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Abstract 
In contemporary manufacturing systems the use of the Digital Twin technology provides 

valuable insights for enhancing real-time performance and adaptability. By creating virtual 

replicas of physical systems with bidirectional data flow and constant synchronization, Digital 

Twins enable live monitoring and optimization of processes, increasing operational efficiency, 

minimizing downtime and enhancing the quality of products.  

In the context of dynamic scheduling, it serves as a valuable tool for identifying issues that may 

disrupt the planned schedule. When failures are detected, Digital Twin models can dynamically 

adjust the original schedule, implementing real-time response strategies to effectively mitigate 

disruptions. 

This paper explores the utilization of a Digital Twin in optimizing the performance of a physical 

system within a practical application developed in the Mind4Lab Lab of the Politecnico di 

Torino. The study examines how the use of a Digital Twin for dynamic scheduling and 

reallocation of tasks can effectively identify and mitigate production problems and failures, 

especially when applied to robotic systems.  

The research is focused on the application of the Digital Twin for processes under changing 

conditions, as it addresses challenges related to failures and inefficiencies within a production 

system. The impacts of different dynamic scheduling approaches on mitigating failures are 

evaluated and compared against non-dynamic scheduling, highlighting the critical advantages 

of implementing a Digital Twin in modern manufacturing environments. The study includes an 

analysis of scenarios involving different reallocation strategies to optimize the system’s 

parameters (Throughput, Cycle Time, and Utilization).  

The work is structured into three main parts. Initially, the concepts and technologies behind 

Digital Twins are introduced, including their application in the industry. Secondly, a detailed 

Case Study is presented to demonstrate the implementation of the Digital Twin in managing a 

process in which a system of robots experiences time failures. Finally, an analysis of the 

performance metrics collected from the different scenarios is provided.  

The obtained results demonstrate that the use of the Digital Twin for dynamic scheduling 

improves the performance of the system by mitigating the effects of errors and time failures 

and optimizing the allocation of resources.  The findings validate the effectiveness of Digital 

Twin technology in improving operational efficiency, thereby highlighting its potential when 

applied to manufacturing and production processes. 
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Digital Twin technology 
A Digital Twin is a dynamic virtual model of a physical system, with a bidirectional data flow 

that enables real-time synchronization. The Digital Twin is constantly updated with data, 

allowing it to reflect the live state of the physical system it represents. Moreover, it is also able 

to send information back to the physical system, thus responding and adapting to changes in 

the environment. These abilities enable the Digital Twin to be used for monitoring, analysis, 

and optimization of operational systems. 

To better understand the concept of Digital Twin, it is important to differentiate between the 

related concepts of Digital Model and Digital Shadow. 

A Digital Model is a static representation of a physical system. It is characterized by the lack 

of information exchange between the virtual and physical systems and by the lack of influence 

on the virtual model due to changes in the physical system. Therefore, unlike the Digital Twin 

its ability to reflect the current state of the system is limited. Nevertheless, it is a useful tool for 

performing initial design and analysis. 

A Digital Shadow represents a one-way flow of data from the physical system to the virtual 

model. While it is able to capture the past or current states of the physical system, thus updating 

the virtual model with it, it is not able to provide continuous updates, feedback or changes to 

the physical system.  

In contrast, the Digital Twin presents the most complete model, offering bidirectional data 

flows: from the physical system to the virtual model and from the virtual model to the physical 

system. This way, both components are fully integrated, and the Digital Twin is not only an 

accurate current representation of the physical system, but it also provides a feedback loop to 

it, that enables for optimization and improvement of the performance of the system.  

 
Fig 1. Digital Model, Digital Shadow and Digital Twin. 



8 
 

Components of the Digital Twin 

The main components of the Digital Twin concept model are a) the physical system (Real 

Space), b) the virtual model (Virtual Space) and c) the connections of data between the two, 

consisting of information flows from the physical system to the virtual model and from the 

virtual model to the physical system.1 

1. The physical system is the tangible, actual object or system in the real world, which is 

represented by the Digital Twin. The asset's physical characteristics, behavior, and 

operational conditions are the primary inputs for the Digital Twin. 

2. The virtual model is the digital representation of the physical system, and it reflects 

the physical asset's properties, behavior, and lifecycle. To accurately represent the 

physical system in a virtual environment it integrates different data sources, including 

physical models, simulations, and historical data. This component is used for real-time 

monitoring, simulation, and analysis. 

3. The information flow refers to the bidirectional data exchange between the physical 

and virtual systems. It ensures that the Digital Twin remains synchronized with the 

physical system by continuously updating the virtual model with real-time data and vice 

versa. 

Moreover, for the Digital Twin to work correctly, its interaction with other elements is needed.  

Sensors and Data Acquisition Systems are used to collect information from the physical system. 

Sensors, IoT devices and other data acquisition technologies allow the transformation of 

physical states, performances, environments and characteristics of the physical system into 

readable and actionable variables that serve as inputs for the Digital Twin.   

Furthermore, Simulation and Analytics Engines, that are the software tools and platforms used 

to analyze and simulate the data collected from the physical system, allow for the performance 

of analysis, predictive modelling and simulations based on the data gathered. Other tools, like 

Machine Learning or Artificial Intelligence (AI) can be integrated for driving predictions and 

feedback. 

User Interface and Visualization Tools allow users to interact with the Digital Twin and 

visualize its data and simulations, helping in understanding complex data and facilitating 

decision-making. This could refer for example to 3D Models and live performance dashboards. 

 
1 Grieves, M., & Vickers, J. (2011). Digital twin: Manufacturing excellence through virtual factory replication. In 

Proceedings of the Fifth Annual IEEE International Conference on Cyber Physical Systems (pp. 1-7). IEEE. 
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Security protocols for the data transmitted and for the flow of information between the various 

components involved in the Digital Twin are required. Authentication and authorization 

mechanisms are highly suggested.  

Finally, a Digital Twin performance evaluation is needed to ensure the correct functioning of 

the Digital Twin; by using evaluating metrics like accuracy, resilience and robustness of the 

Digital Twin model, evaluation methods and tests should be performed. 2 

 

Brief history of Digital Twin technology and State of Art 

The concept of Digital Twin was introduced in 2002 by Michael Grieves as part of his 

presentation on PLM at the SME Conference, referring to it as “a digital copy of one or a set 

of specific devices that can abstractly represent a real device and can be used as a basis for 

testing under real or simulated conditions”. 3 

In 2011, Michael Grieves and John Vickers would propose a renewed definition for the Digital 

Twin concept, emphasizing the need for a dynamic interaction between the physical and virtual 

systems, and defining its three necessary components previously mentioned: the physical 

system, the virtual model and the bidirectional flow of data between the two. This definition 

laid the groundwork for the Digital Twin technology. 

NASA further developed the Digital Twin concept by applying the technology in the context 

of spacecraft and advanced aerospace vehicles. They were able to advance the concept beyond 

its initial theoretical framework by using Digital Twin models to simulate and test spacecraft 

systems and components in a virtual environment, mirroring operational conditions, helping in 

its design, testing and operational management. 

In the following years, the Digital Twin technology has become widely applied with the rise of 

Industry 4.0. The integration of Digital Twin with the technologies of Industry 4.0, such as 

Internet of Things (IoT), Artificial intelligence (AI), Cyber-Physical Systems (CPS), Big Data 

and advanced simulation technologies, expanded its use to different industry sectors.  

 
2 Sharma, A., Kosasih, E., Zhang, J., Brintrup, A., & Calinescu, A. (2022). Digital twins: State of the art theory 

and practice, challenges, and open research questions. Journal of Industrial Information Integration, 30, 100383. 
3 Grieves, M. (2003). Digital twin: Manufacturing excellence through virtual factory replication. Presented at the 

Society of Manufacturing Engineers Conference. 
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With these technological advancements, more detailed and accurate digital models could be 

created, thus facilitating the predictive maintenance, real-time monitoring and optimization of 

production processes.4  

The use of IoT devices and big data analytics increased the capabilities of Digital Twins, as IoT 

sensors facilitated real-time data collection from physical systems and big data tools enabled 

the analysis and integration of the data into the virtual models. This allowed for the expansion 

of the Digital Twin into various areas of application, such as predictive maintenance and fault 

detection in production systems, improvement of manufacturing processes and smart city 

developments, detection of anomalies in patient care, fault detection and traffic management 

in smart cities, among others.5 

More recent developments focus on integrating Digital Twins with emerging technologies such 

as 5G, edge computing, and advanced robotics, which promise to expand the capabilities of 

Digital Twins.  

 

Digital Twin applied to Manufacturing and Production Environments 

The Digital Twin technology has become a key tool for decision making in all steps of the 

Product Lifecycle Management, as it is used for monitoring and analyzing products during their 

entire life cycle. Its use allows for optimizing production processes by enhancing operational 

efficiency, reducing downtime, and improving product quality.6 Moreover, a Digital Twin 

System can provide support to the design, reconstruction, integration, monitoring, operation 

and maintenance of production lines. 7 

The application of the Digital Twin in the manufacturing industry and in production 

environments is particularly promising, as factories are becoming increasingly more connected 

and reliant on data-driven decisions, and the amount and variety of information generated by 

productive processes is growing at a fast rate. Moreover, emerging technologies and the 

extended use of sensors, controllers and actuators, make possible both the acquisition of large 

amounts of data from production systems, and the transmission of information to them. 

 
4 Tao, F., Zhang, H., Liu, A., & Nee, A. Y. C. (2018). Digital twin in industry: State-of-the-art. IEEE Transactions 

on Industrial Informatics, 15(4), 2405-2415. 
5 Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital twin: Enabling technologies, challenges, and open 

research. IEEE Access, 8, 108952-108971. 
6 Methuselah, J. (2024). Digital twin technology for smart manufacturing. Journal of Technology and Systems, 

6(4), 52–65. 
7 Yan, D., Sha, W., Wang, D., Yang, J., & Zhang, S. (2022). Digital twin-driven variant design of a 3C electronic 

product assembly line. Scientific Reports, 12, 3846. 
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Besides, physical systems can act upon the received signals, making use of the full capabilities 

of the Digital Twin technology. Fig 2. illustrates a possible flow of information within 

manufacturing systems and when implementing a Digital Twin.  

A Digital Twin model acts on data collected by sensors as well as on information obtained from 

other internal or external environments. With these data, and considering the physical system 

logics, the Digital Twin is able to create an accurate representation of the physical system, 

allowing for predictions to be made on it, and ultimately enabling autonomous real-time 

decision-making. By using actuators, the decisions transmitted are then used to modify the 

physical environments, making use of the full capabilities of the Digital Twin.  

 
Fig 2. Digital Twin interaction with Manufacturing and Production Environments. 

In the context of the Digital Twin technology, sensors allow for the collection of live data from 

physical systems, that then serve as inputs for the virtual model of the Digital Twin; they detect 

physical or chemical magnitudes and transforms them into electrical variables. Different types 

of sensors are commonly used in the manufacturing industry depending on the process 

performed and the measured variable, such as temperature, humidity, proximity and force 

sensors, among others. 

Controllers, such as PLCs and other servers, collect the data gathered by the different sensors 

and send the information to the virtual model of the Digital Twin. Moreover, as the Digital 

Twin can analyze the data collected and drive feedback into the system, it is also possible to 

manage and automate physical system processes based on the data received from the model, 

by commanding specific actions on the actuators.  

Finally, actuators take the signals received from the controller and upon it perform physical 

adjustments to the process, acting according to the optimization suggestions made by the 
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Digital Twin. Actuators in production environments can be of different types, such as electric, 

pneumatic, hydraulic, thermal, among others.  

As the technologies used for retrieving and transmitting data evolve, allowing for more 

parameters to be measured and controlled, so do the functionalities and applications of the 

Digital Twin. Additionally, the integration of robotics and other automation tools in factories is 

elevating the complexity of manufacturing systems, as they allow for a broader range of tasks 

to be performed.  

Some of the main applications of Digital Twin within manufacturing and production systems 

include product development, optimization of production, predictive maintenance, quality 

assurance, training of operators, energy management and supply chain and logistics.  

Related to product development, Digital Twins facilitate the creation of virtual prototyping for 

the optimization of product designs. The simulation and testing of products in a virtual 

environment reduces costs and time and allows for the creation of products with enhanced 

qualities.   

For production optimization, the use of Digital Twin systems allows for the creation of process 

simulations and its real time monitoring. This helps identify possible bottlenecks and mitigate 

them, optimize production lines, and subsequently, improve the efficiency of the overall 

process. Moreover, the Digital Twin technology allows for the identification of failures and 

errors within the production process and for its mitigation and resolution.  

Another great application for the Digital Twin is the predictive maintenance of production 

systems. By using the technology, the condition of equipment can be monitored and its failure 

predicted and mitigated, thus minimizing downtown of machinery and extending its useful life.  

Digital Twins for quality assurance help ensure that products are consistent with the required 

quality, detect deviations from it and implement corrective measures.  

Related to the training of operators, it is used for their practice and development of skills in a 

riskless environment. It can also be used for training security protocols and how to handle 

unexpected issues that may arise.  

For energy management, simulations related to energy usage can be done, helping identify 

opportunities for energy savings and testing and implementing energy efficient and cost 

reduction practices. 
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Finally, in the supply chain and logistics area, Digital Twins can help optimize inventory, 

improve storage, retrieval and transportation processes, and monitor the logistics and supply 

chain sector in general. 

Furthermore, Digital Twins can be applied to different levels within the production process, 

depending on the system to be modeled and the amount of detail needed. At component level, 

Digital Twins are used when the focus is on a single critical component within the process. 

Asset level Digital Twins are used for modeling single assets within a production line, while 

process level Digital Twins aim at optimizing processes like design, development and 

production, and system level Digital Twins monitor and potentially improve entire production 

line system. Moreover, product level Digital Twins helps monitor a single product in real-time 

as used by real customers or end-users. 8 

In particular, implementing a Digital Twin is highly beneficial when physical prototyping 

involves high costs, requires resources and is time-consuming, when it involves extreme testing 

conditions, when real-time monitoring is essential, and for products or products lifecycles with 

multiple parameters which could be optimized jointly. 9 

 

Digital Twins for Industrial Robotics  

The Digital Twin technology in robotics has come a long way in terms of domains of 

implementation and possible applications. Current areas of application for Digital Twins for 

robotics include space robotics, medical and rehabilitation robotics, soft robotics, human-robot 

interaction and industrial robotics.  

For the context of this thesis, the last one is of interest. Robots have become an important 

element in the automation of industrial manufacturing systems, as they enhance task 

performance by reducing both the time required to complete tasks and the operational quality 

of repetitive processes. This results in faster production cycles and greater overall efficiency. 

Moreover, by handling repetitive and hazardous tasks, the utilization of robots frees up human 

resources, allowing them to engage in more complex and creative activities, thus driving 

innovation and growth within the industry.  

 
8 Radiant Digital. (n.d.). Digital twin: Converging the virtual and physical worlds to accelerate transformational 

innovation. Radiant Digital. https://www.radiant.digital/digital-twin-converging-the-virtual-and-physical-worlds-

to-accelerate-transformational-innovation/ 
9 Sharma, A., Kosasih, E., Zhang, J., Brintrup, A., & Calinescu, A. (2022). Digital twins: State of the art theory 

and practice, challenges, and open research questions. Journal of Industrial Information Integration, 30, 100383. 

https://www.radiant.digital/digital-twin-converging-the-virtual-and-physical-worlds-to-accelerate-transformational-innovation/
https://www.radiant.digital/digital-twin-converging-the-virtual-and-physical-worlds-to-accelerate-transformational-innovation/
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Current needs require robots to adapt to real-time situations, to be able to address issues that 

arise within production, such as fluctuations in demand or unexpected disruptions. While robots 

can develop effective control strategies through interactive learning in simulated environments, 

inconsistencies between the simulated environment and reality can arise, posing a challenge to 

the performance of the robots. In this context, the Digital Twin technology serves as a powerful 

tool for monitoring and optimizing robotic systems.  

Digital Twin systems enable the creation of detailed models and simulations of robotic 

environments, providing valuable insights into robot performance. This facilitates the 

optimization of key areas, such as navigation planning, perception analyses, and decision-

making, while allowing for testing and validation to be performed in a virtual setting. 

Additionally, Digital Twin models can be used for real-time remote control and monitoring of 

robotic systems, allowing for automatic responses to changes in parameters. This offers 

immediate real-time insights into the performance of the system and enables proactive 

adjustment to be made swiftly, ensuring smoother workflows, reducing downtime and 

improving the overall performance and efficiency of robotic systems.  

Furthermore, the Digital Twin enhances autonomous learning and decision-making capabilities 

for robots. By integrating algorithms, such as deep learning and reinforcement learning, with 

the Digital Twin framework, robots can undergo effective training and optimization, leading to 

improved performance and adaptability. 

Within industrial robotics, Digital Twins can be used for monitoring robot states, planning 

assembly and disassembly sequences, learning grasping techniques, navigating environments, 

generating collision-free paths, and facilitating human-robot interaction, among other 

applications. Recent trends include work related to robot work-cell simulations, Digital Twin-

aided plant maintenance, Digital Twin-aided AI implementations, industrial cloud and edge 

robotics cloud and blockchain in industrial robotic Digital Twins.  

In practice, Digital Twin systems applied to industrial robotics are increasingly being 

implemented to reduce the costs and risks associated with production processes.10 

 

 
10 Zhang, X., Wu, B., Zhang, X., Duan, J., Wan, C., & Hu, Y. (2023). An effective MBSE approach for constructing 

industrial robot digital twin system. Robotics and Computer-Integrated Manufacturing, 80, Article 102455.  
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Digital Twin for Dynamic Scheduling and Reallocation Processes 

Production scheduling plays a central role in the manufacturing process, as it directly influences 

the efficiency of production systems. Challenges such as unforeseen events, unexpected 

disturbances, and information gaps often affect the quality of the scheduling, for which 

traditional scheduling methods lack effectiveness in mitigating.  

In traditional scheduling the parameters used, such as the processing time of a machine, are 

estimated based on statistics regarding the production process and taken as constants for 

calculating the schedule to be followed. In reality, these parameters depend on several factors 

and are not static; a significant difference between the values estimated and reality can pose a 

real threat to the planned schedule.  

To address this issue, predictive scheduling provides a solution by using data analytics and 

forecasting tools to enhance the accuracy of the scheduling process. By integrating historical 

and real-time data and predictive models it anticipates potential disruptions, thus developing 

an improved schedule. Nonetheless, it still involves creating the schedule in advance, which 

can introduce some rigidity when handling unforeseen events.  

Dynamic scheduling is an evolution of predictive scheduling that allows for the creation of 

both a baseline schedule to be followed and a strategy on how to respond to unexpected events 

in real time, allowing for real-time adjustments to be done to the proposed schedule. It 

continuously updates and modifies the schedule as new information becomes available, with 

the aim of reducing downtimes, improving responsiveness and adaptiveness of the schedule 

and hence improving the efficiency of the overall process.  

In the area of dynamic scheduling the Digital Twin technology is a valuable tool for detecting 

problems that could pose a significant change in the planned schedule of a production system, 

as it enables real-time monitoring and facilitates optimization improvements within the 

process. Upon detection of failures, Digital Twin models could activate mechanisms to adapt 

the original baseline schedule to mitigate the failures; it allows for the creation of a strategy 

stating how to respond to events in real time.  

Furthermore, dynamic scheduling could allow for the interaction between different machines 

when an unexpected problem compromises the planned schedule. Mitigating strategies could 

involve the reallocation of items to be produced or processed between different machines 

working in parallel or within a system of machines.  
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The implementation of Digital Twins for dynamic scheduling issues can have two different 

approaches based on the way they operate when an issue occurs: reactive or preventive. 

In the reactive situation, upon the occurrence of an issue, the new information is fed back to 

the Digital Twin model for recalculation and re-execution of the program. It involves 

continuous recalculation of outcomes based on new information taken.  

With the preventive approach, the need for constant rescheduling is minimized. This is done 

either by minimizing the adjustments needed in each rescheduling situation, and therefore 

reducing the organizational challenges associated with each change in the schedule, or by 

establishing a certain threshold for the foreseen deviations on the planned schedule and 

activating the rescheduling process only when the threshold is met. This threshold limit then 

represents the critical point for when measures need to be taken in order to comply with a 

specific timing taking into account normal deviations in the production.   
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Software and Tools used in the Application of Digital Twin - 

Flexsim software 
FlexSim was selected as the software for the Digital Twin Application as it allows for both 

good user interface and visualization tools and advanced simulation and analytics. It not only 

enables the real-time virtual representation of processes, but it also allows for the generation 

of logics within the program. These logics can then dictate the behavior of elements within the 

physical system, thanks to Flexsim’s Emulation Tool. By using Flexsim one can create a Digital 

Twin within the software and without the need for additional programs. 

With respect to the user interface and visualization tools, Flexsim’s 3D Model can offer a live 

representation of the physical system for the user to have a real-time notion of what is 

happening in its physical counterpart. Moreover, Flexsim’s dashboards can provide a live 

display of the different measurable parameters and variables of interest of the system. 

Simulations and analysis can be also done within the Flexsim environment, as it allows for 

logic creation both within its 3D Model and the Process flow. Flexsim’s Emulation Tool allows 

for the connection of the simulation with PLCs and other servers of the physical system, 

allowing for the bidirectional data flow necessary for the Digital Twin application.  

In short, FlexSim offers a complete suite of tools and functionalities to model and analyze 

complex systems across various industries, enabling in-depth analysis, optimization, and 

experimentation within a virtual environment11, which makes it a great tool for the development 

of a Digital Twin application.  

 

Flexsim’s main uses, tools and functionalities 

FlexSim is a simulation software with high versatility and a user-friendly interface. It allows 

users to construct detailed 3D models of systems, applying them to various applications across 

industries, including manufacturing, logistics, healthcare, and service operations. FlexSim's 

scalability allows it to adapt to the needs of its users, as it can accommodate models of different 

complexities and scales.  

Within its functionalities Flexsim allows users to create 3D Models, enabling the creation of 

functional visual representation of real processes. Moreover, Process Flow models can also be 

 
11 Flexsim. (n.d.). Flexsim: A powerful simulation modeling software. Flexsim. Retrieved August 14, 2024, 
from https://www.flexsim.com/flexsim/ 
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generated, for users to build the model’s logic. Both modelling interfaces can then be connected 

to ensure the correct functioning of the simulation, and dashboards and statistical analysis can 

be generated. It also provides an Emulation tool that allows for real-time connections with 

PLCs or other servers.  

Flexsim’s Library provides a wide range of pre-built objects and resources to optimize 

simulation modeling and analysis. Users can simply drag and drop elements into their 

simulation models, combining them to best represent the system, and thus reducing modeling 

time and effort. These objects can then be customized to match specific requirements.  

Moreover, its Toolbox includes tools for model creation, object manipulation, data analysis, 

visualization, experimentation, and optimization, providing users with a wide range of 

modeling tools and features to create and customize simulation models according to their 

specific requirements. 

 

FlexScript and code customization  

FlexSim runs on FlexScript as its scripting language. While it has functions made specifically 

for the FlexSim simulation environment, including concepts such as variables, loops, 

conditionals, functions and data types, it shares syntactical similarities with C programming 

language. 

FlexScript allows for the writing of custom scripts inside objects within the 3D Model or on its 

Process Flow. These features allow users to interact with simulation objects, events, and data. 

For this reason, FlexScript is a powerful tool for automating tasks, implementing logics, and 

analyzing simulation results within FlexSim.  

 

3D modeling 

Objects of the Model 

One of the main advantages of Flexsim is that it allows 3D modelling, enabling the creation of 

very accurate virtual representations of real processes. FlexSim offers a bast variety of different 

3D objects available to build a Simulation Model.  

Starting with Flow items, these are the items that flow through the Simulation model, following 

its path through the process. They can represent different things within the Simulation, such as 
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material, products, customers, and orders. In the Simulation Model, Flow Items interact with 

Fixed Resources and Task Executers.  

 
Fig 3. List of available Fixed Resources and Task Executers. 

Fixed Resources are objects that remain fixed or immobile as they interact with Flow Items. 

Flow Items flow from one Fixed Resource to the next one downstream, continuing until 

reaching the end of the Simulation. Fixed resources can represent various processes within the 

model, the most common ones being workstations, storage centers and processing stations. 

Among the fixed resources that can be used to build models, the most popular ones are the 

Source, the Queue, the Processor and the Sink, as they represent the starting point, waiting area, 

processing stage and endpoint of Flow Items within a simulated system. By combining and 

connecting these components in a logical sequence, users can create dynamic simulations to 

analyze processes, ranging from simple to more complex ones. 

 
Fig 4. Common fixed resources used for 3D Modelling. 

The Source represents the starting point of a process flow in FlexSim since it is where the Flow 

Items are generated. These can be introduced following a specific rate or a predefined schedule, 

among other options.  
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The Queue is a storage area where Flow Items are retained, waiting for the next step of the 

process. Queues in FlexSim can represent physical storage areas or virtual buffers. Items can 

exit the queue following different configurations, such as first-in-first-out (FIFO) or last-in-

first-out (LIFO), or even some special logics. Queues may include additional parameters to 

control capacity, priorities, and routing.  

The Processor, also known as an activity or workstation, represents a step in the process where 

Flow Items are transformed, processed, or worked on. Processors in FlexSim simulate the 

actions or tasks performed on items as they move through the system, such as assembly, 

machining, inspection, or any other type of processing required in a production line. Processors 

can have specified processing times, resource requirements, and work schedules. 

The Sink represents the endpoint of Flow Items; entities that reach the sink are deleted from 

the simulation, and thus, end their journey through the system. The Sink can be used not only 

for finished products after a processing line, but also for waste or defective materials or other 

outputs of the process. 

Finally, Task Executers are objects that interact with Flow Items and Fixed Resources as they 

move through the Model. As its name suggests, Task Executers can be assigned tasks and task 

sequences, such as transporting Flow Items, setting up or operating machines, acting as a shared 

resource for processing stations, among other simulation tasks. They represent workers, AGVs, 

vehicles or transportation machineries and more.  

 

Element Connection and Port Properties 

The connection between the different elements in a Simulation is done through ports. Elements 

in Flexsim allow for connection through two ways: input-output, and center port connections.  

As the names suggest, an input port of an element is where entities enter the object, while an 

output port is where they exit it. Input/output port connections are generally used to link two 

fixed resources, allowing for flow items exchange and enabling their progression through the 

process. They are represented by a small triangle or arrow at the top of the 3D Model elements, 

as can be seen in Fig 5. The direction of the arrow indicates the direction of the process flow, 

with input ports arrows pointing towards the object and output ports arrows away from the 

object. 
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Fig 5. Input/Output connection in Flexsim. 

Center ports on the other hand, create an abstract reference point between objects, and are used 

to link task executers to fixed resources or any objects that reference each other.  

3D Model elements can be connected to multiple other elements, allowing for complex process 

modelling. Whenever a connection is made between two objects a rank is assigned to it. This 

ranking allows for easy referencing of these ports for various purposes, such as for creating 

conditional logics for items exiting an object.  

 
Fig 6. Output ports of a Queue element connected to various Processors. 

 

Close and Open Port  
Ports can be open or closed, and thus be available to receive or send items, or not. During a 

simulation run, open ports take the color green, while close ports the color red. Moreover, ports 

can be opened and closed as needed by using certain Triggers and Events.  

The State of both input and output ports can managed by four different instructions: Close, 

Stop, Open and Resume. 

 
Fig 7. Instructions for managing the state of the ports. 
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The Close input or Close output instructions block the input or output of the object respectively. 

This way, ports are blocked when this instruction is called.  

The Open input or Open output instructions act as the counterpart of the Close port instructions 

and unlocks the ports of the object after they have been previously closed with the Close port 

instructions.  

The Stop input or Stop output instructions operate like the Close port commands, but it also 

keeps track of the consecutive stop calls on the object and will only open the port after all stop 

calls have been resumed with its respective Resume input or Resume output instruction.  

Finally, the Resume input or Resume output commands opens the input or output of the object 

just like the Open port command does, but because they keeps track of previous Stop port calls 

on the object, they will only open the respective port after all stops have been resumed.  

In summary, if the Stop port commands are used, one will need as many Resume port 

instructions as times one has called the respective Stop port command. If the Close port 

commands are used however, one will need only one Open port instruction to open the port. 

When modelling the opening and closing of ports it is advised to use the Stop port and Resume 

port commands, rather than the Close port and Open port instructions. 

 

Properties of the objects and customization 

Flexsim offers an extensive range of features for personalizing objects within the simulation, 

to best represent the physical system, both in appearance and functionality.  

Within the 3D Modelling features FlexSim provides tools that allow users to customize the 

appearance of objects, modifying parameters such as texture, color, shape, among others. It is 

also possible to import custom 3D objects. Additionally, it is possible to add custom labels and 

graphics to objects within the 3D Model, providing additional information on it.  
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Fig 8. Object customization done for the Application of Digital Twin. 

Related to its functionality, Flexsim also allows for the customization of the object’s properties 

and attributes. Parameters such as processing time, capacity, size, weight, and resource 

requirements can be defined.  

 
Fig 9. Predetermined parameter values of a Processor object. 
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Process Flow Modeling 

Flexsim also allows for Process Flow modelling. With pre-built activity blocks, it is possible 

to build the logic of the simulation with a flowchart approach. Dynamic process flows, decision 

trees and routing rules, can be created, enabling the creation of all types of simulation logics, 

from simple to more complex ones.  

Moreover, building the logics of the simulation throughout Process Flow modelling eases the 

generation of logics, allows for the centralization of the logics in one place and facilitates 

scalability and debugging as the model changes and progresses. 

 

Elements of the Process Flow 

To build logics in Flexsim a list of predefined activities is provided. Activities can be combined 

in different orders as needed, allowing tokens to circulate through the process, activating 

different logics as they do so. Among the most common activity blocks, it is worth mentioning 

the Source, the Decide, the Delay, the Wait for Event and the Sink.  

 
Fig 10. Common elements of the Process Flow. 

The Source element marks the starting point of the process flow, where tokens are generated 

and introduced into the system. There are different types of sources that can be used depending 

on whether tokens arrive at a specified rate, according to a schedule, based on predefined 

Events or other conditions. 

The Decide element allows for different scenarios to take place depending on if certain defined 

conditions are met or not; they are generally connected to two or more activities and depending 

on if the condition is met or not tokens follow its way to one or other subsequent activity. They 

can be used to control the flow of tokens or trigger specific actions, allowing for different 

scenarios to take place conditionally according to the current state of the simulation. The 

conditions inside the Decide block can be of various types, such as based on a condition, a case, 

a time, a probability percentage, following a statistical distribution, among others.  
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The Wait for Event element momentarily stops the execution of the Process Flow until a 

specified Event takes place. Once a token arrives to this activity, it is held while listening for a 

specific event to occur in the Simulation, both in the 3D Model and Process Flow. Tokens can 

be released to the next activity in the Process Flow only when the Event occurs.  

The Event to wait for can be related to entity arrivals, resource availability or other user-defined 

events. The Wait for Event block is used to synchronize activities, coordinate actions, or 

manage timing within the simulation, ensuring that actions occur only when specific events or 

conditions are met and not before. 

The Delay block introduces a waiting time before the token proceeds to the next activity. It is 

used when there is a specific fixed time between the occurrence of events, but it can also be 

used as a security buffer time to ensure the correct functioning of the model. The delay time 

can be fixed or follow a statistical distribution. 

Like the Sink in the 3D Model, the Sink element in the Process Flow is the endpoint of tokens. 

Consequently, Tokens that reach the Sink are deleted from the Process Flow. 

Moreover, FlexSim offers other specific blocks that allow for the correct functioning of the 

model, like the Merge and Split element, that combines or separates flow paths for entities 

within the process flow. Also, Flexsim has a Custom Code element, that allows for the 

execution of custom code defined by the user, for more specific applications.  

 

Variable, Set and Get Variable 

Flexsim’s Process Flow allows for the creation of internal variables. These variables can be 

connected to the simulation by the Set Variable and the Get Variable elements, which allows 

assigning and retrieving values to and from variables respectively.  

The Set Variable element modifies the value of variables within the Process Flow. Among other 

possible uses, the Set Variable block allows for fixed values, calculations or state updates based 

on predefined logics, to be assigned to variables. Set Variables are used to track and manipulate 

data, parameters, or states within the simulation. 

Conversely, The Get Variable element retrieves the value of variables from the simulation 

allowing its use within the Process Flow. Get Variables are used for getting attributes or 

properties of entities, objects, or resources of the simulation.  
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Fig 11. Variable connected to a Set Variable and a Get Variable element. 

 

Events, States and Triggers - Connecting the 3D Model to the Process 

Flow 

Events, States and Triggers enable complex interactions between different elements of the 

model. For this reason, they represent a key component for creating the Model’s logic. 

Flexsim’s Events consist of a series of pre-programmed logics that instructs the 3D object how 

to interact with Flow Items. Events can be used to modify the logic and behavior of 3D objects, 

initiating, modifying or terminating processes and activities within the Model. Flexsim’s Events 

represent real-life events that can occur over time, like the arrival of a customer, order or 

material, the transportation of products between stations, the processing of a product, or the 

breakdown of a machine.  

For Events to interact with the system, Flexsim includes a feature for event listening. This way, 

specific Events can be monitored within the Simulation and responses can be defined tied to its 

occurrence. This capability allows the simulation to respond to real-time changes, thus allowing 

for the creation of dynamic and interactive simulation models.  

Moreover, event listening is a way of connecting the 3D Model with the Process Flow Model: 

event-listening activities in the Process Flow Model can be used for listening to certain Events 

in the 3D Model. Upon the occurrence of the Events, the event-listening activity will create 

and/or release a token, that could consequently execute some action in the Process Flow. The 

two main Process Flow activities that are used for event listening are the Event-Triggered 

Source and the Wait for Event activities.  

Events in a simulation model can cause a State change in the 3D objects, for both Fixed 

Resources and Task Executers, with the State of the object being its current condition or status. 

Example of States include processing state, idle state, down state, traveling state and utilized 

state, among others. States are relevant for statistical and data-gathering purposes.  

Finally, Triggers are responsible for the execution of actions, and are implemented whenever 

an Event needs to occur in the Model; they are used to create responsible behaviors in the 
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simulation. Most 3D objects have a specific set of associated Triggers, that can be activated 

upon the execution of an Event.  

Additionally, certain logics can be assigned to the Triggers allowing for the generation of 

actions when the Trigger is activated. FlexSim has a wide variety of pre-programmed logics 

that can be added to Triggers. Moreover, it also allows for the creation of custom logic using 

the Process Flow tool or FlexScript.  

 
Fig 12. List of available pre-programmed Triggers and Events associated to common Fixed 

Resources. 

 

Labels 

Labels are another important component for building the logics of the Model. They can be 

assigned to Flow Items, Tokens or objects in the 3D Model, and store valuable information 

about them. Different Labels can be assigned to the same element type, allowing for 

differentiation among the same group of items.  

Labels can be used for getting data from the Model for tracking statistics, representing changes 

to a Token or object, linking Tokens to 3D objects or other Tokens, stablishing sorting and 

conditional routing, filtering and restricting Flow Items and Tokens, and for enabling 

conditional decision making, among other uses. 
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Flexsim’s Emulation Tool  

In addition to its core functionalities, Flexsim offers an Emulation tool that facilitates the 

bidirectional data flow necessary for Digital Twin applications. It serves as a connection 

between the virtual model and the physical system, enabling communication and interaction 

between the two, allowing to send and receive signals, data, and commands between the model 

and external devices. The Emulation Tool creates a connection between Flexsim and external 

PLCs or other servers, and supports various protocols, including OPC UA, OPC DA and 

Modbus.  

By establishing this connection, FlexSim enables real-time data exchange, where information 

from the physical system can be captured and incorporated into the simulation, and information 

sent by the virtual model can alter the physical system. This real-time feedback loop ensures 

that the virtual model remains synchronized with the physical system, allowing it to respond 

and act upon the data received.  

 
Fig 13. Creating a connection using Flexsim’s Emulation Tool. 

Multiple simultaneous connections can be created for one simulation, to integrate various 

sources of data. When a connection is not actively needed for the simulation, it is possible to 

deactivate it; consequently, the data would be retrieved from the simulation model instead of 

from the PLC. 
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The Emulation Tool can be accessed from Flexsim’s Toolbox or can be generated within the 

Process Flow Model. Moreover, Variables related to the connection made through Flexsim’s 

Emulation Tool can be accessed through its window interface or can be generated within the 

Process Flow Model.  

 

Internal Emulation Variables and Internal Emulation Connection 

Flexsim allows for the creation of Internal Emulation Variables and Internal Emulation 

Connections as part of the Emulation Tool inside the Process Flow Model. This allows for the 

Variables to be modified by elements within the Process Flow, like the previously discussed 

Set Variable block.  

Flexsim allows for a wide range of Variables and Connections to be created, depending on the 

protocol needed. Moreover, the Variables can be Sensor Variables and Control Variables.  

Sensors are the inputs of the PLC, that provide environmental data and upon which the PLC 

takes specific actions based on the data received. When connected to the simulation, Sensor 

Variables are the variables which send data from the Simulation and to the PLC.  

Flexsim allows for Sensor Variables to be connected to an object within the 3D Model and be 

associated with a series of Events, depending on what kind of object it is connected to. Upon 

the realization of the selected Event a signal is sent from the Simulation and to the PLC. The 

PLC can then perform a task associated with the signal received.  

Controls are the outputs of the PLC; the results achieved and sent to the simulation, based on 

the inputs it received. Control Variables are then the simulation’s variables which receive data 

from the PLC, and upon which certain actions can be taken in the Model.  

Like the Sensor Variables, each Control Variable can also be connected to an object of the 3D 

Model, and can trigger a series of actions, depending on what kind of object it is connected 

to. Upon receiving the right signal, the simulation executes a specific action within the model.  

Finally, to ensure the functioning of the Emulation Tool it is necessary to connect the Variables 

to the Connection in the Process Flow, selecting also the register type and register number of 

the Connection. 
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Fig 14. Sensor Variable used in the Application. 

                           
Fig 15. Control Variable used in                     Fig 16. List of possible actions associated with   

the Application.               a Processor. 
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Dashboards 

Flexsim’s dashboard tool is a graphical user interface and visualization tool that enable users 

to make use of various visualization elements like charts and graphs to create custom 

dashboards. Between its available elements, users can choose between time plots, histograms, 

Gantt charts, pie charts, bar charts, table charts, box plots, and more.  

It is a particularly useful tool, as it allows for the real-time monitoring of the simulation, 

visualizing its main statistics, metrics and KPIs. This can be used to perform insightful analysis 

of the performance of the simulated system, and even take corrective actions on it, adjusting 

parameters, inputs, and settings. 

The dashboard’s graphical elements are supported on data from the simulation model, such as 

variables, attributes, outputs or any other custom data source and they can be integrated with 

Process Flow and 3D Modelling. 

 
Fig 17. Example of Flexsim’s Dashboard. 
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Application of Digital Twin developed in the Lab 

Setting and scenarios 

To illustrate how the Digital Twin technology can enhance the flexibility of a production 

system, by enabling real-time detection of failures and triggering a dynamic task reallocation 

response, the following Application is proposed.   

The setting presents two collaborative robots tasked with handling items within a 

manufacturing environment. The task assigned to these robots is to retrieve an item from a 

designated pick-up point, process it, and subsequently transport it to a releasing point.  

 
Fig 18. Set up of the Application in the Laboratory. 

Seven items are assigned to each robot for its processing. In an optimal scenario, both robots, 

being identical, work at approximately the same speed and perform the same tasks, thus 

completing its respective tasks at nearly the same time.  

If a time failure occurs however, and one of the two robots operates at a slower pace, 

maintaining the initial schedule, the slower robot would take a longer time to accomplish the 

seven assigned tasks.  

To mitigate this problem, a Digital Twin is implemented to perform a dynamic task reallocation 

between the two robots. The Digital Twin can automatically detect the time failure, and 

subsequently reassign the remaining items to be processed by the faster robot. This can be done 

through two different reallocation strategies: by reallocating one item at a time, or by moving 

an optimal calculated batch of items at once. 

For the reallocation of items, a third robot is used, thus automatizing, and controlling the 

movement of the items.  
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Fig 19. Set up of the Application in the Laboratory, with the addition of the third robot 

performing the dynamic task reallocation.  

Four scenarios are then considered for the Application: 

1. Non-dynamic Scheduling without Failure: This scenario represents the optimal 

production case where no unexpected events, such as time failures, disruptions, or 

slowdowns, occur. In this scenario, each of the two collaborative robots is assigned 

seven items to handle and the tasks are executed according to the predefined schedule.  

2. Non-dynamic Scheduling with Time Failure: In this scenario, one of the two robots 

experiences a time failure, resulting in a slower execution of tasks. Despite the 

occurrence of this time failure, the initial task allocation and scheduling remain 

unchanged. Consequently, the slower robot takes a longer time to complete the seven 

assigned tasks, resulting in an increase in the processing time of the system.  

3. Dynamic Scheduling with Time Failure, reallocating one item at a time: This 

scenario demonstrates the capability of the Digital Twin system to detect time failures 

in real-time and automatically initiate corrective actions. When a time failure is 

detected, the Digital Twin dynamically adjusts the task allocation by reassigning jobs 

to the faster robot. This is achieved by initially reallocating one item, upon which 

operation is resumed; if this was not enough to mitigate the time failure, another item 

is reallocated. This is iterated until the situation is corrected.  

4. Dynamic Scheduling with Time Failure, reallocating an optimal batch of items: 

Like the previous scenario, the Digital Twin system detects a time failure in real-time. 

In this scenario however, the Digital Twin dynamically modifies the original scheduling 

by reassigning a calculated optimal batch of items to the faster robot at once.  
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Digital Twin implementation 

The Digital Twin implemented in this Application comprises three main components: the 

Physical System, the Virtual System, and the Connections between the two.  

Physical System consists of two robots performing the processing tasks and one robot 

performing the reallocation of items between the two. The Virtual System on the other hand, is 

a Simulation Model made using the software Flexsim. The connection between Physical and 

Virtual System is done by using the Flexsim’s Emulation Tool, which allows sending and 

receiving signals between the robot and the simulation, in the form of digital inputs and digital 

outputs.  

 
Fig 20. Digital twin Physical System, Virtual System and the connection among them. 

 

Physical System 

The physical system consists of two collaborative robots that work in parallel to perform a 

given task, and a third collaborative robot that performs the reallocation of items between the 

two, when needed.  

For the two robots performing the processing tasks, the UR3e collaborative robots, 

manufactured by Universal Robots, were chosen.  

The UR3e-series is a small collaborative robot designed for various industrial and research 

settings. Made primarily of plastic and aluminum, these robots are lightweight and agile, 

facilitating easy coordination of movement to perform tasks accurately. Moreover, thanks to its 

small size it can work in confined workspaces, improving the efficiency of a given production 
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facility. It can integrate into any production environment, as it can work side-by-side with 

human workers or within a separate station. 12 

Each UR3e robot is equipped with its own controller and teach pendant, facilitating their 

control and programming as well as the coordination and communication between the robots. 

The control units are interconnected via TCP/IP communication, enabling real-time data 

exchange and synchronization between the robots. Additionally, each control unit is equipped 

with digital/analog input and output ports that enable connectivity with the robot arms, the 

Teach Pendant, and other peripherals within the robotic cell. 

 
Fig 21. UR3e robotic arms with its teach pedant. 

Moreover, to facilitate dynamic task allocation and reallocation of items between the two UR3e 

robots within the application of the digital twin, a UR3-CB-series robot is utilized. Similar to 

the UR3e-series robots, the UR3-CB-series robot is a collaborative robotic arm developed by 

Universal Robots, that offers precision and flexibility for various industrial and research 

applications.13 

Additionally, for the three robots to be able to perform the pick and place tasks, a RG gripper 

was attached to the wrist of each of the robots.  

 

 

 
12 Universal Robots. (n.d.). UR3 robot. Universal Robots. Retrieved August 14, 2024, from 
https://www.universal-robots.com/products/ur3-robot/ 
13 Universal Robots. (n.d.). CB3 series robots. Universal Robots. Retrieved August 14, 2024, from 
https://www.universal-robots.com/products/cb3/ 
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Virtual System 

For the Application of Digital Twin the Virtual Model was developed using the software 

Flexsim. It consists of several key elements that represent the various components of the 

physical system and their interactions. Fig 22. shows the 3D Model of the Virtual System, 

consisting of two Source elements, three Queue elements and three Processor elements.  

The process starts with the Source elements, that generate the Flow Items that move through 

the Model: each Source element generates a batch of seven items at the start of the simulation.  

Flow elements continue the process as they enter the first two Queue elements. They are the 

storage area where the items wait to be processed by the robots.  

Two Processor elements, representing the two UR3e robots working in parallel, are the next 

step of the process. They pick Flow Items from their respective Queue and place it on another 

final Queue, after the processing is done. The latter is used for storage of the items at the end 

of the process.  

Another Processor is used to represent the UR3 CB robot in charge of the reallocation process. 

It is connected to the Queues of the other two Processors, as it redistributes Flow Items between 

them.  

 
Fig 22. Virtual System of the Application. 
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Connections - Flexsim’s Emulation Tool 

For the Digital Twin, the connection between the physical system and the virtual model plays 

a fundamental role in enabling the necessary bidirectional flow of data. This connection allows 

for the real-time synchronization of the virtual model and the physical system, for the virtual 

model to be an accurate live representation of the physical system and for the physical system 

to be able to respond and adapt to changes.  

• Data Flow from Physical System to Virtual Model: This flow of data transfers 

information regarding the status of the robots from the physical system to the virtual 

model. This data is used to synchronize the movement of the robots with the simulation, 

ensuring that the virtual model accurately reflects the behavior of the physical system. 

• Data Flow from Virtual Model to Physical System: This flow of data involves the 

transmission of instructions and control signals from FlexSim to the robots. Based on 

the decisions and actions taken within the virtual model, following the different 

dynamic task reallocation strategies, instructions are generated and sent to the robots. 

These instructions guide the behavior and actions of the robots in the physical system, 

by controlling their start and stop. 

In the context of this Application, the connections between the robots and FlexSim are 

established using the Emulation tool provided by the software. The Modbus protocol was used, 

generating three Modbus TCP Connections, one for each robot, as can be seen in Fig 23.  

 
Fig 23. Flexsim’s Emulation Tool, connection between the robots and the simulation. 
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Logics and functioning of the Physical System 

In order to make sure that the robots work correctly, a series of logics were implemented. 

Waypoints were set to define the movements and path to be followed by the robots, each 

Waypoint being a determined position the robot must take. Moreover, signals were used to 

control the opening and closing of the gripper, for the robot to be able to perform the pick and 

place tasks.  

Concerning the two UR3e series Robots, a 15 second wait was added to the cycle of the robots 

to simulate the processing of the items. In a production environment this would be a real delay 

time due to the processing work done by a human worker or by another machine.  

Regarding the robot’s functioning logics, the process starts when a signal is sent to both robots. 

As the robots work simultaneously in a single productive cell, they wait until receiving a signal 

from the other robot to start the process. If the signal is not received within 20 seconds, the 

process is ended; for this a thread is run in parallel of the main robot program, independent of 

the robot tasks.  

However, if the signal is received the robot enters a loop, in which upon receiving another 

signal it is instructed to move an item. When no signal is received (digital output 4 = False) it 

waits for three seconds before entering the loop again, as can be seen in Fig 24. and Fig 25. 

This ensures that the robot is constantly checking for the signal, and that upon receiving it, it 

will start the movement within a three second delay. Moreover, this allows for the robots to be 

momentarily stopped if needed, but without exiting the program, which is a very useful feature 

to facilitate the reallocation of items.  

Finally, when an item is picked the signal DO[1] is set to On and when the item is placed in its 

destination the signal is set back to Off. These signals are then picked up by the Digital System 

to ensure the synchronization of the movement between both systems.  
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   Fig 24: Robot UR3e’s logics.           Fig 25: Robot UR3e’s process flow. 

 

With respect to the UR3 CB series Robot, responsible for reallocating the items between the 

two processing robots, its logic can be observed in Fig 26. and Fig 27. The reallocation process 

starts when the robot receives a signal. There are two possible signals the robot can receive that 

prompt two different movements: from Robot 1 to Robot 2 or vice versa. To ensure that the 

robot is constantly waiting for signals, a loop is utilized. If no signal is received it waits for 0.5 

seconds before checking for any of the two signals again. 

Moreover, like for the other two robots, when an item is picked the signal DO[2] is set to On 

and when the item is placed in its destination the signal is set back to Off.  
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       Fig 26. Robot UR3 CB’s logics.      Fig 27. Robot UR3 CB’s logics process flow. 
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Logics and functioning of the Virtual System 

To ensure the correct functioning of the simulation, logics were implemented both in the 3D 

Model and the Process Flow Model. While logics within the 3D Model deal with the general 

functioning of the simulation, logics within the Process Flow Model handle the connection and 

communication between the physical and the virtual systems, thus enabling the Digital Twin 

Application.  

 

Logics and functioning within the 3D Model 

The process starts with the arrival of fourteen items to the system. This is done with two Source 

elements, each delivering seven items. An arrival schedule was used, with a table to determine 

the arrival time of seven items at the start of the Simulation.  

Each Source element is connected to one Queue element. Using a Trigger, once a Flow Item 

enters a Queue, a Label is assigned to it. The Label is called Type and it can hold values of 

either 1 or 2, contingent upon the queue of entry and the robot assigned for processing of the 

item. This Label designation is important, as it allows for logics and computations to take place.  

It is relevant to mention that the Label is assigned to the items each time they enter a Queue, 

and so if an item is moved from one Queue to another the label will take the value of the last 

Queue it entered to, consequently losing the value of the first one.  

 
Fig 28. Trigger inside the Queue elements. 

Items are stored in each Queue until retrieved by the Processors. Each Queue is connected to 

two Processors, one representing the UR3-CB-series robot in charge of the processing and the 

other the UR3 CB robot doing the reallocation of items when implementing the Digital Twin.  

Each Processor element contains a trigger, that activates when the simulation is started, which 

stops the input port, preventing the entrance of items to the Processor. This is to ensure perfect 

coordination with the physical system.  
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Fig 29. Triggers inside the Processor elements. 

Within the Application, the processing of the Flow Items is controlled by opening and closing 

the input and output ports of the Processors, as will be explained in another section bellow. 

This way, the real processing time of the Processors is defined by the time between an item is 

allowed in and out of the Processor. For this reason, a processing time of 10 seconds is set in 

the Processor element as its processing time. This is not the real processing time, but a time 

short enough to ensure the correct functioning of the Model.  

Moreover, the Processor associated with the robot performing the reallocation of items follows 

a specific logic when deciding which port to send the items upon exiting the Processor: it 

examines the Label Type of the item and then decides the port accordingly. This logic is 

necessary because the Processor operates between two Queues and to ensure that an item, once 

taken for processing, does not return to the same Queue from which it came from. Thus, if the 

item's Type is 1, it is directed to Queue 2, and vice versa.  

 
Fig 30. Logics inside the output port of the Processor. 

Finally, the two other Processors are connected to a final Queue that collects the processed 

items. In this final Queue the number of items processed by each Processor is computed, also 

considering the Label Type assigned before; for this a custom code is used as a Trigger. This 

Queue element also has another trigger to reset the count upon resetting the program.   
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Fig 31. Triggers inside the Queue element. 

 
Fig 32. Triggers inside the Queue element. 
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Logics and functioning within the Process Flow 

Variables of the Process Flow 

To explain the functioning of the logics of the Process Flow it is necessary to first describe the 

variables that intervene in said logics. Nine Internal Emulation Variables are used, comprising 

six Sensor Variables and three Control Variables, as depicted in Fig 33.  

 
Fig 33. Process Flow Variables used in the Application.  

These variables have different purposes and interact with the Virtual and Physical Systems in 

different ways. The connection of the variables to the Physical System through the Emulation 

Tool will be discussed in another section bellow.  

As explained before, Sensor Variables send information from the Virtual to the Physical 

System, upon which the Physical System takes certain actions. The Sensor Variables used in 

the Application are the following: 

• Start and Stop Variables (1 and 2 for each robot respectively): These variables are 

responsible for the activation of the Robots at the start of the Simulation.  

They can take the values of 0 or 1 and have an associated event at Simulation Start that 

assigns the value of 1 to the variable. This way, they send a signal (value of the signal 

equal to 1) at the start of the simulation to start the robots. When the signal is no longer 

received (value equal to 0) robots stop working and the program is stopped.  
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• Continue Variables (1 and 2 for each robot respectively): These variables are 

responsible for the momentarily stop and restart of the robots. They enable the 

reallocation of items, by stopping the functioning of the robots while the third robot 

reallocates the items between them. 

Like Start and Stop, they also take the values of 0 or 1 and have an associated event 

that on Simulation Start assigns the value of 1 to the variable to start the functioning of 

the robots.  

These variables send a signal to the robots (value of the signal equal to 1); when the 

signal is no longer received (value of the signal equal to 0) robots momentarily stop 

working until signal is received again.  

• From Robot 1 to 2 Variable and From robot 2 to 1 Variable: These variables control the 

movement of the robot in charge of the reallocation of items. They send a signal to the 

robot to activate the right movement.   

They can take 1 and 0 as their values, having an associated event that on the start of the 

simulation that assigns the value of 0 to them. This way the robot is not activated at the 

start of the simulation, and instead is waiting for the signal to start its functioning.  

Control Variables receive data from the Physical System, upon which the Virtual System reacts. 

The following Control Variables were used for the Application: 

• Cycle Variables (1, 2 and 3 respectively): These variables are responsible for the 

movement synchronization between the Physical and Virtual Systems, as they control 

the performance of the Processors within the Model.  

The variables can take 1 and 0 values and have a series of associated actions according 

to the value taken by them. They receive a signal (signal value of 1) once the robot 

grabs an item and stop receiving it (signal value of 0) once the robot places the item in 

its destination.   

To ensure the precise synchronization between the Physical System and the Virtual 

System, the input and output port of the Processors are controlled. For this, a time short 

enough to ensure the correct functioning of the Model is set to be the processing time 

in the Processor element of the 3D Model, allowing the real processing time to be 

defined by the input and output ports. This way, by controlling the ports of the 

Processor, not only the processes are completely synchronized, but also the processing 

times are equal.  
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Fig 34. Actions taken by the Cycle Variable. 

Upon receiving a value of 1 for the Variable, the Model instructs the Processor to 

resume its input of items while stopping its output, thereby forcing the element to 

remain in the processor until the signal to end its processing is received. 

 
Fig 35. Resume Input and Stop Output graphical representation. 

 
 Fig 36. Resume Input and Stop Output in the Application.  

 

Conversely, upon receiving a value of 0, the Model sets the processor to resume the 

output of elements, enabling the items to exit the processor, while stopping its input 

until the signal indicating that the robot has grabbed another item is received. 

 
Fig 37. Stop Input and Resume Output graphical representation. 
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Fig 38. Stop Input and Resume Output in the Application. 

 

Simulation start and functioning before Reallocation of items  

Before the Simulation begins, the initial value of all the variables within the Application is 0. 

As the Simulation starts various events and actions are triggered within the Process Flow, 

turning the Start and Stop and Continue Variables values to 1. This triggers the functioning of 

the robots within the Physical System, allowing them to pick the first item. 14 

As previously mentioned, as each a robot retrieves an item from its respective queue, a signal 

is sent, and upon placing the item in its destination, the signal is ended. This triggers the Cycle 

variable, which manages the input and output ports of the Processor element in the 3D Model, 

allowing the Model to work accordingly to the real process.  

For the process to be iterated, a simple logic is implemented in the Process Flow. Whenever an 

item exits the Processor, signifying a change in the number of items in its queue, a token is 

generated with an Event Triggered Source in the Process Flow.   

This token then moves to a Decide block that assesses whether there are still items in the 

Processor’s queue. This is done by using the subnode.lenght expression, which counts the 

number of items inside a 3D Model element, as it can be seen on Fig 39. If the response is 

affirmative, indicating that there are still items present in its queue, the Continue Variable is set 

to 1, allowing the robot to pick another item and the process to continue.  

 
14 The implicit assumption being that each robot has at least one item in its queue. 
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Fig 39. Condition applied in the first Decide Block. 

If there were no more items in queue however, the Continue Variable is set to 0, discontinuing 

the signal that enables the functioning of the respective robot, bringing it to a halt.  

The process then continues with a Decide block that asses the number of items in queue of the 

other robot and determines whether there is a need for a reallocation of items: if there are less 

than two items in queue no reallocation takes place, case contrary the reallocation logic is 

executed. The reasoning behind this is that if there is only one item in the queue of the other 

robot or if the other robot is processing its last item, it would be faster and more efficient for 

that robot to complete its work rather than reallocating the item to the other robot for 

processing, considering the time taken for the reallocation of items. Therefore, in such 

scenarios, no reallocation of items is deemed necessary. 

The complete process flow before the reallocation is implemented can be seen in Fig 40.  

 
Fig 40. Process Flow before the reallocation of items.  

 



49 
 

Digital Twin for dynamic task allocation – Third scenario: Reallocation 

of one item at a time  

In this scenario one of the robots experiences a time failure. Consequently, would the initial 

schedule be maintained, the slower robot would take a longer time to accomplish its assigned 

tasks. For this reason, a Digital Twin is implemented to mitigate the issue, by reassigning items 

from the slowest to the fastest robot.  

This reallocation of items is done once the Digital Twin detects that one of the robots has 

finished its assigned tasks, while the other still has items to be processed. The Digital Twin 

then momentarily stops the processing of the items and moves one item from the queue of the 

slowest robot and to the queue of the fastest robot, reassigning the processing of the items. 

Once this is completed both robots resume their work. If another reallocation is needed, once 

the fastest robot finishes processing the new item, the reallocation process is performed once 

again, moving one item from the slowest and to the fastest robot.  

For this and the following scenarios, the UR3e_Robot1 represents the robot that experiences 

the time failure, and thus the reallocation process is done from its queue and to the queue of 

the UR3e_Robot2; were the UR3e_Robot2 the robot to experience the time failure, the 

reallocation process would be activated from its queue and to the other robot’s queue.  

 
Fig 41. Process Flow of the Third scenario of the Application of Digital Twin for dynamic 

task allocation. 
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Following with the logic within the Process Flow, once the decision to reallocate items is made, 

the Model checks if the second robot is currently processing any item. This is implemented to 

guarantee that the robot is not stopped mid operation, and to prevent any potential glitching. 

For this, the subnode.lenght of the Processor item is assessed, as was done before for the Queue 

elements.  

If the robot is currently engaged in a processing task, the simulator awaits the completion of 

the task, ensuring that the item is placed in its final location before proceeding. A Wait for Event 

element is used, the event being the exit of an item from the Processor. 

When the processing task is concluded, or if the second robot is not currently processing any 

item, the signal enabling the robot to work is promptly discontinued, by setting to 0 the Variable 

Continue of the respective robot. As a result, the second robot halts its operations, ensuring that 

the reallocation process can be executed properly. 

Subsequently, the Variable From Robot 2 to Robot 1 is set with a value of 1, instructing the 

robot designated for the reallocation process to commence its task. The Variable being activated 

(From Robot 1 to Robot 2 or From Robot 2 to Robot 1) is determined by which of the two 

robots has zero items in its queue, ensuring that the movement is done from the robot with 

items in its queue to the one without.  

The system then detects the completion of the reallocation process when there is a change in 

the number of items in the queue of the Processors. Another Wait for Event element is 

implemented, with the event being the increase in the content of the Queue that had zero items 

before the reallocation. 

For safety reasons, to guarantee that the reallocation robot has finished its movements before 

resuming the movement of the other robots, a Delay element is added to the Process Flow, with 

a delay time of 30 seconds. 

Two Set Variable elements are used to assign a value of 1 to both Continue Variables to signal 

the robots to resume their respective processing tasks. 

Once one of the robots runs out of items in queue again, if the above logics are satisfied, a 

second reallocation of items could take place. This iterative process continues until there are 

no more items remaining in the queues of the robots, indicating that all items have been 

successfully processed. 

The complete process flow for the Third scenario of the Application of Digital Twin for 

dynamic task allocation can be seen in Fig 42.  
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Fig 42. Process Flow for the Third scenario of the Application of Digital Twin for dynamic 

task allocation.  

 

Digital Twin for dynamic task allocation - Fourth scenario: 

Reallocation of an optimal batch of items 

In this scenario one of the robots also experiences a time failure and the Digital Twin is 

implemented to reassign the items between the robots. This is done by reallocating an optimal 

batch of items, as opposed to reallocating one item at a time as in the third scenario. 

The operational logics mirror those of the third scenario: once one of the robots completes its 

assigned tasks while the other robot still has items in queue to be processed, the reallocation 

process is triggered. The robots are temporally halted, allowing for a safe reallocation of items. 

Once the items are reallocated both robots resume their processing tasks.  
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Fig 43. Process Flow of the Fourth scenario of the Application of Digital Twin for dynamic 

task allocation. 

With respect to the logic within the Process Flow, the first steps mirror that of the third scenario. 

When it is determined that a reallocation needs to take place, the Model first assesses whether 

the second robot is actively processing any item. If so, it waits for the completion of the task, 

ensuring that the item is placed in its final location before continuing. Subsequently, the 

Variable Continue is set to a value of 0, halting the robot’s process, while the Variable From 

Robot 2 to Robot 1 is set with a value of 1, prompting the robot designated for the reallocation 

process to work. The process proceeds once the reallocation process is completed, as indicated 

by an increase in the number of items of the Queue that had zero items before the reallocation. 

Additional logics were implemented at this stage due to the need to reallocate more than one 

item within this scenario. The reallocation of items follows an iterative process in which the 

number of items in the queue of the robots is continually compared against the optimal number 

of items required for the system to operate at its peak efficiency. For this a Decide Block was 

utilized. 

Each time an item is reallocated, the system evaluates the current state against said optimal 

number. If the logic is not satisfied, meaning that the optimal number of items moved has not 

yet been reached, an additional item is moved. This iterative approach ensures that the 

reallocation process continues until the optimal batch of items is achieved. 
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The optimal number of items to be reallocated is calculated considering both the total number 

of items to be moved and the ratio of processed items by each robot (indirectly measuring the 

speed of the robots, assuming a constant speed). It can be summarized as the following 

expression: 

Optimal number of items to be moved = Total number of items x Ratio of processed items 

The Total number of items is calculated simply by summing the number of items in the Queues 

of both Processors, using the subnode.lenght feature.  

For the Ratio of processed items, two item Labels, previously calculated in the Final_Queue 

in the 3D Model, are used. These Labels, Type1Content and Type2Content, track the total 

number of items processed by each robot, each type corresponding to each robot respectively. 

The ratio is then computed by dividing the number of items processed by one robot by the total 

number of items processed by both robots. 

Following the Process Flow, upon completion of the iterative reallocation process and once the 

number of items in the queue aligns with the optimal calculated number, the robots can resume 

performing their respective tasks.  

Unlike the third scenario, the fourth scenario allows for the condition where one robot has zero 

items in its queue, due to the reallocation of all its items to the other robot. Consequently, a 

specific logic must be implemented to determine whether it is necessary to send a signal to that 

robot to restart operations. This is done with another Decide element. Then, if the robot has 

more than one item in queue a signal is sent for it to resume operations, setting the Continue 

Variable to 1; case contrary no signal is sent, Continue Variable equal to 0.  

Finally, another Set Variable element is used to assign a value of 1 to the Continue Variable of 

the other robot for it to resume its processing tasks. 

The complete process flow for the Fourth scenario of the Application of Digital Twin for 

dynamic task allocation can be seen in Fig 44.  

 

 

 

 

 

 



54 
 

 

 
Fig 44. Process Flow for the Fourth scenario of the Application of Digital Twin for dynamic 

task allocation.  
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Connections between the Virtual and Physical Systems  

For the correct functioning of the Model, the Virtual and Physical Systems must be connected, 

always sending and receiving signals. For this reason, each Variable within the simulation has 

an associated signal within the Physical System; this can be seen in Table 1.  

 
Table 1. Variables of the Virtual System and its Signals of the Physical System. 

Flexsim’s Emulation tool plays and important role, enabling the communication to take place. 

Utilizing the Modbus Protocol, each variable has an associated specific register of operation 

with the robots’ PLCs.   

 

Run of the Simulation, simplifications made and its modifications when 

applied to a production environment  

In order to simulate the time failure of one of the robots, the operation speed of UR3e Robot1 

was reduced to 15% of its normal operation speed. This adjustment means that UR3e Robot1 

operates at approximately 15% of UR3e Robot2’s speed, considering that both robots operate 

at nearly the same speed under normal conditions. This 15% speed reduction was chosen to 

ensure that the simulation adequately demonstrates the reallocation process, allowing for the 

reallocation of several items between the robots, thus accurately reflecting the impact of the 

time failure.  

Moreover, this 15% speed reduction was set to be constant throughout the entire simulation 

process. This approach ensures that the calculation of the optimal number of items to be moved 

within the second reallocation scenario is accurate, as the rate of production remains constant 

over time.  

In a real-world scenario, the time failure would occur over time, with the incremental reduction 

of the speed of one of the robots. Therefore, the optimal number of items to be moved would 
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be calculated considering the average processing speed of the robots over time, as opposed to 

a fixed speed reduction. As a consequence, the calculated number of items to be moved might 

not be as accurate, depending on how the speed reduction of the robots occurs. To address this, 

an alternative method for calculating the number of items to be moved, which takes into 

account the speed progression over time, could be implemented. This would allow for a more 

precise adjustment in response to the gradual changes in the robot’s operating speed. 

Another simplification made was the implementation of a 15 second wait time in the robot’s 

logics, to simulate the processing work performed by a human worker or another robot. In a 

production environment, this time would be replaced by the real time required for processing 

of the items. 

 

Results and Analysis 

The four scenarios covered in the Application of Digital Twin were implemented. For each 

scenario a set of indicators was computed, facilitating the comparison between them: 

• Throughput of the System (TH): This metric quantifies the number of items processed 

per unit of time. 

• Average cycle time of the System (CT): Defined as the average time needed to process 

all the items in the system, measured from the moment the simulation starts (robots start 

functioning) and until it ends (robots finish their tasks). 

• Utilization of the robots (U): This metric represents the average percentage of time 

during which the robots are in the processing state, actively processing items.  

The results obtained for these indicators are presented in Table 2. In the following sections a 

more detailed explanation will take place.  

 

 
Table 2. Indicator values for the three scenarios. 
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Before discussing each scenario in detail, it is important to mention that for the third and fourth 

scenarios, the reallocation process done by the UR3 CB Robot is taken into consideration for 

computing some of the above indicators. This way, the Cycle time encompasses not only the 

processing time of the items done by the UR3e Robots, but also the time associated with the 

reallocation process. 

Conversely, since no real processing is done by the UR3 CB Robot, as it merely handles the 

internal reallocation of items within the same system, its activity is not considered when 

computing the Throughput of the process. 

 

First Scenario - Non-dynamic Scheduling without Failure  

The first scenario represents the optimal outcome, in which no time failure, disruptions or 

slowdowns occur, allowing tasks to be executed according to the predefined schedule. As a 

result, this scenario reports the best performance.  

As mentioned before, in this set up both robots are assigned seven items to process. The two 

robots are assumed to be nearly identical and operate under the same conditions, resulting in 

identical processing times of 25 seconds, within a tolerance range due to natural variability 

inherent to the manufacturing process.  

 
Fig 45. First scenario, non-dynamic scheduling without failure. 

 

The average Cycle time of this scenario can be approximated at 175 seconds, with a Throughput 

of 288 items per hour, considering the contribution by both robots. The Utilization of the system 

is at 100%, as no time failure occurs.  
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Fig 46. Flexsim’s dashboard for the First Scenario. 

 

Second Scenario - Non-dynamic Scheduling with time Failure 

In this scenario, UR3e Robot1 experiences a time failure, resulting in a slower execution of its 

assigned tasks. Despite the occurrence of the time failure, the initial task scheduling remains 

unchanged, and no reallocation of items takes place. Consequently, UR3e Robot1 takes a longer 

time to complete the seven assigned tasks. As expected, this scenario displays the worst values 

for the selected performance indicators.  

 
Fig 47. Second scenario, non-dynamic scheduling with time failure. 
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UR3e Robot1 takes approximately 2.4 times longer than expected to process an item, with a 

processing time of approximately 60 seconds, compared to the 25 seconds it would take in the 

ideal scenario, without the occurrence of a time failure. Due to the absence of a reallocation 

strategy, the total System processing time increases to approximately 420 seconds. Thereby 

UR3e Robot 1 becomes the bottleneck for the overall system.  

As a consequence, the Utilization of UR3e Robot2 is reduced to approximately 41.67%, as 

opposed to the 100% of the best-case scenario, causing a decrease in the total Utilization of the 

System. This reduction is due to idle time experienced by UR3e Robot2 after completing its 

processing tasks and while waiting for UR3e Robot1 to complete its tasks. The Throughput of 

the System is estimated at 120 items per hour.  

 

 

 

 
Fig 48. Flexsim’s dashboard for the Second Scenario. 
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Third Scenario - Dynamic Scheduling with Time Failure, reallocation 

of one item at a time 

Similar to the second scenario, in this scenario UR3e Robot1 also experiences a time failure, 

which results in a slower execution of its tasks. This scenario however, upon the detection of 

the time failure, and with the use of the Digital Twin system, the reallocation process is 

activated, reassigning the items to be processed between the two UR3e robots and thus 

mitigating the negative consequences of the failure. 

The reallocation of items between the two robots is done by the UR CB Robot, following a 

sequential one-at-a-time reallocation strategy.  This way, when the Digital Twin system 

identifies the need for a reallocation, a single item is transferred between the two UR3e robots 

for processing. Once this reallocation is completed, the robots resume their operations. If 

further reallocations are necessary, they will be detected and executed after the robots have 

finished their current processing cycle. More information on the logics governing this 

reallocation strategy can be found on previous sections.  

 
Fig 49. Third scenario representing the dynamic scheduling with time failure, with the 

relocation of one item at a time. 

 

In this scenario, the processing time of UR3e Robot2 remains at 25 seconds, as the robot does 

not experience any time failure. Conversely, UR3e Robot1’s processing time increases to 60 

seconds due to its time failure. UR3 CB Robot performs the reallocation of items at 25 seconds 

per item.  

As a result, the Throughput of the system improves to 144 items per hour, while the Cycle time 

reduces to 350 seconds, as opposed to the previous scenario. As expected, although results are 

less favorable than those obtained in the first scenario, they represent an improvement over the 

second scenario where no reallocation strategy was implemented. This can be attributed to the 

intervention of the Digital Twin in mitigating the issue; in this application the Digital Twin is 

used for reducing the impact of the time failure, but it does not address the cause of the issue 

nor solves it completely.  
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The Utilization for UR3e Robot1 is computed at 84%, for UR3e Robot2 at 64.29%, and for the 

UR3 CB Robot at 16%. It is important to note that the reduction in Utilization for UR3e Robot1 

is entirely attributable to its operation being momentarily stopped during the reallocation 

process for safety reasons, to avoid the collision of the robots. Similarly, part of the reduced 

Utilization for UR3e Robot2 is also explained by this factor. Conversely, UR3 CB Robot is 

only active during the reallocation of items, hence getting its utilization percentage solely from 

that. 

 

 

 

 

 
Fig 50. Flexsim’s dashboard for the Third Scenario. 
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Forth Scenario - Dynamic Scheduling with Time Failure, reallocation 

of an optimal batch of items 

In this scenario, similar to the previous one, the Digital Twin system detects in real-time the 

occurrence of a time failure affecting the performance of UR3e Robot1 and implements a 

mitigation strategy by adjusting the original production schedule and reallocating items 

between the robots. However, unlike the earlier approach where only one item was transferred 

at a time, this scenario involves reallocating an optimal batch of items in a single event. By 

transferring multiple items at once, the system minimizes the frequency of the reallocation 

process, which in turn reduces the number of interruptions to the production process, not only 

accelerating the completion of the tasks but also minimizing operational disruptions. The way 

this optimal batch of items is calculated, as well as the logic behind this scenario, has been 

previously explained. 

 
Fig 51. Forth scenario representing the dynamic scheduling with time failure, relocating a 

batch of three units. 

 

Both the throughput and the Cycle time are improved in this scenario when compared to the 

previous one, with the Throughput reaching 152.7 items per hour, and the Cycle time reducing 

to 330 seconds. 

The Utilization values are recorded at 72.73% for UR3e Robot1, 64.29% for UR3e Robot2 and 

25.45% for the UR3 CB Robot. As observed in the previous scenario, these values can be 

explained (fully for UR3e Robot1 and partially for UR3e Robot1) by the periods of forced 

inactivity of the robots during the reallocation process.  
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Fig 52. Flexsim’s dashboard for the Forth Scenario. 

 

When comparing the Third and Fourth scenarios, there is a significant difference in the values 

taken by the different parameters. In the Fourth scenario, the Utilization values are slightly 

lower for UR3e Robot1 and marginally higher for the UR3 CB Robot. This discrepancy is 

driven by the difference in the reallocation strategies employed in the two scenarios.  

Given the difference in the logics governing each scenario, in the Third scenario the Digital 

Twin system determines the reallocation of two items, while in the Fourth scenario it calls for 

the reallocation of three items. Consequently, and when compared to the Fourth scenario, in 

the Third scenario UR3e Robot1 processes one item more, as there is one reallocation of items 
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less, leading to an increased Utilization. Moreover, UR3 CB Robot is engaged only twice, 

which reduces its overall Utilization. 

Overall, the Fourth scenario proves to be the most efficient when compared to the Third 

scenario. Its primary advantage lies in the calculation of the optimal number of items for 

reallocation between the robots as soon as the time failure is detected for the first time, allowing 

for a single, consolidated reallocation event to take place. This reduces the frequency of the 

reallocation of items between the robots, reducing the operational disruptions. Hence, robots 

experience less downtime while waiting for the reallocation process to be complete. Moreover, 

the Fourth scenario has a better performance with respect to resource allocation than the Third 

scenario, and consequently present a lower cycle time for the system.  

Finally, it is important to note that, in the context of the application developed in the laboratory, 

as outlined in the simplifications and modifications section of this thesis, the time failure of the 

UR3e Robot1 is modeled as constant over time. This justifies the calculation of the optimal 

number of items to be reallocated in the Fourth scenario and it is aligned with the Fourth 

scenario being the most efficient approach in this case.  

However, in a real production environment, the occurrence of time failures may not follow 

such a constant pattern. In such a case, the Third Scenario, which sequentially reallocates one 

item at a time, may prove to be more suitable, as the Digital Twin decides in each iteration if 

an item needs to be reallocated or not. 
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Conclusion 

The paper explored the application of the Digital Twin technology with the intention of 

generating an accurate real-time virtual representation of the physical system, that could detect 

the occurrence of time failures and consequently activate appropriate mitigation strategies. The 

main goal of the application was to demonstrate the use of the Digital Twin applied to dynamic 

task allocation and flexible scheduling, that could effectively address failures and problems 

and optimize production. 

For this, two different mitigation strategies were contrasted. The first strategy entailed the 

sequential reallocation of items on a one-at-a-time basis. In this approach, upon the detection 

of a necessary reallocation by the Digital Twin system, a single item is transferred between the 

task-executing robots for processing. After this reallocation, operations are resumed, and 

should another reallocation be required, it would be implemented only after the robots have 

completed their current cycle. 

Conversely, the second strategy encompasses the reallocation of a calculated optimal batch of 

items between the task executers. This methodology facilitates a single comprehensive 

reallocation event, where all necessary items are moved at once, thereby streamlining the 

process and minimizing operational disruptions.   

The results obtained show that the implemented Digital Twin is successful in mitigating time 

failures, within the application developed; they are not only consistent with the expected 

outcome of the research, but also highlight the significance of employing Digital Twin 

technology in modern manufacturing systems. Both mitigation strategies proved to be useful, 

although the analysis showed that reallocating an optimal batch of items yielded the best results 

when compared to reallocating one item at a time. 

The reallocation strategies improved the Throughput and reduced the Cycle Time of the system, 

compared to the scenario in which a time failure occurs and the Digital Twin is not implemented 

to mitigate the issue. Thus, it is demonstrated that in scenarios where time failures happen, the 

system’s ability to adjust its task allocations dynamically, through the use of the Digital Twin, 

ensured better overall performance and resource utilization.  

The results then reveal that the use of the Digital Twin significantly improves the adaptability 

of production environments. By generating a virtual representation of a physical system, 

mirroring operating conditions and leveraging real-time data, the Digital Twin can foresee 

problems and act upon it by activating accordingly mitigation strategies.  
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The integration of the Digital Twin technology into production environments brings several 

advantages. As displayed in the application, it can improve the system’s efficiency, mitigate 

issues and optimize the use of resources by balancing workloads dynamically. Moreover, from 

an economic perspective, it helps mitigate financial losses associated with inefficiencies in 

production.  

Looking forward, there are promising applications for further exploration. Expanding the 

implementation of the Digital Twin to a larger production environment could provide a more 

comprehensive understanding of the potential of the Digital Twin. Additionally, more advanced 

algorithms for the task reallocation strategies could be developed for the Digital Twin to better 

adapt to occurring failures. Moreover, the Digital Twin model could be improved to better 

represent the physical system by including information gathered from additional data sources 

of the physical system.  

In conclusion, the study confirms that the Digital Twin represents a significant advancement 

applied to manufacturing and production systems. As the technology evolves, its role in 

managing failures and optimizing performance is likely to become increasingly valuable. 
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