robots has

finished its assigned tasks, while the other still has items to be processed. The Digital Twin

then momentarily stops the processing of the items and moves one item from the queue of the

slowest robot and to the queue of the fastest robot, reassigning the processing of the items.

Once this is completed both robots resume their work. If another reallocation is needed, once

the fastest robot finishes processing the new item, the reallocation process is performed once

again, moving one item from the slowest and to the fastest robot.

For this and the following scenarios, the UR3e_Robot1 represents the robot that experiences

the time failure, and thus the reallocation process is done from its queue and to the queue of

the UR3e_Robot2; were the UR3e_Robot2 the robot to experience the time failure, the

reallocation process would be activated from its queue and to the other robot’s queue.

Fig 41. Process Flow of the Third scenario of the Application of Digital Twin for dynamic

task allocation.

50

Following with the logic within the Process Flow, once the decision to reallocate items is made,

the Model checks if the second robot is currently processing any item. This is implemented to

guarantee that the robot is not stopped mid operation, and to prevent any potential glitching.

For this, the subnode.lenght of the Processor item is assessed, as was done before for the Queue

elements.

If the robot is currently engaged in a processing task, the simulator awaits the completion of

the task, ensuring that the item is placed in its final location before proceeding. A Wait for Event

element is used, the event being the exit of an item from the Processor.

When the processing task is concluded, or if the second robot is not currently processing any

item, the signal enabling the robot to work is promptly discontinued, by setting to 0 the Variable

Continue of the respective robot. As a result, the second robot halts its operations, ensuring that

the reallocation process can be executed properly.

Subsequently, the Variable From Robot 2 to Robot 1 is set with a value of 1, instructing the

robot designated for the reallocation process to commence its task. The Variable being activated

(From Robot 1 to Robot 2 or From Robot 2 to Robot 1) is determined by which of the two

robots has zero items in its queue, ensuring that the movement is done from the robot with

items in its queue to the one without.

The system then detects the completion of the reallocation process when there is a change in

the number of items in the queue of the Processors. Another Wait for Event element is

implemented, with the event being the increase in the content of the Queue that had zero items

before the reallocation.

For safety reasons, to guarantee that the reallocation robot has finished its movements before

resuming the movement of the other robots, a Delay element is added to the Process Flow, with

a delay time of 30 seconds.

Two Set Variable elements are used to assign a value of 1 to both Continue Variables to signal

the robots to resume their respective processing tasks.

Once one of the robots runs out of items in queue again, if the above logics are satisfied, a

second reallocation of items could take place. This iterative process continues until there are

no more items remaining in the queues of the robots, indicating that all items have been

successfully processed.

The complete process flow for the Third scenario of the Application of Digital Twin for

dynamic task allocation can be seen in Fig 42.

51

Fig 42. Process Flow for the Third scenario of the Application of Digital Twin for dynamic

task allocation.

Digital Twin for dynamic task allocation - Fourth scenario:

Reallocation of an optimal batch of items

In this scenario one of the robots also experiences a time failure and the Digital Twin is

implemented to reassign the items between the robots. This is done by reallocating an optimal

batch of items, as opposed to reallocating one item at a time as in the third scenario.

The operational logics mirror those of the third scenario: once one of the robots completes its

assigned tasks while the other robot still has items in queue to be processed, the reallocation

process is triggered. The robots are temporally halted, allowing for a safe reallocation of items.

Once the items are reallocated both robots resume their processing tasks.

52

Fig 43. Process Flow of the Fourth scenario of the Application of Digital Twin for dynamic

task allocation.

With respect to the logic within the Process Flow, the first steps mirror that of the third scenario.

When it is determined that a reallocation needs to take place, the Model first assesses whether

the second robot is actively processing any item. If so, it waits for the completion of the task,

ensuring that the item is placed in its final location before continuing. Subsequently, the

Variable Continue is set to a value of 0, halting the robot’s process, while the Variable From

Robot 2 to Robot 1 is set with a value of 1, prompting the robot designated for the reallocation

process to work. The process proceeds once the reallocation process is completed, as indicated

by an increase in the number of items of the Queue that had zero items before the reallocation.

Additional logics were implemented at this stage due to the need to reallocate more than one

item within this scenario. The reallocation of items follows an iterative process in which the

number of items in the queue of the robots is continually compared against the optimal number

of items required for the system to operate at its peak efficiency. For this a Decide Block was

utilized.

Each time an item is reallocated, the system evaluates the current state against said optimal

number. If the logic is not satisfied, meaning that the optimal number of items moved has not

yet been reached, an additional item is moved. This iterative approach ensures that the

reallocation process continues until the optimal batch of items is achieved.

53

The optimal number of items to be reallocated is calculated considering both the total number

of items to be moved and the ratio of processed items by each robot (indirectly measuring the

speed of the robots, assuming a constant speed). It can be summarized as the following

expression:

Optimal number of items to be moved = Total number of items x Ratio of processed items

The Total number of items is calculated simply by summing the number of items in the Queues

of both Processors, using the subnode.lenght feature.

For the Ratio of processed items, two item Labels, previously calculated in the Final_Queue

in the 3D Model, are used. These Labels, Type1Content and Type2Content, track the total

number of items processed by each robot, each type corresponding to each robot respectively.

The ratio is then computed by dividing the number of items processed by one robot by the total

number of items processed by both robots.

Following the Process Flow, upon completion of the iterative reallocation process and once the

number of items in the queue aligns with the optimal calculated number, the robots can resume

performing their respective tasks.

Unlike the third scenario, the fourth scenario allows for the condition where one robot has zero

items in its queue, due to the reallocation of all its items to the other robot. Consequently, a

specific logic must be implemented to determine whether it is necessary to send a signal to that

robot to restart operations. This is done with another Decide element. Then, if the robot has

more than one item in queue a signal is sent for it to resume operations, setting the Continue

Variable to 1; case contrary no signal is sent, Continue Variable equal to 0.

Finally, another Set Variable element is used to assign a value of 1 to the Continue Variable of

the other robot for it to resume its processing tasks.

The complete process flow for the Fourth scenario of the Application of Digital Twin for

dynamic task allocation can be seen in Fig 44.

54

Fig 44. Process Flow for the Fourth scenario of the Application of Digital Twin for dynamic

task allocation.

55

Connections between the Virtual and Physical Systems

For the correct functioning of the Model, the Virtual and Physical Systems must be connected,

always sending and receiving signals. For this reason, each Variable within the simulation has

an associated signal within the Physical System; this can be seen in Table 1.

Table 1. Variables of the Virtual System and its Signals of the Physical System.

Flexsim’s Emulation tool plays and important role, enabling the communication to take place.

Utilizing the Modbus Protocol, each variable has an associated specific register of operation

with the robots’ PLCs.

Run of the Simulation, simplifications made and its modifications when

applied to a production environment

In order to simulate the time failure of one of the robots, the operation speed of UR3e Robot1

was reduced to 15% of its normal operation speed. This adjustment means that UR3e Robot1

operates at approximately 15% of UR3e Robot2’s speed, considering that both robots operate

at nearly the same speed under normal conditions. This 15% speed reduction was chosen to

ensure that the simulation adequately demonstrates the reallocation process, allowing for the

reallocation of several items between the robots, thus accurately reflecting the impact of the

time failure.

Moreover, this 15% speed reduction was set to be constant throughout the entire simulation

process. This approach ensures that the calculation of the optimal number of items to be moved

within the second reallocation scenario is accurate, as the rate of production remains constant

over time.

In a real-world scenario, the time failure would occur over time, with the incremental reduction

of the speed of one of the robots. Therefore, the optimal number of items to be moved would

56

be calculated considering the average processing speed of the robots over time, as opposed to

a fixed speed reduction. As a consequence, the calculated number of items to be moved might

not be as accurate, depending on how the speed reduction of the robots occurs. To address this,

an alternative method for calculating the number of items to be moved, which takes into

account the speed progression over time, could be implemented. This would allow for a more

precise adjustment in response to the gradual changes in the robot’s operating speed.

Another simplification made was the implementation of a 15 second wait time in the robot’s

logics, to simulate the processing work performed by a human worker or another robot. In a

production environment, this time would be replaced by the real time required for processing

of the items.

Results and Analysis

The four scenarios covered in the Application of Digital Twin were implemented. For each

scenario a set of indicators was computed, facilitating the comparison between them:

• Throughput of the System (TH): This metric quantifies the number of items processed

per unit of time.

• Average cycle time of the System (CT): Defined as the average time needed to process

all the items in the system, measured from the moment the simulation starts (robots start

functioning) and until it ends (robots finish their tasks).

• Utilization of the robots (U): This metric represents the average percentage of time

during which the robots are in the processing state, actively processing items.

The results obtained for these indicators are presented in Table 2. In the following sections a

more detailed explanation will take place.

Table 2. Indicator values for the three scenarios.

57

Before discussing each scenario in detail, it is important to mention that for the third and fourth

scenarios, the reallocation process done by the UR3 CB Robot is taken into consideration for

computing some of the above indicators. This way, the Cycle time encompasses not only the

processing time of the items done by the UR3e Robots, but also the time associated with the

reallocation process.

Conversely, since no real processing is done by the UR3 CB Robot, as it merely handles the

internal reallocation of items within the same system, its activity is not considered when

computing the Throughput of the process.

First Scenario - Non-dynamic Scheduling without Failure

The first scenario represents the optimal outcome, in which no time failure, disruptions or

slowdowns occur, allowing tasks to be executed according to the predefined schedule. As a

result, this scenario reports the best performance.

As mentioned before, in this set up both robots are assigned seven items to process. The two

robots are assumed to be nearly identical and operate under the same conditions, resulting in

identical processing times of 25 seconds, within a tolerance range due to natural variability

inherent to the manufacturing process.

Fig 45. First scenario, non-dynamic scheduling without failure.

The average Cycle time of this scenario can be approximated at 175 seconds, with a Throughput

of 288 items per hour, considering the contribution by both robots. The Utilization of the system

is at 100%, as no time failure occurs.

58

Fig 46. Flexsim’s dashboard for the First Scenario.

Second Scenario - Non-dynamic Scheduling with time Failure

In this scenario, UR3e Robot1 experiences a time failure, resulting in a slower execution of its

assigned tasks. Despite the occurrence of the time failure, the initial task scheduling remains

unchanged, and no reallocation of items takes place. Consequently, UR3e Robot1 takes a longer

time to complete the seven assigned tasks. As expected, this scenario displays the worst values

for the selected performance indicators.

Fig 47. Second scenario, non-dynamic scheduling with time failure.

59

UR3e Robot1 takes approximately 2.4 times longer than expected to process an item, with a

processing time of approximately 60 seconds, compared to the 25 seconds it would take in the

ideal scenario, without the occurrence of a time failure. Due to the absence of a reallocation

strategy, the total System processing time increases to approximately 420 seconds. Thereby

UR3e Robot 1 becomes the bottleneck for the overall system.

As a consequence, the Utilization of UR3e Robot2 is reduced to approximately 41.67%, as

opposed to the 100% of the best-case scenario, causing a decrease in the total Utilization of the

System. This reduction is due to idle time experienced by UR3e Robot2 after completing its

processing tasks and while waiting for UR3e Robot1 to complete its tasks. The Throughput of

the System is estimated at 120 items per hour.

Fig 48. Flexsim’s dashboard for the Second Scenario.

60

Third Scenario - Dynamic Scheduling with Time Failure, reallocation

of one item at a time

Similar to the second scenario, in this scenario UR3e Robot1 also experiences a time failure,

which results in a slower execution of its tasks. This scenario however, upon the detection of

the time failure, and with the use of the Digital Twin system, the reallocation process is

activated, reassigning the items to be processed between the two UR3e robots and thus

mitigating the negative consequences of the failure.

The reallocation of items between the two robots is done by the UR CB Robot, following a

sequential one-at-a-time reallocation strategy. This way, when the Digital Twin system

identifies the need for a reallocation, a single item is transferred between the two UR3e robots

for processing. Once this reallocation is completed, the robots resume their operations. If

further reallocations are necessary, they will be detected and executed after the robots have

finished their current processing cycle. More information on the logics governing this

reallocation strategy can be found on previous sections.

Fig 49. Third scenario representing the dynamic scheduling with time failure, with the

relocation of one item at a time.

In this scenario, the processing time of UR3e Robot2 remains at 25 seconds, as the robot does

not experience any time failure. Conversely, UR3e Robot1’s processing time increases to 60

seconds due to its time failure. UR3 CB Robot performs the reallocation of items at 25 seconds

per item.

As a result, the Throughput of the system improves to 144 items per hour, while the Cycle time

reduces to 350 seconds, as opposed to the previous scenario. As expected, although results are

less favorable than those obtained in the first scenario, they represent an improvement over the

second scenario where no reallocation strategy was implemented. This can be attributed to the

intervention of the Digital Twin in mitigating the issue; in this application the Digital Twin is

used for reducing the impact of the time failure, but it does not address the cause of the issue

nor solves it completely.

61

The Utilization for UR3e Robot1 is computed at 84%, for UR3e Robot2 at 64.29%, and for the

UR3 CB Robot at 16%. It is important to note that the reduction in Utilization for UR3e Robot1

is entirely attributable to its operation being momentarily stopped during the reallocation

process for safety reasons, to avoid the collision of the robots. Similarly, part of the reduced

Utilization for UR3e Robot2 is also explained by this factor. Conversely, UR3 CB Robot is

only active during the reallocation of items, hence getting its utilization percentage solely from

that.

Fig 50. Flexsim’s dashboard for the Third Scenario.

62

Forth Scenario - Dynamic Scheduling with Time Failure, reallocation

of an optimal batch of items

In this scenario, similar to the previous one, the Digital Twin system detects in real-time the

occurrence of a time failure affecting the performance of UR3e Robot1 and implements a

mitigation strategy by adjusting the original production schedule and reallocating items

between the robots. However, unlike the earlier approach where only one item was transferred

at a time, this scenario involves reallocating an optimal batch of items in a single event. By

transferring multiple items at once, the system minimizes the frequency of the reallocation

process, which in turn reduces the number of interruptions to the production process, not only

accelerating the completion of the tasks but also minimizing operational disruptions. The way

this optimal batch of items is calculated, as well as the logic behind this scenario, has been

previously explained.

Fig 51. Forth scenario representing the dynamic scheduling with time failure, relocating a

batch of three units.

Both the throughput and the Cycle time are improved in this scenario when compared to the

previous one, with the Throughput reaching 152.7 items per hour, and the Cycle time reducing

to 330 seconds.

The Utilization values are recorded at 72.73% for UR3e Robot1, 64.29% for UR3e Robot2 and

25.45% for the UR3 CB Robot. As observed in the previous scenario, these values can be

explained (fully for UR3e Robot1 and partially for UR3e Robot1) by the periods of forced

inactivity of the robots during the reallocation process.

63

Fig 52. Flexsim’s dashboard for the Forth Scenario.

When comparing the Third and Fourth scenarios, there is a significant difference in the values

taken by the different parameters. In the Fourth scenario, the Utilization values are slightly

lower for UR3e Robot1 and marginally higher for the UR3 CB Robot. This discrepancy is

driven by the difference in the reallocation strategies employed in the two scenarios.

Given the difference in the logics governing each scenario, in the Third scenario the Digital

Twin system determines the reallocation of two items, while in the Fourth scenario it calls for

the reallocation of three items. Consequently, and when compared to the Fourth scenario, in

the Third scenario UR3e Robot1 processes one item more, as there is one reallocation of items

64

less, leading to an increased Utilization. Moreover, UR3 CB Robot is engaged only twice,

which reduces its overall Utilization.

Overall, the Fourth scenario proves to be the most efficient when compared to the Third

scenario. Its primary advantage lies in the calculation of the optimal number of items for

reallocation between the robots as soon as the time failure is detected for the first time, allowing

for a single, consolidated reallocation event to take place. This reduces the frequency of the

reallocation of items between the robots, reducing the operational disruptions. Hence, robots

experience less downtime while waiting for the reallocation process to be complete. Moreover,

the Fourth scenario has a better performance with respect to resource allocation than the Third

scenario, and consequently present a lower cycle time for the system.

Finally, it is important to note that, in the context of the application developed in the laboratory,

as outlined in the simplifications and modifications section of this thesis, the time failure of the

UR3e Robot1 is modeled as constant over time. This justifies the calculation of the optimal

number of items to be reallocated in the Fourth scenario and it is aligned with the Fourth

scenario being the most efficient approach in this case.

However, in a real production environment, the occurrence of time failures may not follow

such a constant pattern. In such a case, the Third Scenario, which sequentially reallocates one

item at a time, may prove to be more suitable, as the Digital Twin decides in each iteration if

an item needs to be reallocated or not.

65

Conclusion

The paper explored the application of the Digital Twin technology with the intention of

generating an accurate real-time virtual representation of the physical system, that could detect

the occurrence of time failures and consequently activate appropriate mitigation strategies. The

main goal of the application was to demonstrate the use of the Digital Twin applied to dynamic

task allocation and flexible scheduling, that could effectively address failures and problems

and optimize production.

For this, two different mitigation strategies were contrasted. The first strategy entailed the

sequential reallocation of items on a one-at-a-time basis. In this approach, upon the detection

of a necessary reallocation by the Digital Twin system, a single item is transferred between the

task-executing robots for processing. After this reallocation, operations are resumed, and

should another reallocation be required, it would be implemented only after the robots have

completed their current cycle.

Conversely, the second strategy encompasses the reallocation of a calculated optimal batch of

items between the task executers. This methodology facilitates a single comprehensive

reallocation event, where all necessary items are moved at once, thereby streamlining the

process and minimizing operational disruptions.

The results obtained show that the implemented Digital Twin is successful in mitigating time

failures, within the application developed; they are not only consistent with the expected

outcome of the research, but also highlight the significance of employing Digital Twin

technology in modern manufacturing systems. Both mitigation strategies proved to be useful,

although the analysis showed that reallocating an optimal batch of items yielded the best results

when compared to reallocating one item at a time.

The reallocation strategies improved the Throughput and reduced the Cycle Time of the system,

compared to the scenario in which a time failure occurs and the Digital Twin is not implemented

to mitigate the issue. Thus, it is demonstrated that in scenarios where time failures happen, the

system’s ability to adjust its task allocations dynamically, through the use of the Digital Twin,

ensured better overall performance and resource utilization.

The results then reveal that the use of the Digital Twin significantly improves the adaptability

of production environments. By generating a virtual representation of a physical system,

mirroring operating conditions and leveraging real-time data, the Digital Twin can foresee

problems and act upon it by activating accordingly mitigation strategies.

66

The integration of the Digital Twin technology into production environments brings several

advantages. As displayed in the application, it can improve the system’s efficiency, mitigate

issues and optimize the use of resources by balancing workloads dynamically. Moreover, from

an economic perspective, it helps mitigate financial losses associated with inefficiencies in

production.

Looking forward, there are promising applications for further exploration. Expanding the

implementation of the Digital Twin to a larger production environment could provide a more

comprehensive understanding of the potential of the Digital Twin. Additionally, more advanced

algorithms for the task reallocation strategies could be developed for the Digital Twin to better

adapt to occurring failures. Moreover, the Digital Twin model could be improved to better

represent the physical system by including information gathered from additional data sources

of the physical system.

In conclusion, the study confirms that the Digital Twin represents a significant advancement

applied to manufacturing and production systems. As the technology evolves, its role in

managing failures and optimizing performance is likely to become increasingly valuable.

67

References

[1] Grieves, M., & Vickers, J. (2011). Digital twin: Manufacturing excellence through virtual

factory replication. In Proceedings of the Fifth Annual IEEE International Conference on

Cyber Physical Systems (pp. 1-7). IEEE.

[2] Sharma, A., Kosasih, E., Zhang, J., Brintrup, A., & Calinescu, A. (2022). Digital twins:

State of the art theory and practice, challenges, and open research questions. Journal of

Industrial Information Integration, 30, 100383.

[3] Grieves, M. (2003). Digital twin: Manufacturing excellence through virtual factory

replication. Presented at the Society of Manufacturing Engineers Conference.

[4] Tao, F., Zhang, H., Liu, A., & Nee, A. Y. C. (2018). Digital twin in industry: State-of-the-

art. IEEE Transactions on Industrial Informatics, 15(4), 2405-2415.

[5] Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital twin: Enabling technologies,

challenges, and open research. IEEE Access, 8, 108952-108971.

[6] Methuselah, J. (2024). Digital twin technology for smart manufacturing. Journal of

Technology and Systems, 6(4), 52–65.

[7] Soori, M., Arezoo, B., & Dastres, R. (2023). Digital twin for smart manufacturing: A review.

Sustainable Manufacturing and Service Economics, 2, 100017.

[8] Hamza Zafar, M., Langås, E. F., & Sanfilippo, F. (2024). Exploring the synergies between

collaborative robotics, digital twins, augmentation, and industry 5.0 for smart manufacturing:

A state-of-the-art review. Robotics and Computer-Integrated Manufacturing, 89, 102769.

[9] Röhm, B., & Anderl, R. (2022). Simulation data management in the digital twin (SDM-DT)

– Evolution of simulation data management along the product life cycle. Procedia CIRP, 105,

847-850.

[10] Li, Y., Tao, Z., Wang, L., Du, B., Guo, J., & Pang, S. (2023). Digital twin-based job shop

anomaly detection and dynamic scheduling. Robotics and Computer-Integrated

Manufacturing, 79, 102443.

[11] Whitmore, D. (2024). Digital twins in the asset life cycle: Are we there yet? Proceedings

of the Institution of Civil Engineers - Management, Procurement and Law. Available online 30

July 2024.

[12] Arumugam, T., Kamble, N. K., Guntreddi, V., Sakravarthy, N. V., Shanthi, S., &

Ponnusamy, S. (2024). Analysis and development of smart production and distribution line

68

system in smart grid based on optimization techniques involving digital twin. Measurement:

Sensors, 34, 101272.

[13] Qiu, F., Chen, M., Wang, L., Ying, Y., & Tang, T. (2023). The architecture evolution of

intelligent factory logistics digital twin from planning, implementation to operation. Advances

in Mechanical Engineering, 15(9).

[14] Zhang, F., Bai, J., Yang, D., & Liu, X. (2022). Digital twin data-driven proactive job-shop

scheduling strategy towards asymmetric manufacturing execution decision. Scientific Reports,

12, 1546.

[15] Liu, X., Jiang, D., Tao, B., Xiang, F., Jiang, G., Sun, Y., Kong, J., & Li, G. (2023). A

systematic review of digital twin about physical entities, virtual models, twin data, and

applications. Advanced Engineering Informatics, 55, 101876.

[16] Javaid, M., Haleem, A., & Suman, R. (2023). Digital twin applications toward Industry

4.0: A review. Cognitive Robotics, 3, 71-92.

[17] Tao, F., Qi, Q., Wang, L., & Nee, A. Y. C. (2019). Digital twins and cyber–physical systems

toward smart manufacturing and Industry 4.0: Correlation and comparison. Engineering, 5(4),

653–661.

[18] Yan, D., Sha, W., Wang, D., Yang, J., & Zhang, S. (2022). Digital twin-driven variant

design of a 3C electronic product assembly line. Scientific Reports, 12, 3846.

[19] Ayankoso, S., Kaigom, E., Louadah, H., Faham, H., Gu, F., & Ball, A. (2024). A hybrid

digital twin scheme for the condition monitoring of industrial collaborative robots. Procedia

Computer Science, 232, 1099–1108.

[20] Mazumder, A., Sahed, M. F., Tasneem, Z., Das, P., Badal, F. R., Ali, M. F., Ahamed, M.

H., Abhi, S. H., Sarker, S. K., Das, S. K., Hasan, M. M., Islam, M. M., & Islam, M. R. (2023).

Towards next generation digital twin in robotics: Trends, scopes, challenges, and future.

Heliyon, 9(2), e13359.

[21] Albini, T., Brocchi, A., Murgia, G., & Pranzo, M. (2023). Real-time optimization for a

Digital Twin of a robotic cell with human operators. Computers in Industry, 146, 103858.

[22] Fang, Y., Peng, C., Lou, P., Zhou, Z., Hu, J., & Yan, J. (2019). Digital-twin-based job shop

scheduling toward smart manufacturing. IEEE Transactions on Industrial Informatics, 15(12),

6425–6435.

69

[23] Baratta, A., Cimino, A., Longo, F., & Nicoletti, L. (2024). Digital twin for human-robot

collaboration enhancement in manufacturing systems: Literature review and direction for

future developments. Computers & Industrial Engineering, 187, 109764.

[24] Li, X., He, B., Wang, Z., Zhou, Y., Li, G., & Zhu, Z. (2024). A digital twin system for task-

replanning and human-robot control of robot manipulation. Advanced Engineering

Informatics, 62(A), 102570.

[25] Yao, B., Xu, W., Shen, T., Ye, X., & Tian, S. (2023). Digital twin-based multi-level task

rescheduling for robotic assembly line. Scientific Reports, 13, Article 1769.

[26] Zhang, Z., Ji, Y., Tang, D., Chen, J., & Liu, C. (2024). Enabling collaborative assembly

between humans and robots using a digital twin system. Robotics and Computer-Integrated

Manufacturing, 86, Article 102691.

[27] Zhang, X., Wu, B., Zhang, X., Duan, J., Wan, C., & Hu, Y. (2023). An effective MBSE

approach for constructing industrial robot digital twin system. Robotics and Computer-

Integrated Manufacturing, 80, Article 102455.

[28] IBM. (n.d.). What is a digital twin? Retrieved July 16, 2024, from

https://www.ibm.com/topics/what-is-a-digital-twin

[29] Flexsim. (n.d.). Flexsim: A powerful simulation modeling software. Retrieved January 20,

2024, from https://www.flexsim.com/flexsim/

[30] FlexSim. (n.d.). Emulation. In FlexSim documentation. Retrieved July 7, 2024, from

https://docs.flexsim.com/en/21.2/Reference/Tools/Emulation/Emulation.html

[31] FlexSim. (n.d.). PLC emulation. FlexSim. Retrieved July 7, 2024, from

https://www.flexsim.com/plc-emulation/

[32] Universal Robots. (n.d.). UR3 robot. Retrieved August 14, 2024, from

https://www.universal-robots.com/products/ur3-robot/

[33] Universal Robots. (n.d.). CB3 series robots. Retrieved August 14, 2024, from

https://www.universal-robots.com/products/cb3/

[34] Radiant Digital. (n.d.). Digital twin: Converging the virtual and physical worlds to

accelerate transformational innovation. Radiant Digital. https://www.radiant.digital/digital-

twin-converging-the-virtual-and-physical-worlds-to-accelerate-transformational-innovation/

https://www.ibm.com/topics/what-is-a-digital-twin
https://www.flexsim.com/flexsim/
https://docs.flexsim.com/en/21.2/Reference/Tools/Emulation/Emulation.html
https://www.flexsim.com/plc-emulation/
https://www.universal-robots.com/products/ur3-robot/
https://www.universal-robots.com/products/cb3/
https://www.radiant.digital/digital-twin-converging-the-virtual-and-physical-worlds-to-accelerate-transformational-innovation/
https://www.radiant.digital/digital-twin-converging-the-virtual-and-physical-worlds-to-accelerate-transformational-innovation/

70

List of Figures

Fig 1. Digital Model, Digital Shadow and Digital Twin.

Fig 2. Digital Twin interaction with Manufacturing and Production Environments.

Fig 3. List of available Fixed Resources and Task Executers.

Fig 4. Common fixed resources used for 3D Modelling.

Fig 5. Input/Output connection in Flexsim.

Fig 6. Output ports of a Queue element connected to various Processors.

Fig 7. Instructions for managing the state of the ports.

Fig 8. Object customization done for the Application of Digital Twin.

Fig 9. Predetermined parameter values of a Processor object.

Fig 10. Common elements of the Process Flow.

Fig 11. Variable connected to a Set Variable and a Get Variable element.

Fig 12. List of available pre-programmed Triggers and Events associated to common Fixed

Resources.

Fig 13. Creating a connection using Flexsim’s Emulation Tool.

Fig 14. Sensor Variable used in the Application.

Fig 15. Control Variable used in the Application.

Fig 16. List of possible actions associated with a Processor.

Fig 17. Example of Flexsim’s Dashboard.

Fig 18: Set up of the Application in the Laboratory.

Fig 19. Set up of the Application in the Laboratory, with the addition of the third robot

performing the dynamic task reallocation.

Fig 20. Digital twin Physical System, Virtual System and the connection among them.

Fig 21. UR3e robotic arms with its teach pedant.

Fig 22. Virtual System of the Application.

Fig 23. Flexsim’s Emulation Tool, connection between the robots and the simulation.

Fig 24. Robot UR3e’s logics.

Fig 25. Robot UR3e’s process flow.

Fig 26. Robot UR3 CB’s logics.

Fig 27. Robot UR3 CB’s logics process flow.

Fig 28. Trigger inside the Queue elements.

Fig 29. Triggers inside the Processor elements.

Fig 30. Logics inside the output port of the Processor.

71

Fig 31. Triggers inside the Queue element.

Fig 32. Triggers inside the Queue element.

Fig 33. Process Flow Variables used in the Application.

Fig 34. Actions taken by the Cycle Variable.

Fig 35. Resume Input and Stop Output graphical representation.

Fig 36. Resume Input and Stop Output in the Application.

Fig 37. Stop Input and Resume Output graphical representation.

Fig 38. Stop Input and Resume Output in the Application.

Fig 39. Condition applied in the first Decide Block.

Fig 40. Process Flow before the reallocation of items.

Fig 41. Process Flow of the Third scenario of the Application of Digital Twin for dynamic task

allocation.

Fig 42. Process Flow for the Third scenario of the Application of Digital Twin for dynamic task

allocation.

Fig 43. Process Flow of the Fourth scenario of the Application of Digital Twin for dynamic

task allocation.

Fig 44. Process Flow for the Fourth scenario of the Application of Digital Twin for dynamic

task allocation.

Fig 45. First scenario, non-dynamic scheduling without failure.

Fig 46. Flexsim’s dashboard for the First Scenario.

Fig 47. Second scenario, non-dynamic scheduling with time failure.

Fig 48. Flexsim’s dashboard for the Second Scenario.

Fig 49. Third scenario representing the dynamic scheduling with time failure, with the

relocation of one item at a time.

Fig 50. Flexsim’s dashboard for the Third Scenario.

Fig 51. Forth scenario representing the dynamic scheduling with time failure, relocating a batch

of three units.

Fig 52. Flexsim’s dashboard for the Forth Scenario.

List of Tables

Table 1. Variables of the Virtual System and its Signals of the Physical System.

Table 2. Indicator values for the three scenarios.

