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INTRODUCTION 

The aim of this work is to develop a framework to assess the impacts of Industry 

5.0 target dimensions, human centricity, sustainability and resilience, on the 

performance of Internal Logistics Systems by following the steps of the Design 

Research Methodology (DRM) (Blessing L., Chakrabarti A., 2009). It is 

important to research these topics because together they can bring innovation and 

benefits to the manufacturing industry. In fact Industry 5.0 represents the 

paradigm that the industry is moving towards, after having experienced Industry 

4.0 up until now. Being such a new topic it is crucial to not only understand it on 

its own, but also in conjuction with aspects of the industry, such as Internal 

Logistics Systems. For example Shah Z. and others (2023) explore the three I5.0 

target dimensions in logistics, without giving a framework that evaluates the 

impact that they have on the Internal Logisitic Systems. 

To do so, after a brief description of what Industry is, its evolution over the years 

into Industry 5.0 and the Internal Logistics Systems, the first step of the first stage 

Criteria Definition defined in the DRM was to conduct a Systematic Literature 

Review to understand how the three Industry 5.0 target dimension may be applied 

to industrial systems. This led to the second stage of the DRM, the Descriptive 

Study I and the first step was to draw a list of approaches and technologies for 

each Industry 5.0 target dimension that best describes how to implement them in 

practice. Once this list was obtained it was necessary to design a questionnaire to 

submit to experts in the manufacturing and logistics fields in order to validate it 

and obtain a final list of the most important approaches and technologies for each 

target dimension to use for the second step of the research. 

The next step of this work was to analyze the Internal Logistics Systems, with a 

focus on the automated ones, specifically material handling, storage and picking 
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systems, and derive the performance parameters associated with them firstly by 

consulting professional literature and then consolidating the list of such 

parameters through scientific literature. These results will be put into Domain 

Mapping Matrices which are matrices that allow to determine a relationship 

between two domains, the ones entered in the rows and those entered in the 

columns, in this case approaches and technologies for each Industry 5.0 target 

dimension and the performance parameters for the Internal Logistics Systems in 

order to confront them and be able to assess the degree of the impact that the firsts 

have on the seconds, completing the second stage of the DRM.   

As a future step of the research, a Delphi Study, as part of the application of the 

third stage of the DRM will be carried out. These matrices will be compiled by 

experts from companies manufacturing material handling, storage, and picking 

systems and university, using a Likert scale that indicates the impact that the 

Industry 5.0 target dimensions have on the Internal Logistics Systems, which can 

be a significant decrease, a decrease, no increase or decrease, an increase or a 

significant increase in the performance parameters. 

Ultimately the assessment of the matrices will be analysed and the result will be 

the determination of which I5.0 approaches and technologies have the greatest 

impact (both positive and negative) on the performance of which Internal 

Logistics Systems. This will serve to establish guidelines on how intra-logistics 

system developers can integrate Industry 5.0 into their systems in order to 

increase their performances, in order to complete the third stage of the DRM.  
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1. THEORETICAL BACKGROUND 

The present chapter explains what the term Industry means and the role that it had 

over the years, together with its evolution into Industry 4.0 and now Industry 5.0. 

This can be viewed as an introduction to Industry 5.0, understanding where the 

term comes from and its background. Such a knowledge is crucial to understand 

the research work. 

1.1. WHAT IS INDUSTRY 

The European economy is significantly impacted by the industry, as it creates 

employment opportunities and contributes to prosperity throughout the continent. 

From 2009 to 2019, the industrial sector consistently accounted for over 20% of 

the EU's GDP, with manufacturing contributing around 14.5% of value to the EU 

economy. Despite its strength, the European industry encounters persistent 

challenges due to fierce competition in an increasingly intricate multinational 

economy. 

To sustain Europe's prosperity, the industry must continually adjust to new 

challenges, necessitating ongoing innovation. Innovation can enhance efficiency 

at various stages of the value chain, make production systems more resilient to 

meet the evolving needs of global customers, and maintain Europe's position as a 

global leader in quality. Advanced digital technologies, such as sensor 

technologies, big data, and artificial intelligence (AI), will play a crucial role in 

driving innovation. This innovation will continue to accelerate as these 

technologies progressively automate, connect, and optimize a wide range of 

industrial processes (Breque M., De Nul L., Petridis A., 2021).  
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1.2. INDUSTRY 4.0 

The current fourth industrial revolution, referred to as Industry 4.0 or 4IR, is 

rooted in the third industrial revolution, which relied on transistors, sensors, and 

microelectronics to generate data. The term Industry 4.0 was coined by German 

professor Wolfgang Wahlster at the Hannover Fair in 2011. It encompasses the 

computerization of production, integrating advanced digital technologies with 

industrial machines and processes.  

By interconnecting these technologies with utmost operational efficiency, 

productivity, and automation, an intelligent, connected, and data-driven 

manufacturing ecosystem is formed. 

Industry 4.0 is based on digital and computing technologies interconnected with 

physical systems. Core computing technologies include artificial intelligence, 

machine learning, big data, cloud computing, and cybersecurity, while physical 

technologies encompass automation, robotics, IoT, CPS, and AM. These 

technologies enable agile, flexible, on-demand manufacturing, a vital element of 

smart manufacturing or factories, delivering the benefits of Industry 4.0 systems 

and enhancing operational efficiency. 

In the foreseeable future, European industry can anticipate a solid ambition and 

sound guiding principles for innovation and technological progress through 

Industry 4.0, which describes how technology will be utilized to adapt to a 

changing global environment and economy. 

The traditional cycle of education, work, and retirement for industrial workers is 

being challenged by profound changes in the workforce organization. Increased 

automation may undermine the societal role of industry as an employer and driver 

of prosperity. 

Broader societal changes and transitions will also significantly impact industry. 

The current political priorities at the European level have a profound impact on 
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industry. The Green Deal emphasizes a transition to a more circular economy and 

increased reliance on sustainable resources, including energy. "Europe Fit for the 

Digital Age" prioritizes digitalization for Europe, offering significant innovation 

potential. Research and innovation in Europe will be connected and boosted by 

the re-energized European Research Area (ERA), while Europe’s new Industrial 

Strategy and Skills Agenda aims to address skills shortages. 

The Covid-19 crisis has underscored the need to reconsider existing ways of 

working and approaches. It has highlighted the vulnerabilities of industries, such 

as weak strategic value chains, and emphasized the need to find flexible and 

robust innovations to address these weaknesses. 

Industry 4.0 was conceived as a futuristic project and part of the nation's high-tech 

strategy, expected to be widely accepted by business, science, and decision-

makers. Its aim was to meet not only the economic requirements of "green 

production" for a carbon-neutral and energy-efficient industry, but also the special 

ecological requirements. 

In 2013, the German Academy of Engineering Sciences (Acatech), prompted by 

the Federal Ministry of Research (BMBF), published a research agenda and 

implementation recommendations based on the "National Roadmap for Embedded 

Systems". This paper discusses the impact of the Internet of Things (IoT) on 

production organization, leading to new interactions between humans and 

machines and a new wave of digital applications in manufacturing. Deutsche 

Bank (2014) suggested that the adoption of Industry 4.0 was to position itself as 

the “factory outfitter of the world”. 

The term has significant influence globally and is used in various ways by think 

tanks, business leaders, international organizations, and policymakers. Advanced 

and manufacturing-intensive economies such as China have determined how it 

would be implemented in their own setting. The government initiative "Made in 

China 2025" is directly inspired by "Industry 4.0" and focuses on revitalizing the 

Chinese manufacturing industry and achieving steady change. 
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In the decade since its inception, Industry 4.0 has shifted its focus from social 

fairness and sustainability to digitalization and AI-driven technologies to enhance 

production efficiency and flexibility. Industry 5.0 introduces a new perspective 

and emphasizes the importance of researching and innovating to support industry 

in its sustained service to humanity within planetary boundaries. It is essential to 

stress that Industry 5.0 should not be considered a chronological continuation or a 

replacement for the current Industry 4.0 paradigm. It is the result of a forward-

looking process aiming to define how European industry and emerging societal 

trends and needs will intertwine. It emphasizes aspects that will be decisive in 

determining the positioning of industry in future European society; these factors 

are not only economic or technological but also have significant environmental 

and social implications (Breque M., De Nul L., Petridis A., 2021) (Gródek-

Szostak, Z., et al.., 2023). 

1.3. INDUSTRY 5.0 

While the world of science and practice is still trying to adjust and harness the 

potency of Industry 4.0, policymakers, industrialists, and scholars are beginning to 

discuss the upcoming industrial revolution: Industry 5.0. If Industry 4.0 involves 

digitally connecting machines to enable a continuous flow of data and achieve 

optimal efficiency, Industry 5.0 is said to reintegrate people for collaboration and 

involve them in manufactured products, with a focus on sustainable production. 

The European Commission emphasizes three crucial factors for the new Industry 

5.0 industrial paradigm: 

1. A human-centric approach that prioritizes human needs in the production 

process, considering how technology can benefit workers and be practical. 

2. Sustainability, which emphasizes reusing, repurposing, and recycling 

natural resources, as well as reducing waste and environmental impact. 
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3. Resilience, which involves enhancing the robustness of industrial 

production through flexible processes and resilient production capacity, 

especially during crises. 

The European Commission views Industry 5.0 as a necessary progression from 

Industry 4.0, as the latter is not suitable for achieving Europe's 2030 goals due to 

the technological dominance and significant wealth disparity in the current digital 

economy. 

Furthermore, Industry 5.0 does not represent a technological advancement, but 

rather a broader examination of the Industry 4.0 approach, aiming to provide a 

regenerative purpose and focus on the technological transformation of industrial 

production for the benefit of people, the planet, and prosperity. Industry 5.0 is a 

transformative model that reflects the evolution of our thinking after the COVID-

19 pandemic, with a focus on designing a more resilient industrial system that 

truly integrates social and environmental principles. 

The European Commission took a stance against Industry 4.0 in early 2022, 

asserting that this paradigm is not a suitable framework for addressing the current 

climate crisis and social tensions. According to their position, Industry 5.0 

represents a fresh approach to the industry, reimagining the role and functionality 

of value chains, business models, and digital transformation in a highly 

interconnected business environment. Studies have shown that Industry 5.0 differs 

from Industry 4.0 by prioritizing both performance-based competitiveness and 

sustainability, strengthening the human workforce through a human-centered 

approach to technological development, and innovating in environmental 

sustainability, such as smart renewable systems. 

Industry 5.0 also promotes stakeholder primacy in technology management, 

innovation growth, and sustainable performance management, and it encompasses 

specific technologies and functional principles to expand the scope of corporate 

responsibility throughout the entire value chain. 
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The consensus in the literature is that Industry 5.0 deviates from previous 

industrial revolutions by presenting a stakeholder-driven socio-technological 

event that consistently shifts traditional profit- and consumption-driven economic 

models to circular economy, sustainability, sustainable development, and 

economic value creation models (Breque M., De Nul L., Petridis A., 2021) 

(Gródek-Szostak, Z., et al.., 2023). 

1.4. INTERNAL LOGISTICS SYSTEMS 

The selected Internal Logistics Systems for this work are automated material 

handling systems, automated storage systems and automated picking systems: the 

preference for the automated ones is due to the fact that this study is focused on 

Industry 5.0. 

The key components of a material handling system encompass various 

technologies and processes designed to enhance efficiency and safety. These 

components work together to streamline the movement, storage, and retrieval of 

materials, ultimately impacting overall warehouse performance (Pat R. M., 

Haslebacher K.A., 2001). 

Automated storage systems significantly enhance warehouse efficiency and 

productivity by streamlining operations, reducing human error, and optimizing 

inventory management. These systems leverage advanced technologies to 

automate various processes, leading to improved performance across multiple 

dimensions (Madhu Vamsi A., et al.., 2020). 

Picking refers to the process of selecting and retrieving items from a storage area, 

often in the context of order fulfillment in various industries. This process can 

involve both manual and automated systems, each designed to enhance efficiency 

and accuracy in inventory management. Automated picking systems utilize 

technology to optimize the retrieval process. For instance, systems can plan 



16 
 

picking paths based on the loading device's position and capacity, ensuring 

efficient operations (Komatsu Seigo, 2007). 

1.4.1 AUTOMATED MATERIAL HANDLING SYSTEMS 

This section illustrates some examples of automated material handling systems 

that will also constitute a reference for the present work. 

Automated Guided Vehicle (AGV) refers to self-navigating vehicles guided by a 

pre-established navigation 

system, which can be 

implemented using wires or 

magnets embedded in the floor, 

magnetic strips, or visual signals. 

Among AGVs, Laser Guided 

Vehicles (LGVs) utilize advanced 

navigation technologies like lasers 

and/or cameras to move independently along predetermined routes without 

requiring human intervention, distinguishing them in the market (Dallari F., 

Bianco D., Corti A., Farioli M., 2023) (figure 1).  

 Autonomous Mobile Robots 

(AMRs) are autonomous vehicles 

equipped with intelligent systems 

that enable them to recognize their 

own position within a previously 

stored warehouse layout. They 

utilize a combination of 

technologies, including lasers, radio 

frequency, and QR codes installed on 

the ground to guide and navigate 

themselves within the warehouse 

environment (Dallari F., Bianco D., Corti A., Farioli M., 2023) (figure 2).  

Figure 2 Autonomous Mobile Robots, Source: [12] 

 

 

Figure 1 Automated Guided Vehicles, Source: [11] 
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The Open Shuttle autonomous mobile robot is able to to interconnect different 

areas of the warehouse while delivering the correct quantity of goods at the exact 

location at the accurate time. It has an intelligent software to securely execute 

transport orders independently, navigating warehouse space freely while detecting 

and staving off obstacles. This means it can be integrated in existing warehouse 

environments with no extra infrastructure needed. It also offers maximum 

flexibility while growing productivity and relieving human resources for value-

generating tasks [2].  

Automated Forklifts can be utilized in 

various transportation applications in factories, 

warehouses, and distribution and fulfillment 

centers. These vehicles, also known as AGV or 

AMR forklifts, are specialized in lifting and 

moving heavy objects or materials without 

human guidance. They are equipped with 

sensors and a guidance system to ensure 

precise movements and eliminate the need for 

manual labor. These machines can be 

programmed to move in any direction, operate 

at different speeds, and adjust their route based on the environment. By 

automating repetitive tasks, they can significantly improve efficiency and reduce 

costs. They typically consist of a frame, electric motors, sensors, wheels, and 

onboard computing power. The sensors allow the vehicle to detect obstacles and 

alter its course as needed. Navigating busy factories while avoiding obstructions is 

essential for safety. The automated forklift also features computer-controlled 

navigation systems that enable operators to choose destinations for the vehicle's 

journey. Once programmed, the vehicle will embark on its journey without any 

assistance, accurately following specified routes, turns, and curved paths while 

avoiding obstacles [3] (figure 3).  

Figure 3 Forklift AGV, Source: [9] 
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The Open Shuttle Fork features integrated 3D obstacle detection and can classify 

obstacles as either static or mobile. Based on this information, it makes decisions 

and plans where it goes. Another unique feature is the fully electric lifter – 

completely different from a scissor lift. This is why the Open Shuttle Fork can be 

used with pallets in all industries and can transfer them to existing conveyor 

systems. The Open Shuttle Fork can move in every direction, also turning on its 

own axis. This means the Open Shuttle Fork can move at a 90-degree angle from 

its usual alignment and can, for example, pick up pallets that may have been 

manually placed less precisely on a position. This also means it can move about in 

tighter spaces, saving space and serving a more compact layout with narrower 

aisles [2]. 

Cobots: collaborative robots equipped with advanced grippers, computer vision, 

and machine-learning systems are capable of handling a wide range of objects, 

even in unstructured environments such as bins or totes. They can easily 

incorporate SKU scanning and pick up pouches or items of almost any size or 

shape, making e-commerce, fulfillment, warehousing, logistics, and supply chain 

operations more efficient and faster. Collaborative robots streamline material 

handling, packaging, palletizing, bin picking, labeling, and kitting operations. By 

automating material handling tasks with lightweight collaborative robot arms, 

workers can be relieved from repetitive work and heavy lifting. Automation helps 

offset the increasing costs of new product packaging and shortened product life 

cycles, and enables businesses to cope with seasonal peaks despite labor 

shortages. In case of workflow changes, the material handling cobot can be 

quickly and easily redeployed in new setups [4]. By handling hazardous overhead 

tasks, repetitive and monotonous operations, or extremely small tasks, cobots 

reduce the workload on staff while consistently delivering high quality (Javaid 

M., et al.., 2022). 

A sorter is an automated system for sorting orders by destination, consisting of 

pre-sorting accumulation area, material insertion bays, sorting system, 

accumulation channels, and potential picking bays. Using barcodes, the sorter 
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scans and identifies all added items, directing them to different exits 

corresponding to specific delivery points. The size of the accumulation area 

depends on the synchronization between the picking and sorting activities. Sorters 

can be linear or ring sorters, with the ring sorter allowing for recirculation of 

goods in case of sorting failure, which is not possible in the linear system (Dallari 

F., Bianco D., Corti A., Farioli M., 2023). 

The linear sorter is a system that moves pieces along a single conveyor line and 

directs them to different exits using directional diverters. 

The ring sorter transports parts on a ring or loop and sorts them using directional 

diverters placed along the route. One of the benefits of the loop system is the 

recirculation of goods in the event of sorting failure, which is not possible in the 

linear system. Additionally, there are various types of direction diverters used to 

dispatch material into the accumulation channels, which can be categorized into 

two main groups: active systems and passive systems. Active direction diverters 

are equipped with motorized or electronically controlled mechanisms that enable 

the active change of the direction of material flow. Passive direction diverters use 

gravity to route the material to the desired accumulation channel, without the need 

for motorized components. Sorters require coordinated implementation with 

upstream picking systems, as the former focuses on sorting and selecting items, 

while the latter is responsible for picking and preparing them for shipment or 

delivery (Dallari F., Bianco D., Corti A., Farioli M., 2023). 

There are different types of sorter that are 

classified this way: 

Bomb Bay: it is used to quickly sort non-

fragile, lightweight, and unstable items. This 

system allows for the arrangement of items 

in baskets or totes that are linked to 

particular orders or destinations. The 

conveyors move the items over the fixed 
Figure 4 Bomb Bay, Source: Dalari F., 
Bianco D., Corti A., Farioli M., 2023 
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positions of the destination baskets or crates and release them by using a tilting 

tray or a pusher. This type of system is referred to as a Push Tray Sorter in this 

case (Dallari F., Bianco D., Corti A., Farioli M., 2023) (figure 4).  

Cross Belt: this sorting system consists of 

multiple belt conveyor modules arranged 

perpendicular to the direction of travel in the 

loop. Each module has a conveyor system to 

discharge products into the appropriate 

channel. The high throughput (up to 20,000 

handling units/hour) and the ability to handle 

a wide range of objects make this system 

excellent for order generation. Its flexibility 

allows it to handle both single pieces and 

packages, including small outputs. Additionally, connections can be established 

between different areas of the facility (Dallari F., Bianco D., Corti A., Farioli M., 

2023) (figure 5).    

Tilt Tray: this system contains several 

modules (trays) where the products to be 

sorted are placed. However, sorting is 

achieved by deflecting the tray towards the 

side where the container for the newly 

sorted goods is located, making it more 

suitable for handling heavy and sturdy 

objects (Dallari F., Bianco D., Corti A., 

Farioli M., 2023) (figure 6). 

 

Shoe Sorter: An automatic sorting system that utilizes a surface made of 

connected laths similar to a belt. Along one side of the laths, there are diverters 

that move laterally independently. This enables the routing of loads to different 

Figure 5 Cross Belt, Source: Dalari F., 
Bianco D., Corti A., Farioli M., 2023 

Figure 6 Tilt Tray, Source: Dalari F., Bianco 
D., Corti A., Farioli M., 2023 
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discharge lanes. The diverters are 

controlled sequentially to move from one 

side of the conveyor to the other, making 

contact with the loads and directing them to 

the corresponding unloading lanes. 

Unloading lanes can be fed by chutes for 

continuous flow of loads. This system is 

typically used for sorting packages and has 

a throughput of about 9,000 SKU/h (Dallari 

F., Bianco D., Corti A., Farioli M., 2023) (figure 7). 

Pouch Sorter: This overhead sorting 

system utilizes pockets, pouches, or 

bags to store and transport individual 

pieces and packages. The building's 

ceiling is equipped with a system of 

carts or rails that allows for the 

utilization of previously unused space. 

This overhead conveying system is both 

space-saving and versatile, enabling the 

processing of multiple sales channels 

simultaneously. By utilizing the space below the ceiling, it allows for the 

transportation of goods without using floor space. One load carrier can transport, 

buffer, sort, and sequence both flat and hanging goods in one system, achieving 

high throughput. By hanging individual pockets or pouches from this rail system, 

they can be moved independently, allowing for precise sequencing of outbound 

picking or sorting. Unlike the previously mentioned systems, it also functions as a 

buffer. Products are taken out and placed into pouches for further picking and 

packing. Pouch sorters are commonly used in e-commerce order fulfillment and 

returns handling to increase sorting capacity at about 7000-10000 pockets/h per 

module (Dallari F., Bianco D., Corti A., Farioli M., 2023) [5] (figure 8). 

Figure 7 Shoe Sorter, Source: Dalari F., 
Bianco D., Corti A., Farioli M., 2023 

Figure 8 Pouch Sorter, Source: Dalari F., Bianco 
D., Corti A., Farioli M., 2023 
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1.4.2 AUTOMATED STORAGE SYSTEMS 

The chosen automated storage systems for this work are: 

Miniload: a miniload is an automated storage 

and retrieval system designed for small or 

medium-sized load units, such as boxes, 

cartons, or trays. They consist of aisles with 

single- or double-deep racking, and 

automated machines that can move 

horizontally and vertically (Dallari F., 

Bianco D., Corti A., Farioli M., 2023) 

(figure 9).  

Shuttle based: The shuttle system 

is a solution for automated storage 

and retrieval of totes, cartons, or 

trays. It consists of a series of aisles 

with single- or double-deep racking. 

Shuttles at each aisle move 

independently along the X axis and 

use telescopic arms with fingers to 

make picks from the racks left and 

right along the Z axis. If each level of the rack has a shuttle, it's called a 'full 

shuttle' system. In a 'roaming shuttle' system, robots are dedicated to multiple 

levels and require lifts to move the shuttles between levels. Unlike 'multilevel 

shuttle' or 'miniload' systems, the shuttles in this system operate at a fixed height 

without a lift along the Y-axis, so lifts are installed at the end of the corridors. 

These shuttles offer high throughput levels among all automated storage systems, 

making them suitable for dynamic applications with high volume handling 

(Dallari F., Bianco D., Corti A., Farioli M., 2023) (figure 10). 

Figure 9 Miniload, Source: [17] 

Figure 10 Shuttle, Source: [18] 
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AMR based: AMRs (Autonomous Mobile Robots) are vehicles that can drive on 

their own using autonomous intelligence and can recognize their own position in a 

warehouse layout that has been previously stored. They use various technologies 

like lasers, radio frequency, and QR codes on the floor to orient themselves and 

move within the warehouse environment (Dallari F., Bianco D., Corti A., Farioli 

M., 2023). 

The AMR system, called Shelf-to-Picker, 

consists of three main parts: the robot, the 

transported pod, and a workstation (an 

ergonomically designed area for workers to 

perform picking and replenishment operations). 

When an order is received, the software assigns 

the requested item first to a workstation where 

an operator is active, and then to an available 

robot. The robot leaves its dwell station (where 

the battery is charged) using a barcode grid on 

the floor to fetch the load  unit with the ordered products. After delivering the pod 

to the designated location, the robot enters a buffer area and waits for the operator 

to retrieve or replenish an item, either manually or through automation for better 

performance. Once the operator completes their task, the robot returns the pod to 

the specified storage location based on the remaining items (figure 12). AMR 

solutions that aid in the transportation of 

individual containers (also known as "Bin-

To-Pickers") come in different designs and 

functionalities. Lastly, there are AMR 

vehicles designed to assist human operators in 

retrieving necessary items from shelves or 

storage areas with efficiency and accuracy. 

These vehicles, also known as Picker-To-

Good, can follow the assigned picking route 

Figure 12 Shel-to-picker, Source: Dalari 
F., Bianco D., Corti A., Farioli M., 2023 

Figure 11 Picker-to-good, Source: Dalari 
F., Bianco D., Corti A., Farioli M., 2023 
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and provide support during the picking and packing process (figure 11) (Dallari 

F., Bianco D., Corti A., Farioli M., 2023).  

Compact storage: Compact storage is 

an automated storage system that is 

small and uses robots to pick or place 

totes on columns on either the top or 

bottom grid surface. The system 

comprises four primary components: 

the robots, the aluminum structure, the 

totes, and the operator station (Dallari 

F., Bianco D., Corti A., Farioli M., 

2023) (figure 13).  

Dispenser: VLMs are a subtype of 

vertical carousels that use a miniload-

like system for translations that are 

based on two Cartesian axes (single-

column) or three Cartesian axes (multi-

column) instead of a chain device 

inside the structure and handles trays 

through a single-column or multi-

column system (Dallari F., Bianco D., 

Corti A., Farioli M., 2023) (figure 14).  

Horizontal Carousels function in a 

manner similar to traditional carousels. 

They consist of a series of shelves or 

drawers that rotate horizontally. A 

computerized system controls the 

sequential stopping of the shelves or 

drawers for picking when an order number 

Figure 14 Vertical Lift Module, Source: Dalari F., 
Bianco D., Corti A., Farioli M., 2023 

Figure 15 Horizontal Carousels, Source: 
Dalari F., Bianco D., Corti A., Farioli M., 2023 

Figure 13 Compact storage, Source: Dalari F., 
Bianco D., Corti A., Farioli M., 2023 
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is input. Typically, carousels are arranged in an oval shape and feature one or 

more central pick stations (Dallari F., Bianco D., Corti A., Farioli M., 2023) 

(figure 15).  

The A-frame dispenser has a frame that looks 

like the letter 'A' from the side. The frame 

contains two picking faces with slanted 

channels, each intended for a specific type of 

item (Dallari F., Bianco D., Corti A., Farioli 

M., 2023) (figure 16).  

The AutoStore system, shown in figure 17, is 

an efficient, adaptable robotic storage 

and piece picking system that 

maximizes storage density and allows 

for four times the inventory in the same 

space as conventional storage systems 

and twice that of other automated 

systems. Order fulfillment with 

AutoStore is based on the goods-to-

person (GTP) principle, eliminating 

worker travel time to pick locations and supporting high picking productivity, the 

removal of dedicated pick faces, excellent product security/inventory accuracy, 

increased order processing speed, and improved order accuracy. AutoStore's 

flexibility and adaptability allow for simple performance enhancement by adding 

additional robots, increasing storage locations, or adding new workstations. 

Moreover AutoStore's compact design prevents stock loss by storing products 

securely and keeping them inaccessible until an order is started (Dallari F., Bianco 

D., Corti A., Farioli M., 2023) [6]. AutoStore is a specialized system for 

automated storage and retrieval that uses a grid of bins and robots to efficiently 

store and retrieve items. It utilizes roller pallets and channels to dynamically 

manage inventory, enabling high-density storage and quick access to various 

Figure 17 Autostore, Source: [10] 

Figure 16 A-frame Pick&Pack, Source: 
Dalari F., Bianco D., Corti A., Farioli M., 

2023 



26 
 

materials (Heinrich E., 2003). In contrast, Compact storage systems concentrate 

on maximizing space efficiency through methods such as data compaction and 

automated management of storage resources. For example, a compact storage 

apparatus can independently manage data, optimizing capacity and performance 

by migrating and compacting data as necessary (Choi I.S., et al., 2015). While 

both systems aim to improve storage efficiency, compact storage emphasizes data 

management within devices, while AutoStore focuses on automating physical 

item retrieval and storage. This underscores the different approaches to optimizing 

storage solutions in various contexts. 

1.4.3 AUTOMATED PICKING SYSTEMS 

The chosen automated picking systems for this work are: 

Pick to voice or voice picking is a technology that, by taking advantage of text-to-

speech devices, is able to send simple and clear voice commands to the picker, 

indicating the route for staff to follow and the tasks to be performed. The voice 

picking system supports and enables the optimization of logistical operations of 

picking and order preparation. The operation of voice picking depends directly on 

computer terminals. These are equipped with synthesizers and voice recognition 

systems. Being able to recognize the human voice, the device gives and receives 

instructions, establishing a “two-way communication” with the picker. It should 

be noted, in fact, that voice picking can receive responses from an operator thanks 

to the multi-modal feedback system, thus increasing flexibility in carrying out 

picking activities [7]. 

Pick To Light devices, are installed directly on the items by illuminating their 

position and showing the quantity required. Models equipped with sensors for 

processes that require maximum reliability can detect if the selected item is the 

right one and alert the operator if there is an error. Pick To Light systems are 

especially advantageous for sites where items are high-end and/or subject to 

significant stock rotation. Additionally, they are also useful at sites with medium 
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and low stock rotation, where solutions with higher possibilities can be set up or 

in conjunction with radio frequency systems [8]. 

Put To Light solutions are the best choice for small item order preparation Put to 

Light systems offer a quick, intuitive, scalable, and error-free process for sorting 

processes that are commonly used in e-commerce. The operator is visually guided 

to the containers where they should deposit (put) the items from each order by 

means of displays. Each location or container assigned to an order is associated 

with a light display. Upon identification of the item, the displays visually indicate 

the locations where it should be deposited and the quantity required for each 

order. Put-to-light solutions are employed to assign items to designated locations, 

such as from transported containers (Project-to-Person principle), from previously 

selected containers (Batch Picking or two-step picking processes), or from picking 

carts with distinct orders [8]. 

The picking method Pick by scan involves workers using a mobile barcode 

scanner with a screen that shows them the storage location of an item [8]. 

Augmented reality smart glasses (ARSGs) enhance the efficiency of order-

picking tasks by increasing speed and reducing error rates. Compared to 

traditional support tools, the use of ARSGs directly improves workers' well-being 

perceptions. Workers use ARSGs to automatically show relevant information 

within their line of sight, eliminating the need for constant head movements to 

access desired information, simplifying operations and reducing completion time. 

The information can be displayed anywhere, allowing workers to utilize ARSGs' 

capabilities as needed, significantly boosting flexibility. The potential of ARSGs 

to enhance the order-picking process is evident in their features and hands-free 

nature, enabling workers to complete tasks faster and without interruptions. 

Additionally, ARSGs can prevent picking errors compared to traditional picking 

support tools. This is due to the prominent display of instructions, reducing the 

reliance on memory and ad-hoc decision making, leading to increased task 

reliability even in the event of interruptions (Windhausen A., et al.., 2024). 
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Exoskeletons help workers by providing support for monotonous or stressful 

postures and more even load distribution when lifting, moving and handling heavy 

objects. They also reduce safety risks through a mix of function and protection 

(e.g. through certain surfaces) and vibrations which, if sustained, increase the risk 

of musculoskeletal disorders (MSDs). In short, an exoskeleton increases 

workplace safety, reduces the wear and tear of many individual work steps and at 

the same time increases efficiency in the relevant sub-segment (Drees T., et al.., 

2021). 

Collaborative robots minimize the need for extensive travel between functional 

areas at each stage of the picking process, thereby reducing unnecessary 

movement within the warehouse. They do so by assisting employees in managing 

the workload and by guiding them through tedious order-picking activities and 

relocating orders to the appropriate areas once picking is completed (Javaid M., et 

al.., 2022). For instance, the picking robot is a collaborative robot designed to 

automate the process of picking. It selects items from one storage container and 

transfers them to another without human intervention. With the help of advanced 

vision software based on deep learning and a highly adaptable gripping device, 

the robot can handle a wide range of items with utmost accuracy, regardless of 

their shapes, sizes, or finishes. Robotic picking provides the ultimate solution for 

boosting productivity, cutting operating costs, and optimizing order fulfillment 

efficiency in various industries, including e-commerce, pharmaceuticals, textiles, 

and food [13]. 

Robots specialized in picking 

individual items can also be 

combined with oicking bays to 

handle tasks involving picking and 

placing items. These robots can 

assemble orders for future 

processing. When there are two 

workstations available, the robotic 
Figure 18 Cobot installed on Autostore, Source: [14] 
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arm can extract products from Bins containing items and put them into empty 

Bins or totes, which will serve as prepared Bins. Once the prepared Bins are 

ready, they are returned to the storage system. By working together with an 

automated packing system and a takeaway conveyor positioned on or next to the 

AutoStore Port, piece picking robots can manage both picking and packing duties. 

The robots pick products from an AutoStore Bin presented at the workstation, 

scan the picked item(s) using automated scanning, and place the item(s) into a 

carton presented on the conveyor. Subsequently, a conveyor moves it to an 

automated packing station, where the carton can be sealed and labeled. The 

robotic arm can be utilized for batch picking when it picks from AutoStore to 

multiple destinations, for example, multiple totes or various compartments on a 

putwall. This approach is especially effective in settings with high order volumes 

and similar item requirements across orders [14] (figure 18).  

1.5. DESIGN RESEARCH METHODOLOGY 

After a brief description of what Industry is, its evolution over the years into 

Industry 5.0, and discussing the Internal Logistics Systems, this section illustrates 

the methodology used for this thesis work: the Design Research Methodology. 

The goals of Design Research involve creating and confirming models and 

theories related to the concept of design, as well as creating and confirming 

knowledge, techniques, and resources, based on these theories, to enhance the 

design process. Design research must systematically create and confirm 

knowledge, which necessitates a research methodology (Blessing L., Chakrabarti 

A., 2009). 

The primary objective of engineering design research is to assist the industry by 

enhancing our comprehension of engineering design. This involves creating 

knowledge in the shape of guidelines, methods, and tools that can enhance the 

likelihood of creating a successful product. 
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Another fundamental characteristic of design research is that of duality: it aims 

not only to understand the phenomenon of design but to use this gained 

understanding for the sake of stimulating changes in existing practices. This 

involves not only a model describing the present situation but also one of the 

wanted future situation and a roadmap leading through the process of 

transformation. In this respect, design research also involves both research 

components, the improvement of knowledge, and development components, 

creating norms and strategies, which require various methodologies and 

approaches. 

The nature of design research is such that it seeks to comprehend the phenomenon 

of design and to apply this comprehension to bring about a change in the current 

state. Achieving the latter involves more than just a representation (or theory) of 

what currently exists; it also necessitates a representation of what would be 

preferable and how the current situation could transition into the preferred state. 

As a result, design research also involves both research components, the 

improvement of knowledge, and development components, the development of 

guidelines and methods, each of which demands distinct methodologies and 

approaches. 

The DRM was introduced by Blessing and Chakrabarti (Blessing L., Chakrabarti 

A., 2009) and comprises four key stages: Research Clarification (RC), Descriptive 

Study I (DSI), Prescriptive Study (PS), and Descriptive Study II (PS-II). 

According to the authors, the RC stage serves to clarify the current understanding 

and the overall research objective, establish a research plan, and provide a focal 

point for the subsequent stages. The goal of the DS-I stage is to enhance 

comprehension of design and the factors influencing its success through an 

examination of the design phenomenon, in order to inform the development of 

support. In this context, "support" encompasses potential methods, aids, and 

measures for improving the current situation and facilitating the evaluation of the 

researcher's core contribution (a guiding manual for this paper). The PS stage 

aims to systematically develop support, taking into consideration the findings of 
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DS-I. Lastly, the DS-II stage concentrates on assessing the usability and 

applicability of the actual support and its effectiveness (Blessing L., Chakrabarti 

A., 2009) (Calderon M.L, 2010). 

1.6. GENERAL RESEARCH APPROACH 

The DRM was chosen because the ultimate goal of the research in which this 

thesis is embedded is to define guidelines for the design and development of 

internal handling systems. As explained in Section 1.5 its primary is to assist the 

industry by enhancing our comprehension of engineering design. In this case, this 

involves creating knowledge in the shape of guidelines, methods, and tools that 

can improve the design of future Internal Logistics Systems. 

This section describes each of the stages and steps of the DRM applied in this 

work. 

In the first stage of the DRM, the Criteria Definition, through a literature review it 

was set the main research question of the present study, namely 

How the impacts of Industry 5.0 on the performance of intra-logistics systems, 

and in particular material handling, storage, and picking systems, can be 

assessed in a comprehensive way? 

Where comprehensive means considering all the three I5.0 target dimensions and 

the main Internal Logistics Systems in the same framework. 

This laid the path of the research which led to the second stage of the DRM, the 

Descriptive Study I, here a Systematic Literature Review was developed for 

gathering information on how to implement Industry 5.0 target dimensions in 

practice by developing the two concepts of approach and technology. After 

drawing a list of these approaches and technologies for each Industry 5.0 target 

dimension, this step then required the experts’ knowledge in order to validate the 
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list and obtain a final list of the most important I5.0 approaches and technologies. 

The experts’ knowledge was obtained through the submission of a questionnaire 

on approaches and technologies of each I5.0 target dimension to professors from 

both Politecnico di Torino and Technical University of Munich (TUM) experts in 

logistics and manufacturing topics. The analysis of the answers given on the 

questionnaire provided a list of the most important and relevant approaches and 

techologies. The following step consisted of a research on the performance 

parameters of the Internal Logistics Systems, namely material handling, storage 

and picking systems. At first this research was done by consulting professional 

magazines, the information gathered from there was then consolidated by 

scientific literature. This was done by searching on Scopus the performance 

parameters founded, to double check that they were also debated in the scientific 

literature by experts in the field as well. In particular, for each performance 

parameter selected from professional literature, the number of papers that 

included it as an author-keyword was looked for. The performance parameters 

that did not have a number of papers greater than 10 were excluded from the list.  

The research on the performance parameters of the Internal Logisitic Systems was 

crucial for the development of the Domain Mapping Matrices, final step of the 

application of DS I stage. The DDM were chosen as a framework to put together 

the results found on both Industry 5.0 approaches and technologies and the 

Internal Logistics Systems performance parameters, because they allow to gather 

the experts’ opinions on the degree of the impact of the approaches and 

technologies for each Industry 5.0 target dimension on the Internal Logistics 

Systems. So the main reason why they were chosen for this work is because they 

are particular matrices that enable to include not just one domain at a time but 

allow to determine a relationship between two domains, the ones entered in the 

rows and those entered in the columns [15] (figure 19). 

Table 1 illustrates a summary of the adopted research approach. 
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DRM STAGE METHODS RESULTS 

CRITERIA 
DEFINITION 
(RESEARCH 

CLARIFICATION) 

LITERATURE 
REVIEW 

RESEARCH OBJECTIVE: 
assessing how I5.0 influences 

the performance of Internal 
Logistics Systems (material 

handling, storage, and picking 
systems). 

DESCRIPTIVE STUDY 
I 

LITERATURE 
REVIEW 

APPROACHES AND 
TECHNOLOGIES FOR EACH 

I5.0 TARGET DIMENSION. 

EXPERTS 
KNOWLEDGE 

(QUESTIONNAIRE) 

PERFORMANCE 
PARAMETERS FOR 

MATERIAL HANDLING, 
STORAGE, AND PICKING 

SYSTEMS. 

  DEVELOPMENT OF DOMAIN 
MAPPING MATRICES (DMM). 

Table 1 Design Research Methodology 

 

Figure 19 Resume of the content of each chapter of this thesis 
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2. SYSTEMATIC LITERATURE REVIEW 

This is the chapter about the Systematic Literature Review (SLR), which is one of 

the research methods used for the present work. It was the best option to research 

such an innovative theme because it allowed to gather much information founded 

by other experts in the field and reported in their papers. Moreover this method 

was also chosen because it is able to synthesize information from multiple studies 

and arrive at a comprehensive view of the topic of interest, in this case Industry 

5.0 and how it can be applied, as it is stated in Section 2.1. 

2.1. METHODOLOGY 

The final aim of this research is assess how Industry 5.0 influences the 

performance of intra-logistics systems. So, it is necessary to understand how 

Industry 5.0 and its target dimensions can be implemented in these systems. For 

such a reason it is necessary to know how the Industry 5.0 notion can be 

practically applied. As a consequence the reasearch question of the present SLR 

was “how to implement in practice each of the three Industry 5.0 target 

dimensions?” 

Following the guidelines provided in the paper “A systematic literature review of 

innovative technologies adopted in logistics management” (Lagorio A., et al.., 

2020), the first step was to define the inclusion/exclusion criteria and then a list of 

keywords for the research were listed. After that, the papers founded were filtered 

by first reading the title, then the abstract and lastly their content.  

After reviewing the results of the SLR, a way of defining the ways to apply 

Industry 5.0 in practice, thus answering to the research question above, was to 
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divide them into approaches and technologies an approach can be defined as “a 

strategic direction or a specific way to implement Industry 5.0 target dimensions 

(Matt C., Hess T., Benlian A., 2015)” a technology can be defined as 

“innovations, machinery and equipment that utilize scientific knowledge to 

support operations effectively and efficiently in order to achieve Industry 5.0 

target dimensions (Tiwari S., Bahuguna P.C., Walker J., 2022)”. 

2.2. INCLUSION/EXCLUSION CRITERIA AND 

KEYWORDS 

The chosen multidisciplinary database was Scopus at international level. The 

queries for conducting the research on Scopus contained the selected keywords 

along with Boolean logical operators (“AND” and “OR”). The queries were 

usually formulated as “Keyword A AND Keyword B OR Keyword C”. Only the 

articles with Open Access for PoliTo Students have been considered (figure 20). 

At the start, the search strings were “Industry 5.0 overview”, “Industry 5.0 AND 

sustainability OR ecological”, “Industry 5.0 AND human centricity”, “Industry 

5.0 AND resilience”. Following the results founded with these queries, the search 

string became “Approach A AND industry 5.0”, “Technology B AND industry 

5.0”. In the end 2343 papers were analised and 24 were kept in the corpus (Table 

2). 

The publishing year, the document type and the English language have been 

considered as inclusion criteria. More specifically the publishing time interval is 

set between 2019 and 2024 because the concept of industry 5.0 hadn’t been 

brought up by researchers and experts in the field previously, in fact before 2019 

there are many papers about industry 4.0 and fewer on industry 5.0 which are not 

as relevant for this study (Table 2). 

The second admission criterion, the document type, was limited “Journal Papers”, 

“Conference Papers”, “Book Chapter” and “Review” in order to maintain 

https://www.igi-global.com/affiliate/saurabh-tiwari/409312/
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homogeneity among the definitions of the different contributions, enhancing 

consistency across the themes (Table 2). 

The third criterion, the English language, was obliged, due to the fact that the 

author knows in a professional way only English and Italian and the work thesis is 

written in English to let the thesis be globally comprehensible (Table 2). 

 

Figure 20 Keywords tree 

 

Table 2 Inclusion criteria 

Pubilishing year from 2019 to 2024

Document type

Journal Papers, 

Conference 

Papers, Book 

Chapter and 

Review

Language English

Database Scopus

Inclusion criteria
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2.3. PAPER ANALYSIS 

The selected papers in the corpus are 24 and they are distributed in the chosen 

time interval as shown in figure 21. 

 

Figure 21 Papers distribution per year 

Almost half of the papers belong to the year 2023 contribuing with 46%, then for 

both year 2022 and 2024 there are 5 papers, which consist in 21% each. Finally 

for the year 2019 and 2021 the are respectively 2 and 1 papers which fill out the 

remanaing 8% and 4%.  

All the relevant approaches and technologies cited in the papers analised have 

been listed in the table included in Appendix 1 in this thesis work, the next 

chapter delves deeper into this topic. The table shows the approaches and 

technologies in the columns, divided by the three target dimensions in which 

they’re mentioned by the papers which are included in the rows of the table. The 

first thing that comes up is that some approaches and technologies are mentioned 

in two or all three target dimensions, meaning that they can bring a positive 

outcome in implementing, possibly, all the industry 5.0 principles. Every 

approach and technology is mentioned on average 2 times with a minimum of 1 

and a maximum of 6 times by all the considered papers. Each target dimension 

contains almost the same total amount of citations, more specifically 41 for 
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Figure 23 Papers distribution per target dimension 

human centricity, 30 for sustainability and 32 for resilience. This is also 

highlighted in figure 22 which shows the percentage of the numbers above. It is 

again reflected in the fact that the number of approaches and technologies for each 

target dimension is almost the same.  

 

Figure 22 Papers numerosity per target dimension 

Finally in figure 23 is shown the number of citations for the approaches and 

technologies in percentage to the total amount of citations per target dimension. 

What’s common in all three graphs is the fact that technologies are more popular 

than the approaches.  
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3. APPROACHES AND TECHNOLOGIES 

TO IMPLEMENT INDUSTRY 5.0 

TARGET DIMENSIONS 

Industry 5. 0 is described as an expanded and rejuvenated sense of purpose that 

goes beyond simply making goods and services for profit. Key elements include 

resilience, sustainability and human centricity. (Breque M., De Nul L., Petridis A., 

2021) 

A human-centered approach in Industry 5. 0 places human needs and interests at 

the core of the production process, rather than starting with new technology and 

assessing its potential for improving efficiency. Instead of asking what we can do 

with new technology, we ask what the technology can do for us. The objective is 

to utilize technology to guide and train industry workers, while adapting the 

production process to their requirements, rather than expecting them to adapt their 

skills to keep up with rapidly evolving technology. It also ensures that new 

technologies do not infringe upon workers' basic rights, such as privacy, 

autonomy, and human dignity. 

To protect the planet, industries must embrace sustainable practices. This involves 

establishing circular systems that reuse, repurpose, and recycle natural resources, 

while minimizing waste and environmental impact. Sustainability entails 

reducing energy consumption and greenhouse gas emissions to prevent the 

depletion and degradation of our natural resources. Technologies such as AI and 

additive manufacturing can make a significant contribution by enhancing resource 

efficiency and reducing waste. 
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Resilience refers to the necessity of creating greater strength in industrial 

production, enabling it to better withstand disruptions and ensuring it can maintain 

and support essential infrastructure during crises. Geopolitical shifts and natural 

disasters, like the Covid-19 pandemic, highlight the vulnerability of our current 

global production model. This should be counterbalanced by establishing 

sufficiently resilient strategic value chains, adaptable production capabilities, and 

flexible business operations, especially in sectors that address fundamental human 

needs, such as healthcare and security (Breque M., De Nul L., Petridis A., 2021).  

3.1. HUMAN CENTRICITY 

The results of the Systematic Literature Review led to a list of approaches and 

technologies that best fit the aim of the target dimension Human Centricity, below 

there’s a list and description of all of them. 

3.1.1 APPROACHES 

Decentralized decision-making which is when top managers delegate some 

decision-making processes to lower level managers and sometimes blue collar 

workers. This gives more importance to people aided by new technologies (e.g. 

Internet of things) in taking decisions. This leads to a quicker or real time decision 

making (Zizic M.C., et al.., 2022). 

Human-robot collaboration in the workplace involves humans focusing on tasks 

that require creativity, while robots handle other tasks. This collaboration enables 

human workers and robots to complete tasks that would be challenging or 

impossible to do alone, leading to increased innovation and competitiveness in the 

industry (Demir K.A., Döven G., Sezen B., 2019) (Zafar, M.H., Langås, E.F., 

Sanfilippo, F., 2024). Hand-guiding Human Robot Collaboration (HRC) is a 

form of interaction where the human operator physically guides the robot's 

movements within the workspace. It is used in various industrial and 

manufacturing applications to assist robots in performing complex tasks or to train 
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them for new activities. Speed and Separation Monitoring HRC involves the 

use of advanced monitoring systems to ensure safe interactions in industrial and 

manufacturing environments. These systems monitor the speed and distance 

between the human operator and the robot to prevent accidents and ensure the 

operator's safety. They utilize sensors and cameras to identify the presence of a 

human operator in the workspace. Power and Force Limiting HRC restricts the 

power and force exerted by robots to prevent accidents and ensure the safety of 

human operators in industrial and manufacturing environments. These systems 

monitor the interaction between the human operator and the robot and adjust the 

robot's power and force in real time using sensors and algorithms (Zafar, M.H., 

Langås, E.F., Sanfilippo, F., 2024). 

Navigation/Tracking-as-a-Service (NTaaS), when combined with cloud-based 

infrastructure, offers on-demand localization services to a variety of industries, 

including retail, manufacturing, supply chain, transportation, healthcare, and 

logistics. These services include navigational tracking in machine cells, real-time 

location information maintenance, and factory asset management for industrial 

cobots, AGVs, isochronous factory operations, environmental sensing (Shah Z., et 

al.., 2023).  

3.1.2 TECHNOLOGIES 

Artifical Intelligence can enhance worker happiness by freeing up workers' time 

for more complex and creative work by automating monotonous and repetitive 

jobs. AI systems' real-time insights may help improve overall job satisfaction and 

work-life balance (Valeriya, G., et al.., 2024). Moreover applying AI frees up 

time, creativity and human capital, making worker's tasks less repetitive 

(Giugliano G., et al.., 2023). AI also allows people to manage massive datasets, 

automate tasks, gather insights, and increase the overall efficiency and 

effectiveness of engineering methods within the field of digital transformation. In 

this context, AI-enabled tools capable of extracting information help to streamline 

the flow of information, knowledge transfer, and interaction between humans and 

various lifecycle stages of processes, systems, and machines. By utilizing AI-
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based machine learning, cognitive abilities are harnessed to generate nearly 

optimal plans (Alimam H., et al..,2023). Other AI declinations are 

Humancentered AI and Edge AI. The former concentrates on ongoing 

advancements through human input, provides explainable AI models, and enables 

humans and cobots to work together effectively. For instance, AI-powered 

informed algorithms, like data-driven physics-informed models, can learn from 

incoming data and embedded mathematical physics models. They mimic human 

brain learning, even in unclear, high-dimensional, and undefined settings. The 

latter involves a blend of Computational Intelligence (CI) and Cloud-Fog-Edge 

(CFE) computing, which can enhance human-machine collaboration by 

understanding action perception more deeply (Shah Z., et al.., 2023). The concept 

of the digital triplet advocates for seamless integration and collaboration among 

humans, machines, and artificial intelligence. Its primary objective is to facilitate 

smooth interaction and synergy among these entities, thereby improving 

productivity, decision-making, and problem-solving capabilities (Alimam H., et 

al.., 2023). 

Virtual Reality (VR) provides an immersive virtual environment which users can 

experience, observe, and interact with virtual objects to perceive the real 

environment (Krupas M., et al.., 2024). Industry 5.0 integrates virtual reality for 

human-robot collaboration enhancing safety and efficiency in interactions 

between humans and robots (Marinelli M., 2023). Virtual Reality Head-

Mounted Displays (VR HMDs) are used to offer the human operator an 

interactive virtual world. In HRC, VR HMDs can be used to provide the operator 

with a sense of presence and improve their capacity to collaborate with the robot 

(Zafar, M.H., Langås, E.F., Sanfilippo, F., 2024).  

Collaborative robots can be employed for repetitive activities and labor-

intensive work, while humans handle personalization and critical thinking duties 

(Pizoń J., et al.., 2022). Their implementation prioritizes the well-being of 

workers (Calzavara M., Faccio M., Granata I., 2023). Cobots also create a 

balanced mix of human intelligence and cognitive computing that promises mass 
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personalization representing high-value-generating products resulting in higher 

sustainability (Aheleroff S., et al.., 2022). Cobots can ultimately reduce the 

volume of tedious, repetitive, and exhausting work, thereby alleviating individuals 

from the strain that could potentially result in work-related illnesses. The 

integration of collaborative robots and safety-focused technology establishes a 

robust framework for maintaining a secure working environment (Zafar, M.H., 

Langås, E.F., Sanfilippo, F., 2024). 

Applying exoskeletons and wearable technologies supports workers’ physical 

activities and improves health through monitoring physiological conditions 

(Giugliano G., et al.., 2023). Exoskeletons enhance the abilities, strength, 

productivity, and stability of industrial workers. Meanwhile, exosuits are 

wearable robots that offer mechanical support to the user. They are often used in 

HRC to supplement human strength and stamina, assisting the human operator in 

completing tasks that may otherwise be too physically demanding.  

Wearable technology, such as wristwatches, headsets, or glasses, is an emerging 

technology that provides more immersive experiences when interacting with 

humans. Wearable technology is increasingly utilized in HRC to enhance the 

interaction between individuals and robots. Head-worn industrial smart 

wearables (ISWs) enhance the navigation and information-sharing capabilities of 

human operators. Clothing industrial smart wearables (ISWs) utilize 

conductive or optical sensors to monitor and track workers' vital signs. 

Embedded tracking industrial smart wearables (ISWs) track workers' mental 

and physical strain and stress (Ghobakhloo M., et al.., 2023) (Zafar, M.H., 

Langås, E.F., Sanfilippo, F., 2024). 

Augmented Reality can boost human and robot cognitive capacities by 

integrating humans into production processes in real-time and dynamically (Alves 

J., Lima T., Gaspar P., 2023). It also improves our sensory perception by letting 

us engage with data (Humayun M., 2021). Augmented reality can be applied to 

transmit knowledge and better cognitive abilities (Giugliano G., et al.., 2023).  
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Moreover, Augmented Reality Technologies merge virtual information with the 

real world, providing computer-generated perceptual information (Shah Z., et al.., 

2023). Augmented reality applications are most commonly utilised on mobile 

devices such as phones, tablets, and glasses. Its capacity to overlay digital 

information makes it a useful tool for improving worker safety, efficiency, and 

trust of technologies (Krupas M., et al..,2024). Augmented Reality (AR) Head-

Mounted Displays (HMDs) (AR HMDs) are utilized to present information and 

visuals within the user's line of sight. In HRC, AR HMDs can be used to provide 

the human operator with information about the task, such as instructions and real-

time feedback, as well as to enhance their ability to collaborate with the robot 

(Zafar, M.H., Langås, E.F., Sanfilippo, F., 2024, Langås). 

Cognitive and Cyber-Physical-Social Systems (CCPSS) is a rapidly evolving 

interdisciplinary technology that integrates cognitive computing architecture at the 

intersection of three crucial machine/cobot spaces to deliver intelligent solutions. 

These three critical cobot environments include cyber, physical, and counterpart 

social (human) components that enable human-machine interaction (Shah Z., et 

al.., 2023). People no longer interact and operate with a single machine, but rather 

a network of cyber-physical systems. These systems integrate robots and people, 

defining them as cyber-physical-social (Giugliano G., et al..,2023). Human Cyber 

Physical Systems have a significant application in utilizing augmented reality 

(AR) and virtual reality (VR) technologies to develop human-machine interfaces 

that are more immersive and interactive. This can improve humans' ability to 

collaborate effectively with machines, allowing them to understand and control 

the manufacturing process (Zafar, M.H., Langås, E.F., Sanfilippo, F., 2024). 

Human interaction and recognition technologies (HIRT) is the most effective 

way to interconnect and integrate humans with machines leading to safer, more 

efficient, and more enjoyable physical and cognitive tasks. Examples of  emerging 

HIRT are: vision-guided robotics, short-wave infrared technology, sensor fusion, 

sensor data triangulation, embedded vision systems, adaptable human intention 

and trajectory prediction, and multi-lingual speech and gesture recognition 
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(Ghobakhloo M., et al.., 2023). Human Machine Interaction in Human Machine 

Collaboration can be achieved by using depth RGB cameras, like Microsoft 

Kinect, which are commonly used to visualize the human body and workspace for 

safety and ergonomics in applications (Krupas M., et al.., 2024). 

Brain-Computer Interface (BCI): BCI combines machine intelligence and 

human cognitive processes. It surpasses existing forms of human-machine 

interaction by seamlessly fusing the two extending the limits of human 

intelligence and interactions in real-world settings. Various creative applications 

in the Metaverse can be made possible by BCI technologies. These uses include 

interacting with people keeping an eye on their cognitive states and managing 

virtual avatars in cyberspace. By eschewing traditional input devices like 

keyboards and joysticks BCI also provides a more straightforward and intuitive 

method of human–machine interaction. Users can now manipulate and have an 

impact on the virtual representation with their thoughts and intentions enabling a 

smooth and intuitive control over the digital twin. With the help of brain activity 

monitoring and analysis of cognitive states attention spans and emotional 

reactions BCI can give users real-time feedback. By using this feedback the 

digital twins behavior can be optimized and adjusted to better suit the goals and 

preferences of the user. Digital Triplet systems will be able to dynamically modify 

their behavior in response to mental or physical states of the user thanks to BCI. 

For example in order to preserve system performance and user safety the 

associated digital twin may automatically adjust its operations or offer extra 

support if a user shows signs of fatigue or distraction. Ultimately digital twins and 

BCI combined offer strong training and skill-enhancement resources. With the use 

of cutting-edge immersive interfaces like virtual reality (VR) and augmented 

reality (AR) users can practice and hone their skills while getting real-time 

feedback from the digital twin system (Alimam H., et al.., 2023). 

The real-time monitoring of workers and equipment made possible by edge 

computing can be leveraged to enhance worker safety. Sensors can be used for 

instance to keep an eye on employees whereabouts movements and vital signs as 
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well as to identify potentially dangerous circumstances like the presence of 

dangerous gases or overheating machinery (Zafar, M.H., Langås, E.F., Sanfilippo, 

F., 2024). 

The digital twin's use includes comparing different control algorithms and 

interaction strategies to find the best approach for HRC. This can enhance the 

efficiency and effectiveness of the collaboration while decreasing the risk of 

accidents. Digital twins in HRC can anticipate and address potential safety issues. 

For instance, by simulating a robot's behavior in hazardous environments and 

evaluating its potential impact on human collaborators. Moreover, digital twins 

facilitate communication and coordination between human and robot collaborators 

by offering a shared visual representation of the physical system. Additionally, 

digital twins can help improve decision-making accuracy and reduce 

misunderstandings between human and robot collaborators (Zafar, M.H., Langås, 

E.F., Sanfilippo, F., 2024). Together with IoT, the cognitive digital twin analyzes 

data from connected sensors and provides valuable insights to aid human 

decision-making. This integrated approach leads to a human-centered cognitive 

cycle involving human integration, machine, and cyberspace (Alimam H., et al.., 

2023). 

The technology enabling human operators to communicate with robots using 

natural language, such as speech or text, is called Natural Language Processing 

(NLP). This allows them to interact with the robot more intuitively and user-

friendly (Zafar, M.H., Langås, E.F., Sanfilippo, F., 2024). 

Gesture-tracking devices, such as gloves and hand-held controllers, are used to 

identify the movements and gestures of the human operator. This allows the robot 

to respond to their actions and work with them, enabling communication between 

humans and robots (Zafar, M.H., Langås, E.F., Sanfilippo, F., 2024). 
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Wearable sensors such as gyroscopes and accelerometers are utilized to track the 

movements and position of the human operator. These sensors provide the robot 

with movement data about the operator, enabling it to react to their actions and 

work alongside them. Force/torque sensors are used to measure the force and 

torque that the robot applies, allowing it to respond to changes in its surroundings 

and avoid potential dangers. Vision sensors like lidars and cameras provide the 

robot with a visual picture of its surroundings and enable it to perform activities 

that require visual recognition, track human operators, and detect obstacles. 

Proximity sensors, including infrared and ultrasonic sensors, can identify the 

presence of objects and humans in the vicinity of the robot, contributing to the 

safety of the human operator. Tactile sensors, or touch sensors, detect physical 

contact between objects and humans, enabling the robot to respond to physical 

interactions and perform delicate tasks. They also serve as a method for the robot 

to communicate its status and information to the human operator. Motion 

sensors, such as accelerometers and gyroscopes, are used to detect the motion of 

the robot and its surroundings, providing information on its orientation and 

movements, and helping it respond to changes in its environment and maintain its 

stability (Zafar, M.H., Langås, E.F., Sanfilippo, F., 2024). Additionally, various 

biological sensors are being used to track human behavior during human-robot 

cooperation by measuring physiological data from humans. These include the 

Electrooculogram (EOG), Electrocardiogram (ECG), Electroencephalogram 

(EEG), Magnetoencephalogram (MEG), and Electromyography (EMG). In HRC 

systems, these signals are widely used to anticipate human operators' intentions 

(Asad U. along with others, 2023). 

Natural user interfaces (NUIs) are user interface designs that focus on utilizing 

natural human behaviors and actions for interaction, rather than requiring the user 

to adapt to the technology. Examples of NUIs include voice assistants and touch 

interfaces (Krupas M., et al.., 2024). 

Industrial Internet of Things (IIoT) engage and collaborate with other  

technologies such as 3D printers, adaptive-collaborative bots, and autonomous 
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vehicles in order to ease human robot collaboration (Ghobakhloo M., et al.., 

2023). Indoor localization services can be enhanced by offering various methods, 

wireless technologies, and approaches using IoT and widespread connectivity, 

which can include WiFi, radio frequency identification (RFID) devices, Ultra-

Wideband (UWB), or Bluetooth Low Energy (BLE) (Krupas M., et al.., 2024). 

The Internet of Everything (IoE) has the potential to enhance worker safety by 

monitoring work environment conditions and alerting workers to potential hazards 

(Zafar, M.H., Langås, E.F., Sanfilippo, F., 2024). 

Drones enhance human abilities by linking up to high-speed 5G networks, 

enabling them to communicate efficiently with their operator from anywhere with 

signal coverage. Human drone interface (HDI) research has resulted in new 

natural user interfaces like gesture-based control, brain-computer interfaces, 

speech recognition, touch, and a combination of multiple modes (Taj, I., Jhanjhi, 

N.Z., 2022). 

3.2. SUSTAINABILITY  

The results of the Systematic Literature Review led to a list of approaches and 

technologies that best fit the aim of the target dimension Sustainability, below 

there’s a list and description of all of them. 

3.2.1 APPROACHES 

The human factor regains its rightful place at the centre of the production process, 

this transformation is intended to influence the reduction of climate change and 

environmental degradation and thus improve the quality of life for present and 

future generations (Gródek-Szostak Z., et al..,2023). 

The production of renewable biological resources in bioeconomy includes 

utilizing starch-based, sugar-based, lignocellulose, algal biomass, and waste-

derived feedstocks to create biofuels, polymers, and other products, as well as 
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transforming these resources and waste streams into valuable products such as 

food, feed, bio-based products, and bioenergy. This process is referred to as 

biologization (Demir K.A., Döven G., Sezen B., 2019). 

In industry 5.0 sustainability is based on the principle of industrial recycling, i.e., 

the 6R’s policy: Recognize, Reconsider, Realize, Reduce, Reuse, and Recycle, so 

that it is possible to prevent waste and, at the same time, create/produce 

customized products with high quality (Alves J., Lima T., Gaspar P., 2023). 

Adoption of circular processes that enable the reuse and recycling of natural 

resources, reducing waste and environmental damage (Baig M.,Yadegaridehkordi 

E., 2024). 

Predictive maintenance uses data analytics and machine learning to monitor 

equipment and identify maintenance needs before issues occur, enabling 

proactivity and waste reduction (Zafar, M.H., Langås, E.F., Sanfilippo, F., 2024).  

Remanufacturing involves refurbishing products at the end of their lifespan to a 

like-new state by replacing worn components and thoroughly cleaning them. This 

process increases the value of the products and reduces costs compared to using 

new materials and manufacturing (Zafar, M.H., Langås, E.F., Sanfilippo, F., 

2024). 

The integration of the internet of things contributes to social sustainability by 

enhancing customer satisfaction and loyalty, and by providing customised 

experiences based on the data collected. Employing technology in everyday 

business operations to address environmental issues and improve social and 

governance practices contributes to digital sustainability, making it a valuable 

asset in the battle against climate change. Economic sustainability can be achieved 

through the digitization of manufacturing processes and the advancement of 

networks, resulting in reduced travel expenses, optimized energy usage, and 

empowering producers to implement automation. The use of digitalization, 

intelligent technologies, and paperless processes enhances human productivity 
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and supports environmental sustainability (Baig M.,Yadegaridehkordi E., 2024 

M.). 

Utilizing renewable sources, reusing energy, and reducing energy wastage are 

methods to enhance sustainability. For instance, renewable energy sources such as 

solar, wind, hydro, and bioenergy offer a sustainable alternative to fossil fuels, 

significantly reducing greenhouse gas emissions. This transition not only 

mitigates environmental impact but also improves public health by enhancing air 

quality (Giugliano G., et al.., 2023). 

3.2.2 TECHNOLOGIES 

AI can increase environmental sustainability by adaptating to changing 

circumstances in real-time using machine learning algorithms, which optimize 

energy use and minimize emissions. Additionally, data driven AI can contribute to 

waste reduction, which leads to resource efficiency (Valeriya, G., et al.., 2024). 

Artificial intelligence can also be used to minimize waste by making detailed and 

low-error forecasts of product demand (Mesjasz-Lech A., 2024). Furthermore, AI-

driven quality control methods guided by Big Data analytics contribute to 

enhancing product quality. These methods maintain consistency, streamline 

inspections, and detect defects, leading to decreased waste and rework, as well as 

improved final product quality. AI-powered quality control ensures consistent 

product quality, resulting in higher customer satisfaction and reduced waste 

(Vatin N.I., et al.., 2024). 

Bio-inspired protective gears improve industrial workers’ capabilities, strength, 

productivity, and stability (Ghobakhloo M., et al.., 2023). 

Intelligent energy management systems (IEMS) aims to promote energy 

efficiency by monitoring and controling energy systems, improving the technical 

and commercial efficiency of energy production, assessing energy quality, and 

enhancing the reliability of energy systems. IEMS and complementary 

technologies like cloud demand also complement each other (Ghobakhloo M., et 

al.., 2023). 
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Dinamic simulation and digital twin DSDT is crucial to Industry 5.0's 

sustainability objectives because it enables businesses to model and forecast the 

digital socio-environmental impact of their products and services throughout the 

design, prototyping, development, end-user consumption, and end-of-liferecovery 

stages (Ghobakhloo M., et al.., 2023) 

Cobots can help manufacturers become more sustainable, by assisting in the 

devolpment of mass personalisation. This creates more value from resources and 

reduces waste (Aheleroff S., et al.., 2022). 

The Internet of Personalized Products (IoP^2) merges IoT and human 

creativity to create customized products. It involves sharing exclusive data over 

the internet to produce a wide range of scalable and cost-effective personalized 

products. IoP^2 differs from IoT as it takes a service-oriented approach, 

considering customer data and requirements to deliver services using essential 

technologies. IoP^2 facilitates enhanced personalization, encompassing unique 

appearances, materials, and features to provide an affordable and distinctive 

customer experience. It promotes a human-centered model to purposefully engage 

and deliver value with sustainability (Aheleroff S., et al.., 2022). 

Big data and machine learning can play a crucial role in advancing 

environmental sustainability by enhancing our global comprehension of the needs 

for food, energy, and water (Baig M.,Yadegaridehkordi E., 2024 M.). 

Furthermore, AI and big data contribute to sustainable practices, reducing 

resource consumption and minimizing environmental impact by offering real-time 

data analysis and predictive capabilities to support sustainability efforts. They are 

utilized to monitor energy usage patterns, predict consumption, and optimize 

processes for reduced energy usage. This not only helps in achieving 

environmental goals but also leads to cost savings (Vatin N.I., et al.., 2024). 

The use of machine learning and deep learning technologies has a significant 

impact on optimizing energy consumption, predicting energy demand, and 

managing renewable energy resources. Additionally, they enable more accurate 
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environmental monitoring, leading to pollution control and sustainability 

initiatives (Amr A., 2023). 

Sustainable manufacturing can benefit from the integration of sensors and devices 

in the manufacturing process through the Internet of Things (IoT). 

Manufacturers can collect real-time data on energy consumption, water usage, and 

other sustainability metrics, enabling them to pinpoint areas of inefficiency and 

waste and make informed decisions to optimize resource utilization (Zafar, M.H., 

Langås, E.F., Sanfilippo, F., 2024). The use of Internet of Things to reduce 

wastage in the supply chain, maximizes production processes and aids waste 

management (Mesjasz-Lech A., 2023). Furthermore, architectures based on Edge 

AI and green IoT can effectively assess energy efficiency, demonstrating the 

potential of this combination in reducing carbon emissions. Additionally, 3D 

virtual simulations of implemented systems can be conducted to evaluate their 

environmental and social impacts, aiding in the redesign and redeployment of 

systems to adhere to green production policies (Shah Z., et al.., 2023).  

Robust biosensors represent novel analytical tools that integrate both 

physiochemical and biological sensing components to facilitate detection using 

analytes. These biosensors are utilized in environmental monitoring and the 

identification of toxins (Shah Z., et al.., 2023).  

Cyber Physical Systems (CPSs) play a role in enhancing energy management 

efficiency, optimizing energy usage, and reducing greenhouse gas emissions. 

Additionally, they enable predictive infrastructure maintenance, thereby extending 

the lifespan of utilities and ensuring sustainable resource management (Amr A., 

2023). Industry 5.0 necessitates efficient information transmission for tasks within 

the production system and improved interaction to support better decision-making 

processes across the entire supply chain. These characteristics drive the need for 

enhanced data and information exchange among various stakeholders, 

predominantly impacting the agility and intelligence of a smart logistics system. 

This objective can be achieved through a network of data interoperability, where 
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sensors exchange and process information within a big data environment. In the 

context of Industry 5.0, a Smart Cyber-Physical System (SCPS) can be 

implemented to facilitate data transmission and bolster the sustainability of 

production and logistics systems. However, this digital transformation must 

prioritize energy efficiency by incorporating green practices such as green 

production, green recycling/disposal, and green IoT (G-IoT) to support a lean 

circular economy (CE) (Jafari N., Azarian M., Yu H., 2022). 

Using Computational Intelligence (CI) and edge computing to move towards 

green computation and circular economy that could help in reducing the carbon 

emissions (Shah Z., et al.., 2023). 

Using Blockchain technology and data science to control processes related to 

energy conservation and responsible resource consumption based on key 

performance indicators (Mesjasz-Lech, A., 2023). 

3.3. RESILIENCE 

The results of the Systematic Literature Review led to a list of approaches and 

technologies that best fit the aim of the target dimension Sustainability, below 

there’s a list and description of all of them. 

3.3.1 APPROACHES 

Organizational resilience means understanding and adapting to new situations, 

and managing the organizational vulnerabilities. New technologies allow to track 

information that supports organizational resilience (Zizic M.C., et al.., 2022). 

Safety strategies need to be adopted to achieve higher degrees of reliability and 

production flexibility in the human-robot interaction through dynamic and 

synergistic measures (from both human and robotic perspectives) (Alves J., Lima 

T., Gaspar P., 2023). 
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Human-assisted learning strategies can be applied to monitor and control 

automated additive manufacturing systems, as well as manufacturing error 

detection systems (Alves J., Lima T., Gaspar P., 2023). 

Biological resilience refers to the ability of an operator to keep industrial hygiene 

in terms of occupational health and safety, which can be aided by the use of  smart 

personal protective equipment (Romero, D., Stahre, J. 2021). 

Physical resilience refers to the ability of an operator to maintain stamina and 

strength in face of demands, which can be aided by exoskeletons technology 

providing that extra needed musclepower, protection, and endurance (Romero, D., 

Stahre, J. 2021). 

Cognitive resilience refers to the ability of an operator to maintain mental ability 

under stress and avoid human-error, which can be aided by augmented reality 

technology acting as a digital assistance system (Romero, D., Stahre, J. 2021). 

Psychological resilience refers to the ability of an operator to emotionally cope 

with a crisis, which can be aided by virtual reality technology offering a safe 

(virtual) environment for training for risk and crisis management (Romero, D., 

Stahre, J. 2021). 

Human-machine systems resilience refers to the ability of human and machine 

systems to display adaptive autonomy by adjusting their own autonomy and 

exchanging control to sustain the operational performance of the cooperative 

system at an optimal balance between convenience, comfort, and continuity. 

When humans delegate some control to the machine, they become more 

responsive to unexpected events (Romero, D., Stahre, J. 2021). 

The integration of renewable energy contributes to energy security, resilience, 

and economic growth. Embracing renewable energy reduces reliance on external 

energy sources, leading to increased energy self-sufficiency (Amr A., 2023). 
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3.3.2 TECHNOLOGIES 

The AI-based innovative system is designed to intelligently handle unexpected 

critical events autonomous and without the need for human intervention (Shah Z., 

et al.., 2023) Furthermore, AI can also increase economic resilience by reducing 

costs through increased efficiency (Valeriya G., et al.., 2024). 

Cobots can speed up some processes and adapt to unique circumstances, which 

can enhance output (Zafar, M.H., Langås, E.F., Sanfilippo, F., 2024). 

Implementing collaborative robots which are not specialized for a single product 

variant, like traditional robots, but they can be easily adapted to different products 

(Calzavara M., Faccio M., Granata I., 2023). Developing industrial contexts 

increasingly robust and adaptive to new needs through the use of new 

technologies such as VR, cobots and wereable technologies (Giugliano G., et al.., 

2023). 

Intelligent adaptive robots are an evolution of traditional and collaborative 

robots, and they are highly productive robots that can adapt to complicated 

environments and novel situations while compliting a more comprehansive set of 

complex tasks (Ghobakhloo M., et al.., 2023). 

Drones play a crucial role in providing quick assistance during natural disasters, 

fires, or medical emergencies, reducing response times and enhancing safety. 

They are utilized for monitoring and maintenance in hard-to-reach or hazardous 

areas such as power lines, bridges, or tall buildings. The aerial data and imagery 

collected by drones aid in making better decisions and planning strategically. 

Unmanned Aerial Vehicles (UAVs) also contribute to surveillance and security, 

offering a cost-effective and versatile solution for public safety monitoring. In the 

realm of transportation and logistics, UAVs support the rapid and efficient 

delivery of goods, thereby improving supply chain operations (Amr A., 2023). 

Digital Twin represents the comprehensive system consisting of deployed 

industrial assets, enabling them to communicate and interact intelligently to 

optimize the overall production process. Interconnected Digital Twin systems 
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combined with augmented technologies can effectively leverage human 

intelligence for management and control purposes. Through collaboration with 

Industrial Internet-of-Things (IIoT) and Cyber–Physical Systems, Digital Twin 

can facilitate genuine digital hyperconnectivity in future factories, including 

remote maintenance and predictive maintenance within the factory ecosystems 

(Shah Z., et al.., 2022). Digital Twin also assists Industry 5.0 by identifying 

technical issues earlier, customizing components, generating more accurate 

estimates, predicting future failures, and preventing substantial financial losses. 

By doing so it allows to adapt to unexpected changes (Humayun M., 2021). 

NextG wireless networks (NGWNs) enhance manufacturing processes by 

making them more efficient, adaptable to changes in market demand, and capable 

of accommodating product/service customization and innovation requirements in 

Industry 5.0. Integrated network softwarization which combines Software-defined 

Networking (SDN), Network Functions Virtualization (NFV), and microservices 

architectures, leads to a more agile and adaptable network infrastructure. This 

enables organizations to respond to changing demands and requirements more 

efficiently, thereby enhancing their overall competitiveness (Shah Z., et al.., 

2023).  

In the field of computational intelligence (CI) supervised learning is the most 

frequently used learning method that requires the labeled data to learn the patterns 

or trends to perform various tasks, including prediction, forecasting, classification, 

detection and segmentation (Shah Z., et al.., 2023). 

Machine learning and deep learning technologies play an important role 

strengthening safety and security (Amr A., 2023). 

Big Data Analytics can better understand customer behaviour to optimize product 

pricing, improve manufacturing efficiency, and lower overhead expenses. By 

doing so it allows to adapt to unexpected changes. To enhance predictability and 

explore new possibilities, Big Data analytics approaches are utilized to identify 

and eliminate non-essentials (Humayun M., 2021). 
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Cloud Computing is a concept enabling the immediate rental of computer 

resources with minimal interaction with the provider. Cloud computing simplifies 

operations by eliminating the need for precise resource planning and allowing 

flexible usage without prior commitment. It facilitates adaptation to unforeseen 

changes (Humayun M., 2021). Cloud manufacturing refers to the utilization of 

cloud computing technologies in the manufacturing process. This can optimize 

production processes, reduce costs, and enhance product quality. It also enables 

businesses to efficiently share resources and collaborate. It allows for quick 

response to unexpected events (Zafar, M.H., Langås, E.F., Sanfilippo, F., 2024). 

Edge computing is a distributed computing model involving processing and 

analyzing data closer to the source, rather than relying solely on centralized cloud 

servers. This technology is crucial for Industry 5.0 as it improves response time 

and reduces latency. For example, it can be used to collect and process data from 

sensors and devices on the factory floor, which can then be used to optimize 

production, minimize downtime, and enhance product quality. The edge 

computing-based framework reduces computation and communication 

bottlenecks, as well as latency, and facilitates the shift from a centralized to a 

distributed industrial process paradigm (Shah Z., et al.., 2023). 

IoE technology can optimize the production process, reduce downtime, and 

improve quality control. It aids operators in quickly identifying and resolving 

issues by connecting multiple machines and sensors to provide real-time 

performance data. Intelligent decision-making is facilitated by IoE technology. It 

also integrates various data sources to provide a comprehensive view of the 

supply chain or manufacturing process. This data can be used to identify patterns 

and trends, informing decisions to enhance productivity, reduce expenses, and 

improve overall customer satisfaction. IoE technology also provides real-time 

information on the location, status, and condition of goods through the connection 

of various sensors, RFID tags, and other devices, enabling the identification and 

resolution of potential issues before they escalate into major problems. It allows 
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for quick responses to unexpected events (Zafar, M.H., Langås, E.F., Sanfilippo, 

F., 2024). 

3.4. QUESTIONNAIRE TO IDENTIFY THE MAIN 

INDUSTRY 5.0 APPROACHES AND 

TECHNOLOGIES 

After reviewing the results of the Systematic Literature Review on Industry 5.0’s 

approaches and technologies, the next step was to select the most important ones. 

In order to do so, a questionnaire was submitted to professors from both 

Politecnico di Torino and Technical University of Munich (TUM) experts of the 

Logistics and the Manufacturing subjects. More specifically the people involved 

were 8 in total, 4 from Politecnico di Torino and 4 from Technical University of 

Munich. 

The questionnaire was designed in three sections, one for each I5.0 target 

dimension: each of them contained all the relative approaches and technologies 

with a brief description. The questions asked were the same for all three target 

dimensions: “In your opinion, how important are the following approaches for the 

implementing the Human Centricity/Sustainability/Resilience dimension of 

Industry 5.0?”, while each approach and technology had a Likert scale structured 

as follows: 

 

Table 3 Likert scale for the questionnaire 

The motive behind the choice of the Likert Scale that contains the neutral item as 

an evaluation method was dictated by the fact that some approaches and 

technologies are relatively new, they might be lesser know to each expert 

Very unimportant Unimportant Neutral Important Very important 
1 2 3 4 5 
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involved, so this it was useful to them to give a neutral response that doesn’t 

include any bias errors into the evaluation (Table 3).. 

Every responder had to choose the value that in his opinion best fit the question 

above for the approach or technology in question. All the answers were collected 

through a Google Form and then analysed as explained in the following section. 

3.5. ANALYSIS OF THE QUESTIONNAIRE 

OUTCOMES 

The chosen way to analyse the answers of the questionnaire was to calculate the 

median. The motive behind this choice is the fact that calculating the median 

allowed for a selection of the most relevant approaches and technologies based on 

the majority of the answers given by the experts. In fact the median is a 

calculation method supported by the Likert scale. In addition, the median works 

by arranging the data points associated with each value of the Likert scale from 

smallest to largest and then it selects the central one [16]. 

The median score was set at more or equal to 3.5 as the selection criterion. The 

reason was due to the fact that this score allowed for a selection was neither too 

strict or too lenient, because, with the Likert scale used, a median of 3.5 

corresponds to a response that is not quite neutral, but tends towards the 

important. 

In the end the final selection of approaches and tehcnologies for the human 

centricity target dimension are shown in Table 4 and Table 5:  
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HUMAN CENTRICITY 

APPROACHES MEDIAN SCORE 

Decentralized decision making 4,00 

Human-robot co-working 3,50 

Tracking-as-a-Service (NTaaS) 3,50 

Table 4 Human centricity selected approaches 
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HUMAN CENTRICITY 

TECHNOLOGIES MEDIAN SCORE 

AI 5,00 

Natural language processing for interacting with robots 5,00 

Intelligent smart wearables (ISWs) and exoskeletons 4,50 

Cobots 4,50 

Natural user interfaces (NUIs) 4,00 

Human interaction and recognition technologies (HIRT) 4,00 

Gesture-tracking devices 4,00 

Augmented reality 4,00 

Sensors  4,00 

Internet of Everything (IoE) 4,00 

Clothing  industrial smart wearables 4,00 

Internet of Things 3,50 

Edge computing 3,50 

Cyber-physical systems 3,00 

Digital twin 3,00 

Virtual Reality 3,00 

Drones 2,50 

Brain computer interface (BCI) 2,00 

Table 5 Human centricity selected technologies 
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The final selection of approaches and technologies for the sustainability target 

dimension are shown in Tble 6 and Table 7: 

SUSTAINABILITY 

APPROACHES MEDIAN SCORE 

Circular processes 5,00 

Reduction of climate change 5,00 

Renewable sources 5,00 

Remanufacturing 4,50 

6Rs policy 4,00 

Predictive maintenance 4,00 

Bioeconomy 4,00 

Customized experiences 3,00 

Table 6 Sustainability selected approaches 
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SUSTAINABILITY 

TECHNOLOGIES MEDIAN SCORE 

Machine learning 5,00 

Intelligent energy management systems (IEMS) 4,00 

Big data 4,00 

AI 4,00 

Computational Intelligence (CI) 4,00 

Internet of Things 3,50 

Internet of personalized products (IoP^2) 3,50 

Bio-inspired protective gears 3,00 

Digital twin 3,00 

Cyber-physical systems 3,00 

Cobots 3,00 

Biosensors 3,00 

Blockchain 2,00 

Table 7 Sustainability selected technologies 

 

 

 

 

 

 



64 
 

The final selection of approaches and tehcnologies for the resilience target 

dimension are shown in Table 8 and Table 9: 

RESILIENCE 

APPROACHES MEDIAN SCORE 

Organizational resilience 5,00 

Cognitive resilience 4,00 

Psycological resilience 4,00 

Operator safety strategies 4,00 

Biological resilience 4,00 

Human-machine systems resilience 4,00 

Renewable sources 4,00 

Physical resilience 3,50 

Human-assisted learning strategies 3,00 

Table 8 Resilience selected approaches 
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RESILIENCE 

TECHNOLOGIES MEDIAN SCORE 

Big data 4,50 

Machine learning 4,00 

AI 4,00 

Internet of Things 4,00 

Cyber-physical systems 4,00 

NextG wireless networks (NGWNs) 4,00 

Cloud computing 3,50 

Internet of Everything (IoE) 3,50 

Intelligent adaptive robots 3,00 

Intelligent smart wearables (ISWs) and exoskeletons 3,00 

Digital twin 3,00 

Augmented reality 3,00 

Drones 3,00 

Cobots 2,50 

Virtual reality 2,00 

Table 9 Resilience selected technologies 
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4. PERFORMANCE PARAMETERS OF 

INTERNAL LOGISTICS SYSTEMS 

This is the chapter where the chosen performance parameters for the Internal 

Logistics Systems, focus of the present research, and the methodology used for 

their selection, are discussed. This is the second step of the Descriptive Study I of 

the Design Research Methodology and it is crucial for the development of the 

Domain Mapping Matrices part of the proposed assessment framework, final step 

of the Descriptive Study I. 

4.1. METHODOLOGY 

The performance parameters for the Internal Logistics Systems were chosen in 

two steps: at first a research was conducted on professional literature (i.e. 

professional magazines) such as (Dallari F., Bianco D., Corti A., Farioli M. 

(2023) “Dossier Logistica”, “Logistica management”, 2024, n°342) and (Logistica 

Management, March 2024, n°342), to gather information about the different types 

of Internal Logistics Systems, namely material handling, storage and picking 

systems, and possible performance parameters and their characteristics such as 

cycle time, system lifetime and so on. 

After, the research proceeded on Scopus, where the performance parameters 

founded from professional literature were searched on the multidisciplinary 

database to double check that they were also debated in the scientific literature by 

experts in the field as well. In particular, for each performance parameter selected 

from professional literature the number of papers that included it as an author-
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keyword was looked for. The performance parameters that did not have a number 

of papers greater than 10 were initially excluded from the list. The chosen 

timeline for the search was 2010-2024 to have knowledge of these systems that is 

coherent with the new findings on Industry 4.0 and Industry 5.0.  

Some examples of queries were: 

PICKING SYSTEMS: 
warehouse AND "picking line" 
warehouse AND picking AND productivity 
warehouse AND "picking cycle time" 
warehouse AND picking AND accuracy 
warehouse AND picking AND efficiency 
warehouse AND picking AND "mean time to repair"  
warehouse AND picking AND mttr 
warehouse AND picking AND automation 
warehouse AND picking AND worker AND movement 
warehouse AND picking AND scalability 
 
STORAGE SYSTEMS: 
warehouse AND "storage depth" 
warehouse AND storage AND "single-deep" 
warehouse AND storage AND height 
"storage system" AND "picking productivity" 
storage AND "picking productivity" 
storage AND shuttle AND speed 
warehouse AND selectivity 
warehouse AND accessibility 

 
MATERIAL HANDLING SYSTEMS: 
"material handling" OR "internal transportation" AND "load capacity" 
"material handling" OR "internal transportation" AND "energy 
consumption" 
"material handling" OR "internal transportation" AND "battery" AND 
"logistics" 
"material handling" OR "internal transportation" AND "speed" 
"material handling" OR "internal transportation" AND "cycle time" 
"material handling" OR "internal transportation" AND "reliability" 
"material handling" OR "internal transportation" AND "human 
interaction" 
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4.2. AUTOMATED MATERIAL HANDLING 

SYSTEMS AND THEIR PERFORMANCE 

PARAMETERS 

After the process described in Section 4.1, the list of performance parameters for 

material handling systems resulting from the scientific literature search through 

Scopus was checked by the author of this thesis and her two supervisors. They 

noticed that some performance parameters indicated as pretty important by 

professional literature, such as the ones associated with reliability, are either not 

touched or poorly debated by scientific literature. So, they decided to include 

them in the final list of performance parameters for material handling systems. 

Therefore, the chosen performance parameters for the automated material 

handling systems are: 

Load capacity [kg]: Maximum weight that the material handling system is able to 

handle. It is measured in kg. 

Level of energy consumption: degree of energy consumption. 

Battery autonomy: time between battery recharges. 

Speed: it is measured in meter per second. 

Cycle time: time needed to complete one picking operation. 

Reliability involves Mean time to repair, which is calculated by dividing the 

time spent repairing the asset by the total number of repairs performed. Mean 

time between failures is determined by the ratio of the difference between down 

time and up time to the number of failures. Mean time to failure is calculated by 

dividing the total time of operation by the number of failures. 

Degree of interaction with humans: ability of a system to cooperate with the 

human operator.  
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Obstacle detection ability: Minimum time and space required for the system to 

detect the presence of obstacles (objects or people) in its proximity. 

Investement cost: the cost of building a new storage system. 

Operation costs: it includes the energy cost, personnel costs and cleaning costs. 

Precision in handling: degree of precision in handling. 

Utilisation rate: ratio of actual employment time to available work time. 

Level of automation: : it can be defined by evaluating several factors that reflect 

how much human intervention is required, the complexity of tasks the system can 

perform autonomously, and the technologies integrated into the system. 

Scalability/Flexibility: advanced material handling systems have the ability to 

adjust more readily to fluctuations in order volume and product variety, 

simplifying the process of scaling warehouse operations up or down as required. 

4.3. AUTOMATED STORAGE SYSTEMS AND 

THEIR PERFORMANCE PARAMETERS 

After the process described in Section 4.1, the list of performance parameters for 

storage systems resulting from the scientific literature search through Scopus was 

checked by the author of this thesis and her two supervisors. They noticed that 

some performance parameters indicated as pretty important by professional 

literature, such as the ones associated with reliability, are either not touched or 

poorly debated by scientific literature. So, they decided to include them in the 

final list of performance parameters for storage systems. 

Therefore, the  chosen performance parameters for the automated storage systems 

are: 
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Storage capacity [kg]: Maximum weight that the storage system is able to 

handle. It is measured in kg. 

Storage depth: it can be single, double, triple or multi deep. Single storage depth 

means that the storage system has one rack and it is able to store one item, same 

goes for double and triple with two racks and two items and three racks and three 

items. Whereas multi deep means that the storage system has multiple racks and 

can store multiple items simultaneously. 

Storage height [m]: it refers to the height of the the storage system. It is 

measured in meters. 

N order lines/h: it identifes with the productivity of the strorage system by 

calculating the completion picking operations time.  

Speed [m/s]: it is measured in meter per second. 

Storage density: it is calculated by dividing the cubic meters of gross stowable 

goods by the square meters of the area occupied by automation alone. 

Selectivity: it refers to the direct access items. 

Accessibility: accessibility to the items in case of failure of the storage system. 

Modularity: it refers to having the possibility to expand the existing storage 

system for exmple by making the racks longer or by increasing the number of 

aisles if there’s enough physical space to do so.  

Scalability/Flexibility: it is the ability that a technology has to handle an increase 

in work or worloads in an effective and efficient way. 

Redundancy: it refers to the ability of the system, in which are present different 

resources, to ensure that the operations can progress despite unexpected events or 

technical problems.  

Cycle time: time needed to complete one picking operation. 
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Reliability involves Mean time to repair, which is calculated by dividing the 

time spent repairing the asset by the total number of repairs performed. Mean 

time between failures is determined by the ratio of the difference between down 

time and up time to the number of failures. Mean time to failure is calculated by 

dividing the total time of operation by the number of failures. 

Storage system capacity: number of SKU storable in a warehouse, it is an 

indicator that shows the size of the warehouse and it is measured in loading units. 

Investement cost: the cost of building a new storage system. 

Operating costs: it includes the energy cost, personnel costs and cleaning costs. 

Maintenance cost: it includes the cost of the preventive maintenance of the 

storage system.  

System lifetime: total time that the storage system is able to function. 

Utilisation rate: ratio of actual employment time to available work time. 

Level of automation: the extent to which automation technologies, such as 

conveyor systems, robotics, and Warehouse Management Systems (WMSs), are 

utilized to enhance the speed of operations within storage systems. 

4.4. AUTOMATED PICKING SYSTEMS AND 

THEIR PERFORMANCE PARAMETERS 

After the process described in Section 4.1, the list of performance parameters for 

picking systems resulting from the scientific literature search through Scopus was 

checked by the author of this thesis and her two supervisors. They noticed that 

some performance parameters indicated as pretty important by professional 

literature, such as the ones associated with reliability, are either not touched or 
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poorly debated by scientific literature. So, they decided to include them in the 

final list of performance parameters for material handling systems. 

Therefore, the chosen performance parameters for the automated picking systems 

are: 

Picking lines/h: it identifes with the productivity of the picking system by 

calculating the completion picking operations time per hour.  

Cycle time: time needed to complete one picking operation. 

Efficiency and accuracy: it is the ability of the picking system to get the right 

product in the right quantity. 

Reliability: it comprehends Mean time to repair which the time obtained by 

dividing the time spent repairing the asset by the total number of repairs 

performed. Mean time between failures the time obtained from the ratio of the 

difference between down time and up time to number of failures. Mean time to 

failure  the time obtained from the ratio of the total time of operation to number of 

failures. 

Level of automation: : it can be defined by evaluating several factors that reflect 

how much human intervention is required, the complexity of tasks the system can 

perform autonomously, and the technologies integrated into the system. 

Ability to reduce unnecessary worker movement: reducing worker movement 

in between operations. 

Level of physical strain required: automated picking systems decrease the 

physical strain on employees, resulting in fewer injuries and promoting a healthier 

workforce. 

Investement cost: the cost of building a new picking system. 

Operating costs: it includes the energy cost, personnel costs and cleaning costs. 
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Maintenance cost: it includes the cost of the preventive maintenance of the 

storage system.  
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5. PROPOSED ASSESSMENT 

FRAMEWORK 

This is the chapter dedicated to the development and description of the Domain 

Mapping Matrices, final step of the Descriptive Study I of the Design Research 

Methodology. The framework proposed is one made with Domain Mapping 

Matrices, in order to put together the results found on both Industry 5.0 

approaches and technologies and the Internal Logistics Systems performance 

parameters.  

Together with a 5-point Likert scale, Domain Mapping Matrices allow to gather 

the experts’ opinions on the degree of the impact of the approaches and 

technologies for each Industry 5.0 target dimension on the performance of Internal 

Logistics Systems. So the main reason why they were chosen for this work is 

because they are particular matrices that enable the methodology to include not 

just one domain at a time but allow to determine a relationship between two 

domains, the ones entered in the rows and those entered in the columns. 

Meanwhile, the motive behind the choice of the following 5-point Likert Scale as 

an evaluation method was dictated by the fact that it contains the neutral item, 

since some approaches and technologies might have no effect on the performance 

parameters of some Internal Logistics Systems (Table 10).  
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Table 10 Likert scale for the Domain Mapping Matrices 

Below, from Table 11 to Table 28, there are these matrices for each Industry 5.0 

target dimension and type of Internal Logistics Systems.

1 2 3 4 5

Significant decrease Decrease No change Increase Significant increase

5-point Likert evaluation scale
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Table 11 Domain Mapping Matrix between human centricity approaches and the performance parameters of material handling systems 

 

Table 12 Domain Mapping Matrix between human centricity technologies and the performance parameters of material handling systems 
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Table 13 Domain Mapping Matrix between human centricity approaches and the performance parameters of storage systems 

  

 

Table 14 Domain Mapping Matrix between human centricity technologies and the performance parameters of storage systems 
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Table 15 Domain Mapping Matrix between human centricity approaches and the performance parameters of picking systems 

 

Table 16 Domain Mapping Matrix between human centricity technologies and the performance parameters of picking systems 
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Table 17 Domain Mapping Matrix between sustainability approaches and the performance parameters of material handling systems 

 

Table 18 Domain Mapping Matrix between sustainability technologies and the performance parameters of material handling systems 
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Table 19 Domain Mapping Matrix between sustainability approaches and the performance parameters of storage systems 

 

Table 20 Domain Mapping Matrix between sustainability technologies and the performance parameters of storage systems 
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Table 21 Domain Mapping Matrix between sustainability approaches and the performance parameters of picking systems 
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Table 22 Domain Mapping Matrix between sustainability technologies and the performance parameters of picking systems 
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Table 23 Domain Mapping Matrix between resilience approaches and the performance parameters of material handling systems 

 

Table 24 Domain Mapping Matrix between resilience technologies and the performance parameters of material handling systems 

Load capacity 
Level of 
energy 

consumption

Battery 
autonomy Speed Cycle 

time 

Mean 
Time to 
Repair

Mean Time 
Between Failures

Mean Time to 
Failure

Degree of 
interaction 

with 
humans

Obstacle 
detection 

ability

System 
lifetime (life 
cycle, useful 
life, service 

life) 

Investment 
costs

Operating 
costs

Maintenance 
costs Utilization rate Level of 

automation
Scalability 
(Flexibility)

Organizational resilience

Cognitive resilience

Psycological resilience

Operator safety 
strategies

Biological resilience
Human-machine 

systems resilience
Renewable sources
Physical resilience

Re
si

lie
nc

e

Reliability
Ap

pr
oa

ch
es

MATERIAL HANDLING SYSTEMS

Load capacity 
Level of 
energy 

consumption

Battery 
autonomy Speed Cycle 

time 

Mean 
Time to 
Repair

Mean Time 
Between Failures

Mean Time to 
Failure

Degree of 
interaction 

with 
humans

Obstacle 
detection 

ability

System 
lifetime (life 
cycle, useful 
life, service 

life) 

Investment 
costs

Operating 
costs

Maintenance 
costs Utilization rate Level of 

automation
Scalability 
(Flexibility)

Big Data
Machine Learning

Artificial Intelligence (AI)
Internet of Things (IoT)

Cyber-physical systems

NextG wireless networks 
(NGWNs)

Cloud computing
Internet of Everything 

(IoE)

MATERIAL HANDLING SYSTEMS
Reliability

Re
si

lie
nc

e

Te
ch

no
lo

gi
es



84 
 

 

Table 25 Domain Mapping Matrix between resilience approaches and the performance parameters of storage systems 

 

Table 26 Domain Mapping Matrix between resilience technologies and the performance parameters of material handling systems 
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Table 27 Domain Mapping Matrix between resilience approaches and the performance parameters of picking systems 
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Table 28 Domain Mapping Matrix between resilience technologies and the performance parameters of picking systems 
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6. CONCLUSIONS  

This final chapter presents the benefits and limitations of this work, together with 

the future steps of this research which will be focused on the third stage of the 

DRM, the Prescriptive Study, that will take place starting from this thesis results. 

6.1. BENEFITS  

The benefits of this work can be found in the fact that in literature are present only 

researches on Industry 5.0 or Internal Logistics Systems alone: for example 

(Romero, D., Stahre, J., 2021), (Vatin N.I., et al.., 2024) and (Krupas M., et al.., 

2024) only focuses on one target dimension of Industry 5.0, whereas (Ghobakhloo 

M et al.., 2023), (Shah Z., et al.., 2023) focues on all the I5.0 target dimension but 

does not mention the Internal Logistics Systems. So putting them together in this 

work has the potential to be a good addition to the literature already present 

nowadays. This thesis can also give a methodology on how to measure the impact 

of Industry 5.0 on the performance of Internal Logistics Systems and what 

characteristics the latter should have to implement Industry 5.0 target dimensions.  

It can also stimulate the definition of guidelines for designing future Internal 

Logistics Systems based on how Industry 5.0 can improve their performances.  

6.2. LIMITS 

The limits of this work are firstly the fact that it hasn’t been completed yet, which 

makes it useful in theory but not in practice. This limitation will be overcome 

once the second part of the research is complete.  
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Another limit is due to the number and type of Internal Logistics Systems 

considered: since this research is aimed at analysing some Automated Internal 

Logistics Systems, while in reality there are industries that do not only use 

Automatic Internal Logisitcs Systems but also other manual ones, it becomes 

difficult to apply this work to all manufacturing companies.   

While the concept of Industry 5.0 is still being studied, this work is focused only 

on the information on I5.0 available today, meaning that with more knowledge on 

the topic of Industry 5.0 and future Internal Logistics Systems, in the near term 

the outcomes of this thesis might be result uncomplete. 

6.3. NEXT STEPS 

As mentioned at the beginning of this chapter, the next stage of the Design 

Research Methodology that will be applied in the present research is the 

Prescriptive Study. It will be implemented by conducting a Delphi Study which is 

made up of two steps: the first being the selection of experts from companies 

manufacturing material handling, storage, and picking systems and university. 

They’ll independently assess, through the developed DMMs, how each I5.0 

approach and technology influences the performance parameters of the Internal 

Logistics Systems using the 5-point numerical Likert Scale defined in Chapter 5. 

Then the experts’ input will be summarised and the resulting summary will be 

sent again to the experts involved in the study. 

The second consists of, again, experts independently assess the influences of I5.0 

approaches and technologies on performance parameters through DMMs using 

the same approach as in the first stage: review if experts change their assessment 

after reviewing the summary results from the first stage of the Delphi Study. 

Finally the results of the Delphi Study will be analised and the result of this 

analysis will be clustering of DMM values to determine which I5.0 approaches 
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and technologies have the greatest impact (both positive and negative) on the 

performance of which Internal Logistics Systems.  

Eventually since it is such a new topic, future research can take into consideration 

aspects of Industry 5.0 that haven’t been discovered or talked about to this day, 

making the work even more complete and thefore helpfull if applied in real life 

contexts. 
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