
POLITECNICO DI TORINO
Master Degree course in Biomedical Engineering

Master Degree Thesis

Integration of Uncertainty into
Explainability Methods to Enhance AI

Transparency in Brain MRI
Classification

Supervisors
Prof. Massimo Salvi
PhD. Silvia Seoni

Candidate
Letizia Quattrocchio

Academic Year 2023-2024



“Almeno un punto”

2



Acknowledgements

Vorrei ringraziare il professore Massimo Salvi e l'ingegner Silvia Seoni per avermi perme-
sso di partecipare a questo entusiasmante lavoro di Tesi Magistrale. Mi é stato offerto
tutto il supporto necessario per affrontare questo progetto, e sono stata anche guidata
nel vasto mondo dell'analisi delle immagini mediche utilizzando l'intelligenza artificiale.
Massimo Salvi e Silvia Seoni sono stati sempre disponibili e pazienti durante questo per-
corso che é durato quasi un anno condividendo le loro conoscenze e dandomi la possibilitá
di navigare da sola sviluppando nuovi metodi per l'analisi delle immagini mediche, ap-
portando il mio personale contributo alla letteratura. Senza di loro questo lavoro non
sarebbe stato possibile.

Un ringraziamento speciale va alla mia famiglia. Sono tanti i cugini, gli zii e anche i
prozii che mi hanno supportato in tutti questi anni.

I ringraziamenti piú cari li faccio a mia mamma Antonella, a mio papá Fulvio, a
mia nonna Carla e a mio nonno Francesco. Nessuno della mia famiglia ha mai studiato
ingegneria, e ho sorpreso un po’ tutti quando ho deciso di iniziare questo percorso, ma non
é mai mancato il loro supporto, soprattutto quello morale che é tanto servito in questi
anni. I miei nonni hanno seguito le mie avventure giornalmente raccontate alle 19:00,
ormai questo é l'orario della storia della mia vita a Torino. Hanno seguito tutto, dalla
vita universitaria alle avventure di tutti i giorni, anche se alcune volte si dimenticano dei
particolari, ma non importa. Penso di essere la persona piú fortunata del mondo, i miei
nonni mi vedranno laurearmi per la seconda volta. Avranno modo di vantarsi con tutti i
loro amici.

Grazie alla mia mamma e al mio papá. Non mi hanno mai messo pressione in alcun
modo standomi sempre vicino nel bello e nel cattivo tempo. Sono stati dei veri eroi ve-
nendo a trovarmi quando non tornavo a casa per tempi molto lunghi. Mi hanno permesso
di trasferirmi a Torino dandomi la possibilitá di farmi una vita tutta mia. All'inizio mi
hanno aiutato molto con i traslochi quando abitavo al campus, e si sono trasformati in
tutto-fare quando mi sono trasferita in appartamento. La fine di un'era é stata segnata
quando da sola ho completato il mio ultimo trasloco da studente. Ormai sono entrata
ufficialmente nel mondo degli adulti.

Ringrazio anche gli amici del liceo, pochi ma buoni, con cui ho continuato a sentirmi
e che ho sempre piacere di ritrovare quando torno a casa.

Vorrei ringraziare anche gli amici che ho incontrato durante tutto il mio percorso:
dai "ragazzi del campus" con cui ho convissuto, ai "ragazzi del gruppo Skype" conosciuti

3



in periodo di lockdown, passando alle ultime amicizie strette durante questo percorso
magistrale, tra vari laboratori, progetti, e lezioni impegnative. E’ anche grazie a loro che
sono diventata la persona che sono adesso.

Dicono che le amicizie per la vita si facciano a 16 anni, e se fosse davvero vero io
sarei messa molto male. Non lo dico con cattiveria, ma ho molta difficoltá a stringere
amicizie. Gli ultimi ringraziamenti vorrei farli a coloro che sono diventati la mia nuova
famiglia. Siamo venti e piú persone che hanno stretto un'improbabile amicizia durante
la sessione estiva 2023 diventando subito molto affiatati dopo un paio di merende con il
gelato. Chiunque sia sia seduto attorno al tavolo alle coordinate 45◦ 4’ 9.17” N
7◦ 39’ 22.7” E, su cui sono state versate lacrime di gioia, ma anche di dolore, ha il mio
ringraziamento finale. Siete le persone che mi hanno salvato la vita nel mio ultimo peri-
odo. Sono infinitamente grata che siate diventati i miei amici piú cari, e che a distanza
di un anno ancora mi sopportiate. Siete coloro che in solo una sessione estiva, scusate
se utilizzo le sessioni d'esame come metro per indicare alcuni mesi dell'anno, siete rius-
citi a tirar fuori da me il lato che sembravo aver dimenticato da qualche parte nei miei
ricordi piú lontani. Le coordinate del tavolo le ho tatuate assieme ad alcuni di voi, e mi
ricorderanno sempre di questo incredibile e molto improbabile incontro. Vorrei lasciarvi
con la frase simbolo che ha segnato le nostre ultime avventure:

a tutti voi auguro nuovi percorsi da affrontare " . . . almeno un punto" alla volta.

4



Abstract

The performance achieved by artificial intelligence tools is so remarkable that they
can be applied in various fields of research and development. One of the most rapidly
advancing areas is deep learning, which leverages neural networks - algorithms designed
to mimic the behavior of the human brain. Neural networks’ ability to analyze data
in different forms, such as signals, numerical data, and images, has greatly expanded
scientific research, particularly in the field of medicine.

Despite the wide range of applications and the impressive results they can achieve,
deep learning networks are often referred to as "black boxes". The data processing and
the specific features used to make decisions are largely hidden or not transparent to hu-
mans. This opacity has implications for the results produced by the network, leading
to difficulties in interpretation, unpredictability, and reduced reliability. Over the years,
explainability techniques, also known as Explainable Artificial Intelligence, have been
developed to make neural networks more transparent by providing understandable expla-
nations. In parallel, methods have been developed to assess the uncertainty in a network's
predictions, quantifying the degree of trust one can place in the model. Explainability
and uncertainty are two aspects that have not yet been combined in the study of neural
networks.

In this thesis, a series of methods have been developed to investigate the variability
and uncertainty of the most important features used by the neural network to make
decisions. The neural network used is the Cross-Covariance Image Transformer, tasked
with classifying a set of brain MRI images into four distinct classes: no tumor, pituitary
tumor, meningioma tumor, and glioma tumor. The explainability methods applied are
Grad-CAM and Score-CAM, two visual techniques that provide heatmaps highlighting
which parts of an image were crucial for classification. Monte Carlo Dropout is the method
used to estimate uncertainty by randomly disabling some neurons during inference, thus
generating multiple predictions for each input image. This method was applied with two
different dropout probabilities. The first objective of this thesis was to identify which
of the devised methods performs best, while the second was to characterize the overall
behavior of the neural network. By using the developed method, it was also possible
to determine which of the two explainability techniques and which dropout probability
generated more robust heatmaps and less uncertain predictions.

Although the proposed method has its limitations, the applications of this work can
be extended to any neural network and any image classification task. It provides not
only clarity in the heatmaps and a quantification of prediction reliability but also an
indication of whether the implemented explainability methods are compatible with the
neural network in use and which dropout probability should be associated with it.



Abstract

Le prestazioni che gli strumenti dell’intelligenza artificiale raggiungono sono cosí sor-
prendenti che questi possono essere applicati in vari settori sia di ricerca che di sviluppo.
Uno dei campi che si sta sviluppando di piú é rappresentato dal deep learning che fa uso
di reti neurali, algoritmi che tentano di emulare il comportamento del cervello umano. La
capacitá di analizzare dati che si presentano in varie forme, come segnali, dati numerici, e
anche immagini, ha permesso alle reti neurali di ampliare la ricerca scientifica soprattutto
nel campo della medicina.

Nonostante la varietá di applicazioni e i risultati che riescono ad ottenere, le reti di
deep learning sono anche definite "scatole nere". L’elaborazione dei dati e le caratteris-
tiche specifiche utilizzate per prendere una decisione, infatti, sono in gran parte nascosti
o non trasparenti agli esseri umani. Questo comportamento ha delle conseguenze sui
risultati che la rete propone provocando difficoltá di interpretazione, imprevedibilitá e
poca affidabilitá. Negli anni si sono sviluppate delle tecniche di spiegabilitá, anche de-
nominate Explainable Artificial Intelligence, che cercano di rendere piú trasparente il
funzionamento delle reti neurali fornendo spiegazioni comprensibili. In parallelo sono
stati sviluppati anche metodi che indagano l'incertezza nelle predizioni che la rete for-
nisce, quantificando quanto é possibile fidarsi del modello. La spiegabilitá e l’incertezza
sono due aspetti che non sono mai stati combinati nello studio delle reti neurali.

In questo lavoro di tesi sono stai ideati una serie di metodi che permettono di indagare
la variabilitá e l’incertezza delle caratteristiche piú importanti utilizzate dalla rete neurale
per prendere una decisione. La rete neurale utilizzata é la Cross-Covariance Image Trans-
former che ha il compito di classificare una serie di immagini di risonanza magnetica del
cervello in quattro classi distinte: no tumore, tumore ipofisario, meningioma e glioma. I
metodi di spiegabilitá applicati sono Grad-CAM e Score-CAM, due metodi visivi che for-
niscono delle mappe chiamate "heatmap" in cui si evidenziano quali parti di un'immagine
sono state determinanti per la classificazione. Monte Carlo Dropout é invece il metodo
impiegato per stimare l’incertezza che, nella fase di inferenza, spegne casualmente alcuni
neuroni della rete ottenendo varie previsioni per ogni immagine fornita come input. Il
metodo é stato applicato utilizzando due probabilitá di dropout diverse. Il primo obiet-
tivo di questo lavoro é stato individuare quale tra i metodi ideati possiede le prestazioni
migliori; il secondo obiettivo é stato caratterizzare il comportamento complessivo della
rete neurale. Sfruttando il metodo ideato é stato anche possibile individuare quale tra i
due metodi di spiegabilitá utilizzati e quale probabilitá di dropout forniscono heatmap
piú robuste e predizioni meno incerte. Nonostante il metodo ideato possieda delle lim-
itazioni, le applicazioni di questo lavoro si possono estendere a qualsiasi rete neurale e
a qualsiasi immagine nell'ambito della classificazione ottenendo non solo chiarezza nelle
heatmap e quantificazione dell'affidabilitá delle predizioni, ma anche un'indicazione se i
metodi di spiegabilitá implementati sono compatibili con la rete neurale utilizzata e quale
probabilitá di dropout associarci.
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Chapter 1

Introduction

Artificial Intelligence (AI) is a broad field of computer science dedicated to building smart
machines capable of performing tasks that typically require human intelligence. These
tasks include, but are not limited to, learning, reasoning, problem-solving, perception,
language understanding, and decision-making. AI aims to simulate human cognitive pro-
cesses, enabling machines to process information, recognize patterns, and make decisions
based on data. AI encompasses a wide range of subfields, including Machine Learning
(ML), natural language processing, robotics, and computer vision. The ultimate goal of
AI is to create systems that can function autonomously and intelligently in a variety of en-
vironments, offering potential applications across numerous domains such as healthcare,
finance, autonomous vehicles, and more.

Deep Learning (DL) is a subset of machine learning, which itself is a branch of AI.
DL is inspired by the structure and function of the human brain, specifically the neural
networks. It involves training artificial neural networks, which are composed of layers of
nodes, on large amounts of data to recognize patterns and make predictions. DL models,
often referred to as deep neural networks, are designed to automatically extract and learn
features from raw data. Unlike traditional ML, where features are manually crafted, DL
models can identify and learn hierarchical representations of data through multiple lay-
ers of abstraction. This capability allows deep learning to excel in complex tasks such
as image and speech recognition, natural language processing, and game playing. The
term "deep" refers to the number of layers in the neural network. A deep neural network
has many layers between the input and output layers, allowing it to learn more intri-
cate patterns. These networks are typically trained using large datasets and significant
computational power, often with specialized hardware such as GPUs.

DL has led to remarkable advancements in AI, powering applications like virtual
assistants, facial recognition systems, autonomous vehicles, and more. Its ability to au-
tomatically discover the intricate structures in high-dimensional data makes it a crucial
technology in the development of intelligent systems. DL has demonstrated exceptional
performance in the realms of image processing and data analysis, surpassing traditional
methods in many challenging tasks [1]. The ability of DL models to automatically learn
and extract intricate features from large datasets has revolutionized how images and
complex data are analyzed. This proficiency stems from the deep neural networks'ability
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Introduction

to capture and model the complex relationships within the data, making them particu-
larly effective in tasks like image classification, object detection, and segmentation. In
image processing, DL models, particularly Convolutional Neural Networks (CNNs), have
achieved state-of-the-art results. These models excel at identifying patterns, textures,
and structures in images, making them ideal for applications such as facial recognition,
autonomous driving, and, crucially, medical imaging.

The high accuracy and robustness of DL in image analysis have made it a transforma-
tive tool in the medical field. Medical imaging, which includes techniques such as MRI,
CT scans, X-rays, and ultrasounds, is critical for diagnosing and monitoring a wide range
of conditions. Traditionally, the interpretation of medical images relied heavily on the
expertise of radiologists and clinicians. However, DL models have significantly enhanced
this process by providing automated, accurate, and fast analysis of medical images. These
models can detect subtle abnormalities, classify diseases, and even predict patient out-
comes with remarkable precision. For example, DL algorithms have been developed to
detect early signs of cancer in mammograms [1] [2], identify diabetic retinopathy in reti-
nal images, determine the type of skin cancer from histopathological images [3], diagnose
pneumonia from chest X-rays, and even diagnose Alzheimer's disease through the analy-
sis of MRI scans [4]. The use of DL in medical imaging has led to improved diagnostic
accuracy, reduced human error, and faster processing times, ultimately leading to better
patient outcomes.

Moreover, DL is not limited to image analysis but also extends to other forms of
data analysis in the medical field. For instance, DL models are used to analyze genomic
data, predict disease progression, and assist in drug discovery by identifying potential
compounds for treatment. The ability of these models to handle and make sense of vast
and complex datasets is driving innovation in personalized medicine, where treatments
and interventions are tailored to individual patients based on their unique data profiles.

In summary, the high performance of DL in image processing and data analysis has
established it as a powerful tool in the medical field, enabling more accurate, efficient,
and personalized healthcare.

Despite the impressive performance of DL models in medical applications, their trust-
worthiness remains a significant concern, particularly due to their black-box nature [5].
Before deploying these models in clinical settings, it's crucial to rigorously evaluate their
reliability. Understanding the reasons behind a model's predictions is essential for build-
ing trust, especially when decisions with high stakes, such as medical diagnoses, are
involved [6]. The opacity of AI decision-making processes has led to debates about the
necessity of explainability in high-stakes scenarios like healthcare [7]. While explainable
AI is often advocated as a solution to foster trust, transparency, and bias mitigation, there
are doubts about whether current explainability methods can truly meet these expecta-
tions, particularly in providing clear insights or accounting for the uncertainty inherent
in the model's predictions [8].
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1.1 – State of the art

1.1 State of the art

This section reviews the literature by separately characterizing neural networks, explain-
ability methods, and uncertainty identification techniques. These are the three main
pillars on which this Master's Thesis is based. The literature analysis highlights what
has already been discovered, developed, and applied, as well as the challenges that remain
unresolved in the application of AI in the medical field.

1.1.1 Deep neural networks

The explainability of neural networks has become a prominent topic in recent literature.
Many scholars are engaging with this issue, contributing their insights by proposing so-
lutions and training networks that do not rely on data from the healthcare sector. As a
result, the literature is replete with articles addressing this challenge. However, an in-
triguing observation emerges from the analysis of the literature: regardless of the specific
domain discussed - whether it is human tumor recognition or the identification of specific
animals within images - there does not appear to be a unified, global approach. Each
study presents its own potential solution, claiming to achieve accuracy and precision su-
perior to those previously reported in the literature, yet each study tends to stand alone.
This has led to a proliferation of new networks in the literature, either created from
scratch or derived from pre-existing networks that have been modified in their layers.

In the healthcare sector, AI has been extensively applied to a variety of tasks, includ-
ing image classification, detection, segmentation, content-based image retrieval, image
generation, and image enhancement, as well as the integration of image data with clinical
reports. Image classification is employed not only for the categorization of medical ex-
ams but also for the identification of objects and lesions. Segmentation tasks encompass
the delineation of organs, substructures, and lesions, as well as image registration. A
wide range of anatomical regions have been explored, including the brain, eye, chest,
digital pathology and microscopy, breast, cardiac, abdomen, musculoskeletal system,
among others [9]. Only a selection of the neural networks presented in the literature will
be discussed below: Entropy-based Elastic Ensemble [1], ResNet-18 [3], DenseNet201-
Xception-SIE [2], DenseNet-121 [5], VGG19 [4] [10], Actionable Uncertainty Quantifi-
cation Optimization [11], BayesNetCNN [12], BIRADS-Net [13], Collaborative Human-
AI [13], AlexNet [14], VGG16 [14], ResNet [15], Multi-level Context and Uncertainty
aware [16], DenseNet-169 [17] [10], MultiResUNet [10], Inception [10], Xception [10],
ResNet-50 [10], sMRI-PatchNet [18], and ResNet-18 [19]. Some studies also incorporate
attention gates into standard CNN models to solve localisations and classification tasks
separately [20].

Given the variety of neural networks employed, the clear objective reported in the
literature is to achieve accuracy rates surpassing those of all other studies, with values
ranging around 86% [12], 90% [17], 94.47% [3], 94.64% [21], 97.12% [2], 98.11% [16], and
ambitiously aiming towards the nearly unattainable absolute perfection that is so highly
sought after in every field, specially the medicine one.
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1.1.2 Explainability

Literature shows that the pursuit of ever-higher accuracy and performance often mirrors
the quest for the best neural network. However, this approach may not be the optimal
solution for studies conducted in the healthcare sector. Since it became evident that DL is
a more powerful and necessary tool than its counterpart, ML, research in these techniques
has expanded significantly. DL is preferred for tasks that require the analysis of large
and complex datasets. For instance, in image and signal analysis, without focusing too
much on the purpose of the analysis, the datasets necessary for conducting a study must
include at least over 1,000 elements. DL is advantageous because it is considerably faster
than human analysis, saving valuable time.

The benefits of DL do not end here: unlike ML, DL does not require operator-
dependent preparation of the network. In ML, data must be analyzed to identify the
most important features that will enable classification - if the ultimate goal is to classify
a series of elements into well-defined groups with quantifiable performance that remains
consistent over time. This process, known as feature extraction and subsequent feature
selection, is no longer present in DL. To be precise, the operator-dependent process is no
longer necessary; instead, the network itself identifies patterns in the data that will allow
it to provide the results for which it was trained and tested.

The astonishing results produced by neural networks initially led to the belief that
they were tools highly similar to the human brain. The basic unit of a neural network is
called a neuron - a mathematical model designed to mimic the biological behavior of the
brain cell - and it was thought that neural networks could reason similarly to the human
brain. This sparked a more in-depth analysis of neural networks. The remarkable aspect
of a neural network is its ability to "learn" on its own, seemingly leaving the operator with
a reduced workload. The operator is then tasked with the "mere" job of analyzing the data
and attempting to understand how the network arrived at a particular result rather than
another - a task far from easy. Although the process of training a network, which involves
iterative optimization of weights by minimizing a loss function, is well understood, it is
not always clear what factor led the network to favor a specific response.

This is where explainability (XAI) comes into play-understanding how a neural net-
work "thinks." Early findings in this field were quite shocking: neural networks, it turns
out, understand nothing at all! It is important to clarify this point. Even though a
neural network is left alone to navigate the vast sea of data provided to it, and despite
being made up of elements named after the cells that allow humans to perform incredible
reasoning, it interprets data exactly like a machine. In the medical field, a radiologist
examining chest X-rays identifies structures such as bone tissue, muscle tissue, and pneu-
monia. However, a neural network does not identify these structures in the same way. For
a neural network, it is important whether a group of pixels has the same shade of gray,
whether adjacent pixels have different shades, whether the gradient of an image shows
clusters of pixels, and so on-making the task of identifying the network's "reasoning" much
more challenging.

The first studies on XAI highlighted precisely this aspect. The most well-known case
involves distinguishing between photos containing huskies and those containing wolves [6].
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Despite high performance, XAI techniques revealed that the network was not differentiat-
ing between the two canines by analyzing the shape of the muzzle or the color of the fur,
as a human would, but rather by analyzing the background. Any object placed against a
forest background was identified as a wolf, while a domestic background indicated a dog.
This was the most striking case during the study of neural networks and led to a more
in-depth investigation of techniques that allow for explaining neural network results.

The field dedicated to analyzing the explainability of neural networks is known as
visual analytics [22], which focuses on representing data and models in a way that
makes them interpretable. Visual approaches primarily concentrate on how visualiza-
tion techniques are employed to represent data and architectures, analyze performance,
and provide both local and global explanations. XAI methods are categorized by explana-
tion level, implementation level, and model dependency. The explanation level indicates
whether an explainability technique focuses on the entire model or on a single instance.
The subcategories of the explanation level are the global level, which focuses on the ex-
plainability of the entire model, and the local level, which explains the decisions of a
model by analyzing individual instances or subpopulations.

The implementation level [22] has two main subcategories: intrinsic and post-hoc.
Intrinsic explanations are generated by the model itself, indicating how a prediction
was made using the model's parameters, decision trees, and rule-based methods. Post-
hoc explanations, on the other hand, reveal the internal workings and decision-making
mechanisms of black-box models. Post-hoc explanations can be applied both to pre-
trained models and to models after training is completed.

Model dependency [22] encompasses both model-specific and model-agnostic explain-
ers. Model-specific XAI techniques are tailored to explain only a particular type of
algorithm. Intrinsic explanations, serving as model-specific methods, are not universally
applicable and require modification of the explanation mechanism when applied to dif-
ferent models. In contrast, model-agnostic explanations can be applied to any type of
model and are independent of the model's architecture. Given that many model-agnostic
explainers also offer post-hoc explanations, these methods are frequently utilized for their
versatility.

Given the classification described above, here some of the most popular XAI tech-
niques are presented. ANCHORS [22], Shapley Additive Explanations [22] [23] [24] [25]
[21] [18], Gradient-weighted Class Activation Mapping (Grad-CAM) [22] [26] [24] [27] [25]
[28] [29] [30] [10] [31] [32] [7], Saliency Maps [22], Integrated Gradients [22], Deep Learn-
ing Important FeaTures [22] [23] [24] [30], Class Activation Mapping [22] [24] [25] [33]
are model agnostic local and post-hoc level explanations. Local Interpretable Model-
Agnostic Explanations [6] [3] [22] [23] [24] [25] [21] and Layer-wise Relevance Propaga-
tion [22] [8] [24] [25] [34] [35] [7] like before, they also fall on the global explanation
level. Bayesian Rule Lists [22], Generalized Additive Models [22], and Mean Decrease
Impurity [22] are model specific global intrinsic level explanations, the latter is also lo-
cal explanation level. Distillation tecnhnique [22] is a model agnostic global post-hoc
explanation level.

Among all the methods presented, the approach that predominates in computer vi-
sion is local explanation using saliency methods. Three types of approaches are employed:
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feature map weighting, backpropagation, and input image perturbation. In the first ap-
proach, we find methods such as Grad-CAM++ [24] [36], Score-CAM [24] [37], Ablation-
CAM [24], LIFT-CAM [24], and aXiom-based Grad-CAM [12] [24]. Some backpropaga-
tion approaches include gradient map [24], guided backpropagation [24] [27] [25] [38] [39]
[10] [31] [35] [32], integrated gradients [24] [27] [39] [32], SmoothGrad [24] [27] [39] [40] [7],
and VarGrad [24]. The final group includes the method randomized input sampling for
explanation [24] [41].

XAI methods do not end here. Some techniques have been further refined to reduce
computational cost, achieve better performance, and provide results that are more in-
terpretable by the operator, such as: Ablation-CAM [26], Deep SHAP [23] [25], guided
Grad-CAM [27] [42] [30] [10] [31] [7], guided integrated gradients [27], HR-CAM [29], Ker-
nel SHAP [23], Linear SHAP [23], SP-LIME [6], Low-Order SHAP [23], Max SHAP [23],
NeuroXAI [27], Uncertain-CAM [43], vanilla gradient [27].

Given the vast number of techniques presented, one might think that the field of XAI
is nearing its conclusion, but the ongoing refinement of these methods suggests otherwise.
In reality, the issue mentioned in Section 1.1.1 reemerges: the literature is abundant with
numerous techniques, some even designed for specific studies, all striving to provide results
that satisfy operators, yet without channeling the research in a unified direction. There
are studies attempting to identify the most effective techniques, or to cluster them in
order to determine if certain methods are more suitable for specific studies. One thing is
certain: it is essential to select the appropriate XAI method based on the specific neural
network being used. Not all methods fit every network perfectly; some yield better results
than others. However, as the trend of creating new networks continues, it is only natural
that new explainability techniques will be developed accordingly.

1.1.3 Uncertainty

During the research and development of models aimed at uncovering the "reasoning"
behind the responses provided by neural networks and making these "black-box" systems
transparent to human operators, the exploration of uncertainty (UQ) in neural networks
has emerged alongside this endeavor in recent years.

UQ can be categorized into two types: epistemic uncertainty [17] [44], which reflects
the uncertainty in the model's parameters due to insufficient data for training, and can
be reduced by increasing the amount of data available for analysis; and aleatoric un-
certainty [17] [44], which describes the inherent noise in the data, arising from hidden
variables or measurement errors, and cannot be reduced by simply acquiring more data.

What some researchers have realized in their attempts to explain neural networks is
that, despite the network providing an output, this result is still subject to UQ. Here,
two aspects of the same problem converge: a human operator constructs an artificial
algorithm based on a mathematical model in an effort to emulate human reasoning; upon
building and testing the algorithm, it is used to perform the tasks for which it was
designed, producing an output or a series of outputs. Even if the output is correct, the
operator still seeks to understand the steps that led to that result, as the algorithm,
though designed by the operator, has effectively learned to identify a set of features and
rules to generate a response autonomously.
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Explainability serves as the bridge that renders the model interpretable to a human
being, utilizing visual tools that are ideally suited for human interpretation. However,
while these tools are highly favored, they are not sufficient to make a model fully in-
terpretable. It remains necessary for a human operator to evaluate and interpret why a
visual tool indicates a particular pixel region as crucial for the provided response [45].
Thus, explainability methods still require human interpretation.

Explainability methods alone, therefore, are insufficient in determining whether a
network has autonomously learned optimal rules during the training phase. For this
reason, some researchers have begun to calculate the UQ of neural network predictions.
The study of UQ is relatively new and has sparked significant interest in the field. By
quantifying the UQ of a single prediction, it is possible to obtain a measurable value
that indicates the robustness of the network, thereby bypassing the need for human
interpretation that is still required when using XAI methods.

Neural network uncertainty can be modeled through Bayesian analysis, where un-
certainties are formalized as probability distributions over the model's parameters, in
the case of epistemic uncertainty, or over the model's inputs, in the case of aleatoric
uncertainty.

In the literature, the most commonly used metrics to quantify uncertainty include:
Bhattacharyya coefficient [44] between distributions, Deep Ensemble [46], entropy [44],
Ensemble Monte Carlo dropout [46], Monte Carlo Dropout [11] [31] [46], Shannon's en-
tropy [47], and variance [44]. Depending on the study, one or more metrics are used
to quantify UQ. When multiple metrics are employed, they are combined with the net-
work's output to gather more information about the model and assess whether the model
is overconfident.

Because UQ is estimated numerically, thresholds are frequently used across studies.
These thresholds are set according to the data obtained during model training and are
particularly useful in uncertainty research due to the nature of uncertainty itself: it
measures the degree of disorder, and thus the amount of information, in a system. In
a random process, a common event carries less information than a rare one. Given a
random event, higher probabilities indicate lower information content. This explains why
thresholds are an effective and convenient tool: any uncertainty below a fixed threshold
indicates useful information [1] [46].

Since the study of UQ is relatively young, most research utilizes the metrics mentioned
above, with only a few opting to employ alternative metrics for its calculation.

1.2 Objectives

The objective of this Master's Thesis is to combine two aspects - XAI and UQ - in the
context of medical image classification tasks. Although the number of studies integrating
these two areas is not extensive, research is increasingly moving in this direction.

The novelty of this work lies in the concept of globality, aiming to automate XAI
and UQ to ultimately derive one or two numerical metrics that comprehensively indicate
how confident a neural network is in its predictions and the degree of uncertainty it
possesses. The confidence of a prediction can be translated into the robustness of the
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XAI method used. Specifically, by testing the localization phase, which is present in any
neural network, we can evaluate certainty. Given an input, if it is perturbed and the
XAI method consistently identifies the same spatial region used to obtain the output, the
network can be considered confident in its localization.

The UQ of a prediction can be understood as the model's uncertainty regarding a spe-
cific example. This involves testing the second phase that characterizes neural networks,
following the localization phase: the interpretation phase. This phase is the most delicate
and is highly sensitive to the type of data provided, particularly the number of examples
used during training and validation. During training, the network autonomously analyzes
the features and "creates" a set of rules to arrive at a given prediction. Incorrect rules lead
to incorrect predictions, which is why neural networks undergo a tuning phase to adjust
parameters or even modify the network's architecture to improve performance. Care must
be taken to avoid the network "learning" overly specific rules, which can lead to overfit-
ting. Overfitting occurs when a neural network becomes too precise in its predictions,
making no errors. A network that experiences overfitting is said to be too specialized for
the cases it has been trained on, resulting in significantly poorer performance during the
testing phase, where new, unseen data is used to evaluate final performance. A neural
network that cannot generalize and analyze real-world data is not a successful network.

UQ is tied to the rules the network "learns" and, consequently, to the prediction
it outputs. A neural network's prediction in a classification task is not merely a binary
response (0 or 1), where 0 indicates non-membership in one or more classes and 1 indicates
membership in a single class. Instead, it is a probabilistic distribution. The highest
probability in the distribution indicates the final output class of the network. A high
probability of belonging to a class indicates confidence in the prediction, while a high
probability that is still comparable to others in the distribution indicates uncertainty in
the prediction.

The focus of this study on achieving globality with XAI and UQ is not limited to a
single classification network. The research will test whether the metric or metrics that
identify variability and uncertainty in predictions hold true for other neural networks as
well. This will involve verifying whether the method can be applied to other tasks in the
healthcare domain, providing the literature with the much-needed element to make these
"black boxes" increasingly transparent.
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Chapter 2

Materials and methods

2.1 Dataset

For this study, a publicly available MRI image dataset is employed [11] [21]. The dataset
comprises 3,264 images in JPG format, encoded in RGB, which includes three channels
despite the images displaying only grayscale tones typical of MRI scans. The images
represent various orientations, including axial, sagittal, and coronal views. The dataset
is divided into two primary sets: 394 images are designated for testing, while 2,870 images
are allocated for training.

Each set includes identical annotations for the images, categorizing them into four
classes: no tumor, pituitary tumor, meningioma tumor, and glioma tumor.

2.1.1 Data pre-processing

To train a neural network, it is necessary to further divide the training set into two addi-
tional sets, referred to as the training set and validation set. To create these two sets, the
2,870 images were divided such that 85% of the images were used for the actual training
set, while the remaining 15% were used as the validation set. Following this process, the
resulting sets are as follows: a training set containing 2,437 images, a validation set with
433 images, and the test set with 394 images.

However, the images in these sets do not all share the same dimensions. The image
dimensions were analyzed, and the results are presented in Table 2.1.

2.1.2 Resize

It is essential to standardize the image dimensions before feeding them into the neural
network. Another insight from the dimension analysis is that only 4% of the entire dataset
contains at least one dimension, either row or column, exceeding 512 pixels. A 512×512
resolution is one of the most commonly used dimensions in image analysis. Given that the
dimension analysis suggests 512×512 as the optimal size, the images undergo a resizing
process accordingly.

The decision was made to process images with dimensions smaller than 512×512
using zero padding, which involves adding a black border that carries no information.
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dim % Train Validation Test
x<200 0.18 1 1 4

200≤ x<300 17 308 42 198
700≤ x<800 0.25 4 3 1

x>800 1.6 27 6 18

Table 2.1. Analysis of image dimensions in pixels. The analysis focused solely on the
number of rows and columns of the images. The percentage column (%) refers to the
entire dataset, while the dimension (x) in column (dim) refers to at least one of the
dimensions, either rows or columns.

For images with significantly larger dimensions, background cropping was first applied
to check whether the brain fits within the desired dimensions. If not, the cropped image
underwent resizing to meet the target size.

After applying zero padding to all images smaller than 512×512, the output images
were analyzed. It is well known that neural networks perform best when images are
centered, with good resolution and a moderate black border framing the content. Visually,
the images that align with this description and offer a good trade-off between brain
visibility and black background are those with dimensions of 380×380. An example of
what has just been said is provided by the Fig. 2.1. Images smaller than this tend to
have a brain that is too small, with an excessive amount of black background.

Figure 2.1. This is the image m1(117) labelled meningioma tumor. On the left there is
the original image which has dimensions 341×377, on the right is the standardized image
512×512. This is the perfect example of how this orginal dimensions have a good trade-off
between brain visibility and black background

Thus, it was decided to resize images with initial dimensions smaller than 380×380
to this optimal size, utilizing the zoom mode of the transformation. Zero padding was
then applied to reach the desired dimensions of 512×512.

Care must be taken when applying resizing, as it alters the image resolution: whether
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zooming in or shrinking the image, each pixel's value is recalculated using different meth-
ods, resulting in a change in resolution. Therefore, it is crucial to carefully select which
images undergo transformation and consider the size difference between the original and
final images. By avoiding direct resizing from the original dimensions to 512×512, signif-
icant degradation of image resolution was prevented. The intermediate step of resizing to
dimensions around 380×380, combined with the use of zero padding, is the most optimal
solution.

Accordingly, the images subjected to this transformation are those with at least one
dimension falling within the range indicated in Table 2.1, specifically x<200 and
200≤x<300. A more detailed analysis of image dimensions is provided in Table 2.2.

Set min column min row

Test

175 167
174 195
200 208
201 202

Train

512 512
200 207
200 198
201 202

Validation

512 512
180 218
201 217
256 256

Table 2.2. Detailed analysis of image dimensions in pixels. For each set and for each
image class, the minimum and maximum row and column dimensions are analyzed. The
smallest dimensions within the range x<200 are highlighted in yellow, while those within
the range 200≤ x<300 are shown in green.

The analysis of dimensions focuses exclusively on the minimum number of rows and
columns for each set of each class. From Table 2.2, it can also be seen that most images
do not have square dimensions. The goal is to increase both dimensions of the images
by a certain percentage so that the final dimensions are as close as possible to 380×380.
The dimensions calculated through this percentage are then used in the resizing function.
The resized image subsequently undergoes zero padding to achieve a final output size of
512×512.

To determine the percentages to be applied to images within the x<200 range and
those in the 200≤ x<300 range, the following approach is used: for both ranges, the
smaller dimension between rows and columns is identified. From Table 2.2, the minimum
dimension is highlighted in yellow for the x<200 range, and in green for the 200≤ x<300
range. This dimension is then used to calculate the percentage by which the image
dimensions should be increased. The relationship used is shown by the equation (2.1).
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100 : 380 = x : 167

100 − x = 56%

100 : 380 = x : 200

100 − x = 47%

(2.1)

Considering equation (2.1), the images will undergo a resize that will increase their
dimensions by 56% and 47%, respectively, followed by zero padding to achieve the desired
512×512 dimensions. The Fig. 2.2 shows the output of an image that has undergone first
reshape and then zero padding.

Figure 2.2. This is the image m1(11) labelled meningioma tumor. On the left there is
the original image which has dimensions 226×212, on the right is the standardized image
512×512. This images has undergone first an encrease of its dimensions by a factor of 0.47,
then zero padding was applied to get the standardized image.

Images with dimensions larger than 512×512 will be treated differently: the brain
region will be identified in each image, and the background will be cropped to try to
achieve the desired dimensions while avoiding excessive use of the resize function. If,
after cropping the background, the image is still too large, a resize will be applied to
produce a 512×512 image.

2.2 Neural network
The neural network most commonly used in the field of medicine, particularly for image
analysis, is CNN. CNNs do not treat images as a flat vector of pixels but rather analyze
their spatial structure by leveraging the fact that nearby pixels contain visually correlated
information. The architecture of CNNs consists of:
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• Convolutional layer: Filters, called kernels, are applied to the image to capture local
patterns such as edges, corners, or textures. Each filter produces a feature map;

• Activation function: Each convolutional layer has a nonlinear activation function,
which introduces nonlinearity into the model, enabling the network to learn complex
patterns;

• Pooling: A process applied after convolution to reduce the size of the feature map
by retaining only the most relevant information, thus reducing computational com-
plexity;

• Fully connected layer: After a series of convolutions and pooling, the feature maps
are transformed into a vector and passed through a series of fully connected layers
similar to those in traditional neural networks. These layers are used to perform
the final classification.

The final layer of the network is called the softmax layer, where the probabilities for
each pixel belonging to a specific class are accumulated. This is also referred to as a
probability map, and it is from this that the final softmax probability is obtained. The
softmax probability is a vector that reports the likelihood of the image belonging to each
possible class in the classification task. The sum of all probabilities is equal to 1, and the
highest probability determines the final class chosen as the network's output. A schematic
example of the architecture of a CNN is shown in Fig. 2.3.

Figure 2.3. This is the most used representation of the architecture of a CNN for
image classification. This scheme highlights each layer and their objective, and shows
how the softmax is presented.

Deep Convolutional Neural Networks (DCNNs), some of which are mentioned in Sec-
tion 1.1.1, are an extension of CNNs. They have many more layers compared to traditional
CNNs, but they are based on the same principles and can extract increasingly complex
features as data is processed. A DCNN contains the same layers as a CNN, but in a much
larger number.

Some DCNNs and CNNs may have an architecture divided into two parts called en-
coder and decoder. The encoder is the first part of the network, with the objective of
reducing the size and complexity of the input by extracting the most important features.
The aforementioned layers - convolutional layers, activation function, and pooling - are
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used in sequence, and at the end of the encoder, a highly condensed and compact rep-
resentation of the data is obtained. The decoder is the second part of the network and
aims to reconstruct the original image starting from the representation provided by the
encoder. The layers used in this part of the network include:

• Upsampling: Operations are applied to increase the dimensions of the compressed
representation;

• Deconvolution: The resolution of the original image is restored by applying a series
of filters;

• Decoder output: A reconstructed image or a mask representing the desired output
is obtained.

The final layer of a DCNN, whether with or without a decoder, remains the softmax
layer, from which the softmax probability and the final classification are obtained. Fig. 2.4
presents a schematic overview of a DCNN that includes both an encoder and a decoder
in its structure.

Figure 2.4. This is the most used representation of the architecture of a DCNN for image
classification. This scheme highlights how the encoder and the decoder are structured,
each layer and their objective. In the legend of this scheme the Batch Normalization is
presented, some DCNN use this technique to improve the training speed and stability of
deep networks. ReLu is one of the non-linearity activation functions that can be used to
introduce non-linearity in the model. This scheme also represents very well the difference
between a CNN and a DCNN. Despite they share the convolutional layer, the non-linearity
function, and the pooling layer, a DCNN has a very high number of these layers. That is
why these networks are called "deep".

The network used for this project is the Cross-Covariance Image Transformer
(XCiT) [48]. XCiT consists of an encoder and a decoder:

• The encoder includes a series of layers based on the multi-head attention mechanism
and a position-wise fully connected feed-forward network. Each layer is accompa-
nied by a residual connection and normalization;
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• The decoder has the same structure as the encoder and includes the same layers
but with one additional layer. This layer, called multi-head attention, takes the
output of the encoder as input. A residual connection and a normalization layer
are also applied to this layer.

XCiT shares the same architecture as the Transformer network [49]. The difference
between the two architectures lies in the multi-head attention layer. XCiT uses its own
specific XCiT layer, which consists of three blocks, each preceded by a LayerNorm. The
three blocks are: Cross-Covariance Attention, Local Patch Interaction, and Feed-Forward
Network. The introduction of this block in place of the traditional multi-head attention
layer reduces computational cost while achieving performance comparable to networks
in the literature across various tasks, such as image classification, object detection, in-
stance and semantic segmentation. This network can also be used as a backbone for
self-supervised learning.

The parameters used to train XCiT are as follows:

• Input size: 512;

• Number of epochs: 50;

• Batch size: 8;

• Learning rate: 1e-05.

The network was pre-trained using ImageNet.

2.3 Monte Carlo Dropout
Monte Carlo Dropout (MCD) is a variant of Variational Inference [50]. Both approaches
are used for estimating uncertainty in models. Since Variational Inference has a computa-
tional cost that is directly proportional to the size of the initial dataset, the MCD method
was developed. To use MCD, dropout layers must be present in the neural network after
each layer that contains network weights [51]. These dropout layers help prevent the net-
work from overfitting. The method defines a function that approximates the distribution
of weights for each layer in the neural network. This function uses a Bernoulli random
variable to decide, based on a probability, whether a particular input should be dropped
or not [50].

Given a dataset D, where X represents the records of all variable predictions and Y
represents the predictions provided by the model, the objective of uncertainty estimation
is to predict a new set y∗ by providing new data x∗. The calculation of uncertainty is
performed by knowing a model described by a series of layer weights or parameters W.
The formulation of the uncertainty estimation problem is an optimization problem that
seeks to obtain an optimal set W, and consequently, a single posterior prediction y∗. This
problem is expressed in equation (2.2).

The function defined by MCD attempts to solve the first integral in equation (2.2)
and minimize it [11].
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P (D) =
∫︂

P (D|W )P (W )dW

P (W |D) = P (D)P (W )
P (D)

P (y∗|x∗, D) =
∫︂

P (y∗|x∗, W )P (W |D)dW

(2.2)

MCD is tasked with capturing the model's uncertainty, specifically epistemic uncer-
tainty, but its formulation does not allow for the calculation or elimination of aleatoric
uncertainty.

Operationally, MCD randomly deactivates neurons in the neural network using
dropout during the inference phase. This process is repeated multiple times, and with
each deactivation of a set of neurons, the network produces different predictions. By
observing how these predictions vary, it is possible to determine whether the model is
robust or affected by uncertainty. In this thesis work, two dropout probabilities were
used: 0.001 and 0.005. The MCD method was applied 10 times, resulting in 10 heatmaps
and 10 softmax outputs for each classified image.

2.4 Grad-CAM and Score-CAM

The XAI methods that have been implemented are Grad-CAM and Score-CAM, two
model-agnostic methods that provide post-hoc explanations and generate saliency maps.
These saliency maps, also known as heatmaps, are represented using a color scale ranging
from blue to red. The blue color indicates low importance of the spatial region, while the
red color indicates high importance.

Grad-CAM [42] [28] allows visualization of which regions of an image are responsible
for the prediction output by the neural network. The method is outlined as follows:

• Perform a forward pass through the network with the input image;

• Identify the last convolutional activation map before the classification operation;

• Compute the gradient of the prediction with respect to the activation map, obtain-
ing information on how each pixel of the map contributes to the predicted class;

• Spatially average the obtained gradients to get a weight for each channel of the
activation map;

• Combine the weights with the convolutional activation map to create a heatmap
that shows the importance of each area of the image relative to a target.

The advantage of Grad-CAM is that it can be applied to any neural network. However,
the method depends on gradients, which can introduce noise or vanish in deeper networks,
reducing the quality of the explanation. An example of a Grad-CAM visualization is
shown in Fig. 2.5.
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Figure 2.5. This is the image(276) labelled no tumor. On the left there is the original
image, on the right there is the heatmap provided by the Grad-CAM method placed on
the original image. It is possible note the characterized colors of the heatmap.

Score-CAM [37] was developed as an improvement over Grad-CAM because it does
not use gradients, thus eliminating the issue of noise and gradient vanishing in deep neural
networks. Like Grad-CAM, Score-CAM can be applied to any neural network, and the
method is outlined as follows:

• Perform a forward pass to obtain the activation map of the last convolutional layer;

• For each activation channel, the map is normalized and overlaid onto the original
image;

• Perform a forward pass with the modified image to evaluate how each specific
channel affects the target class score;

• The obtained scores are used as weights to combine the channels of the activation
map, producing the final heatmap.

Score-CAM avoids the gradient-related issues that affect Grad-CAM, resulting in a
more stable and accurate visualization. However, this method is computationally more
expensive, as it requires more forward passes compared to Grad-CAM. An example of a
Score-CAM visualization is shown in Fig. 2.6.

2.5 Re-evaluating Pearson Correlation Coefficient method

The primary objective of this thesis is to quantify the variability and uncertainty of the
most important features computed by the neural network. DL neural networks automat-
ically extract features from the images provided to them: the more complex the neural
network, the more complex the features extracted. It is not possible to know which fea-
tures are calculated or utilized by the network for image classification. However, through
visual XAI methods, it is possible to visualize the spatial regions where the features are
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Figure 2.6. This is the image(276) labelled no tumor. On the left there is the original
image, on the right there is the heatmap provided by the Score-CAM method placed on
the original image. It is possible note the characterized colors of the heatmap.

so critical to the neural network that interpretation and subsequent classification rely
solely on them.

The XAI method generates an image known as a heatmap. In this heatmap, each
pixel is assigned a color that ranges from blue to bright red. The closer a pixel's color
is to red, the more important the feature calculated at that pixel is. The pixel color,
however, is not directly proportional to the feature's value.

By utilizing the MCD method, various neurons in the network are deactivated, leaving
classification to the remaining active neurons. As a result, the features used for the new
classification may differ from those employed when all neurons in the neural network are
active. After each round of neuron deactivation, a new heatmap and corresponding clas-
sification are generated. The MCD method is used to determine whether the heatmaps
change and how the classification is affected when certain neurons are turned off, thus
assessing the robustness of the network. Additionally, the MCD method is applied during
an initial network evaluation phase: if the most important features are extracted from
the background of the images or do not entirely fall within the brain region, this indi-
cates that the network is suboptimal, necessitating adjustments to certain parameters or
modifications to its architecture.

At the conclusion of the network training phase, the following data are obtained:

• The heatmaps of the images, along with their associated softmax values and clas-
sifications;

• The heatmaps, softmax values, and classifications for all instances where neurons
were deactivated using MCD.

In this specific case, the network's neurons were deactivated 10 times, resulting in
11 heatmaps, 11 softmax values, and 11 classifications for each analyzed image. This
yields a total of 4,763 images, 4,763 softmax values, and 4,763 classifications just for the
validation set.
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According to the MCD method, if all the heatmaps are identical and the classification
remains unchanged, the neural network is robust in its predictions. This reasoning is
straightforward: invariant localizations correspond to consistently accurate interpreta-
tions.

If the results deviate from this expected outcome, what can be inferred about the
reliability of the neural network? The neural network can exhibit behaviors that are not
fully accounted for by the MCD method:

• The network may produce similar heatmaps but different classifications;

• The network may generate differing heatmaps, yet the classification remains the
same;

• The heatmap produced by the neural network with all neurons active may result
in an incorrect classification, but applying the MCD method consistently yields
correct classifications;

• Conversely, the heatmap produced by the neural network with all neurons active
may yield a correct classification, but this classification may not always be main-
tained when the MCD method is applied.

The use of the MCD method opens up a range of hypotheses that must be examined
and analyzed to understand the variability and uncertainty of the most important features
extracted by the neural network.

One certainty should be acknowledged: if the heatmaps generated by the network,
both with all neurons active and with a subset of neurons deactivated in turn, are similar
to one another, then the localization phase is robust. This is affirmed by the MCD
method and is not questioned in this thesis project. If all heatmaps were identical and the
variability of each pixel was calculated, this variability would be zero; thus, the features
identified as most important by the network would have zero variability. However, it
is important to note that the actual value of the feature at each pixel is not known;
only whether the feature at each pixel is important or not for the neural network can be
determined. Therefore, when attempting to calculate the variability of the features, one
is actually evaluating whether the heatmaps provided by the network exhibit variability.

Suppose the heatmaps generated by the neural network differ from one another, but
the classification remains accurate. In this case, the network's interpretation would be
robust: deactivating neurons in a neural network is analogous to removing a tree from
a mountain landscape photo, and if the response continues to be "mountain landscape",
the network is robust in its predictions. If one were to calculate the pixel-level variability
in this scenario, a variability map would be obtained, corresponding to the variability
of each feature computed by the network, not just the features used for classification.
Given varying localizations, how could one calculate the variability of the most important
features? In this case, it is reasonable to assume that the heatmaps provided could
simultaneously be both correct and incorrect. This consideration led to the development
of ReP method which stands for re-evaluating Pearson Correlation Coefficient.

ReP method was designed to manipulate heatmaps and their associated softmax val-
ues to identify the spatial region that appears most consistently across the heatmaps. If
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a spatial region is always present, it indicates that different features calculated in the
same location continue to be decisive for classification. And what about the spatial re-
gions that are not consistent? It cannot be definitively stated that these regions are
not critical for classification; therefore, they cannot simply be discarded from the image.
Any information that contributed to classification is "hidden" in the heatmaps and their
corresponding predictions.

By averaging all the heatmaps pixel by pixel, a heatmap is obtained that contains
all the most important spatial regions, including the common area. This first step is
schemed in Fig. 2.7

Figure 2.7. This is a scheme of the first step of the ReP method. All the 10 MCD
heatmaps and the baseline heatmap, which is the one provided when the network has all
its neuron activated, are averaged.

To highlight this region, cumulative averaging is used. In cumulative averaging, the
earlier elements carry less weight than the later ones. To extract the common spatial
region, the heatmaps that are least similar to the average are averaged first, followed
by those that are more similar. The Pearson Correlation Coefficient (PCC) is used as
the indicator to determine the similarity between two images. The PCC is a correlation
coefficient that measures the linear relationship between two sets of data. The closer the
PCC value is to 1, the more similar the two images are; the closer the PCC value is to
zero, the more different the images are. In this method, the PCC is calculated between
the average heatmap and all the original heatmaps; the heatmap with the lowest value
is averaged first. The PCC is continuously recalculated between the cumulative average
being constructed and the remaining original heatmaps, with the heatmap possessing the
lowest PCC value being averaged first.

The method also manipulates the softmax values, which are treated in the same
manner as the heatmaps, following the averaging order of the corresponding images. The
initial step is the same as the heatmaps one and is schemed in Fig. 2.8 At the end of this
process, a heatmap is obtained that represents the spatial region consistently decisive for
classification, along with its associated softmax.

The method developed seeks to identify the smallest common area across all the
heatmaps. This approach is inspired by feature selection techniques used in ML: such
methods aim to identify the smallest number of salient features that allow for accurate
classification while maintaining the same informational content. At the conclusion of the
ReP method process, a heatmap with the smallest common activation region is obtained.

An additional hypothesis was used during the development of the method: a network
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Figure 2.8. This is a scheme of the first step of the ReP method. All the 10 MCD
softmax and the baseline softmax, which is the one provided when the network has
all its neuron activated, are averaged.

with all neurons active that correctly classifies an image will likely continue to classify
it correctly even when the MCD method deactivates some neurons. This hypothesis was
incorporated into ReP method following an analysis of the available data. The same
hypothesis applies to misclassified images: if the neural network with all neurons active
misclassifies an image, it will likely continue to do so when the MCD method is applied.

ReP method treats correctly classified images differently from misclassified ones: for
the former, the PCC is sorted in ascending order, so the heatmaps most different from
the average are averaged first; for the latter, the PCC is sorted in descending order, so
the heatmaps most different from the average are averaged last.

Is the PCC an optimal indicator capable of correlating correct/incorrect image pre-
dictions? Can a PCC threshold be identified? The answer is negative, and the reason
is straightforward: if the PCC alone could discriminate between a heatmap associated
with the correct class and one associated with the wrong class, the heatmaps would have
different localizations, and the network would misclassify due to a localization issue. It
cannot be assumed with certainty that the network consistently errs in the localization
phase; it may also have issues during the interpretation phase, specifically with the rules
learned during the training and validation stages.

This brings us to the third condition utilized by the method: the necessity of having
ground truth (GT), the correct class for each image. GT is incorporated into the PCC
calculation during heatmap manipulation as follows: always using the PCC order as pre-
viously described, all heatmaps classified as GT are always averaged last. This approach
"cheats" by constructing heatmaps that more closely resemble those of correctly classi-
fied images, ensuring that the information leading to correct classification is preserved.
Heatmaps associated with incorrect classifications are also averaged, as the network's
performance depends on these images as well, and it is essential to determine in which
phase the network makes errors. This third condition is based on the fact that the neural
network may produce similar heatmaps, but only some of them may correspond to correct
classifications. Fig. 2.9 presents the schematic of the ReP method, illustrating how the
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cumulative average heatmap is constructed using the PCC and the GT class.

Figure 2.9. This is a scheme of the construction of the cumulative average heatmap by
the ReP method. In this scheme the green heatmaps are the ones labelled with the GT
class, the red heatmaps are the ones with a label different from the GT class. At first
the PCC is evaluated between the average heatmap and the 11 original heatmaps. The
PCC is sorted given the order described in this paragraph. Whatever the order, the
first heatmaps that are averaged are the one whitouth the GT label, so the red ones.
At a certian point only the green heatmaps remain, but the process is not finished yet.
After the last heatmap is averaged the cumulative average heatmaps is provided. The
same reasoning is applied to softmax values.

Fig. 2.10 refers to image p(721), which belongs to the pituitary tumor class. The im-
age is correctly classified by the neural network, even when the MCD method is applied.
The two heatmaps in the first row are generated by the neural network. Although the
image is consistently classified correctly, the heatmaps provided are not identical. The
heatmap provided by the ReP method is the one on the bottom right, while the original
p(721) image is shown on the bottom left.
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Figure 2.10. This is the image p(721) and belongs to the pituitary tumor class. In the first
row two of the 11 generated heatamps are presented. Even though the image is consistently
correctly classified, the heatmaps privided are not the same. The most representative
heatmaps provided by the ReP method is the one at the bottom right, on the bottom left
there is the original p(721) image.

2.5.1 Variants of ReP method

As described in Section 2.5, the ReP method is developed based on three hypotheses:

• The method provides a heatmap representing the smallest area common to all the
original heatmaps;

• The classification obtained when all the neurons in the neural network are active is
likely to remain consistent when the MCD method is applied, regardless of whether
the image is correctly or incorrectly classified;

• It is necessary to have the GT for each image to associate it during the calculation of
the PCC, in order to optimally aggregate the heatmaps in the cumulative average.

Based on these hypotheses, correctly classified and misclassified images are processed
differently to obtain the final heatmap and softmax. However, the ReP method is not
the only possible approach.
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The OtP method, an acronym for One-time PCC, is the second method developed.
In this method, the PCC is calculated only once between the average of the heatmaps
and the original heatmaps. The PCC values are subsequently ordered, following the
considerations outlined in Section 2.5, treating correctly classified images differently from
misclassified ones, and always averaging last the heatmaps where the prediction matches
the GT. This method also manipulates both heatmaps and softmax outputs. The OtP
and ReP methods differ in how the heatmaps are aggregated and can be applied to both
correctly classified and misclassified images.

Fig. 2.11 illustrates the PCC calculation performed by the OtP method. Fig. 2.12,
on the other hand, shows how the PCC values are ordered when the original image is
correctly classified and how the ordering appears when the GT class is also used. Both
figures represent the manipulation of heatmaps, but it should be noted that the same
manipulation is applied to the softmax outputs as well.

Figure 2.11. This is a scheme of how the PCC is evaluated just one time between the
average heatmap and the 11 original heatmaps. The green heatmaps are the labelled with
the GT class, the red ones have a different classification. In this scheme B stands for
baseline heatmap, while the numbers refer to the MCD heatmaps.

Fig. 2.13 provides an example of what happens when the original image is misclassified.
The figure illustrates the PCC calculation performed by the OtP method. In Fig. 2.14,
the change in the ordering of the PCC values is shown when it is known that the original
heatmap is misclassified, and how the ordering appears when the GT class is used. These
two figures only represent the manipulation of the heatmaps, but the same manipulation,
following the same ordering, is applied to the softmax outputs as well.

In Section 2.5, it was also discussed how all the heatmaps provided by a neural net-
work can simultaneously be considered both correct and incorrect. A new hypothesis
could be introduced: an image that is correctly classified provides a heatmap that is suf-
ficiently representative of the spatial region encompassing the most important features.
The heatmaps generated by the MCD method serve to adjust the initial heatmap, always
aiming to obtain a heatmap that represents the smallest common area. Based on this
new hypothesis, the OtP and ReP methods can be modified as follows:
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Figure 2.12. In this scheme the baseline heatmap is correclty classified, B has green colour.
Above each heatmap there a hypothetic PCC value. Because the original image is correclty
classified the PCC values are sorted in ascending order. Then all the heatmaps that are
classified as GT are putted as last in the averaging order list.

Figure 2.13. This is a scheme of how the PCC is evaluated just one time between the
average heatmap and the 11 original heatmaps. The green heatmaps are the labelled with
the GT class, the red ones have a different classification. In this scheme B stands for
baseline heatmap, while the numbers refer to the MCD heatmaps.

• The first step of pixel-by-pixel averaging of all the provided heatmaps is not per-
formed, as a base heatmap is already available from which to start building the
cumulative mean. This is the heatmap created when all the neurons in the neural
network are activated;

• The PCC is calculated between the original heatmap and those provided by the
MCD method, and ordered either in ascending or descending order, depending on
whether the image is correctly or incorrectly classified, continuing to average last
those heatmaps that present the GT class;

• The softmax outputs are manipulated exactly like their corresponding heatmaps,
following the aggregation order dictated by the PCC and the GT class.
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Figure 2.14. In this scheme the baseline heatmap is incorreclty classified, B has red colour.
Above each heatmap there a hypothetic PCC value. Because the original image is incor-
reclty classified the PCC values are sorted in descending order. Then all the heatmaps
that are classified as GT are putted as last in the averaging order list.

Both the OtP and ReP methods can be modified to adhere to this new hypothesis,
resulting in the OtP-A and ReP-A methods. The last letter of the acronym indicates that
the first step of pixel-by-pixel averaging of all the heatmaps is unnecessary. These two
new methods retain the difference in image aggregation: in the OtP-A method, the PCC
is calculated only once between the heatmap obtained when all the neurons in the neural
network are activated and the heatmaps provided when the MCD method is applied;
in the ReP-A method, the PCC continues to be recalculated between the cumulative
heatmap under construction and the remaining original heatmaps.

It is important to note that not all methods can be applied to all images:

• Given the three hypotheses outlined at the beginning of this paragraph, the OtP
and ReP methods can be applied to all images;

• Given the fourth new hypothesis, the OtP-A and ReP-A methods can only be
applied to images that are correctly classified by the neural network.

All the methods presented provide a heatmap that is more representative of the spatial
region used to classify the image, with the respective softmax associated. From the
heatmaps obtained by the various methods, a series of metrics can be calculated to
identify the variability of the most important features and the uncertainty. From the
softmax, it is possible to extract the uncertainty of the prediction.

Fig. 2.15 refers to image p(721), which belongs to the pituitary tumor class. The
image is correctly classified by the neural network, even when the MCD method is applied.
Because is a correclty classified image, ReP, OtP, ReP-A, and OtP-A methods can be
applied to the image. The final heatmaps are presented for each method. The heatmaps
are different from one another, especially in the shading and in the extent of the most
important areas.
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Figure 2.15. These are the ReP, OtP, ReP-A, and OtP-A heatmaps of the image p(721)
which belongs to the pituitary tumor class. All the four methods can be applied because
the image is correclty classified by the network. These heatmaps difference in shading
and in the extent of the most important areas. On the top left the heatmap provided
by the method ReP, on the top right the heatmap provided by the method OtP, on
the bottom left the heatmap provided by the method ReP-A, on the bottom right the
heatmap provided by the method OtP-A.

Fig. 2.16 refers to image gg(704), which belongs to the glioma tumor class. The
image is misclassified by the neural network, but is correclty classified seven times when
the MCD is applied. Because is a misclassified image, the only methods that can be
applied to analyse this image are ReP, and OtP. The final heatmaps are presented for
each method and over each heatmap there is the method that generates it. The heatmaps
are different from one another, especially in the shading and in the extent of the red and
green areas.

2.5.2 Variability and uncertainty on the heatmap

The heatmap obtained from each method displays the spatial region containing the most
important features used by the network to classify the images. This heatmap retains its
characteristic colors, ranging from blue to red.

From this heatmap, it is now possible to calculate the variability of the most important
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Figure 2.16. This is the image gg(704) which belongs to the glioma tumor class.
Because it is a misclassified image only ReP and OtP methods can be applied. On
the left there is the heatmap provided by the ReP method, on the right there is the
heatmap provided by the OtP method. These heatmaps difference in shading and in
the extent of the red and green areas

features and the associated uncertainty. This calculation can now be performed because
the heatmap provided by the various methods accurately reflects the spatial region that
is consistently identified and utilized for image classification. As described in Section 2.5,
the most relevant area, depicted in red, represents the smallest common area across all
original heatmaps.

To calculate the variability of the most important features, the original heatmaps are
first stacked, and then pixel-by-pixel variability is computed, resulting in a variability
map. This variability map represents the variability of all the features calculated by the
network. The map is then multiplied by the heatmap provided by the various methods.
Since the heatmap is normalized, with values ranging from 0 to 1, the variability of
pixels that fall within a significant area - where the red area contains pixels with values
approaching 1 - is accentuated, while the variability of pixels in an insignificant area,
which possess values approaching 0, is diminished. At the end of the multiplication, a map
is obtained that allows one to observe how variable the features present in the heatmap
generated by the method are. Furthermore, the map also includes the variability of the
most important features.

To isolate solely the variability of the most important features, it is necessary to find
a method that identifies this variable region. To isolate this region, the 95% confidence
interval was calculated, with its mathematical formulation presented in Equation (2.3):

µ − 1.96σ

µ + 1.96σ
(2.3)

where µ and σ represent the mean and standard deviation of the values that the pixels
belonging to the map, obtained by multiplying the heatmap from the methods with the
variability map of all features, assume. The variable pixels that belong to the most
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significant region are those that do not fall within the upper limit of the 95% confidence
interval, specifically, those pixels with values exceeding µ + 1.96σ.

At the end of this operation, the variable region of the most important features is
obtained. As mentioned in Section 2.5, the calculation of the variability of only the
most important features translates into a problem of variability regarding the region
encompassing those features used by the network for classification.

The GT, if the network classifies an image as such, is also utilized in this calculation,
allowing for the identification of two regions of variability: one dependent on the GT
class and one dependent on all classes that are not GT. If the GT is never present, or if
the network never misclassifies, only one area of variability is identified instead of two.

All original heatmaps classified as GT are separated from all other heatmaps. Once
these two distinct groups are obtained, and the original heatmaps are stacked, the pro-
cedure continues as outlined above:

• The pixel-by-pixel variability of each stack of heatmaps is calculated, resulting in a
variability map for the GT and a variability map for the misclassified images;

• Each variability map is multiplied by the heatmap provided by the method, iden-
tifying the variable regions;

• Given the resulting maps from the multiplication, the 95% confidence intervals are
calculated;

• After identifying the upper limits, the variable regions of the most important fea-
tures are obtained, yielding a contribution derived from the GT and a contribution
derived from misclassification.

Since the heatmap provided by the methods is constructed using both those resulting
from correct classifications and those from misclassifications, it is reasonable to identify
which areas of the most significant region derive from the GT and which stem from the
misclassifications.

Fig. 2.17 refers to image gg(706), which belongs to the glioma tumor class. The image
is correctly classified by the neural network, but misclassified two times when the MCD
method is applied. The heatmap used to evaluate the variability areas is the one provided
by the ReP method. On the left column the two variability maps are evaluated, one for
the misclassified images (fc), and one for the correctly classified images (tc). On the right
column the multiplication between the variability heatmaps and the ReP heatmap.

Uncertainty is calculated in the following manner. Given the heatmap provided by
the methods, the pixel-by-pixel squared difference with the original heatmaps is com-
puted. This results in as many difference maps as there are original heatmaps. The
Root Mean Square Error (RMSE) is calculated for each pixel of the difference map using
Equation (2.4):
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Figure 2.17. This is the image gg(706) which belongs to the glioma tumor class. The
image is correctly classified by the network, but misclassified two times when the MCD
method is applied. On the left columns there are the two variability maps, on the top
left corner there is the variability map for the misclassified images (fc), on the bottom
left corner there is the variability map for the correctly classified images (tc). Each
variability map is the multiplied with the heatmap provided by the method, here the
ReP heatmap is used.

RMSE =

√︄∑︁
S b[m, n, s]

S
(2.4)

where b[m, n, s] represents the various difference maps positioned at different levels s.
All values that the pixels assume at the various coordinates [m, n] are summed, and then
divided by the number of heatmaps present S.

Once an RMSE map is obtained, it is multiplied by the heatmap provided by the
methods, thereby better highlighting which areas of the features are affected by error. To
determine which areas impact the most important features, a 95% confidence interval is
calculated. All pixels exceeding the value identified by the upper bound of this interval
are those that delineate the spatial regions of the most important features affected by
error.

Since the cumulative heatmap provided by the various methods is constructed using
both correctly classified and misclassified heatmaps, it is reasonable to indicate which
areas of this heatmap do not correspond to the original areas. The calculation of the
RMSE allows for the identification of these erroneous areas, treating them as areas of
uncertainty. It is important to emphasize that in this case, uncertainty pertains to the
process of constructing the heatmap. Without knowing the features utilized for classifi-
cation or the values they assume, it is not possible to extrapolate the uncertainty of the
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features from the heatmap. One might think that the green area present in the heatmaps
could represent some form of feature uncertainty or a region of uncertainty; however, the
green region should only be treated as an important region for the network, albeit not
sufficiently significant to determine the classification of the image.

Once again, the GT is utilized to identify two contributions of uncertainty: one de-
pendent on the GT class and one dependent on misclassification. If the GT is always
present, or if the network consistently misclassifies, only one area is identified instead
of two. When the network correctly classifies and misclassifies an image, all heatmaps
reporting the GT classification are separated from the others and stacked. Once these
two groups are obtained, the procedure continues as follows:

• The squared difference between the method's heatmap and the original heatmaps
is calculated, resulting in difference maps for the GT class and difference maps for
the misclassified images;

• The pixel-by-pixel RMSE is calculated for each stack of maps, yielding two RMSE
maps;

• Each RMSE map is multiplied by the heatmap from the method to highlight the
areas affected by error;

• Given the resulting maps from the multiplication, the 95% confidence intervals are
calculated;

• After identifying the upper limits, the regions affected by error in the most impor-
tant features are obtained, yielding contributions derived from the GT and from
misclassification.

Fig. 2.18 refers to image gg(706), which belongs to the glioma tumor class. The
image is correctly classified by the neural network, but misclassified two times when the
MCD method is applied. The heatmap used to evaluate the uncertainty areas is the one
provided by the ReP method. On the left column the two RMSE maps are evaluated,
one for the misclassified images (fc), and one for the correctly classified images (tc). On
the right column the multiplication between the RMSE heatmaps and the ReP heatmap.

Fig. 2.19 refers to image gg(706), which belongs to the glioma tumor class. The image
is correctly classified by the neural network, but misclassified two times when the MCD
method is applied. The heatmap used to evaluate the uncertainty areas is the one provided
by the ReP method. On the left there is the final uncertainty map. The blue areas
represent the contributions that the misclassified heatmaps bring to the ReP heatmap,
the green areas represent the contributions from the correctly classified heatmaps, and
the yellow areas show the overlap between these two contributions. These areas indicate
how different the ReP heatmap is from the original heatmaps. On the right, the final
variance map is shown. The blue areas identify the contributions from the misclassified
heatmaps, the green areas show the contributions from the correctly classified heatmaps,
and the yellow areas indicate the overlap between the two contributions. These areas
highlight where the most important features in the ReP heatmap are more variable.
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Figure 2.18. This is the image gg(706) which belongs to the glioma tumor class. The
image is correctly classified by the network, but misclassified two times when the MCD
method is applied. On the left columns there are the two RMSE maps, on the top left
corner there is the RMSE map for the misclassified images (fc), on the bottom left corner
there is the RMSE map for the correctly classified images (tc). Each RMSE map is the
multiplied with the heatmap provided by the method, here the ReP heatmap is used.

Thus, from the heatmap generated by the methods, it is possible to identify the vari-
ability of the most important features, pinpointing which areas of the region presented
in red are more variable. If classifications different from the GT are present, two contri-
butions of variability can be identified: one stemming from correctly classified heatmaps
and one from misclassified heatmaps. Another contribution that can be identified is that
of uncertainty. Uncertainty indicates, within the red area of greater importance, spatial
regions that differ from the original heatmaps. These areas signify uncertainty regard-
ing the construction of the method's heatmap, rather than the uncertainty of the most
relevant features.

2.5.3 Prediction Uncertainty

The uncertainty of the most important features is not identifiable on the heatmaps;
however, it is reflected in the classification of images. The softmax is a vector that
indicates the probabilities of the image belonging to various classes. In this study, the
classes are four: no tumor, pituitary tumor, meningioma tumor, and glioma tumor.
Therefore, the softmax contains four probabilities that sum to 1. From the softmax, it is
possible to identify the uncertainty of the prediction by calculating the margin.

The margin is the difference between the probability assigned to a certain class and the
probability assigned to another class. A wide margin indicates that the network is very
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Figure 2.19. This is the image gg(706) which belongs to the glioma tumor class. The image
is correctly classified by the network, but misclassified two times when the MCD method
is applied. The heatmap used to evaluate the uncertainty areas is the one provided by the
ReP method. On the left there is the final uncertainty map. The blue areas represent the
contributions that the misclassified heatmaps bring to the ReP heatmap, the green areas
represent the contributions from the correctly classified heatmaps, and the yellow areas
show the overlap between these two contributions. On the right, the final variance map
is shown. The blue areas identify the contributions from the misclassified heatmaps, the
green areas show the contributions from the correctly classified heatmaps, and the yellow
areas indicate the overlap between the two contributions.

confident in the provided response, while a narrow margin indicates that the network
is not very certain about the classification made. Depending on whether the image is
correctly classified or not by the network, the margin is calculated as follows:

• For a correctly classified image, the margin is calculated between the highest prob-
ability, corresponding to the GT class, and the second most probable class, which
corresponds to an incorrect class;

• For a misclassified image, the margin is calculated between the highest probability,
which does not correspond to the GT class, and the probability associated with the
GT class.

The original margin is calculated using the softmax provided by the network when
all neurons are activated, following the aforementioned distinction between correct and
incorrect classifications. Subsequently, the margin is calculated using the softmax com-
puted by the various methods, which is associated with the produced heatmap. Since the
heatmap provided by the methods offers the most accurate localization of the most impor-
tant features, it is appropriate to use the associated softmax to quantify the uncertainty
of the prediction.
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Fig. 2.20 provides an example of margin calculation. The softmax output is presented
in the form of a graph and shows the four classes into which an image can be classified.
The example focuses on the margin calculation for a correctly classified image. The
margin is always calculated between the probability of GT class and the second most
probable class within the softmax.

Figure 2.20. This is an example of margin calculation. The softmax output is presented
in the form of a graph and shows the four classes into which an image can be classified.
The example focuses on the margin calculation for a correctly classified image. The margin
is always calculated between the probability of the GT class and the second most probable
class within the softmax. The sum of all probabilities is always 1.

Fig. 2.21 provides an example of margin calculation. The softmax output is presented
in the form of a graph and shows the four classes into which an image can be classified.
The example focuses on the margin calculation for a misclassified classified image. The
original margin is calculated between the probability of the wrong predicted class and
the probability of the GT class.

The heatmap created may exhibit a more robust prediction, indicating a wider margin
than the original, or a more uncertain prediction, indicating a narrower margin than the
original.
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Figure 2.21. This is an example of margin calculation. The softmax output is presented
in the form of a graph and shows the four classes into which an image can be classified. The
example focuses on the margin calculation for a misclassified image. The original margin
is calculated between the probability of the probability of the wrong predicted class and
the probability of the GT class. The sum of all probabilities is always 1.
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Chapter 3

Results

By applying the ReP, OtP, ReP-A, and OtP-A methods described in Section 2.5 and
Section 2.5.1, identifying variability and uncertainty areas on the heatmaps as illustrated
in Section 2.5.2, and calculating prediction uncertainty as reported in Section 2.5.3, the
images in the validation set are analyzed.

As presented in Section 2.1.1, the validation set consists of 433 images divided into
four classes: no tumor, pituitary tumor, meningioma tumor, and glioma tumor. For
each image, the heatmap generated by the network with all neurons activated and the
heatmaps derived from the MCD method are saved in NPZ format; in total, the validation
set contains 4,763 heatmaps.

The images in the validation set were classified by the XCiT neural network four times:
two different XAI methods were applied to the neural network, and each XAI method
was tested by adjusting the dropout probability from 0.001 to 0.005. In total, Score-CAM
and Grad-CAM produced 9,526 datasets each, including heatmaps and softmax outputs
for investigation.

The first objective of this Master's Thesis is to determine which of the four proposed
methods demonstrates the best performance by specifying:

• which method produces the most optimal heatmap construction, resulting in re-
duced variability and uncertainty areas;

• which method results in the lowest prediction uncertainty on the softmax outputs.

Once the best method is identified, the second objective of the thesis is to determine
which XAI method is most compatible with the XCiT neural network and which dropout
rate between 0.001 and 0.005 is optimal.

3.1 Flags

In this analysis, the term flag is introduced to differentiate the behavior of the images.
Flags are assigned to both correctly classified and misclassified images according to the
following criteria:
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• A correctly classified image that remains correctly classified after applying the MCD
method is assigned flag 0;

• A correctly classified image that is misclassified at least once by the MCD method
is assigned flag 1;

• A misclassified image that remains misclassified after applying the MCD method is
assigned flag 0;

• A misclassified image that is correctly classified at least once by the MCD method
is assigned flag 1.

Images assigned flag 0 indicate a single contribution of variability and a single con-
tribution of uncertainty on the heatmap. Images assigned flag 1 are characterized by
two contributions, one from the GT and one from misclassification, both for variability
and uncertainty. Additionally, it is possible to quantify the overlap between the two
contributions of variability and between the two contributions of uncertainty, as well
as to determine the overlap that may occur between areas of variability and areas of
uncertainty.

Flags are initially assigned by the methods to each image in the validation set prior
to the cumulative heatmap and softmax construction phases. It is not possible for an
image, whether correctly classified or not, to be without a flag. The flags are subsequently
reviewed and used to verify the final classification of the applied methods. Regardless
of the flag, a correctly classified image must remain so, meaning that the GT class must
have the highest probability in the methods’ softmax. A misclassified image with flag 1
may experience a correction in the classification performed by the neural network, with
the GT class attaining the highest probability in the final softmax. Given the design
of the heatmap and softmax manipulation, it is reasonable to expect this case to occur,
depending on the weight that correctly classified MCD contributions have in the final
heatmap and softmax.

Based on the margin definition reported in Section 2.5.3, the following hypotheses are
made:

• A correctly classified image with flag 0 should exhibit a larger margin than the
original, indicating lower prediction uncertainty;

• A misclassified image with flag 1 should exhibit a larger margin than the original,
meaning lower prediction uncertainty.

These hypotheses are consistent with the flag definition: if the MCD method classifies
the image into the GT class, it is reasonable to assume that the final heatmap constructed
by the methods contains more information than the one provided by the network when all
neurons are activated, and that the softmax produced by the method will have a larger
margin and lower prediction uncertainty.

A similar reasoning can be applied to correctly classified images with flag 1: in this
case, it can be assumed that the heatmap provided by the methods is more influenced
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by the contribution from misclassified examples, and that the final prediction will have a
smaller margin than the original, leading to higher prediction uncertainty.

Flag 0 for a misclassified image identifies a particular set of images. The network
and the MCD method consistently misclassify the image, so the softmax provided by
the methods predicts an incorrect class as the final image classification. However, it is
possible that each original softmax has high prediction uncertainty, with the second most
probable prediction always being the GT class. The classification verified after applying
the methods is as follows: a misclassified image with flag 0 is an image that remains
misclassified even when the MCD method is applied, with the softmax from the methods
positioning the GT class as the second most probable class. Given the description of
this image set's classification, it is necessary to verify whether the final heatmap, which
remains misclassified, has high prediction uncertainty, meaning that the margin between
the most probable incorrect class and the GT class, the second most probable, decreases.

Based on the flag description, the following schematic of potential classification and
prediction uncertainty scenarios is presented:

• A correctly classified image with flag 0 continues to have the GT class in the meth-
ods’ final prediction, while the margins may increase, reducing prediction uncer-
tainty;

• A correctly classified image with flag 1 continues to have the GT class in the meth-
ods’ final prediction, while the margins may decrease, increasing prediction uncer-
tainty;

• A misclassified image with flag 1 may be classified by the methods into the GT class,
with margins exceeding the original, resulting in lower prediction uncertainty;

• A misclassified image with flag 0 remains misclassified, but the second most probable
class may be the GT class, while the margins may decrease, increasing prediction
uncertainty.

After applying each method, the flags are re-evaluated to verify whether they corre-
spond to the respective classification as described above. It is possible for the methods to
make mistakes. When the new classification does not fall into the identified scenarios, the
method is considered to have made an error, and the analysis of heatmaps and softmax
for these images is not performed.

3.2 First objective

With the flags introduced in Section 3.1, the images from the validation set are analyzed
to identify the most optimal method for manipulating heatmaps and softmax.

All the images in the validation set are divided into correctly classified and incor-
rectly classified categories by reviewing the predictions of the XCiT network for each
image. The ReP, OtP, ReP-A, and OtP-A methods manipulate the heatmaps and soft-
max, distinguishing between correctly classified and misclassified images, as outlined in
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Section 2.5 and Section 2.5.1. Once the heatmaps and their corresponding softmax out-
puts are obtained, the methods’ new classifications are generated by reapplying the flags
for each image according to the rules established in Section 3.1. Only the images that
match the flag-based classification are analyzed, with variability and uncertainty areas
on the heatmaps quantified, and the final prediction uncertainty compared to the original
uncertainty of the neural network.

The number of errors made by the methods, the behavior of the margins, and the
quantification of the areas are all data used to determine which method delivers the
best performance. Once the optimal method is identified, it is also possible to observe
preliminary trends in the performance of the XAI methods and determine which dropout
probability is most suitable.

The results are presented by indicating the XCiT network's prediction, the applied
XAI method, and the corresponding dropout probability.

3.2.1 Misclassified Grad-CAM 0.005

Table 3.1 and Table 3.2 display in their headers the number of misclassified images iden-
tified by the neural network and the method under analysis. The analysis is divided into
images that carry a flag 0 and those that carry a flag 1. As described in Section 3.1, a
misclassified image with flag 1 may have the GT class as the new prediction after applying
the method, while a misclassified image with flag 0 may have the GT class as the second
most probable class within the method's softmax. All images that do not align with
the classification of their respective flags are considered errors, and their data regarding
heatmaps and softmax are not included in the table.

Subsequently, the number of images that conform to the margin behavior is presented:
a misclassified image with flag 1 should have a larger margin than the original, while a
misclassified image with flag 0 should have a smaller margin than the original.

The heatmaps are analyzed, and the results are presented under the following cate-
gories:

• unFC: Uncertainty Area FC, the uncertainty area for heatmaps not classified in the
GT class. This area is identified for both flag 1 and flag 0 images;

• unTC: Uncertainty Area TC, the uncertainty area for heatmaps classified in the
GT class. This area is identified only for flag 1 images;

• varFC: Variance Area FC, the variance area for heatmaps not classified in the GT
class. This area is identified for both flag 1 and flag 0 images;

• varTC: Variance Area TC, the variance area for heatmaps classified in the GT class.
This area is identified only for flag 1 images;

• un ov: Uncertainty Overlap, the overlap area between the unFC and unTC areas.
This overlap is identified only for flag 1 images;

• var ov: Variance Overlap, the overlap area between the varFC and varTC areas.
This overlap is identified only for flag 1 images;
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• t ov: Total Overlap, the overlap area between variance and uncertainty areas. This
area is identified for both flag 1 and flag 0 images.

In cases where a category in the table cannot be filled, the fields "unTC", "varTC",
"un ov", and "var ov" cannot be completed for flag 0 images, and the symbol / appears
in the table. The area sizes are reported as the number of pixels.

25 misclassified images
ReP

flag 1 flag 0
number 7 number 9

margin gain 3 margin decrease 8
unFC 13386 unFC 11157
unTC 12567 / /
varFC 9901 varFC 9753
varTC 9767 / /
un ov 7300 / /
var ov 3571 / /
t ov 14406 t ov 8270

Table 3.1. Analysis of ReP method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

In Table 3.1, it can be observed that the ReP method makes 9 errors, but is able to
correct the prediction for 7 images, while 9 images have the GT class as the second most
probable class in the method's softmax. Only 3 flag 1 images out of 7 achieve a larger
margin than the original, while 8 flag 0 images out of 9 obtain a smaller margin than the
original. Given that the total number of pixels per image is 262,144, as the dimensions
are 512×512, the variability, uncertainty, and overlap areas are very small. The largest
area reported in Table 3.1 is "t ov = 14,406", which corresponds to 5% of the total image
area.

In Table 3.2, it can be observed that the OtP method makes 9 errors, but is able to
correct the prediction for 7 images, while 9 images have the GT class as the second most
probable class in the method's softmax. Only 3 flag 1 images out of 7 achieve a larger
margin than the original, while 8 flag 0 images out of 9 obtain a smaller margin than
the original. Given the total number of pixels per image, the variability, uncertainty, and
overlap areas are very small. The largest area reported in Table 3.2 is "t ov = 14,450",
which corresponds to 6% of the total image area.

The ReP and OtP methods are compared, and the results are shown in Table 3.3.
The table header continues to indicate the number of images misclassified by the neural
network. It is verified whether the methods identify the same flag 0 and flag 1 images.
Only the images common to both methods are considered. The margins are analyzed
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25 misclassified images
OtP

flag 1 flag 0
number 7 number 9

margin gain 3 margin decrease 8
unFC 13457 unFC 11209
unTC 12523 / /
varFC 9941 varFR 9791
varTC 9792 / /
un ov 7321 / /
var ov 3592 / /
t ov 14450 t ov 8257

Table 3.2. Analysis of OtP method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

as follows: the method with the largest number of flag 0 images with a smaller margin
and the largest number of flag 1 images with a larger margin is identified. The areas are
compared, and the method with the smallest variability, uncertainty, and overlap areas
on the heatmaps is determined.

Table 3.3 shows how the ReP and OtP methods identify the same flag 0 and flag 1
images. Both methods have the same number of errors, which is 9. The ReP method
exhibits the largest margins for flag 1 images and the smallest margins for flag 0 images.
Only the cells highlighted in green, which represent the number of images meeting the
condition "ReP < OtP", are in favor of the ReP method. Only 4 out of 10 areas favor
the ReP method.

The Grad-CAM 0.005 images show low prediction uncertainty when analyzed by the
ReP method; however, this method generates heatmaps with larger variability and un-
certainty areas compared to the heatmaps generated by the OtP method.

3.2.2 Misclassified Grad-CAM 0.001

Table 3.4 and Table 3.5 present in their headers the number of misclassified images
identified by the neural network and the method analyzed. The analysis is divided into
flag 0 and flag 1 images, reporting only the images that comply with the classification of
each flag. For each flag, the number of images that reflect the behavior of the margins is
indicated, along with the size of the various identifiable areas on the heatmaps, measured
in pixels.

In Table 3.4, it can be observed that the ReP method makes 5 errors but is able to
correct the prediction for 4 images, while 16 images have the GT class as the second most
probable class in the method's softmax. Only 1 flag 1 image out of 4 manages to achieve a
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25 misclassified images
share flag 0 9
share flag 1 7

margin decrease ReP < OtP 6
margin gain ReP > OtP 4

flag 1 - ReP < OtP
unFC 1
unTC 1
varFC 3
varTC 6
un ov 2
var ov 5
t ov 4

flag 0 - ReP < OtP
unFC 5
varFC 4
t ov 2

Table 3.3. Comparison between OtP and ReP method. The number of shared images,
the method that has the best margins for each flag are reported. Each area is confronted
and the number of images that verify the condition "ReP < OtP" is reported. Just the
green entries are those in favor of the ReP method.

25 misclassified images
ReP

flag 1 flag 0
number 4 number 16

margin gain 1 margin decrease 12
unFC 13763 unFC 11406
unTC 15027 / /
varFC 9484 varFR 9348
varTC 9513 / /
un ov 7182 / /
var ov 2307 / /
t ov 14551 t ov 8068

Table 3.4. Analysis of ReP method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.
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wider margin than the original, while 12 flag 0 images out of 16 obtain a narrower margin
than the original. Knowing the total number of pixels, the variability, uncertainty, and
overlap areas are found to be very small. The largest area shown in Table 3.4 is "unTC
= 15,027", which corresponds to 6% of the image's total area.

25 misclassified images
OtP

flag 1 flag 0
number 4 number 16

margin gain 1 margin decrease 10
unFC 13419 unFC 11292
unTC 14738 / /
varFC 9481 varFR 9249
varTC 9579 / /
un ov 6989 / /
var ov 2334 / /
t ov 14361 t ov 7833

Table 3.5. Analysis of OtP method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

In Table 3.5, it is observed that the OtP method makes 5 errors but is able to correct
the predictions for 4 images, while 16 images have the GT class as the second most
probable class in the method's softmax. Only 1 flag 1 image out of 4 manages to achieve
a wider margin than the original, whereas 10 flag 0 images out of 16 obtain a narrower
margin than the original. Given the total number of pixels in the image, the variability,
uncertainty, and overlap areas are found to be very small. The largest area presented in
Table 3.5 is "unTC = 14,738", which corresponds to 6% of the image's total area.

The ReP and OtP methods are compared, and the results are reported in Table 3.6.
The table header continues to indicate the number of images misclassified by the neural
network. It is verified whether the methods identify the same flag 0 and flag 1 images.
Only the images common to both methods are taken into consideration. The margins
are analyzed to identify which method has the highest number of flag 0 images with a
narrower margin and the highest number of flag 1 images with a wider margin. The areas
are compared to identify the method that has smaller areas of variability, uncertainty,
and overlap on the heatmaps.

Table 3.6 illustrates how the ReP and OtP methods identify the same flag 0 and flag
1 images. Both methods exhibit the same number of errors, which is 5. The OtP method
possesses wider margins for flag 1 images; however, no method demonstrates narrower
margins for flag 0 images. Only the cells highlighted in green, which correspond to the
number of images that satisfy the condition "ReP < OtP", are in favor of the ReP method.
In this case, the two methods identify an equal number of flag 0 and flag 1 images. All
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25 misclassified images
share flag 0 16
share flag 1 4

margin decrease OtP = ReP 8
margin gain OtP > ReP 3

flag 1 - ReP < OtP
unFC 2
unTC 1
varFC 1
varTC 3
un ov 3
var ov 4
t ov 2

flag 0 - ReP < OtP
unFC 7
varFC 8
t ov 3

Table 3.6. Comparison between OtP and ReP method. The number of shared images, the
method that has the best margins for each flag are reported. Each area is confronted and
the number of images that verify the condition "ReP < OtP" is reported. Just the green
entries are those in favor of the ReP method, while the yellow entries are not decisive.

entries that report a number of images corresponding to "number of images flag/2" are
highlighted in yellow and are not considered for the final comparison. Of the remaining
7 areas, 3 areas favor the ReP method.

The Grad-CAM 0.001 flag 1 images exhibit lower prediction uncertainty when ana-
lyzed using the OtP method. Neither method appears optimal for analyzing the margins
of flag 0 images. The ReP method produces heatmaps that are more variable and uncer-
tain compared to those generated by the OtP method.

3.2.3 Misclassified Score-CAM 0.005

Tables 3.7 and 3.8 include in their headers the number of misclassified images identified
by the neural network and the method analyzed. The analysis is divided into flag 0 and
flag 1 images, reporting only those images that adhere to the classification of each flag.
For each flag, the number of images that reflect the behavior of the margins is presented,
along with the dimensions of the various areas identifiable on the heatmaps.

In Table 3.7, it can be observed that the ReP method incurs 7 errors but is able to
correct the predictions of 7 images, while 11 images possess the GT class as the second
most probable class in the softmax output of the method. Only 4 flag 1 images out of 7
manage to achieve a margin wider than the original, whereas 8 flag 0 images out of 11
obtain a margin smaller than the original. Considering the total number of pixels, the
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25 misclassified images
ReP

flag 1 flag 0
number 7 number 11

margin gain 4 margin decrease 8
unFC 15230 unFC 12793
unTC 16212 / /
varFC 14249 varFR 13688
varTC 14140 / /
un ov 7417 / /
var ov 4017 / /
t ov 18718 t ov 9118

Table 3.7. Analysis of ReP method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

areas of variability, uncertainty, and overlap are found to be very small. The largest area
reported in Table 3.7 is "t ov = 18,718", which corresponds to 7% of the total image area.

25 misclassified images
OtP

flag 1 flag 0
number 7 number 11

margin gain 4 margin decrease 10
unFC 15006 unFC 11963
unTC 16167 / /
varFC 14320 varFR 13418
varTC 14091 / /
un ov 7677 / /
var ov 3996 / /
t ov 18111 t ov 8584

Table 3.8. Analysis of OtP method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

In Table 3.8, it can be observed that the OtP method incurs 7 errors but is able to
correct the predictions of 7 images, while 11 images possess the GT class as the second
most probable class in the softmax output of the method. Only 4 flag 1 images out of
7 manage to achieve a margin wider than the original, whereas 10 flag 0 images out of
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11 obtain a margin smaller than the original. Considering the total number of pixels in
the image, the areas of variability, uncertainty, and overlap are found to be very small.
The largest area reported in Table 3.8 is "t ov = 18,111", which corresponds to 7% of the
total image area.

The ReP and OtP methods are compared, and the results are presented in Table 3.9.
The header of the table continues to indicate the number of images misclassified by the
neural network. It is also verified whether the methods identify the same flag 0 and flag
1 images. Only the images common to both methods are taken into consideration. The
margins are analyzed by identifying which method has the greater number of flag 0 images
with smaller margins and the greater number of flag 1 images with larger margins. The
areas are compared, and the method that has smaller areas of variability, uncertainty,
and overlap on the heatmaps is identified.

25 misclassified images
share flag 0 11
share flag 1 7

margin decrease ReP < OtP 6
margin gain ReP > OtP 5

flag 1 - ReP < OtP
unFC 3
unTC 3
varFC 5
varTC 1
un ov 5
var ov 2
t ov 1

flag 0 - ReP < OtP
unFC 2
varFC 3
t ov 0

Table 3.9. Comparison between OtP and ReP method. The number of shared images,
the method thas has the bes margins for each flag are reported. Each area is confronted
and the number of images that verify the condition "ReP < OtP" is reported. Just the
gree entries are those in favor of the ReP method.

Table 3.9 presents how the ReP and OtP methods identify the same flag 0 and flag 1
images. Both methods have the same number of errors, which amounts to 7. The ReP
method exhibits the smallest margins for flag 0 images and the largest margins for flag
1 images. Only the cells highlighted in green, which correspond to the number of images
satisfying the condition "ReP < OtP", favor the ReP method. Only 2 out of 10 areas
favor the ReP method.

The Score-CAM images at 0.005 exhibit low prediction uncertainty when analyzed by
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the ReP method; however, this method generates highly variable and uncertain heatmaps.

3.2.4 Misclassified Score-CAM 0.001 and discussion

Table 3.10 and Table 3.11 include in their headers the number of misclassifications iden-
tified by the neural network and the method analyzed. The analysis is divided into flag
0 and flag 1 images, presenting only the images that comply with the classification of
each flag. For each flag, the number of images that reflect the behavior of the margins is
reported, along with the size of the various areas identifiable on the heatmaps.

25 misclassified images
ReP

flag 1 flag 0
number 6 number 15

margin gain 2 margin decrease 13
unFC 15032 unFC 12728
unTC 14690 / /
varFC 12020 varFR 12585
varTC 10057 / /
un ov 7048 / /
var ov 2855 / /
t ov 16290 t ov 8445

Table 3.10. Analysis of ReP method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

In Table 3.10, it can be observed that the ReP method makes 4 errors but is able
to correct the predictions of 6 images, while 15 images have the GT class as the second
most probable class in the softmax of the method. Only 2 images with flag 1 out of 6
manage to achieve a margin wider than the original, whereas 13 images with flag 0 out
of 15 obtain a margin smaller than the original. Given the total number of pixels, the
areas of variability, uncertainty, and overlap are very small. The largest area reported in
Table 3.10 is "t ov = 16,290", which corresponds to 6% of the total image area.

In Table 3.11, it can be observed that the OtP method makes 4 errors but is able
to correct the predictions of 6 images, while 15 images have the GT class as the second
most probable class in the softmax of the method. Only 2 images with flag 1 out of 6
manage to achieve a margin wider than the original, whereas 12 images with flag 0 out
of 15 obtain a margin smaller than the original. Given the total number of pixels in the
image, the areas of variability, uncertainty, and overlap are very small. The largest area
reported in Table 3.11 is "t ov = 16,399", which corresponds to 6% of the total image
area.

The ReP and OtP methods are compared, and the results are presented in Table 3.12.
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25 misclassified images
OtP

flag 1 flag 0
number 6 number 15

margin gain 2 margin decrease 12
unFC 15228 unFC 12991
unTC 15045 / /
varFC 12013 varFR 12420
varTC 10198 / /
un ov 7672 / /
var ov 2876 / /
t ov 16399 t ov 8508

Table 3.11. Analysis of OtP method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

The table header continues to indicate the number of misclassified images identified by
the neural network. It is also verified whether the methods identify the same images with
flags 0 and 1. Only the images common to both methods are taken into consideration.
The margins are analyzed by identifying which method has the greater number of images
with flag 0 and smaller margins, as well as the greater number of images with flag 1 and
larger margins. The areas are compared, and the method that possesses the smallest
areas of variability, uncertainty, and overlap on the heatmaps is identified.

In Table 3.12, it can be observed that the ReP and OtP methods identify the same
images with flags 0 and 1. Both methods have the same number of errors, which amounts
to 4. The OtP method has smaller margins for images with flag 0; however, no method
shows larger margins for images with flag 1. Only the cells highlighted in green, which
correspond to the number of images that meet the condition "ReP < OtP", are in favor of
the ReP method. Since both methods identify an equal number of images with flag 1, all
entries in the table that report a number of images corresponding to "number of images
with flag/2" are highlighted in yellow and are not considered for the final comparison. Of
the remaining 7 areas, 4 areas favor the ReP method.

The Score-CAM 0.001 images with flag 0, when analyzed using the OtP method,
exhibit smaller margins than the originals. However, no method achieves low prediction
uncertainties for the images with flag 1. The ReP method is the one that provides more
robust and less uncertain heatmaps.

The ReP method appears to be the most optimal for analyzing the misclassified images
of the neural network. The image analysis method is capable of achieving better margin
behavior for both flags, although the Grad-CAM 0.001 data show that the OtP method
is more optimal. The Score-CAM 0.001 data are inconclusive regarding the margins: the
OtP method obtains a greater number of images with flag 0 and smaller margins, but
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25 misclassified images
share flag 0 15
share flag 1 6

margin decrease OtP < ReP 8
margin gain OtP = ReP 3

flag 1 - ReP < OtP
unFC 3
unTC 4
varFC 2
varTC 3
un ov 6
var ov 3
t ov 5

flag 0 - ReP < OtP
unFC 8
varFC 7
t ov 6

Table 3.12. Comparison between OtP and ReP method. The number of shared images,
the method that has the best margins for each flag are reported. Each area is confronted
and the number of images that verify the condition "ReP < OtP" is reported. Just the
green entries are those in favor of the ReP method, while the yellow entries are not decisive.

no method achieves larger margins for the images with flag 1. The heatmaps generated
by this method are also robust and exhibit low uncertainty, as demonstrated by the
Score-CAM 0.001 data. The Score-CAM 0.005 data are the only ones that favor the OtP
method, while the Grad-CAM 0.005 and Grad-CAM 0.001 data indicate that the OtP
method is optimal for only one additional entry compared to the ReP method.

By analyzing the correctly classified images, it is assessed whether this method remains
the most optimal for manipulating the heatmaps and the softmax.

3.2.5 Correctly classified Grad-CAM 0.005

Tables 3.13, 3.14, 3.16, and 3.17 include in their headers the number of correctly
classified images identified by the neural network and the analyzed method. The analysis
is divided into images with flag 0 and flag 1, reporting only the images that conform to
the classification of each flag. As stated in Section 3.1, the correctly classified images
with flag 1 and flag 0 continue to maintain their original predictions.

Below the header, the number of images reflecting the behavior of the margins for each
flag is reported: a correctly classified image with flag 0 may obtain a margin larger than
the original margin, while a correctly classified image with flag 1 may obtain a margin
smaller than the original. In the table, for flag 1, only cases where the final margin is
greater than the initial margin are reported. The analysis continues by displaying the
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sizes of the various identifiable areas on the heatmaps, measured in pixels.
Regarding correctly classified images, the fields referring to the areas "unFC", "varFC",

"un ov", and "var ov" cannot be filled for images that possess flag 0; in these cases, the
symbol / will be reported in the table.

408 correctly classified images
ReP

flag 1 flag 0
number 14 number 394

margin gain 3 margin gain 53
unFC 11996 / /
unTC 11992 unTC 12813
varFC 9667 / /
varTC 8985 varTC 10997
un ov 7350 / /
var ov 4495 / /
t ov 12836 t ov 9639

Table 3.13. Analysis of ReP method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

In Table 3.13, it can be observed that the ReP method does not commit any errors;
394 images have flag 0, while 14 images have flag 1. Only 3 images with flag 1 out of
14 and 53 images with flag 0 out of 394 are able to achieve a margin greater than the
original. Knowing the total number of pixels, the areas of variability, uncertainty, and
overlap are found to be very small. The largest area reported in Table 3.13 is "t ov =
12,836", which corresponds to 5% of the total area of the image.

In Table 3.14, it can be observed that the OtP method does not commit any errors;
394 images have flag 0, while 14 images have flag 1. Only 3 images with flag 1 out of 14
and 50 images with flag 0 out of 394 are able to achieve a better margin than the original.
Knowing the total number of pixels, the areas of variability, uncertainty, and overlap are
found to be very small. The largest area reported in Table 3.14 is "t ov = 12,998", which
corresponds to 5% of the total area of the image.

The ReP and OtP methods are compared, and the results are presented in Table 3.15.
The table header continues to report the number of correctly classified images identified
by the neural network. It is also verified whether the methods identify the same images
with flag 0 and flag 1. Only images common to both methods are taken into consideration.
The margins are analyzed by identifying which method has the greatest number of images
with flag 0 and flag 1 that have wider margins. The areas are compared, and the method
that possesses the smallest areas of variability, uncertainty, and overlap on the heatmaps
is identified.

In Table 3.15, it can be observed that the ReP and OtP methods identify the same
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408 correctly classified images
OtP

flag 1 flag 0
number 14 number 394

margin gain 3 margin gain 50
unFC 12397 / /
unTC 12160 unTC 12961
varFC 9743 / /
varTC 8997 varTC 11101
un ov 7586 / /
var ov 4478 / /
t ov 12998 t ov 9690

Table 3.14. Analysis of OtP method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

408 correctly classified images
share flag 0 394
share flag 1 14

margin gain OtP > ReP 215
margin gain OtP > ReP 11

flag 1 - ReP < OtP
unFC 10
unTC 7
varFC 9
varTC 8
un ov 9
var ov 6
t ov 9

flag 0 - ReP < OtP
unFC 211
varFC 223
t ov 201

Table 3.15. Comparison between OtP and ReP method. The number of shared images,
the method that has the best margins for each flag are reported. Each area is confronted
and the number of images that verify the condition "ReP < OtP" is reported. Just the
green entries are those in favor of the ReP method, while the yellow entries are not decisive.
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images with flag 0 and flag 1. Both methods do not commit any errors. The OtP
method has larger margins compared to the ReP method for both flags, resulting in
lower prediction uncertainty. Only the cells highlighted in green, corresponding to the
number of images that meet the condition "ReP < OtP", are in favor of the ReP method.
Since the two methods identify an equal number of images with flag 0 and flag 1, all
entries in the table that report a number of images corresponding to "number of images
flag/2" are highlighted in yellow and are not considered for the final comparison. Of the
9 remaining areas, 8 lean toward the ReP method.

The Grad-CAM 0.005 images exhibit low prediction uncertainty when analyzed using
the OtP method. However, it is the ReP method that generates more robust and less
variable heatmaps.

408 correctly classified images
ReP-A

flag 1 flag 0
number 10 number 394

margin gain 1 margin gain 52
unFC 11476 / /
unTC 12117 unTC 12744
varFC 9887 / /
varTC 9361 varTC 10841
un ov 6484 / /
var ov 4551 / /
sovrap 12917 sovrap 9543

Table 3.16. Analysis of ReP-A method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

In Table 3.16, it can be observed that the ReP-A method commits 4 errors, with 394
images having flag 0 and 10 images having flag 1. Only 1 image with flag 1 out of 10 and
52 images with flag 0 out of 394 achieve a better margin than the original. Knowing the
total number of pixels, the areas of variability, uncertainty, and overlap are found to be
very small. The largest area reported in Table 3.16 is "t ov = 12,917", which corresponds
to 5% of the total area of the image.

In Table 3.17, it can be observed that the OtP-A method commits 4 errors, with 394
images having flag 0 and 10 images having flag 1. Only 2 images with flag 1 out of 10
and 55 images with flag 0 out of 394 achieve a better margin than the original. Knowing
the total number of pixels, the areas of variability, uncertainty, and overlap are found
to be very small. The largest area reported in Table 3.17 is "unTC = 12,647", which
corresponds to 5% of the total area of the image.

The ReP-A and OtP-A methods are compared, and the results are presented in Ta-
ble 3.18. The table header continues to indicate the number of images correctly classified
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408 correctly classified images
OtP-A

flag 1 flag 0
number 10 number 394

margin gain 2 margin gain 55
unFC 10566 / /
unTC 11063 unTC 12647
varFC 9091 / /
varTC 8672 varTC 10774
un ov 6069 / /
var ov 4145 / /
sovrap 11815 sovrap 9456

Table 3.17. Analysis of OtP-A method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

by the neural network. It is also verified whether the methods identify the same images
with flag 0 and flag 1. Only the images common to both methods are taken into consid-
eration. The margins are analyzed by identifying which method has the greatest number
of images with flag 0 and flag 1 that have the widest margins. The areas are compared,
and the method with the smallest areas of variability, uncertainty, and overlap on the
heatmaps is identified.

In Table 3.18, it can be observed that the ReP-A and OtP-A methods identify the
same images with flag 0 but share only 9 images with flag 1 out of the 10 identified by
both methods. The two methods commit the same number of errors, which is 4. The
ReP-A method has larger margins compared to the OtP-A method, resulting in lower
prediction uncertainty. Only the cells highlighted in green, corresponding to the number
of images that meet the condition "ReP-A < OtP-A", support the ReP-A method. Only
1 area out of 10 favors the ReP-A method.

The Grad-CAM 0.005 images exhibit low prediction uncertainty when analyzed by
the ReP-A method; however, the most stable and least uncertain heatmaps are provided
by the OtP-A method.

3.2.6 Correctly classified Grad-CAM 0.001

Tables 3.19, 3.20, 3.22, and 3.23 present in the header the number of correctly classified
images identified by the neural network and the method analyzed. The analysis is di-
vided into images with flag 0 and flag 1, reporting only the images that conform to the
classification of each flag.

Below the header, the number of images with flag 0 and flag 1 that reflect the behavior
of the margins for each flag is reported. The analysis continues by showing the extent of
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3.2 – First objective

408 correctly classified images
share flag 0 394
share flag 1 9

margin gain ReP-A > OtP-A 234
margin gain ReP-A > OtP-A 8

flag 1 - ReP-A < OtP-A
unFC 4
unTC 3
varFC 3
varTC 2
un ov 4
var ov 3
t ov 4

flag 0 - ReP-A < OtP-A
unFC 200
varFC 196
t ov 193

Table 3.18. Comparison between OtP-A and ReP-A method. The number of share im-
ages, the method that has the bes margins for each flag are reported. Each area is con-
fronted and the number of images that verify the condition "ReP-A < OtP-A" is reported.
Just the green entries are those in favor of the ReP-A method.

the various identifiable areas on the heatmaps.
In Table 3.19, it can be observed that the ReP method makes no errors; 401 images

possess flag 0, while 7 images possess flag 1. Only 5 images with flag 1 out of 7 and
95 images with flag 0 out of 401 manage to achieve a margin greater than the original.
Knowing the total number of pixels, the areas of variability, uncertainty, and overlap are
found to be very small. The largest area reported in Table 3.19 is "unTC = 12,281",
which corresponds to 5% of the total image area.

In Table 3.20, it can be observed that the OtP method makes no errors; 401 images
possess flag 0, while 7 images possess flag 1. Only 4 images with flag 1 out of 7 and
97 images with flag 0 out of 401 are able to achieve a margin greater than the original.
Knowing the total number of pixels, the areas of variability, uncertainty, and overlap are
found to be very small. The largest area reported in Table 3.20 is "unTC = 12,308",
which corresponds to 5% of the total image area.

The ReP and OtP methods are compared, and the results are presented in Table 3.21.
The table header continues to indicate the number of images correctly classified by the
neural network. It is also verified whether the methods identify the same images with flag
0 and flag 1. Only the images common to both methods are taken into consideration. The
margins are analyzed to identify which method possesses the greater number of images
with flag 0 and flag 1 that have the widest margins. The areas are compared, and the
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408 correctly classified images
ReP

flag 1 flag 0
number 7 number 401

margin gain 5 margin gain 95
unFC 9709 / /
unTC 10402 unTC 12281
varFC 7715 / /
varTC 6206 varTC 9762
un ov 6244 / /
var ov 3707 / /
sovrap 10395 sovrap 8626

Table 3.19. Analysis of ReP method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

408 correctly classified images
OtP

flag 1 flag 0
number 7 number 401

margin gain 4 margin gain 97
unFC 9789 / /
unTC 10299 unTC 12308
varFC 7727 / /
varTC 6141 varTC 9787
un ov 6288 / /
var ov 3714 / /
t ov 10348 t ov 8640

Table 3.20. Analysis of OtP method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

method that possesses the smallest areas of variability, uncertainty, and overlap on the
heatmaps is identified.

In Table 3.21, it can be observed that the ReP and OtP methods identify the same
images with flag 0 and flag 1. Both methods make no errors. The OtP method possesses
greater margins compared to the ReP method, resulting in lower prediction uncertainty.
Only the cells highlighted in green, corresponding to the number of images that meet
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3.2 – First objective

408 correctly classified images
share flag 0 401
share flag 1 7

margin gain OtP > ReP 204
margin gain OtP > ReP 4

flag 1 - ReP < OtP
unFC 4
unTC 3
varFC 4
varTC 3
un ov 3
var ov 4
t ov 2

flag 0 - ReP < OtP
unFC 208
varFC 211
t ov 211

Table 3.21. Comparison between OtP and ReP method. The number of shared images,
the method that has the best margins for each flag are reported. Each area is confronted
and the number of images that verify the condition "ReP < OtP" is reported. Just the
green entries are those in favor of the ReP method.

the condition "ReP < OtP", favor the ReP method. In this case, 6 areas out of 10 lean
towards the ReP method.

The Grad-CAM 0.001 images exhibit lower prediction uncertainty when analyzed us-
ing the OtP method; however, the method that generates more robust and less uncertain
heatmaps is the ReP method.

In Table 3.22, it can be observed that the ReP-A method makes one error, with 401
images having flag 0 and 6 images having flag 1. Only 2 images with flag 1 out of 6
and 106 images with flag 0 out of 401 manage to achieve a margin greater than the
original. Knowing the total number of pixels, the areas of variability, uncertainty, and
overlap are very small. The largest area reported in Table 3.22 is "unTC = 12,285", which
corresponds to 5% of the total area of the image.

In Table 3.23, it can be observed that the OtP-A method makes one error, with 401
images having flag 0 and 6 images having flag 1. Only 3 images with flag 1 out of 6
and 120 images with flag 0 out of 401 manage to achieve a margin greater than the
original. Knowing the total number of pixels, the areas of variability, uncertainty, and
overlap are very small. The largest area reported in Table 3.23 is "unTC = 12,334", which
corresponds to 5% of the total area of the image.

The ReP-A and OtP-A methods are compared, and the results are presented in Ta-
ble 3.24. The table header continues to indicate the number of images correctly classified
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408 correctly classified images
ReP-A

flag 1 flag 0
number 6 number 401

margin gain 2 margin gain 106
unFC 8917 / /
unTC 11813 unTC 12285
varFC 6388 / /
varTC 8826 varTC 9703
un ov 6068 / /
var ov 3762 / /
t ov 11235 t ov 8586

Table 3.22. Analysis of ReP-A method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

408 correctly classified images
OtP-A

flag 1 flag 0
number 6 number 401

margin gain 3 margin gain 120
unFC 9136 / /
unTC 11962 unTC 12334
varFC 6387 / /
varTC 8771 varTC 9750
un ov 6454 / /
var ov 3622 / /
t ov 11499 t ov 8541

Table 3.23. Analysis of OtP-A method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

by the neural network. It is also verified whether the methods identify the same images
with flag 0 and flag 1. Only the images common to both methods are considered. The
margins are analyzed to identify which method has the largest number of images with
flag 0 and flag 1 that exhibit the widest margins. The areas are compared, and the
method with the smallest areas of variability, uncertainty, and overlap on the heatmaps
is identified.
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3.2 – First objective

408 correctly classified images
share flag 0 401
share flag 1 6

margin gain ReP-A > OtP-A 225
margin gain OtP-A > ReP-A 6

flag 1 - ReP-A < OtP-A
unFC 4
unTC 5
varFC 3
varTC 4
un ov 4
var ov 3
t ov 4

flag 0 - ReP-A < OtP-A
unFC 210
varFC 215
t ov 193

Table 3.24. Comparison between OtP-A and ReP-A method. The number of share
images, the method that has the best margins for each flag are reported. Each area
is confronted and the number of images that verify the condition "ReP-A < OtP-A" is
reported. Just the green entries are those in favour of the ReP-A method, while the
yellow entries are not decisive.

In Table 3.24, it can be observed that the ReP-A and OtP-A methods identify the same
images with flags 0 and 1. Both methods make only one error. Neither method possesses
the best margins for both flag 0 and flag 1 images. Only the cells highlighted in green,
corresponding to the number of images that satisfy the condition "ReP-A < OtP-A", favor
the ReP-A method. Since the methods identify an equal number of images with flags 0
and 1, all entries that report a number of images corresponding to "number of images
with flag/2" are highlighted in yellow and are not considered in the final comparison.
Among the remaining 8 areas, 7 favor the ReP-A method.

The Grad-CAM 0.001 images exhibit more stable and less uncertain heatmaps when
analyzed using the ReP-A method. However, the ReP-A method achieves low prediction
uncertainty only for the images with flag 0, while the performance of the margins for flag
1 is better when using the OtP-A method.

3.2.7 Correctly classified Score-CAM 0.005

Tables 3.25, 3.26, 3.28, and 3.29 present in their headers the number of correctly classified
images identified by the neural network and the method analyzed. The analysis is divided
into flag 0 and flag 1 images, reporting only those images that conform to the classification
of each flag.
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Below the header, the number of flag 0 and flag 1 images that reflects the behavior
of the margins is provided. The analysis continues by showing the extent of the various
identifiable areas on the heatmaps.

408 correctly classified images
ReP

flag 1 flag 0
number 16 number 392

margin gain 6 margin gain 35
unFC 14158 / /
unTC 14061 unTC 13590
varFC 13421 / /
varTC 13430 varTC 13121
un ov 6070 / /
var ov 3718 / /
t ov 15878 t ov 9262

Table 3.25. Analysis of ReP method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

In Table 3.25, it can be observed that the ReP method makes no errors; 392 images
have flag 0, while 16 images have flag 1. Only 6 images with flag 1 out of 16 and 35 images
with flag 0 out of 392 manage to achieve a margin greater than the original. Given the
total number of pixels, the areas of variability, uncertainty, and overlap are very small.
The largest area presented in Table 3.25 is "t ov = 15,878", which corresponds to 6% of
the total area of the image.

In Table 3.26, it can be observed that the OtP method makes no errors; 392 images
have flag 0, while 16 images have flag 1. Only 8 images with flag 1 out of 16 and 36 images
with flag 0 out of 392 manage to achieve a margin greater than the original. Given the
total number of pixels, the areas of variability, uncertainty, and overlap are very small.
The largest area presented in Table 3.26 is "t ov = 15,916", which corresponds to 6% of
the total area of the image.

The ReP and OtP methods are compared, and the results are reported in Table 3.27.
The table header continues to indicate the number of images correctly classified by the
neural network. It is also verified whether the methods identify the same images with
flag 0 and flag 1. Only the images common to both methods are considered. The margins
are analyzed to identify the method that has the highest number of images with flag 0
and flag 1 with the widest margins. The areas are compared, and the method with the
smallest areas of variability, uncertainty, and overlap on the heatmaps is identified.

In Table 3.27, it can be observed that the ReP and OtP methods identify the same
images with flag 0 and flag 1. Both methods make no errors. The OtP method has wider
margins compared to the ReP method, resulting in lower prediction uncertainty for both
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408 correctly classified images
OtP

flag 1 flag 0
number 16 number 392

margin gain 8 margin gain 36
unFC 14353 / /
unTC 14166 unTC 13674
varFC 13531 / /
varTC 13544 varTC 13135
un ov 6182 / /
var ov 3828 / /
t ov 15916 t ov 9278

Table 3.26. Analysis of OtP method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

408 correctly classified images
share flag 0 392
share flag 1 16

margin gain OtP > ReP 214
margin gain OtP > ReP 9

flag 1 - ReP < OtP
unFC 11
unTC 12
varFC 11
varTC 9
un ov 9
var ov 14
t ov 10

flag 0 - ReP < OtP
unFC 215
varFC 203
t ov 190

Table 3.27. Comparison between OtP and ReP method. The number of shared images,
the method that has the best margins for each flag are reported. Each area is confronted
and the number of images that verify the condition "ReP < OtP" is reported. Just the
green entries are those in favour of the ReP method
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flags. Only the cells highlighted in green, which correspond to the number of images that
meet the condition "ReP < OtP", favor the ReP method. In this case, 9 out of 10 areas
lean toward the ReP method.

The Score-CAM images with a probability of 0.005 exhibit lower prediction uncer-
tainty when analyzed using the OtP method; however, this method generates more vari-
able and uncertain heatmaps than the ReP method.

408 correctly classified images
ReP-A

flag 1 flag 0
number 13 number 392

margin gain 4 margin gain 37
unFC 14503 / /
unTC 13896 unTC 13745
varFC 13189 / /
varTC 13907 varTC 13091
un ov 5897 / /
var ov 3548 / /
t ov 15765 t ov 9311

Table 3.28. Analysis of ReP-A method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

In Table 3.28, it can be observed that the ReP-A method makes 3 errors; 392 images
have flag 0, while 13 have flag 1. Only 4 images with flag 1 out of 13 and 37 images with
flag 0 out of 392 manage to achieve a wider margin than the original. Knowing the total
number of pixels, the areas of variability, uncertainty, and overlap are found to be very
small. The largest area presented in Table 3.28 is "t ov = 15,765", which corresponds to
6% of the total area of the image.

In Table 3.29, it can be observed that the OtP-A method makes 2 errors; 392 images
have flag 0, while 14 have flag 1. Only 3 images with flag 1 out of 14 and 30 images with
flag 0 out of 392 are able to achieve a wider margin than the original. Knowing the total
number of pixels, the areas of variability, uncertainty, and overlap are found to be very
small. The largest area presented in Table 3.29 is "t ov = 14,665", which corresponds to
6% of the total area of the image.

The ReP-A and OtP-A methods are compared, and the results are reported in Ta-
ble 3.30. The table header continues to report the number of images correctly classified
by the neural network. It is also verified whether the methods identify the same images
with flag 0 and flag 1. Only the images common to both methods are taken into consider-
ation. The margins are analyzed by identifying the method that has the highest number
of images with flag 0 and flag 1 with the widest margins. The areas are compared, and
the method that possesses the smallest areas of variability, uncertainty, and overlap on
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3.2 – First objective

408 correctly classified images
OtP-A

flag 1 flag 0
number 14 number 392

margin gain 3 margin gain 30
unFC 14546 / /
unTC 12838 unTC 13337
varFC 12778 / /
varTC 13133 varTC 12955
un ov 6280 / /
var ov 3023 / /
sovrap 14665 sovrap 9090

Table 3.29. Analysis of OtP-A method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

the heatmaps is identified.
In Table 3.30, it can be observed that the ReP-A and OtP-A methods do not identify

the same images with flag 0 and flag 1; the OtP-A method identifies one additional image
with flag 1 compared to the ReP-A method. The OtP-A method makes 2 errors, while
the ReP-A method makes 3 errors. The ReP-A method has a lower prediction uncer-
tainty solely for the images with flag 0, whereas the OtP-A method has lower prediction
uncertainties for the images with flag 1. The cells highlighted in green, which correspond
to the number of images that meet the condition "ReP-A < OtP-A", favor the ReP-A
method. In this case, only 2 out of 10 areas lean towards the ReP-A method.

The Score-CAM images with 0.005 dropout probability exhibit more stable and less
uncertain heatmaps when analyzed using the OtP-A method. This method also has low
prediction uncertainty solely for the images with flag 1, but not for those with flag 0.

3.2.8 Correctly classified Score-CAM 0.001 and discussion

Tables 3.31, 3.32, 3.34, and 3.35 present in their headers the number of correctly classi-
fied images identified by the neural network and the analyzed method. The analysis is
divided into images with flag 0 and flag 1, reporting the number of images that meet the
classification for each flag.

Below the header, the number of images with flag 0 and flag 1 is provided, reflecting
the behavior of the margins. The analysis continues by showing the extent of the various
identifiable areas on the heatmaps.

In Table 3.31, it can be observed that the ReP method makes no errors; 401 images
have flag 0, while 7 images have flag 1. Only 5 out of 7 images with flag 1 and 113 out of
401 images with flag 0 are able to achieve a margin wider than the original. Knowing the
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408 correctly classified images
share flag 0 392
share flag 1 13

margin gain ReP-A > OtP-A 265
margin gain OtP-A > ReP-A 7

flag 1 - ReP-A < OtP-A
unFC 8
unTC 3
varFC 6
varTC 3
un ov 8
var ov 2
t ov 2

flag 0 - ReP-A < OtP-A
unFC 153
varFC 178
t ov 166

Table 3.30. Comparison between OtP-A and ReP-A method. The number of shared
images, the method that has the best margins for each flag are reported. Each area
is confronted and the number of images that verify the condition "ReP-A < OtP-A" is
reported. Just the green entries are those in favour of the ReP-A method.

408 correctly classified images
ReP

flag 1 flag 0
number 7 number 401

margin gain 5 margin gain 113
unFC 14046 / /
unTC 13043 unTC 13272
varFC 10728 / /
varTC 13990 varTC 11877
un ov 4918 / /
var ov 2909 / /
t ov 14699 t ov 8883

Table 3.31. Analysis of ReP method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.
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3.2 – First objective

total number of pixels, the areas of variability, uncertainty, and overlap are found to be
very small. The largest area reported in Table 3.31 is "t ov = 14,699", which corresponds
to 6% of the total area of the image.

408 correctly classified images
OtP

flag 1 flag 0
number 7 number 401

margin gain 5 margin gain 116
unFC 13980 / /
unTC 13153 unTC 13278
varFC 10713 / /
varTC 14076 varTC 11873
un ov 4935 / /
var ov 2826 / /
t ov 14787 t ov 8877

Table 3.32. Analysis of OtP method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

In Table 3.32, it can be observed that the OtP method makes no errors; 401 images
have flag 0, while 7 images have flag 1. Only 5 out of 7 images with flag 1 and 116 out of
401 images with flag 0 are able to achieve a margin wider than the original. Knowing the
total number of pixels, the areas of variability, uncertainty, and overlap are found to be
very small. The largest area reported in Table 3.32 is "t ov = 14,787", which corresponds
to 6% of the total area of the image.

The ReP and OtP methods are compared, and the results are presented in Table 3.33.
The header of the table continues to indicate the number of images correctly classified by
the neural network. It is also verified whether the methods identify the same images with
flag 0 and flag 1. Only the images common to both methods are taken into consideration.
The margins are analyzed by identifying the method that possesses the greatest number
of images with flags 0 and 1 that have the widest margins. The areas are compared,
and the method that has the smaller areas of variability, uncertainty, and overlap on the
heatmaps is identified.

In Table 3.33, it can be observed that the ReP and OtP methods identify the same
images with flags 0 and 1. Both methods make no errors. Neither of the two methods
exhibits better margins for both images with flags 0 and 1. Only the cells highlighted in
green, which correspond to the number of images that meet the condition "ReP < OtP",
support the ReP method. In this case, only one area out of ten favors the ReP method.

The Score-CAM images with 0.001 dropout probability exhibit more robust and less
uncertain heatmaps when analyzed using the OtP method. This method also has lower
prediction uncertainty, but only for images with flag 0.

69



Results

408 correctly classified images
share flag 0 401
share flag 1 7

margin gain OtP > ReP 205
margin gain ReP > OtP 4

flag 1 - ReP < OtP
unFC 3
unTC 3
varFC 3
varTC 5
un ov 3
var ov 1
t ov 3

flag 0 - ReP < OtP
unFC 199
varFC 200
t ov 196

Table 3.33. Comparison between OtP and ReP method. The number of shared images,
the method that has the best margins for each flag are reported. Each area is confronted
and the number of images that verify the condition "ReP < OtP" is reported. Just the
green entries are those in favour of the ReP method.

408 correctly classified images
ReP-A

flag 1 flag 0
number 6 number 401

margin gain 2 margin gain 111
unFC 13566 / /
unTC 12854 unTC 13274
varFC 11358 / /
varTC 13171 varTC 11847
un ov 5347 / /
var ov 2697 / /
t ov 13824 t ov 8885

Table 3.34. Analysis of ReP-A method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.
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In Table 3.34, it can be observed that the ReP-A method commits one error, with
401 images having flag 0, while 6 images have flag 1. Only 2 images with flag 1 out
of 6 and 111 images with flag 0 out of 401 manage to achieve a margin wider than the
original. Knowing the total number of pixels, the areas of variability, uncertainty, and
overlap are very small. The largest area that appears in Table 3.34 is "t ov = 13,824",
which corresponds to 5% of the total area of the image.

408 correctly classified images
OtP-A

flag 1 flag 0
number 6 number 401

margin gain 1 margin gain 114
unFC 13331 / /
unTC 11563 unTC 13235
varFC 10713 / /
varTC 13201 varTC 11889
un ov 4661 / /
var ov 2285 / /
sovrap 13063 sovrap 8611

Table 3.35. Analysis of OtP-A method. The analysis is divided between flag 1 and flag 0
images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

In Table 3.35, it can be noted that the OtP-A method commits one error, with 401
images having flag 0, while 6 images have flag 1. Only 1 image with flag 1 out of 6 and
114 images with flag 0 out of 401 manage to achieve a margin wider than the original.
Knowing the total number of pixels, the areas of variability, uncertainty, and overlap
are very small. The largest area that appears in Table 3.35 is "unFC = 13,331", which
corresponds to 5% of the total area of the image.

The ReP-A and OtP-A methods are compared, and the results are presented in Ta-
ble 3.36. The table header continues to report the number of images correctly classified
by the neural network. It is also verified whether the methods identify the same images
with flag 0 and flag 1. Only images common to both methods are taken into consider-
ation. The margins are analyzed to identify which method has the highest number of
images with flags 0 and 1 that exhibit the widest margins. The areas are compared, and
the method that has the smallest areas of variability, uncertainty, and overlap on the
heatmaps is identified.

In Table 3.36, it can be observed that the ReP-A and OtP-A methods do not identify
the same images with flag 1; both methods differently identify one image with flag 1 out
of the six identified. Both methods commit one error. The ReP-A method has the best
margins for both flag 0 and flag 1 images, and therefore exhibits the lowest prediction
uncertainty. The cells highlighted in green, corresponding to the number of images that
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408 correctly classified images
share flag 0 401
share flag 1 5

margin gain ReP-A > OtP-A 230
margin gain ReP-A > OtP-A 4

flag 1 - ReP-A < OtP-A
unFC 3
unTC 0
varFC 3
varTC 1
un ov 3
var ov 3
t ov 0

flag 0 - ReP-A < OtP-A
unFC 191
varFC 200
t ov 141

Table 3.36. Comparison between OtP-A and ReP-A method. The number of share im-
ages, the method that has the best margins for each flag are reported. Each area is con-
fronted and the number of images that verify the condition "ReP-A < OtP-A" is reported.
Just the green entries are those in favour of the ReP-A method.

satisfy the condition "ReP-A < OtP-A", favor the ReP-A method. In this case, four areas
out of ten lean towards the ReP-A method.

The Score-CAM 0.001 images exhibit low prediction uncertainty when analyzed by
the ReP-A method; however, the generated heatmaps are more variable and less certain
than those generated by the OtP-A method.

The ReP method produces the most stable and least uncertain heatmaps; only the
Score-CAM 0.001 data indicate that the OtP method achieves the most stable and least
uncertain heatmaps. Although the ReP method is robust in constructing heatmaps, it
generates softmax outputs with high prediction uncertainties. Only the Score-CAM 0.001
data demonstrate that the ReP method is the most optimal for analyzing flag 1 images.
Both the ReP and OtP methods do not commit any errors.

The OtP-A method, like the ReP method, generates the most stable heatmaps. Only
the Grad-CAM 0.001 data indicate that the ReP-A method produces the most stable
and least uncertain heatmaps. Despite the OtP-A method being robust in constructing
heatmaps, it generates softmax outputs with high prediction uncertainties. Only the
Grad-CAM 0.001 data show that the OtP-A method is the most optimal for analyzing
flag 1 images. Both ReP-A and OtP-A methods commit errors; however, the ReP-A
method commits one additional error compared to the OtP-A method in the Score-CAM
0.005 data.
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Having identified the ReP and OtP-A methods as the two optimal methods for ana-
lyzing correctly classified images, a final comparison between these two methods is con-
ducted, with results reported in Tables 3.37, 3.38, 3.39, and 3.40. The headers of the
tables present the number of correctly classified images identified by the neural network,
the XAI method used, and the dropout probability. The analysis is focused solely on the
flag 0 and flag 1 images that the methods have in common, determining which method
possesses lower prediction uncertainty and more contained areas of variability, uncer-
tainty, and overlap.

408 correctly classified images
Grad-CAM 0.005
share flag 0 394
share flag 1 10

margin gain ReP > OtP-A 228
margin gain ReP > OtP-A 9

flag 1 - ReP < OtP-A
unFC 4
unTC 4
varFC 5
varTC 3
un ov 2
var ov 3
t ov 4

flag 0 - ReP < OtP-A
unFC 190
varFC 168
t ov 177

Table 3.37. Comparison between OtP-A and ReP method. The number of share
images, the method that has the best margins for each flag are reported. Each area
is confronted and the number of images that verify the condition "ReP < OtP-A" is
reported. The yellow entries are not decisive.

The results presented in Table 3.37 demonstrate that both methods identify the same
number of flag 0 images, but do not share the same number of flag 1 images. The ReP
method identifies four additional flag 1 images, which are considered errors by the OtP-A
method. The ReP method achieves lower prediction uncertainty; however, it generates
more variable and uncertain heatmaps. The cell highlighted in yellow corresponds to the
only area not considered for the final comparison, as this entry indicates a number of
images that corresponds to "number of images flag/2". Of the nine remaining areas, none
lean towards the ReP method.

The results presented in Table 3.38 indicate that both methods identify the same
number of flag 0 images, but do not share the same number of flag 1 images. The ReP
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408 correctly classified images
Grad-CAM 0.001
share flag 0 401
share flag 1 6

margin gain ReP > OtP-A 227
margin gain OtP-A > ReP 4

flag 1 - ReP < OtP-A
unFC 3
unTC 4
varFC 3
varTC 3
un ov 3
var ov 1
t ov 5

flag 0 - ReP < OtP-A
unFC 205
varFC 183
t ov 166

Table 3.38. Comparison between OtP-A and ReP method. The number of share images,
the method that has the best margins for each flag are reported. Each area is confronted
and the number of images that verify the condition "ReP < OtP-A" is reported. The green
entries are those in favour of the ReP method, while the yellow entries are not decisive.

method, in fact, identifies one additional flag 1 image, which is considered an error by the
OtP-A method. The ReP method achieves lower prediction uncertainty for flag 0 images,
while the OtP-A method exhibits lower prediction uncertainty for flag 1 images. Since
both methods identify an equal number of flag 0 images, the entries in the table that
correspond to "number of images flag/2" are highlighted in yellow and are not considered
for the final comparison. Only the cells highlighted in green indicate the entries of the
areas that favor the ReP method. Among the six remaining areas, both methods exhibit
the same performance, generating heatmaps that are minimally variable and uncertain.

The results presented in Table 3.39 indicate that both methods identify the same
number of flag 0 images, but do not share the same number of flag 1 images. The ReP
method, in fact, identifies two additional flag 1 images, which are considered errors by
the OtP-A method. The ReP method achieves lower prediction uncertainty for both
flag 0 and flag 1 images. Since both methods identify an equal number of flag 0 and
flag 1 images, the entries in the table that correspond to "number of images flag/2" are
highlighted in yellow and are not considered for the final comparison. Only the cells
highlighted in green indicate the entries of the areas that favor the ReP method. Among
the eight remaining areas, only one favors the ReP method.

The results presented in Table 3.40 indicate that both methods identify the same
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408 correctly classified images
Score-CAM 0.005
share flag 0 392
share flag 1 14

margin gain ReP > OtP-A 262
margin gain ReP > OtP-A 11

flag 1 - ReP < OtP-A
unFC 7
unTC 2
varFC 6
varTC 7
un ov 8
var ov 4
t ov 6

flag 0 - ReP < OtP-A
unFC 158
varFC 170
t ov 174

Table 3.39. Comparison between OtP-A and ReP method. The number of share images,
the method that has the best margins for each flag are reported. Each area is confronted
and the number of images that verify the condition "ReP < OtP-A" is reported. The green
entries are those in favour of the ReP method, while the yellow entries are not decisive.

number of flag 0 images, but do not share the same number of flag 1 images. The ReP
method, in fact, identifies one additional flag 1 image, which is considered an error by
the OtP-A method. The ReP method achieves low prediction uncertainty for both flag
0 and flag 1 images; however, it generates more variable and uncertain heatmaps. Since
both methods identify an equal number of flag 0 and flag 1 images, the entries in the
table that correspond to "number of images flag/2" are highlighted in yellow and are not
considered for the final comparison. Among the six remaining areas, none favor the ReP
method.

The ReP method generates softmax outputs with low prediction uncertainties. Only
the Grad-CAM 0.001 data suggest that the ReP method is not optimal for analyzing flag 1
images. Although the method produces solid softmax outputs, the heatmaps generated by
this method are more unstable and uncertain than those generated by the OtP-A method.
The Grad-CAM 0.005 and Score-CAM 0.001 data show that none of the entries in the
table favor the ReP method. The Score-CAM 0.005 data indicate that only one entry in
the table favors the ReP method, while the Grad-CAM 0.001 data are inconclusive since
both methods exhibit the same performance. Although the ReP method generates more
variable and uncertain heatmaps, it does not commit any errors. All flag 0 and flag 1
images conform to their respective classifications, whereas the OtP-A method consistently
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408 correctly classified images
Score-CAM 0.001
share flag 0 401
share flag 1 6

margin gain ReP > OtP-A 220
margin gain ReP > OtP-A 5

flag 1 - ReP < OtP-A
unFC 2
unTC 1
varFC 3
varTC 1
un ov 3
var ov 3
t ov 3

flag 0 - ReP < OtP-A
unFC 197
varFC 194
t ov 152

Table 3.40. Comparison between OtP-A and ReP method. The number of share
images, the method that has the best margins for each flag are reported. Each area
is confronted and the number of images that verify the condition "ReP < OtP-A" is
reported. The yellow entries are not decisive.

commits errors.
As was identified for the misclassified images, the ReP method also proves to be the

most optimal for analyzing correctly classified images.

3.3 Second objective
Having identified the ReP method as the most optimal for analyzing images, the next
step is to determine which XAI method and what dropout probability allow the XCiT
network to achieve the best performance. The analysis proceeds by identifying the optimal
dropout probability for each XAI method. Once the dropout probability is identified, the
corresponding XAI method to be used with the XCiT neural network is determined.
The results are presented in tables that indicate the XAI method under analysis and
whether the results pertain to misclassified or correctly classified images. Only the images
common to both probabilities are taken into consideration. The probability that exhibits
the highest number of flag 0 and flag 1 images, reflecting the behavior of each flag as
described in Section 3.1, is identified, along with the probability that generates heatmaps
with contained variability, uncertainty, and overlap areas.

The organization of the tables remains unchanged even when the dropout probability
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is identified and the XAI methods are compared against one another. The analysis is
presented by separating the misclassified images from the correctly classified ones.

3.3.1 Validation set misclassified images

Tables 3.41 and 3.42 present the comparison between the probabilities of 0.001 and 0.005
for the Grad-CAM and Score-CAM methods, respectively. The analyzed method is in-
dicated in the table header. The probability that offers optimal margins is the one that
enables the identification of a high number of flag 0 images with a final margin lower than
the initial margin, as well as a high number of flag 1 images with a final margin higher
than the initial margin.

25 misclassified images
Grad-CAM

share flag 0 9
share flag 1 4

margin decrease 0.005 < 0.001 9
margin gain 0.005 > 0.001 4

flag 1 - 0.005 < 0.001
unFC 0
unTC 2
varFC 1
varTC 1
un ov 2
var ov 0
t ov 1

flag 0 - 0.005 < 0.001
unFC 4
varFC 5
t ov 4

Table 3.41. Comparison between 0.005 and 0.001 dropout probabilities for Grad-CAM
XAI method. The number of share images, the probability that has the best margins for
each flag are reported. Each area is confronted and the number of images that verify the
condition "0.005 < 0.001" is reported. The green entry is in favour of the 0.005 probability,
while the yellow entries are not decisive.

The results presented in Table 3.41 indicate that the same method does not identify
the same number of flag 0 and flag 1 images. When the probability of 0.001 is used, more
flag 0 images are identified - images that have the GT as the second most probable class
in the softmax output of the ReP method. However, this probability identifies fewer flag
1 images, which means fewer images are classified with the GT as the final classification.
The probability of 0.005 allows for the identification of a higher number of flag 1 images;
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however, this probability incurs four more errors than the 0.001 probabilty. The 0.005
probability successfully identifies more flag 0 images with final margins lower than the
initial margins, as well as more flag 1 images with final margins higher than the initial
margins. Since both probabilities identify an equal number of flag 1 images, any entries in
the table that report a number of images corresponding to "number of flag images/2" are
highlighted in yellow and not considered in the final comparison. Only the cell highlighted
in green indicates a preference for the 0.005 method. Among the remaining eight areas,
only one area shows that the 0.005 probability generates heatmaps that are less variable
and uncertain.

25 misclassified images
Score-CAM

share flag 0 10
share flag 1 5

margin decrease 0.005 < 0.001 8
margin gain 0.005 > 0.001 4

flag 1 - 0.005 < 0.001
unFC 2
unTC 1
varFC 1
varTC 0
un ov 3
var ov 2
t ov 0

flag 0 - 0.005 < 0.001
unFC 6
varFC 5
t ov 4

Table 3.42. Comparison between 0.005 and 0.001 dropout probabilities for Score-CAM
XAI method. The number of share images, the probability that has the best margins
for each flag are reported. Each area is confronted and the number of images that verify
the condition "0.005 < 0.001" is reported. The green entries are in favour of the 0.005
probability, whle the yello entries are not decisive.

The results presented in Table 3.42 indicate that the same method does not identify
the same number of flag 0 and flag 1 images. When the probability of 0.001 is used,
more flag 0 images are identified, but fewer flag 1 images. The probabilty of 0.005 is able
to correct the prediction of one additional image compared to the probability of 0.001;
however, it incurs three more errors than the probability of 0.001. Since both probabilities
identify an equal number of flag 0 images, any entries in the table that report a number
of images corresponding to "number of flag images/2" are highlighted in yellow and not
considered in the final comparison. Only the cells highlighted in green favor the 0.005
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probability. Among the remaining nine areas, only two identify the 0.005 probability as
the one that generates heatmaps that are less variable and uncertain.

The dropout probability of 0.001 applied to each XAI method allows the ReP method
to make fewer errors, even though it generates softmax outputs with high prediction
uncertainties. The probability of 0.001 is the one that produces the most stable and least
uncertain heatmaps.

Having identified the dropout probability of 0.001 as the one with the best perfor-
mance for each XAI method, the two XAI methods are compared to determine which
is more suitable for use with the XCiT network. The comparison between Score-CAM
0.001 and Grad-CAM 0.001 is presented in Table 3.43.

25 misclassified images
share flag 0 15
share flag 1 4

margin decrease Grad-CAM < Score-CAM 9
margin gain Grad-CAM = Score-CAM 2

flag 1 - Score-CAM < Grad-CAM
unFC 2
unTC 2
varFC 2
varTC 2
un ov 3
var ov 2
t ov 2

flag 0 - Score-CAM < Grad-CAM
unFC 6
varFC 5
t ov 7

Table 3.43. Comparison between Score-CAM and Grad-CAM methods with 0.001
dropout probability. The number of share images, the XAI method that has the best
margins for each flag are reported. Each area is confronted and the number of images that
verify the condition "Score-CAM < Grad-CAM" is reported. The green entries are those
in favour of the Score-CAM method, while the yellow entries are not decisive

The results presented in Table 3.43 indicate that each XAI method does not identify
the same number of flag 0 and flag 1 images. The Grad-CAM 0.001 method identifies
one additional flag 0 image compared to the Score-CAM 0.001 method, thus identifying
one more image that has the GT class as the second most probable class in the softmax
output of the ReP method. In contrast, the Score-CAM 0.001 method identifies two
additional flag 1 images, allowing it to correct the predictions of more images than the
Grad-CAM 0.001 method. Furthermore, the Grad-CAM method incurs one more error
than the Score-CAM method.
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The margin analysis shows that the Grad-CAM method obtains more flag 0 images
with final margins lower than the initial ones. However, both XAI methods exhibit the
same performance on the softmax outputs for flag 1 images. Since both XAI methods
identify an equal number of flag 1 images, any entries in the table that report a number
of images corresponding to "number of flag images/2" are highlighted in yellow and not
considered in the final comparison. Only the cells highlighted in green favor the Score-
CAM method. Among the remaining four areas, only one leans towards the Score-CAM
method.

3.3.2 Validation set correctly classified images

Tables 3.44 and 3.45 present a comparison between the probabilities 0.001 and 0.005 for
the Grad-CAM and Score-CAM methods, respectively. The analyzed method is indicated
in the header of each table. The probability that possesses the optimal margins is the
one that allows for the identification of a high number of flag 0 images with final margins
lower than the initial margins, as well as a high number of flag 1 images with final margins
higher than the initial margins.

408 correctly classified images
Grad-CAM

share flag 0 392
share flag 1 5

margin gain 0.001 > 0.005 332
margin gain 0.001 > 0.005 3

flag 1 - 0.005 < 0.001
unFC 0
unTC 2
varFC 1
varTC 1
un ov 1
var ov 0
t ov 1

flag 0 - 0.005 < 0.001
unFC 161
varFC 127
t ov 131

Table 3.44. Comparison between 0.005 and 0.001 dropout probabilities for Grad-CAM
XAI method. The number of share images, the probability that has the best margins for
each flag are reported. Each area is confronted and the number of images that verify the
condition "0.005 < 0.001" is reported.

The results presented in Table 3.44 demonstrate that the same method does not
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identify the same number of flag 0 and flag 1 images. When the probability 0.001 is used,
more flag 0 images are identified, indicating that more images continue to be classified
within the GT class even when the MCD method is applied. However, it identifies a lower
number of flag 1 images, resulting in fewer images being misclassified when the MCD
method is applied. Neither of the probabilities commits any errors. The probability
0.001 is capable of achieving final margins that exceed the initial margins for flag 0
images but does not achieve the same performance for flag 1 images. Among the total of
10 areas, none identifies the probability 0.005 as the one that generates heatmaps with
low variability and uncertainty.

408 correctly classified images
Score-CAM

share flag 0 390
share flag 1 5

margin gain 0.001 > 0.005 344
margin gain 0.001 > 0.005 3

flag 1 - 0.005 < 0.001
unFC 2
unTC 2
varFC 1
varTC 4
un ov 1
var ov 2
t ov 2

flag 0 - 0.005 < 0.001
unFC 162
varFC 120
t ov 151

Table 3.45. Comparison between 0.005 and 0.001 dropout probabilities for Score-CAM
XAI method. The number of share images, the probability that has the best margins for
each flag are reported. Each area is confronted and the number of images that verify the
condition "0.005 < 0.001" is reported. The green entry is in favour of the 0.005 probability.

The results presented in Table 3.45 indicate that the same method does not identify
the same number of flag 0 and flag 1 images. When the probability 0.001 is utilized, more
flag 0 images are identified, meaning that more images continue to be classified within
the GT class even when the MCD method is applied. Conversely, a lower number of
flag 1 images is identified, resulting in fewer images being misclassified when the MCD
method is applied. Neither of the probabilities commits any errors. The probability 0.001
is capable of achieving final margins that exceed the initial margins for both flag 0 and
flag 1 images. Among the total of 10 areas, only one identifies the probability 0.005 as
the one that generates heatmaps with low variability and uncertainty.
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Both dropout probabilities, when applied to each XAI method, do not commit any
errors. The probability 0.001 allows the ReP method to generate softmax outputs with
low prediction uncertainties. Only the data from Score-CAM 0.005 exhibit better mar-
gins, specifically for flag 1 images. The probability 0.001 is also the one that generates
the most stable and least uncertain heatmaps.

Having identified the dropout probability of 0.001 as having the best performance for
each XAI method, the two XAI methods are compared with each other to determine which
is more suitable for use with the XCiT network. The comparison between Score-CAM
0.001 and Grad-CAM 0.001 is presented in Table 3.46.

408 correctly classified images
share flag 0 399
share flag 1 5

margin gain Score-CAM > Grad-CAM 202
margin gain Score-CAM > Grad-CAM 3

flag 1 - Score-CAM < Grad-CAM
unFC 1
unTC 3
varFC 1
varTC 1
un ov 4
var ov 3
t ov 2

flag 0 - Score-CAM < Grad-CAM
unFC 186
varFC 131
t ov 197

Table 3.46. Comparison between Score-CAM and Grad-CAM methods. The number of
share images, the method that has the best margins for each flag are reported. Each area is
confronted and the number of images that verify the condition "Score-CAM < Grad-CAM"
is reported. The green entries are those in favour of the Score-CAM method

The results presented in Table 3.46 demonstrate that each XAI method identifies the
same number of flag 0 and flag 1 images. No XAI method commits any errors. The
Score-CAM 0.001 method achieves final margins that exceed the initial margins for both
flag 0 and flag 1 images. Among the 10 areas compared, only 3 areas, which correspond
to the cells highlighted in green, favor the Score-CAM method.

The Score-CAM method, when used with a dropout probability of 0.001, is the XAI
method that allows the ReP method to commit fewer errors for misclassified images,
whereas the ReP method does not make errors for correctly classified images. Addi-
tionally, Score-CAM is the method that achieves softmax outputs from the ReP method
with margins greater than the initial margins for correctly classified images, although
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the margins do not exhibit high performance for misclassified flag 0 images. Score-CAM
demonstrates the same performance as Grad-CAM on misclassified flag 1 images. How-
ever, this XAI method generates heatmaps that are variable and uncertain.

3.3.3 Discussion on validation set

The ReP method has been identified as the most optimal method for manipulating images.
This method has allowed for the identification of heatmaps and softmax outputs generated
by the Score-CAM method as the most robust and least uncertain, respectively, when
used with a dropout probability of 0.001. Data from the validation set indicate that the
Grad-CAM method is not effective when employed with the XCiT network. It is now
possible to preliminarily characterize the behavior of the network.

The validation set comprises 433 images, of which 408 are correctly classified while
25 are misclassified. The confusion matrix for the classification of the XCiT network is
presented in Fig. 3.1.

Figure 3.1. This is the confusion matrix of the XCiT net. On the y-axis there are GT
labels divided into: no tumor, pituitary tumor, meningioma tumor, glioma tumor. On the
x-axis there are the prediction for each class image.

The confusion matrix demonstrates that the network correctly classifies the majority
of the images. Only three images from the "no tumor" class are misclassified into each of
the three tumor classes. Images classified as "pituitary tumor" are misclassified only twice
into the "meningioma tumor" and "glioma tumor" classes. Images from the "meningioma
tumor" class are misclassified seven times into the "glioma tumor" class, three times into
the "pituitary tumor" class, and three times into the "no tumor" class. Images from the
"glioma tumor" class are misclassified seven times into the "meningioma tumor" class.

These data indicate that the network is highly robust and capable of distinguishing
well between an image that presents a tumor and one that does not, as evidenced by the
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data from the "pituitary tumor" and "glioma tumor" classes. The network misclassifies
images that do not present a tumor three times, while it incorrectly considers images from
the "meningioma tumor" class as "no tumor" three additional times. After employing the
ReP method, the confusion matrix is modified, and the new matrix is presented in Fig. 3.2.

Figure 3.2. This is the confusion matrix after applying the ReP method. On the y-axis
there are GT labels divided into: no tumor, pituitary tumor, meningioma tumor, glioma
tumor. On the x-axis there are the prediction of ReP softmax for each class image.

By applying the ReP method to the images misclassified by the XCiT neural network,
it has been possible to correct the classification of some of these images. In fact, Fig. 3.2
shows six images that are correctly classified in addition to those in the confusion matrix
presented in Fig. 3.1. In certain cases, the method achieves a margin that exceeds the
original, resulting in a very low prediction uncertainty. This occurs only for misclassified
images that have a flag of 1, as described in Section 3.1. The Score-CAM 0.001 data
presented in Table 3.10 indicate that this happens for two of the six identified images
with flag 1. On average, these flag 1 images may exhibit a percentage variation of up to
227%. The percentage variation is calculated using equation 3.1.

xf − xi

xi
× 100 (3.1)

In which xf represents the margin calculated using the softmax from the ReP method,
as described in Section 2.5.3, and xi represents the original margin calculated from the
softmax provided by the neural network. Of these two flag 1 images, the image gg(704)
achieves the highest percentage variation in the margin, specifically 539%. The initial
margin, calculated using the softmax from the XCiT network, is 0.049. As described in
Section 2.5.3, the heatmap provided by the neural network is highly uncertain; however,
with the application of the ReP method, the proposed heatmap is associated with a
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softmax that ranks the GT class first and has a final margin of 0.312.
The remaining four flag 1 images continue to possess the GT class as the classification

proposed by the method, but they do not have a margin exceeding the original. On
average, the percentage variation of the margins is -66%, where:

• The image gg(717) exhibits the smallest percentage variation of -36%, changing
from an original margin of 0.246 to a final margin of 0.157;

• The image gg(712) displays the largest percentage variation of -95%, transitioning
from an original margin of 0.182 to a final margin of 0.008.

The margin is an essential element for characterizing the heatmaps. Not all mis-
classified flag 1 images that become correctly classified possess softmax outputs and,
consequently, heatmaps that are certain towards the GT class. Of the 25 images misclas-
sified by the XCiT network, only 2 have heatmaps that are certain towards the GT class,
while 4 exhibit slightly higher uncertainty towards the GT class.

The identified flag 0 images total 15, and these images have the GT class as the
second most probable class in the softmax presented by the ReP method. The method is
unable to correct the prediction for these images; however, it succeeds in increasing the
probability associated with the GT class while decreasing the margin. This occurs for
13 out of the 15 flag 0 images. The average percentage variation of the margins is -2%,
where:

• The image m3(230) exhibits the smallest percentage variation of -0.017%, changing
from an original margin of 0.9537 to a final margin of 0.9535;

• The image p(746) demonstrates the largest percentage variation of -11%, changing
from an original margin of 0.843 to a final margin of 0.753.

These percentages indicate that the heatmaps of the 13 images remain very certain
regarding the predicted class. In this case, the flag 0 identified a set of images that do
not exhibit high prediction uncertainty, contrary to the hypothesis in Section 3.1.

The ReP method, as stated in Section 2.5.3, may incur errors: a misclassified flag 1
image might not possess the GT class as the highest probability, or a flag 0 image might
not have the GT class as the second-highest probability within the softmax. The data in
Table 3.10 indicate that four errors were committed. These images remain misclassified
by the neural network. In Fig. 3.2, it is evident that some misclassifications persist as
reported in Fig. 3.1.

By employing the ReP method to analyze the images correctly classified by the XCiT
network, 401 images are identified that are consistently classified within the GT class,
even when the MCD method is applied, flag 0, alongside 7 images that exhibit at least
one incorrect classification when the MCD method is applied, flag 1, as shown by the
Score-CAM 0.001 results in Table 3.31. For 113 flag 0 images, the method successfully
increases the margin while reducing prediction uncertainty, achieving an average percent-
age variation of the margins of 0.33%. The image with the highest percentage variation,
at 22%, is the image m3(162), which changes from an original margin of 0.388 to a final
margin of 0.473.
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The remaining 288 flag 0 images continue to have the GT class as their prediction;
however, their margin is lower than the original. The average percentage variation of the
margins for these images is -0.24%, where:

• The image m3(166) exhibits the greatest percentage variation of -14%, transitioning
from an original margin of 0.876 to a final margin of 0.751;

• The image gg(814) shows the smallest percentage variation, approximately on the
order of 10−6, with the initial margin being similar to the final margin at 0.998.

All identified images as flag 0 present low prediction uncertainty towards the GT
class, even though the margin for some of these is less than the original provided by the
XCiT network.

Among the 7 identified flag 1 images, the method achieves a final margin exceeding
the original for 5 of them, resulting in an average percentage variation of 39%. The image
with the greatest percentage variation is the image m3(170), which shows a variation of
145%, changing from an original margin of 0.073 to a final margin of 0.178.

The remaining 2 images exhibit lower margins compared to the originals, with an
average percentage variation of -10%, where:

• The image m3(175) shows the largest percentage variation at -12%, changing from
an original margin of 0.549 to a final margin of 0.486;

• The image gg(706) has the smallest percentage variation at -8%, changing from an
original margin of 0.186 to a final margin of 0.171.

In this instance, not all identified flag 1 images exhibit low prediction uncertainty
towards the GT class; these results arise not only from the use of misclassified heatmaps,
which contribute to the ReP method but also from the original prediction uncertainty of
the neural network.

The constructed and trained network demonstrates a very robust localization, with
the areas of variability, uncertainty, and overlap reported in Tables 3.10 and 3.31 being
quite limited, reflecting the robustness of the interpretation. The XCiT network is highly
confident in its predictions, except for 6 misclassified flag 1 images, for which it was
possible to modify the final prediction. Only 2 of these images exhibit low uncertainty
towards the GT class, while the remaining 4 exhibit high uncertainty towards the GT
class.

3.3.4 Test set misclassified images

Having characterized the trained network, its behavior is analyzed on the test set images.
Both Score-CAM and Grad-CAM images are examined using only the ReP method, with
a particular focus on the dropout probability of 0.005 for Grad-CAM. This re-evaluation
aims to assess the performance trends on the test set and to confirm that Score-CAM
with a dropout rate of 0.001 is indeed the most optimal approach for the XCiT network.

The analysis of the test set images is divided between misclassified and correctly
classified images. The data presented follows the same format as that of the validation
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set outlined in Section 3.3.1 and 3.3.2. All images are categorized into flag 0 and flag 1
according to the rules specified in Section 3.1. Only those images that conform to the
classification of each flag are reported, indicating the areas of variability and uncertainty
in the heatmaps, as well as the prediction uncertainty. All images that do not align with
the classification of their respective flag are considered errors of the ReP method.

The dropout probabilities for each XAI method and the methods themselves are
compared again. The comparison tables report the number of common flag 0 and flag
1 images, as well as which images exhibit the best margin behavior. Various areas are
compared to determine which method and dropout probability yield the most robust and
least uncertain heatmaps.

Tables 3.47 and 3.48 present data for the Grad-CAM method. The headers of the
tables indicate the number of misclassified images identified by the neural network and the
dropout probability used with the XAI method. The analysis focuses solely on flag 0 and
flag 1 images that conform to their respective flag classifications, reporting the number
of images that reflect margin behavior, along with the areas of variability, uncertainty,
and overlap expressed in pixels.

77 misclassified images
Grad-CAM 0.005

flag 1 flag 0
number 1 number 13

margin gain 1 margin decrease 8
unFC 16687 unFC 13845
unTC 13391 / /
varFC 14014 varFR 10972
varTC 8384 / /
un ov 6864 / /
var ov 2851 / /
t ov 17013 t ov 9636

Table 3.47. Analysis of Grad-CAM 0.005. The analysis is divided between flag 1 and flag
0 images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

In Table 3.47, it can be observed that the ReP method incurs 63 errors but is only
able to correct the prediction of a single image. Meanwhile, 13 images continue to list
the GT class as the second most probable class in the softmax of the method. The only
identified flag 1 image also achieves a margin wider than the original, while 8 out of the
13 flag 0 images attain a margin lower than the original.

Given the total number of pixels, the areas of variability, uncertainty, and overlap
are notably small. The largest area reported in Table 3.47 is "t ov = 17,013", which
corresponds to 6% of the total image area.

In Table 3.48, it can be noted that the ReP method incurs 42 errors but is only able
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77 misclassified images
Grad-CAM 0.001

flag 1 flag 0
number 1 number 24

margin gain 1 margin decrease 18
unFC 13949 unFC 13584
unTC 12552 / /
varFC 11006 varFR 10280
varTC 9351 / /
un ov 5762 / /
var ov 3202 / /
t ov 14671 t ov 8952

Table 3.48. Analysis of Grad-CAM 0.001. The analysis is divided between flag 1 and flag
0 images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

to correct the prediction of a single image, while 24 images continue to list the GT class
as the second most probable class in the softmax of the method. The only identified flag
1 image also achieves a margin wider than the original, whereas 18 out of the 24 flag 0
images attain a margin lower than the original.

Given the total number of pixels in the image, the areas of variability, uncertainty,
and overlap are quite small. The largest area reported in Table 3.48 is "t ov = 14,671",
which corresponds to 6% of the total image area.

The dropout probabilities are compared, and the results are presented in Table 3.49.
The table header continues to indicate the number of images misclassified by the neural
network and the analyzed XAI method. It is also verified whether the probabilities
identify the same flag 0 and flag 1 images. Only the common images are analyzed.

The margins are examined to identify which dropout probability has the highest
number of flag 0 images with a lower margin and the highest number of flag 1 images
with a greater margin. The areas are compared, and the probability with the smallest
areas of variability and uncertainty on the heatmaps is identified.

In Table 3.49, it can be observed that the dropout probabilities identify the same
flag 1 image, but not the same flag 0 images. Additionally, Grad-CAM with a dropout
probability of 0.005 incurs 11 more errors than Grad-CAM with a dropout probability
of 0.001. The 0.001 dropout probability has the highest number of flag 0 images that
exhibit a final margin lower than the initial margin, as well as the highest number of
flag 1 images that show a final margin greater than the initial margin. Only the cells
highlighted in green, which correspond to the number of images satisfying the condition
"0.005 < 0.001", favor the 0.005 probability. Out of the 10 areas compared, 5 favor the
0.005 probability.

In this case, the 0.001 probability has the best margins for each flag, contrary to what
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77 misclassified images
Grad-CAM

share flag 0 13
share flag 1 1

margin decrease 0.001 < 0.005 9
margin gain 0.001 > 0.005 1

flag 1 - 0.005 < 0.001
unFC 0
unTC 0
varFC 0
varTC 1
un ov 0
var ov 1
t ov 0

flag 0 - 0.005 < 0.001
unFC 8
varFC 6
t ov 6

Table 3.49. Comparison between 0.005 and 0.001 dropout probability for Grad-
CAM XAI method. The number of shared images, the probability that has the best
margins for each flag are reported. Each area is confronted and the number of images
that verify the condition "0.005 < 0.001" is reported. Just the green entries are those
in favor of 0.005 probability.

was observed in the validation set, where the data in Table 3.41 indicated that the 0.005
probability had the most optimal margins. In the validation set, the comparison of areas
identified the 0.001 probability as generating more stable and less uncertain heatmaps,
whereas now no probability generates more stable and less uncertain heatmaps.

Tables 3.50 and 3.51 refer to the data from the Score-CAM method. The table
headers include the number of misclassified images identified by the neural network and
the dropout probability used with the XAI method. The analysis focuses solely on flag 0
and flag 1 images that conform to the classification of their respective flags, reporting the
number of images that reflect margin behavior and the areas of variability, uncertainty,
and overlap expressed in pixels.

In Table 3.50, it can be observed that the ReP method incurs 62 errors but is only
able to correct the prediction of a single image, while 14 images continue to have the
GT class as their second most probable class in the method's softmax output. The only
identified flag 1 image is able to achieve a margin wider than the original, whereas 8 out
of 14 flag 0 images obtain a margin lower than the original. Given the total number of
pixels, the areas of variability, uncertainty, and overlap are very small. The largest area
reported in Table 3.50 is "t ov = 21,251", which corresponds to 8% of the total area of
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77 misclassified images
Score-CAM 0.005

flag 1 flag 0
number 1 number 14

margin gain 1 margin decrease 8
unFC 16342 unFC 12607
unTC 16819 / /
varFC 15107 varFR 12663
varTC 15652 / /
un ov 7222 / /
var ov 3567 / /
t ov 21251 t ov 8995

Table 3.50. Analysis of Score-CAM 0.005. The analysis is divided between flag 1 and flag
0 images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

the image.

77 misclassified images
Score-CAM 0.001

flag 1 flag 0
number 1 number 23

margin gain 1 margin decrease 11
unFC 15644 unFC 11604
unTC 16076 / /
varFC 16375 varFR 11334
varTC 14102 / /
un ov 6471 / /
var ov 5486 / /
t ov 21238 t ov 7764

Table 3.51. Analysis of Score-CAM 0.001. The analysis is divided between flag 1 and flag
0 images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

In Table 3.51, it can be observed that the ReP method incurs 53 errors but is only
able to correct the prediction of a single image, while 23 images continue to have the
GT class as their second most probable class in the method's softmax output. The only
identified flag 1 image is also able to achieve a margin wider than the original, whereas 11
out of 23 flag 0 images obtain a margin lower than the original. Given the total number
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of pixels in the image, the areas of variability, uncertainty, and overlap are very small.
The largest area reported in Table 3.51 is "t ov = 21,238", which corresponds to 8% of
the total area of the image.

The dropout probabilities are compared, and the results are presented in Table 3.52.
The header of the table continues to report the number of misclassified images identified
by the neural network and the XAI method analyzed. It is also verified whether the
probabilities identify the same flag 0 and flag 1 images. Only the common images are
analyzed. The margins are examined to determine which dropout probability has the
highest number of flag 0 images with lower margins, and the highest number of flag
1 images with higher margins. The areas are compared, and the probability with the
smallest areas of variability and uncertainty on the heatmaps is identified.

77 misclassified images
Score-CAM

share flag 0 12
share flag 1 1

margin decrease 0.005 < 0.001 9
margin gain 0.005 > 0.001 1

flag 1 - 0.005 < 0.001
unFC 0
unTC 0
varFC 1
varTC 0
un ov 0
var ov 1
t ov 0

flag 0 - 0.005 < 0.001
unFC 4
varFC 2
t ov 6

Table 3.52. Comparison between 0.005 and 0.001 probability for Score-CAM XAI method.
The number of shared images, the probability that has the best margins for each flag are
reported. Each area is confronted and the number of images that verify the condition
"0.005 < 0.001" is reported. Just the green entries are those in favour of 0.005 probability,
while the yellow entries are not decisive.

In Table 3.52, it can be observed that the dropout probabilities identify the same
flag 1 image, but do not identify the same flag 0 images. Furthermore, Score-CAM with
a dropout rate of 0.005 incurs 9 more errors than Score-CAM with a dropout rate of
0.001. The dropout rate of 0.005 has the highest number of flag 0 images that exhibit
a final margin lower than the initial margin, and it also has the highest number of flag
1 images with a final margin exceeding the initial margin. Only the cells highlighted in
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green, which correspond to the number of images meeting the condition "0.005 < 0.001",
favor the 0.005 probability. Since the number of identified flag 0 images is equal, all cells
reporting a number of images corresponding to "number of images flag/2" are highlighted
in yellow and are not considered in the final comparison. Out of the 9 identified areas, 2
favor the 0.005 probability.

As observed in the validation set, referenced in Table 3.42, the 0.005 probability
possesses the best margins for each flag. However, this probability generates unstable and
highly uncertain heatmaps, a trend that is also found in the test set. The 0.001 probability
continues to generate stable and low-uncertainty heatmaps, and this performance trend
on the heatmaps has been maintained in the test set. The Score-CAM method using
the 0.001 probability continues to fail to achieve low prediction uncertainties on the test
set, while the Grad-CAM method using the same probability achieves better margin
performance compared to the validation set.

The explainability methods are compared to verify whether Score-CAM remains the
most performant XAI method, with the results presented in Table 3.53. The header of the
table reports the number of misclassified images identified by the neural network. It is also
checked whether the two methods identify the same flag 0 and flag 1 images, with only the
common images being considered. The margins are analyzed to identify which method
has the highest number of flag 0 images with lower margins and the highest number of
flag 1 images with higher margins. The areas are compared, and the method with the
smallest areas of variability, uncertainty, and overlap on the heatmaps is identified.

In Table 3.53, it can be observed that the two methods identify the same flag 1 image
but do not identify the same flag 0 images. The Score-CAM method incurs one more error
than the Grad-CAM method. The Grad-CAM method has the highest number of flag 0
images that exhibit a final margin lower than the initial margin, and it also possesses the
highest number of flag 1 images that have a final margin greater than the initial margin.
Only the cells highlighted in green, which correspond to the number of images that meet
the condition "Score-CAM < Grad-CAM", favor the Score-CAM method. Out of the 10
compared areas, 2 favor the Score-CAM method.

The Score-CAM method demonstrates slightly lower performance on the test set com-
pared to the validation set. During the validation phase, as referenced in Table 3.43, the
Grad-CAM method had the best margins only for flag 0 images, while no method had
the best margins for flag 1 images. In the test set, Grad-CAM achieves optimal margins
even for flag 1 images. In the validation set, many entries were not considered as they
did not favor any method, and only one area out of the remaining three preferred the
Score-CAM method. In the test set, there are no entries that do not tend toward any
method, and the areas indicate that the Grad-CAM method generates the most stable
and least uncertain heatmaps.

3.3.5 Test set correctly classified images

Tables 3.54 and 3.55 refer to the data from the Grad-CAM method. The headers of the
tables indicate the number of correctly classified images identified by the neural network
and the dropout probability used with the XAI method. The analysis focuses exclu-
sively on flag 0 and flag 1 images that adhere to the respective classifications, reporting
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77 misclassified images
share flag 0 21
share flag 1 1

margin decrease Grad-CAM < Score-CAM 15
margin gain Grad-CAM > Score-CAM 1

flag 1 - Score-CAM < Grad-CAM
unFC 0
unTC 0
varFC 0
varTC 0
un ov 0
var ov 0
t ov 0

flag 0 - Score-CAM < Grad-CAM
unFC 14
varFC 5
t ov 13

Table 3.53. Comparison between Score-CAM and Grad-CAM method. The number of
shared images, the probability that has the best margins for each flag are reported. Each
area is confronted and the number of images that verify the condition "Score-CAM <
Grad-CAM" is reported. Just the green entries are those in favor of the Score-CAM method.

the number of images that reflect margin behavior, as well as the areas of variability,
uncertainty, and overlap expressed in pixels.

In Table 3.54, it can be observed that the ReP method does not make any errors, with
301 images possessing flag 0, while 16 images possess flag 1. Only 3 out of 16 flag 1 images
and 30 out of 301 flag 0 images achieve a wider margin than the original. Considering the
total number of pixels, the areas of variability, uncertainty, and overlap are very small.
The largest area reported in Table 3.54 is "t ov = 13,133", which corresponds to 5% of
the total image area.

In Table 3.55, it can be observed that the ReP method does not make any errors, with
313 images possessing flag 0, while 4 images possess flag 1. Only 2 out of 4 flag 1 images
and 103 out of 313 flag 0 images achieve a wider margin than the original. Considering
the total number of pixels, the areas of variability, uncertainty, and overlap are very small.
The largest area reported in Table 3.55 is "t ov = 14,214", which corresponds to 5% of
the total image area.

The dropout probabilities are compared, and the results are presented in Table 3.56.
The table header continues to display the number of images correctly classified by the
neural network and the analyzed XAI method. It is also verified whether the probabilities
identify the same flag 0 and flag 1 images. Only the common images are taken into
consideration. The margins are analyzed to identify which dropout probability has the
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317 correctly classified images
Grad-CAM 0.005

flag 1 flag 0
number 16 number 301

margin gain 3 margin gain 30
unFC 11395 / /
unTC 12549 unTC 12413
varFC 7832 / /
varTC 8941 varTC 10804
un ov 7795 / /
var ov 3506 / /
t ov 13133 t ov 9353

Table 3.54. Analysis of Grad-CAM 0.005. The analysis is divided between flag 1 and flag
0 images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

317 correctly classified images
Grad-CAM 0.001

flag 1 flag 0
number 4 number 313

margin gain 2 margin gain 103
unFC 11532 / /
unTC 12854 unTC 12485
varFC 10021 / /
varTC 9756 varTC 10063
un ov 6084 / /
var ov 3546 / /
t ov 14214 t ov 8831

Table 3.55. Analysis of Grad-CAM 0.001. The analysis is divided between flag 1 and flag
0 images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

greatest number of flag 0 and flag 1 images with margins exceeding the original. The
areas are compared, and the probability that possesses the smallest areas of variability,
uncertainty, and overlap on the heatmaps is identified.

In Table 3.56, it can be noted that the dropout probabilities do not identify the same
flag 0 and flag 1 images. The probability 0.001 has more flag 0 images, indicating a greater
number of images that are not misclassified when the MCD method is applied, and it
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317 correctly classified images
Grad-CAM

share flag 0 301
share flag 1 4

margin gain 0.001 > 0.005 274
margin gain 0.001 > 0.005 4

flag 1 - 0.005 < 0.001
unFC 2
unTC 3
varFC 1
varTC 3
un ov 0
var ov 1
t ov 2

flag 0 - 0.005 < 0.001
unFC 145
varFC 103
t ov 115

Table 3.56. Comparison between 0.005 and 0.001 dropout probability for Grad-CAM
XAI method. The number of shared images, the probability that has the best margins for
each flag are reported. Each area is confronted and the number of images that verify the
condition "0.005 < 0.001" is reported. Just the green entries are those in favour of 0.005
probability, while the yellow entries are not decisive.

also has fewer flag 1 images, which means a lower number of images that are misclassified
when the MCD method is applied. No dropout probability shows errors from the ReP
method.

The probability 0.001 exhibits the best margins for both flag 0 and flag 1 images.
Only the cells highlighted in green, which correspond to the number of images that meet
the condition "0.005 < 0.001", favor the probability 0.005. Since the number of identified
flag 1 images is even, all cells that report a number of images corresponding to "number
of flag images/2" are highlighted in yellow and are not considered in the final comparison.
Of the remaining 8 areas, 2 favor the probability 0.005.

As was the case in the validation set, referring now to the data in Table 3.44, the
probability 0.001 remains the one with the least prediction uncertainty. In the validation
set, all 10 areas confirmed that probability 0.001 generates the most stable and least
uncertain heatmaps. This trend is also observed in the test set; however, two areas do
not fall into the final comparison, and one area prefers the dropout probability of 0.005.

Table 3.57 and Table 3.58 refer to the data from the Score-CAM method. The table
headers display the number of correctly classified images identified by the neural network
and the dropout probability used with the XAI method. The analysis focuses solely on
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flag 0 and flag 1 images that comply with their respective classifications, reporting the
number of images that reflect the margin behavior and the areas of variability, uncertainty,
and overlap expressed in pixels.

317 correctly classified images
Score-CAM 0.005

flag 1 flag 0
number 17 number 300

margin gain 1 margin gain 44
unFC 12669 / /
unTC 13487 unTC 13326
varFC 12825 / /
varTC 13014 varTC 12616
un ov 5375 / /
var ov 3613 / /
t ov 15214 t ov 9010

Table 3.57. Analysis of Score-CAM 0.005. The analysis is divided between flag 1 and flag
0 images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

In Table 3.57, it can be observed that the ReP method does not commit any errors;
300 images have a flag 0, while 17 images have a flag 1. Only 1 flag 1 image out of 17
and 44 flag 0 images out of 300 manage to achieve a margin wider than the original.
Knowing the total number of pixels, the areas of variability, uncertainty, and overlap are
very small. The largest area shown in Table 3.57 is "t ov = 15,214", which corresponds
to 6% of the total area of the image.

In Table 3.58, it can be observed that the ReP method does not commit any errors;
312 images have a flag 0, while 5 images have a flag 1. No flag 1 image is able to achieve a
margin wider than the original, whereas 102 flag 0 images out of 312 manage to improve
their margin. Knowing the total number of pixels, the areas of variability, uncertainty,
and overlap are very small. The largest area shown in Table 3.58 is "t ov = 16,548", which
corresponds to 6% of the total area of the image.

The dropout probabilities are compared, and the results are reported in Table 3.59.
The header of the table continues to indicate the number of correctly classified images
identified by the neural network and the XAI method used. It is also verified whether
the probabilities identify the same flag 0 and flag 1 images. Only the common images are
considered. The margins are analyzed to determine which dropout probability has the
highest number of flag 0 and flag 1 images with margins greater than the originals. The
areas are compared, and the probability that has the least variability, uncertainty, and
overlap on the heatmaps is identified.

In Table 3.59, it can be observed that the dropout probabilities do not identify the
same flag 0 and flag 1 images. The probability of 0.001 has more flag 0 images, indicating
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317 correctly classified images
Score-CAM 0.001

flag 1 flag 0
number 5 number 312

margin gain 0 margin gain 102
unFC 13336 / /
unTC 14850 unTC 12817
varFC 15341 / /
varTC 13812 varTC 11205
un ov 5018 / /
var ov 5638 / /
t ov 16548 t ov 8256

Table 3.58. Analysis of Score-CAM 0.001. The analysis is divided between flag 1 and flag
0 images. The "number" row refers to the number of images that belong to each flag group.
The number of images that respects the behaviour of the margin is following. Each flag in
characterized by the wideness of the analyzed areas in pixel.

a greater number of images that are not misclassified when the MCD method is applied,
and it also has fewer flag 1 images, which corresponds to a lower number of images that
are misclassified when the MCD method is applied. No dropout probability yields errors
from the ReP method. The probability of 0.001 offers the best margins for flag 0 images,
while it is the probability of 0.005 that possesses the best margins for flag 1 images.
Only the cells highlighted in green, corresponding to the number of images that meet the
condition "0.005 < 0.001", favor the probability of 0.005. Out of the 10 areas compared,
6 are in favor of the probability of 0.005.

Referring to the validation set data presented in Table 3.45, the probability of 0.001
remains the one with the least prediction uncertainty for flag 0 images, while flag 1 images
continue to exhibit the least prediction uncertainty only when the dropout probability is
0.005. This trend in margin behavior persists in the test set. For the validation set, the
probability of 0.001 generates the most stable and least uncertain heatmaps; however,
test set data indicate that the probability of 0.005 generates the most stable and least
uncertain heatmaps. The drop in performance observed for test set images also affects
the Score-CAM method, which, when used with the probability of 0.001, is no longer the
optimal XAI method for analyzing correctly classified images.

The explainability methods are compared to determine if Score-CAM continues to be
the most effective XAI method, with the data presented in Table 3.60. The header of the
table indicates the number of correctly classified images identified by the neural network.
It is also verified whether the two methods identify the same flag 0 and flag 1 images.
Only the common images are taken into account. The margins are analyzed to identify
which method has the highest number of flag 0 and flag 1 images with the best margins.
The areas are compared, and the method that has the least variability, uncertainty, and
overlap in the heatmaps is identified.
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317 correctly classified images
Score-CAM

share flag 0 300
share flag 1 5

margin gain 0.001 > 0.005 253
margin gain 0.005 > 0.001 3

flag 1 - 0.005 < 0.001
unFC 4
unTC 3
varFC 3
varTC 5
un ov 1
var ov 5
t ov 4

flag 0 - 0.005 < 0.001
unFC 128
varFC 83
t ov 103

Table 3.59. Comparison between 0.005 and 0.001 dropout probability for Score-
CAM XAI method. The number of shared images, the probability that has the best
margins for each flag are reported. Each area is confronted and the number of images
that verify the condition "0.005 < 0.001" is reported. Just the green entries are those
in favour of 0.005 probability.

In Table 3.60, it can be observed that the two methods do not identify the same flag 0
and flag 1 images. The Score-CAM method identifies one additional flag 1 image, meaning
an image that is not misclassified when the MCD method is applied, and it identifies one
fewer flag 0 image, indicating one less image that is misclassified when the MCD method
is applied. The Score-CAM method exhibits the least prediction uncertainty for flag 1
images, but it does not achieve the same result for flag 0 images. Only the cells highlighted
in green, corresponding to the number of images that meet the condition "Score-CAM <
Grad-CAM", favor the Score-CAM method. Of the 10 areas compared, 3 are in favor of
the Score-CAM method.

The performance of the Score-CAM method on the test set is slightly lower compared
to its performance on the validation set, as indicated in Table 3.46. In the test set, the
Score-CAM method is no longer the one that has the least prediction uncertainty for
both flag 0 and flag 1 images; it achieves the least prediction uncertainty only for flag
1 images. The Score-CAM method continues to generate more variable and uncertain
heatmaps, as observed in the validation set.
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317 correctly classified images
share flag 0 311
share flag 1 3

margin gain Grad-CAM > Score-CAM 163
margin gain Score-CAM > Grad-CAM 3

flag 1 - Score-CAM < Grad-CAM
unFC 1
unTC 1
varFC 1
varTC 0
un ov 2
var ov 0
t ov 1

flag 0 - Score-CAM < Grad-CAM
unFC 172
varFC 128
t ov 186

Table 3.60. Comparison between Score-CAM and Grad-CAM method. The number of
shared images, the method that has the best margins for each flag are reported. Each area is
confronted and the number of images that verify the condition "Score-CAM < Grad-CAM"
is reported. Just the green entries are those in favour of the Score-CAM method.
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Chapter 4

Discussion

The Score-CAM method was identified as the most optimal approach to use with the XCiT
network based on the data obtained from the validation set. However, the performance
of this XAI method experiences a significant drop, and it no longer serves as the method
that generates stable and low-uncertainty heatmaps, as well as softmax outputs with low
prediction uncertainties. When using the Score-CAM method with a dropout probability
of 0.001, the correctly classified images exhibit more unstable and uncertain heatmaps
compared to the results obtained from the validation set, while the misclassified images
maintain consistent performance across both sets.

The test set consists of 394 images, of which 317 are correctly classified and 77 are
misclassified. The confusion matrix for the classification performed by the XCiT network
is presented in Fig. 4.1.

Figure 4.1. This is the confusion matrix of the XCiT net. On the y-axis there are GT
labels divided into: no tumor, pituitary tumor, meningioma tumor, glioma tumor. On the
x-axis there are the prediction for each class image.
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The confusion matrix illustrates that the network correctly classifies the majority of
the images, particularly as follows:

• All images without tumors are accurately classified, whereas in the validation set,
the network made three errors;

• Images of pituitary tumors are misclassified as meningioma tumors and no tumors.
The misclassification in the no tumor class did not occur in the validation set, where
misclassifications happened in the glioma tumor class;

• Only one image from the meningioma tumor class is misclassified, with the network
assigning it to the glioma class;

• Images of glioma tumors are misclassified more frequently than they are correctly
classified; this trend was not evident in the validation set. In the validation set,
these images were misclassified as meningioma tumors, but in the test set, 18%
of these images are classified as no tumors, and 49% are classified as meningioma
tumors.

In the validation set, only three images belonging to the meningioma tumor class are
classified as no tumor. In the test set, however, as many as 18 images from the glioma tu-
mor class and six images from the pituitary tumor class are classified as no tumor. These
classification errors are unacceptable because, theoretically, a neural network should mis-
classify an image from one tumor class as belonging to a different tumor class. This data
indicates that the network has failed to generalize and has experienced overfitting. After
analyzing the images using the ReP method, the confusion matrix is modified, and the
new matrix is presented in Fig. 4.2.

By applying the method to the images misclassified by the XCiT neural network, it
was possible to correct the classification of only one image belonging to the glioma tumor
class. This image was originally classified as meningioma tumor, but it is now correctly
classified within the glioma tumor class. As reported in Table 3.51, this image, which is
image(309), also achieves a margin higher than the original. The percentage variation of
the margin is 14,641%, increasing from an original margin of 0.041 to a final margin of
0.647. The softmax provided by the XCiT network exhibits high prediction uncertainty;
however, with the application of the ReP method, this image now demonstrates low
prediction uncertainty regarding the GT class.

There are 23 images identified as flag 0, 11 of which possess a margin lower than
the original, indicating a higher probability for the GT class. The average percentage
variation of the margins is -2%, where:

• Image image(311) has the smallest percentage variation of -0.0009%, with the initial
margin being similar to the final margin at 0.996;

• Image image(228) shows the greatest percentage variation of -14%, decreasing from
an original margin of 0.886 to a final margin of 0.758.
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Figure 4.2. This is the confusion matrix after applying the ReP method. On the y-axis
there are GT labels divided into: no tumor, pituitary tumor, meningioma tumor, glioma
tumor. On the x-axis there are the prediction of ReP softmax for each class image.

These percentages indicate that the heatmaps of the 23 images remain highly certain
regarding the predicted class. The flag 0, as observed in the validation set, has identified
a series of images that exhibit low prediction uncertainty toward the predicted class.

The ReP method has made a greater number of errors compared to those committed
in the validation set: as reported in Table 3.51, these 53 errors correspond to misclassified
images that continue to remain misclassified.

Upon analyzing the images correctly classified by the XCiT network using the ReP
method, 312 images are identified that remain classified in the GT class even when the
MCD method is applied (flag 0), while 5 images exhibit at least one incorrect classifi-
cation when the MCD method is applied (flag 1), as shown in the results presented in
Table 3.58. For 102 flag 0 images, the method successfully increases the margin while
reducing prediction uncertainty, achieving an average percentage variation of the mar-
gins equal to 0.15%. The image with the highest percentage variation, equal to 4%, is
image(107), which increases from an original margin of 0.718 to a final margin of 0.744.

The remaining 210 flag 0 images continue to have the GT class as their prediction;
however, the margin is lower than the original. The average percentage variation of the
margins for these images is -0.4%, where:

• The image image(150) exhibits the largest percentage variation, which is -21%,
decreasing from an initial margin of 0.775 to a final margin of 0.615;

• The image image(187) shows the smallest percentage variation, which is -0.0002%,
with the initial margin being similar to the final margin, at 0.997.
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All images identified as flag 0 exhibit low prediction uncertainty toward the GT class,
although the margin for some of these is lower than the original margin provided by the
XCiT network.

Of the 5 identified flag 1 images, none are able to achieve a margin greater than the
original. All images experience a deterioration of the margin; the average percentage
variation of these margins is -35%, where:

• The image image(336) has the largest percentage variation at -54%, decreasing from
an original margin of 0.483 to a final margin of 0.220;

• The image image(109) exhibits the smallest percentage variation at -14%, decreasing
from an original margin of 0.422 to a final margin of 0.364.

In this case, not all identified flag 1 images exhibit low prediction uncertainty toward
the GT class.

The XCiT network maintains low prediction uncertainty during the classification of
images in the test set. Whether the network classifies correctly or misclassifies, the
prediction uncertainty for the predicted class remains very low. This is also evident from
the number of flag 0 images: it is rare for the network to classify an image differently,
even when the MCD method is applied. However, the network displays considerable
uncertainty when an image is classified differently using the MCD method, particularly
for flag 1 images. When this occurs, the network provides highly uncertain predictions;
the ReP method emphasizes and characterizes the network's difficulty in identifying the
final prediction. The XCiT network exhibits a very robust localization phase, as indicated
by the contained areas of variability, uncertainty, and overlap; nevertheless, it has suffered
from overfitting, as demonstrated by the margins.

The overfitting is likely also attributable to the suboptimal dataset: as noted in
Section 2.1.1, the training set consists of 2,437 images, while the validation set contains
433 images and the test set has 394 images. The sets are imbalanced in size, even though
the percentages chosen to divide the images into training and validation sets are optimal
for a relatively small dataset like the one used in this thesis. As shown in the confusion
matrix presented in Fig. 3.1, the classes are also imbalanced: 60 images belong to the
no tumor class, 125 images to the pituitary tumor class, 124 images to the meningioma
tumor class, and 124 images to the glioma tumor class. The no tumor class is not well
represented at all, accounting for only 14% of the entire validation set.

The confusion matrix shown in Fig. 4.1 illustrates how overfitting has occurred in the
no tumor and meningioma tumor classes. In the test set, the network does not classify
any images belonging to the no tumor class even once, while it misclassifies only one
image from the meningioma tumor class. These two classes exhibit significantly fewer
errors compared to those made by the network in the validation set. The pituitary tumor
and glioma tumor classes demonstrate the poorest performance. The test set is smaller
than the validation set; however:
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• The no tumor class contains 75% more images than the number of images present
in the validation set;

• The pituitary tumor class contains 41% fewer images than the number of images
present in the validation set;

• The meningioma tumor class contains 7% fewer images than the number of images
present in the validation set;

• The glioma tumor class contains 19% fewer images than the number of images
present in the validation set.

Despite the fact that the Score-CAM method experiences a drop in performance such
that it is no longer considered the optimal XAI method to use with the XCiT neural
network, the probability of 0.001 continues to be identified as the most optimal dropout
probability. Moreover, in the test set, when used in conjunction with the Grad-CAM
method to analyze misclassified images, this probability yields margin performance that
exceeds those identified in the validation set.
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Chapter 5

Conclusion

This Master's Thesis incorporated the aspect of uncertainty in XAI methods with the
aim of enhancing the transparency of the neural network's decision-making process in the
classification of brain MRI images.

Currently, studies on neural networks in the literature focus on three main directions:
designing and developing neural networks with ever-improving performance, associating
increasingly innovative XAI methods with neural networks to generate more accurate
heatmaps and provide the end-user with a clearer idea of the spatial region the network
will use for subsequent classification, and finally, exploring methods that can be applied
to neural networks to gain an indication of the network's uncertainty. For years, the lit-
erature has been working to develop XAI methods and uncertainty estimation techniques
to make the "black box" behavior of neural networks more interpretable for end-users.

These three aspects are not always interconnected: studies mainly focus on either
XAI methods applied to neural networks or uncertainty estimation methods for neural
networks. However, XAI methods and uncertainty estimation remain two aspects that
have not yet been fully integrated. This thesis successfully combined XAI methods with
uncertainty estimation, further characterizing the behavior of the neural network used in
this project.

The first objective of this thesis was to quantify the variability and uncertainty of the
most important features extracted by the neural network. The neural network used in
this project is XCiT, a model that is computationally efficient while performing on par
with other networks in the literature. The XAI methods implemented were Grad-CAM
and Score-CAM, while the uncertainty estimation method used was MCD, applied with
two different dropout probabilities. Since it is impossible to know which features the
network extracts or their values, and applying the MCD method turns off some neurons
in the XCiT network, meaning the features used for new predictions may differ and
have different values (even if these cannot be discovered), four methods were devised
to manipulate the heatmaps and softmax outputs provided by the neural network. All
heatmaps and softmax outputs produced by XCiT, including those generated when the
MCD method is applied, were used. These four methods are based on hypotheses and
provide a final heatmap and softmax at the end of their manipulation. These heatmaps
are more representative than those provided by the neural network before the MCD
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method is applied, showing only the spatial region consistently identified and used to
make the final prediction. Variability areas and uncertainty areas can be identified on
the heatmaps: the former refers to the variability of the most important features identified
by the neural network, while the latter refers to errors that manipulation methods may
introduce. It is also possible to quantify whether these areas overlap.

The uncertainty of the most important features is "hidden" in the softmax outputs
provided by the network. From the softmax, prediction uncertainty can be extracted by
calculating the margin: the distance between the predicted class and the GT class.

The first objective of this thesis was to identify which of the four devised methods
demonstrated the best performance. The search for the optimal method introduced the
concept of flags: each image classified by the neural network exhibits its own behavior
before and after analysis using the devised methods. Each flag has specific rules for
calculating prediction uncertainty and identifies certain areas on the heatmaps proposed
by the methods. The best method for analyzing all images was found to be the method
called ReP.

The second objective of this work was to determine which XAI method and which
dropout probability yielded the best performance from the XCiT network. This master's
thesis not only introduces a series of methods to characterize the variability and uncer-
tainty of the most important features extracted by the neural network but also addresses
the challenge of identifying, as accurately as possible, the most optimal XAI method and
dropout probability for use with the neural network in this study.

In the validation set, using only the identified ReP method, the data showed that
the 0.001 dropout probability was more effective than the 0.005 probability. The XAI
method found to be most suitable for use with the XCiT network was Score-CAM. When
combined with a 0.001 dropout probability, the Score-CAM method was able to generate
softmax outputs with low prediction uncertainties, although it produced variable and
uncertain heatmaps.

The test set data were analyzed using only the ReP method to identify areas of
variability, uncertainty, and overlap on the heatmaps provided by the method, and to
quantify prediction uncertainty based on the softmax outputs. The test set data indicated
both a performance drop and overfitting. The Score-CAM method was no longer the
optimal XAI method for use with the XCiT network. In particular, the performance drop
of the Score-CAM method had a significant impact on the softmax outputs, resulting in
highly uncertain heatmaps for the predicted class. Despite the XAI method no longer
being validated by the validation set, the 0.001 dropout probability continued to exhibit
the best performance, even achieving better results than in the validation set.

5.1 Limitations

Despite the success of this thesis in identifying the variability and uncertainty of the most
important features, the primary limitation lies in the manipulation methods for heatmaps
and softmax that were developed.

One of the underlying assumptions for constructing these methods is the necessity of
having the GT class. While this is not an issue during the training phase of the neural
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network, in real-world applications, the GT class is not available.
This work is able to characterize the localization and interpretation phases of a neural

network only when the GT class is available, meaning the methods developed can only be
applied to research problems, not to practical applications. In a real-world application,
it is not yet possible to manipulate the heatmaps and softmax outputs provided by the
neural network to obtain a more representative heatmap of the most important features,
nor is it possible to correct the predictions of some misclassified images.

Without access to the GT class in real-world applications, it is not possible to identify
only the most important features extracted by the neural network, nor to characterize
the uncertainty of the prediction. In practical applications, one can only characterize
the behavior of the network's localization and interpretation phases and deliver the final
output, along with its identified strengths and weaknesses, for use in real-world scenarios.

Another issue arising from these methods is the need to identify the optimal analysis
method for heatmaps and softmax each time a new study on medical image classification
is initiated. There is no available data to definitively confirm that the method identified
in this work is the most effective for other neural networks and XAI methods.

Another limitation of this thesis is the dataset used. The Brain MRI dataset not only
contains images that lack standardized dimensions, requiring additional work to achieve
optimally sized and high-resolution images, but it is also neither sufficiently large for a
study involving a deep neural network nor balanced in terms of its sets and the number
of images in each class. The dataset is relatively small, containing only 3,264 images, and
is skewed toward the training set, leaving only 13% of the total number of images in the
validation set and 12% in the test set. The dataset's classes - no tumor, pituitary tumor,
meningioma tumor, and glioma tumor - are also imbalanced. Specifically, the validation
set contains a very small number of images in the no tumor class compared to the other
three classes, while the test set has a limited number of images belonging to the pituitary
tumor and glioma tumor classes.

The inadequacy of the dataset allowed the network to develop a very robust localiza-
tion phase, as shown by the limited areas of variability, uncertainty, and overlap identified
in the heatmaps, but it also led to overfitting. The interpretation phase failed to gen-
eralize from the images used for network construction and validation, resulting in lower
performance on the test set.

5.2 Future works

The work conducted in this Master's Thesis can be applied to the analysis of any neural
network and any XAI method in the field of medical image classification, provided the
network architecture allows for the application of the MCD method and the GT classes
are available.

Despite the various applications of this work, a key future direction is the identifica-
tion of one or more methods capable of characterizing the variability and uncertainty of
the most important features without the constraint of having the GT class. The meth-
ods developed in this thesis could be adapted to function without the GT class, but the
assumptions underlying them would need further revision to be applicable in real-world
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settings. These methods were designed with both the localization phase and the inter-
pretation phase in mind, along with the associated errors that may arise. For practical
applications, it is necessary to simplify the manipulation of heatmaps by focusing solely
on the localization phase. Additionally, it is crucial to conduct a preliminary analysis of
the heatmaps to identify whether there is an indicator that can distinguish between cor-
rectly classified heatmaps, discarding the misclassified ones. By following this approach,
it is no longer possible to identify the most important features used by the neural network,
but only those features present in the heatmaps that are not discarded.

Thus, while it is possible to modify the developed methods to quantify areas of vari-
ability and uncertainty in the heatmaps, it is no longer feasible to quantify prediction
uncertainty. In this work, the prediction uncertainty identified through softmax is achiev-
able because the GT class is known. Without this data in real-world applications, char-
acterizing the interpretation phase remains highly challenging within AI. The margin
can still be utilized, but many of the considerations made in this thesis would no longer
apply. The real challenge in analyzing neural networks lies in the difficulty of examining
the interpretation phase, which remains the most complex and still largely a "black box."
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